]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
Merge branch 'fix/rt5645' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[karo-tx-linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5 Network Driver"
87
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95         /* Administrative fields for filter.
96          */
97         u32 valid:1;            /* filter allocated and valid */
98         u32 locked:1;           /* filter is administratively locked */
99
100         u32 pending:1;          /* filter action is pending firmware reply */
101         u32 smtidx:8;           /* Source MAC Table index for smac */
102         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103
104         /* The filter itself.  Most of this is a straight copy of information
105          * provided by the extended ioctl().  Some fields are translated to
106          * internal forms -- for instance the Ingress Queue ID passed in from
107          * the ioctl() is translated into the Absolute Ingress Queue ID.
108          */
109         struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119         static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128                 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131                 { 0, } \
132         }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154
155 /*
156  * Normally we're willing to become the firmware's Master PF but will be happy
157  * if another PF has already become the Master and initialized the adapter.
158  * Setting "force_init" will cause this driver to forcibly establish itself as
159  * the Master PF and initialize the adapter.
160  */
161 static uint force_init;
162
163 module_param(force_init, uint, 0644);
164 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
165
166 /*
167  * Normally if the firmware we connect to has Configuration File support, we
168  * use that and only fall back to the old Driver-based initialization if the
169  * Configuration File fails for some reason.  If force_old_init is set, then
170  * we'll always use the old Driver-based initialization sequence.
171  */
172 static uint force_old_init;
173
174 module_param(force_old_init, uint, 0644);
175 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
176                  " parameter");
177
178 static int dflt_msg_enable = DFLT_MSG_ENABLE;
179
180 module_param(dflt_msg_enable, int, 0644);
181 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
182
183 /*
184  * The driver uses the best interrupt scheme available on a platform in the
185  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
186  * of these schemes the driver may consider as follows:
187  *
188  * msi = 2: choose from among all three options
189  * msi = 1: only consider MSI and INTx interrupts
190  * msi = 0: force INTx interrupts
191  */
192 static int msi = 2;
193
194 module_param(msi, int, 0644);
195 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
196
197 /*
198  * Queue interrupt hold-off timer values.  Queues default to the first of these
199  * upon creation.
200  */
201 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
202
203 module_param_array(intr_holdoff, uint, NULL, 0644);
204 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
205                  "0..4 in microseconds, deprecated parameter");
206
207 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
208
209 module_param_array(intr_cnt, uint, NULL, 0644);
210 MODULE_PARM_DESC(intr_cnt,
211                  "thresholds 1..3 for queue interrupt packet counters, "
212                  "deprecated parameter");
213
214 /*
215  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
216  * offset by 2 bytes in order to have the IP headers line up on 4-byte
217  * boundaries.  This is a requirement for many architectures which will throw
218  * a machine check fault if an attempt is made to access one of the 4-byte IP
219  * header fields on a non-4-byte boundary.  And it's a major performance issue
220  * even on some architectures which allow it like some implementations of the
221  * x86 ISA.  However, some architectures don't mind this and for some very
222  * edge-case performance sensitive applications (like forwarding large volumes
223  * of small packets), setting this DMA offset to 0 will decrease the number of
224  * PCI-E Bus transfers enough to measurably affect performance.
225  */
226 static int rx_dma_offset = 2;
227
228 static bool vf_acls;
229
230 #ifdef CONFIG_PCI_IOV
231 module_param(vf_acls, bool, 0644);
232 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
233                  "deprecated parameter");
234
235 /* Configure the number of PCI-E Virtual Function which are to be instantiated
236  * on SR-IOV Capable Physical Functions.
237  */
238 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
239
240 module_param_array(num_vf, uint, NULL, 0644);
241 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
242 #endif
243
244 /* TX Queue select used to determine what algorithm to use for selecting TX
245  * queue. Select between the kernel provided function (select_queue=0) or user
246  * cxgb_select_queue function (select_queue=1)
247  *
248  * Default: select_queue=0
249  */
250 static int select_queue;
251 module_param(select_queue, int, 0644);
252 MODULE_PARM_DESC(select_queue,
253                  "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
254
255 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
256
257 module_param(tp_vlan_pri_map, uint, 0644);
258 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
259                  "deprecated parameter");
260
261 static struct dentry *cxgb4_debugfs_root;
262
263 static LIST_HEAD(adapter_list);
264 static DEFINE_MUTEX(uld_mutex);
265 /* Adapter list to be accessed from atomic context */
266 static LIST_HEAD(adap_rcu_list);
267 static DEFINE_SPINLOCK(adap_rcu_lock);
268 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
269 static const char *uld_str[] = { "RDMA", "iSCSI" };
270
271 static void link_report(struct net_device *dev)
272 {
273         if (!netif_carrier_ok(dev))
274                 netdev_info(dev, "link down\n");
275         else {
276                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
277
278                 const char *s = "10Mbps";
279                 const struct port_info *p = netdev_priv(dev);
280
281                 switch (p->link_cfg.speed) {
282                 case 10000:
283                         s = "10Gbps";
284                         break;
285                 case 1000:
286                         s = "1000Mbps";
287                         break;
288                 case 100:
289                         s = "100Mbps";
290                         break;
291                 case 40000:
292                         s = "40Gbps";
293                         break;
294                 }
295
296                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
297                             fc[p->link_cfg.fc]);
298         }
299 }
300
301 #ifdef CONFIG_CHELSIO_T4_DCB
302 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
303 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
304 {
305         struct port_info *pi = netdev_priv(dev);
306         struct adapter *adap = pi->adapter;
307         struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
308         int i;
309
310         /* We use a simple mapping of Port TX Queue Index to DCB
311          * Priority when we're enabling DCB.
312          */
313         for (i = 0; i < pi->nqsets; i++, txq++) {
314                 u32 name, value;
315                 int err;
316
317                 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
318                         FW_PARAMS_PARAM_X_V(
319                                 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
320                         FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
321                 value = enable ? i : 0xffffffff;
322
323                 /* Since we can be called while atomic (from "interrupt
324                  * level") we need to issue the Set Parameters Commannd
325                  * without sleeping (timeout < 0).
326                  */
327                 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
328                                             &name, &value,
329                                             -FW_CMD_MAX_TIMEOUT);
330
331                 if (err)
332                         dev_err(adap->pdev_dev,
333                                 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
334                                 enable ? "set" : "unset", pi->port_id, i, -err);
335                 else
336                         txq->dcb_prio = value;
337         }
338 }
339 #endif /* CONFIG_CHELSIO_T4_DCB */
340
341 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
342 {
343         struct net_device *dev = adapter->port[port_id];
344
345         /* Skip changes from disabled ports. */
346         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
347                 if (link_stat)
348                         netif_carrier_on(dev);
349                 else {
350 #ifdef CONFIG_CHELSIO_T4_DCB
351                         cxgb4_dcb_state_init(dev);
352                         dcb_tx_queue_prio_enable(dev, false);
353 #endif /* CONFIG_CHELSIO_T4_DCB */
354                         netif_carrier_off(dev);
355                 }
356
357                 link_report(dev);
358         }
359 }
360
361 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
362 {
363         static const char *mod_str[] = {
364                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
365         };
366
367         const struct net_device *dev = adap->port[port_id];
368         const struct port_info *pi = netdev_priv(dev);
369
370         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
371                 netdev_info(dev, "port module unplugged\n");
372         else if (pi->mod_type < ARRAY_SIZE(mod_str))
373                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
374 }
375
376 /*
377  * Configure the exact and hash address filters to handle a port's multicast
378  * and secondary unicast MAC addresses.
379  */
380 static int set_addr_filters(const struct net_device *dev, bool sleep)
381 {
382         u64 mhash = 0;
383         u64 uhash = 0;
384         bool free = true;
385         u16 filt_idx[7];
386         const u8 *addr[7];
387         int ret, naddr = 0;
388         const struct netdev_hw_addr *ha;
389         int uc_cnt = netdev_uc_count(dev);
390         int mc_cnt = netdev_mc_count(dev);
391         const struct port_info *pi = netdev_priv(dev);
392         unsigned int mb = pi->adapter->pf;
393
394         /* first do the secondary unicast addresses */
395         netdev_for_each_uc_addr(ha, dev) {
396                 addr[naddr++] = ha->addr;
397                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
398                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
399                                         naddr, addr, filt_idx, &uhash, sleep);
400                         if (ret < 0)
401                                 return ret;
402
403                         free = false;
404                         naddr = 0;
405                 }
406         }
407
408         /* next set up the multicast addresses */
409         netdev_for_each_mc_addr(ha, dev) {
410                 addr[naddr++] = ha->addr;
411                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
412                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
413                                         naddr, addr, filt_idx, &mhash, sleep);
414                         if (ret < 0)
415                                 return ret;
416
417                         free = false;
418                         naddr = 0;
419                 }
420         }
421
422         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
423                                 uhash | mhash, sleep);
424 }
425
426 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
427 module_param(dbfifo_int_thresh, int, 0644);
428 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
429
430 /*
431  * usecs to sleep while draining the dbfifo
432  */
433 static int dbfifo_drain_delay = 1000;
434 module_param(dbfifo_drain_delay, int, 0644);
435 MODULE_PARM_DESC(dbfifo_drain_delay,
436                  "usecs to sleep while draining the dbfifo");
437
438 /*
439  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
440  * If @mtu is -1 it is left unchanged.
441  */
442 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
443 {
444         int ret;
445         struct port_info *pi = netdev_priv(dev);
446
447         ret = set_addr_filters(dev, sleep_ok);
448         if (ret == 0)
449                 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
450                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
451                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
452                                     sleep_ok);
453         return ret;
454 }
455
456 /**
457  *      link_start - enable a port
458  *      @dev: the port to enable
459  *
460  *      Performs the MAC and PHY actions needed to enable a port.
461  */
462 static int link_start(struct net_device *dev)
463 {
464         int ret;
465         struct port_info *pi = netdev_priv(dev);
466         unsigned int mb = pi->adapter->pf;
467
468         /*
469          * We do not set address filters and promiscuity here, the stack does
470          * that step explicitly.
471          */
472         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
473                             !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
474         if (ret == 0) {
475                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
476                                     pi->xact_addr_filt, dev->dev_addr, true,
477                                     true);
478                 if (ret >= 0) {
479                         pi->xact_addr_filt = ret;
480                         ret = 0;
481                 }
482         }
483         if (ret == 0)
484                 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
485                                     &pi->link_cfg);
486         if (ret == 0) {
487                 local_bh_disable();
488                 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
489                                           true, CXGB4_DCB_ENABLED);
490                 local_bh_enable();
491         }
492
493         return ret;
494 }
495
496 int cxgb4_dcb_enabled(const struct net_device *dev)
497 {
498 #ifdef CONFIG_CHELSIO_T4_DCB
499         struct port_info *pi = netdev_priv(dev);
500
501         if (!pi->dcb.enabled)
502                 return 0;
503
504         return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
505                 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
506 #else
507         return 0;
508 #endif
509 }
510 EXPORT_SYMBOL(cxgb4_dcb_enabled);
511
512 #ifdef CONFIG_CHELSIO_T4_DCB
513 /* Handle a Data Center Bridging update message from the firmware. */
514 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
515 {
516         int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
517         struct net_device *dev = adap->port[port];
518         int old_dcb_enabled = cxgb4_dcb_enabled(dev);
519         int new_dcb_enabled;
520
521         cxgb4_dcb_handle_fw_update(adap, pcmd);
522         new_dcb_enabled = cxgb4_dcb_enabled(dev);
523
524         /* If the DCB has become enabled or disabled on the port then we're
525          * going to need to set up/tear down DCB Priority parameters for the
526          * TX Queues associated with the port.
527          */
528         if (new_dcb_enabled != old_dcb_enabled)
529                 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
530 }
531 #endif /* CONFIG_CHELSIO_T4_DCB */
532
533 /* Clear a filter and release any of its resources that we own.  This also
534  * clears the filter's "pending" status.
535  */
536 static void clear_filter(struct adapter *adap, struct filter_entry *f)
537 {
538         /* If the new or old filter have loopback rewriteing rules then we'll
539          * need to free any existing Layer Two Table (L2T) entries of the old
540          * filter rule.  The firmware will handle freeing up any Source MAC
541          * Table (SMT) entries used for rewriting Source MAC Addresses in
542          * loopback rules.
543          */
544         if (f->l2t)
545                 cxgb4_l2t_release(f->l2t);
546
547         /* The zeroing of the filter rule below clears the filter valid,
548          * pending, locked flags, l2t pointer, etc. so it's all we need for
549          * this operation.
550          */
551         memset(f, 0, sizeof(*f));
552 }
553
554 /* Handle a filter write/deletion reply.
555  */
556 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
557 {
558         unsigned int idx = GET_TID(rpl);
559         unsigned int nidx = idx - adap->tids.ftid_base;
560         unsigned int ret;
561         struct filter_entry *f;
562
563         if (idx >= adap->tids.ftid_base && nidx <
564            (adap->tids.nftids + adap->tids.nsftids)) {
565                 idx = nidx;
566                 ret = TCB_COOKIE_G(rpl->cookie);
567                 f = &adap->tids.ftid_tab[idx];
568
569                 if (ret == FW_FILTER_WR_FLT_DELETED) {
570                         /* Clear the filter when we get confirmation from the
571                          * hardware that the filter has been deleted.
572                          */
573                         clear_filter(adap, f);
574                 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
575                         dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
576                                 idx);
577                         clear_filter(adap, f);
578                 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
579                         f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
580                         f->pending = 0;  /* asynchronous setup completed */
581                         f->valid = 1;
582                 } else {
583                         /* Something went wrong.  Issue a warning about the
584                          * problem and clear everything out.
585                          */
586                         dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
587                                 idx, ret);
588                         clear_filter(adap, f);
589                 }
590         }
591 }
592
593 /* Response queue handler for the FW event queue.
594  */
595 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
596                           const struct pkt_gl *gl)
597 {
598         u8 opcode = ((const struct rss_header *)rsp)->opcode;
599
600         rsp++;                                          /* skip RSS header */
601
602         /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
603          */
604         if (unlikely(opcode == CPL_FW4_MSG &&
605            ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
606                 rsp++;
607                 opcode = ((const struct rss_header *)rsp)->opcode;
608                 rsp++;
609                 if (opcode != CPL_SGE_EGR_UPDATE) {
610                         dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
611                                 , opcode);
612                         goto out;
613                 }
614         }
615
616         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
617                 const struct cpl_sge_egr_update *p = (void *)rsp;
618                 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
619                 struct sge_txq *txq;
620
621                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
622                 txq->restarts++;
623                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
624                         struct sge_eth_txq *eq;
625
626                         eq = container_of(txq, struct sge_eth_txq, q);
627                         netif_tx_wake_queue(eq->txq);
628                 } else {
629                         struct sge_ofld_txq *oq;
630
631                         oq = container_of(txq, struct sge_ofld_txq, q);
632                         tasklet_schedule(&oq->qresume_tsk);
633                 }
634         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
635                 const struct cpl_fw6_msg *p = (void *)rsp;
636
637 #ifdef CONFIG_CHELSIO_T4_DCB
638                 const struct fw_port_cmd *pcmd = (const void *)p->data;
639                 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
640                 unsigned int action =
641                         FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
642
643                 if (cmd == FW_PORT_CMD &&
644                     action == FW_PORT_ACTION_GET_PORT_INFO) {
645                         int port = FW_PORT_CMD_PORTID_G(
646                                         be32_to_cpu(pcmd->op_to_portid));
647                         struct net_device *dev = q->adap->port[port];
648                         int state_input = ((pcmd->u.info.dcbxdis_pkd &
649                                             FW_PORT_CMD_DCBXDIS_F)
650                                            ? CXGB4_DCB_INPUT_FW_DISABLED
651                                            : CXGB4_DCB_INPUT_FW_ENABLED);
652
653                         cxgb4_dcb_state_fsm(dev, state_input);
654                 }
655
656                 if (cmd == FW_PORT_CMD &&
657                     action == FW_PORT_ACTION_L2_DCB_CFG)
658                         dcb_rpl(q->adap, pcmd);
659                 else
660 #endif
661                         if (p->type == 0)
662                                 t4_handle_fw_rpl(q->adap, p->data);
663         } else if (opcode == CPL_L2T_WRITE_RPL) {
664                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
665
666                 do_l2t_write_rpl(q->adap, p);
667         } else if (opcode == CPL_SET_TCB_RPL) {
668                 const struct cpl_set_tcb_rpl *p = (void *)rsp;
669
670                 filter_rpl(q->adap, p);
671         } else
672                 dev_err(q->adap->pdev_dev,
673                         "unexpected CPL %#x on FW event queue\n", opcode);
674 out:
675         return 0;
676 }
677
678 /**
679  *      uldrx_handler - response queue handler for ULD queues
680  *      @q: the response queue that received the packet
681  *      @rsp: the response queue descriptor holding the offload message
682  *      @gl: the gather list of packet fragments
683  *
684  *      Deliver an ingress offload packet to a ULD.  All processing is done by
685  *      the ULD, we just maintain statistics.
686  */
687 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
688                          const struct pkt_gl *gl)
689 {
690         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
691
692         /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
693          */
694         if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
695             ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
696                 rsp += 2;
697
698         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
699                 rxq->stats.nomem++;
700                 return -1;
701         }
702         if (gl == NULL)
703                 rxq->stats.imm++;
704         else if (gl == CXGB4_MSG_AN)
705                 rxq->stats.an++;
706         else
707                 rxq->stats.pkts++;
708         return 0;
709 }
710
711 static void disable_msi(struct adapter *adapter)
712 {
713         if (adapter->flags & USING_MSIX) {
714                 pci_disable_msix(adapter->pdev);
715                 adapter->flags &= ~USING_MSIX;
716         } else if (adapter->flags & USING_MSI) {
717                 pci_disable_msi(adapter->pdev);
718                 adapter->flags &= ~USING_MSI;
719         }
720 }
721
722 /*
723  * Interrupt handler for non-data events used with MSI-X.
724  */
725 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
726 {
727         struct adapter *adap = cookie;
728         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
729
730         if (v & PFSW_F) {
731                 adap->swintr = 1;
732                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
733         }
734         if (adap->flags & MASTER_PF)
735                 t4_slow_intr_handler(adap);
736         return IRQ_HANDLED;
737 }
738
739 /*
740  * Name the MSI-X interrupts.
741  */
742 static void name_msix_vecs(struct adapter *adap)
743 {
744         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
745
746         /* non-data interrupts */
747         snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
748
749         /* FW events */
750         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
751                  adap->port[0]->name);
752
753         /* Ethernet queues */
754         for_each_port(adap, j) {
755                 struct net_device *d = adap->port[j];
756                 const struct port_info *pi = netdev_priv(d);
757
758                 for (i = 0; i < pi->nqsets; i++, msi_idx++)
759                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
760                                  d->name, i);
761         }
762
763         /* offload queues */
764         for_each_ofldrxq(&adap->sge, i)
765                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
766                          adap->port[0]->name, i);
767
768         for_each_rdmarxq(&adap->sge, i)
769                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
770                          adap->port[0]->name, i);
771
772         for_each_rdmaciq(&adap->sge, i)
773                 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
774                          adap->port[0]->name, i);
775 }
776
777 static int request_msix_queue_irqs(struct adapter *adap)
778 {
779         struct sge *s = &adap->sge;
780         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
781         int msi_index = 2;
782
783         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
784                           adap->msix_info[1].desc, &s->fw_evtq);
785         if (err)
786                 return err;
787
788         for_each_ethrxq(s, ethqidx) {
789                 err = request_irq(adap->msix_info[msi_index].vec,
790                                   t4_sge_intr_msix, 0,
791                                   adap->msix_info[msi_index].desc,
792                                   &s->ethrxq[ethqidx].rspq);
793                 if (err)
794                         goto unwind;
795                 msi_index++;
796         }
797         for_each_ofldrxq(s, ofldqidx) {
798                 err = request_irq(adap->msix_info[msi_index].vec,
799                                   t4_sge_intr_msix, 0,
800                                   adap->msix_info[msi_index].desc,
801                                   &s->ofldrxq[ofldqidx].rspq);
802                 if (err)
803                         goto unwind;
804                 msi_index++;
805         }
806         for_each_rdmarxq(s, rdmaqidx) {
807                 err = request_irq(adap->msix_info[msi_index].vec,
808                                   t4_sge_intr_msix, 0,
809                                   adap->msix_info[msi_index].desc,
810                                   &s->rdmarxq[rdmaqidx].rspq);
811                 if (err)
812                         goto unwind;
813                 msi_index++;
814         }
815         for_each_rdmaciq(s, rdmaciqqidx) {
816                 err = request_irq(adap->msix_info[msi_index].vec,
817                                   t4_sge_intr_msix, 0,
818                                   adap->msix_info[msi_index].desc,
819                                   &s->rdmaciq[rdmaciqqidx].rspq);
820                 if (err)
821                         goto unwind;
822                 msi_index++;
823         }
824         return 0;
825
826 unwind:
827         while (--rdmaciqqidx >= 0)
828                 free_irq(adap->msix_info[--msi_index].vec,
829                          &s->rdmaciq[rdmaciqqidx].rspq);
830         while (--rdmaqidx >= 0)
831                 free_irq(adap->msix_info[--msi_index].vec,
832                          &s->rdmarxq[rdmaqidx].rspq);
833         while (--ofldqidx >= 0)
834                 free_irq(adap->msix_info[--msi_index].vec,
835                          &s->ofldrxq[ofldqidx].rspq);
836         while (--ethqidx >= 0)
837                 free_irq(adap->msix_info[--msi_index].vec,
838                          &s->ethrxq[ethqidx].rspq);
839         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
840         return err;
841 }
842
843 static void free_msix_queue_irqs(struct adapter *adap)
844 {
845         int i, msi_index = 2;
846         struct sge *s = &adap->sge;
847
848         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
849         for_each_ethrxq(s, i)
850                 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
851         for_each_ofldrxq(s, i)
852                 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
853         for_each_rdmarxq(s, i)
854                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
855         for_each_rdmaciq(s, i)
856                 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
857 }
858
859 /**
860  *      cxgb4_write_rss - write the RSS table for a given port
861  *      @pi: the port
862  *      @queues: array of queue indices for RSS
863  *
864  *      Sets up the portion of the HW RSS table for the port's VI to distribute
865  *      packets to the Rx queues in @queues.
866  *      Should never be called before setting up sge eth rx queues
867  */
868 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
869 {
870         u16 *rss;
871         int i, err;
872         struct adapter *adapter = pi->adapter;
873         const struct sge_eth_rxq *rxq;
874
875         rxq = &adapter->sge.ethrxq[pi->first_qset];
876         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
877         if (!rss)
878                 return -ENOMEM;
879
880         /* map the queue indices to queue ids */
881         for (i = 0; i < pi->rss_size; i++, queues++)
882                 rss[i] = rxq[*queues].rspq.abs_id;
883
884         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
885                                   pi->rss_size, rss, pi->rss_size);
886         /* If Tunnel All Lookup isn't specified in the global RSS
887          * Configuration, then we need to specify a default Ingress
888          * Queue for any ingress packets which aren't hashed.  We'll
889          * use our first ingress queue ...
890          */
891         if (!err)
892                 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
893                                        FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
894                                        FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
895                                        FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
896                                        FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
897                                        FW_RSS_VI_CONFIG_CMD_UDPEN_F,
898                                        rss[0]);
899         kfree(rss);
900         return err;
901 }
902
903 /**
904  *      setup_rss - configure RSS
905  *      @adap: the adapter
906  *
907  *      Sets up RSS for each port.
908  */
909 static int setup_rss(struct adapter *adap)
910 {
911         int i, j, err;
912
913         for_each_port(adap, i) {
914                 const struct port_info *pi = adap2pinfo(adap, i);
915
916                 /* Fill default values with equal distribution */
917                 for (j = 0; j < pi->rss_size; j++)
918                         pi->rss[j] = j % pi->nqsets;
919
920                 err = cxgb4_write_rss(pi, pi->rss);
921                 if (err)
922                         return err;
923         }
924         return 0;
925 }
926
927 /*
928  * Return the channel of the ingress queue with the given qid.
929  */
930 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
931 {
932         qid -= p->ingr_start;
933         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
934 }
935
936 /*
937  * Wait until all NAPI handlers are descheduled.
938  */
939 static void quiesce_rx(struct adapter *adap)
940 {
941         int i;
942
943         for (i = 0; i < adap->sge.ingr_sz; i++) {
944                 struct sge_rspq *q = adap->sge.ingr_map[i];
945
946                 if (q && q->handler) {
947                         napi_disable(&q->napi);
948                         local_bh_disable();
949                         while (!cxgb_poll_lock_napi(q))
950                                 mdelay(1);
951                         local_bh_enable();
952                 }
953
954         }
955 }
956
957 /* Disable interrupt and napi handler */
958 static void disable_interrupts(struct adapter *adap)
959 {
960         if (adap->flags & FULL_INIT_DONE) {
961                 t4_intr_disable(adap);
962                 if (adap->flags & USING_MSIX) {
963                         free_msix_queue_irqs(adap);
964                         free_irq(adap->msix_info[0].vec, adap);
965                 } else {
966                         free_irq(adap->pdev->irq, adap);
967                 }
968                 quiesce_rx(adap);
969         }
970 }
971
972 /*
973  * Enable NAPI scheduling and interrupt generation for all Rx queues.
974  */
975 static void enable_rx(struct adapter *adap)
976 {
977         int i;
978
979         for (i = 0; i < adap->sge.ingr_sz; i++) {
980                 struct sge_rspq *q = adap->sge.ingr_map[i];
981
982                 if (!q)
983                         continue;
984                 if (q->handler) {
985                         cxgb_busy_poll_init_lock(q);
986                         napi_enable(&q->napi);
987                 }
988                 /* 0-increment GTS to start the timer and enable interrupts */
989                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
990                              SEINTARM_V(q->intr_params) |
991                              INGRESSQID_V(q->cntxt_id));
992         }
993 }
994
995 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
996                            unsigned int nq, unsigned int per_chan, int msi_idx,
997                            u16 *ids)
998 {
999         int i, err;
1000
1001         for (i = 0; i < nq; i++, q++) {
1002                 if (msi_idx > 0)
1003                         msi_idx++;
1004                 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1005                                        adap->port[i / per_chan],
1006                                        msi_idx, q->fl.size ? &q->fl : NULL,
1007                                        uldrx_handler, 0);
1008                 if (err)
1009                         return err;
1010                 memset(&q->stats, 0, sizeof(q->stats));
1011                 if (ids)
1012                         ids[i] = q->rspq.abs_id;
1013         }
1014         return 0;
1015 }
1016
1017 /**
1018  *      setup_sge_queues - configure SGE Tx/Rx/response queues
1019  *      @adap: the adapter
1020  *
1021  *      Determines how many sets of SGE queues to use and initializes them.
1022  *      We support multiple queue sets per port if we have MSI-X, otherwise
1023  *      just one queue set per port.
1024  */
1025 static int setup_sge_queues(struct adapter *adap)
1026 {
1027         int err, msi_idx, i, j;
1028         struct sge *s = &adap->sge;
1029
1030         bitmap_zero(s->starving_fl, s->egr_sz);
1031         bitmap_zero(s->txq_maperr, s->egr_sz);
1032
1033         if (adap->flags & USING_MSIX)
1034                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1035         else {
1036                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1037                                        NULL, NULL, -1);
1038                 if (err)
1039                         return err;
1040                 msi_idx = -((int)s->intrq.abs_id + 1);
1041         }
1042
1043         /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1044          * don't forget to update the following which need to be
1045          * synchronized to and changes here.
1046          *
1047          * 1. The calculations of MAX_INGQ in cxgb4.h.
1048          *
1049          * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1050          *    to accommodate any new/deleted Ingress Queues
1051          *    which need MSI-X Vectors.
1052          *
1053          * 3. Update sge_qinfo_show() to include information on the
1054          *    new/deleted queues.
1055          */
1056         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1057                                msi_idx, NULL, fwevtq_handler, -1);
1058         if (err) {
1059 freeout:        t4_free_sge_resources(adap);
1060                 return err;
1061         }
1062
1063         for_each_port(adap, i) {
1064                 struct net_device *dev = adap->port[i];
1065                 struct port_info *pi = netdev_priv(dev);
1066                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1067                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1068
1069                 for (j = 0; j < pi->nqsets; j++, q++) {
1070                         if (msi_idx > 0)
1071                                 msi_idx++;
1072                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1073                                                msi_idx, &q->fl,
1074                                                t4_ethrx_handler,
1075                                                t4_get_mps_bg_map(adap,
1076                                                                  pi->tx_chan));
1077                         if (err)
1078                                 goto freeout;
1079                         q->rspq.idx = j;
1080                         memset(&q->stats, 0, sizeof(q->stats));
1081                 }
1082                 for (j = 0; j < pi->nqsets; j++, t++) {
1083                         err = t4_sge_alloc_eth_txq(adap, t, dev,
1084                                         netdev_get_tx_queue(dev, j),
1085                                         s->fw_evtq.cntxt_id);
1086                         if (err)
1087                                 goto freeout;
1088                 }
1089         }
1090
1091         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1092         for_each_ofldrxq(s, i) {
1093                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1094                                             adap->port[i / j],
1095                                             s->fw_evtq.cntxt_id);
1096                 if (err)
1097                         goto freeout;
1098         }
1099
1100 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1101         err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1102         if (err) \
1103                 goto freeout; \
1104         if (msi_idx > 0) \
1105                 msi_idx += nq; \
1106 } while (0)
1107
1108         ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1109         ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1110         j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1111         ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1112
1113 #undef ALLOC_OFLD_RXQS
1114
1115         for_each_port(adap, i) {
1116                 /*
1117                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1118                  * have RDMA queues, and that's the right value.
1119                  */
1120                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1121                                             s->fw_evtq.cntxt_id,
1122                                             s->rdmarxq[i].rspq.cntxt_id);
1123                 if (err)
1124                         goto freeout;
1125         }
1126
1127         t4_write_reg(adap, is_t4(adap->params.chip) ?
1128                                 MPS_TRC_RSS_CONTROL_A :
1129                                 MPS_T5_TRC_RSS_CONTROL_A,
1130                      RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1131                      QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1132         return 0;
1133 }
1134
1135 /*
1136  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1137  * The allocated memory is cleared.
1138  */
1139 void *t4_alloc_mem(size_t size)
1140 {
1141         void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1142
1143         if (!p)
1144                 p = vzalloc(size);
1145         return p;
1146 }
1147
1148 /*
1149  * Free memory allocated through alloc_mem().
1150  */
1151 void t4_free_mem(void *addr)
1152 {
1153         kvfree(addr);
1154 }
1155
1156 /* Send a Work Request to write the filter at a specified index.  We construct
1157  * a Firmware Filter Work Request to have the work done and put the indicated
1158  * filter into "pending" mode which will prevent any further actions against
1159  * it till we get a reply from the firmware on the completion status of the
1160  * request.
1161  */
1162 static int set_filter_wr(struct adapter *adapter, int fidx)
1163 {
1164         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1165         struct sk_buff *skb;
1166         struct fw_filter_wr *fwr;
1167         unsigned int ftid;
1168
1169         skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1170         if (!skb)
1171                 return -ENOMEM;
1172
1173         /* If the new filter requires loopback Destination MAC and/or VLAN
1174          * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1175          * the filter.
1176          */
1177         if (f->fs.newdmac || f->fs.newvlan) {
1178                 /* allocate L2T entry for new filter */
1179                 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1180                 if (f->l2t == NULL) {
1181                         kfree_skb(skb);
1182                         return -EAGAIN;
1183                 }
1184                 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1185                                         f->fs.eport, f->fs.dmac)) {
1186                         cxgb4_l2t_release(f->l2t);
1187                         f->l2t = NULL;
1188                         kfree_skb(skb);
1189                         return -ENOMEM;
1190                 }
1191         }
1192
1193         ftid = adapter->tids.ftid_base + fidx;
1194
1195         fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1196         memset(fwr, 0, sizeof(*fwr));
1197
1198         /* It would be nice to put most of the following in t4_hw.c but most
1199          * of the work is translating the cxgbtool ch_filter_specification
1200          * into the Work Request and the definition of that structure is
1201          * currently in cxgbtool.h which isn't appropriate to pull into the
1202          * common code.  We may eventually try to come up with a more neutral
1203          * filter specification structure but for now it's easiest to simply
1204          * put this fairly direct code in line ...
1205          */
1206         fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1207         fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1208         fwr->tid_to_iq =
1209                 htonl(FW_FILTER_WR_TID_V(ftid) |
1210                       FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1211                       FW_FILTER_WR_NOREPLY_V(0) |
1212                       FW_FILTER_WR_IQ_V(f->fs.iq));
1213         fwr->del_filter_to_l2tix =
1214                 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1215                       FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1216                       FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1217                       FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1218                       FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1219                       FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1220                       FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1221                       FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1222                       FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1223                                              f->fs.newvlan == VLAN_REWRITE) |
1224                       FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1225                                             f->fs.newvlan == VLAN_REWRITE) |
1226                       FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1227                       FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1228                       FW_FILTER_WR_PRIO_V(f->fs.prio) |
1229                       FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1230         fwr->ethtype = htons(f->fs.val.ethtype);
1231         fwr->ethtypem = htons(f->fs.mask.ethtype);
1232         fwr->frag_to_ovlan_vldm =
1233                 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1234                  FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1235                  FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1236                  FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1237                  FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1238                  FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1239         fwr->smac_sel = 0;
1240         fwr->rx_chan_rx_rpl_iq =
1241                 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1242                       FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1243         fwr->maci_to_matchtypem =
1244                 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1245                       FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1246                       FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1247                       FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1248                       FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1249                       FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1250                       FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1251                       FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1252         fwr->ptcl = f->fs.val.proto;
1253         fwr->ptclm = f->fs.mask.proto;
1254         fwr->ttyp = f->fs.val.tos;
1255         fwr->ttypm = f->fs.mask.tos;
1256         fwr->ivlan = htons(f->fs.val.ivlan);
1257         fwr->ivlanm = htons(f->fs.mask.ivlan);
1258         fwr->ovlan = htons(f->fs.val.ovlan);
1259         fwr->ovlanm = htons(f->fs.mask.ovlan);
1260         memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1261         memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1262         memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1263         memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1264         fwr->lp = htons(f->fs.val.lport);
1265         fwr->lpm = htons(f->fs.mask.lport);
1266         fwr->fp = htons(f->fs.val.fport);
1267         fwr->fpm = htons(f->fs.mask.fport);
1268         if (f->fs.newsmac)
1269                 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1270
1271         /* Mark the filter as "pending" and ship off the Filter Work Request.
1272          * When we get the Work Request Reply we'll clear the pending status.
1273          */
1274         f->pending = 1;
1275         set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1276         t4_ofld_send(adapter, skb);
1277         return 0;
1278 }
1279
1280 /* Delete the filter at a specified index.
1281  */
1282 static int del_filter_wr(struct adapter *adapter, int fidx)
1283 {
1284         struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1285         struct sk_buff *skb;
1286         struct fw_filter_wr *fwr;
1287         unsigned int len, ftid;
1288
1289         len = sizeof(*fwr);
1290         ftid = adapter->tids.ftid_base + fidx;
1291
1292         skb = alloc_skb(len, GFP_KERNEL);
1293         if (!skb)
1294                 return -ENOMEM;
1295
1296         fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1297         t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1298
1299         /* Mark the filter as "pending" and ship off the Filter Work Request.
1300          * When we get the Work Request Reply we'll clear the pending status.
1301          */
1302         f->pending = 1;
1303         t4_mgmt_tx(adapter, skb);
1304         return 0;
1305 }
1306
1307 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1308                              void *accel_priv, select_queue_fallback_t fallback)
1309 {
1310         int txq;
1311
1312 #ifdef CONFIG_CHELSIO_T4_DCB
1313         /* If a Data Center Bridging has been successfully negotiated on this
1314          * link then we'll use the skb's priority to map it to a TX Queue.
1315          * The skb's priority is determined via the VLAN Tag Priority Code
1316          * Point field.
1317          */
1318         if (cxgb4_dcb_enabled(dev)) {
1319                 u16 vlan_tci;
1320                 int err;
1321
1322                 err = vlan_get_tag(skb, &vlan_tci);
1323                 if (unlikely(err)) {
1324                         if (net_ratelimit())
1325                                 netdev_warn(dev,
1326                                             "TX Packet without VLAN Tag on DCB Link\n");
1327                         txq = 0;
1328                 } else {
1329                         txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1330 #ifdef CONFIG_CHELSIO_T4_FCOE
1331                         if (skb->protocol == htons(ETH_P_FCOE))
1332                                 txq = skb->priority & 0x7;
1333 #endif /* CONFIG_CHELSIO_T4_FCOE */
1334                 }
1335                 return txq;
1336         }
1337 #endif /* CONFIG_CHELSIO_T4_DCB */
1338
1339         if (select_queue) {
1340                 txq = (skb_rx_queue_recorded(skb)
1341                         ? skb_get_rx_queue(skb)
1342                         : smp_processor_id());
1343
1344                 while (unlikely(txq >= dev->real_num_tx_queues))
1345                         txq -= dev->real_num_tx_queues;
1346
1347                 return txq;
1348         }
1349
1350         return fallback(dev, skb) % dev->real_num_tx_queues;
1351 }
1352
1353 static int closest_timer(const struct sge *s, int time)
1354 {
1355         int i, delta, match = 0, min_delta = INT_MAX;
1356
1357         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1358                 delta = time - s->timer_val[i];
1359                 if (delta < 0)
1360                         delta = -delta;
1361                 if (delta < min_delta) {
1362                         min_delta = delta;
1363                         match = i;
1364                 }
1365         }
1366         return match;
1367 }
1368
1369 static int closest_thres(const struct sge *s, int thres)
1370 {
1371         int i, delta, match = 0, min_delta = INT_MAX;
1372
1373         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1374                 delta = thres - s->counter_val[i];
1375                 if (delta < 0)
1376                         delta = -delta;
1377                 if (delta < min_delta) {
1378                         min_delta = delta;
1379                         match = i;
1380                 }
1381         }
1382         return match;
1383 }
1384
1385 /**
1386  *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1387  *      @q: the Rx queue
1388  *      @us: the hold-off time in us, or 0 to disable timer
1389  *      @cnt: the hold-off packet count, or 0 to disable counter
1390  *
1391  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1392  *      one of the two needs to be enabled for the queue to generate interrupts.
1393  */
1394 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1395                                unsigned int us, unsigned int cnt)
1396 {
1397         struct adapter *adap = q->adap;
1398
1399         if ((us | cnt) == 0)
1400                 cnt = 1;
1401
1402         if (cnt) {
1403                 int err;
1404                 u32 v, new_idx;
1405
1406                 new_idx = closest_thres(&adap->sge, cnt);
1407                 if (q->desc && q->pktcnt_idx != new_idx) {
1408                         /* the queue has already been created, update it */
1409                         v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1410                             FW_PARAMS_PARAM_X_V(
1411                                         FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1412                             FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1413                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1414                                             &v, &new_idx);
1415                         if (err)
1416                                 return err;
1417                 }
1418                 q->pktcnt_idx = new_idx;
1419         }
1420
1421         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1422         q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1423         return 0;
1424 }
1425
1426 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1427 {
1428         const struct port_info *pi = netdev_priv(dev);
1429         netdev_features_t changed = dev->features ^ features;
1430         int err;
1431
1432         if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1433                 return 0;
1434
1435         err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1436                             -1, -1, -1,
1437                             !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1438         if (unlikely(err))
1439                 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1440         return err;
1441 }
1442
1443 static int setup_debugfs(struct adapter *adap)
1444 {
1445         if (IS_ERR_OR_NULL(adap->debugfs_root))
1446                 return -1;
1447
1448 #ifdef CONFIG_DEBUG_FS
1449         t4_setup_debugfs(adap);
1450 #endif
1451         return 0;
1452 }
1453
1454 /*
1455  * upper-layer driver support
1456  */
1457
1458 /*
1459  * Allocate an active-open TID and set it to the supplied value.
1460  */
1461 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1462 {
1463         int atid = -1;
1464
1465         spin_lock_bh(&t->atid_lock);
1466         if (t->afree) {
1467                 union aopen_entry *p = t->afree;
1468
1469                 atid = (p - t->atid_tab) + t->atid_base;
1470                 t->afree = p->next;
1471                 p->data = data;
1472                 t->atids_in_use++;
1473         }
1474         spin_unlock_bh(&t->atid_lock);
1475         return atid;
1476 }
1477 EXPORT_SYMBOL(cxgb4_alloc_atid);
1478
1479 /*
1480  * Release an active-open TID.
1481  */
1482 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1483 {
1484         union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1485
1486         spin_lock_bh(&t->atid_lock);
1487         p->next = t->afree;
1488         t->afree = p;
1489         t->atids_in_use--;
1490         spin_unlock_bh(&t->atid_lock);
1491 }
1492 EXPORT_SYMBOL(cxgb4_free_atid);
1493
1494 /*
1495  * Allocate a server TID and set it to the supplied value.
1496  */
1497 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1498 {
1499         int stid;
1500
1501         spin_lock_bh(&t->stid_lock);
1502         if (family == PF_INET) {
1503                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1504                 if (stid < t->nstids)
1505                         __set_bit(stid, t->stid_bmap);
1506                 else
1507                         stid = -1;
1508         } else {
1509                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1510                 if (stid < 0)
1511                         stid = -1;
1512         }
1513         if (stid >= 0) {
1514                 t->stid_tab[stid].data = data;
1515                 stid += t->stid_base;
1516                 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1517                  * This is equivalent to 4 TIDs. With CLIP enabled it
1518                  * needs 2 TIDs.
1519                  */
1520                 if (family == PF_INET)
1521                         t->stids_in_use++;
1522                 else
1523                         t->stids_in_use += 4;
1524         }
1525         spin_unlock_bh(&t->stid_lock);
1526         return stid;
1527 }
1528 EXPORT_SYMBOL(cxgb4_alloc_stid);
1529
1530 /* Allocate a server filter TID and set it to the supplied value.
1531  */
1532 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1533 {
1534         int stid;
1535
1536         spin_lock_bh(&t->stid_lock);
1537         if (family == PF_INET) {
1538                 stid = find_next_zero_bit(t->stid_bmap,
1539                                 t->nstids + t->nsftids, t->nstids);
1540                 if (stid < (t->nstids + t->nsftids))
1541                         __set_bit(stid, t->stid_bmap);
1542                 else
1543                         stid = -1;
1544         } else {
1545                 stid = -1;
1546         }
1547         if (stid >= 0) {
1548                 t->stid_tab[stid].data = data;
1549                 stid -= t->nstids;
1550                 stid += t->sftid_base;
1551                 t->sftids_in_use++;
1552         }
1553         spin_unlock_bh(&t->stid_lock);
1554         return stid;
1555 }
1556 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1557
1558 /* Release a server TID.
1559  */
1560 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1561 {
1562         /* Is it a server filter TID? */
1563         if (t->nsftids && (stid >= t->sftid_base)) {
1564                 stid -= t->sftid_base;
1565                 stid += t->nstids;
1566         } else {
1567                 stid -= t->stid_base;
1568         }
1569
1570         spin_lock_bh(&t->stid_lock);
1571         if (family == PF_INET)
1572                 __clear_bit(stid, t->stid_bmap);
1573         else
1574                 bitmap_release_region(t->stid_bmap, stid, 2);
1575         t->stid_tab[stid].data = NULL;
1576         if (stid < t->nstids) {
1577                 if (family == PF_INET)
1578                         t->stids_in_use--;
1579                 else
1580                         t->stids_in_use -= 4;
1581         } else {
1582                 t->sftids_in_use--;
1583         }
1584         spin_unlock_bh(&t->stid_lock);
1585 }
1586 EXPORT_SYMBOL(cxgb4_free_stid);
1587
1588 /*
1589  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1590  */
1591 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1592                            unsigned int tid)
1593 {
1594         struct cpl_tid_release *req;
1595
1596         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1597         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1598         INIT_TP_WR(req, tid);
1599         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1600 }
1601
1602 /*
1603  * Queue a TID release request and if necessary schedule a work queue to
1604  * process it.
1605  */
1606 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1607                                     unsigned int tid)
1608 {
1609         void **p = &t->tid_tab[tid];
1610         struct adapter *adap = container_of(t, struct adapter, tids);
1611
1612         spin_lock_bh(&adap->tid_release_lock);
1613         *p = adap->tid_release_head;
1614         /* Low 2 bits encode the Tx channel number */
1615         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1616         if (!adap->tid_release_task_busy) {
1617                 adap->tid_release_task_busy = true;
1618                 queue_work(adap->workq, &adap->tid_release_task);
1619         }
1620         spin_unlock_bh(&adap->tid_release_lock);
1621 }
1622
1623 /*
1624  * Process the list of pending TID release requests.
1625  */
1626 static void process_tid_release_list(struct work_struct *work)
1627 {
1628         struct sk_buff *skb;
1629         struct adapter *adap;
1630
1631         adap = container_of(work, struct adapter, tid_release_task);
1632
1633         spin_lock_bh(&adap->tid_release_lock);
1634         while (adap->tid_release_head) {
1635                 void **p = adap->tid_release_head;
1636                 unsigned int chan = (uintptr_t)p & 3;
1637                 p = (void *)p - chan;
1638
1639                 adap->tid_release_head = *p;
1640                 *p = NULL;
1641                 spin_unlock_bh(&adap->tid_release_lock);
1642
1643                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1644                                          GFP_KERNEL)))
1645                         schedule_timeout_uninterruptible(1);
1646
1647                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1648                 t4_ofld_send(adap, skb);
1649                 spin_lock_bh(&adap->tid_release_lock);
1650         }
1651         adap->tid_release_task_busy = false;
1652         spin_unlock_bh(&adap->tid_release_lock);
1653 }
1654
1655 /*
1656  * Release a TID and inform HW.  If we are unable to allocate the release
1657  * message we defer to a work queue.
1658  */
1659 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1660 {
1661         struct sk_buff *skb;
1662         struct adapter *adap = container_of(t, struct adapter, tids);
1663
1664         WARN_ON(tid >= t->ntids);
1665
1666         if (t->tid_tab[tid]) {
1667                 t->tid_tab[tid] = NULL;
1668                 if (t->hash_base && (tid >= t->hash_base))
1669                         atomic_dec(&t->hash_tids_in_use);
1670                 else
1671                         atomic_dec(&t->tids_in_use);
1672         }
1673
1674         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1675         if (likely(skb)) {
1676                 mk_tid_release(skb, chan, tid);
1677                 t4_ofld_send(adap, skb);
1678         } else
1679                 cxgb4_queue_tid_release(t, chan, tid);
1680 }
1681 EXPORT_SYMBOL(cxgb4_remove_tid);
1682
1683 /*
1684  * Allocate and initialize the TID tables.  Returns 0 on success.
1685  */
1686 static int tid_init(struct tid_info *t)
1687 {
1688         size_t size;
1689         unsigned int stid_bmap_size;
1690         unsigned int natids = t->natids;
1691         struct adapter *adap = container_of(t, struct adapter, tids);
1692
1693         stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1694         size = t->ntids * sizeof(*t->tid_tab) +
1695                natids * sizeof(*t->atid_tab) +
1696                t->nstids * sizeof(*t->stid_tab) +
1697                t->nsftids * sizeof(*t->stid_tab) +
1698                stid_bmap_size * sizeof(long) +
1699                t->nftids * sizeof(*t->ftid_tab) +
1700                t->nsftids * sizeof(*t->ftid_tab);
1701
1702         t->tid_tab = t4_alloc_mem(size);
1703         if (!t->tid_tab)
1704                 return -ENOMEM;
1705
1706         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1707         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1708         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1709         t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1710         spin_lock_init(&t->stid_lock);
1711         spin_lock_init(&t->atid_lock);
1712
1713         t->stids_in_use = 0;
1714         t->sftids_in_use = 0;
1715         t->afree = NULL;
1716         t->atids_in_use = 0;
1717         atomic_set(&t->tids_in_use, 0);
1718         atomic_set(&t->hash_tids_in_use, 0);
1719
1720         /* Setup the free list for atid_tab and clear the stid bitmap. */
1721         if (natids) {
1722                 while (--natids)
1723                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1724                 t->afree = t->atid_tab;
1725         }
1726         bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1727         /* Reserve stid 0 for T4/T5 adapters */
1728         if (!t->stid_base &&
1729             (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1730                 __set_bit(0, t->stid_bmap);
1731
1732         return 0;
1733 }
1734
1735 /**
1736  *      cxgb4_create_server - create an IP server
1737  *      @dev: the device
1738  *      @stid: the server TID
1739  *      @sip: local IP address to bind server to
1740  *      @sport: the server's TCP port
1741  *      @queue: queue to direct messages from this server to
1742  *
1743  *      Create an IP server for the given port and address.
1744  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1745  */
1746 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1747                         __be32 sip, __be16 sport, __be16 vlan,
1748                         unsigned int queue)
1749 {
1750         unsigned int chan;
1751         struct sk_buff *skb;
1752         struct adapter *adap;
1753         struct cpl_pass_open_req *req;
1754         int ret;
1755
1756         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1757         if (!skb)
1758                 return -ENOMEM;
1759
1760         adap = netdev2adap(dev);
1761         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1762         INIT_TP_WR(req, 0);
1763         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1764         req->local_port = sport;
1765         req->peer_port = htons(0);
1766         req->local_ip = sip;
1767         req->peer_ip = htonl(0);
1768         chan = rxq_to_chan(&adap->sge, queue);
1769         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1770         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1771                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1772         ret = t4_mgmt_tx(adap, skb);
1773         return net_xmit_eval(ret);
1774 }
1775 EXPORT_SYMBOL(cxgb4_create_server);
1776
1777 /*      cxgb4_create_server6 - create an IPv6 server
1778  *      @dev: the device
1779  *      @stid: the server TID
1780  *      @sip: local IPv6 address to bind server to
1781  *      @sport: the server's TCP port
1782  *      @queue: queue to direct messages from this server to
1783  *
1784  *      Create an IPv6 server for the given port and address.
1785  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1786  */
1787 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1788                          const struct in6_addr *sip, __be16 sport,
1789                          unsigned int queue)
1790 {
1791         unsigned int chan;
1792         struct sk_buff *skb;
1793         struct adapter *adap;
1794         struct cpl_pass_open_req6 *req;
1795         int ret;
1796
1797         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1798         if (!skb)
1799                 return -ENOMEM;
1800
1801         adap = netdev2adap(dev);
1802         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1803         INIT_TP_WR(req, 0);
1804         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1805         req->local_port = sport;
1806         req->peer_port = htons(0);
1807         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1808         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1809         req->peer_ip_hi = cpu_to_be64(0);
1810         req->peer_ip_lo = cpu_to_be64(0);
1811         chan = rxq_to_chan(&adap->sge, queue);
1812         req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1813         req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1814                                 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1815         ret = t4_mgmt_tx(adap, skb);
1816         return net_xmit_eval(ret);
1817 }
1818 EXPORT_SYMBOL(cxgb4_create_server6);
1819
1820 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1821                         unsigned int queue, bool ipv6)
1822 {
1823         struct sk_buff *skb;
1824         struct adapter *adap;
1825         struct cpl_close_listsvr_req *req;
1826         int ret;
1827
1828         adap = netdev2adap(dev);
1829
1830         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1831         if (!skb)
1832                 return -ENOMEM;
1833
1834         req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1835         INIT_TP_WR(req, 0);
1836         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1837         req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1838                                 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1839         ret = t4_mgmt_tx(adap, skb);
1840         return net_xmit_eval(ret);
1841 }
1842 EXPORT_SYMBOL(cxgb4_remove_server);
1843
1844 /**
1845  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1846  *      @mtus: the HW MTU table
1847  *      @mtu: the target MTU
1848  *      @idx: index of selected entry in the MTU table
1849  *
1850  *      Returns the index and the value in the HW MTU table that is closest to
1851  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1852  *      table, in which case that smallest available value is selected.
1853  */
1854 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1855                             unsigned int *idx)
1856 {
1857         unsigned int i = 0;
1858
1859         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1860                 ++i;
1861         if (idx)
1862                 *idx = i;
1863         return mtus[i];
1864 }
1865 EXPORT_SYMBOL(cxgb4_best_mtu);
1866
1867 /**
1868  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1869  *     @mtus: the HW MTU table
1870  *     @header_size: Header Size
1871  *     @data_size_max: maximum Data Segment Size
1872  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1873  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1874  *
1875  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1876  *     MTU Table based solely on a Maximum MTU parameter, we break that
1877  *     parameter up into a Header Size and Maximum Data Segment Size, and
1878  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1879  *     the Hardware MTU Table which will result in a Data Segment Size with
1880  *     the requested alignment _and_ that MTU isn't "too far" from the
1881  *     closest MTU, then we'll return that rather than the closest MTU.
1882  */
1883 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1884                                     unsigned short header_size,
1885                                     unsigned short data_size_max,
1886                                     unsigned short data_size_align,
1887                                     unsigned int *mtu_idxp)
1888 {
1889         unsigned short max_mtu = header_size + data_size_max;
1890         unsigned short data_size_align_mask = data_size_align - 1;
1891         int mtu_idx, aligned_mtu_idx;
1892
1893         /* Scan the MTU Table till we find an MTU which is larger than our
1894          * Maximum MTU or we reach the end of the table.  Along the way,
1895          * record the last MTU found, if any, which will result in a Data
1896          * Segment Length matching the requested alignment.
1897          */
1898         for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1899                 unsigned short data_size = mtus[mtu_idx] - header_size;
1900
1901                 /* If this MTU minus the Header Size would result in a
1902                  * Data Segment Size of the desired alignment, remember it.
1903                  */
1904                 if ((data_size & data_size_align_mask) == 0)
1905                         aligned_mtu_idx = mtu_idx;
1906
1907                 /* If we're not at the end of the Hardware MTU Table and the
1908                  * next element is larger than our Maximum MTU, drop out of
1909                  * the loop.
1910                  */
1911                 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1912                         break;
1913         }
1914
1915         /* If we fell out of the loop because we ran to the end of the table,
1916          * then we just have to use the last [largest] entry.
1917          */
1918         if (mtu_idx == NMTUS)
1919                 mtu_idx--;
1920
1921         /* If we found an MTU which resulted in the requested Data Segment
1922          * Length alignment and that's "not far" from the largest MTU which is
1923          * less than or equal to the maximum MTU, then use that.
1924          */
1925         if (aligned_mtu_idx >= 0 &&
1926             mtu_idx - aligned_mtu_idx <= 1)
1927                 mtu_idx = aligned_mtu_idx;
1928
1929         /* If the caller has passed in an MTU Index pointer, pass the
1930          * MTU Index back.  Return the MTU value.
1931          */
1932         if (mtu_idxp)
1933                 *mtu_idxp = mtu_idx;
1934         return mtus[mtu_idx];
1935 }
1936 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1937
1938 /**
1939  *      cxgb4_port_chan - get the HW channel of a port
1940  *      @dev: the net device for the port
1941  *
1942  *      Return the HW Tx channel of the given port.
1943  */
1944 unsigned int cxgb4_port_chan(const struct net_device *dev)
1945 {
1946         return netdev2pinfo(dev)->tx_chan;
1947 }
1948 EXPORT_SYMBOL(cxgb4_port_chan);
1949
1950 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1951 {
1952         struct adapter *adap = netdev2adap(dev);
1953         u32 v1, v2, lp_count, hp_count;
1954
1955         v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1956         v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1957         if (is_t4(adap->params.chip)) {
1958                 lp_count = LP_COUNT_G(v1);
1959                 hp_count = HP_COUNT_G(v1);
1960         } else {
1961                 lp_count = LP_COUNT_T5_G(v1);
1962                 hp_count = HP_COUNT_T5_G(v2);
1963         }
1964         return lpfifo ? lp_count : hp_count;
1965 }
1966 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1967
1968 /**
1969  *      cxgb4_port_viid - get the VI id of a port
1970  *      @dev: the net device for the port
1971  *
1972  *      Return the VI id of the given port.
1973  */
1974 unsigned int cxgb4_port_viid(const struct net_device *dev)
1975 {
1976         return netdev2pinfo(dev)->viid;
1977 }
1978 EXPORT_SYMBOL(cxgb4_port_viid);
1979
1980 /**
1981  *      cxgb4_port_idx - get the index of a port
1982  *      @dev: the net device for the port
1983  *
1984  *      Return the index of the given port.
1985  */
1986 unsigned int cxgb4_port_idx(const struct net_device *dev)
1987 {
1988         return netdev2pinfo(dev)->port_id;
1989 }
1990 EXPORT_SYMBOL(cxgb4_port_idx);
1991
1992 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1993                          struct tp_tcp_stats *v6)
1994 {
1995         struct adapter *adap = pci_get_drvdata(pdev);
1996
1997         spin_lock(&adap->stats_lock);
1998         t4_tp_get_tcp_stats(adap, v4, v6);
1999         spin_unlock(&adap->stats_lock);
2000 }
2001 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2002
2003 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2004                       const unsigned int *pgsz_order)
2005 {
2006         struct adapter *adap = netdev2adap(dev);
2007
2008         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2009         t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2010                      HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2011                      HPZ3_V(pgsz_order[3]));
2012 }
2013 EXPORT_SYMBOL(cxgb4_iscsi_init);
2014
2015 int cxgb4_flush_eq_cache(struct net_device *dev)
2016 {
2017         struct adapter *adap = netdev2adap(dev);
2018
2019         return t4_sge_ctxt_flush(adap, adap->mbox);
2020 }
2021 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2022
2023 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2024 {
2025         u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2026         __be64 indices;
2027         int ret;
2028
2029         spin_lock(&adap->win0_lock);
2030         ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2031                            sizeof(indices), (__be32 *)&indices,
2032                            T4_MEMORY_READ);
2033         spin_unlock(&adap->win0_lock);
2034         if (!ret) {
2035                 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2036                 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2037         }
2038         return ret;
2039 }
2040
2041 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2042                         u16 size)
2043 {
2044         struct adapter *adap = netdev2adap(dev);
2045         u16 hw_pidx, hw_cidx;
2046         int ret;
2047
2048         ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2049         if (ret)
2050                 goto out;
2051
2052         if (pidx != hw_pidx) {
2053                 u16 delta;
2054                 u32 val;
2055
2056                 if (pidx >= hw_pidx)
2057                         delta = pidx - hw_pidx;
2058                 else
2059                         delta = size - hw_pidx + pidx;
2060
2061                 if (is_t4(adap->params.chip))
2062                         val = PIDX_V(delta);
2063                 else
2064                         val = PIDX_T5_V(delta);
2065                 wmb();
2066                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2067                              QID_V(qid) | val);
2068         }
2069 out:
2070         return ret;
2071 }
2072 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2073
2074 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2075 {
2076         struct adapter *adap;
2077         u32 offset, memtype, memaddr;
2078         u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2079         u32 edc0_end, edc1_end, mc0_end, mc1_end;
2080         int ret;
2081
2082         adap = netdev2adap(dev);
2083
2084         offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2085
2086         /* Figure out where the offset lands in the Memory Type/Address scheme.
2087          * This code assumes that the memory is laid out starting at offset 0
2088          * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2089          * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2090          * MC0, and some have both MC0 and MC1.
2091          */
2092         size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2093         edc0_size = EDRAM0_SIZE_G(size) << 20;
2094         size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2095         edc1_size = EDRAM1_SIZE_G(size) << 20;
2096         size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2097         mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2098
2099         edc0_end = edc0_size;
2100         edc1_end = edc0_end + edc1_size;
2101         mc0_end = edc1_end + mc0_size;
2102
2103         if (offset < edc0_end) {
2104                 memtype = MEM_EDC0;
2105                 memaddr = offset;
2106         } else if (offset < edc1_end) {
2107                 memtype = MEM_EDC1;
2108                 memaddr = offset - edc0_end;
2109         } else {
2110                 if (offset < mc0_end) {
2111                         memtype = MEM_MC0;
2112                         memaddr = offset - edc1_end;
2113                 } else if (is_t5(adap->params.chip)) {
2114                         size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2115                         mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2116                         mc1_end = mc0_end + mc1_size;
2117                         if (offset < mc1_end) {
2118                                 memtype = MEM_MC1;
2119                                 memaddr = offset - mc0_end;
2120                         } else {
2121                                 /* offset beyond the end of any memory */
2122                                 goto err;
2123                         }
2124                 } else {
2125                         /* T4/T6 only has a single memory channel */
2126                         goto err;
2127                 }
2128         }
2129
2130         spin_lock(&adap->win0_lock);
2131         ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2132         spin_unlock(&adap->win0_lock);
2133         return ret;
2134
2135 err:
2136         dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2137                 stag, offset);
2138         return -EINVAL;
2139 }
2140 EXPORT_SYMBOL(cxgb4_read_tpte);
2141
2142 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2143 {
2144         u32 hi, lo;
2145         struct adapter *adap;
2146
2147         adap = netdev2adap(dev);
2148         lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2149         hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2150
2151         return ((u64)hi << 32) | (u64)lo;
2152 }
2153 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2154
2155 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2156                          unsigned int qid,
2157                          enum cxgb4_bar2_qtype qtype,
2158                          int user,
2159                          u64 *pbar2_qoffset,
2160                          unsigned int *pbar2_qid)
2161 {
2162         return t4_bar2_sge_qregs(netdev2adap(dev),
2163                                  qid,
2164                                  (qtype == CXGB4_BAR2_QTYPE_EGRESS
2165                                   ? T4_BAR2_QTYPE_EGRESS
2166                                   : T4_BAR2_QTYPE_INGRESS),
2167                                  user,
2168                                  pbar2_qoffset,
2169                                  pbar2_qid);
2170 }
2171 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2172
2173 static struct pci_driver cxgb4_driver;
2174
2175 static void check_neigh_update(struct neighbour *neigh)
2176 {
2177         const struct device *parent;
2178         const struct net_device *netdev = neigh->dev;
2179
2180         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2181                 netdev = vlan_dev_real_dev(netdev);
2182         parent = netdev->dev.parent;
2183         if (parent && parent->driver == &cxgb4_driver.driver)
2184                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2185 }
2186
2187 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2188                        void *data)
2189 {
2190         switch (event) {
2191         case NETEVENT_NEIGH_UPDATE:
2192                 check_neigh_update(data);
2193                 break;
2194         case NETEVENT_REDIRECT:
2195         default:
2196                 break;
2197         }
2198         return 0;
2199 }
2200
2201 static bool netevent_registered;
2202 static struct notifier_block cxgb4_netevent_nb = {
2203         .notifier_call = netevent_cb
2204 };
2205
2206 static void drain_db_fifo(struct adapter *adap, int usecs)
2207 {
2208         u32 v1, v2, lp_count, hp_count;
2209
2210         do {
2211                 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2212                 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2213                 if (is_t4(adap->params.chip)) {
2214                         lp_count = LP_COUNT_G(v1);
2215                         hp_count = HP_COUNT_G(v1);
2216                 } else {
2217                         lp_count = LP_COUNT_T5_G(v1);
2218                         hp_count = HP_COUNT_T5_G(v2);
2219                 }
2220
2221                 if (lp_count == 0 && hp_count == 0)
2222                         break;
2223                 set_current_state(TASK_UNINTERRUPTIBLE);
2224                 schedule_timeout(usecs_to_jiffies(usecs));
2225         } while (1);
2226 }
2227
2228 static void disable_txq_db(struct sge_txq *q)
2229 {
2230         unsigned long flags;
2231
2232         spin_lock_irqsave(&q->db_lock, flags);
2233         q->db_disabled = 1;
2234         spin_unlock_irqrestore(&q->db_lock, flags);
2235 }
2236
2237 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2238 {
2239         spin_lock_irq(&q->db_lock);
2240         if (q->db_pidx_inc) {
2241                 /* Make sure that all writes to the TX descriptors
2242                  * are committed before we tell HW about them.
2243                  */
2244                 wmb();
2245                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2246                              QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2247                 q->db_pidx_inc = 0;
2248         }
2249         q->db_disabled = 0;
2250         spin_unlock_irq(&q->db_lock);
2251 }
2252
2253 static void disable_dbs(struct adapter *adap)
2254 {
2255         int i;
2256
2257         for_each_ethrxq(&adap->sge, i)
2258                 disable_txq_db(&adap->sge.ethtxq[i].q);
2259         for_each_ofldrxq(&adap->sge, i)
2260                 disable_txq_db(&adap->sge.ofldtxq[i].q);
2261         for_each_port(adap, i)
2262                 disable_txq_db(&adap->sge.ctrlq[i].q);
2263 }
2264
2265 static void enable_dbs(struct adapter *adap)
2266 {
2267         int i;
2268
2269         for_each_ethrxq(&adap->sge, i)
2270                 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2271         for_each_ofldrxq(&adap->sge, i)
2272                 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2273         for_each_port(adap, i)
2274                 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2275 }
2276
2277 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2278 {
2279         if (adap->uld_handle[CXGB4_ULD_RDMA])
2280                 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2281                                 cmd);
2282 }
2283
2284 static void process_db_full(struct work_struct *work)
2285 {
2286         struct adapter *adap;
2287
2288         adap = container_of(work, struct adapter, db_full_task);
2289
2290         drain_db_fifo(adap, dbfifo_drain_delay);
2291         enable_dbs(adap);
2292         notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2293         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2294                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2295                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2296                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2297         else
2298                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2299                                  DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2300 }
2301
2302 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2303 {
2304         u16 hw_pidx, hw_cidx;
2305         int ret;
2306
2307         spin_lock_irq(&q->db_lock);
2308         ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2309         if (ret)
2310                 goto out;
2311         if (q->db_pidx != hw_pidx) {
2312                 u16 delta;
2313                 u32 val;
2314
2315                 if (q->db_pidx >= hw_pidx)
2316                         delta = q->db_pidx - hw_pidx;
2317                 else
2318                         delta = q->size - hw_pidx + q->db_pidx;
2319
2320                 if (is_t4(adap->params.chip))
2321                         val = PIDX_V(delta);
2322                 else
2323                         val = PIDX_T5_V(delta);
2324                 wmb();
2325                 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2326                              QID_V(q->cntxt_id) | val);
2327         }
2328 out:
2329         q->db_disabled = 0;
2330         q->db_pidx_inc = 0;
2331         spin_unlock_irq(&q->db_lock);
2332         if (ret)
2333                 CH_WARN(adap, "DB drop recovery failed.\n");
2334 }
2335 static void recover_all_queues(struct adapter *adap)
2336 {
2337         int i;
2338
2339         for_each_ethrxq(&adap->sge, i)
2340                 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2341         for_each_ofldrxq(&adap->sge, i)
2342                 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2343         for_each_port(adap, i)
2344                 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2345 }
2346
2347 static void process_db_drop(struct work_struct *work)
2348 {
2349         struct adapter *adap;
2350
2351         adap = container_of(work, struct adapter, db_drop_task);
2352
2353         if (is_t4(adap->params.chip)) {
2354                 drain_db_fifo(adap, dbfifo_drain_delay);
2355                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2356                 drain_db_fifo(adap, dbfifo_drain_delay);
2357                 recover_all_queues(adap);
2358                 drain_db_fifo(adap, dbfifo_drain_delay);
2359                 enable_dbs(adap);
2360                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2361         } else if (is_t5(adap->params.chip)) {
2362                 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2363                 u16 qid = (dropped_db >> 15) & 0x1ffff;
2364                 u16 pidx_inc = dropped_db & 0x1fff;
2365                 u64 bar2_qoffset;
2366                 unsigned int bar2_qid;
2367                 int ret;
2368
2369                 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2370                                         0, &bar2_qoffset, &bar2_qid);
2371                 if (ret)
2372                         dev_err(adap->pdev_dev, "doorbell drop recovery: "
2373                                 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2374                 else
2375                         writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2376                                adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2377
2378                 /* Re-enable BAR2 WC */
2379                 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2380         }
2381
2382         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2383                 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2384 }
2385
2386 void t4_db_full(struct adapter *adap)
2387 {
2388         if (is_t4(adap->params.chip)) {
2389                 disable_dbs(adap);
2390                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2391                 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2392                                  DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2393                 queue_work(adap->workq, &adap->db_full_task);
2394         }
2395 }
2396
2397 void t4_db_dropped(struct adapter *adap)
2398 {
2399         if (is_t4(adap->params.chip)) {
2400                 disable_dbs(adap);
2401                 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2402         }
2403         queue_work(adap->workq, &adap->db_drop_task);
2404 }
2405
2406 static void uld_attach(struct adapter *adap, unsigned int uld)
2407 {
2408         void *handle;
2409         struct cxgb4_lld_info lli;
2410         unsigned short i;
2411
2412         lli.pdev = adap->pdev;
2413         lli.pf = adap->pf;
2414         lli.l2t = adap->l2t;
2415         lli.tids = &adap->tids;
2416         lli.ports = adap->port;
2417         lli.vr = &adap->vres;
2418         lli.mtus = adap->params.mtus;
2419         if (uld == CXGB4_ULD_RDMA) {
2420                 lli.rxq_ids = adap->sge.rdma_rxq;
2421                 lli.ciq_ids = adap->sge.rdma_ciq;
2422                 lli.nrxq = adap->sge.rdmaqs;
2423                 lli.nciq = adap->sge.rdmaciqs;
2424         } else if (uld == CXGB4_ULD_ISCSI) {
2425                 lli.rxq_ids = adap->sge.ofld_rxq;
2426                 lli.nrxq = adap->sge.ofldqsets;
2427         }
2428         lli.ntxq = adap->sge.ofldqsets;
2429         lli.nchan = adap->params.nports;
2430         lli.nports = adap->params.nports;
2431         lli.wr_cred = adap->params.ofldq_wr_cred;
2432         lli.adapter_type = adap->params.chip;
2433         lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2434         lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2435         lli.udb_density = 1 << adap->params.sge.eq_qpp;
2436         lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2437         lli.filt_mode = adap->params.tp.vlan_pri_map;
2438         /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2439         for (i = 0; i < NCHAN; i++)
2440                 lli.tx_modq[i] = i;
2441         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2442         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2443         lli.fw_vers = adap->params.fw_vers;
2444         lli.dbfifo_int_thresh = dbfifo_int_thresh;
2445         lli.sge_ingpadboundary = adap->sge.fl_align;
2446         lli.sge_egrstatuspagesize = adap->sge.stat_len;
2447         lli.sge_pktshift = adap->sge.pktshift;
2448         lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2449         lli.max_ordird_qp = adap->params.max_ordird_qp;
2450         lli.max_ird_adapter = adap->params.max_ird_adapter;
2451         lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2452         lli.nodeid = dev_to_node(adap->pdev_dev);
2453
2454         handle = ulds[uld].add(&lli);
2455         if (IS_ERR(handle)) {
2456                 dev_warn(adap->pdev_dev,
2457                          "could not attach to the %s driver, error %ld\n",
2458                          uld_str[uld], PTR_ERR(handle));
2459                 return;
2460         }
2461
2462         adap->uld_handle[uld] = handle;
2463
2464         if (!netevent_registered) {
2465                 register_netevent_notifier(&cxgb4_netevent_nb);
2466                 netevent_registered = true;
2467         }
2468
2469         if (adap->flags & FULL_INIT_DONE)
2470                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2471 }
2472
2473 static void attach_ulds(struct adapter *adap)
2474 {
2475         unsigned int i;
2476
2477         spin_lock(&adap_rcu_lock);
2478         list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2479         spin_unlock(&adap_rcu_lock);
2480
2481         mutex_lock(&uld_mutex);
2482         list_add_tail(&adap->list_node, &adapter_list);
2483         for (i = 0; i < CXGB4_ULD_MAX; i++)
2484                 if (ulds[i].add)
2485                         uld_attach(adap, i);
2486         mutex_unlock(&uld_mutex);
2487 }
2488
2489 static void detach_ulds(struct adapter *adap)
2490 {
2491         unsigned int i;
2492
2493         mutex_lock(&uld_mutex);
2494         list_del(&adap->list_node);
2495         for (i = 0; i < CXGB4_ULD_MAX; i++)
2496                 if (adap->uld_handle[i]) {
2497                         ulds[i].state_change(adap->uld_handle[i],
2498                                              CXGB4_STATE_DETACH);
2499                         adap->uld_handle[i] = NULL;
2500                 }
2501         if (netevent_registered && list_empty(&adapter_list)) {
2502                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2503                 netevent_registered = false;
2504         }
2505         mutex_unlock(&uld_mutex);
2506
2507         spin_lock(&adap_rcu_lock);
2508         list_del_rcu(&adap->rcu_node);
2509         spin_unlock(&adap_rcu_lock);
2510 }
2511
2512 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2513 {
2514         unsigned int i;
2515
2516         mutex_lock(&uld_mutex);
2517         for (i = 0; i < CXGB4_ULD_MAX; i++)
2518                 if (adap->uld_handle[i])
2519                         ulds[i].state_change(adap->uld_handle[i], new_state);
2520         mutex_unlock(&uld_mutex);
2521 }
2522
2523 /**
2524  *      cxgb4_register_uld - register an upper-layer driver
2525  *      @type: the ULD type
2526  *      @p: the ULD methods
2527  *
2528  *      Registers an upper-layer driver with this driver and notifies the ULD
2529  *      about any presently available devices that support its type.  Returns
2530  *      %-EBUSY if a ULD of the same type is already registered.
2531  */
2532 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2533 {
2534         int ret = 0;
2535         struct adapter *adap;
2536
2537         if (type >= CXGB4_ULD_MAX)
2538                 return -EINVAL;
2539         mutex_lock(&uld_mutex);
2540         if (ulds[type].add) {
2541                 ret = -EBUSY;
2542                 goto out;
2543         }
2544         ulds[type] = *p;
2545         list_for_each_entry(adap, &adapter_list, list_node)
2546                 uld_attach(adap, type);
2547 out:    mutex_unlock(&uld_mutex);
2548         return ret;
2549 }
2550 EXPORT_SYMBOL(cxgb4_register_uld);
2551
2552 /**
2553  *      cxgb4_unregister_uld - unregister an upper-layer driver
2554  *      @type: the ULD type
2555  *
2556  *      Unregisters an existing upper-layer driver.
2557  */
2558 int cxgb4_unregister_uld(enum cxgb4_uld type)
2559 {
2560         struct adapter *adap;
2561
2562         if (type >= CXGB4_ULD_MAX)
2563                 return -EINVAL;
2564         mutex_lock(&uld_mutex);
2565         list_for_each_entry(adap, &adapter_list, list_node)
2566                 adap->uld_handle[type] = NULL;
2567         ulds[type].add = NULL;
2568         mutex_unlock(&uld_mutex);
2569         return 0;
2570 }
2571 EXPORT_SYMBOL(cxgb4_unregister_uld);
2572
2573 #if IS_ENABLED(CONFIG_IPV6)
2574 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2575                                    unsigned long event, void *data)
2576 {
2577         struct inet6_ifaddr *ifa = data;
2578         struct net_device *event_dev = ifa->idev->dev;
2579         const struct device *parent = NULL;
2580 #if IS_ENABLED(CONFIG_BONDING)
2581         struct adapter *adap;
2582 #endif
2583         if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2584                 event_dev = vlan_dev_real_dev(event_dev);
2585 #if IS_ENABLED(CONFIG_BONDING)
2586         if (event_dev->flags & IFF_MASTER) {
2587                 list_for_each_entry(adap, &adapter_list, list_node) {
2588                         switch (event) {
2589                         case NETDEV_UP:
2590                                 cxgb4_clip_get(adap->port[0],
2591                                                (const u32 *)ifa, 1);
2592                                 break;
2593                         case NETDEV_DOWN:
2594                                 cxgb4_clip_release(adap->port[0],
2595                                                    (const u32 *)ifa, 1);
2596                                 break;
2597                         default:
2598                                 break;
2599                         }
2600                 }
2601                 return NOTIFY_OK;
2602         }
2603 #endif
2604
2605         if (event_dev)
2606                 parent = event_dev->dev.parent;
2607
2608         if (parent && parent->driver == &cxgb4_driver.driver) {
2609                 switch (event) {
2610                 case NETDEV_UP:
2611                         cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2612                         break;
2613                 case NETDEV_DOWN:
2614                         cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2615                         break;
2616                 default:
2617                         break;
2618                 }
2619         }
2620         return NOTIFY_OK;
2621 }
2622
2623 static bool inet6addr_registered;
2624 static struct notifier_block cxgb4_inet6addr_notifier = {
2625         .notifier_call = cxgb4_inet6addr_handler
2626 };
2627
2628 static void update_clip(const struct adapter *adap)
2629 {
2630         int i;
2631         struct net_device *dev;
2632         int ret;
2633
2634         rcu_read_lock();
2635
2636         for (i = 0; i < MAX_NPORTS; i++) {
2637                 dev = adap->port[i];
2638                 ret = 0;
2639
2640                 if (dev)
2641                         ret = cxgb4_update_root_dev_clip(dev);
2642
2643                 if (ret < 0)
2644                         break;
2645         }
2646         rcu_read_unlock();
2647 }
2648 #endif /* IS_ENABLED(CONFIG_IPV6) */
2649
2650 /**
2651  *      cxgb_up - enable the adapter
2652  *      @adap: adapter being enabled
2653  *
2654  *      Called when the first port is enabled, this function performs the
2655  *      actions necessary to make an adapter operational, such as completing
2656  *      the initialization of HW modules, and enabling interrupts.
2657  *
2658  *      Must be called with the rtnl lock held.
2659  */
2660 static int cxgb_up(struct adapter *adap)
2661 {
2662         int err;
2663
2664         err = setup_sge_queues(adap);
2665         if (err)
2666                 goto out;
2667         err = setup_rss(adap);
2668         if (err)
2669                 goto freeq;
2670
2671         if (adap->flags & USING_MSIX) {
2672                 name_msix_vecs(adap);
2673                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2674                                   adap->msix_info[0].desc, adap);
2675                 if (err)
2676                         goto irq_err;
2677
2678                 err = request_msix_queue_irqs(adap);
2679                 if (err) {
2680                         free_irq(adap->msix_info[0].vec, adap);
2681                         goto irq_err;
2682                 }
2683         } else {
2684                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2685                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2686                                   adap->port[0]->name, adap);
2687                 if (err)
2688                         goto irq_err;
2689         }
2690         enable_rx(adap);
2691         t4_sge_start(adap);
2692         t4_intr_enable(adap);
2693         adap->flags |= FULL_INIT_DONE;
2694         notify_ulds(adap, CXGB4_STATE_UP);
2695 #if IS_ENABLED(CONFIG_IPV6)
2696         update_clip(adap);
2697 #endif
2698  out:
2699         return err;
2700  irq_err:
2701         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2702  freeq:
2703         t4_free_sge_resources(adap);
2704         goto out;
2705 }
2706
2707 static void cxgb_down(struct adapter *adapter)
2708 {
2709         cancel_work_sync(&adapter->tid_release_task);
2710         cancel_work_sync(&adapter->db_full_task);
2711         cancel_work_sync(&adapter->db_drop_task);
2712         adapter->tid_release_task_busy = false;
2713         adapter->tid_release_head = NULL;
2714
2715         t4_sge_stop(adapter);
2716         t4_free_sge_resources(adapter);
2717         adapter->flags &= ~FULL_INIT_DONE;
2718 }
2719
2720 /*
2721  * net_device operations
2722  */
2723 static int cxgb_open(struct net_device *dev)
2724 {
2725         int err;
2726         struct port_info *pi = netdev_priv(dev);
2727         struct adapter *adapter = pi->adapter;
2728
2729         netif_carrier_off(dev);
2730
2731         if (!(adapter->flags & FULL_INIT_DONE)) {
2732                 err = cxgb_up(adapter);
2733                 if (err < 0)
2734                         return err;
2735         }
2736
2737         err = link_start(dev);
2738         if (!err)
2739                 netif_tx_start_all_queues(dev);
2740         return err;
2741 }
2742
2743 static int cxgb_close(struct net_device *dev)
2744 {
2745         struct port_info *pi = netdev_priv(dev);
2746         struct adapter *adapter = pi->adapter;
2747
2748         netif_tx_stop_all_queues(dev);
2749         netif_carrier_off(dev);
2750         return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2751 }
2752
2753 /* Return an error number if the indicated filter isn't writable ...
2754  */
2755 static int writable_filter(struct filter_entry *f)
2756 {
2757         if (f->locked)
2758                 return -EPERM;
2759         if (f->pending)
2760                 return -EBUSY;
2761
2762         return 0;
2763 }
2764
2765 /* Delete the filter at the specified index (if valid).  The checks for all
2766  * the common problems with doing this like the filter being locked, currently
2767  * pending in another operation, etc.
2768  */
2769 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2770 {
2771         struct filter_entry *f;
2772         int ret;
2773
2774         if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2775                 return -EINVAL;
2776
2777         f = &adapter->tids.ftid_tab[fidx];
2778         ret = writable_filter(f);
2779         if (ret)
2780                 return ret;
2781         if (f->valid)
2782                 return del_filter_wr(adapter, fidx);
2783
2784         return 0;
2785 }
2786
2787 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2788                 __be32 sip, __be16 sport, __be16 vlan,
2789                 unsigned int queue, unsigned char port, unsigned char mask)
2790 {
2791         int ret;
2792         struct filter_entry *f;
2793         struct adapter *adap;
2794         int i;
2795         u8 *val;
2796
2797         adap = netdev2adap(dev);
2798
2799         /* Adjust stid to correct filter index */
2800         stid -= adap->tids.sftid_base;
2801         stid += adap->tids.nftids;
2802
2803         /* Check to make sure the filter requested is writable ...
2804          */
2805         f = &adap->tids.ftid_tab[stid];
2806         ret = writable_filter(f);
2807         if (ret)
2808                 return ret;
2809
2810         /* Clear out any old resources being used by the filter before
2811          * we start constructing the new filter.
2812          */
2813         if (f->valid)
2814                 clear_filter(adap, f);
2815
2816         /* Clear out filter specifications */
2817         memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2818         f->fs.val.lport = cpu_to_be16(sport);
2819         f->fs.mask.lport  = ~0;
2820         val = (u8 *)&sip;
2821         if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2822                 for (i = 0; i < 4; i++) {
2823                         f->fs.val.lip[i] = val[i];
2824                         f->fs.mask.lip[i] = ~0;
2825                 }
2826                 if (adap->params.tp.vlan_pri_map & PORT_F) {
2827                         f->fs.val.iport = port;
2828                         f->fs.mask.iport = mask;
2829                 }
2830         }
2831
2832         if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2833                 f->fs.val.proto = IPPROTO_TCP;
2834                 f->fs.mask.proto = ~0;
2835         }
2836
2837         f->fs.dirsteer = 1;
2838         f->fs.iq = queue;
2839         /* Mark filter as locked */
2840         f->locked = 1;
2841         f->fs.rpttid = 1;
2842
2843         ret = set_filter_wr(adap, stid);
2844         if (ret) {
2845                 clear_filter(adap, f);
2846                 return ret;
2847         }
2848
2849         return 0;
2850 }
2851 EXPORT_SYMBOL(cxgb4_create_server_filter);
2852
2853 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2854                 unsigned int queue, bool ipv6)
2855 {
2856         int ret;
2857         struct filter_entry *f;
2858         struct adapter *adap;
2859
2860         adap = netdev2adap(dev);
2861
2862         /* Adjust stid to correct filter index */
2863         stid -= adap->tids.sftid_base;
2864         stid += adap->tids.nftids;
2865
2866         f = &adap->tids.ftid_tab[stid];
2867         /* Unlock the filter */
2868         f->locked = 0;
2869
2870         ret = delete_filter(adap, stid);
2871         if (ret)
2872                 return ret;
2873
2874         return 0;
2875 }
2876 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2877
2878 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2879                                                 struct rtnl_link_stats64 *ns)
2880 {
2881         struct port_stats stats;
2882         struct port_info *p = netdev_priv(dev);
2883         struct adapter *adapter = p->adapter;
2884
2885         /* Block retrieving statistics during EEH error
2886          * recovery. Otherwise, the recovery might fail
2887          * and the PCI device will be removed permanently
2888          */
2889         spin_lock(&adapter->stats_lock);
2890         if (!netif_device_present(dev)) {
2891                 spin_unlock(&adapter->stats_lock);
2892                 return ns;
2893         }
2894         t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2895                                  &p->stats_base);
2896         spin_unlock(&adapter->stats_lock);
2897
2898         ns->tx_bytes   = stats.tx_octets;
2899         ns->tx_packets = stats.tx_frames;
2900         ns->rx_bytes   = stats.rx_octets;
2901         ns->rx_packets = stats.rx_frames;
2902         ns->multicast  = stats.rx_mcast_frames;
2903
2904         /* detailed rx_errors */
2905         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2906                                stats.rx_runt;
2907         ns->rx_over_errors   = 0;
2908         ns->rx_crc_errors    = stats.rx_fcs_err;
2909         ns->rx_frame_errors  = stats.rx_symbol_err;
2910         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2911                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2912                                stats.rx_trunc0 + stats.rx_trunc1 +
2913                                stats.rx_trunc2 + stats.rx_trunc3;
2914         ns->rx_missed_errors = 0;
2915
2916         /* detailed tx_errors */
2917         ns->tx_aborted_errors   = 0;
2918         ns->tx_carrier_errors   = 0;
2919         ns->tx_fifo_errors      = 0;
2920         ns->tx_heartbeat_errors = 0;
2921         ns->tx_window_errors    = 0;
2922
2923         ns->tx_errors = stats.tx_error_frames;
2924         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2925                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2926         return ns;
2927 }
2928
2929 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2930 {
2931         unsigned int mbox;
2932         int ret = 0, prtad, devad;
2933         struct port_info *pi = netdev_priv(dev);
2934         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2935
2936         switch (cmd) {
2937         case SIOCGMIIPHY:
2938                 if (pi->mdio_addr < 0)
2939                         return -EOPNOTSUPP;
2940                 data->phy_id = pi->mdio_addr;
2941                 break;
2942         case SIOCGMIIREG:
2943         case SIOCSMIIREG:
2944                 if (mdio_phy_id_is_c45(data->phy_id)) {
2945                         prtad = mdio_phy_id_prtad(data->phy_id);
2946                         devad = mdio_phy_id_devad(data->phy_id);
2947                 } else if (data->phy_id < 32) {
2948                         prtad = data->phy_id;
2949                         devad = 0;
2950                         data->reg_num &= 0x1f;
2951                 } else
2952                         return -EINVAL;
2953
2954                 mbox = pi->adapter->pf;
2955                 if (cmd == SIOCGMIIREG)
2956                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2957                                          data->reg_num, &data->val_out);
2958                 else
2959                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2960                                          data->reg_num, data->val_in);
2961                 break;
2962         default:
2963                 return -EOPNOTSUPP;
2964         }
2965         return ret;
2966 }
2967
2968 static void cxgb_set_rxmode(struct net_device *dev)
2969 {
2970         /* unfortunately we can't return errors to the stack */
2971         set_rxmode(dev, -1, false);
2972 }
2973
2974 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2975 {
2976         int ret;
2977         struct port_info *pi = netdev_priv(dev);
2978
2979         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2980                 return -EINVAL;
2981         ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2982                             -1, -1, -1, true);
2983         if (!ret)
2984                 dev->mtu = new_mtu;
2985         return ret;
2986 }
2987
2988 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2989 {
2990         int ret;
2991         struct sockaddr *addr = p;
2992         struct port_info *pi = netdev_priv(dev);
2993
2994         if (!is_valid_ether_addr(addr->sa_data))
2995                 return -EADDRNOTAVAIL;
2996
2997         ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2998                             pi->xact_addr_filt, addr->sa_data, true, true);
2999         if (ret < 0)
3000                 return ret;
3001
3002         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3003         pi->xact_addr_filt = ret;
3004         return 0;
3005 }
3006
3007 #ifdef CONFIG_NET_POLL_CONTROLLER
3008 static void cxgb_netpoll(struct net_device *dev)
3009 {
3010         struct port_info *pi = netdev_priv(dev);
3011         struct adapter *adap = pi->adapter;
3012
3013         if (adap->flags & USING_MSIX) {
3014                 int i;
3015                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3016
3017                 for (i = pi->nqsets; i; i--, rx++)
3018                         t4_sge_intr_msix(0, &rx->rspq);
3019         } else
3020                 t4_intr_handler(adap)(0, adap);
3021 }
3022 #endif
3023
3024 static const struct net_device_ops cxgb4_netdev_ops = {
3025         .ndo_open             = cxgb_open,
3026         .ndo_stop             = cxgb_close,
3027         .ndo_start_xmit       = t4_eth_xmit,
3028         .ndo_select_queue     = cxgb_select_queue,
3029         .ndo_get_stats64      = cxgb_get_stats,
3030         .ndo_set_rx_mode      = cxgb_set_rxmode,
3031         .ndo_set_mac_address  = cxgb_set_mac_addr,
3032         .ndo_set_features     = cxgb_set_features,
3033         .ndo_validate_addr    = eth_validate_addr,
3034         .ndo_do_ioctl         = cxgb_ioctl,
3035         .ndo_change_mtu       = cxgb_change_mtu,
3036 #ifdef CONFIG_NET_POLL_CONTROLLER
3037         .ndo_poll_controller  = cxgb_netpoll,
3038 #endif
3039 #ifdef CONFIG_CHELSIO_T4_FCOE
3040         .ndo_fcoe_enable      = cxgb_fcoe_enable,
3041         .ndo_fcoe_disable     = cxgb_fcoe_disable,
3042 #endif /* CONFIG_CHELSIO_T4_FCOE */
3043 #ifdef CONFIG_NET_RX_BUSY_POLL
3044         .ndo_busy_poll        = cxgb_busy_poll,
3045 #endif
3046
3047 };
3048
3049 void t4_fatal_err(struct adapter *adap)
3050 {
3051         t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3052         t4_intr_disable(adap);
3053         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3054 }
3055
3056 static void setup_memwin(struct adapter *adap)
3057 {
3058         u32 nic_win_base = t4_get_util_window(adap);
3059
3060         t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3061 }
3062
3063 static void setup_memwin_rdma(struct adapter *adap)
3064 {
3065         if (adap->vres.ocq.size) {
3066                 u32 start;
3067                 unsigned int sz_kb;
3068
3069                 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3070                 start &= PCI_BASE_ADDRESS_MEM_MASK;
3071                 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3072                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3073                 t4_write_reg(adap,
3074                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3075                              start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3076                 t4_write_reg(adap,
3077                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3078                              adap->vres.ocq.start);
3079                 t4_read_reg(adap,
3080                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3081         }
3082 }
3083
3084 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3085 {
3086         u32 v;
3087         int ret;
3088
3089         /* get device capabilities */
3090         memset(c, 0, sizeof(*c));
3091         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3092                                FW_CMD_REQUEST_F | FW_CMD_READ_F);
3093         c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3094         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3095         if (ret < 0)
3096                 return ret;
3097
3098         /* select capabilities we'll be using */
3099         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3100                 if (!vf_acls)
3101                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3102                 else
3103                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3104         } else if (vf_acls) {
3105                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3106                 return ret;
3107         }
3108         c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3109                                FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3110         ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3111         if (ret < 0)
3112                 return ret;
3113
3114         ret = t4_config_glbl_rss(adap, adap->pf,
3115                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3116                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3117                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3118         if (ret < 0)
3119                 return ret;
3120
3121         ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3122                           MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3123                           FW_CMD_CAP_PF);
3124         if (ret < 0)
3125                 return ret;
3126
3127         t4_sge_init(adap);
3128
3129         /* tweak some settings */
3130         t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3131         t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3132         t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3133         v = t4_read_reg(adap, TP_PIO_DATA_A);
3134         t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3135
3136         /* first 4 Tx modulation queues point to consecutive Tx channels */
3137         adap->params.tp.tx_modq_map = 0xE4;
3138         t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3139                      TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3140
3141         /* associate each Tx modulation queue with consecutive Tx channels */
3142         v = 0x84218421;
3143         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3144                           &v, 1, TP_TX_SCHED_HDR_A);
3145         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3146                           &v, 1, TP_TX_SCHED_FIFO_A);
3147         t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3148                           &v, 1, TP_TX_SCHED_PCMD_A);
3149
3150 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3151         if (is_offload(adap)) {
3152                 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3153                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3154                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3155                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3156                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3157                 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3158                              TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3159                              TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3160                              TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3161                              TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3162         }
3163
3164         /* get basic stuff going */
3165         return t4_early_init(adap, adap->pf);
3166 }
3167
3168 /*
3169  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3170  */
3171 #define MAX_ATIDS 8192U
3172
3173 /*
3174  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3175  *
3176  * If the firmware we're dealing with has Configuration File support, then
3177  * we use that to perform all configuration
3178  */
3179
3180 /*
3181  * Tweak configuration based on module parameters, etc.  Most of these have
3182  * defaults assigned to them by Firmware Configuration Files (if we're using
3183  * them) but need to be explicitly set if we're using hard-coded
3184  * initialization.  But even in the case of using Firmware Configuration
3185  * Files, we'd like to expose the ability to change these via module
3186  * parameters so these are essentially common tweaks/settings for
3187  * Configuration Files and hard-coded initialization ...
3188  */
3189 static int adap_init0_tweaks(struct adapter *adapter)
3190 {
3191         /*
3192          * Fix up various Host-Dependent Parameters like Page Size, Cache
3193          * Line Size, etc.  The firmware default is for a 4KB Page Size and
3194          * 64B Cache Line Size ...
3195          */
3196         t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3197
3198         /*
3199          * Process module parameters which affect early initialization.
3200          */
3201         if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3202                 dev_err(&adapter->pdev->dev,
3203                         "Ignoring illegal rx_dma_offset=%d, using 2\n",
3204                         rx_dma_offset);
3205                 rx_dma_offset = 2;
3206         }
3207         t4_set_reg_field(adapter, SGE_CONTROL_A,
3208                          PKTSHIFT_V(PKTSHIFT_M),
3209                          PKTSHIFT_V(rx_dma_offset));
3210
3211         /*
3212          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3213          * adds the pseudo header itself.
3214          */
3215         t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3216                                CSUM_HAS_PSEUDO_HDR_F, 0);
3217
3218         return 0;
3219 }
3220
3221 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3222  * unto themselves and they contain their own firmware to perform their
3223  * tasks ...
3224  */
3225 static int phy_aq1202_version(const u8 *phy_fw_data,
3226                               size_t phy_fw_size)
3227 {
3228         int offset;
3229
3230         /* At offset 0x8 you're looking for the primary image's
3231          * starting offset which is 3 Bytes wide
3232          *
3233          * At offset 0xa of the primary image, you look for the offset
3234          * of the DRAM segment which is 3 Bytes wide.
3235          *
3236          * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3237          * wide
3238          */
3239         #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3240         #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3241         #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3242
3243         offset = le24(phy_fw_data + 0x8) << 12;
3244         offset = le24(phy_fw_data + offset + 0xa);
3245         return be16(phy_fw_data + offset + 0x27e);
3246
3247         #undef be16
3248         #undef le16
3249         #undef le24
3250 }
3251
3252 static struct info_10gbt_phy_fw {
3253         unsigned int phy_fw_id;         /* PCI Device ID */
3254         char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3255         int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3256         int phy_flash;                  /* Has FLASH for PHY Firmware */
3257 } phy_info_array[] = {
3258         {
3259                 PHY_AQ1202_DEVICEID,
3260                 PHY_AQ1202_FIRMWARE,
3261                 phy_aq1202_version,
3262                 1,
3263         },
3264         {
3265                 PHY_BCM84834_DEVICEID,
3266                 PHY_BCM84834_FIRMWARE,
3267                 NULL,
3268                 0,
3269         },
3270         { 0, NULL, NULL },
3271 };
3272
3273 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3274 {
3275         int i;
3276
3277         for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3278                 if (phy_info_array[i].phy_fw_id == devid)
3279                         return &phy_info_array[i];
3280         }
3281         return NULL;
3282 }
3283
3284 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3285  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3286  * we return a negative error number.  If we transfer new firmware we return 1
3287  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3288  */
3289 static int adap_init0_phy(struct adapter *adap)
3290 {
3291         const struct firmware *phyf;
3292         int ret;
3293         struct info_10gbt_phy_fw *phy_info;
3294
3295         /* Use the device ID to determine which PHY file to flash.
3296          */
3297         phy_info = find_phy_info(adap->pdev->device);
3298         if (!phy_info) {
3299                 dev_warn(adap->pdev_dev,
3300                          "No PHY Firmware file found for this PHY\n");
3301                 return -EOPNOTSUPP;
3302         }
3303
3304         /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3305          * use that. The adapter firmware provides us with a memory buffer
3306          * where we can load a PHY firmware file from the host if we want to
3307          * override the PHY firmware File in flash.
3308          */
3309         ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3310                                       adap->pdev_dev);
3311         if (ret < 0) {
3312                 /* For adapters without FLASH attached to PHY for their
3313                  * firmware, it's obviously a fatal error if we can't get the
3314                  * firmware to the adapter.  For adapters with PHY firmware
3315                  * FLASH storage, it's worth a warning if we can't find the
3316                  * PHY Firmware but we'll neuter the error ...
3317                  */
3318                 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3319                         "/lib/firmware/%s, error %d\n",
3320                         phy_info->phy_fw_file, -ret);
3321                 if (phy_info->phy_flash) {
3322                         int cur_phy_fw_ver = 0;
3323
3324                         t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3325                         dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3326                                  "FLASH copy, version %#x\n", cur_phy_fw_ver);
3327                         ret = 0;
3328                 }
3329
3330                 return ret;
3331         }
3332
3333         /* Load PHY Firmware onto adapter.
3334          */
3335         ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3336                              phy_info->phy_fw_version,
3337                              (u8 *)phyf->data, phyf->size);
3338         if (ret < 0)
3339                 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3340                         -ret);
3341         else if (ret > 0) {
3342                 int new_phy_fw_ver = 0;
3343
3344                 if (phy_info->phy_fw_version)
3345                         new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3346                                                                   phyf->size);
3347                 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3348                          "Firmware /lib/firmware/%s, version %#x\n",
3349                          phy_info->phy_fw_file, new_phy_fw_ver);
3350         }
3351
3352         release_firmware(phyf);
3353
3354         return ret;
3355 }
3356
3357 /*
3358  * Attempt to initialize the adapter via a Firmware Configuration File.
3359  */
3360 static int adap_init0_config(struct adapter *adapter, int reset)
3361 {
3362         struct fw_caps_config_cmd caps_cmd;
3363         const struct firmware *cf;
3364         unsigned long mtype = 0, maddr = 0;
3365         u32 finiver, finicsum, cfcsum;
3366         int ret;
3367         int config_issued = 0;
3368         char *fw_config_file, fw_config_file_path[256];
3369         char *config_name = NULL;
3370
3371         /*
3372          * Reset device if necessary.
3373          */
3374         if (reset) {
3375                 ret = t4_fw_reset(adapter, adapter->mbox,
3376                                   PIORSTMODE_F | PIORST_F);
3377                 if (ret < 0)
3378                         goto bye;
3379         }
3380
3381         /* If this is a 10Gb/s-BT adapter make sure the chip-external
3382          * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3383          * to be performed after any global adapter RESET above since some
3384          * PHYs only have local RAM copies of the PHY firmware.
3385          */
3386         if (is_10gbt_device(adapter->pdev->device)) {
3387                 ret = adap_init0_phy(adapter);
3388                 if (ret < 0)
3389                         goto bye;
3390         }
3391         /*
3392          * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3393          * then use that.  Otherwise, use the configuration file stored
3394          * in the adapter flash ...
3395          */
3396         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3397         case CHELSIO_T4:
3398                 fw_config_file = FW4_CFNAME;
3399                 break;
3400         case CHELSIO_T5:
3401                 fw_config_file = FW5_CFNAME;
3402                 break;
3403         case CHELSIO_T6:
3404                 fw_config_file = FW6_CFNAME;
3405                 break;
3406         default:
3407                 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3408                        adapter->pdev->device);
3409                 ret = -EINVAL;
3410                 goto bye;
3411         }
3412
3413         ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3414         if (ret < 0) {
3415                 config_name = "On FLASH";
3416                 mtype = FW_MEMTYPE_CF_FLASH;
3417                 maddr = t4_flash_cfg_addr(adapter);
3418         } else {
3419                 u32 params[7], val[7];
3420
3421                 sprintf(fw_config_file_path,
3422                         "/lib/firmware/%s", fw_config_file);
3423                 config_name = fw_config_file_path;
3424
3425                 if (cf->size >= FLASH_CFG_MAX_SIZE)
3426                         ret = -ENOMEM;
3427                 else {
3428                         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3429                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3430                         ret = t4_query_params(adapter, adapter->mbox,
3431                                               adapter->pf, 0, 1, params, val);
3432                         if (ret == 0) {
3433                                 /*
3434                                  * For t4_memory_rw() below addresses and
3435                                  * sizes have to be in terms of multiples of 4
3436                                  * bytes.  So, if the Configuration File isn't
3437                                  * a multiple of 4 bytes in length we'll have
3438                                  * to write that out separately since we can't
3439                                  * guarantee that the bytes following the
3440                                  * residual byte in the buffer returned by
3441                                  * request_firmware() are zeroed out ...
3442                                  */
3443                                 size_t resid = cf->size & 0x3;
3444                                 size_t size = cf->size & ~0x3;
3445                                 __be32 *data = (__be32 *)cf->data;
3446
3447                                 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3448                                 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3449
3450                                 spin_lock(&adapter->win0_lock);
3451                                 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3452                                                    size, data, T4_MEMORY_WRITE);
3453                                 if (ret == 0 && resid != 0) {
3454                                         union {
3455                                                 __be32 word;
3456                                                 char buf[4];
3457                                         } last;
3458                                         int i;
3459
3460                                         last.word = data[size >> 2];
3461                                         for (i = resid; i < 4; i++)
3462                                                 last.buf[i] = 0;
3463                                         ret = t4_memory_rw(adapter, 0, mtype,
3464                                                            maddr + size,
3465                                                            4, &last.word,
3466                                                            T4_MEMORY_WRITE);
3467                                 }
3468                                 spin_unlock(&adapter->win0_lock);
3469                         }
3470                 }
3471
3472                 release_firmware(cf);
3473                 if (ret)
3474                         goto bye;
3475         }
3476
3477         /*
3478          * Issue a Capability Configuration command to the firmware to get it
3479          * to parse the Configuration File.  We don't use t4_fw_config_file()
3480          * because we want the ability to modify various features after we've
3481          * processed the configuration file ...
3482          */
3483         memset(&caps_cmd, 0, sizeof(caps_cmd));
3484         caps_cmd.op_to_write =
3485                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3486                       FW_CMD_REQUEST_F |
3487                       FW_CMD_READ_F);
3488         caps_cmd.cfvalid_to_len16 =
3489                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3490                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3491                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3492                       FW_LEN16(caps_cmd));
3493         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3494                          &caps_cmd);
3495
3496         /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3497          * Configuration File in FLASH), our last gasp effort is to use the
3498          * Firmware Configuration File which is embedded in the firmware.  A
3499          * very few early versions of the firmware didn't have one embedded
3500          * but we can ignore those.
3501          */
3502         if (ret == -ENOENT) {
3503                 memset(&caps_cmd, 0, sizeof(caps_cmd));
3504                 caps_cmd.op_to_write =
3505                         htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3506                                         FW_CMD_REQUEST_F |
3507                                         FW_CMD_READ_F);
3508                 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3509                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3510                                 sizeof(caps_cmd), &caps_cmd);
3511                 config_name = "Firmware Default";
3512         }
3513
3514         config_issued = 1;
3515         if (ret < 0)
3516                 goto bye;
3517
3518         finiver = ntohl(caps_cmd.finiver);
3519         finicsum = ntohl(caps_cmd.finicsum);
3520         cfcsum = ntohl(caps_cmd.cfcsum);
3521         if (finicsum != cfcsum)
3522                 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3523                          "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3524                          finicsum, cfcsum);
3525
3526         /*
3527          * And now tell the firmware to use the configuration we just loaded.
3528          */
3529         caps_cmd.op_to_write =
3530                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3531                       FW_CMD_REQUEST_F |
3532                       FW_CMD_WRITE_F);
3533         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3534         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3535                          NULL);
3536         if (ret < 0)
3537                 goto bye;
3538
3539         /*
3540          * Tweak configuration based on system architecture, module
3541          * parameters, etc.
3542          */
3543         ret = adap_init0_tweaks(adapter);
3544         if (ret < 0)
3545                 goto bye;
3546
3547         /*
3548          * And finally tell the firmware to initialize itself using the
3549          * parameters from the Configuration File.
3550          */
3551         ret = t4_fw_initialize(adapter, adapter->mbox);
3552         if (ret < 0)
3553                 goto bye;
3554
3555         /* Emit Firmware Configuration File information and return
3556          * successfully.
3557          */
3558         dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3559                  "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3560                  config_name, finiver, cfcsum);
3561         return 0;
3562
3563         /*
3564          * Something bad happened.  Return the error ...  (If the "error"
3565          * is that there's no Configuration File on the adapter we don't
3566          * want to issue a warning since this is fairly common.)
3567          */
3568 bye:
3569         if (config_issued && ret != -ENOENT)
3570                 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3571                          config_name, -ret);
3572         return ret;
3573 }
3574
3575 static struct fw_info fw_info_array[] = {
3576         {
3577                 .chip = CHELSIO_T4,
3578                 .fs_name = FW4_CFNAME,
3579                 .fw_mod_name = FW4_FNAME,
3580                 .fw_hdr = {
3581                         .chip = FW_HDR_CHIP_T4,
3582                         .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3583                         .intfver_nic = FW_INTFVER(T4, NIC),
3584                         .intfver_vnic = FW_INTFVER(T4, VNIC),
3585                         .intfver_ri = FW_INTFVER(T4, RI),
3586                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3587                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
3588                 },
3589         }, {
3590                 .chip = CHELSIO_T5,
3591                 .fs_name = FW5_CFNAME,
3592                 .fw_mod_name = FW5_FNAME,
3593                 .fw_hdr = {
3594                         .chip = FW_HDR_CHIP_T5,
3595                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3596                         .intfver_nic = FW_INTFVER(T5, NIC),
3597                         .intfver_vnic = FW_INTFVER(T5, VNIC),
3598                         .intfver_ri = FW_INTFVER(T5, RI),
3599                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3600                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
3601                 },
3602         }, {
3603                 .chip = CHELSIO_T6,
3604                 .fs_name = FW6_CFNAME,
3605                 .fw_mod_name = FW6_FNAME,
3606                 .fw_hdr = {
3607                         .chip = FW_HDR_CHIP_T6,
3608                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3609                         .intfver_nic = FW_INTFVER(T6, NIC),
3610                         .intfver_vnic = FW_INTFVER(T6, VNIC),
3611                         .intfver_ofld = FW_INTFVER(T6, OFLD),
3612                         .intfver_ri = FW_INTFVER(T6, RI),
3613                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3614                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3615                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3616                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
3617                 },
3618         }
3619
3620 };
3621
3622 static struct fw_info *find_fw_info(int chip)
3623 {
3624         int i;
3625
3626         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3627                 if (fw_info_array[i].chip == chip)
3628                         return &fw_info_array[i];
3629         }
3630         return NULL;
3631 }
3632
3633 /*
3634  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3635  */
3636 static int adap_init0(struct adapter *adap)
3637 {
3638         int ret;
3639         u32 v, port_vec;
3640         enum dev_state state;
3641         u32 params[7], val[7];
3642         struct fw_caps_config_cmd caps_cmd;
3643         int reset = 1;
3644
3645         /* Grab Firmware Device Log parameters as early as possible so we have
3646          * access to it for debugging, etc.
3647          */
3648         ret = t4_init_devlog_params(adap);
3649         if (ret < 0)
3650                 return ret;
3651
3652         /* Contact FW, advertising Master capability */
3653         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3654         if (ret < 0) {
3655                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3656                         ret);
3657                 return ret;
3658         }
3659         if (ret == adap->mbox)
3660                 adap->flags |= MASTER_PF;
3661
3662         /*
3663          * If we're the Master PF Driver and the device is uninitialized,
3664          * then let's consider upgrading the firmware ...  (We always want
3665          * to check the firmware version number in order to A. get it for
3666          * later reporting and B. to warn if the currently loaded firmware
3667          * is excessively mismatched relative to the driver.)
3668          */
3669         t4_get_fw_version(adap, &adap->params.fw_vers);
3670         t4_get_tp_version(adap, &adap->params.tp_vers);
3671         ret = t4_check_fw_version(adap);
3672         /* If firmware is too old (not supported by driver) force an update. */
3673         if (ret == -EFAULT)
3674                 state = DEV_STATE_UNINIT;
3675         if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3676                 struct fw_info *fw_info;
3677                 struct fw_hdr *card_fw;
3678                 const struct firmware *fw;
3679                 const u8 *fw_data = NULL;
3680                 unsigned int fw_size = 0;
3681
3682                 /* This is the firmware whose headers the driver was compiled
3683                  * against
3684                  */
3685                 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3686                 if (fw_info == NULL) {
3687                         dev_err(adap->pdev_dev,
3688                                 "unable to get firmware info for chip %d.\n",
3689                                 CHELSIO_CHIP_VERSION(adap->params.chip));
3690                         return -EINVAL;
3691                 }
3692
3693                 /* allocate memory to read the header of the firmware on the
3694                  * card
3695                  */
3696                 card_fw = t4_alloc_mem(sizeof(*card_fw));
3697
3698                 /* Get FW from from /lib/firmware/ */
3699                 ret = request_firmware(&fw, fw_info->fw_mod_name,
3700                                        adap->pdev_dev);
3701                 if (ret < 0) {
3702                         dev_err(adap->pdev_dev,
3703                                 "unable to load firmware image %s, error %d\n",
3704                                 fw_info->fw_mod_name, ret);
3705                 } else {
3706                         fw_data = fw->data;
3707                         fw_size = fw->size;
3708                 }
3709
3710                 /* upgrade FW logic */
3711                 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3712                                  state, &reset);
3713
3714                 /* Cleaning up */
3715                 release_firmware(fw);
3716                 t4_free_mem(card_fw);
3717
3718                 if (ret < 0)
3719                         goto bye;
3720         }
3721
3722         /*
3723          * Grab VPD parameters.  This should be done after we establish a
3724          * connection to the firmware since some of the VPD parameters
3725          * (notably the Core Clock frequency) are retrieved via requests to
3726          * the firmware.  On the other hand, we need these fairly early on
3727          * so we do this right after getting ahold of the firmware.
3728          */
3729         ret = t4_get_vpd_params(adap, &adap->params.vpd);
3730         if (ret < 0)
3731                 goto bye;
3732
3733         /*
3734          * Find out what ports are available to us.  Note that we need to do
3735          * this before calling adap_init0_no_config() since it needs nports
3736          * and portvec ...
3737          */
3738         v =
3739             FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3740             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3741         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3742         if (ret < 0)
3743                 goto bye;
3744
3745         adap->params.nports = hweight32(port_vec);
3746         adap->params.portvec = port_vec;
3747
3748         /* If the firmware is initialized already, emit a simply note to that
3749          * effect. Otherwise, it's time to try initializing the adapter.
3750          */
3751         if (state == DEV_STATE_INIT) {
3752                 dev_info(adap->pdev_dev, "Coming up as %s: "\
3753                          "Adapter already initialized\n",
3754                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3755         } else {
3756                 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3757                          "Initializing adapter\n");
3758
3759                 /* Find out whether we're dealing with a version of the
3760                  * firmware which has configuration file support.
3761                  */
3762                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3763                              FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3764                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3765                                       params, val);
3766
3767                 /* If the firmware doesn't support Configuration Files,
3768                  * return an error.
3769                  */
3770                 if (ret < 0) {
3771                         dev_err(adap->pdev_dev, "firmware doesn't support "
3772                                 "Firmware Configuration Files\n");
3773                         goto bye;
3774                 }
3775
3776                 /* The firmware provides us with a memory buffer where we can
3777                  * load a Configuration File from the host if we want to
3778                  * override the Configuration File in flash.
3779                  */
3780                 ret = adap_init0_config(adap, reset);
3781                 if (ret == -ENOENT) {
3782                         dev_err(adap->pdev_dev, "no Configuration File "
3783                                 "present on adapter.\n");
3784                         goto bye;
3785                 }
3786                 if (ret < 0) {
3787                         dev_err(adap->pdev_dev, "could not initialize "
3788                                 "adapter, error %d\n", -ret);
3789                         goto bye;
3790                 }
3791         }
3792
3793         /* Give the SGE code a chance to pull in anything that it needs ...
3794          * Note that this must be called after we retrieve our VPD parameters
3795          * in order to know how to convert core ticks to seconds, etc.
3796          */
3797         ret = t4_sge_init(adap);
3798         if (ret < 0)
3799                 goto bye;
3800
3801         if (is_bypass_device(adap->pdev->device))
3802                 adap->params.bypass = 1;
3803
3804         /*
3805          * Grab some of our basic fundamental operating parameters.
3806          */
3807 #define FW_PARAM_DEV(param) \
3808         (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3809         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3810
3811 #define FW_PARAM_PFVF(param) \
3812         FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3813         FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3814         FW_PARAMS_PARAM_Y_V(0) | \
3815         FW_PARAMS_PARAM_Z_V(0)
3816
3817         params[0] = FW_PARAM_PFVF(EQ_START);
3818         params[1] = FW_PARAM_PFVF(L2T_START);
3819         params[2] = FW_PARAM_PFVF(L2T_END);
3820         params[3] = FW_PARAM_PFVF(FILTER_START);
3821         params[4] = FW_PARAM_PFVF(FILTER_END);
3822         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3823         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3824         if (ret < 0)
3825                 goto bye;
3826         adap->sge.egr_start = val[0];
3827         adap->l2t_start = val[1];
3828         adap->l2t_end = val[2];
3829         adap->tids.ftid_base = val[3];
3830         adap->tids.nftids = val[4] - val[3] + 1;
3831         adap->sge.ingr_start = val[5];
3832
3833         /* qids (ingress/egress) returned from firmware can be anywhere
3834          * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3835          * Hence driver needs to allocate memory for this range to
3836          * store the queue info. Get the highest IQFLINT/EQ index returned
3837          * in FW_EQ_*_CMD.alloc command.
3838          */
3839         params[0] = FW_PARAM_PFVF(EQ_END);
3840         params[1] = FW_PARAM_PFVF(IQFLINT_END);
3841         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3842         if (ret < 0)
3843                 goto bye;
3844         adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3845         adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3846
3847         adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3848                                     sizeof(*adap->sge.egr_map), GFP_KERNEL);
3849         if (!adap->sge.egr_map) {
3850                 ret = -ENOMEM;
3851                 goto bye;
3852         }
3853
3854         adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3855                                      sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3856         if (!adap->sge.ingr_map) {
3857                 ret = -ENOMEM;
3858                 goto bye;
3859         }
3860
3861         /* Allocate the memory for the vaious egress queue bitmaps
3862          * ie starving_fl, txq_maperr and blocked_fl.
3863          */
3864         adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3865                                         sizeof(long), GFP_KERNEL);
3866         if (!adap->sge.starving_fl) {
3867                 ret = -ENOMEM;
3868                 goto bye;
3869         }
3870
3871         adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3872                                        sizeof(long), GFP_KERNEL);
3873         if (!adap->sge.txq_maperr) {
3874                 ret = -ENOMEM;
3875                 goto bye;
3876         }
3877
3878 #ifdef CONFIG_DEBUG_FS
3879         adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3880                                        sizeof(long), GFP_KERNEL);
3881         if (!adap->sge.blocked_fl) {
3882                 ret = -ENOMEM;
3883                 goto bye;
3884         }
3885 #endif
3886
3887         params[0] = FW_PARAM_PFVF(CLIP_START);
3888         params[1] = FW_PARAM_PFVF(CLIP_END);
3889         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3890         if (ret < 0)
3891                 goto bye;
3892         adap->clipt_start = val[0];
3893         adap->clipt_end = val[1];
3894
3895         /* query params related to active filter region */
3896         params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3897         params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3898         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3899         /* If Active filter size is set we enable establishing
3900          * offload connection through firmware work request
3901          */
3902         if ((val[0] != val[1]) && (ret >= 0)) {
3903                 adap->flags |= FW_OFLD_CONN;
3904                 adap->tids.aftid_base = val[0];
3905                 adap->tids.aftid_end = val[1];
3906         }
3907
3908         /* If we're running on newer firmware, let it know that we're
3909          * prepared to deal with encapsulated CPL messages.  Older
3910          * firmware won't understand this and we'll just get
3911          * unencapsulated messages ...
3912          */
3913         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3914         val[0] = 1;
3915         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3916
3917         /*
3918          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3919          * capability.  Earlier versions of the firmware didn't have the
3920          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3921          * permission to use ULPTX MEMWRITE DSGL.
3922          */
3923         if (is_t4(adap->params.chip)) {
3924                 adap->params.ulptx_memwrite_dsgl = false;
3925         } else {
3926                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3927                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3928                                       1, params, val);
3929                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3930         }
3931
3932         /*
3933          * Get device capabilities so we can determine what resources we need
3934          * to manage.
3935          */
3936         memset(&caps_cmd, 0, sizeof(caps_cmd));
3937         caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3938                                      FW_CMD_REQUEST_F | FW_CMD_READ_F);
3939         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3940         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3941                          &caps_cmd);
3942         if (ret < 0)
3943                 goto bye;
3944
3945         if (caps_cmd.ofldcaps) {
3946                 /* query offload-related parameters */
3947                 params[0] = FW_PARAM_DEV(NTID);
3948                 params[1] = FW_PARAM_PFVF(SERVER_START);
3949                 params[2] = FW_PARAM_PFVF(SERVER_END);
3950                 params[3] = FW_PARAM_PFVF(TDDP_START);
3951                 params[4] = FW_PARAM_PFVF(TDDP_END);
3952                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3953                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3954                                       params, val);
3955                 if (ret < 0)
3956                         goto bye;
3957                 adap->tids.ntids = val[0];
3958                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3959                 adap->tids.stid_base = val[1];
3960                 adap->tids.nstids = val[2] - val[1] + 1;
3961                 /*
3962                  * Setup server filter region. Divide the available filter
3963                  * region into two parts. Regular filters get 1/3rd and server
3964                  * filters get 2/3rd part. This is only enabled if workarond
3965                  * path is enabled.
3966                  * 1. For regular filters.
3967                  * 2. Server filter: This are special filters which are used
3968                  * to redirect SYN packets to offload queue.
3969                  */
3970                 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3971                         adap->tids.sftid_base = adap->tids.ftid_base +
3972                                         DIV_ROUND_UP(adap->tids.nftids, 3);
3973                         adap->tids.nsftids = adap->tids.nftids -
3974                                          DIV_ROUND_UP(adap->tids.nftids, 3);
3975                         adap->tids.nftids = adap->tids.sftid_base -
3976                                                 adap->tids.ftid_base;
3977                 }
3978                 adap->vres.ddp.start = val[3];
3979                 adap->vres.ddp.size = val[4] - val[3] + 1;
3980                 adap->params.ofldq_wr_cred = val[5];
3981
3982                 adap->params.offload = 1;
3983         }
3984         if (caps_cmd.rdmacaps) {
3985                 params[0] = FW_PARAM_PFVF(STAG_START);
3986                 params[1] = FW_PARAM_PFVF(STAG_END);
3987                 params[2] = FW_PARAM_PFVF(RQ_START);
3988                 params[3] = FW_PARAM_PFVF(RQ_END);
3989                 params[4] = FW_PARAM_PFVF(PBL_START);
3990                 params[5] = FW_PARAM_PFVF(PBL_END);
3991                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3992                                       params, val);
3993                 if (ret < 0)
3994                         goto bye;
3995                 adap->vres.stag.start = val[0];
3996                 adap->vres.stag.size = val[1] - val[0] + 1;
3997                 adap->vres.rq.start = val[2];
3998                 adap->vres.rq.size = val[3] - val[2] + 1;
3999                 adap->vres.pbl.start = val[4];
4000                 adap->vres.pbl.size = val[5] - val[4] + 1;
4001
4002                 params[0] = FW_PARAM_PFVF(SQRQ_START);
4003                 params[1] = FW_PARAM_PFVF(SQRQ_END);
4004                 params[2] = FW_PARAM_PFVF(CQ_START);
4005                 params[3] = FW_PARAM_PFVF(CQ_END);
4006                 params[4] = FW_PARAM_PFVF(OCQ_START);
4007                 params[5] = FW_PARAM_PFVF(OCQ_END);
4008                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4009                                       val);
4010                 if (ret < 0)
4011                         goto bye;
4012                 adap->vres.qp.start = val[0];
4013                 adap->vres.qp.size = val[1] - val[0] + 1;
4014                 adap->vres.cq.start = val[2];
4015                 adap->vres.cq.size = val[3] - val[2] + 1;
4016                 adap->vres.ocq.start = val[4];
4017                 adap->vres.ocq.size = val[5] - val[4] + 1;
4018
4019                 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4020                 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4021                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4022                                       val);
4023                 if (ret < 0) {
4024                         adap->params.max_ordird_qp = 8;
4025                         adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4026                         ret = 0;
4027                 } else {
4028                         adap->params.max_ordird_qp = val[0];
4029                         adap->params.max_ird_adapter = val[1];
4030                 }
4031                 dev_info(adap->pdev_dev,
4032                          "max_ordird_qp %d max_ird_adapter %d\n",
4033                          adap->params.max_ordird_qp,
4034                          adap->params.max_ird_adapter);
4035         }
4036         if (caps_cmd.iscsicaps) {
4037                 params[0] = FW_PARAM_PFVF(ISCSI_START);
4038                 params[1] = FW_PARAM_PFVF(ISCSI_END);
4039                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4040                                       params, val);
4041                 if (ret < 0)
4042                         goto bye;
4043                 adap->vres.iscsi.start = val[0];
4044                 adap->vres.iscsi.size = val[1] - val[0] + 1;
4045         }
4046 #undef FW_PARAM_PFVF
4047 #undef FW_PARAM_DEV
4048
4049         /* The MTU/MSS Table is initialized by now, so load their values.  If
4050          * we're initializing the adapter, then we'll make any modifications
4051          * we want to the MTU/MSS Table and also initialize the congestion
4052          * parameters.
4053          */
4054         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4055         if (state != DEV_STATE_INIT) {
4056                 int i;
4057
4058                 /* The default MTU Table contains values 1492 and 1500.
4059                  * However, for TCP, it's better to have two values which are
4060                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4061                  * This allows us to have a TCP Data Payload which is a
4062                  * multiple of 8 regardless of what combination of TCP Options
4063                  * are in use (always a multiple of 4 bytes) which is
4064                  * important for performance reasons.  For instance, if no
4065                  * options are in use, then we have a 20-byte IP header and a
4066                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
4067                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4068                  * which is not a multiple of 8.  So using an MSS of 1488 in
4069                  * this case results in a TCP Data Payload of 1448 bytes which
4070                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4071                  * Stamps have been negotiated, then an MTU of 1500 bytes
4072                  * results in a TCP Data Payload of 1448 bytes which, as
4073                  * above, is a multiple of 8 bytes ...
4074                  */
4075                 for (i = 0; i < NMTUS; i++)
4076                         if (adap->params.mtus[i] == 1492) {
4077                                 adap->params.mtus[i] = 1488;
4078                                 break;
4079                         }
4080
4081                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4082                              adap->params.b_wnd);
4083         }
4084         t4_init_sge_params(adap);
4085         adap->flags |= FW_OK;
4086         t4_init_tp_params(adap);
4087         return 0;
4088
4089         /*
4090          * Something bad happened.  If a command timed out or failed with EIO
4091          * FW does not operate within its spec or something catastrophic
4092          * happened to HW/FW, stop issuing commands.
4093          */
4094 bye:
4095         kfree(adap->sge.egr_map);
4096         kfree(adap->sge.ingr_map);
4097         kfree(adap->sge.starving_fl);
4098         kfree(adap->sge.txq_maperr);
4099 #ifdef CONFIG_DEBUG_FS
4100         kfree(adap->sge.blocked_fl);
4101 #endif
4102         if (ret != -ETIMEDOUT && ret != -EIO)
4103                 t4_fw_bye(adap, adap->mbox);
4104         return ret;
4105 }
4106
4107 /* EEH callbacks */
4108
4109 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4110                                          pci_channel_state_t state)
4111 {
4112         int i;
4113         struct adapter *adap = pci_get_drvdata(pdev);
4114
4115         if (!adap)
4116                 goto out;
4117
4118         rtnl_lock();
4119         adap->flags &= ~FW_OK;
4120         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4121         spin_lock(&adap->stats_lock);
4122         for_each_port(adap, i) {
4123                 struct net_device *dev = adap->port[i];
4124
4125                 netif_device_detach(dev);
4126                 netif_carrier_off(dev);
4127         }
4128         spin_unlock(&adap->stats_lock);
4129         disable_interrupts(adap);
4130         if (adap->flags & FULL_INIT_DONE)
4131                 cxgb_down(adap);
4132         rtnl_unlock();
4133         if ((adap->flags & DEV_ENABLED)) {
4134                 pci_disable_device(pdev);
4135                 adap->flags &= ~DEV_ENABLED;
4136         }
4137 out:    return state == pci_channel_io_perm_failure ?
4138                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4139 }
4140
4141 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4142 {
4143         int i, ret;
4144         struct fw_caps_config_cmd c;
4145         struct adapter *adap = pci_get_drvdata(pdev);
4146
4147         if (!adap) {
4148                 pci_restore_state(pdev);
4149                 pci_save_state(pdev);
4150                 return PCI_ERS_RESULT_RECOVERED;
4151         }
4152
4153         if (!(adap->flags & DEV_ENABLED)) {
4154                 if (pci_enable_device(pdev)) {
4155                         dev_err(&pdev->dev, "Cannot reenable PCI "
4156                                             "device after reset\n");
4157                         return PCI_ERS_RESULT_DISCONNECT;
4158                 }
4159                 adap->flags |= DEV_ENABLED;
4160         }
4161
4162         pci_set_master(pdev);
4163         pci_restore_state(pdev);
4164         pci_save_state(pdev);
4165         pci_cleanup_aer_uncorrect_error_status(pdev);
4166
4167         if (t4_wait_dev_ready(adap->regs) < 0)
4168                 return PCI_ERS_RESULT_DISCONNECT;
4169         if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4170                 return PCI_ERS_RESULT_DISCONNECT;
4171         adap->flags |= FW_OK;
4172         if (adap_init1(adap, &c))
4173                 return PCI_ERS_RESULT_DISCONNECT;
4174
4175         for_each_port(adap, i) {
4176                 struct port_info *p = adap2pinfo(adap, i);
4177
4178                 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4179                                   NULL, NULL);
4180                 if (ret < 0)
4181                         return PCI_ERS_RESULT_DISCONNECT;
4182                 p->viid = ret;
4183                 p->xact_addr_filt = -1;
4184         }
4185
4186         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4187                      adap->params.b_wnd);
4188         setup_memwin(adap);
4189         if (cxgb_up(adap))
4190                 return PCI_ERS_RESULT_DISCONNECT;
4191         return PCI_ERS_RESULT_RECOVERED;
4192 }
4193
4194 static void eeh_resume(struct pci_dev *pdev)
4195 {
4196         int i;
4197         struct adapter *adap = pci_get_drvdata(pdev);
4198
4199         if (!adap)
4200                 return;
4201
4202         rtnl_lock();
4203         for_each_port(adap, i) {
4204                 struct net_device *dev = adap->port[i];
4205
4206                 if (netif_running(dev)) {
4207                         link_start(dev);
4208                         cxgb_set_rxmode(dev);
4209                 }
4210                 netif_device_attach(dev);
4211         }
4212         rtnl_unlock();
4213 }
4214
4215 static const struct pci_error_handlers cxgb4_eeh = {
4216         .error_detected = eeh_err_detected,
4217         .slot_reset     = eeh_slot_reset,
4218         .resume         = eeh_resume,
4219 };
4220
4221 static inline bool is_x_10g_port(const struct link_config *lc)
4222 {
4223         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4224                (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4225 }
4226
4227 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4228                              unsigned int us, unsigned int cnt,
4229                              unsigned int size, unsigned int iqe_size)
4230 {
4231         q->adap = adap;
4232         cxgb4_set_rspq_intr_params(q, us, cnt);
4233         q->iqe_len = iqe_size;
4234         q->size = size;
4235 }
4236
4237 /*
4238  * Perform default configuration of DMA queues depending on the number and type
4239  * of ports we found and the number of available CPUs.  Most settings can be
4240  * modified by the admin prior to actual use.
4241  */
4242 static void cfg_queues(struct adapter *adap)
4243 {
4244         struct sge *s = &adap->sge;
4245         int i, n10g = 0, qidx = 0;
4246 #ifndef CONFIG_CHELSIO_T4_DCB
4247         int q10g = 0;
4248 #endif
4249         int ciq_size;
4250
4251         for_each_port(adap, i)
4252                 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4253 #ifdef CONFIG_CHELSIO_T4_DCB
4254         /* For Data Center Bridging support we need to be able to support up
4255          * to 8 Traffic Priorities; each of which will be assigned to its
4256          * own TX Queue in order to prevent Head-Of-Line Blocking.
4257          */
4258         if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4259                 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4260                         MAX_ETH_QSETS, adap->params.nports * 8);
4261                 BUG_ON(1);
4262         }
4263
4264         for_each_port(adap, i) {
4265                 struct port_info *pi = adap2pinfo(adap, i);
4266
4267                 pi->first_qset = qidx;
4268                 pi->nqsets = 8;
4269                 qidx += pi->nqsets;
4270         }
4271 #else /* !CONFIG_CHELSIO_T4_DCB */
4272         /*
4273          * We default to 1 queue per non-10G port and up to # of cores queues
4274          * per 10G port.
4275          */
4276         if (n10g)
4277                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4278         if (q10g > netif_get_num_default_rss_queues())
4279                 q10g = netif_get_num_default_rss_queues();
4280
4281         for_each_port(adap, i) {
4282                 struct port_info *pi = adap2pinfo(adap, i);
4283
4284                 pi->first_qset = qidx;
4285                 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4286                 qidx += pi->nqsets;
4287         }
4288 #endif /* !CONFIG_CHELSIO_T4_DCB */
4289
4290         s->ethqsets = qidx;
4291         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4292
4293         if (is_offload(adap)) {
4294                 /*
4295                  * For offload we use 1 queue/channel if all ports are up to 1G,
4296                  * otherwise we divide all available queues amongst the channels
4297                  * capped by the number of available cores.
4298                  */
4299                 if (n10g) {
4300                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4301                                   num_online_cpus());
4302                         s->ofldqsets = roundup(i, adap->params.nports);
4303                 } else
4304                         s->ofldqsets = adap->params.nports;
4305                 /* For RDMA one Rx queue per channel suffices */
4306                 s->rdmaqs = adap->params.nports;
4307                 /* Try and allow at least 1 CIQ per cpu rounding down
4308                  * to the number of ports, with a minimum of 1 per port.
4309                  * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4310                  * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4311                  * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4312                  */
4313                 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4314                 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4315                                 adap->params.nports;
4316                 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4317         }
4318
4319         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4320                 struct sge_eth_rxq *r = &s->ethrxq[i];
4321
4322                 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4323                 r->fl.size = 72;
4324         }
4325
4326         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4327                 s->ethtxq[i].q.size = 1024;
4328
4329         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4330                 s->ctrlq[i].q.size = 512;
4331
4332         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4333                 s->ofldtxq[i].q.size = 1024;
4334
4335         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4336                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
4337
4338                 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4339                 r->rspq.uld = CXGB4_ULD_ISCSI;
4340                 r->fl.size = 72;
4341         }
4342
4343         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4344                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4345
4346                 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4347                 r->rspq.uld = CXGB4_ULD_RDMA;
4348                 r->fl.size = 72;
4349         }
4350
4351         ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4352         if (ciq_size > SGE_MAX_IQ_SIZE) {
4353                 CH_WARN(adap, "CIQ size too small for available IQs\n");
4354                 ciq_size = SGE_MAX_IQ_SIZE;
4355         }
4356
4357         for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4358                 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4359
4360                 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4361                 r->rspq.uld = CXGB4_ULD_RDMA;
4362         }
4363
4364         init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4365         init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4366 }
4367
4368 /*
4369  * Reduce the number of Ethernet queues across all ports to at most n.
4370  * n provides at least one queue per port.
4371  */
4372 static void reduce_ethqs(struct adapter *adap, int n)
4373 {
4374         int i;
4375         struct port_info *pi;
4376
4377         while (n < adap->sge.ethqsets)
4378                 for_each_port(adap, i) {
4379                         pi = adap2pinfo(adap, i);
4380                         if (pi->nqsets > 1) {
4381                                 pi->nqsets--;
4382                                 adap->sge.ethqsets--;
4383                                 if (adap->sge.ethqsets <= n)
4384                                         break;
4385                         }
4386                 }
4387
4388         n = 0;
4389         for_each_port(adap, i) {
4390                 pi = adap2pinfo(adap, i);
4391                 pi->first_qset = n;
4392                 n += pi->nqsets;
4393         }
4394 }
4395
4396 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4397 #define EXTRA_VECS 2
4398
4399 static int enable_msix(struct adapter *adap)
4400 {
4401         int ofld_need = 0;
4402         int i, want, need, allocated;
4403         struct sge *s = &adap->sge;
4404         unsigned int nchan = adap->params.nports;
4405         struct msix_entry *entries;
4406
4407         entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4408                           GFP_KERNEL);
4409         if (!entries)
4410                 return -ENOMEM;
4411
4412         for (i = 0; i < MAX_INGQ + 1; ++i)
4413                 entries[i].entry = i;
4414
4415         want = s->max_ethqsets + EXTRA_VECS;
4416         if (is_offload(adap)) {
4417                 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4418                 /* need nchan for each possible ULD */
4419                 ofld_need = 3 * nchan;
4420         }
4421 #ifdef CONFIG_CHELSIO_T4_DCB
4422         /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4423          * each port.
4424          */
4425         need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4426 #else
4427         need = adap->params.nports + EXTRA_VECS + ofld_need;
4428 #endif
4429         allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4430         if (allocated < 0) {
4431                 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4432                          " not using MSI-X\n");
4433                 kfree(entries);
4434                 return allocated;
4435         }
4436
4437         /* Distribute available vectors to the various queue groups.
4438          * Every group gets its minimum requirement and NIC gets top
4439          * priority for leftovers.
4440          */
4441         i = allocated - EXTRA_VECS - ofld_need;
4442         if (i < s->max_ethqsets) {
4443                 s->max_ethqsets = i;
4444                 if (i < s->ethqsets)
4445                         reduce_ethqs(adap, i);
4446         }
4447         if (is_offload(adap)) {
4448                 if (allocated < want) {
4449                         s->rdmaqs = nchan;
4450                         s->rdmaciqs = nchan;
4451                 }
4452
4453                 /* leftovers go to OFLD */
4454                 i = allocated - EXTRA_VECS - s->max_ethqsets -
4455                     s->rdmaqs - s->rdmaciqs;
4456                 s->ofldqsets = (i / nchan) * nchan;  /* round down */
4457         }
4458         for (i = 0; i < allocated; ++i)
4459                 adap->msix_info[i].vec = entries[i].vector;
4460
4461         kfree(entries);
4462         return 0;
4463 }
4464
4465 #undef EXTRA_VECS
4466
4467 static int init_rss(struct adapter *adap)
4468 {
4469         unsigned int i;
4470         int err;
4471
4472         err = t4_init_rss_mode(adap, adap->mbox);
4473         if (err)
4474                 return err;
4475
4476         for_each_port(adap, i) {
4477                 struct port_info *pi = adap2pinfo(adap, i);
4478
4479                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4480                 if (!pi->rss)
4481                         return -ENOMEM;
4482         }
4483         return 0;
4484 }
4485
4486 static void print_port_info(const struct net_device *dev)
4487 {
4488         char buf[80];
4489         char *bufp = buf;
4490         const char *spd = "";
4491         const struct port_info *pi = netdev_priv(dev);
4492         const struct adapter *adap = pi->adapter;
4493
4494         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4495                 spd = " 2.5 GT/s";
4496         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4497                 spd = " 5 GT/s";
4498         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4499                 spd = " 8 GT/s";
4500
4501         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4502                 bufp += sprintf(bufp, "100/");
4503         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4504                 bufp += sprintf(bufp, "1000/");
4505         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4506                 bufp += sprintf(bufp, "10G/");
4507         if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4508                 bufp += sprintf(bufp, "40G/");
4509         if (bufp != buf)
4510                 --bufp;
4511         sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4512
4513         netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4514                     adap->params.vpd.id,
4515                     CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4516                     is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4517                     (adap->flags & USING_MSIX) ? " MSI-X" :
4518                     (adap->flags & USING_MSI) ? " MSI" : "");
4519         netdev_info(dev, "S/N: %s, P/N: %s\n",
4520                     adap->params.vpd.sn, adap->params.vpd.pn);
4521 }
4522
4523 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4524 {
4525         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4526 }
4527
4528 /*
4529  * Free the following resources:
4530  * - memory used for tables
4531  * - MSI/MSI-X
4532  * - net devices
4533  * - resources FW is holding for us
4534  */
4535 static void free_some_resources(struct adapter *adapter)
4536 {
4537         unsigned int i;
4538
4539         t4_free_mem(adapter->l2t);
4540         t4_free_mem(adapter->tids.tid_tab);
4541         kfree(adapter->sge.egr_map);
4542         kfree(adapter->sge.ingr_map);
4543         kfree(adapter->sge.starving_fl);
4544         kfree(adapter->sge.txq_maperr);
4545 #ifdef CONFIG_DEBUG_FS
4546         kfree(adapter->sge.blocked_fl);
4547 #endif
4548         disable_msi(adapter);
4549
4550         for_each_port(adapter, i)
4551                 if (adapter->port[i]) {
4552                         struct port_info *pi = adap2pinfo(adapter, i);
4553
4554                         if (pi->viid != 0)
4555                                 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4556                                            0, pi->viid);
4557                         kfree(adap2pinfo(adapter, i)->rss);
4558                         free_netdev(adapter->port[i]);
4559                 }
4560         if (adapter->flags & FW_OK)
4561                 t4_fw_bye(adapter, adapter->pf);
4562 }
4563
4564 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4565 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4566                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4567 #define SEGMENT_SIZE 128
4568
4569 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4570 {
4571         u16 device_id;
4572
4573         /* Retrieve adapter's device ID */
4574         pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4575
4576         switch (device_id >> 12) {
4577         case CHELSIO_T4:
4578                 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4579         case CHELSIO_T5:
4580                 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4581         case CHELSIO_T6:
4582                 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4583         default:
4584                 dev_err(&pdev->dev, "Device %d is not supported\n",
4585                         device_id);
4586         }
4587         return -EINVAL;
4588 }
4589
4590 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4591 {
4592         int func, i, err, s_qpp, qpp, num_seg;
4593         struct port_info *pi;
4594         bool highdma = false;
4595         struct adapter *adapter = NULL;
4596         void __iomem *regs;
4597         u32 whoami, pl_rev;
4598         enum chip_type chip;
4599
4600         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4601
4602         err = pci_request_regions(pdev, KBUILD_MODNAME);
4603         if (err) {
4604                 /* Just info, some other driver may have claimed the device. */
4605                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4606                 return err;
4607         }
4608
4609         err = pci_enable_device(pdev);
4610         if (err) {
4611                 dev_err(&pdev->dev, "cannot enable PCI device\n");
4612                 goto out_release_regions;
4613         }
4614
4615         regs = pci_ioremap_bar(pdev, 0);
4616         if (!regs) {
4617                 dev_err(&pdev->dev, "cannot map device registers\n");
4618                 err = -ENOMEM;
4619                 goto out_disable_device;
4620         }
4621
4622         err = t4_wait_dev_ready(regs);
4623         if (err < 0)
4624                 goto out_unmap_bar0;
4625
4626         /* We control everything through one PF */
4627         whoami = readl(regs + PL_WHOAMI_A);
4628         pl_rev = REV_G(readl(regs + PL_REV_A));
4629         chip = get_chip_type(pdev, pl_rev);
4630         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4631                 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4632         if (func != ent->driver_data) {
4633                 iounmap(regs);
4634                 pci_disable_device(pdev);
4635                 pci_save_state(pdev);        /* to restore SR-IOV later */
4636                 goto sriov;
4637         }
4638
4639         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4640                 highdma = true;
4641                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4642                 if (err) {
4643                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4644                                 "coherent allocations\n");
4645                         goto out_unmap_bar0;
4646                 }
4647         } else {
4648                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4649                 if (err) {
4650                         dev_err(&pdev->dev, "no usable DMA configuration\n");
4651                         goto out_unmap_bar0;
4652                 }
4653         }
4654
4655         pci_enable_pcie_error_reporting(pdev);
4656         enable_pcie_relaxed_ordering(pdev);
4657         pci_set_master(pdev);
4658         pci_save_state(pdev);
4659
4660         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4661         if (!adapter) {
4662                 err = -ENOMEM;
4663                 goto out_unmap_bar0;
4664         }
4665
4666         adapter->workq = create_singlethread_workqueue("cxgb4");
4667         if (!adapter->workq) {
4668                 err = -ENOMEM;
4669                 goto out_free_adapter;
4670         }
4671
4672         /* PCI device has been enabled */
4673         adapter->flags |= DEV_ENABLED;
4674
4675         adapter->regs = regs;
4676         adapter->pdev = pdev;
4677         adapter->pdev_dev = &pdev->dev;
4678         adapter->mbox = func;
4679         adapter->pf = func;
4680         adapter->msg_enable = dflt_msg_enable;
4681         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4682
4683         spin_lock_init(&adapter->stats_lock);
4684         spin_lock_init(&adapter->tid_release_lock);
4685         spin_lock_init(&adapter->win0_lock);
4686
4687         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4688         INIT_WORK(&adapter->db_full_task, process_db_full);
4689         INIT_WORK(&adapter->db_drop_task, process_db_drop);
4690
4691         err = t4_prep_adapter(adapter);
4692         if (err)
4693                 goto out_free_adapter;
4694
4695
4696         if (!is_t4(adapter->params.chip)) {
4697                 s_qpp = (QUEUESPERPAGEPF0_S +
4698                         (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4699                         adapter->pf);
4700                 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4701                       SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4702                 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4703
4704                 /* Each segment size is 128B. Write coalescing is enabled only
4705                  * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4706                  * queue is less no of segments that can be accommodated in
4707                  * a page size.
4708                  */
4709                 if (qpp > num_seg) {
4710                         dev_err(&pdev->dev,
4711                                 "Incorrect number of egress queues per page\n");
4712                         err = -EINVAL;
4713                         goto out_free_adapter;
4714                 }
4715                 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4716                 pci_resource_len(pdev, 2));
4717                 if (!adapter->bar2) {
4718                         dev_err(&pdev->dev, "cannot map device bar2 region\n");
4719                         err = -ENOMEM;
4720                         goto out_free_adapter;
4721                 }
4722         }
4723
4724         setup_memwin(adapter);
4725         err = adap_init0(adapter);
4726 #ifdef CONFIG_DEBUG_FS
4727         bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4728 #endif
4729         setup_memwin_rdma(adapter);
4730         if (err)
4731                 goto out_unmap_bar;
4732
4733         /* configure SGE_STAT_CFG_A to read WC stats */
4734         if (!is_t4(adapter->params.chip))
4735                 t4_write_reg(adapter, SGE_STAT_CFG_A,
4736                              STATSOURCE_T5_V(7) | STATMODE_V(0));
4737
4738         for_each_port(adapter, i) {
4739                 struct net_device *netdev;
4740
4741                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4742                                            MAX_ETH_QSETS);
4743                 if (!netdev) {
4744                         err = -ENOMEM;
4745                         goto out_free_dev;
4746                 }
4747
4748                 SET_NETDEV_DEV(netdev, &pdev->dev);
4749
4750                 adapter->port[i] = netdev;
4751                 pi = netdev_priv(netdev);
4752                 pi->adapter = adapter;
4753                 pi->xact_addr_filt = -1;
4754                 pi->port_id = i;
4755                 netdev->irq = pdev->irq;
4756
4757                 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4758                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4759                         NETIF_F_RXCSUM | NETIF_F_RXHASH |
4760                         NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4761                 if (highdma)
4762                         netdev->hw_features |= NETIF_F_HIGHDMA;
4763                 netdev->features |= netdev->hw_features;
4764                 netdev->vlan_features = netdev->features & VLAN_FEAT;
4765
4766                 netdev->priv_flags |= IFF_UNICAST_FLT;
4767
4768                 netdev->netdev_ops = &cxgb4_netdev_ops;
4769 #ifdef CONFIG_CHELSIO_T4_DCB
4770                 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4771                 cxgb4_dcb_state_init(netdev);
4772 #endif
4773                 cxgb4_set_ethtool_ops(netdev);
4774         }
4775
4776         pci_set_drvdata(pdev, adapter);
4777
4778         if (adapter->flags & FW_OK) {
4779                 err = t4_port_init(adapter, func, func, 0);
4780                 if (err)
4781                         goto out_free_dev;
4782         } else if (adapter->params.nports == 1) {
4783                 /* If we don't have a connection to the firmware -- possibly
4784                  * because of an error -- grab the raw VPD parameters so we
4785                  * can set the proper MAC Address on the debug network
4786                  * interface that we've created.
4787                  */
4788                 u8 hw_addr[ETH_ALEN];
4789                 u8 *na = adapter->params.vpd.na;
4790
4791                 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4792                 if (!err) {
4793                         for (i = 0; i < ETH_ALEN; i++)
4794                                 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4795                                               hex2val(na[2 * i + 1]));
4796                         t4_set_hw_addr(adapter, 0, hw_addr);
4797                 }
4798         }
4799
4800         /* Configure queues and allocate tables now, they can be needed as
4801          * soon as the first register_netdev completes.
4802          */
4803         cfg_queues(adapter);
4804
4805         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4806         if (!adapter->l2t) {
4807                 /* We tolerate a lack of L2T, giving up some functionality */
4808                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4809                 adapter->params.offload = 0;
4810         }
4811
4812 #if IS_ENABLED(CONFIG_IPV6)
4813         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4814                                           adapter->clipt_end);
4815         if (!adapter->clipt) {
4816                 /* We tolerate a lack of clip_table, giving up
4817                  * some functionality
4818                  */
4819                 dev_warn(&pdev->dev,
4820                          "could not allocate Clip table, continuing\n");
4821                 adapter->params.offload = 0;
4822         }
4823 #endif
4824         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4825                 dev_warn(&pdev->dev, "could not allocate TID table, "
4826                          "continuing\n");
4827                 adapter->params.offload = 0;
4828         }
4829
4830         if (is_offload(adapter)) {
4831                 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4832                         u32 hash_base, hash_reg;
4833
4834                         if (chip <= CHELSIO_T5) {
4835                                 hash_reg = LE_DB_TID_HASHBASE_A;
4836                                 hash_base = t4_read_reg(adapter, hash_reg);
4837                                 adapter->tids.hash_base = hash_base / 4;
4838                         } else {
4839                                 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4840                                 hash_base = t4_read_reg(adapter, hash_reg);
4841                                 adapter->tids.hash_base = hash_base;
4842                         }
4843                 }
4844         }
4845
4846         /* See what interrupts we'll be using */
4847         if (msi > 1 && enable_msix(adapter) == 0)
4848                 adapter->flags |= USING_MSIX;
4849         else if (msi > 0 && pci_enable_msi(pdev) == 0)
4850                 adapter->flags |= USING_MSI;
4851
4852         err = init_rss(adapter);
4853         if (err)
4854                 goto out_free_dev;
4855
4856         /*
4857          * The card is now ready to go.  If any errors occur during device
4858          * registration we do not fail the whole card but rather proceed only
4859          * with the ports we manage to register successfully.  However we must
4860          * register at least one net device.
4861          */
4862         for_each_port(adapter, i) {
4863                 pi = adap2pinfo(adapter, i);
4864                 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4865                 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4866
4867                 err = register_netdev(adapter->port[i]);
4868                 if (err)
4869                         break;
4870                 adapter->chan_map[pi->tx_chan] = i;
4871                 print_port_info(adapter->port[i]);
4872         }
4873         if (i == 0) {
4874                 dev_err(&pdev->dev, "could not register any net devices\n");
4875                 goto out_free_dev;
4876         }
4877         if (err) {
4878                 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4879                 err = 0;
4880         }
4881
4882         if (cxgb4_debugfs_root) {
4883                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4884                                                            cxgb4_debugfs_root);
4885                 setup_debugfs(adapter);
4886         }
4887
4888         /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4889         pdev->needs_freset = 1;
4890
4891         if (is_offload(adapter))
4892                 attach_ulds(adapter);
4893
4894 sriov:
4895 #ifdef CONFIG_PCI_IOV
4896         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4897                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4898                         dev_info(&pdev->dev,
4899                                  "instantiated %u virtual functions\n",
4900                                  num_vf[func]);
4901 #endif
4902         return 0;
4903
4904  out_free_dev:
4905         free_some_resources(adapter);
4906  out_unmap_bar:
4907         if (!is_t4(adapter->params.chip))
4908                 iounmap(adapter->bar2);
4909  out_free_adapter:
4910         if (adapter->workq)
4911                 destroy_workqueue(adapter->workq);
4912
4913         kfree(adapter);
4914  out_unmap_bar0:
4915         iounmap(regs);
4916  out_disable_device:
4917         pci_disable_pcie_error_reporting(pdev);
4918         pci_disable_device(pdev);
4919  out_release_regions:
4920         pci_release_regions(pdev);
4921         return err;
4922 }
4923
4924 static void remove_one(struct pci_dev *pdev)
4925 {
4926         struct adapter *adapter = pci_get_drvdata(pdev);
4927
4928 #ifdef CONFIG_PCI_IOV
4929         pci_disable_sriov(pdev);
4930
4931 #endif
4932
4933         if (adapter) {
4934                 int i;
4935
4936                 /* Tear down per-adapter Work Queue first since it can contain
4937                  * references to our adapter data structure.
4938                  */
4939                 destroy_workqueue(adapter->workq);
4940
4941                 if (is_offload(adapter))
4942                         detach_ulds(adapter);
4943
4944                 disable_interrupts(adapter);
4945
4946                 for_each_port(adapter, i)
4947                         if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4948                                 unregister_netdev(adapter->port[i]);
4949
4950                 debugfs_remove_recursive(adapter->debugfs_root);
4951
4952                 /* If we allocated filters, free up state associated with any
4953                  * valid filters ...
4954                  */
4955                 if (adapter->tids.ftid_tab) {
4956                         struct filter_entry *f = &adapter->tids.ftid_tab[0];
4957                         for (i = 0; i < (adapter->tids.nftids +
4958                                         adapter->tids.nsftids); i++, f++)
4959                                 if (f->valid)
4960                                         clear_filter(adapter, f);
4961                 }
4962
4963                 if (adapter->flags & FULL_INIT_DONE)
4964                         cxgb_down(adapter);
4965
4966                 free_some_resources(adapter);
4967 #if IS_ENABLED(CONFIG_IPV6)
4968                 t4_cleanup_clip_tbl(adapter);
4969 #endif
4970                 iounmap(adapter->regs);
4971                 if (!is_t4(adapter->params.chip))
4972                         iounmap(adapter->bar2);
4973                 pci_disable_pcie_error_reporting(pdev);
4974                 if ((adapter->flags & DEV_ENABLED)) {
4975                         pci_disable_device(pdev);
4976                         adapter->flags &= ~DEV_ENABLED;
4977                 }
4978                 pci_release_regions(pdev);
4979                 synchronize_rcu();
4980                 kfree(adapter);
4981         } else
4982                 pci_release_regions(pdev);
4983 }
4984
4985 static struct pci_driver cxgb4_driver = {
4986         .name     = KBUILD_MODNAME,
4987         .id_table = cxgb4_pci_tbl,
4988         .probe    = init_one,
4989         .remove   = remove_one,
4990         .shutdown = remove_one,
4991         .err_handler = &cxgb4_eeh,
4992 };
4993
4994 static int __init cxgb4_init_module(void)
4995 {
4996         int ret;
4997
4998         /* Debugfs support is optional, just warn if this fails */
4999         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5000         if (!cxgb4_debugfs_root)
5001                 pr_warn("could not create debugfs entry, continuing\n");
5002
5003         ret = pci_register_driver(&cxgb4_driver);
5004         if (ret < 0)
5005                 debugfs_remove(cxgb4_debugfs_root);
5006
5007 #if IS_ENABLED(CONFIG_IPV6)
5008         if (!inet6addr_registered) {
5009                 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5010                 inet6addr_registered = true;
5011         }
5012 #endif
5013
5014         return ret;
5015 }
5016
5017 static void __exit cxgb4_cleanup_module(void)
5018 {
5019 #if IS_ENABLED(CONFIG_IPV6)
5020         if (inet6addr_registered) {
5021                 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5022                 inet6addr_registered = false;
5023         }
5024 #endif
5025         pci_unregister_driver(&cxgb4_driver);
5026         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5027 }
5028
5029 module_init(cxgb4_init_module);
5030 module_exit(cxgb4_cleanup_module);