]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000/e1000_ethtool.c
Merge branch 'drm-tda998x-devel' of git://ftp.arm.linux.org.uk/~rmk/linux-arm into...
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2  * Intel PRO/1000 Linux driver
3  * Copyright(c) 1999 - 2006 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * Linux NICS <linux.nics@intel.com>
19  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21  *
22  ******************************************************************************/
23
24 /* ethtool support for e1000 */
25
26 #include "e1000.h"
27 #include <linux/jiffies.h>
28 #include <linux/uaccess.h>
29
30 enum {NETDEV_STATS, E1000_STATS};
31
32 struct e1000_stats {
33         char stat_string[ETH_GSTRING_LEN];
34         int type;
35         int sizeof_stat;
36         int stat_offset;
37 };
38
39 #define E1000_STAT(m)           E1000_STATS, \
40                                 sizeof(((struct e1000_adapter *)0)->m), \
41                                 offsetof(struct e1000_adapter, m)
42 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
43                                 sizeof(((struct net_device *)0)->m), \
44                                 offsetof(struct net_device, m)
45
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorcl) },
50         { "tx_bytes", E1000_STAT(stats.gotcl) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(stats.rxerrc) },
56         { "tx_errors", E1000_STAT(stats.txerrc) },
57         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
61         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
90         { "tx_smbus", E1000_STAT(stats.mgptc) },
91         { "rx_smbus", E1000_STAT(stats.mgprc) },
92         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
93 };
94
95 #define E1000_QUEUE_STATS_LEN 0
96 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
97 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99         "Register test  (offline)", "Eeprom test    (offline)",
100         "Interrupt test (offline)", "Loopback test  (offline)",
101         "Link test   (on/offline)"
102 };
103
104 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
105
106 static int e1000_get_settings(struct net_device *netdev,
107                               struct ethtool_cmd *ecmd)
108 {
109         struct e1000_adapter *adapter = netdev_priv(netdev);
110         struct e1000_hw *hw = &adapter->hw;
111
112         if (hw->media_type == e1000_media_type_copper) {
113                 ecmd->supported = (SUPPORTED_10baseT_Half |
114                                    SUPPORTED_10baseT_Full |
115                                    SUPPORTED_100baseT_Half |
116                                    SUPPORTED_100baseT_Full |
117                                    SUPPORTED_1000baseT_Full|
118                                    SUPPORTED_Autoneg |
119                                    SUPPORTED_TP);
120                 ecmd->advertising = ADVERTISED_TP;
121
122                 if (hw->autoneg == 1) {
123                         ecmd->advertising |= ADVERTISED_Autoneg;
124                         /* the e1000 autoneg seems to match ethtool nicely */
125                         ecmd->advertising |= hw->autoneg_advertised;
126                 }
127
128                 ecmd->port = PORT_TP;
129                 ecmd->phy_address = hw->phy_addr;
130
131                 if (hw->mac_type == e1000_82543)
132                         ecmd->transceiver = XCVR_EXTERNAL;
133                 else
134                         ecmd->transceiver = XCVR_INTERNAL;
135
136         } else {
137                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
138                                      SUPPORTED_FIBRE |
139                                      SUPPORTED_Autoneg);
140
141                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
142                                      ADVERTISED_FIBRE |
143                                      ADVERTISED_Autoneg);
144
145                 ecmd->port = PORT_FIBRE;
146
147                 if (hw->mac_type >= e1000_82545)
148                         ecmd->transceiver = XCVR_INTERNAL;
149                 else
150                         ecmd->transceiver = XCVR_EXTERNAL;
151         }
152
153         if (er32(STATUS) & E1000_STATUS_LU) {
154                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
155                                            &adapter->link_duplex);
156                 ethtool_cmd_speed_set(ecmd, adapter->link_speed);
157
158                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
159                  * and HALF_DUPLEX != DUPLEX_HALF
160                  */
161                 if (adapter->link_duplex == FULL_DUPLEX)
162                         ecmd->duplex = DUPLEX_FULL;
163                 else
164                         ecmd->duplex = DUPLEX_HALF;
165         } else {
166                 ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
167                 ecmd->duplex = DUPLEX_UNKNOWN;
168         }
169
170         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
171                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
172
173         /* MDI-X => 1; MDI => 0 */
174         if ((hw->media_type == e1000_media_type_copper) &&
175             netif_carrier_ok(netdev))
176                 ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
177                                      ETH_TP_MDI_X : ETH_TP_MDI);
178         else
179                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
180
181         if (hw->mdix == AUTO_ALL_MODES)
182                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
183         else
184                 ecmd->eth_tp_mdix_ctrl = hw->mdix;
185         return 0;
186 }
187
188 static int e1000_set_settings(struct net_device *netdev,
189                               struct ethtool_cmd *ecmd)
190 {
191         struct e1000_adapter *adapter = netdev_priv(netdev);
192         struct e1000_hw *hw = &adapter->hw;
193
194         /* MDI setting is only allowed when autoneg enabled because
195          * some hardware doesn't allow MDI setting when speed or
196          * duplex is forced.
197          */
198         if (ecmd->eth_tp_mdix_ctrl) {
199                 if (hw->media_type != e1000_media_type_copper)
200                         return -EOPNOTSUPP;
201
202                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
203                     (ecmd->autoneg != AUTONEG_ENABLE)) {
204                         e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
205                         return -EINVAL;
206                 }
207         }
208
209         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
210                 msleep(1);
211
212         if (ecmd->autoneg == AUTONEG_ENABLE) {
213                 hw->autoneg = 1;
214                 if (hw->media_type == e1000_media_type_fiber)
215                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
216                                      ADVERTISED_FIBRE |
217                                      ADVERTISED_Autoneg;
218                 else
219                         hw->autoneg_advertised = ecmd->advertising |
220                                                  ADVERTISED_TP |
221                                                  ADVERTISED_Autoneg;
222                 ecmd->advertising = hw->autoneg_advertised;
223         } else {
224                 u32 speed = ethtool_cmd_speed(ecmd);
225                 /* calling this overrides forced MDI setting */
226                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
227                         clear_bit(__E1000_RESETTING, &adapter->flags);
228                         return -EINVAL;
229                 }
230         }
231
232         /* MDI-X => 2; MDI => 1; Auto => 3 */
233         if (ecmd->eth_tp_mdix_ctrl) {
234                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
235                         hw->mdix = AUTO_ALL_MODES;
236                 else
237                         hw->mdix = ecmd->eth_tp_mdix_ctrl;
238         }
239
240         /* reset the link */
241
242         if (netif_running(adapter->netdev)) {
243                 e1000_down(adapter);
244                 e1000_up(adapter);
245         } else {
246                 e1000_reset(adapter);
247         }
248         clear_bit(__E1000_RESETTING, &adapter->flags);
249         return 0;
250 }
251
252 static u32 e1000_get_link(struct net_device *netdev)
253 {
254         struct e1000_adapter *adapter = netdev_priv(netdev);
255
256         /* If the link is not reported up to netdev, interrupts are disabled,
257          * and so the physical link state may have changed since we last
258          * looked. Set get_link_status to make sure that the true link
259          * state is interrogated, rather than pulling a cached and possibly
260          * stale link state from the driver.
261          */
262         if (!netif_carrier_ok(netdev))
263                 adapter->hw.get_link_status = 1;
264
265         return e1000_has_link(adapter);
266 }
267
268 static void e1000_get_pauseparam(struct net_device *netdev,
269                                  struct ethtool_pauseparam *pause)
270 {
271         struct e1000_adapter *adapter = netdev_priv(netdev);
272         struct e1000_hw *hw = &adapter->hw;
273
274         pause->autoneg =
275                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
276
277         if (hw->fc == E1000_FC_RX_PAUSE) {
278                 pause->rx_pause = 1;
279         } else if (hw->fc == E1000_FC_TX_PAUSE) {
280                 pause->tx_pause = 1;
281         } else if (hw->fc == E1000_FC_FULL) {
282                 pause->rx_pause = 1;
283                 pause->tx_pause = 1;
284         }
285 }
286
287 static int e1000_set_pauseparam(struct net_device *netdev,
288                                 struct ethtool_pauseparam *pause)
289 {
290         struct e1000_adapter *adapter = netdev_priv(netdev);
291         struct e1000_hw *hw = &adapter->hw;
292         int retval = 0;
293
294         adapter->fc_autoneg = pause->autoneg;
295
296         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
297                 msleep(1);
298
299         if (pause->rx_pause && pause->tx_pause)
300                 hw->fc = E1000_FC_FULL;
301         else if (pause->rx_pause && !pause->tx_pause)
302                 hw->fc = E1000_FC_RX_PAUSE;
303         else if (!pause->rx_pause && pause->tx_pause)
304                 hw->fc = E1000_FC_TX_PAUSE;
305         else if (!pause->rx_pause && !pause->tx_pause)
306                 hw->fc = E1000_FC_NONE;
307
308         hw->original_fc = hw->fc;
309
310         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
311                 if (netif_running(adapter->netdev)) {
312                         e1000_down(adapter);
313                         e1000_up(adapter);
314                 } else {
315                         e1000_reset(adapter);
316                 }
317         } else
318                 retval = ((hw->media_type == e1000_media_type_fiber) ?
319                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
320
321         clear_bit(__E1000_RESETTING, &adapter->flags);
322         return retval;
323 }
324
325 static u32 e1000_get_msglevel(struct net_device *netdev)
326 {
327         struct e1000_adapter *adapter = netdev_priv(netdev);
328
329         return adapter->msg_enable;
330 }
331
332 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
333 {
334         struct e1000_adapter *adapter = netdev_priv(netdev);
335
336         adapter->msg_enable = data;
337 }
338
339 static int e1000_get_regs_len(struct net_device *netdev)
340 {
341 #define E1000_REGS_LEN 32
342         return E1000_REGS_LEN * sizeof(u32);
343 }
344
345 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
346                            void *p)
347 {
348         struct e1000_adapter *adapter = netdev_priv(netdev);
349         struct e1000_hw *hw = &adapter->hw;
350         u32 *regs_buff = p;
351         u16 phy_data;
352
353         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
354
355         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
356
357         regs_buff[0]  = er32(CTRL);
358         regs_buff[1]  = er32(STATUS);
359
360         regs_buff[2]  = er32(RCTL);
361         regs_buff[3]  = er32(RDLEN);
362         regs_buff[4]  = er32(RDH);
363         regs_buff[5]  = er32(RDT);
364         regs_buff[6]  = er32(RDTR);
365
366         regs_buff[7]  = er32(TCTL);
367         regs_buff[8]  = er32(TDLEN);
368         regs_buff[9]  = er32(TDH);
369         regs_buff[10] = er32(TDT);
370         regs_buff[11] = er32(TIDV);
371
372         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
373         if (hw->phy_type == e1000_phy_igp) {
374                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
375                                     IGP01E1000_PHY_AGC_A);
376                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
377                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
378                 regs_buff[13] = (u32)phy_data; /* cable length */
379                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
380                                     IGP01E1000_PHY_AGC_B);
381                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
382                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
383                 regs_buff[14] = (u32)phy_data; /* cable length */
384                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385                                     IGP01E1000_PHY_AGC_C);
386                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
387                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388                 regs_buff[15] = (u32)phy_data; /* cable length */
389                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390                                     IGP01E1000_PHY_AGC_D);
391                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
392                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393                 regs_buff[16] = (u32)phy_data; /* cable length */
394                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
395                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
396                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
397                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398                 regs_buff[18] = (u32)phy_data; /* cable polarity */
399                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400                                     IGP01E1000_PHY_PCS_INIT_REG);
401                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
402                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403                 regs_buff[19] = (u32)phy_data; /* cable polarity */
404                 regs_buff[20] = 0; /* polarity correction enabled (always) */
405                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
406                 regs_buff[23] = regs_buff[18]; /* mdix mode */
407                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
408         } else {
409                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
410                 regs_buff[13] = (u32)phy_data; /* cable length */
411                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
413                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
414                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
415                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
416                 regs_buff[18] = regs_buff[13]; /* cable polarity */
417                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
418                 regs_buff[20] = regs_buff[17]; /* polarity correction */
419                 /* phy receive errors */
420                 regs_buff[22] = adapter->phy_stats.receive_errors;
421                 regs_buff[23] = regs_buff[13]; /* mdix mode */
422         }
423         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
424         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
425         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
426         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
427         if (hw->mac_type >= e1000_82540 &&
428             hw->media_type == e1000_media_type_copper) {
429                 regs_buff[26] = er32(MANC);
430         }
431 }
432
433 static int e1000_get_eeprom_len(struct net_device *netdev)
434 {
435         struct e1000_adapter *adapter = netdev_priv(netdev);
436         struct e1000_hw *hw = &adapter->hw;
437
438         return hw->eeprom.word_size * 2;
439 }
440
441 static int e1000_get_eeprom(struct net_device *netdev,
442                             struct ethtool_eeprom *eeprom, u8 *bytes)
443 {
444         struct e1000_adapter *adapter = netdev_priv(netdev);
445         struct e1000_hw *hw = &adapter->hw;
446         u16 *eeprom_buff;
447         int first_word, last_word;
448         int ret_val = 0;
449         u16 i;
450
451         if (eeprom->len == 0)
452                 return -EINVAL;
453
454         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
455
456         first_word = eeprom->offset >> 1;
457         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
458
459         eeprom_buff = kmalloc(sizeof(u16) *
460                         (last_word - first_word + 1), GFP_KERNEL);
461         if (!eeprom_buff)
462                 return -ENOMEM;
463
464         if (hw->eeprom.type == e1000_eeprom_spi)
465                 ret_val = e1000_read_eeprom(hw, first_word,
466                                             last_word - first_word + 1,
467                                             eeprom_buff);
468         else {
469                 for (i = 0; i < last_word - first_word + 1; i++) {
470                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
471                                                     &eeprom_buff[i]);
472                         if (ret_val)
473                                 break;
474                 }
475         }
476
477         /* Device's eeprom is always little-endian, word addressable */
478         for (i = 0; i < last_word - first_word + 1; i++)
479                 le16_to_cpus(&eeprom_buff[i]);
480
481         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
482                eeprom->len);
483         kfree(eeprom_buff);
484
485         return ret_val;
486 }
487
488 static int e1000_set_eeprom(struct net_device *netdev,
489                             struct ethtool_eeprom *eeprom, u8 *bytes)
490 {
491         struct e1000_adapter *adapter = netdev_priv(netdev);
492         struct e1000_hw *hw = &adapter->hw;
493         u16 *eeprom_buff;
494         void *ptr;
495         int max_len, first_word, last_word, ret_val = 0;
496         u16 i;
497
498         if (eeprom->len == 0)
499                 return -EOPNOTSUPP;
500
501         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
502                 return -EFAULT;
503
504         max_len = hw->eeprom.word_size * 2;
505
506         first_word = eeprom->offset >> 1;
507         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
508         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
509         if (!eeprom_buff)
510                 return -ENOMEM;
511
512         ptr = (void *)eeprom_buff;
513
514         if (eeprom->offset & 1) {
515                 /* need read/modify/write of first changed EEPROM word
516                  * only the second byte of the word is being modified
517                  */
518                 ret_val = e1000_read_eeprom(hw, first_word, 1,
519                                             &eeprom_buff[0]);
520                 ptr++;
521         }
522         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
523                 /* need read/modify/write of last changed EEPROM word
524                  * only the first byte of the word is being modified
525                  */
526                 ret_val = e1000_read_eeprom(hw, last_word, 1,
527                                             &eeprom_buff[last_word - first_word]);
528         }
529
530         /* Device's eeprom is always little-endian, word addressable */
531         for (i = 0; i < last_word - first_word + 1; i++)
532                 le16_to_cpus(&eeprom_buff[i]);
533
534         memcpy(ptr, bytes, eeprom->len);
535
536         for (i = 0; i < last_word - first_word + 1; i++)
537                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
538
539         ret_val = e1000_write_eeprom(hw, first_word,
540                                      last_word - first_word + 1, eeprom_buff);
541
542         /* Update the checksum over the first part of the EEPROM if needed */
543         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
544                 e1000_update_eeprom_checksum(hw);
545
546         kfree(eeprom_buff);
547         return ret_val;
548 }
549
550 static void e1000_get_drvinfo(struct net_device *netdev,
551                               struct ethtool_drvinfo *drvinfo)
552 {
553         struct e1000_adapter *adapter = netdev_priv(netdev);
554
555         strlcpy(drvinfo->driver,  e1000_driver_name,
556                 sizeof(drvinfo->driver));
557         strlcpy(drvinfo->version, e1000_driver_version,
558                 sizeof(drvinfo->version));
559
560         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
561                 sizeof(drvinfo->bus_info));
562         drvinfo->regdump_len = e1000_get_regs_len(netdev);
563         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
564 }
565
566 static void e1000_get_ringparam(struct net_device *netdev,
567                                 struct ethtool_ringparam *ring)
568 {
569         struct e1000_adapter *adapter = netdev_priv(netdev);
570         struct e1000_hw *hw = &adapter->hw;
571         e1000_mac_type mac_type = hw->mac_type;
572         struct e1000_tx_ring *txdr = adapter->tx_ring;
573         struct e1000_rx_ring *rxdr = adapter->rx_ring;
574
575         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
576                 E1000_MAX_82544_RXD;
577         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
578                 E1000_MAX_82544_TXD;
579         ring->rx_pending = rxdr->count;
580         ring->tx_pending = txdr->count;
581 }
582
583 static int e1000_set_ringparam(struct net_device *netdev,
584                                struct ethtool_ringparam *ring)
585 {
586         struct e1000_adapter *adapter = netdev_priv(netdev);
587         struct e1000_hw *hw = &adapter->hw;
588         e1000_mac_type mac_type = hw->mac_type;
589         struct e1000_tx_ring *txdr, *tx_old;
590         struct e1000_rx_ring *rxdr, *rx_old;
591         int i, err;
592
593         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
594                 return -EINVAL;
595
596         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
597                 msleep(1);
598
599         if (netif_running(adapter->netdev))
600                 e1000_down(adapter);
601
602         tx_old = adapter->tx_ring;
603         rx_old = adapter->rx_ring;
604
605         err = -ENOMEM;
606         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
607                        GFP_KERNEL);
608         if (!txdr)
609                 goto err_alloc_tx;
610
611         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
612                        GFP_KERNEL);
613         if (!rxdr)
614                 goto err_alloc_rx;
615
616         adapter->tx_ring = txdr;
617         adapter->rx_ring = rxdr;
618
619         rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
620         rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
621                           E1000_MAX_RXD : E1000_MAX_82544_RXD));
622         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
623         txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
624         txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
625                           E1000_MAX_TXD : E1000_MAX_82544_TXD));
626         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
627
628         for (i = 0; i < adapter->num_tx_queues; i++)
629                 txdr[i].count = txdr->count;
630         for (i = 0; i < adapter->num_rx_queues; i++)
631                 rxdr[i].count = rxdr->count;
632
633         if (netif_running(adapter->netdev)) {
634                 /* Try to get new resources before deleting old */
635                 err = e1000_setup_all_rx_resources(adapter);
636                 if (err)
637                         goto err_setup_rx;
638                 err = e1000_setup_all_tx_resources(adapter);
639                 if (err)
640                         goto err_setup_tx;
641
642                 /* save the new, restore the old in order to free it,
643                  * then restore the new back again
644                  */
645
646                 adapter->rx_ring = rx_old;
647                 adapter->tx_ring = tx_old;
648                 e1000_free_all_rx_resources(adapter);
649                 e1000_free_all_tx_resources(adapter);
650                 kfree(tx_old);
651                 kfree(rx_old);
652                 adapter->rx_ring = rxdr;
653                 adapter->tx_ring = txdr;
654                 err = e1000_up(adapter);
655                 if (err)
656                         goto err_setup;
657         }
658
659         clear_bit(__E1000_RESETTING, &adapter->flags);
660         return 0;
661 err_setup_tx:
662         e1000_free_all_rx_resources(adapter);
663 err_setup_rx:
664         adapter->rx_ring = rx_old;
665         adapter->tx_ring = tx_old;
666         kfree(rxdr);
667 err_alloc_rx:
668         kfree(txdr);
669 err_alloc_tx:
670         e1000_up(adapter);
671 err_setup:
672         clear_bit(__E1000_RESETTING, &adapter->flags);
673         return err;
674 }
675
676 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
677                              u32 mask, u32 write)
678 {
679         struct e1000_hw *hw = &adapter->hw;
680         static const u32 test[] = {
681                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
682         };
683         u8 __iomem *address = hw->hw_addr + reg;
684         u32 read;
685         int i;
686
687         for (i = 0; i < ARRAY_SIZE(test); i++) {
688                 writel(write & test[i], address);
689                 read = readl(address);
690                 if (read != (write & test[i] & mask)) {
691                         e_err(drv, "pattern test reg %04X failed: "
692                               "got 0x%08X expected 0x%08X\n",
693                               reg, read, (write & test[i] & mask));
694                         *data = reg;
695                         return true;
696                 }
697         }
698         return false;
699 }
700
701 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
702                               u32 mask, u32 write)
703 {
704         struct e1000_hw *hw = &adapter->hw;
705         u8 __iomem *address = hw->hw_addr + reg;
706         u32 read;
707
708         writel(write & mask, address);
709         read = readl(address);
710         if ((read & mask) != (write & mask)) {
711                 e_err(drv, "set/check reg %04X test failed: "
712                       "got 0x%08X expected 0x%08X\n",
713                       reg, (read & mask), (write & mask));
714                 *data = reg;
715                 return true;
716         }
717         return false;
718 }
719
720 #define REG_PATTERN_TEST(reg, mask, write)                           \
721         do {                                                         \
722                 if (reg_pattern_test(adapter, data,                  \
723                              (hw->mac_type >= e1000_82543)   \
724                              ? E1000_##reg : E1000_82542_##reg,      \
725                              mask, write))                           \
726                         return 1;                                    \
727         } while (0)
728
729 #define REG_SET_AND_CHECK(reg, mask, write)                          \
730         do {                                                         \
731                 if (reg_set_and_check(adapter, data,                 \
732                               (hw->mac_type >= e1000_82543)  \
733                               ? E1000_##reg : E1000_82542_##reg,     \
734                               mask, write))                          \
735                         return 1;                                    \
736         } while (0)
737
738 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
739 {
740         u32 value, before, after;
741         u32 i, toggle;
742         struct e1000_hw *hw = &adapter->hw;
743
744         /* The status register is Read Only, so a write should fail.
745          * Some bits that get toggled are ignored.
746          */
747
748         /* there are several bits on newer hardware that are r/w */
749         toggle = 0xFFFFF833;
750
751         before = er32(STATUS);
752         value = (er32(STATUS) & toggle);
753         ew32(STATUS, toggle);
754         after = er32(STATUS) & toggle;
755         if (value != after) {
756                 e_err(drv, "failed STATUS register test got: "
757                       "0x%08X expected: 0x%08X\n", after, value);
758                 *data = 1;
759                 return 1;
760         }
761         /* restore previous status */
762         ew32(STATUS, before);
763
764         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
765         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
766         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
767         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
768
769         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
770         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
771         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
772         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
773         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
774         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
775         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
776         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
777         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
778         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
779
780         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
781
782         before = 0x06DFB3FE;
783         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
784         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
785
786         if (hw->mac_type >= e1000_82543) {
787                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
788                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
789                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
790                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
791                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
792                 value = E1000_RAR_ENTRIES;
793                 for (i = 0; i < value; i++) {
794                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
795                                          0x8003FFFF, 0xFFFFFFFF);
796                 }
797         } else {
798                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
799                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
800                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
801                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
802         }
803
804         value = E1000_MC_TBL_SIZE;
805         for (i = 0; i < value; i++)
806                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
807
808         *data = 0;
809         return 0;
810 }
811
812 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
813 {
814         struct e1000_hw *hw = &adapter->hw;
815         u16 temp;
816         u16 checksum = 0;
817         u16 i;
818
819         *data = 0;
820         /* Read and add up the contents of the EEPROM */
821         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
822                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
823                         *data = 1;
824                         break;
825                 }
826                 checksum += temp;
827         }
828
829         /* If Checksum is not Correct return error else test passed */
830         if ((checksum != (u16)EEPROM_SUM) && !(*data))
831                 *data = 2;
832
833         return *data;
834 }
835
836 static irqreturn_t e1000_test_intr(int irq, void *data)
837 {
838         struct net_device *netdev = (struct net_device *)data;
839         struct e1000_adapter *adapter = netdev_priv(netdev);
840         struct e1000_hw *hw = &adapter->hw;
841
842         adapter->test_icr |= er32(ICR);
843
844         return IRQ_HANDLED;
845 }
846
847 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
848 {
849         struct net_device *netdev = adapter->netdev;
850         u32 mask, i = 0;
851         bool shared_int = true;
852         u32 irq = adapter->pdev->irq;
853         struct e1000_hw *hw = &adapter->hw;
854
855         *data = 0;
856
857         /* NOTE: we don't test MSI interrupts here, yet
858          * Hook up test interrupt handler just for this test
859          */
860         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
861                          netdev))
862                 shared_int = false;
863         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
864                              netdev->name, netdev)) {
865                 *data = 1;
866                 return -1;
867         }
868         e_info(hw, "testing %s interrupt\n", (shared_int ?
869                "shared" : "unshared"));
870
871         /* Disable all the interrupts */
872         ew32(IMC, 0xFFFFFFFF);
873         E1000_WRITE_FLUSH();
874         msleep(10);
875
876         /* Test each interrupt */
877         for (; i < 10; i++) {
878                 /* Interrupt to test */
879                 mask = 1 << i;
880
881                 if (!shared_int) {
882                         /* Disable the interrupt to be reported in
883                          * the cause register and then force the same
884                          * interrupt and see if one gets posted.  If
885                          * an interrupt was posted to the bus, the
886                          * test failed.
887                          */
888                         adapter->test_icr = 0;
889                         ew32(IMC, mask);
890                         ew32(ICS, mask);
891                         E1000_WRITE_FLUSH();
892                         msleep(10);
893
894                         if (adapter->test_icr & mask) {
895                                 *data = 3;
896                                 break;
897                         }
898                 }
899
900                 /* Enable the interrupt to be reported in
901                  * the cause register and then force the same
902                  * interrupt and see if one gets posted.  If
903                  * an interrupt was not posted to the bus, the
904                  * test failed.
905                  */
906                 adapter->test_icr = 0;
907                 ew32(IMS, mask);
908                 ew32(ICS, mask);
909                 E1000_WRITE_FLUSH();
910                 msleep(10);
911
912                 if (!(adapter->test_icr & mask)) {
913                         *data = 4;
914                         break;
915                 }
916
917                 if (!shared_int) {
918                         /* Disable the other interrupts to be reported in
919                          * the cause register and then force the other
920                          * interrupts and see if any get posted.  If
921                          * an interrupt was posted to the bus, the
922                          * test failed.
923                          */
924                         adapter->test_icr = 0;
925                         ew32(IMC, ~mask & 0x00007FFF);
926                         ew32(ICS, ~mask & 0x00007FFF);
927                         E1000_WRITE_FLUSH();
928                         msleep(10);
929
930                         if (adapter->test_icr) {
931                                 *data = 5;
932                                 break;
933                         }
934                 }
935         }
936
937         /* Disable all the interrupts */
938         ew32(IMC, 0xFFFFFFFF);
939         E1000_WRITE_FLUSH();
940         msleep(10);
941
942         /* Unhook test interrupt handler */
943         free_irq(irq, netdev);
944
945         return *data;
946 }
947
948 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
949 {
950         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
951         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
952         struct pci_dev *pdev = adapter->pdev;
953         int i;
954
955         if (txdr->desc && txdr->buffer_info) {
956                 for (i = 0; i < txdr->count; i++) {
957                         if (txdr->buffer_info[i].dma)
958                                 dma_unmap_single(&pdev->dev,
959                                                  txdr->buffer_info[i].dma,
960                                                  txdr->buffer_info[i].length,
961                                                  DMA_TO_DEVICE);
962                         if (txdr->buffer_info[i].skb)
963                                 dev_kfree_skb(txdr->buffer_info[i].skb);
964                 }
965         }
966
967         if (rxdr->desc && rxdr->buffer_info) {
968                 for (i = 0; i < rxdr->count; i++) {
969                         if (rxdr->buffer_info[i].dma)
970                                 dma_unmap_single(&pdev->dev,
971                                                  rxdr->buffer_info[i].dma,
972                                                  E1000_RXBUFFER_2048,
973                                                  DMA_FROM_DEVICE);
974                         kfree(rxdr->buffer_info[i].rxbuf.data);
975                 }
976         }
977
978         if (txdr->desc) {
979                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
980                                   txdr->dma);
981                 txdr->desc = NULL;
982         }
983         if (rxdr->desc) {
984                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
985                                   rxdr->dma);
986                 rxdr->desc = NULL;
987         }
988
989         kfree(txdr->buffer_info);
990         txdr->buffer_info = NULL;
991         kfree(rxdr->buffer_info);
992         rxdr->buffer_info = NULL;
993 }
994
995 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
996 {
997         struct e1000_hw *hw = &adapter->hw;
998         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
999         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1000         struct pci_dev *pdev = adapter->pdev;
1001         u32 rctl;
1002         int i, ret_val;
1003
1004         /* Setup Tx descriptor ring and Tx buffers */
1005
1006         if (!txdr->count)
1007                 txdr->count = E1000_DEFAULT_TXD;
1008
1009         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
1010                                     GFP_KERNEL);
1011         if (!txdr->buffer_info) {
1012                 ret_val = 1;
1013                 goto err_nomem;
1014         }
1015
1016         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1017         txdr->size = ALIGN(txdr->size, 4096);
1018         txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1019                                          GFP_KERNEL);
1020         if (!txdr->desc) {
1021                 ret_val = 2;
1022                 goto err_nomem;
1023         }
1024         txdr->next_to_use = txdr->next_to_clean = 0;
1025
1026         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1027         ew32(TDBAH, ((u64)txdr->dma >> 32));
1028         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1029         ew32(TDH, 0);
1030         ew32(TDT, 0);
1031         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1032              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1033              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1034
1035         for (i = 0; i < txdr->count; i++) {
1036                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1037                 struct sk_buff *skb;
1038                 unsigned int size = 1024;
1039
1040                 skb = alloc_skb(size, GFP_KERNEL);
1041                 if (!skb) {
1042                         ret_val = 3;
1043                         goto err_nomem;
1044                 }
1045                 skb_put(skb, size);
1046                 txdr->buffer_info[i].skb = skb;
1047                 txdr->buffer_info[i].length = skb->len;
1048                 txdr->buffer_info[i].dma =
1049                         dma_map_single(&pdev->dev, skb->data, skb->len,
1050                                        DMA_TO_DEVICE);
1051                 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1052                         ret_val = 4;
1053                         goto err_nomem;
1054                 }
1055                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1056                 tx_desc->lower.data = cpu_to_le32(skb->len);
1057                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1058                                                    E1000_TXD_CMD_IFCS |
1059                                                    E1000_TXD_CMD_RPS);
1060                 tx_desc->upper.data = 0;
1061         }
1062
1063         /* Setup Rx descriptor ring and Rx buffers */
1064
1065         if (!rxdr->count)
1066                 rxdr->count = E1000_DEFAULT_RXD;
1067
1068         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1069                                     GFP_KERNEL);
1070         if (!rxdr->buffer_info) {
1071                 ret_val = 5;
1072                 goto err_nomem;
1073         }
1074
1075         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1076         rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1077                                          GFP_KERNEL);
1078         if (!rxdr->desc) {
1079                 ret_val = 6;
1080                 goto err_nomem;
1081         }
1082         rxdr->next_to_use = rxdr->next_to_clean = 0;
1083
1084         rctl = er32(RCTL);
1085         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1086         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1087         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1088         ew32(RDLEN, rxdr->size);
1089         ew32(RDH, 0);
1090         ew32(RDT, 0);
1091         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1092                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1093                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1094         ew32(RCTL, rctl);
1095
1096         for (i = 0; i < rxdr->count; i++) {
1097                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1098                 u8 *buf;
1099
1100                 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1101                               GFP_KERNEL);
1102                 if (!buf) {
1103                         ret_val = 7;
1104                         goto err_nomem;
1105                 }
1106                 rxdr->buffer_info[i].rxbuf.data = buf;
1107
1108                 rxdr->buffer_info[i].dma =
1109                         dma_map_single(&pdev->dev,
1110                                        buf + NET_SKB_PAD + NET_IP_ALIGN,
1111                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1112                 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1113                         ret_val = 8;
1114                         goto err_nomem;
1115                 }
1116                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1117         }
1118
1119         return 0;
1120
1121 err_nomem:
1122         e1000_free_desc_rings(adapter);
1123         return ret_val;
1124 }
1125
1126 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1127 {
1128         struct e1000_hw *hw = &adapter->hw;
1129
1130         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1131         e1000_write_phy_reg(hw, 29, 0x001F);
1132         e1000_write_phy_reg(hw, 30, 0x8FFC);
1133         e1000_write_phy_reg(hw, 29, 0x001A);
1134         e1000_write_phy_reg(hw, 30, 0x8FF0);
1135 }
1136
1137 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1138 {
1139         struct e1000_hw *hw = &adapter->hw;
1140         u16 phy_reg;
1141
1142         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1143          * Extended PHY Specific Control Register to 25MHz clock.  This
1144          * value defaults back to a 2.5MHz clock when the PHY is reset.
1145          */
1146         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1147         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1148         e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1149
1150         /* In addition, because of the s/w reset above, we need to enable
1151          * CRS on TX.  This must be set for both full and half duplex
1152          * operation.
1153          */
1154         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1155         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1156         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1157 }
1158
1159 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1160 {
1161         struct e1000_hw *hw = &adapter->hw;
1162         u32 ctrl_reg;
1163         u16 phy_reg;
1164
1165         /* Setup the Device Control Register for PHY loopback test. */
1166
1167         ctrl_reg = er32(CTRL);
1168         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1169                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1170                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1171                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1172                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1173
1174         ew32(CTRL, ctrl_reg);
1175
1176         /* Read the PHY Specific Control Register (0x10) */
1177         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1178
1179         /* Clear Auto-Crossover bits in PHY Specific Control Register
1180          * (bits 6:5).
1181          */
1182         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1183         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1184
1185         /* Perform software reset on the PHY */
1186         e1000_phy_reset(hw);
1187
1188         /* Have to setup TX_CLK and TX_CRS after software reset */
1189         e1000_phy_reset_clk_and_crs(adapter);
1190
1191         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1192
1193         /* Wait for reset to complete. */
1194         udelay(500);
1195
1196         /* Have to setup TX_CLK and TX_CRS after software reset */
1197         e1000_phy_reset_clk_and_crs(adapter);
1198
1199         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1200         e1000_phy_disable_receiver(adapter);
1201
1202         /* Set the loopback bit in the PHY control register. */
1203         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1204         phy_reg |= MII_CR_LOOPBACK;
1205         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1206
1207         /* Setup TX_CLK and TX_CRS one more time. */
1208         e1000_phy_reset_clk_and_crs(adapter);
1209
1210         /* Check Phy Configuration */
1211         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1212         if (phy_reg != 0x4100)
1213                 return 9;
1214
1215         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1216         if (phy_reg != 0x0070)
1217                 return 10;
1218
1219         e1000_read_phy_reg(hw, 29, &phy_reg);
1220         if (phy_reg != 0x001A)
1221                 return 11;
1222
1223         return 0;
1224 }
1225
1226 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1227 {
1228         struct e1000_hw *hw = &adapter->hw;
1229         u32 ctrl_reg = 0;
1230         u32 stat_reg = 0;
1231
1232         hw->autoneg = false;
1233
1234         if (hw->phy_type == e1000_phy_m88) {
1235                 /* Auto-MDI/MDIX Off */
1236                 e1000_write_phy_reg(hw,
1237                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1238                 /* reset to update Auto-MDI/MDIX */
1239                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1240                 /* autoneg off */
1241                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1242         }
1243
1244         ctrl_reg = er32(CTRL);
1245
1246         /* force 1000, set loopback */
1247         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1248
1249         /* Now set up the MAC to the same speed/duplex as the PHY. */
1250         ctrl_reg = er32(CTRL);
1251         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1252         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1253                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1254                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1255                         E1000_CTRL_FD); /* Force Duplex to FULL */
1256
1257         if (hw->media_type == e1000_media_type_copper &&
1258             hw->phy_type == e1000_phy_m88)
1259                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1260         else {
1261                 /* Set the ILOS bit on the fiber Nic is half
1262                  * duplex link is detected.
1263                  */
1264                 stat_reg = er32(STATUS);
1265                 if ((stat_reg & E1000_STATUS_FD) == 0)
1266                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1267         }
1268
1269         ew32(CTRL, ctrl_reg);
1270
1271         /* Disable the receiver on the PHY so when a cable is plugged in, the
1272          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1273          */
1274         if (hw->phy_type == e1000_phy_m88)
1275                 e1000_phy_disable_receiver(adapter);
1276
1277         udelay(500);
1278
1279         return 0;
1280 }
1281
1282 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1283 {
1284         struct e1000_hw *hw = &adapter->hw;
1285         u16 phy_reg = 0;
1286         u16 count = 0;
1287
1288         switch (hw->mac_type) {
1289         case e1000_82543:
1290                 if (hw->media_type == e1000_media_type_copper) {
1291                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1292                          * Some PHY registers get corrupted at random, so
1293                          * attempt this 10 times.
1294                          */
1295                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1296                                count++ < 10);
1297                         if (count < 11)
1298                                 return 0;
1299                 }
1300                 break;
1301
1302         case e1000_82544:
1303         case e1000_82540:
1304         case e1000_82545:
1305         case e1000_82545_rev_3:
1306         case e1000_82546:
1307         case e1000_82546_rev_3:
1308         case e1000_82541:
1309         case e1000_82541_rev_2:
1310         case e1000_82547:
1311         case e1000_82547_rev_2:
1312                 return e1000_integrated_phy_loopback(adapter);
1313         default:
1314                 /* Default PHY loopback work is to read the MII
1315                  * control register and assert bit 14 (loopback mode).
1316                  */
1317                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1318                 phy_reg |= MII_CR_LOOPBACK;
1319                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1320                 return 0;
1321         }
1322
1323         return 8;
1324 }
1325
1326 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1327 {
1328         struct e1000_hw *hw = &adapter->hw;
1329         u32 rctl;
1330
1331         if (hw->media_type == e1000_media_type_fiber ||
1332             hw->media_type == e1000_media_type_internal_serdes) {
1333                 switch (hw->mac_type) {
1334                 case e1000_82545:
1335                 case e1000_82546:
1336                 case e1000_82545_rev_3:
1337                 case e1000_82546_rev_3:
1338                         return e1000_set_phy_loopback(adapter);
1339                 default:
1340                         rctl = er32(RCTL);
1341                         rctl |= E1000_RCTL_LBM_TCVR;
1342                         ew32(RCTL, rctl);
1343                         return 0;
1344                 }
1345         } else if (hw->media_type == e1000_media_type_copper) {
1346                 return e1000_set_phy_loopback(adapter);
1347         }
1348
1349         return 7;
1350 }
1351
1352 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1353 {
1354         struct e1000_hw *hw = &adapter->hw;
1355         u32 rctl;
1356         u16 phy_reg;
1357
1358         rctl = er32(RCTL);
1359         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1360         ew32(RCTL, rctl);
1361
1362         switch (hw->mac_type) {
1363         case e1000_82545:
1364         case e1000_82546:
1365         case e1000_82545_rev_3:
1366         case e1000_82546_rev_3:
1367         default:
1368                 hw->autoneg = true;
1369                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1370                 if (phy_reg & MII_CR_LOOPBACK) {
1371                         phy_reg &= ~MII_CR_LOOPBACK;
1372                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1373                         e1000_phy_reset(hw);
1374                 }
1375                 break;
1376         }
1377 }
1378
1379 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1380                                       unsigned int frame_size)
1381 {
1382         memset(skb->data, 0xFF, frame_size);
1383         frame_size &= ~1;
1384         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1385         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1386         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1387 }
1388
1389 static int e1000_check_lbtest_frame(const unsigned char *data,
1390                                     unsigned int frame_size)
1391 {
1392         frame_size &= ~1;
1393         if (*(data + 3) == 0xFF) {
1394                 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1395                     (*(data + frame_size / 2 + 12) == 0xAF)) {
1396                         return 0;
1397                 }
1398         }
1399         return 13;
1400 }
1401
1402 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1403 {
1404         struct e1000_hw *hw = &adapter->hw;
1405         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1406         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1407         struct pci_dev *pdev = adapter->pdev;
1408         int i, j, k, l, lc, good_cnt, ret_val = 0;
1409         unsigned long time;
1410
1411         ew32(RDT, rxdr->count - 1);
1412
1413         /* Calculate the loop count based on the largest descriptor ring
1414          * The idea is to wrap the largest ring a number of times using 64
1415          * send/receive pairs during each loop
1416          */
1417
1418         if (rxdr->count <= txdr->count)
1419                 lc = ((txdr->count / 64) * 2) + 1;
1420         else
1421                 lc = ((rxdr->count / 64) * 2) + 1;
1422
1423         k = l = 0;
1424         for (j = 0; j <= lc; j++) { /* loop count loop */
1425                 for (i = 0; i < 64; i++) { /* send the packets */
1426                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1427                                                   1024);
1428                         dma_sync_single_for_device(&pdev->dev,
1429                                                    txdr->buffer_info[k].dma,
1430                                                    txdr->buffer_info[k].length,
1431                                                    DMA_TO_DEVICE);
1432                         if (unlikely(++k == txdr->count))
1433                                 k = 0;
1434                 }
1435                 ew32(TDT, k);
1436                 E1000_WRITE_FLUSH();
1437                 msleep(200);
1438                 time = jiffies; /* set the start time for the receive */
1439                 good_cnt = 0;
1440                 do { /* receive the sent packets */
1441                         dma_sync_single_for_cpu(&pdev->dev,
1442                                                 rxdr->buffer_info[l].dma,
1443                                                 E1000_RXBUFFER_2048,
1444                                                 DMA_FROM_DEVICE);
1445
1446                         ret_val = e1000_check_lbtest_frame(
1447                                         rxdr->buffer_info[l].rxbuf.data +
1448                                         NET_SKB_PAD + NET_IP_ALIGN,
1449                                         1024);
1450                         if (!ret_val)
1451                                 good_cnt++;
1452                         if (unlikely(++l == rxdr->count))
1453                                 l = 0;
1454                         /* time + 20 msecs (200 msecs on 2.4) is more than
1455                          * enough time to complete the receives, if it's
1456                          * exceeded, break and error off
1457                          */
1458                 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1459
1460                 if (good_cnt != 64) {
1461                         ret_val = 13; /* ret_val is the same as mis-compare */
1462                         break;
1463                 }
1464                 if (time_after_eq(jiffies, time + 2)) {
1465                         ret_val = 14; /* error code for time out error */
1466                         break;
1467                 }
1468         } /* end loop count loop */
1469         return ret_val;
1470 }
1471
1472 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1473 {
1474         *data = e1000_setup_desc_rings(adapter);
1475         if (*data)
1476                 goto out;
1477         *data = e1000_setup_loopback_test(adapter);
1478         if (*data)
1479                 goto err_loopback;
1480         *data = e1000_run_loopback_test(adapter);
1481         e1000_loopback_cleanup(adapter);
1482
1483 err_loopback:
1484         e1000_free_desc_rings(adapter);
1485 out:
1486         return *data;
1487 }
1488
1489 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1490 {
1491         struct e1000_hw *hw = &adapter->hw;
1492         *data = 0;
1493         if (hw->media_type == e1000_media_type_internal_serdes) {
1494                 int i = 0;
1495
1496                 hw->serdes_has_link = false;
1497
1498                 /* On some blade server designs, link establishment
1499                  * could take as long as 2-3 minutes
1500                  */
1501                 do {
1502                         e1000_check_for_link(hw);
1503                         if (hw->serdes_has_link)
1504                                 return *data;
1505                         msleep(20);
1506                 } while (i++ < 3750);
1507
1508                 *data = 1;
1509         } else {
1510                 e1000_check_for_link(hw);
1511                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1512                         msleep(4000);
1513
1514                 if (!(er32(STATUS) & E1000_STATUS_LU))
1515                         *data = 1;
1516         }
1517         return *data;
1518 }
1519
1520 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1521 {
1522         switch (sset) {
1523         case ETH_SS_TEST:
1524                 return E1000_TEST_LEN;
1525         case ETH_SS_STATS:
1526                 return E1000_STATS_LEN;
1527         default:
1528                 return -EOPNOTSUPP;
1529         }
1530 }
1531
1532 static void e1000_diag_test(struct net_device *netdev,
1533                             struct ethtool_test *eth_test, u64 *data)
1534 {
1535         struct e1000_adapter *adapter = netdev_priv(netdev);
1536         struct e1000_hw *hw = &adapter->hw;
1537         bool if_running = netif_running(netdev);
1538
1539         set_bit(__E1000_TESTING, &adapter->flags);
1540         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1541                 /* Offline tests */
1542
1543                 /* save speed, duplex, autoneg settings */
1544                 u16 autoneg_advertised = hw->autoneg_advertised;
1545                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1546                 u8 autoneg = hw->autoneg;
1547
1548                 e_info(hw, "offline testing starting\n");
1549
1550                 /* Link test performed before hardware reset so autoneg doesn't
1551                  * interfere with test result
1552                  */
1553                 if (e1000_link_test(adapter, &data[4]))
1554                         eth_test->flags |= ETH_TEST_FL_FAILED;
1555
1556                 if (if_running)
1557                         /* indicate we're in test mode */
1558                         dev_close(netdev);
1559                 else
1560                         e1000_reset(adapter);
1561
1562                 if (e1000_reg_test(adapter, &data[0]))
1563                         eth_test->flags |= ETH_TEST_FL_FAILED;
1564
1565                 e1000_reset(adapter);
1566                 if (e1000_eeprom_test(adapter, &data[1]))
1567                         eth_test->flags |= ETH_TEST_FL_FAILED;
1568
1569                 e1000_reset(adapter);
1570                 if (e1000_intr_test(adapter, &data[2]))
1571                         eth_test->flags |= ETH_TEST_FL_FAILED;
1572
1573                 e1000_reset(adapter);
1574                 /* make sure the phy is powered up */
1575                 e1000_power_up_phy(adapter);
1576                 if (e1000_loopback_test(adapter, &data[3]))
1577                         eth_test->flags |= ETH_TEST_FL_FAILED;
1578
1579                 /* restore speed, duplex, autoneg settings */
1580                 hw->autoneg_advertised = autoneg_advertised;
1581                 hw->forced_speed_duplex = forced_speed_duplex;
1582                 hw->autoneg = autoneg;
1583
1584                 e1000_reset(adapter);
1585                 clear_bit(__E1000_TESTING, &adapter->flags);
1586                 if (if_running)
1587                         dev_open(netdev);
1588         } else {
1589                 e_info(hw, "online testing starting\n");
1590                 /* Online tests */
1591                 if (e1000_link_test(adapter, &data[4]))
1592                         eth_test->flags |= ETH_TEST_FL_FAILED;
1593
1594                 /* Online tests aren't run; pass by default */
1595                 data[0] = 0;
1596                 data[1] = 0;
1597                 data[2] = 0;
1598                 data[3] = 0;
1599
1600                 clear_bit(__E1000_TESTING, &adapter->flags);
1601         }
1602         msleep_interruptible(4 * 1000);
1603 }
1604
1605 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1606                                struct ethtool_wolinfo *wol)
1607 {
1608         struct e1000_hw *hw = &adapter->hw;
1609         int retval = 1; /* fail by default */
1610
1611         switch (hw->device_id) {
1612         case E1000_DEV_ID_82542:
1613         case E1000_DEV_ID_82543GC_FIBER:
1614         case E1000_DEV_ID_82543GC_COPPER:
1615         case E1000_DEV_ID_82544EI_FIBER:
1616         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1617         case E1000_DEV_ID_82545EM_FIBER:
1618         case E1000_DEV_ID_82545EM_COPPER:
1619         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1620         case E1000_DEV_ID_82546GB_PCIE:
1621                 /* these don't support WoL at all */
1622                 wol->supported = 0;
1623                 break;
1624         case E1000_DEV_ID_82546EB_FIBER:
1625         case E1000_DEV_ID_82546GB_FIBER:
1626                 /* Wake events not supported on port B */
1627                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1628                         wol->supported = 0;
1629                         break;
1630                 }
1631                 /* return success for non excluded adapter ports */
1632                 retval = 0;
1633                 break;
1634         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1635                 /* quad port adapters only support WoL on port A */
1636                 if (!adapter->quad_port_a) {
1637                         wol->supported = 0;
1638                         break;
1639                 }
1640                 /* return success for non excluded adapter ports */
1641                 retval = 0;
1642                 break;
1643         default:
1644                 /* dual port cards only support WoL on port A from now on
1645                  * unless it was enabled in the eeprom for port B
1646                  * so exclude FUNC_1 ports from having WoL enabled
1647                  */
1648                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1649                     !adapter->eeprom_wol) {
1650                         wol->supported = 0;
1651                         break;
1652                 }
1653
1654                 retval = 0;
1655         }
1656
1657         return retval;
1658 }
1659
1660 static void e1000_get_wol(struct net_device *netdev,
1661                           struct ethtool_wolinfo *wol)
1662 {
1663         struct e1000_adapter *adapter = netdev_priv(netdev);
1664         struct e1000_hw *hw = &adapter->hw;
1665
1666         wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1667         wol->wolopts = 0;
1668
1669         /* this function will set ->supported = 0 and return 1 if wol is not
1670          * supported by this hardware
1671          */
1672         if (e1000_wol_exclusion(adapter, wol) ||
1673             !device_can_wakeup(&adapter->pdev->dev))
1674                 return;
1675
1676         /* apply any specific unsupported masks here */
1677         switch (hw->device_id) {
1678         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1679                 /* KSP3 does not support UCAST wake-ups */
1680                 wol->supported &= ~WAKE_UCAST;
1681
1682                 if (adapter->wol & E1000_WUFC_EX)
1683                         e_err(drv, "Interface does not support directed "
1684                               "(unicast) frame wake-up packets\n");
1685                 break;
1686         default:
1687                 break;
1688         }
1689
1690         if (adapter->wol & E1000_WUFC_EX)
1691                 wol->wolopts |= WAKE_UCAST;
1692         if (adapter->wol & E1000_WUFC_MC)
1693                 wol->wolopts |= WAKE_MCAST;
1694         if (adapter->wol & E1000_WUFC_BC)
1695                 wol->wolopts |= WAKE_BCAST;
1696         if (adapter->wol & E1000_WUFC_MAG)
1697                 wol->wolopts |= WAKE_MAGIC;
1698 }
1699
1700 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1701 {
1702         struct e1000_adapter *adapter = netdev_priv(netdev);
1703         struct e1000_hw *hw = &adapter->hw;
1704
1705         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1706                 return -EOPNOTSUPP;
1707
1708         if (e1000_wol_exclusion(adapter, wol) ||
1709             !device_can_wakeup(&adapter->pdev->dev))
1710                 return wol->wolopts ? -EOPNOTSUPP : 0;
1711
1712         switch (hw->device_id) {
1713         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1714                 if (wol->wolopts & WAKE_UCAST) {
1715                         e_err(drv, "Interface does not support directed "
1716                               "(unicast) frame wake-up packets\n");
1717                         return -EOPNOTSUPP;
1718                 }
1719                 break;
1720         default:
1721                 break;
1722         }
1723
1724         /* these settings will always override what we currently have */
1725         adapter->wol = 0;
1726
1727         if (wol->wolopts & WAKE_UCAST)
1728                 adapter->wol |= E1000_WUFC_EX;
1729         if (wol->wolopts & WAKE_MCAST)
1730                 adapter->wol |= E1000_WUFC_MC;
1731         if (wol->wolopts & WAKE_BCAST)
1732                 adapter->wol |= E1000_WUFC_BC;
1733         if (wol->wolopts & WAKE_MAGIC)
1734                 adapter->wol |= E1000_WUFC_MAG;
1735
1736         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1737
1738         return 0;
1739 }
1740
1741 static int e1000_set_phys_id(struct net_device *netdev,
1742                              enum ethtool_phys_id_state state)
1743 {
1744         struct e1000_adapter *adapter = netdev_priv(netdev);
1745         struct e1000_hw *hw = &adapter->hw;
1746
1747         switch (state) {
1748         case ETHTOOL_ID_ACTIVE:
1749                 e1000_setup_led(hw);
1750                 return 2;
1751
1752         case ETHTOOL_ID_ON:
1753                 e1000_led_on(hw);
1754                 break;
1755
1756         case ETHTOOL_ID_OFF:
1757                 e1000_led_off(hw);
1758                 break;
1759
1760         case ETHTOOL_ID_INACTIVE:
1761                 e1000_cleanup_led(hw);
1762         }
1763
1764         return 0;
1765 }
1766
1767 static int e1000_get_coalesce(struct net_device *netdev,
1768                               struct ethtool_coalesce *ec)
1769 {
1770         struct e1000_adapter *adapter = netdev_priv(netdev);
1771
1772         if (adapter->hw.mac_type < e1000_82545)
1773                 return -EOPNOTSUPP;
1774
1775         if (adapter->itr_setting <= 4)
1776                 ec->rx_coalesce_usecs = adapter->itr_setting;
1777         else
1778                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1779
1780         return 0;
1781 }
1782
1783 static int e1000_set_coalesce(struct net_device *netdev,
1784                               struct ethtool_coalesce *ec)
1785 {
1786         struct e1000_adapter *adapter = netdev_priv(netdev);
1787         struct e1000_hw *hw = &adapter->hw;
1788
1789         if (hw->mac_type < e1000_82545)
1790                 return -EOPNOTSUPP;
1791
1792         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1793             ((ec->rx_coalesce_usecs > 4) &&
1794              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1795             (ec->rx_coalesce_usecs == 2))
1796                 return -EINVAL;
1797
1798         if (ec->rx_coalesce_usecs == 4) {
1799                 adapter->itr = adapter->itr_setting = 4;
1800         } else if (ec->rx_coalesce_usecs <= 3) {
1801                 adapter->itr = 20000;
1802                 adapter->itr_setting = ec->rx_coalesce_usecs;
1803         } else {
1804                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1805                 adapter->itr_setting = adapter->itr & ~3;
1806         }
1807
1808         if (adapter->itr_setting != 0)
1809                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1810         else
1811                 ew32(ITR, 0);
1812
1813         return 0;
1814 }
1815
1816 static int e1000_nway_reset(struct net_device *netdev)
1817 {
1818         struct e1000_adapter *adapter = netdev_priv(netdev);
1819
1820         if (netif_running(netdev))
1821                 e1000_reinit_locked(adapter);
1822         return 0;
1823 }
1824
1825 static void e1000_get_ethtool_stats(struct net_device *netdev,
1826                                     struct ethtool_stats *stats, u64 *data)
1827 {
1828         struct e1000_adapter *adapter = netdev_priv(netdev);
1829         int i;
1830         char *p = NULL;
1831         const struct e1000_stats *stat = e1000_gstrings_stats;
1832
1833         e1000_update_stats(adapter);
1834         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1835                 switch (stat->type) {
1836                 case NETDEV_STATS:
1837                         p = (char *)netdev + stat->stat_offset;
1838                         break;
1839                 case E1000_STATS:
1840                         p = (char *)adapter + stat->stat_offset;
1841                         break;
1842                 default:
1843                         WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n",
1844                                   stat->type, i);
1845                         break;
1846                 }
1847
1848                 if (stat->sizeof_stat == sizeof(u64))
1849                         data[i] = *(u64 *)p;
1850                 else
1851                         data[i] = *(u32 *)p;
1852
1853                 stat++;
1854         }
1855 /* BUG_ON(i != E1000_STATS_LEN); */
1856 }
1857
1858 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1859                               u8 *data)
1860 {
1861         u8 *p = data;
1862         int i;
1863
1864         switch (stringset) {
1865         case ETH_SS_TEST:
1866                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1867                 break;
1868         case ETH_SS_STATS:
1869                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1870                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1871                                ETH_GSTRING_LEN);
1872                         p += ETH_GSTRING_LEN;
1873                 }
1874                 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1875                 break;
1876         }
1877 }
1878
1879 static const struct ethtool_ops e1000_ethtool_ops = {
1880         .get_settings           = e1000_get_settings,
1881         .set_settings           = e1000_set_settings,
1882         .get_drvinfo            = e1000_get_drvinfo,
1883         .get_regs_len           = e1000_get_regs_len,
1884         .get_regs               = e1000_get_regs,
1885         .get_wol                = e1000_get_wol,
1886         .set_wol                = e1000_set_wol,
1887         .get_msglevel           = e1000_get_msglevel,
1888         .set_msglevel           = e1000_set_msglevel,
1889         .nway_reset             = e1000_nway_reset,
1890         .get_link               = e1000_get_link,
1891         .get_eeprom_len         = e1000_get_eeprom_len,
1892         .get_eeprom             = e1000_get_eeprom,
1893         .set_eeprom             = e1000_set_eeprom,
1894         .get_ringparam          = e1000_get_ringparam,
1895         .set_ringparam          = e1000_set_ringparam,
1896         .get_pauseparam         = e1000_get_pauseparam,
1897         .set_pauseparam         = e1000_set_pauseparam,
1898         .self_test              = e1000_diag_test,
1899         .get_strings            = e1000_get_strings,
1900         .set_phys_id            = e1000_set_phys_id,
1901         .get_ethtool_stats      = e1000_get_ethtool_stats,
1902         .get_sset_count         = e1000_get_sset_count,
1903         .get_coalesce           = e1000_get_coalesce,
1904         .set_coalesce           = e1000_set_coalesce,
1905         .get_ts_info            = ethtool_op_get_ts_info,
1906 };
1907
1908 void e1000_set_ethtool_ops(struct net_device *netdev)
1909 {
1910         netdev->ethtool_ops = &e1000_ethtool_ops;
1911 }