]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/e1000.h
e1000e: Use marco instead of digit for defining e1000_rx_desc_packet_split
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / e1000.h
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* Linux PRO/1000 Ethernet Driver main header file */
30
31 #ifndef _E1000_H_
32 #define _E1000_H_
33
34 #include <linux/bitops.h>
35 #include <linux/types.h>
36 #include <linux/timer.h>
37 #include <linux/workqueue.h>
38 #include <linux/io.h>
39 #include <linux/netdevice.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/crc32.h>
43 #include <linux/if_vlan.h>
44 #include <linux/clocksource.h>
45 #include <linux/net_tstamp.h>
46 #include <linux/ptp_clock_kernel.h>
47 #include <linux/ptp_classify.h>
48 #include <linux/mii.h>
49 #include <linux/mdio.h>
50 #include "hw.h"
51
52 struct e1000_info;
53
54 #define e_dbg(format, arg...) \
55         netdev_dbg(hw->adapter->netdev, format, ## arg)
56 #define e_err(format, arg...) \
57         netdev_err(adapter->netdev, format, ## arg)
58 #define e_info(format, arg...) \
59         netdev_info(adapter->netdev, format, ## arg)
60 #define e_warn(format, arg...) \
61         netdev_warn(adapter->netdev, format, ## arg)
62 #define e_notice(format, arg...) \
63         netdev_notice(adapter->netdev, format, ## arg)
64
65 /* Interrupt modes, as used by the IntMode parameter */
66 #define E1000E_INT_MODE_LEGACY          0
67 #define E1000E_INT_MODE_MSI             1
68 #define E1000E_INT_MODE_MSIX            2
69
70 /* Tx/Rx descriptor defines */
71 #define E1000_DEFAULT_TXD               256
72 #define E1000_MAX_TXD                   4096
73 #define E1000_MIN_TXD                   64
74
75 #define E1000_DEFAULT_RXD               256
76 #define E1000_MAX_RXD                   4096
77 #define E1000_MIN_RXD                   64
78
79 #define E1000_MIN_ITR_USECS             10 /* 100000 irq/sec */
80 #define E1000_MAX_ITR_USECS             10000 /* 100    irq/sec */
81
82 #define E1000_FC_PAUSE_TIME             0x0680 /* 858 usec */
83
84 /* How many Tx Descriptors do we need to call netif_wake_queue ? */
85 /* How many Rx Buffers do we bundle into one write to the hardware ? */
86 #define E1000_RX_BUFFER_WRITE           16 /* Must be power of 2 */
87
88 #define AUTO_ALL_MODES                  0
89 #define E1000_EEPROM_APME               0x0400
90
91 #define E1000_MNG_VLAN_NONE             (-1)
92
93 #define DEFAULT_JUMBO                   9234
94
95 /* Time to wait before putting the device into D3 if there's no link (in ms). */
96 #define LINK_TIMEOUT            100
97
98 /* Count for polling __E1000_RESET condition every 10-20msec.
99  * Experimentation has shown the reset can take approximately 210msec.
100  */
101 #define E1000_CHECK_RESET_COUNT         25
102
103 #define DEFAULT_RDTR                    0
104 #define DEFAULT_RADV                    8
105 #define BURST_RDTR                      0x20
106 #define BURST_RADV                      0x20
107
108 /* in the case of WTHRESH, it appears at least the 82571/2 hardware
109  * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
110  * WTHRESH=4, so a setting of 5 gives the most efficient bus
111  * utilization but to avoid possible Tx stalls, set it to 1
112  */
113 #define E1000_TXDCTL_DMA_BURST_ENABLE                          \
114         (E1000_TXDCTL_GRAN | /* set descriptor granularity */  \
115          E1000_TXDCTL_COUNT_DESC |                             \
116          (1 << 16) | /* wthresh must be +1 more than desired */\
117          (1 << 8)  | /* hthresh */                             \
118          0x1f)       /* pthresh */
119
120 #define E1000_RXDCTL_DMA_BURST_ENABLE                          \
121         (0x01000000 | /* set descriptor granularity */         \
122          (4 << 16)  | /* set writeback threshold    */         \
123          (4 << 8)   | /* set prefetch threshold     */         \
124          0x20)        /* set hthresh                */
125
126 #define E1000_TIDV_FPD (1 << 31)
127 #define E1000_RDTR_FPD (1 << 31)
128
129 enum e1000_boards {
130         board_82571,
131         board_82572,
132         board_82573,
133         board_82574,
134         board_82583,
135         board_80003es2lan,
136         board_ich8lan,
137         board_ich9lan,
138         board_ich10lan,
139         board_pchlan,
140         board_pch2lan,
141         board_pch_lpt,
142 };
143
144 struct e1000_ps_page {
145         struct page *page;
146         u64 dma; /* must be u64 - written to hw */
147 };
148
149 /* wrappers around a pointer to a socket buffer,
150  * so a DMA handle can be stored along with the buffer
151  */
152 struct e1000_buffer {
153         dma_addr_t dma;
154         struct sk_buff *skb;
155         union {
156                 /* Tx */
157                 struct {
158                         unsigned long time_stamp;
159                         u16 length;
160                         u16 next_to_watch;
161                         unsigned int segs;
162                         unsigned int bytecount;
163                         u16 mapped_as_page;
164                 };
165                 /* Rx */
166                 struct {
167                         /* arrays of page information for packet split */
168                         struct e1000_ps_page *ps_pages;
169                         struct page *page;
170                 };
171         };
172 };
173
174 struct e1000_ring {
175         struct e1000_adapter *adapter;  /* back pointer to adapter */
176         void *desc;                     /* pointer to ring memory  */
177         dma_addr_t dma;                 /* phys address of ring    */
178         unsigned int size;              /* length of ring in bytes */
179         unsigned int count;             /* number of desc. in ring */
180
181         u16 next_to_use;
182         u16 next_to_clean;
183
184         void __iomem *head;
185         void __iomem *tail;
186
187         /* array of buffer information structs */
188         struct e1000_buffer *buffer_info;
189
190         char name[IFNAMSIZ + 5];
191         u32 ims_val;
192         u32 itr_val;
193         void __iomem *itr_register;
194         int set_itr;
195
196         struct sk_buff *rx_skb_top;
197 };
198
199 /* PHY register snapshot values */
200 struct e1000_phy_regs {
201         u16 bmcr;               /* basic mode control register    */
202         u16 bmsr;               /* basic mode status register     */
203         u16 advertise;          /* auto-negotiation advertisement */
204         u16 lpa;                /* link partner ability register  */
205         u16 expansion;          /* auto-negotiation expansion reg */
206         u16 ctrl1000;           /* 1000BASE-T control register    */
207         u16 stat1000;           /* 1000BASE-T status register     */
208         u16 estatus;            /* extended status register       */
209 };
210
211 /* board specific private data structure */
212 struct e1000_adapter {
213         struct timer_list watchdog_timer;
214         struct timer_list phy_info_timer;
215         struct timer_list blink_timer;
216
217         struct work_struct reset_task;
218         struct work_struct watchdog_task;
219
220         const struct e1000_info *ei;
221
222         unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
223         u32 bd_number;
224         u32 rx_buffer_len;
225         u16 mng_vlan_id;
226         u16 link_speed;
227         u16 link_duplex;
228         u16 eeprom_vers;
229
230         /* track device up/down/testing state */
231         unsigned long state;
232
233         /* Interrupt Throttle Rate */
234         u32 itr;
235         u32 itr_setting;
236         u16 tx_itr;
237         u16 rx_itr;
238
239         /* Tx - one ring per active queue */
240         struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
241         u32 tx_fifo_limit;
242
243         struct napi_struct napi;
244
245         unsigned int uncorr_errors;     /* uncorrectable ECC errors */
246         unsigned int corr_errors;       /* correctable ECC errors */
247         unsigned int restart_queue;
248         u32 txd_cmd;
249
250         bool detect_tx_hung;
251         bool tx_hang_recheck;
252         u8 tx_timeout_factor;
253
254         u32 tx_int_delay;
255         u32 tx_abs_int_delay;
256
257         unsigned int total_tx_bytes;
258         unsigned int total_tx_packets;
259         unsigned int total_rx_bytes;
260         unsigned int total_rx_packets;
261
262         /* Tx stats */
263         u64 tpt_old;
264         u64 colc_old;
265         u32 gotc;
266         u64 gotc_old;
267         u32 tx_timeout_count;
268         u32 tx_fifo_head;
269         u32 tx_head_addr;
270         u32 tx_fifo_size;
271         u32 tx_dma_failed;
272
273         /* Rx */
274         bool (*clean_rx) (struct e1000_ring *ring, int *work_done,
275                           int work_to_do) ____cacheline_aligned_in_smp;
276         void (*alloc_rx_buf) (struct e1000_ring *ring, int cleaned_count,
277                               gfp_t gfp);
278         struct e1000_ring *rx_ring;
279
280         u32 rx_int_delay;
281         u32 rx_abs_int_delay;
282
283         /* Rx stats */
284         u64 hw_csum_err;
285         u64 hw_csum_good;
286         u64 rx_hdr_split;
287         u32 gorc;
288         u64 gorc_old;
289         u32 alloc_rx_buff_failed;
290         u32 rx_dma_failed;
291         u32 rx_hwtstamp_cleared;
292
293         unsigned int rx_ps_pages;
294         u16 rx_ps_bsize0;
295         u32 max_frame_size;
296         u32 min_frame_size;
297
298         /* OS defined structs */
299         struct net_device *netdev;
300         struct pci_dev *pdev;
301
302         /* structs defined in e1000_hw.h */
303         struct e1000_hw hw;
304
305         spinlock_t stats64_lock;        /* protects statistics counters */
306         struct e1000_hw_stats stats;
307         struct e1000_phy_info phy_info;
308         struct e1000_phy_stats phy_stats;
309
310         /* Snapshot of PHY registers */
311         struct e1000_phy_regs phy_regs;
312
313         struct e1000_ring test_tx_ring;
314         struct e1000_ring test_rx_ring;
315         u32 test_icr;
316
317         u32 msg_enable;
318         unsigned int num_vectors;
319         struct msix_entry *msix_entries;
320         int int_mode;
321         u32 eiac_mask;
322
323         u32 eeprom_wol;
324         u32 wol;
325         u32 pba;
326         u32 max_hw_frame_size;
327
328         bool fc_autoneg;
329
330         unsigned int flags;
331         unsigned int flags2;
332         struct work_struct downshift_task;
333         struct work_struct update_phy_task;
334         struct work_struct print_hang_task;
335
336         bool idle_check;
337         int phy_hang_count;
338
339         u16 tx_ring_count;
340         u16 rx_ring_count;
341
342         struct hwtstamp_config hwtstamp_config;
343         struct delayed_work systim_overflow_work;
344         struct sk_buff *tx_hwtstamp_skb;
345         struct work_struct tx_hwtstamp_work;
346         spinlock_t systim_lock; /* protects SYSTIML/H regsters */
347         struct cyclecounter cc;
348         struct timecounter tc;
349         struct ptp_clock *ptp_clock;
350         struct ptp_clock_info ptp_clock_info;
351
352         u16 eee_advert;
353 };
354
355 struct e1000_info {
356         enum e1000_mac_type     mac;
357         unsigned int            flags;
358         unsigned int            flags2;
359         u32                     pba;
360         u32                     max_hw_frame_size;
361         s32                     (*get_variants)(struct e1000_adapter *);
362         const struct e1000_mac_operations *mac_ops;
363         const struct e1000_phy_operations *phy_ops;
364         const struct e1000_nvm_operations *nvm_ops;
365 };
366
367 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
368
369 /* The system time is maintained by a 64-bit counter comprised of the 32-bit
370  * SYSTIMH and SYSTIML registers.  How the counter increments (and therefore
371  * its resolution) is based on the contents of the TIMINCA register - it
372  * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
373  * For the best accuracy, the incperiod should be as small as possible.  The
374  * incvalue is scaled by a factor as large as possible (while still fitting
375  * in bits 23:0) so that relatively small clock corrections can be made.
376  *
377  * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
378  * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
379  * bits to count nanoseconds leaving the rest for fractional nonseconds.
380  */
381 #define INCVALUE_96MHz          125
382 #define INCVALUE_SHIFT_96MHz    17
383 #define INCPERIOD_SHIFT_96MHz   2
384 #define INCPERIOD_96MHz         (12 >> INCPERIOD_SHIFT_96MHz)
385
386 #define INCVALUE_25MHz          40
387 #define INCVALUE_SHIFT_25MHz    18
388 #define INCPERIOD_25MHz         1
389
390 /* Another drawback of scaling the incvalue by a large factor is the
391  * 64-bit SYSTIM register overflows more quickly.  This is dealt with
392  * by simply reading the clock before it overflows.
393  *
394  * Clock        ns bits Overflows after
395  * ~~~~~~       ~~~~~~~ ~~~~~~~~~~~~~~~
396  * 96MHz        47-bit  2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
397  * 25MHz        46-bit  2^46 / 10^9 / 3600 = 19.55 hours
398  */
399 #define E1000_SYSTIM_OVERFLOW_PERIOD    (HZ * 60 * 60 * 4)
400
401 /* hardware capability, feature, and workaround flags */
402 #define FLAG_HAS_AMT                      (1 << 0)
403 #define FLAG_HAS_FLASH                    (1 << 1)
404 #define FLAG_HAS_HW_VLAN_FILTER           (1 << 2)
405 #define FLAG_HAS_WOL                      (1 << 3)
406 /* reserved bit4 */
407 #define FLAG_HAS_CTRLEXT_ON_LOAD          (1 << 5)
408 #define FLAG_HAS_SWSM_ON_LOAD             (1 << 6)
409 #define FLAG_HAS_JUMBO_FRAMES             (1 << 7)
410 #define FLAG_READ_ONLY_NVM                (1 << 8)
411 #define FLAG_IS_ICH                       (1 << 9)
412 #define FLAG_HAS_MSIX                     (1 << 10)
413 #define FLAG_HAS_SMART_POWER_DOWN         (1 << 11)
414 #define FLAG_IS_QUAD_PORT_A               (1 << 12)
415 #define FLAG_IS_QUAD_PORT                 (1 << 13)
416 #define FLAG_HAS_HW_TIMESTAMP             (1 << 14)
417 #define FLAG_APME_IN_WUC                  (1 << 15)
418 #define FLAG_APME_IN_CTRL3                (1 << 16)
419 #define FLAG_APME_CHECK_PORT_B            (1 << 17)
420 #define FLAG_DISABLE_FC_PAUSE_TIME        (1 << 18)
421 #define FLAG_NO_WAKE_UCAST                (1 << 19)
422 #define FLAG_MNG_PT_ENABLED               (1 << 20)
423 #define FLAG_RESET_OVERWRITES_LAA         (1 << 21)
424 #define FLAG_TARC_SPEED_MODE_BIT          (1 << 22)
425 #define FLAG_TARC_SET_BIT_ZERO            (1 << 23)
426 #define FLAG_RX_NEEDS_RESTART             (1 << 24)
427 #define FLAG_LSC_GIG_SPEED_DROP           (1 << 25)
428 #define FLAG_SMART_POWER_DOWN             (1 << 26)
429 #define FLAG_MSI_ENABLED                  (1 << 27)
430 /* reserved (1 << 28) */
431 #define FLAG_TSO_FORCE                    (1 << 29)
432 #define FLAG_RESTART_NOW                  (1 << 30)
433 #define FLAG_MSI_TEST_FAILED              (1 << 31)
434
435 #define FLAG2_CRC_STRIPPING               (1 << 0)
436 #define FLAG2_HAS_PHY_WAKEUP              (1 << 1)
437 #define FLAG2_IS_DISCARDING               (1 << 2)
438 #define FLAG2_DISABLE_ASPM_L1             (1 << 3)
439 #define FLAG2_HAS_PHY_STATS               (1 << 4)
440 #define FLAG2_HAS_EEE                     (1 << 5)
441 #define FLAG2_DMA_BURST                   (1 << 6)
442 #define FLAG2_DISABLE_ASPM_L0S            (1 << 7)
443 #define FLAG2_DISABLE_AIM                 (1 << 8)
444 #define FLAG2_CHECK_PHY_HANG              (1 << 9)
445 #define FLAG2_NO_DISABLE_RX               (1 << 10)
446 #define FLAG2_PCIM2PCI_ARBITER_WA         (1 << 11)
447 #define FLAG2_DFLT_CRC_STRIPPING          (1 << 12)
448 #define FLAG2_CHECK_RX_HWTSTAMP           (1 << 13)
449
450 #define E1000_RX_DESC_PS(R, i)      \
451         (&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
452 #define E1000_RX_DESC_EXT(R, i)     \
453         (&(((union e1000_rx_desc_extended *)((R).desc))[i]))
454 #define E1000_GET_DESC(R, i, type)      (&(((struct type *)((R).desc))[i]))
455 #define E1000_TX_DESC(R, i)             E1000_GET_DESC(R, i, e1000_tx_desc)
456 #define E1000_CONTEXT_DESC(R, i)        E1000_GET_DESC(R, i, e1000_context_desc)
457
458 enum e1000_state_t {
459         __E1000_TESTING,
460         __E1000_RESETTING,
461         __E1000_ACCESS_SHARED_RESOURCE,
462         __E1000_DOWN
463 };
464
465 enum latency_range {
466         lowest_latency = 0,
467         low_latency = 1,
468         bulk_latency = 2,
469         latency_invalid = 255
470 };
471
472 extern char e1000e_driver_name[];
473 extern const char e1000e_driver_version[];
474
475 extern void e1000e_check_options(struct e1000_adapter *adapter);
476 extern void e1000e_set_ethtool_ops(struct net_device *netdev);
477
478 extern int e1000e_up(struct e1000_adapter *adapter);
479 extern void e1000e_down(struct e1000_adapter *adapter);
480 extern void e1000e_reinit_locked(struct e1000_adapter *adapter);
481 extern void e1000e_reset(struct e1000_adapter *adapter);
482 extern void e1000e_power_up_phy(struct e1000_adapter *adapter);
483 extern int e1000e_setup_rx_resources(struct e1000_ring *ring);
484 extern int e1000e_setup_tx_resources(struct e1000_ring *ring);
485 extern void e1000e_free_rx_resources(struct e1000_ring *ring);
486 extern void e1000e_free_tx_resources(struct e1000_ring *ring);
487 extern struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
488                                                     struct rtnl_link_stats64
489                                                     *stats);
490 extern void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
491 extern void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
492 extern void e1000e_get_hw_control(struct e1000_adapter *adapter);
493 extern void e1000e_release_hw_control(struct e1000_adapter *adapter);
494 extern void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
495
496 extern unsigned int copybreak;
497
498 extern const struct e1000_info e1000_82571_info;
499 extern const struct e1000_info e1000_82572_info;
500 extern const struct e1000_info e1000_82573_info;
501 extern const struct e1000_info e1000_82574_info;
502 extern const struct e1000_info e1000_82583_info;
503 extern const struct e1000_info e1000_ich8_info;
504 extern const struct e1000_info e1000_ich9_info;
505 extern const struct e1000_info e1000_ich10_info;
506 extern const struct e1000_info e1000_pch_info;
507 extern const struct e1000_info e1000_pch2_info;
508 extern const struct e1000_info e1000_pch_lpt_info;
509 extern const struct e1000_info e1000_es2_info;
510
511 extern void e1000e_ptp_init(struct e1000_adapter *adapter);
512 extern void e1000e_ptp_remove(struct e1000_adapter *adapter);
513
514 static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
515 {
516         return hw->phy.ops.reset(hw);
517 }
518
519 static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
520 {
521         return hw->phy.ops.read_reg(hw, offset, data);
522 }
523
524 static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
525 {
526         return hw->phy.ops.read_reg_locked(hw, offset, data);
527 }
528
529 static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
530 {
531         return hw->phy.ops.write_reg(hw, offset, data);
532 }
533
534 static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
535 {
536         return hw->phy.ops.write_reg_locked(hw, offset, data);
537 }
538
539 extern void e1000e_reload_nvm_generic(struct e1000_hw *hw);
540
541 static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
542 {
543         if (hw->mac.ops.read_mac_addr)
544                 return hw->mac.ops.read_mac_addr(hw);
545
546         return e1000_read_mac_addr_generic(hw);
547 }
548
549 static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
550 {
551         return hw->nvm.ops.validate(hw);
552 }
553
554 static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
555 {
556         return hw->nvm.ops.update(hw);
557 }
558
559 static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
560                                  u16 *data)
561 {
562         return hw->nvm.ops.read(hw, offset, words, data);
563 }
564
565 static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
566                                   u16 *data)
567 {
568         return hw->nvm.ops.write(hw, offset, words, data);
569 }
570
571 static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
572 {
573         return hw->phy.ops.get_info(hw);
574 }
575
576 static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
577 {
578         return readl(hw->hw_addr + reg);
579 }
580
581 #define er32(reg)       __er32(hw, E1000_##reg)
582
583 /**
584  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
585  * @hw: pointer to the HW structure
586  *
587  * When updating the MAC CSR registers, the Manageability Engine (ME) could
588  * be accessing the registers at the same time.  Normally, this is handled in
589  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
590  * accesses later than it should which could result in the register to have
591  * an incorrect value.  Workaround this by checking the FWSM register which
592  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
593  * and try again a number of times.
594  **/
595 static inline s32 __ew32_prepare(struct e1000_hw *hw)
596 {
597         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
598
599         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
600                 udelay(50);
601
602         return i;
603 }
604
605 static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
606 {
607         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
608                 __ew32_prepare(hw);
609
610         writel(val, hw->hw_addr + reg);
611 }
612
613 #define ew32(reg, val)  __ew32(hw, E1000_##reg, (val))
614
615 #define e1e_flush()     er32(STATUS)
616
617 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
618         (__ew32((a), (reg + ((offset) << 2)), (value)))
619
620 #define E1000_READ_REG_ARRAY(a, reg, offset) \
621         (readl((a)->hw_addr + reg + ((offset) << 2)))
622
623 #endif /* _E1000_H_ */