]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/e1000e/ich8lan.c
14af3e22d8d9aa7be527dea95cd9c871b1251fd5
[karo-tx-linux.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58
59 #include "e1000.h"
60
61 #define ICH_FLASH_GFPREG                0x0000
62 #define ICH_FLASH_HSFSTS                0x0004
63 #define ICH_FLASH_HSFCTL                0x0006
64 #define ICH_FLASH_FADDR                 0x0008
65 #define ICH_FLASH_FDATA0                0x0010
66 #define ICH_FLASH_PR0                   0x0074
67
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
73
74 #define ICH_CYCLE_READ                  0
75 #define ICH_CYCLE_WRITE                 2
76 #define ICH_CYCLE_ERASE                 3
77
78 #define FLASH_GFPREG_BASE_MASK          0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT         12
80
81 #define ICH_FLASH_SEG_SIZE_256          256
82 #define ICH_FLASH_SEG_SIZE_4K           4096
83 #define ICH_FLASH_SEG_SIZE_8K           8192
84 #define ICH_FLASH_SEG_SIZE_64K          65536
85
86
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID         0x00008000
90
91 #define E1000_ICH_MNG_IAMT_MODE         0x2
92
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94                                  (ID_LED_DEF1_OFF2 <<  8) | \
95                                  (ID_LED_DEF1_ON2  <<  4) | \
96                                  (ID_LED_DEF1_DEF2))
97
98 #define E1000_ICH_NVM_SIG_WORD          0x13
99 #define E1000_ICH_NVM_SIG_MASK          0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102
103 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
104
105 #define E1000_FEXTNVM_SW_CONFIG         1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
111
112 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
113
114 #define E1000_ICH_RAR_ENTRIES           7
115
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118                            ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
121
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
125
126 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
127
128 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
129
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR            PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK       0x007F
133 #define HV_SMB_ADDR_PEC_EN     0x0200
134 #define HV_SMB_ADDR_VALID      0x0080
135
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL              PHY_REG(770, 17)
138
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL                         PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK             0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT    0x80
143
144 /* EMI Registers */
145 #define I82579_EMI_ADDR         0x10
146 #define I82579_EMI_DATA         0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805  /* in 40ns units + 40 ns base value */
148 #define I82579_MSE_THRESHOLD    0x084F  /* Mean Square Error Threshold */
149 #define I82579_MSE_LINK_DOWN    0x2411  /* MSE count before dropping link */
150
151 /* Strapping Option Register - RO */
152 #define E1000_STRAP                     0x0000C
153 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
154 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
155
156 /* OEM Bits Phy Register */
157 #define HV_OEM_BITS            PHY_REG(768, 25)
158 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
159 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
160 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
161
162 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
163 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
164
165 /* KMRN Mode Control */
166 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
167 #define HV_KMRN_MDIO_SLOW      0x0400
168
169 /* KMRN FIFO Control and Status */
170 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
171 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
172 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
173
174 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
175 /* Offset 04h HSFSTS */
176 union ich8_hws_flash_status {
177         struct ich8_hsfsts {
178                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
179                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
180                 u16 dael       :1; /* bit 2 Direct Access error Log */
181                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
182                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
183                 u16 reserved1  :2; /* bit 13:6 Reserved */
184                 u16 reserved2  :6; /* bit 13:6 Reserved */
185                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
186                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
187         } hsf_status;
188         u16 regval;
189 };
190
191 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
192 /* Offset 06h FLCTL */
193 union ich8_hws_flash_ctrl {
194         struct ich8_hsflctl {
195                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
196                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
197                 u16 reserved   :5;   /* 7:3 Reserved  */
198                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
199                 u16 flockdn    :6;   /* 15:10 Reserved */
200         } hsf_ctrl;
201         u16 regval;
202 };
203
204 /* ICH Flash Region Access Permissions */
205 union ich8_hws_flash_regacc {
206         struct ich8_flracc {
207                 u32 grra      :8; /* 0:7 GbE region Read Access */
208                 u32 grwa      :8; /* 8:15 GbE region Write Access */
209                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
210                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
211         } hsf_flregacc;
212         u16 regval;
213 };
214
215 /* ICH Flash Protected Region */
216 union ich8_flash_protected_range {
217         struct ich8_pr {
218                 u32 base:13;     /* 0:12 Protected Range Base */
219                 u32 reserved1:2; /* 13:14 Reserved */
220                 u32 rpe:1;       /* 15 Read Protection Enable */
221                 u32 limit:13;    /* 16:28 Protected Range Limit */
222                 u32 reserved2:2; /* 29:30 Reserved */
223                 u32 wpe:1;       /* 31 Write Protection Enable */
224         } range;
225         u32 regval;
226 };
227
228 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
229 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
230 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
231 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
232 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
233                                                 u32 offset, u8 byte);
234 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
235                                          u8 *data);
236 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
237                                          u16 *data);
238 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
239                                          u8 size, u16 *data);
240 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
242 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
243 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
244 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
245 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
246 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
247 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
248 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
249 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
250 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
251 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
252 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
253 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
254 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
255 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
256 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
257 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
258 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
259 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
260
261 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
262 {
263         return readw(hw->flash_address + reg);
264 }
265
266 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
267 {
268         return readl(hw->flash_address + reg);
269 }
270
271 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
272 {
273         writew(val, hw->flash_address + reg);
274 }
275
276 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
277 {
278         writel(val, hw->flash_address + reg);
279 }
280
281 #define er16flash(reg)          __er16flash(hw, (reg))
282 #define er32flash(reg)          __er32flash(hw, (reg))
283 #define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
284 #define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
285
286 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
287 {
288         u32 ctrl;
289
290         ctrl = er32(CTRL);
291         ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
292         ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
293         ew32(CTRL, ctrl);
294         e1e_flush();
295         udelay(10);
296         ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
297         ew32(CTRL, ctrl);
298 }
299
300 /**
301  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
302  *  @hw: pointer to the HW structure
303  *
304  *  Initialize family-specific PHY parameters and function pointers.
305  **/
306 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
307 {
308         struct e1000_phy_info *phy = &hw->phy;
309         s32 ret_val = 0;
310
311         phy->addr                     = 1;
312         phy->reset_delay_us           = 100;
313
314         phy->ops.set_page             = e1000_set_page_igp;
315         phy->ops.read_reg             = e1000_read_phy_reg_hv;
316         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
317         phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
318         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
319         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
320         phy->ops.write_reg            = e1000_write_phy_reg_hv;
321         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
322         phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
323         phy->ops.power_up             = e1000_power_up_phy_copper;
324         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
325         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
326
327         if (!hw->phy.ops.check_reset_block(hw)) {
328                 u32 fwsm = er32(FWSM);
329
330                 /*
331                  * The MAC-PHY interconnect may still be in SMBus mode after
332                  * Sx->S0.  If resetting the PHY is not blocked, toggle the
333                  * LANPHYPC Value bit to force the interconnect to PCIe mode.
334                  */
335                 e1000_toggle_lanphypc_value_ich8lan(hw);
336                 msleep(50);
337
338                 /*
339                  * Gate automatic PHY configuration by hardware on
340                  * non-managed 82579
341                  */
342                 if ((hw->mac.type == e1000_pch2lan) &&
343                     !(fwsm & E1000_ICH_FWSM_FW_VALID))
344                         e1000_gate_hw_phy_config_ich8lan(hw, true);
345
346                 /*
347                  * Reset the PHY before any access to it.  Doing so, ensures
348                  * that the PHY is in a known good state before we read/write
349                  * PHY registers.  The generic reset is sufficient here,
350                  * because we haven't determined the PHY type yet.
351                  */
352                 ret_val = e1000e_phy_hw_reset_generic(hw);
353                 if (ret_val)
354                         return ret_val;
355
356                 /* Ungate automatic PHY configuration on non-managed 82579 */
357                 if ((hw->mac.type == e1000_pch2lan) &&
358                     !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
359                         usleep_range(10000, 20000);
360                         e1000_gate_hw_phy_config_ich8lan(hw, false);
361                 }
362         }
363
364         phy->id = e1000_phy_unknown;
365         switch (hw->mac.type) {
366         default:
367                 ret_val = e1000e_get_phy_id(hw);
368                 if (ret_val)
369                         return ret_val;
370                 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
371                         break;
372                 /* fall-through */
373         case e1000_pch2lan:
374                 /*
375                  * In case the PHY needs to be in mdio slow mode,
376                  * set slow mode and try to get the PHY id again.
377                  */
378                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
379                 if (ret_val)
380                         return ret_val;
381                 ret_val = e1000e_get_phy_id(hw);
382                 if (ret_val)
383                         return ret_val;
384                 break;
385         }
386         phy->type = e1000e_get_phy_type_from_id(phy->id);
387
388         switch (phy->type) {
389         case e1000_phy_82577:
390         case e1000_phy_82579:
391                 phy->ops.check_polarity = e1000_check_polarity_82577;
392                 phy->ops.force_speed_duplex =
393                     e1000_phy_force_speed_duplex_82577;
394                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
395                 phy->ops.get_info = e1000_get_phy_info_82577;
396                 phy->ops.commit = e1000e_phy_sw_reset;
397                 break;
398         case e1000_phy_82578:
399                 phy->ops.check_polarity = e1000_check_polarity_m88;
400                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
401                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
402                 phy->ops.get_info = e1000e_get_phy_info_m88;
403                 break;
404         default:
405                 ret_val = -E1000_ERR_PHY;
406                 break;
407         }
408
409         return ret_val;
410 }
411
412 /**
413  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
414  *  @hw: pointer to the HW structure
415  *
416  *  Initialize family-specific PHY parameters and function pointers.
417  **/
418 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
419 {
420         struct e1000_phy_info *phy = &hw->phy;
421         s32 ret_val;
422         u16 i = 0;
423
424         phy->addr                       = 1;
425         phy->reset_delay_us             = 100;
426
427         phy->ops.power_up               = e1000_power_up_phy_copper;
428         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
429
430         /*
431          * We may need to do this twice - once for IGP and if that fails,
432          * we'll set BM func pointers and try again
433          */
434         ret_val = e1000e_determine_phy_address(hw);
435         if (ret_val) {
436                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
437                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
438                 ret_val = e1000e_determine_phy_address(hw);
439                 if (ret_val) {
440                         e_dbg("Cannot determine PHY addr. Erroring out\n");
441                         return ret_val;
442                 }
443         }
444
445         phy->id = 0;
446         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
447                (i++ < 100)) {
448                 usleep_range(1000, 2000);
449                 ret_val = e1000e_get_phy_id(hw);
450                 if (ret_val)
451                         return ret_val;
452         }
453
454         /* Verify phy id */
455         switch (phy->id) {
456         case IGP03E1000_E_PHY_ID:
457                 phy->type = e1000_phy_igp_3;
458                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
460                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
461                 phy->ops.get_info = e1000e_get_phy_info_igp;
462                 phy->ops.check_polarity = e1000_check_polarity_igp;
463                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
464                 break;
465         case IFE_E_PHY_ID:
466         case IFE_PLUS_E_PHY_ID:
467         case IFE_C_E_PHY_ID:
468                 phy->type = e1000_phy_ife;
469                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
470                 phy->ops.get_info = e1000_get_phy_info_ife;
471                 phy->ops.check_polarity = e1000_check_polarity_ife;
472                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
473                 break;
474         case BME1000_E_PHY_ID:
475                 phy->type = e1000_phy_bm;
476                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
477                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
478                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
479                 phy->ops.commit = e1000e_phy_sw_reset;
480                 phy->ops.get_info = e1000e_get_phy_info_m88;
481                 phy->ops.check_polarity = e1000_check_polarity_m88;
482                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
483                 break;
484         default:
485                 return -E1000_ERR_PHY;
486                 break;
487         }
488
489         return 0;
490 }
491
492 /**
493  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
494  *  @hw: pointer to the HW structure
495  *
496  *  Initialize family-specific NVM parameters and function
497  *  pointers.
498  **/
499 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
500 {
501         struct e1000_nvm_info *nvm = &hw->nvm;
502         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
503         u32 gfpreg, sector_base_addr, sector_end_addr;
504         u16 i;
505
506         /* Can't read flash registers if the register set isn't mapped. */
507         if (!hw->flash_address) {
508                 e_dbg("ERROR: Flash registers not mapped\n");
509                 return -E1000_ERR_CONFIG;
510         }
511
512         nvm->type = e1000_nvm_flash_sw;
513
514         gfpreg = er32flash(ICH_FLASH_GFPREG);
515
516         /*
517          * sector_X_addr is a "sector"-aligned address (4096 bytes)
518          * Add 1 to sector_end_addr since this sector is included in
519          * the overall size.
520          */
521         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
522         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
523
524         /* flash_base_addr is byte-aligned */
525         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
526
527         /*
528          * find total size of the NVM, then cut in half since the total
529          * size represents two separate NVM banks.
530          */
531         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
532                                 << FLASH_SECTOR_ADDR_SHIFT;
533         nvm->flash_bank_size /= 2;
534         /* Adjust to word count */
535         nvm->flash_bank_size /= sizeof(u16);
536
537         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
538
539         /* Clear shadow ram */
540         for (i = 0; i < nvm->word_size; i++) {
541                 dev_spec->shadow_ram[i].modified = false;
542                 dev_spec->shadow_ram[i].value    = 0xFFFF;
543         }
544
545         return 0;
546 }
547
548 /**
549  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
550  *  @hw: pointer to the HW structure
551  *
552  *  Initialize family-specific MAC parameters and function
553  *  pointers.
554  **/
555 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
556 {
557         struct e1000_mac_info *mac = &hw->mac;
558
559         /* Set media type function pointer */
560         hw->phy.media_type = e1000_media_type_copper;
561
562         /* Set mta register count */
563         mac->mta_reg_count = 32;
564         /* Set rar entry count */
565         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566         if (mac->type == e1000_ich8lan)
567                 mac->rar_entry_count--;
568         /* FWSM register */
569         mac->has_fwsm = true;
570         /* ARC subsystem not supported */
571         mac->arc_subsystem_valid = false;
572         /* Adaptive IFS supported */
573         mac->adaptive_ifs = true;
574
575         /* LED operations */
576         switch (mac->type) {
577         case e1000_ich8lan:
578         case e1000_ich9lan:
579         case e1000_ich10lan:
580                 /* check management mode */
581                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582                 /* ID LED init */
583                 mac->ops.id_led_init = e1000e_id_led_init_generic;
584                 /* blink LED */
585                 mac->ops.blink_led = e1000e_blink_led_generic;
586                 /* setup LED */
587                 mac->ops.setup_led = e1000e_setup_led_generic;
588                 /* cleanup LED */
589                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590                 /* turn on/off LED */
591                 mac->ops.led_on = e1000_led_on_ich8lan;
592                 mac->ops.led_off = e1000_led_off_ich8lan;
593                 break;
594         case e1000_pchlan:
595         case e1000_pch2lan:
596                 /* check management mode */
597                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598                 /* ID LED init */
599                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
600                 /* setup LED */
601                 mac->ops.setup_led = e1000_setup_led_pchlan;
602                 /* cleanup LED */
603                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604                 /* turn on/off LED */
605                 mac->ops.led_on = e1000_led_on_pchlan;
606                 mac->ops.led_off = e1000_led_off_pchlan;
607                 break;
608         default:
609                 break;
610         }
611
612         /* Enable PCS Lock-loss workaround for ICH8 */
613         if (mac->type == e1000_ich8lan)
614                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
615
616         /* Gate automatic PHY configuration by hardware on managed 82579 */
617         if ((mac->type == e1000_pch2lan) &&
618             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619                 e1000_gate_hw_phy_config_ich8lan(hw, true);
620
621         return 0;
622 }
623
624 /**
625  *  e1000_set_eee_pchlan - Enable/disable EEE support
626  *  @hw: pointer to the HW structure
627  *
628  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
629  *  the LPI Control register will remain set only if/when link is up.
630  **/
631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
632 {
633         s32 ret_val = 0;
634         u16 phy_reg;
635
636         if (hw->phy.type != e1000_phy_82579)
637                 return 0;
638
639         ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640         if (ret_val)
641                 return ret_val;
642
643         if (hw->dev_spec.ich8lan.eee_disable)
644                 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645         else
646                 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
647
648         return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649 }
650
651 /**
652  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
653  *  @hw: pointer to the HW structure
654  *
655  *  Checks to see of the link status of the hardware has changed.  If a
656  *  change in link status has been detected, then we read the PHY registers
657  *  to get the current speed/duplex if link exists.
658  **/
659 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
660 {
661         struct e1000_mac_info *mac = &hw->mac;
662         s32 ret_val;
663         bool link;
664         u16 phy_reg;
665
666         /*
667          * We only want to go out to the PHY registers to see if Auto-Neg
668          * has completed and/or if our link status has changed.  The
669          * get_link_status flag is set upon receiving a Link Status
670          * Change or Rx Sequence Error interrupt.
671          */
672         if (!mac->get_link_status)
673                 return 0;
674
675         /*
676          * First we want to see if the MII Status Register reports
677          * link.  If so, then we want to get the current speed/duplex
678          * of the PHY.
679          */
680         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
681         if (ret_val)
682                 return ret_val;
683
684         if (hw->mac.type == e1000_pchlan) {
685                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
686                 if (ret_val)
687                         return ret_val;
688         }
689
690         if (!link)
691                 return 0; /* No link detected */
692
693         mac->get_link_status = false;
694
695         switch (hw->mac.type) {
696         case e1000_pch2lan:
697                 ret_val = e1000_k1_workaround_lv(hw);
698                 if (ret_val)
699                         return ret_val;
700                 /* fall-thru */
701         case e1000_pchlan:
702                 if (hw->phy.type == e1000_phy_82578) {
703                         ret_val = e1000_link_stall_workaround_hv(hw);
704                         if (ret_val)
705                                 return ret_val;
706                 }
707
708                 /*
709                  * Workaround for PCHx parts in half-duplex:
710                  * Set the number of preambles removed from the packet
711                  * when it is passed from the PHY to the MAC to prevent
712                  * the MAC from misinterpreting the packet type.
713                  */
714                 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
715                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
716
717                 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
718                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
719
720                 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
721                 break;
722         default:
723                 break;
724         }
725
726         /*
727          * Check if there was DownShift, must be checked
728          * immediately after link-up
729          */
730         e1000e_check_downshift(hw);
731
732         /* Enable/Disable EEE after link up */
733         ret_val = e1000_set_eee_pchlan(hw);
734         if (ret_val)
735                 return ret_val;
736
737         /*
738          * If we are forcing speed/duplex, then we simply return since
739          * we have already determined whether we have link or not.
740          */
741         if (!mac->autoneg)
742                 return -E1000_ERR_CONFIG;
743
744         /*
745          * Auto-Neg is enabled.  Auto Speed Detection takes care
746          * of MAC speed/duplex configuration.  So we only need to
747          * configure Collision Distance in the MAC.
748          */
749         mac->ops.config_collision_dist(hw);
750
751         /*
752          * Configure Flow Control now that Auto-Neg has completed.
753          * First, we need to restore the desired flow control
754          * settings because we may have had to re-autoneg with a
755          * different link partner.
756          */
757         ret_val = e1000e_config_fc_after_link_up(hw);
758         if (ret_val)
759                 e_dbg("Error configuring flow control\n");
760
761         return ret_val;
762 }
763
764 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
765 {
766         struct e1000_hw *hw = &adapter->hw;
767         s32 rc;
768
769         rc = e1000_init_mac_params_ich8lan(hw);
770         if (rc)
771                 return rc;
772
773         rc = e1000_init_nvm_params_ich8lan(hw);
774         if (rc)
775                 return rc;
776
777         switch (hw->mac.type) {
778         case e1000_ich8lan:
779         case e1000_ich9lan:
780         case e1000_ich10lan:
781                 rc = e1000_init_phy_params_ich8lan(hw);
782                 break;
783         case e1000_pchlan:
784         case e1000_pch2lan:
785                 rc = e1000_init_phy_params_pchlan(hw);
786                 break;
787         default:
788                 break;
789         }
790         if (rc)
791                 return rc;
792
793         /*
794          * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
795          * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
796          */
797         if ((adapter->hw.phy.type == e1000_phy_ife) ||
798             ((adapter->hw.mac.type >= e1000_pch2lan) &&
799              (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
800                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
801                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
802
803                 hw->mac.ops.blink_led = NULL;
804         }
805
806         if ((adapter->hw.mac.type == e1000_ich8lan) &&
807             (adapter->hw.phy.type != e1000_phy_ife))
808                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
809
810         /* Enable workaround for 82579 w/ ME enabled */
811         if ((adapter->hw.mac.type == e1000_pch2lan) &&
812             (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
813                 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
814
815         /* Disable EEE by default until IEEE802.3az spec is finalized */
816         if (adapter->flags2 & FLAG2_HAS_EEE)
817                 adapter->hw.dev_spec.ich8lan.eee_disable = true;
818
819         return 0;
820 }
821
822 static DEFINE_MUTEX(nvm_mutex);
823
824 /**
825  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
826  *  @hw: pointer to the HW structure
827  *
828  *  Acquires the mutex for performing NVM operations.
829  **/
830 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
831 {
832         mutex_lock(&nvm_mutex);
833
834         return 0;
835 }
836
837 /**
838  *  e1000_release_nvm_ich8lan - Release NVM mutex
839  *  @hw: pointer to the HW structure
840  *
841  *  Releases the mutex used while performing NVM operations.
842  **/
843 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
844 {
845         mutex_unlock(&nvm_mutex);
846 }
847
848 /**
849  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
850  *  @hw: pointer to the HW structure
851  *
852  *  Acquires the software control flag for performing PHY and select
853  *  MAC CSR accesses.
854  **/
855 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
856 {
857         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
858         s32 ret_val = 0;
859
860         if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
861                              &hw->adapter->state)) {
862                 e_dbg("contention for Phy access\n");
863                 return -E1000_ERR_PHY;
864         }
865
866         while (timeout) {
867                 extcnf_ctrl = er32(EXTCNF_CTRL);
868                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
869                         break;
870
871                 mdelay(1);
872                 timeout--;
873         }
874
875         if (!timeout) {
876                 e_dbg("SW has already locked the resource.\n");
877                 ret_val = -E1000_ERR_CONFIG;
878                 goto out;
879         }
880
881         timeout = SW_FLAG_TIMEOUT;
882
883         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
884         ew32(EXTCNF_CTRL, extcnf_ctrl);
885
886         while (timeout) {
887                 extcnf_ctrl = er32(EXTCNF_CTRL);
888                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
889                         break;
890
891                 mdelay(1);
892                 timeout--;
893         }
894
895         if (!timeout) {
896                 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
897                       er32(FWSM), extcnf_ctrl);
898                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
899                 ew32(EXTCNF_CTRL, extcnf_ctrl);
900                 ret_val = -E1000_ERR_CONFIG;
901                 goto out;
902         }
903
904 out:
905         if (ret_val)
906                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
907
908         return ret_val;
909 }
910
911 /**
912  *  e1000_release_swflag_ich8lan - Release software control flag
913  *  @hw: pointer to the HW structure
914  *
915  *  Releases the software control flag for performing PHY and select
916  *  MAC CSR accesses.
917  **/
918 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
919 {
920         u32 extcnf_ctrl;
921
922         extcnf_ctrl = er32(EXTCNF_CTRL);
923
924         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
925                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
926                 ew32(EXTCNF_CTRL, extcnf_ctrl);
927         } else {
928                 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
929         }
930
931         clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
932 }
933
934 /**
935  *  e1000_check_mng_mode_ich8lan - Checks management mode
936  *  @hw: pointer to the HW structure
937  *
938  *  This checks if the adapter has any manageability enabled.
939  *  This is a function pointer entry point only called by read/write
940  *  routines for the PHY and NVM parts.
941  **/
942 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
943 {
944         u32 fwsm;
945
946         fwsm = er32(FWSM);
947         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
948                ((fwsm & E1000_FWSM_MODE_MASK) ==
949                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
950 }
951
952 /**
953  *  e1000_check_mng_mode_pchlan - Checks management mode
954  *  @hw: pointer to the HW structure
955  *
956  *  This checks if the adapter has iAMT enabled.
957  *  This is a function pointer entry point only called by read/write
958  *  routines for the PHY and NVM parts.
959  **/
960 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
961 {
962         u32 fwsm;
963
964         fwsm = er32(FWSM);
965         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
966                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
967 }
968
969 /**
970  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
971  *  @hw: pointer to the HW structure
972  *
973  *  Checks if firmware is blocking the reset of the PHY.
974  *  This is a function pointer entry point only called by
975  *  reset routines.
976  **/
977 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
978 {
979         u32 fwsm;
980
981         fwsm = er32(FWSM);
982
983         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
984 }
985
986 /**
987  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
988  *  @hw: pointer to the HW structure
989  *
990  *  Assumes semaphore already acquired.
991  *
992  **/
993 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
994 {
995         u16 phy_data;
996         u32 strap = er32(STRAP);
997         s32 ret_val = 0;
998
999         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1000
1001         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1002         if (ret_val)
1003                 return ret_val;
1004
1005         phy_data &= ~HV_SMB_ADDR_MASK;
1006         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1007         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1008
1009         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1010 }
1011
1012 /**
1013  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1014  *  @hw:   pointer to the HW structure
1015  *
1016  *  SW should configure the LCD from the NVM extended configuration region
1017  *  as a workaround for certain parts.
1018  **/
1019 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1020 {
1021         struct e1000_phy_info *phy = &hw->phy;
1022         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1023         s32 ret_val = 0;
1024         u16 word_addr, reg_data, reg_addr, phy_page = 0;
1025
1026         /*
1027          * Initialize the PHY from the NVM on ICH platforms.  This
1028          * is needed due to an issue where the NVM configuration is
1029          * not properly autoloaded after power transitions.
1030          * Therefore, after each PHY reset, we will load the
1031          * configuration data out of the NVM manually.
1032          */
1033         switch (hw->mac.type) {
1034         case e1000_ich8lan:
1035                 if (phy->type != e1000_phy_igp_3)
1036                         return ret_val;
1037
1038                 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1039                     (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1040                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1041                         break;
1042                 }
1043                 /* Fall-thru */
1044         case e1000_pchlan:
1045         case e1000_pch2lan:
1046                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1047                 break;
1048         default:
1049                 return ret_val;
1050         }
1051
1052         ret_val = hw->phy.ops.acquire(hw);
1053         if (ret_val)
1054                 return ret_val;
1055
1056         data = er32(FEXTNVM);
1057         if (!(data & sw_cfg_mask))
1058                 goto release;
1059
1060         /*
1061          * Make sure HW does not configure LCD from PHY
1062          * extended configuration before SW configuration
1063          */
1064         data = er32(EXTCNF_CTRL);
1065         if (!(hw->mac.type == e1000_pch2lan)) {
1066                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1067                         goto release;
1068         }
1069
1070         cnf_size = er32(EXTCNF_SIZE);
1071         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1072         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1073         if (!cnf_size)
1074                 goto release;
1075
1076         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1077         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1078
1079         if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1080             (hw->mac.type == e1000_pchlan)) ||
1081              (hw->mac.type == e1000_pch2lan)) {
1082                 /*
1083                  * HW configures the SMBus address and LEDs when the
1084                  * OEM and LCD Write Enable bits are set in the NVM.
1085                  * When both NVM bits are cleared, SW will configure
1086                  * them instead.
1087                  */
1088                 ret_val = e1000_write_smbus_addr(hw);
1089                 if (ret_val)
1090                         goto release;
1091
1092                 data = er32(LEDCTL);
1093                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1094                                                         (u16)data);
1095                 if (ret_val)
1096                         goto release;
1097         }
1098
1099         /* Configure LCD from extended configuration region. */
1100
1101         /* cnf_base_addr is in DWORD */
1102         word_addr = (u16)(cnf_base_addr << 1);
1103
1104         for (i = 0; i < cnf_size; i++) {
1105                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1106                                          &reg_data);
1107                 if (ret_val)
1108                         goto release;
1109
1110                 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1111                                          1, &reg_addr);
1112                 if (ret_val)
1113                         goto release;
1114
1115                 /* Save off the PHY page for future writes. */
1116                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1117                         phy_page = reg_data;
1118                         continue;
1119                 }
1120
1121                 reg_addr &= PHY_REG_MASK;
1122                 reg_addr |= phy_page;
1123
1124                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1125                                                     reg_data);
1126                 if (ret_val)
1127                         goto release;
1128         }
1129
1130 release:
1131         hw->phy.ops.release(hw);
1132         return ret_val;
1133 }
1134
1135 /**
1136  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1137  *  @hw:   pointer to the HW structure
1138  *  @link: link up bool flag
1139  *
1140  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1141  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1142  *  If link is down, the function will restore the default K1 setting located
1143  *  in the NVM.
1144  **/
1145 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1146 {
1147         s32 ret_val = 0;
1148         u16 status_reg = 0;
1149         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1150
1151         if (hw->mac.type != e1000_pchlan)
1152                 return 0;
1153
1154         /* Wrap the whole flow with the sw flag */
1155         ret_val = hw->phy.ops.acquire(hw);
1156         if (ret_val)
1157                 return ret_val;
1158
1159         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1160         if (link) {
1161                 if (hw->phy.type == e1000_phy_82578) {
1162                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1163                                                                   &status_reg);
1164                         if (ret_val)
1165                                 goto release;
1166
1167                         status_reg &= BM_CS_STATUS_LINK_UP |
1168                                       BM_CS_STATUS_RESOLVED |
1169                                       BM_CS_STATUS_SPEED_MASK;
1170
1171                         if (status_reg == (BM_CS_STATUS_LINK_UP |
1172                                            BM_CS_STATUS_RESOLVED |
1173                                            BM_CS_STATUS_SPEED_1000))
1174                                 k1_enable = false;
1175                 }
1176
1177                 if (hw->phy.type == e1000_phy_82577) {
1178                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1179                                                                   &status_reg);
1180                         if (ret_val)
1181                                 goto release;
1182
1183                         status_reg &= HV_M_STATUS_LINK_UP |
1184                                       HV_M_STATUS_AUTONEG_COMPLETE |
1185                                       HV_M_STATUS_SPEED_MASK;
1186
1187                         if (status_reg == (HV_M_STATUS_LINK_UP |
1188                                            HV_M_STATUS_AUTONEG_COMPLETE |
1189                                            HV_M_STATUS_SPEED_1000))
1190                                 k1_enable = false;
1191                 }
1192
1193                 /* Link stall fix for link up */
1194                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1195                                                            0x0100);
1196                 if (ret_val)
1197                         goto release;
1198
1199         } else {
1200                 /* Link stall fix for link down */
1201                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1202                                                            0x4100);
1203                 if (ret_val)
1204                         goto release;
1205         }
1206
1207         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1208
1209 release:
1210         hw->phy.ops.release(hw);
1211
1212         return ret_val;
1213 }
1214
1215 /**
1216  *  e1000_configure_k1_ich8lan - Configure K1 power state
1217  *  @hw: pointer to the HW structure
1218  *  @enable: K1 state to configure
1219  *
1220  *  Configure the K1 power state based on the provided parameter.
1221  *  Assumes semaphore already acquired.
1222  *
1223  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1224  **/
1225 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1226 {
1227         s32 ret_val = 0;
1228         u32 ctrl_reg = 0;
1229         u32 ctrl_ext = 0;
1230         u32 reg = 0;
1231         u16 kmrn_reg = 0;
1232
1233         ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1234                                               &kmrn_reg);
1235         if (ret_val)
1236                 return ret_val;
1237
1238         if (k1_enable)
1239                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1240         else
1241                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1242
1243         ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1244                                                kmrn_reg);
1245         if (ret_val)
1246                 return ret_val;
1247
1248         udelay(20);
1249         ctrl_ext = er32(CTRL_EXT);
1250         ctrl_reg = er32(CTRL);
1251
1252         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1253         reg |= E1000_CTRL_FRCSPD;
1254         ew32(CTRL, reg);
1255
1256         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1257         e1e_flush();
1258         udelay(20);
1259         ew32(CTRL, ctrl_reg);
1260         ew32(CTRL_EXT, ctrl_ext);
1261         e1e_flush();
1262         udelay(20);
1263
1264         return 0;
1265 }
1266
1267 /**
1268  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1269  *  @hw:       pointer to the HW structure
1270  *  @d0_state: boolean if entering d0 or d3 device state
1271  *
1272  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1273  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1274  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1275  **/
1276 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1277 {
1278         s32 ret_val = 0;
1279         u32 mac_reg;
1280         u16 oem_reg;
1281
1282         if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1283                 return ret_val;
1284
1285         ret_val = hw->phy.ops.acquire(hw);
1286         if (ret_val)
1287                 return ret_val;
1288
1289         if (!(hw->mac.type == e1000_pch2lan)) {
1290                 mac_reg = er32(EXTCNF_CTRL);
1291                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1292                         goto release;
1293         }
1294
1295         mac_reg = er32(FEXTNVM);
1296         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1297                 goto release;
1298
1299         mac_reg = er32(PHY_CTRL);
1300
1301         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1302         if (ret_val)
1303                 goto release;
1304
1305         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1306
1307         if (d0_state) {
1308                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1309                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1310
1311                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1312                         oem_reg |= HV_OEM_BITS_LPLU;
1313         } else {
1314                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1315                                E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1316                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1317
1318                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1319                                E1000_PHY_CTRL_NOND0A_LPLU))
1320                         oem_reg |= HV_OEM_BITS_LPLU;
1321         }
1322
1323         /* Set Restart auto-neg to activate the bits */
1324         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1325             !hw->phy.ops.check_reset_block(hw))
1326                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1327
1328         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1329
1330 release:
1331         hw->phy.ops.release(hw);
1332
1333         return ret_val;
1334 }
1335
1336
1337 /**
1338  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1339  *  @hw:   pointer to the HW structure
1340  **/
1341 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1342 {
1343         s32 ret_val;
1344         u16 data;
1345
1346         ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1347         if (ret_val)
1348                 return ret_val;
1349
1350         data |= HV_KMRN_MDIO_SLOW;
1351
1352         ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1353
1354         return ret_val;
1355 }
1356
1357 /**
1358  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1359  *  done after every PHY reset.
1360  **/
1361 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1362 {
1363         s32 ret_val = 0;
1364         u16 phy_data;
1365
1366         if (hw->mac.type != e1000_pchlan)
1367                 return 0;
1368
1369         /* Set MDIO slow mode before any other MDIO access */
1370         if (hw->phy.type == e1000_phy_82577) {
1371                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1372                 if (ret_val)
1373                         return ret_val;
1374         }
1375
1376         if (((hw->phy.type == e1000_phy_82577) &&
1377              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1378             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1379                 /* Disable generation of early preamble */
1380                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1381                 if (ret_val)
1382                         return ret_val;
1383
1384                 /* Preamble tuning for SSC */
1385                 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1386                 if (ret_val)
1387                         return ret_val;
1388         }
1389
1390         if (hw->phy.type == e1000_phy_82578) {
1391                 /*
1392                  * Return registers to default by doing a soft reset then
1393                  * writing 0x3140 to the control register.
1394                  */
1395                 if (hw->phy.revision < 2) {
1396                         e1000e_phy_sw_reset(hw);
1397                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1398                 }
1399         }
1400
1401         /* Select page 0 */
1402         ret_val = hw->phy.ops.acquire(hw);
1403         if (ret_val)
1404                 return ret_val;
1405
1406         hw->phy.addr = 1;
1407         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1408         hw->phy.ops.release(hw);
1409         if (ret_val)
1410                 return ret_val;
1411
1412         /*
1413          * Configure the K1 Si workaround during phy reset assuming there is
1414          * link so that it disables K1 if link is in 1Gbps.
1415          */
1416         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1417         if (ret_val)
1418                 return ret_val;
1419
1420         /* Workaround for link disconnects on a busy hub in half duplex */
1421         ret_val = hw->phy.ops.acquire(hw);
1422         if (ret_val)
1423                 return ret_val;
1424         ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1425         if (ret_val)
1426                 goto release;
1427         ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1428                                                phy_data & 0x00FF);
1429 release:
1430         hw->phy.ops.release(hw);
1431
1432         return ret_val;
1433 }
1434
1435 /**
1436  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1437  *  @hw:   pointer to the HW structure
1438  **/
1439 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1440 {
1441         u32 mac_reg;
1442         u16 i, phy_reg = 0;
1443         s32 ret_val;
1444
1445         ret_val = hw->phy.ops.acquire(hw);
1446         if (ret_val)
1447                 return;
1448         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1449         if (ret_val)
1450                 goto release;
1451
1452         /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1453         for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1454                 mac_reg = er32(RAL(i));
1455                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1456                                            (u16)(mac_reg & 0xFFFF));
1457                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1458                                            (u16)((mac_reg >> 16) & 0xFFFF));
1459
1460                 mac_reg = er32(RAH(i));
1461                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1462                                            (u16)(mac_reg & 0xFFFF));
1463                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1464                                            (u16)((mac_reg & E1000_RAH_AV)
1465                                                  >> 16));
1466         }
1467
1468         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1469
1470 release:
1471         hw->phy.ops.release(hw);
1472 }
1473
1474 /**
1475  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1476  *  with 82579 PHY
1477  *  @hw: pointer to the HW structure
1478  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1479  **/
1480 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1481 {
1482         s32 ret_val = 0;
1483         u16 phy_reg, data;
1484         u32 mac_reg;
1485         u16 i;
1486
1487         if (hw->mac.type != e1000_pch2lan)
1488                 return 0;
1489
1490         /* disable Rx path while enabling/disabling workaround */
1491         e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1492         ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1493         if (ret_val)
1494                 return ret_val;
1495
1496         if (enable) {
1497                 /*
1498                  * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1499                  * SHRAL/H) and initial CRC values to the MAC
1500                  */
1501                 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1502                         u8 mac_addr[ETH_ALEN] = {0};
1503                         u32 addr_high, addr_low;
1504
1505                         addr_high = er32(RAH(i));
1506                         if (!(addr_high & E1000_RAH_AV))
1507                                 continue;
1508                         addr_low = er32(RAL(i));
1509                         mac_addr[0] = (addr_low & 0xFF);
1510                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
1511                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
1512                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
1513                         mac_addr[4] = (addr_high & 0xFF);
1514                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
1515
1516                         ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1517                 }
1518
1519                 /* Write Rx addresses to the PHY */
1520                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1521
1522                 /* Enable jumbo frame workaround in the MAC */
1523                 mac_reg = er32(FFLT_DBG);
1524                 mac_reg &= ~(1 << 14);
1525                 mac_reg |= (7 << 15);
1526                 ew32(FFLT_DBG, mac_reg);
1527
1528                 mac_reg = er32(RCTL);
1529                 mac_reg |= E1000_RCTL_SECRC;
1530                 ew32(RCTL, mac_reg);
1531
1532                 ret_val = e1000e_read_kmrn_reg(hw,
1533                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1534                                                 &data);
1535                 if (ret_val)
1536                         return ret_val;
1537                 ret_val = e1000e_write_kmrn_reg(hw,
1538                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1539                                                 data | (1 << 0));
1540                 if (ret_val)
1541                         return ret_val;
1542                 ret_val = e1000e_read_kmrn_reg(hw,
1543                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1544                                                 &data);
1545                 if (ret_val)
1546                         return ret_val;
1547                 data &= ~(0xF << 8);
1548                 data |= (0xB << 8);
1549                 ret_val = e1000e_write_kmrn_reg(hw,
1550                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1551                                                 data);
1552                 if (ret_val)
1553                         return ret_val;
1554
1555                 /* Enable jumbo frame workaround in the PHY */
1556                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1557                 data &= ~(0x7F << 5);
1558                 data |= (0x37 << 5);
1559                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1560                 if (ret_val)
1561                         return ret_val;
1562                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1563                 data &= ~(1 << 13);
1564                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1565                 if (ret_val)
1566                         return ret_val;
1567                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1568                 data &= ~(0x3FF << 2);
1569                 data |= (0x1A << 2);
1570                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1571                 if (ret_val)
1572                         return ret_val;
1573                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1574                 if (ret_val)
1575                         return ret_val;
1576                 e1e_rphy(hw, HV_PM_CTRL, &data);
1577                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1578                 if (ret_val)
1579                         return ret_val;
1580         } else {
1581                 /* Write MAC register values back to h/w defaults */
1582                 mac_reg = er32(FFLT_DBG);
1583                 mac_reg &= ~(0xF << 14);
1584                 ew32(FFLT_DBG, mac_reg);
1585
1586                 mac_reg = er32(RCTL);
1587                 mac_reg &= ~E1000_RCTL_SECRC;
1588                 ew32(RCTL, mac_reg);
1589
1590                 ret_val = e1000e_read_kmrn_reg(hw,
1591                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1592                                                 &data);
1593                 if (ret_val)
1594                         return ret_val;
1595                 ret_val = e1000e_write_kmrn_reg(hw,
1596                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1597                                                 data & ~(1 << 0));
1598                 if (ret_val)
1599                         return ret_val;
1600                 ret_val = e1000e_read_kmrn_reg(hw,
1601                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1602                                                 &data);
1603                 if (ret_val)
1604                         return ret_val;
1605                 data &= ~(0xF << 8);
1606                 data |= (0xB << 8);
1607                 ret_val = e1000e_write_kmrn_reg(hw,
1608                                                 E1000_KMRNCTRLSTA_HD_CTRL,
1609                                                 data);
1610                 if (ret_val)
1611                         return ret_val;
1612
1613                 /* Write PHY register values back to h/w defaults */
1614                 e1e_rphy(hw, PHY_REG(769, 23), &data);
1615                 data &= ~(0x7F << 5);
1616                 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1617                 if (ret_val)
1618                         return ret_val;
1619                 e1e_rphy(hw, PHY_REG(769, 16), &data);
1620                 data |= (1 << 13);
1621                 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1622                 if (ret_val)
1623                         return ret_val;
1624                 e1e_rphy(hw, PHY_REG(776, 20), &data);
1625                 data &= ~(0x3FF << 2);
1626                 data |= (0x8 << 2);
1627                 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1628                 if (ret_val)
1629                         return ret_val;
1630                 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1631                 if (ret_val)
1632                         return ret_val;
1633                 e1e_rphy(hw, HV_PM_CTRL, &data);
1634                 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1635                 if (ret_val)
1636                         return ret_val;
1637         }
1638
1639         /* re-enable Rx path after enabling/disabling workaround */
1640         return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1641 }
1642
1643 /**
1644  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1645  *  done after every PHY reset.
1646  **/
1647 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1648 {
1649         s32 ret_val = 0;
1650
1651         if (hw->mac.type != e1000_pch2lan)
1652                 return 0;
1653
1654         /* Set MDIO slow mode before any other MDIO access */
1655         ret_val = e1000_set_mdio_slow_mode_hv(hw);
1656
1657         ret_val = hw->phy.ops.acquire(hw);
1658         if (ret_val)
1659                 return ret_val;
1660         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1661                                                I82579_MSE_THRESHOLD);
1662         if (ret_val)
1663                 goto release;
1664         /* set MSE higher to enable link to stay up when noise is high */
1665         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0034);
1666         if (ret_val)
1667                 goto release;
1668         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1669                                                I82579_MSE_LINK_DOWN);
1670         if (ret_val)
1671                 goto release;
1672         /* drop link after 5 times MSE threshold was reached */
1673         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0005);
1674 release:
1675         hw->phy.ops.release(hw);
1676
1677         return ret_val;
1678 }
1679
1680 /**
1681  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1682  *  @hw:   pointer to the HW structure
1683  *
1684  *  Workaround to set the K1 beacon duration for 82579 parts
1685  **/
1686 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1687 {
1688         s32 ret_val = 0;
1689         u16 status_reg = 0;
1690         u32 mac_reg;
1691         u16 phy_reg;
1692
1693         if (hw->mac.type != e1000_pch2lan)
1694                 return 0;
1695
1696         /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1697         ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1698         if (ret_val)
1699                 return ret_val;
1700
1701         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1702             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1703                 mac_reg = er32(FEXTNVM4);
1704                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1705
1706                 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1707                 if (ret_val)
1708                         return ret_val;
1709
1710                 if (status_reg & HV_M_STATUS_SPEED_1000) {
1711                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1712                         phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1713                 } else {
1714                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1715                         phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1716                 }
1717                 ew32(FEXTNVM4, mac_reg);
1718                 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1719         }
1720
1721         return ret_val;
1722 }
1723
1724 /**
1725  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1726  *  @hw:   pointer to the HW structure
1727  *  @gate: boolean set to true to gate, false to ungate
1728  *
1729  *  Gate/ungate the automatic PHY configuration via hardware; perform
1730  *  the configuration via software instead.
1731  **/
1732 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1733 {
1734         u32 extcnf_ctrl;
1735
1736         if (hw->mac.type != e1000_pch2lan)
1737                 return;
1738
1739         extcnf_ctrl = er32(EXTCNF_CTRL);
1740
1741         if (gate)
1742                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1743         else
1744                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1745
1746         ew32(EXTCNF_CTRL, extcnf_ctrl);
1747 }
1748
1749 /**
1750  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1751  *  @hw: pointer to the HW structure
1752  *
1753  *  Check the appropriate indication the MAC has finished configuring the
1754  *  PHY after a software reset.
1755  **/
1756 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1757 {
1758         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1759
1760         /* Wait for basic configuration completes before proceeding */
1761         do {
1762                 data = er32(STATUS);
1763                 data &= E1000_STATUS_LAN_INIT_DONE;
1764                 udelay(100);
1765         } while ((!data) && --loop);
1766
1767         /*
1768          * If basic configuration is incomplete before the above loop
1769          * count reaches 0, loading the configuration from NVM will
1770          * leave the PHY in a bad state possibly resulting in no link.
1771          */
1772         if (loop == 0)
1773                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1774
1775         /* Clear the Init Done bit for the next init event */
1776         data = er32(STATUS);
1777         data &= ~E1000_STATUS_LAN_INIT_DONE;
1778         ew32(STATUS, data);
1779 }
1780
1781 /**
1782  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1783  *  @hw: pointer to the HW structure
1784  **/
1785 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1786 {
1787         s32 ret_val = 0;
1788         u16 reg;
1789
1790         if (hw->phy.ops.check_reset_block(hw))
1791                 return 0;
1792
1793         /* Allow time for h/w to get to quiescent state after reset */
1794         usleep_range(10000, 20000);
1795
1796         /* Perform any necessary post-reset workarounds */
1797         switch (hw->mac.type) {
1798         case e1000_pchlan:
1799                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1800                 if (ret_val)
1801                         return ret_val;
1802                 break;
1803         case e1000_pch2lan:
1804                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1805                 if (ret_val)
1806                         return ret_val;
1807                 break;
1808         default:
1809                 break;
1810         }
1811
1812         /* Clear the host wakeup bit after lcd reset */
1813         if (hw->mac.type >= e1000_pchlan) {
1814                 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1815                 reg &= ~BM_WUC_HOST_WU_BIT;
1816                 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1817         }
1818
1819         /* Configure the LCD with the extended configuration region in NVM */
1820         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1821         if (ret_val)
1822                 return ret_val;
1823
1824         /* Configure the LCD with the OEM bits in NVM */
1825         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1826
1827         if (hw->mac.type == e1000_pch2lan) {
1828                 /* Ungate automatic PHY configuration on non-managed 82579 */
1829                 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1830                         usleep_range(10000, 20000);
1831                         e1000_gate_hw_phy_config_ich8lan(hw, false);
1832                 }
1833
1834                 /* Set EEE LPI Update Timer to 200usec */
1835                 ret_val = hw->phy.ops.acquire(hw);
1836                 if (ret_val)
1837                         return ret_val;
1838                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1839                                                        I82579_LPI_UPDATE_TIMER);
1840                 if (!ret_val)
1841                         ret_val = hw->phy.ops.write_reg_locked(hw,
1842                                                                I82579_EMI_DATA,
1843                                                                0x1387);
1844                 hw->phy.ops.release(hw);
1845         }
1846
1847         return ret_val;
1848 }
1849
1850 /**
1851  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1852  *  @hw: pointer to the HW structure
1853  *
1854  *  Resets the PHY
1855  *  This is a function pointer entry point called by drivers
1856  *  or other shared routines.
1857  **/
1858 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1859 {
1860         s32 ret_val = 0;
1861
1862         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1863         if ((hw->mac.type == e1000_pch2lan) &&
1864             !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1865                 e1000_gate_hw_phy_config_ich8lan(hw, true);
1866
1867         ret_val = e1000e_phy_hw_reset_generic(hw);
1868         if (ret_val)
1869                 return ret_val;
1870
1871         return e1000_post_phy_reset_ich8lan(hw);
1872 }
1873
1874 /**
1875  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1876  *  @hw: pointer to the HW structure
1877  *  @active: true to enable LPLU, false to disable
1878  *
1879  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1880  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1881  *  the phy speed. This function will manually set the LPLU bit and restart
1882  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1883  *  since it configures the same bit.
1884  **/
1885 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1886 {
1887         s32 ret_val = 0;
1888         u16 oem_reg;
1889
1890         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1891         if (ret_val)
1892                 return ret_val;
1893
1894         if (active)
1895                 oem_reg |= HV_OEM_BITS_LPLU;
1896         else
1897                 oem_reg &= ~HV_OEM_BITS_LPLU;
1898
1899         if (!hw->phy.ops.check_reset_block(hw))
1900                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1901
1902         return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1903 }
1904
1905 /**
1906  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1907  *  @hw: pointer to the HW structure
1908  *  @active: true to enable LPLU, false to disable
1909  *
1910  *  Sets the LPLU D0 state according to the active flag.  When
1911  *  activating LPLU this function also disables smart speed
1912  *  and vice versa.  LPLU will not be activated unless the
1913  *  device autonegotiation advertisement meets standards of
1914  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1915  *  This is a function pointer entry point only called by
1916  *  PHY setup routines.
1917  **/
1918 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1919 {
1920         struct e1000_phy_info *phy = &hw->phy;
1921         u32 phy_ctrl;
1922         s32 ret_val = 0;
1923         u16 data;
1924
1925         if (phy->type == e1000_phy_ife)
1926                 return 0;
1927
1928         phy_ctrl = er32(PHY_CTRL);
1929
1930         if (active) {
1931                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1932                 ew32(PHY_CTRL, phy_ctrl);
1933
1934                 if (phy->type != e1000_phy_igp_3)
1935                         return 0;
1936
1937                 /*
1938                  * Call gig speed drop workaround on LPLU before accessing
1939                  * any PHY registers
1940                  */
1941                 if (hw->mac.type == e1000_ich8lan)
1942                         e1000e_gig_downshift_workaround_ich8lan(hw);
1943
1944                 /* When LPLU is enabled, we should disable SmartSpeed */
1945                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1946                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1947                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1948                 if (ret_val)
1949                         return ret_val;
1950         } else {
1951                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1952                 ew32(PHY_CTRL, phy_ctrl);
1953
1954                 if (phy->type != e1000_phy_igp_3)
1955                         return 0;
1956
1957                 /*
1958                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1959                  * during Dx states where the power conservation is most
1960                  * important.  During driver activity we should enable
1961                  * SmartSpeed, so performance is maintained.
1962                  */
1963                 if (phy->smart_speed == e1000_smart_speed_on) {
1964                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1965                                            &data);
1966                         if (ret_val)
1967                                 return ret_val;
1968
1969                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1970                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1971                                            data);
1972                         if (ret_val)
1973                                 return ret_val;
1974                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1975                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1976                                            &data);
1977                         if (ret_val)
1978                                 return ret_val;
1979
1980                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1981                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1982                                            data);
1983                         if (ret_val)
1984                                 return ret_val;
1985                 }
1986         }
1987
1988         return 0;
1989 }
1990
1991 /**
1992  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1993  *  @hw: pointer to the HW structure
1994  *  @active: true to enable LPLU, false to disable
1995  *
1996  *  Sets the LPLU D3 state according to the active flag.  When
1997  *  activating LPLU this function also disables smart speed
1998  *  and vice versa.  LPLU will not be activated unless the
1999  *  device autonegotiation advertisement meets standards of
2000  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2001  *  This is a function pointer entry point only called by
2002  *  PHY setup routines.
2003  **/
2004 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2005 {
2006         struct e1000_phy_info *phy = &hw->phy;
2007         u32 phy_ctrl;
2008         s32 ret_val = 0;
2009         u16 data;
2010
2011         phy_ctrl = er32(PHY_CTRL);
2012
2013         if (!active) {
2014                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2015                 ew32(PHY_CTRL, phy_ctrl);
2016
2017                 if (phy->type != e1000_phy_igp_3)
2018                         return 0;
2019
2020                 /*
2021                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2022                  * during Dx states where the power conservation is most
2023                  * important.  During driver activity we should enable
2024                  * SmartSpeed, so performance is maintained.
2025                  */
2026                 if (phy->smart_speed == e1000_smart_speed_on) {
2027                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2028                                            &data);
2029                         if (ret_val)
2030                                 return ret_val;
2031
2032                         data |= IGP01E1000_PSCFR_SMART_SPEED;
2033                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2034                                            data);
2035                         if (ret_val)
2036                                 return ret_val;
2037                 } else if (phy->smart_speed == e1000_smart_speed_off) {
2038                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2039                                            &data);
2040                         if (ret_val)
2041                                 return ret_val;
2042
2043                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2044                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2045                                            data);
2046                         if (ret_val)
2047                                 return ret_val;
2048                 }
2049         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2050                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2051                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2052                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2053                 ew32(PHY_CTRL, phy_ctrl);
2054
2055                 if (phy->type != e1000_phy_igp_3)
2056                         return 0;
2057
2058                 /*
2059                  * Call gig speed drop workaround on LPLU before accessing
2060                  * any PHY registers
2061                  */
2062                 if (hw->mac.type == e1000_ich8lan)
2063                         e1000e_gig_downshift_workaround_ich8lan(hw);
2064
2065                 /* When LPLU is enabled, we should disable SmartSpeed */
2066                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2067                 if (ret_val)
2068                         return ret_val;
2069
2070                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2071                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2072         }
2073
2074         return ret_val;
2075 }
2076
2077 /**
2078  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2079  *  @hw: pointer to the HW structure
2080  *  @bank:  pointer to the variable that returns the active bank
2081  *
2082  *  Reads signature byte from the NVM using the flash access registers.
2083  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2084  **/
2085 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2086 {
2087         u32 eecd;
2088         struct e1000_nvm_info *nvm = &hw->nvm;
2089         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2090         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2091         u8 sig_byte = 0;
2092         s32 ret_val;
2093
2094         switch (hw->mac.type) {
2095         case e1000_ich8lan:
2096         case e1000_ich9lan:
2097                 eecd = er32(EECD);
2098                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2099                     E1000_EECD_SEC1VAL_VALID_MASK) {
2100                         if (eecd & E1000_EECD_SEC1VAL)
2101                                 *bank = 1;
2102                         else
2103                                 *bank = 0;
2104
2105                         return 0;
2106                 }
2107                 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2108                 /* fall-thru */
2109         default:
2110                 /* set bank to 0 in case flash read fails */
2111                 *bank = 0;
2112
2113                 /* Check bank 0 */
2114                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2115                                                         &sig_byte);
2116                 if (ret_val)
2117                         return ret_val;
2118                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2119                     E1000_ICH_NVM_SIG_VALUE) {
2120                         *bank = 0;
2121                         return 0;
2122                 }
2123
2124                 /* Check bank 1 */
2125                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2126                                                         bank1_offset,
2127                                                         &sig_byte);
2128                 if (ret_val)
2129                         return ret_val;
2130                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2131                     E1000_ICH_NVM_SIG_VALUE) {
2132                         *bank = 1;
2133                         return 0;
2134                 }
2135
2136                 e_dbg("ERROR: No valid NVM bank present\n");
2137                 return -E1000_ERR_NVM;
2138         }
2139 }
2140
2141 /**
2142  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2143  *  @hw: pointer to the HW structure
2144  *  @offset: The offset (in bytes) of the word(s) to read.
2145  *  @words: Size of data to read in words
2146  *  @data: Pointer to the word(s) to read at offset.
2147  *
2148  *  Reads a word(s) from the NVM using the flash access registers.
2149  **/
2150 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2151                                   u16 *data)
2152 {
2153         struct e1000_nvm_info *nvm = &hw->nvm;
2154         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2155         u32 act_offset;
2156         s32 ret_val = 0;
2157         u32 bank = 0;
2158         u16 i, word;
2159
2160         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2161             (words == 0)) {
2162                 e_dbg("nvm parameter(s) out of bounds\n");
2163                 ret_val = -E1000_ERR_NVM;
2164                 goto out;
2165         }
2166
2167         nvm->ops.acquire(hw);
2168
2169         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2170         if (ret_val) {
2171                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2172                 bank = 0;
2173         }
2174
2175         act_offset = (bank) ? nvm->flash_bank_size : 0;
2176         act_offset += offset;
2177
2178         ret_val = 0;
2179         for (i = 0; i < words; i++) {
2180                 if (dev_spec->shadow_ram[offset+i].modified) {
2181                         data[i] = dev_spec->shadow_ram[offset+i].value;
2182                 } else {
2183                         ret_val = e1000_read_flash_word_ich8lan(hw,
2184                                                                 act_offset + i,
2185                                                                 &word);
2186                         if (ret_val)
2187                                 break;
2188                         data[i] = word;
2189                 }
2190         }
2191
2192         nvm->ops.release(hw);
2193
2194 out:
2195         if (ret_val)
2196                 e_dbg("NVM read error: %d\n", ret_val);
2197
2198         return ret_val;
2199 }
2200
2201 /**
2202  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2203  *  @hw: pointer to the HW structure
2204  *
2205  *  This function does initial flash setup so that a new read/write/erase cycle
2206  *  can be started.
2207  **/
2208 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2209 {
2210         union ich8_hws_flash_status hsfsts;
2211         s32 ret_val = -E1000_ERR_NVM;
2212
2213         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2214
2215         /* Check if the flash descriptor is valid */
2216         if (!hsfsts.hsf_status.fldesvalid) {
2217                 e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2218                 return -E1000_ERR_NVM;
2219         }
2220
2221         /* Clear FCERR and DAEL in hw status by writing 1 */
2222         hsfsts.hsf_status.flcerr = 1;
2223         hsfsts.hsf_status.dael = 1;
2224
2225         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2226
2227         /*
2228          * Either we should have a hardware SPI cycle in progress
2229          * bit to check against, in order to start a new cycle or
2230          * FDONE bit should be changed in the hardware so that it
2231          * is 1 after hardware reset, which can then be used as an
2232          * indication whether a cycle is in progress or has been
2233          * completed.
2234          */
2235
2236         if (!hsfsts.hsf_status.flcinprog) {
2237                 /*
2238                  * There is no cycle running at present,
2239                  * so we can start a cycle.
2240                  * Begin by setting Flash Cycle Done.
2241                  */
2242                 hsfsts.hsf_status.flcdone = 1;
2243                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2244                 ret_val = 0;
2245         } else {
2246                 s32 i;
2247
2248                 /*
2249                  * Otherwise poll for sometime so the current
2250                  * cycle has a chance to end before giving up.
2251                  */
2252                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2253                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2254                         if (!hsfsts.hsf_status.flcinprog) {
2255                                 ret_val = 0;
2256                                 break;
2257                         }
2258                         udelay(1);
2259                 }
2260                 if (!ret_val) {
2261                         /*
2262                          * Successful in waiting for previous cycle to timeout,
2263                          * now set the Flash Cycle Done.
2264                          */
2265                         hsfsts.hsf_status.flcdone = 1;
2266                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2267                 } else {
2268                         e_dbg("Flash controller busy, cannot get access\n");
2269                 }
2270         }
2271
2272         return ret_val;
2273 }
2274
2275 /**
2276  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2277  *  @hw: pointer to the HW structure
2278  *  @timeout: maximum time to wait for completion
2279  *
2280  *  This function starts a flash cycle and waits for its completion.
2281  **/
2282 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2283 {
2284         union ich8_hws_flash_ctrl hsflctl;
2285         union ich8_hws_flash_status hsfsts;
2286         u32 i = 0;
2287
2288         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2289         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2290         hsflctl.hsf_ctrl.flcgo = 1;
2291         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2292
2293         /* wait till FDONE bit is set to 1 */
2294         do {
2295                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2296                 if (hsfsts.hsf_status.flcdone)
2297                         break;
2298                 udelay(1);
2299         } while (i++ < timeout);
2300
2301         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2302                 return 0;
2303
2304         return -E1000_ERR_NVM;
2305 }
2306
2307 /**
2308  *  e1000_read_flash_word_ich8lan - Read word from flash
2309  *  @hw: pointer to the HW structure
2310  *  @offset: offset to data location
2311  *  @data: pointer to the location for storing the data
2312  *
2313  *  Reads the flash word at offset into data.  Offset is converted
2314  *  to bytes before read.
2315  **/
2316 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2317                                          u16 *data)
2318 {
2319         /* Must convert offset into bytes. */
2320         offset <<= 1;
2321
2322         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2323 }
2324
2325 /**
2326  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2327  *  @hw: pointer to the HW structure
2328  *  @offset: The offset of the byte to read.
2329  *  @data: Pointer to a byte to store the value read.
2330  *
2331  *  Reads a single byte from the NVM using the flash access registers.
2332  **/
2333 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2334                                          u8 *data)
2335 {
2336         s32 ret_val;
2337         u16 word = 0;
2338
2339         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2340         if (ret_val)
2341                 return ret_val;
2342
2343         *data = (u8)word;
2344
2345         return 0;
2346 }
2347
2348 /**
2349  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2350  *  @hw: pointer to the HW structure
2351  *  @offset: The offset (in bytes) of the byte or word to read.
2352  *  @size: Size of data to read, 1=byte 2=word
2353  *  @data: Pointer to the word to store the value read.
2354  *
2355  *  Reads a byte or word from the NVM using the flash access registers.
2356  **/
2357 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2358                                          u8 size, u16 *data)
2359 {
2360         union ich8_hws_flash_status hsfsts;
2361         union ich8_hws_flash_ctrl hsflctl;
2362         u32 flash_linear_addr;
2363         u32 flash_data = 0;
2364         s32 ret_val = -E1000_ERR_NVM;
2365         u8 count = 0;
2366
2367         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2368                 return -E1000_ERR_NVM;
2369
2370         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2371                             hw->nvm.flash_base_addr;
2372
2373         do {
2374                 udelay(1);
2375                 /* Steps */
2376                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2377                 if (ret_val)
2378                         break;
2379
2380                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2381                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2382                 hsflctl.hsf_ctrl.fldbcount = size - 1;
2383                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2384                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2385
2386                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2387
2388                 ret_val = e1000_flash_cycle_ich8lan(hw,
2389                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
2390
2391                 /*
2392                  * Check if FCERR is set to 1, if set to 1, clear it
2393                  * and try the whole sequence a few more times, else
2394                  * read in (shift in) the Flash Data0, the order is
2395                  * least significant byte first msb to lsb
2396                  */
2397                 if (!ret_val) {
2398                         flash_data = er32flash(ICH_FLASH_FDATA0);
2399                         if (size == 1)
2400                                 *data = (u8)(flash_data & 0x000000FF);
2401                         else if (size == 2)
2402                                 *data = (u16)(flash_data & 0x0000FFFF);
2403                         break;
2404                 } else {
2405                         /*
2406                          * If we've gotten here, then things are probably
2407                          * completely hosed, but if the error condition is
2408                          * detected, it won't hurt to give it another try...
2409                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2410                          */
2411                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2412                         if (hsfsts.hsf_status.flcerr) {
2413                                 /* Repeat for some time before giving up. */
2414                                 continue;
2415                         } else if (!hsfsts.hsf_status.flcdone) {
2416                                 e_dbg("Timeout error - flash cycle did not complete.\n");
2417                                 break;
2418                         }
2419                 }
2420         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2421
2422         return ret_val;
2423 }
2424
2425 /**
2426  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2427  *  @hw: pointer to the HW structure
2428  *  @offset: The offset (in bytes) of the word(s) to write.
2429  *  @words: Size of data to write in words
2430  *  @data: Pointer to the word(s) to write at offset.
2431  *
2432  *  Writes a byte or word to the NVM using the flash access registers.
2433  **/
2434 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2435                                    u16 *data)
2436 {
2437         struct e1000_nvm_info *nvm = &hw->nvm;
2438         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2439         u16 i;
2440
2441         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2442             (words == 0)) {
2443                 e_dbg("nvm parameter(s) out of bounds\n");
2444                 return -E1000_ERR_NVM;
2445         }
2446
2447         nvm->ops.acquire(hw);
2448
2449         for (i = 0; i < words; i++) {
2450                 dev_spec->shadow_ram[offset+i].modified = true;
2451                 dev_spec->shadow_ram[offset+i].value = data[i];
2452         }
2453
2454         nvm->ops.release(hw);
2455
2456         return 0;
2457 }
2458
2459 /**
2460  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2461  *  @hw: pointer to the HW structure
2462  *
2463  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2464  *  which writes the checksum to the shadow ram.  The changes in the shadow
2465  *  ram are then committed to the EEPROM by processing each bank at a time
2466  *  checking for the modified bit and writing only the pending changes.
2467  *  After a successful commit, the shadow ram is cleared and is ready for
2468  *  future writes.
2469  **/
2470 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2471 {
2472         struct e1000_nvm_info *nvm = &hw->nvm;
2473         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2474         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2475         s32 ret_val;
2476         u16 data;
2477
2478         ret_val = e1000e_update_nvm_checksum_generic(hw);
2479         if (ret_val)
2480                 goto out;
2481
2482         if (nvm->type != e1000_nvm_flash_sw)
2483                 goto out;
2484
2485         nvm->ops.acquire(hw);
2486
2487         /*
2488          * We're writing to the opposite bank so if we're on bank 1,
2489          * write to bank 0 etc.  We also need to erase the segment that
2490          * is going to be written
2491          */
2492         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2493         if (ret_val) {
2494                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2495                 bank = 0;
2496         }
2497
2498         if (bank == 0) {
2499                 new_bank_offset = nvm->flash_bank_size;
2500                 old_bank_offset = 0;
2501                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2502                 if (ret_val)
2503                         goto release;
2504         } else {
2505                 old_bank_offset = nvm->flash_bank_size;
2506                 new_bank_offset = 0;
2507                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2508                 if (ret_val)
2509                         goto release;
2510         }
2511
2512         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2513                 /*
2514                  * Determine whether to write the value stored
2515                  * in the other NVM bank or a modified value stored
2516                  * in the shadow RAM
2517                  */
2518                 if (dev_spec->shadow_ram[i].modified) {
2519                         data = dev_spec->shadow_ram[i].value;
2520                 } else {
2521                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2522                                                                 old_bank_offset,
2523                                                                 &data);
2524                         if (ret_val)
2525                                 break;
2526                 }
2527
2528                 /*
2529                  * If the word is 0x13, then make sure the signature bits
2530                  * (15:14) are 11b until the commit has completed.
2531                  * This will allow us to write 10b which indicates the
2532                  * signature is valid.  We want to do this after the write
2533                  * has completed so that we don't mark the segment valid
2534                  * while the write is still in progress
2535                  */
2536                 if (i == E1000_ICH_NVM_SIG_WORD)
2537                         data |= E1000_ICH_NVM_SIG_MASK;
2538
2539                 /* Convert offset to bytes. */
2540                 act_offset = (i + new_bank_offset) << 1;
2541
2542                 udelay(100);
2543                 /* Write the bytes to the new bank. */
2544                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2545                                                                act_offset,
2546                                                                (u8)data);
2547                 if (ret_val)
2548                         break;
2549
2550                 udelay(100);
2551                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2552                                                           act_offset + 1,
2553                                                           (u8)(data >> 8));
2554                 if (ret_val)
2555                         break;
2556         }
2557
2558         /*
2559          * Don't bother writing the segment valid bits if sector
2560          * programming failed.
2561          */
2562         if (ret_val) {
2563                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2564                 e_dbg("Flash commit failed.\n");
2565                 goto release;
2566         }
2567
2568         /*
2569          * Finally validate the new segment by setting bit 15:14
2570          * to 10b in word 0x13 , this can be done without an
2571          * erase as well since these bits are 11 to start with
2572          * and we need to change bit 14 to 0b
2573          */
2574         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2575         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2576         if (ret_val)
2577                 goto release;
2578
2579         data &= 0xBFFF;
2580         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2581                                                        act_offset * 2 + 1,
2582                                                        (u8)(data >> 8));
2583         if (ret_val)
2584                 goto release;
2585
2586         /*
2587          * And invalidate the previously valid segment by setting
2588          * its signature word (0x13) high_byte to 0b. This can be
2589          * done without an erase because flash erase sets all bits
2590          * to 1's. We can write 1's to 0's without an erase
2591          */
2592         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2593         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2594         if (ret_val)
2595                 goto release;
2596
2597         /* Great!  Everything worked, we can now clear the cached entries. */
2598         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2599                 dev_spec->shadow_ram[i].modified = false;
2600                 dev_spec->shadow_ram[i].value = 0xFFFF;
2601         }
2602
2603 release:
2604         nvm->ops.release(hw);
2605
2606         /*
2607          * Reload the EEPROM, or else modifications will not appear
2608          * until after the next adapter reset.
2609          */
2610         if (!ret_val) {
2611                 nvm->ops.reload(hw);
2612                 usleep_range(10000, 20000);
2613         }
2614
2615 out:
2616         if (ret_val)
2617                 e_dbg("NVM update error: %d\n", ret_val);
2618
2619         return ret_val;
2620 }
2621
2622 /**
2623  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2624  *  @hw: pointer to the HW structure
2625  *
2626  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2627  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2628  *  calculated, in which case we need to calculate the checksum and set bit 6.
2629  **/
2630 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2631 {
2632         s32 ret_val;
2633         u16 data;
2634
2635         /*
2636          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2637          * needs to be fixed.  This bit is an indication that the NVM
2638          * was prepared by OEM software and did not calculate the
2639          * checksum...a likely scenario.
2640          */
2641         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2642         if (ret_val)
2643                 return ret_val;
2644
2645         if (!(data & 0x40)) {
2646                 data |= 0x40;
2647                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2648                 if (ret_val)
2649                         return ret_val;
2650                 ret_val = e1000e_update_nvm_checksum(hw);
2651                 if (ret_val)
2652                         return ret_val;
2653         }
2654
2655         return e1000e_validate_nvm_checksum_generic(hw);
2656 }
2657
2658 /**
2659  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2660  *  @hw: pointer to the HW structure
2661  *
2662  *  To prevent malicious write/erase of the NVM, set it to be read-only
2663  *  so that the hardware ignores all write/erase cycles of the NVM via
2664  *  the flash control registers.  The shadow-ram copy of the NVM will
2665  *  still be updated, however any updates to this copy will not stick
2666  *  across driver reloads.
2667  **/
2668 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2669 {
2670         struct e1000_nvm_info *nvm = &hw->nvm;
2671         union ich8_flash_protected_range pr0;
2672         union ich8_hws_flash_status hsfsts;
2673         u32 gfpreg;
2674
2675         nvm->ops.acquire(hw);
2676
2677         gfpreg = er32flash(ICH_FLASH_GFPREG);
2678
2679         /* Write-protect GbE Sector of NVM */
2680         pr0.regval = er32flash(ICH_FLASH_PR0);
2681         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2682         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2683         pr0.range.wpe = true;
2684         ew32flash(ICH_FLASH_PR0, pr0.regval);
2685
2686         /*
2687          * Lock down a subset of GbE Flash Control Registers, e.g.
2688          * PR0 to prevent the write-protection from being lifted.
2689          * Once FLOCKDN is set, the registers protected by it cannot
2690          * be written until FLOCKDN is cleared by a hardware reset.
2691          */
2692         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2693         hsfsts.hsf_status.flockdn = true;
2694         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2695
2696         nvm->ops.release(hw);
2697 }
2698
2699 /**
2700  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2701  *  @hw: pointer to the HW structure
2702  *  @offset: The offset (in bytes) of the byte/word to read.
2703  *  @size: Size of data to read, 1=byte 2=word
2704  *  @data: The byte(s) to write to the NVM.
2705  *
2706  *  Writes one/two bytes to the NVM using the flash access registers.
2707  **/
2708 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2709                                           u8 size, u16 data)
2710 {
2711         union ich8_hws_flash_status hsfsts;
2712         union ich8_hws_flash_ctrl hsflctl;
2713         u32 flash_linear_addr;
2714         u32 flash_data = 0;
2715         s32 ret_val;
2716         u8 count = 0;
2717
2718         if (size < 1 || size > 2 || data > size * 0xff ||
2719             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2720                 return -E1000_ERR_NVM;
2721
2722         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2723                             hw->nvm.flash_base_addr;
2724
2725         do {
2726                 udelay(1);
2727                 /* Steps */
2728                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2729                 if (ret_val)
2730                         break;
2731
2732                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2733                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2734                 hsflctl.hsf_ctrl.fldbcount = size -1;
2735                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2736                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2737
2738                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2739
2740                 if (size == 1)
2741                         flash_data = (u32)data & 0x00FF;
2742                 else
2743                         flash_data = (u32)data;
2744
2745                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2746
2747                 /*
2748                  * check if FCERR is set to 1 , if set to 1, clear it
2749                  * and try the whole sequence a few more times else done
2750                  */
2751                 ret_val = e1000_flash_cycle_ich8lan(hw,
2752                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2753                 if (!ret_val)
2754                         break;
2755
2756                 /*
2757                  * If we're here, then things are most likely
2758                  * completely hosed, but if the error condition
2759                  * is detected, it won't hurt to give it another
2760                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2761                  */
2762                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2763                 if (hsfsts.hsf_status.flcerr)
2764                         /* Repeat for some time before giving up. */
2765                         continue;
2766                 if (!hsfsts.hsf_status.flcdone) {
2767                         e_dbg("Timeout error - flash cycle did not complete.\n");
2768                         break;
2769                 }
2770         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2771
2772         return ret_val;
2773 }
2774
2775 /**
2776  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2777  *  @hw: pointer to the HW structure
2778  *  @offset: The index of the byte to read.
2779  *  @data: The byte to write to the NVM.
2780  *
2781  *  Writes a single byte to the NVM using the flash access registers.
2782  **/
2783 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2784                                           u8 data)
2785 {
2786         u16 word = (u16)data;
2787
2788         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2789 }
2790
2791 /**
2792  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2793  *  @hw: pointer to the HW structure
2794  *  @offset: The offset of the byte to write.
2795  *  @byte: The byte to write to the NVM.
2796  *
2797  *  Writes a single byte to the NVM using the flash access registers.
2798  *  Goes through a retry algorithm before giving up.
2799  **/
2800 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2801                                                 u32 offset, u8 byte)
2802 {
2803         s32 ret_val;
2804         u16 program_retries;
2805
2806         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2807         if (!ret_val)
2808                 return ret_val;
2809
2810         for (program_retries = 0; program_retries < 100; program_retries++) {
2811                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2812                 udelay(100);
2813                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2814                 if (!ret_val)
2815                         break;
2816         }
2817         if (program_retries == 100)
2818                 return -E1000_ERR_NVM;
2819
2820         return 0;
2821 }
2822
2823 /**
2824  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2825  *  @hw: pointer to the HW structure
2826  *  @bank: 0 for first bank, 1 for second bank, etc.
2827  *
2828  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2829  *  bank N is 4096 * N + flash_reg_addr.
2830  **/
2831 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2832 {
2833         struct e1000_nvm_info *nvm = &hw->nvm;
2834         union ich8_hws_flash_status hsfsts;
2835         union ich8_hws_flash_ctrl hsflctl;
2836         u32 flash_linear_addr;
2837         /* bank size is in 16bit words - adjust to bytes */
2838         u32 flash_bank_size = nvm->flash_bank_size * 2;
2839         s32 ret_val;
2840         s32 count = 0;
2841         s32 j, iteration, sector_size;
2842
2843         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2844
2845         /*
2846          * Determine HW Sector size: Read BERASE bits of hw flash status
2847          * register
2848          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2849          *     consecutive sectors.  The start index for the nth Hw sector
2850          *     can be calculated as = bank * 4096 + n * 256
2851          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2852          *     The start index for the nth Hw sector can be calculated
2853          *     as = bank * 4096
2854          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2855          *     (ich9 only, otherwise error condition)
2856          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2857          */
2858         switch (hsfsts.hsf_status.berasesz) {
2859         case 0:
2860                 /* Hw sector size 256 */
2861                 sector_size = ICH_FLASH_SEG_SIZE_256;
2862                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2863                 break;
2864         case 1:
2865                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2866                 iteration = 1;
2867                 break;
2868         case 2:
2869                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2870                 iteration = 1;
2871                 break;
2872         case 3:
2873                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2874                 iteration = 1;
2875                 break;
2876         default:
2877                 return -E1000_ERR_NVM;
2878         }
2879
2880         /* Start with the base address, then add the sector offset. */
2881         flash_linear_addr = hw->nvm.flash_base_addr;
2882         flash_linear_addr += (bank) ? flash_bank_size : 0;
2883
2884         for (j = 0; j < iteration ; j++) {
2885                 do {
2886                         /* Steps */
2887                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2888                         if (ret_val)
2889                                 return ret_val;
2890
2891                         /*
2892                          * Write a value 11 (block Erase) in Flash
2893                          * Cycle field in hw flash control
2894                          */
2895                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2896                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2897                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2898
2899                         /*
2900                          * Write the last 24 bits of an index within the
2901                          * block into Flash Linear address field in Flash
2902                          * Address.
2903                          */
2904                         flash_linear_addr += (j * sector_size);
2905                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2906
2907                         ret_val = e1000_flash_cycle_ich8lan(hw,
2908                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2909                         if (!ret_val)
2910                                 break;
2911
2912                         /*
2913                          * Check if FCERR is set to 1.  If 1,
2914                          * clear it and try the whole sequence
2915                          * a few more times else Done
2916                          */
2917                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2918                         if (hsfsts.hsf_status.flcerr)
2919                                 /* repeat for some time before giving up */
2920                                 continue;
2921                         else if (!hsfsts.hsf_status.flcdone)
2922                                 return ret_val;
2923                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2924         }
2925
2926         return 0;
2927 }
2928
2929 /**
2930  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2931  *  @hw: pointer to the HW structure
2932  *  @data: Pointer to the LED settings
2933  *
2934  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2935  *  settings is all 0's or F's, set the LED default to a valid LED default
2936  *  setting.
2937  **/
2938 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2939 {
2940         s32 ret_val;
2941
2942         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2943         if (ret_val) {
2944                 e_dbg("NVM Read Error\n");
2945                 return ret_val;
2946         }
2947
2948         if (*data == ID_LED_RESERVED_0000 ||
2949             *data == ID_LED_RESERVED_FFFF)
2950                 *data = ID_LED_DEFAULT_ICH8LAN;
2951
2952         return 0;
2953 }
2954
2955 /**
2956  *  e1000_id_led_init_pchlan - store LED configurations
2957  *  @hw: pointer to the HW structure
2958  *
2959  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2960  *  the PHY LED configuration register.
2961  *
2962  *  PCH also does not have an "always on" or "always off" mode which
2963  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2964  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
2965  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2966  *  link based on logic in e1000_led_[on|off]_pchlan().
2967  **/
2968 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2969 {
2970         struct e1000_mac_info *mac = &hw->mac;
2971         s32 ret_val;
2972         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2973         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2974         u16 data, i, temp, shift;
2975
2976         /* Get default ID LED modes */
2977         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2978         if (ret_val)
2979                 return ret_val;
2980
2981         mac->ledctl_default = er32(LEDCTL);
2982         mac->ledctl_mode1 = mac->ledctl_default;
2983         mac->ledctl_mode2 = mac->ledctl_default;
2984
2985         for (i = 0; i < 4; i++) {
2986                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2987                 shift = (i * 5);
2988                 switch (temp) {
2989                 case ID_LED_ON1_DEF2:
2990                 case ID_LED_ON1_ON2:
2991                 case ID_LED_ON1_OFF2:
2992                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2993                         mac->ledctl_mode1 |= (ledctl_on << shift);
2994                         break;
2995                 case ID_LED_OFF1_DEF2:
2996                 case ID_LED_OFF1_ON2:
2997                 case ID_LED_OFF1_OFF2:
2998                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2999                         mac->ledctl_mode1 |= (ledctl_off << shift);
3000                         break;
3001                 default:
3002                         /* Do nothing */
3003                         break;
3004                 }
3005                 switch (temp) {
3006                 case ID_LED_DEF1_ON2:
3007                 case ID_LED_ON1_ON2:
3008                 case ID_LED_OFF1_ON2:
3009                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3010                         mac->ledctl_mode2 |= (ledctl_on << shift);
3011                         break;
3012                 case ID_LED_DEF1_OFF2:
3013                 case ID_LED_ON1_OFF2:
3014                 case ID_LED_OFF1_OFF2:
3015                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3016                         mac->ledctl_mode2 |= (ledctl_off << shift);
3017                         break;
3018                 default:
3019                         /* Do nothing */
3020                         break;
3021                 }
3022         }
3023
3024         return 0;
3025 }
3026
3027 /**
3028  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3029  *  @hw: pointer to the HW structure
3030  *
3031  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3032  *  register, so the the bus width is hard coded.
3033  **/
3034 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3035 {
3036         struct e1000_bus_info *bus = &hw->bus;
3037         s32 ret_val;
3038
3039         ret_val = e1000e_get_bus_info_pcie(hw);
3040
3041         /*
3042          * ICH devices are "PCI Express"-ish.  They have
3043          * a configuration space, but do not contain
3044          * PCI Express Capability registers, so bus width
3045          * must be hardcoded.
3046          */
3047         if (bus->width == e1000_bus_width_unknown)
3048                 bus->width = e1000_bus_width_pcie_x1;
3049
3050         return ret_val;
3051 }
3052
3053 /**
3054  *  e1000_reset_hw_ich8lan - Reset the hardware
3055  *  @hw: pointer to the HW structure
3056  *
3057  *  Does a full reset of the hardware which includes a reset of the PHY and
3058  *  MAC.
3059  **/
3060 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3061 {
3062         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3063         u16 reg;
3064         u32 ctrl, kab;
3065         s32 ret_val;
3066
3067         /*
3068          * Prevent the PCI-E bus from sticking if there is no TLP connection
3069          * on the last TLP read/write transaction when MAC is reset.
3070          */
3071         ret_val = e1000e_disable_pcie_master(hw);
3072         if (ret_val)
3073                 e_dbg("PCI-E Master disable polling has failed.\n");
3074
3075         e_dbg("Masking off all interrupts\n");
3076         ew32(IMC, 0xffffffff);
3077
3078         /*
3079          * Disable the Transmit and Receive units.  Then delay to allow
3080          * any pending transactions to complete before we hit the MAC
3081          * with the global reset.
3082          */
3083         ew32(RCTL, 0);
3084         ew32(TCTL, E1000_TCTL_PSP);
3085         e1e_flush();
3086
3087         usleep_range(10000, 20000);
3088
3089         /* Workaround for ICH8 bit corruption issue in FIFO memory */
3090         if (hw->mac.type == e1000_ich8lan) {
3091                 /* Set Tx and Rx buffer allocation to 8k apiece. */
3092                 ew32(PBA, E1000_PBA_8K);
3093                 /* Set Packet Buffer Size to 16k. */
3094                 ew32(PBS, E1000_PBS_16K);
3095         }
3096
3097         if (hw->mac.type == e1000_pchlan) {
3098                 /* Save the NVM K1 bit setting*/
3099                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3100                 if (ret_val)
3101                         return ret_val;
3102
3103                 if (reg & E1000_NVM_K1_ENABLE)
3104                         dev_spec->nvm_k1_enabled = true;
3105                 else
3106                         dev_spec->nvm_k1_enabled = false;
3107         }
3108
3109         ctrl = er32(CTRL);
3110
3111         if (!hw->phy.ops.check_reset_block(hw)) {
3112                 /*
3113                  * Full-chip reset requires MAC and PHY reset at the same
3114                  * time to make sure the interface between MAC and the
3115                  * external PHY is reset.
3116                  */
3117                 ctrl |= E1000_CTRL_PHY_RST;
3118
3119                 /*
3120                  * Gate automatic PHY configuration by hardware on
3121                  * non-managed 82579
3122                  */
3123                 if ((hw->mac.type == e1000_pch2lan) &&
3124                     !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3125                         e1000_gate_hw_phy_config_ich8lan(hw, true);
3126         }
3127         ret_val = e1000_acquire_swflag_ich8lan(hw);
3128         e_dbg("Issuing a global reset to ich8lan\n");
3129         ew32(CTRL, (ctrl | E1000_CTRL_RST));
3130         /* cannot issue a flush here because it hangs the hardware */
3131         msleep(20);
3132
3133         if (!ret_val)
3134                 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3135
3136         if (ctrl & E1000_CTRL_PHY_RST) {
3137                 ret_val = hw->phy.ops.get_cfg_done(hw);
3138                 if (ret_val)
3139                         return ret_val;
3140
3141                 ret_val = e1000_post_phy_reset_ich8lan(hw);
3142                 if (ret_val)
3143                         return ret_val;
3144         }
3145
3146         /*
3147          * For PCH, this write will make sure that any noise
3148          * will be detected as a CRC error and be dropped rather than show up
3149          * as a bad packet to the DMA engine.
3150          */
3151         if (hw->mac.type == e1000_pchlan)
3152                 ew32(CRC_OFFSET, 0x65656565);
3153
3154         ew32(IMC, 0xffffffff);
3155         er32(ICR);
3156
3157         kab = er32(KABGTXD);
3158         kab |= E1000_KABGTXD_BGSQLBIAS;
3159         ew32(KABGTXD, kab);
3160
3161         return 0;
3162 }
3163
3164 /**
3165  *  e1000_init_hw_ich8lan - Initialize the hardware
3166  *  @hw: pointer to the HW structure
3167  *
3168  *  Prepares the hardware for transmit and receive by doing the following:
3169  *   - initialize hardware bits
3170  *   - initialize LED identification
3171  *   - setup receive address registers
3172  *   - setup flow control
3173  *   - setup transmit descriptors
3174  *   - clear statistics
3175  **/
3176 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3177 {
3178         struct e1000_mac_info *mac = &hw->mac;
3179         u32 ctrl_ext, txdctl, snoop;
3180         s32 ret_val;
3181         u16 i;
3182
3183         e1000_initialize_hw_bits_ich8lan(hw);
3184
3185         /* Initialize identification LED */
3186         ret_val = mac->ops.id_led_init(hw);
3187         if (ret_val)
3188                 e_dbg("Error initializing identification LED\n");
3189                 /* This is not fatal and we should not stop init due to this */
3190
3191         /* Setup the receive address. */
3192         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3193
3194         /* Zero out the Multicast HASH table */
3195         e_dbg("Zeroing the MTA\n");
3196         for (i = 0; i < mac->mta_reg_count; i++)
3197                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3198
3199         /*
3200          * The 82578 Rx buffer will stall if wakeup is enabled in host and
3201          * the ME.  Disable wakeup by clearing the host wakeup bit.
3202          * Reset the phy after disabling host wakeup to reset the Rx buffer.
3203          */
3204         if (hw->phy.type == e1000_phy_82578) {
3205                 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3206                 i &= ~BM_WUC_HOST_WU_BIT;
3207                 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3208                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3209                 if (ret_val)
3210                         return ret_val;
3211         }
3212
3213         /* Setup link and flow control */
3214         ret_val = mac->ops.setup_link(hw);
3215
3216         /* Set the transmit descriptor write-back policy for both queues */
3217         txdctl = er32(TXDCTL(0));
3218         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3219                  E1000_TXDCTL_FULL_TX_DESC_WB;
3220         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3221                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3222         ew32(TXDCTL(0), txdctl);
3223         txdctl = er32(TXDCTL(1));
3224         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3225                  E1000_TXDCTL_FULL_TX_DESC_WB;
3226         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3227                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3228         ew32(TXDCTL(1), txdctl);
3229
3230         /*
3231          * ICH8 has opposite polarity of no_snoop bits.
3232          * By default, we should use snoop behavior.
3233          */
3234         if (mac->type == e1000_ich8lan)
3235                 snoop = PCIE_ICH8_SNOOP_ALL;
3236         else
3237                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3238         e1000e_set_pcie_no_snoop(hw, snoop);
3239
3240         ctrl_ext = er32(CTRL_EXT);
3241         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3242         ew32(CTRL_EXT, ctrl_ext);
3243
3244         /*
3245          * Clear all of the statistics registers (clear on read).  It is
3246          * important that we do this after we have tried to establish link
3247          * because the symbol error count will increment wildly if there
3248          * is no link.
3249          */
3250         e1000_clear_hw_cntrs_ich8lan(hw);
3251
3252         return ret_val;
3253 }
3254 /**
3255  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3256  *  @hw: pointer to the HW structure
3257  *
3258  *  Sets/Clears required hardware bits necessary for correctly setting up the
3259  *  hardware for transmit and receive.
3260  **/
3261 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3262 {
3263         u32 reg;
3264
3265         /* Extended Device Control */
3266         reg = er32(CTRL_EXT);
3267         reg |= (1 << 22);
3268         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3269         if (hw->mac.type >= e1000_pchlan)
3270                 reg |= E1000_CTRL_EXT_PHYPDEN;
3271         ew32(CTRL_EXT, reg);
3272
3273         /* Transmit Descriptor Control 0 */
3274         reg = er32(TXDCTL(0));
3275         reg |= (1 << 22);
3276         ew32(TXDCTL(0), reg);
3277
3278         /* Transmit Descriptor Control 1 */
3279         reg = er32(TXDCTL(1));
3280         reg |= (1 << 22);
3281         ew32(TXDCTL(1), reg);
3282
3283         /* Transmit Arbitration Control 0 */
3284         reg = er32(TARC(0));
3285         if (hw->mac.type == e1000_ich8lan)
3286                 reg |= (1 << 28) | (1 << 29);
3287         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3288         ew32(TARC(0), reg);
3289
3290         /* Transmit Arbitration Control 1 */
3291         reg = er32(TARC(1));
3292         if (er32(TCTL) & E1000_TCTL_MULR)
3293                 reg &= ~(1 << 28);
3294         else
3295                 reg |= (1 << 28);
3296         reg |= (1 << 24) | (1 << 26) | (1 << 30);
3297         ew32(TARC(1), reg);
3298
3299         /* Device Status */
3300         if (hw->mac.type == e1000_ich8lan) {
3301                 reg = er32(STATUS);
3302                 reg &= ~(1 << 31);
3303                 ew32(STATUS, reg);
3304         }
3305
3306         /*
3307          * work-around descriptor data corruption issue during nfs v2 udp
3308          * traffic, just disable the nfs filtering capability
3309          */
3310         reg = er32(RFCTL);
3311         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3312         ew32(RFCTL, reg);
3313 }
3314
3315 /**
3316  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3317  *  @hw: pointer to the HW structure
3318  *
3319  *  Determines which flow control settings to use, then configures flow
3320  *  control.  Calls the appropriate media-specific link configuration
3321  *  function.  Assuming the adapter has a valid link partner, a valid link
3322  *  should be established.  Assumes the hardware has previously been reset
3323  *  and the transmitter and receiver are not enabled.
3324  **/
3325 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3326 {
3327         s32 ret_val;
3328
3329         if (hw->phy.ops.check_reset_block(hw))
3330                 return 0;
3331
3332         /*
3333          * ICH parts do not have a word in the NVM to determine
3334          * the default flow control setting, so we explicitly
3335          * set it to full.
3336          */
3337         if (hw->fc.requested_mode == e1000_fc_default) {
3338                 /* Workaround h/w hang when Tx flow control enabled */
3339                 if (hw->mac.type == e1000_pchlan)
3340                         hw->fc.requested_mode = e1000_fc_rx_pause;
3341                 else
3342                         hw->fc.requested_mode = e1000_fc_full;
3343         }
3344
3345         /*
3346          * Save off the requested flow control mode for use later.  Depending
3347          * on the link partner's capabilities, we may or may not use this mode.
3348          */
3349         hw->fc.current_mode = hw->fc.requested_mode;
3350
3351         e_dbg("After fix-ups FlowControl is now = %x\n",
3352                 hw->fc.current_mode);
3353
3354         /* Continue to configure the copper link. */
3355         ret_val = hw->mac.ops.setup_physical_interface(hw);
3356         if (ret_val)
3357                 return ret_val;
3358
3359         ew32(FCTTV, hw->fc.pause_time);
3360         if ((hw->phy.type == e1000_phy_82578) ||
3361             (hw->phy.type == e1000_phy_82579) ||
3362             (hw->phy.type == e1000_phy_82577)) {
3363                 ew32(FCRTV_PCH, hw->fc.refresh_time);
3364
3365                 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3366                                    hw->fc.pause_time);
3367                 if (ret_val)
3368                         return ret_val;
3369         }
3370
3371         return e1000e_set_fc_watermarks(hw);
3372 }
3373
3374 /**
3375  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3376  *  @hw: pointer to the HW structure
3377  *
3378  *  Configures the kumeran interface to the PHY to wait the appropriate time
3379  *  when polling the PHY, then call the generic setup_copper_link to finish
3380  *  configuring the copper link.
3381  **/
3382 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3383 {
3384         u32 ctrl;
3385         s32 ret_val;
3386         u16 reg_data;
3387
3388         ctrl = er32(CTRL);
3389         ctrl |= E1000_CTRL_SLU;
3390         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3391         ew32(CTRL, ctrl);
3392
3393         /*
3394          * Set the mac to wait the maximum time between each iteration
3395          * and increase the max iterations when polling the phy;
3396          * this fixes erroneous timeouts at 10Mbps.
3397          */
3398         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3399         if (ret_val)
3400                 return ret_val;
3401         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3402                                        &reg_data);
3403         if (ret_val)
3404                 return ret_val;
3405         reg_data |= 0x3F;
3406         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3407                                         reg_data);
3408         if (ret_val)
3409                 return ret_val;
3410
3411         switch (hw->phy.type) {
3412         case e1000_phy_igp_3:
3413                 ret_val = e1000e_copper_link_setup_igp(hw);
3414                 if (ret_val)
3415                         return ret_val;
3416                 break;
3417         case e1000_phy_bm:
3418         case e1000_phy_82578:
3419                 ret_val = e1000e_copper_link_setup_m88(hw);
3420                 if (ret_val)
3421                         return ret_val;
3422                 break;
3423         case e1000_phy_82577:
3424         case e1000_phy_82579:
3425                 ret_val = e1000_copper_link_setup_82577(hw);
3426                 if (ret_val)
3427                         return ret_val;
3428                 break;
3429         case e1000_phy_ife:
3430                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3431                 if (ret_val)
3432                         return ret_val;
3433
3434                 reg_data &= ~IFE_PMC_AUTO_MDIX;
3435
3436                 switch (hw->phy.mdix) {
3437                 case 1:
3438                         reg_data &= ~IFE_PMC_FORCE_MDIX;
3439                         break;
3440                 case 2:
3441                         reg_data |= IFE_PMC_FORCE_MDIX;
3442                         break;
3443                 case 0:
3444                 default:
3445                         reg_data |= IFE_PMC_AUTO_MDIX;
3446                         break;
3447                 }
3448                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3449                 if (ret_val)
3450                         return ret_val;
3451                 break;
3452         default:
3453                 break;
3454         }
3455
3456         return e1000e_setup_copper_link(hw);
3457 }
3458
3459 /**
3460  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3461  *  @hw: pointer to the HW structure
3462  *  @speed: pointer to store current link speed
3463  *  @duplex: pointer to store the current link duplex
3464  *
3465  *  Calls the generic get_speed_and_duplex to retrieve the current link
3466  *  information and then calls the Kumeran lock loss workaround for links at
3467  *  gigabit speeds.
3468  **/
3469 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3470                                           u16 *duplex)
3471 {
3472         s32 ret_val;
3473
3474         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3475         if (ret_val)
3476                 return ret_val;
3477
3478         if ((hw->mac.type == e1000_ich8lan) &&
3479             (hw->phy.type == e1000_phy_igp_3) &&
3480             (*speed == SPEED_1000)) {
3481                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3482         }
3483
3484         return ret_val;
3485 }
3486
3487 /**
3488  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3489  *  @hw: pointer to the HW structure
3490  *
3491  *  Work-around for 82566 Kumeran PCS lock loss:
3492  *  On link status change (i.e. PCI reset, speed change) and link is up and
3493  *  speed is gigabit-
3494  *    0) if workaround is optionally disabled do nothing
3495  *    1) wait 1ms for Kumeran link to come up
3496  *    2) check Kumeran Diagnostic register PCS lock loss bit
3497  *    3) if not set the link is locked (all is good), otherwise...
3498  *    4) reset the PHY
3499  *    5) repeat up to 10 times
3500  *  Note: this is only called for IGP3 copper when speed is 1gb.
3501  **/
3502 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3503 {
3504         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3505         u32 phy_ctrl;
3506         s32 ret_val;
3507         u16 i, data;
3508         bool link;
3509
3510         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3511                 return 0;
3512
3513         /*
3514          * Make sure link is up before proceeding.  If not just return.
3515          * Attempting this while link is negotiating fouled up link
3516          * stability
3517          */
3518         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3519         if (!link)
3520                 return 0;
3521
3522         for (i = 0; i < 10; i++) {
3523                 /* read once to clear */
3524                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3525                 if (ret_val)
3526                         return ret_val;
3527                 /* and again to get new status */
3528                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3529                 if (ret_val)
3530                         return ret_val;
3531
3532                 /* check for PCS lock */
3533                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3534                         return 0;
3535
3536                 /* Issue PHY reset */
3537                 e1000_phy_hw_reset(hw);
3538                 mdelay(5);
3539         }
3540         /* Disable GigE link negotiation */
3541         phy_ctrl = er32(PHY_CTRL);
3542         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3543                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3544         ew32(PHY_CTRL, phy_ctrl);
3545
3546         /*
3547          * Call gig speed drop workaround on Gig disable before accessing
3548          * any PHY registers
3549          */
3550         e1000e_gig_downshift_workaround_ich8lan(hw);
3551
3552         /* unable to acquire PCS lock */
3553         return -E1000_ERR_PHY;
3554 }
3555
3556 /**
3557  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3558  *  @hw: pointer to the HW structure
3559  *  @state: boolean value used to set the current Kumeran workaround state
3560  *
3561  *  If ICH8, set the current Kumeran workaround state (enabled - true
3562  *  /disabled - false).
3563  **/
3564 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3565                                                  bool state)
3566 {
3567         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3568
3569         if (hw->mac.type != e1000_ich8lan) {
3570                 e_dbg("Workaround applies to ICH8 only.\n");
3571                 return;
3572         }
3573
3574         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3575 }
3576
3577 /**
3578  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3579  *  @hw: pointer to the HW structure
3580  *
3581  *  Workaround for 82566 power-down on D3 entry:
3582  *    1) disable gigabit link
3583  *    2) write VR power-down enable
3584  *    3) read it back
3585  *  Continue if successful, else issue LCD reset and repeat
3586  **/
3587 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3588 {
3589         u32 reg;
3590         u16 data;
3591         u8  retry = 0;
3592
3593         if (hw->phy.type != e1000_phy_igp_3)
3594                 return;
3595
3596         /* Try the workaround twice (if needed) */
3597         do {
3598                 /* Disable link */
3599                 reg = er32(PHY_CTRL);
3600                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3601                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3602                 ew32(PHY_CTRL, reg);
3603
3604                 /*
3605                  * Call gig speed drop workaround on Gig disable before
3606                  * accessing any PHY registers
3607                  */
3608                 if (hw->mac.type == e1000_ich8lan)
3609                         e1000e_gig_downshift_workaround_ich8lan(hw);
3610
3611                 /* Write VR power-down enable */
3612                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3613                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3614                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3615
3616                 /* Read it back and test */
3617                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3618                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3619                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3620                         break;
3621
3622                 /* Issue PHY reset and repeat at most one more time */
3623                 reg = er32(CTRL);
3624                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3625                 retry++;
3626         } while (retry);
3627 }
3628
3629 /**
3630  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3631  *  @hw: pointer to the HW structure
3632  *
3633  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3634  *  LPLU, Gig disable, MDIC PHY reset):
3635  *    1) Set Kumeran Near-end loopback
3636  *    2) Clear Kumeran Near-end loopback
3637  *  Should only be called for ICH8[m] devices with any 1G Phy.
3638  **/
3639 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3640 {
3641         s32 ret_val;
3642         u16 reg_data;
3643
3644         if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3645                 return;
3646
3647         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3648                                       &reg_data);
3649         if (ret_val)
3650                 return;
3651         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3652         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3653                                        reg_data);
3654         if (ret_val)
3655                 return;
3656         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3657         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3658                                        reg_data);
3659 }
3660
3661 /**
3662  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3663  *  @hw: pointer to the HW structure
3664  *
3665  *  During S0 to Sx transition, it is possible the link remains at gig
3666  *  instead of negotiating to a lower speed.  Before going to Sx, set
3667  *  'Gig Disable' to force link speed negotiation to a lower speed based on
3668  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
3669  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3670  *  needs to be written.
3671  **/
3672 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3673 {
3674         u32 phy_ctrl;
3675         s32 ret_val;
3676
3677         phy_ctrl = er32(PHY_CTRL);
3678         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3679         ew32(PHY_CTRL, phy_ctrl);
3680
3681         if (hw->mac.type == e1000_ich8lan)
3682                 e1000e_gig_downshift_workaround_ich8lan(hw);
3683
3684         if (hw->mac.type >= e1000_pchlan) {
3685                 e1000_oem_bits_config_ich8lan(hw, false);
3686
3687                 /* Reset PHY to activate OEM bits on 82577/8 */
3688                 if (hw->mac.type == e1000_pchlan)
3689                         e1000e_phy_hw_reset_generic(hw);
3690
3691                 ret_val = hw->phy.ops.acquire(hw);
3692                 if (ret_val)
3693                         return;
3694                 e1000_write_smbus_addr(hw);
3695                 hw->phy.ops.release(hw);
3696         }
3697 }
3698
3699 /**
3700  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3701  *  @hw: pointer to the HW structure
3702  *
3703  *  During Sx to S0 transitions on non-managed devices or managed devices
3704  *  on which PHY resets are not blocked, if the PHY registers cannot be
3705  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
3706  *  the PHY.
3707  **/
3708 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3709 {
3710         u16 phy_id1, phy_id2;
3711         s32 ret_val;
3712
3713         if ((hw->mac.type != e1000_pch2lan) ||
3714             hw->phy.ops.check_reset_block(hw))
3715                 return;
3716
3717         ret_val = hw->phy.ops.acquire(hw);
3718         if (ret_val) {
3719                 e_dbg("Failed to acquire PHY semaphore in resume\n");
3720                 return;
3721         }
3722
3723         /* Test access to the PHY registers by reading the ID regs */
3724         ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3725         if (ret_val)
3726                 goto release;
3727         ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3728         if (ret_val)
3729                 goto release;
3730
3731         if (hw->phy.id == ((u32)(phy_id1 << 16) |
3732                            (u32)(phy_id2 & PHY_REVISION_MASK)))
3733                 goto release;
3734
3735         e1000_toggle_lanphypc_value_ich8lan(hw);
3736
3737         hw->phy.ops.release(hw);
3738         msleep(50);
3739         e1000_phy_hw_reset(hw);
3740         msleep(50);
3741         return;
3742
3743 release:
3744         hw->phy.ops.release(hw);
3745 }
3746
3747 /**
3748  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3749  *  @hw: pointer to the HW structure
3750  *
3751  *  Return the LED back to the default configuration.
3752  **/
3753 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3754 {
3755         if (hw->phy.type == e1000_phy_ife)
3756                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3757
3758         ew32(LEDCTL, hw->mac.ledctl_default);
3759         return 0;
3760 }
3761
3762 /**
3763  *  e1000_led_on_ich8lan - Turn LEDs on
3764  *  @hw: pointer to the HW structure
3765  *
3766  *  Turn on the LEDs.
3767  **/
3768 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3769 {
3770         if (hw->phy.type == e1000_phy_ife)
3771                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3772                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3773
3774         ew32(LEDCTL, hw->mac.ledctl_mode2);
3775         return 0;
3776 }
3777
3778 /**
3779  *  e1000_led_off_ich8lan - Turn LEDs off
3780  *  @hw: pointer to the HW structure
3781  *
3782  *  Turn off the LEDs.
3783  **/
3784 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3785 {
3786         if (hw->phy.type == e1000_phy_ife)
3787                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3788                                 (IFE_PSCL_PROBE_MODE |
3789                                  IFE_PSCL_PROBE_LEDS_OFF));
3790
3791         ew32(LEDCTL, hw->mac.ledctl_mode1);
3792         return 0;
3793 }
3794
3795 /**
3796  *  e1000_setup_led_pchlan - Configures SW controllable LED
3797  *  @hw: pointer to the HW structure
3798  *
3799  *  This prepares the SW controllable LED for use.
3800  **/
3801 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3802 {
3803         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3804 }
3805
3806 /**
3807  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3808  *  @hw: pointer to the HW structure
3809  *
3810  *  Return the LED back to the default configuration.
3811  **/
3812 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3813 {
3814         return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3815 }
3816
3817 /**
3818  *  e1000_led_on_pchlan - Turn LEDs on
3819  *  @hw: pointer to the HW structure
3820  *
3821  *  Turn on the LEDs.
3822  **/
3823 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3824 {
3825         u16 data = (u16)hw->mac.ledctl_mode2;
3826         u32 i, led;
3827
3828         /*
3829          * If no link, then turn LED on by setting the invert bit
3830          * for each LED that's mode is "link_up" in ledctl_mode2.
3831          */
3832         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3833                 for (i = 0; i < 3; i++) {
3834                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3835                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3836                             E1000_LEDCTL_MODE_LINK_UP)
3837                                 continue;
3838                         if (led & E1000_PHY_LED0_IVRT)
3839                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3840                         else
3841                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3842                 }
3843         }
3844
3845         return e1e_wphy(hw, HV_LED_CONFIG, data);
3846 }
3847
3848 /**
3849  *  e1000_led_off_pchlan - Turn LEDs off
3850  *  @hw: pointer to the HW structure
3851  *
3852  *  Turn off the LEDs.
3853  **/
3854 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3855 {
3856         u16 data = (u16)hw->mac.ledctl_mode1;
3857         u32 i, led;
3858
3859         /*
3860          * If no link, then turn LED off by clearing the invert bit
3861          * for each LED that's mode is "link_up" in ledctl_mode1.
3862          */
3863         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3864                 for (i = 0; i < 3; i++) {
3865                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3866                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3867                             E1000_LEDCTL_MODE_LINK_UP)
3868                                 continue;
3869                         if (led & E1000_PHY_LED0_IVRT)
3870                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3871                         else
3872                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3873                 }
3874         }
3875
3876         return e1e_wphy(hw, HV_LED_CONFIG, data);
3877 }
3878
3879 /**
3880  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3881  *  @hw: pointer to the HW structure
3882  *
3883  *  Read appropriate register for the config done bit for completion status
3884  *  and configure the PHY through s/w for EEPROM-less parts.
3885  *
3886  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3887  *  config done bit, so only an error is logged and continues.  If we were
3888  *  to return with error, EEPROM-less silicon would not be able to be reset
3889  *  or change link.
3890  **/
3891 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3892 {
3893         s32 ret_val = 0;
3894         u32 bank = 0;
3895         u32 status;
3896
3897         e1000e_get_cfg_done(hw);
3898
3899         /* Wait for indication from h/w that it has completed basic config */
3900         if (hw->mac.type >= e1000_ich10lan) {
3901                 e1000_lan_init_done_ich8lan(hw);
3902         } else {
3903                 ret_val = e1000e_get_auto_rd_done(hw);
3904                 if (ret_val) {
3905                         /*
3906                          * When auto config read does not complete, do not
3907                          * return with an error. This can happen in situations
3908                          * where there is no eeprom and prevents getting link.
3909                          */
3910                         e_dbg("Auto Read Done did not complete\n");
3911                         ret_val = 0;
3912                 }
3913         }
3914
3915         /* Clear PHY Reset Asserted bit */
3916         status = er32(STATUS);
3917         if (status & E1000_STATUS_PHYRA)
3918                 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3919         else
3920                 e_dbg("PHY Reset Asserted not set - needs delay\n");
3921
3922         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3923         if (hw->mac.type <= e1000_ich9lan) {
3924                 if (!(er32(EECD) & E1000_EECD_PRES) &&
3925                     (hw->phy.type == e1000_phy_igp_3)) {
3926                         e1000e_phy_init_script_igp3(hw);
3927                 }
3928         } else {
3929                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3930                         /* Maybe we should do a basic PHY config */
3931                         e_dbg("EEPROM not present\n");
3932                         ret_val = -E1000_ERR_CONFIG;
3933                 }
3934         }
3935
3936         return ret_val;
3937 }
3938
3939 /**
3940  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3941  * @hw: pointer to the HW structure
3942  *
3943  * In the case of a PHY power down to save power, or to turn off link during a
3944  * driver unload, or wake on lan is not enabled, remove the link.
3945  **/
3946 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3947 {
3948         /* If the management interface is not enabled, then power down */
3949         if (!(hw->mac.ops.check_mng_mode(hw) ||
3950               hw->phy.ops.check_reset_block(hw)))
3951                 e1000_power_down_phy_copper(hw);
3952 }
3953
3954 /**
3955  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3956  *  @hw: pointer to the HW structure
3957  *
3958  *  Clears hardware counters specific to the silicon family and calls
3959  *  clear_hw_cntrs_generic to clear all general purpose counters.
3960  **/
3961 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3962 {
3963         u16 phy_data;
3964         s32 ret_val;
3965
3966         e1000e_clear_hw_cntrs_base(hw);
3967
3968         er32(ALGNERRC);
3969         er32(RXERRC);
3970         er32(TNCRS);
3971         er32(CEXTERR);
3972         er32(TSCTC);
3973         er32(TSCTFC);
3974
3975         er32(MGTPRC);
3976         er32(MGTPDC);
3977         er32(MGTPTC);
3978
3979         er32(IAC);
3980         er32(ICRXOC);
3981
3982         /* Clear PHY statistics registers */
3983         if ((hw->phy.type == e1000_phy_82578) ||
3984             (hw->phy.type == e1000_phy_82579) ||
3985             (hw->phy.type == e1000_phy_82577)) {
3986                 ret_val = hw->phy.ops.acquire(hw);
3987                 if (ret_val)
3988                         return;
3989                 ret_val = hw->phy.ops.set_page(hw,
3990                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
3991                 if (ret_val)
3992                         goto release;
3993                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3994                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3995                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3996                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3997                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
3998                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
3999                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4000                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4001                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4002                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4003                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4004                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4005                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4006                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4007 release:
4008                 hw->phy.ops.release(hw);
4009         }
4010 }
4011
4012 static const struct e1000_mac_operations ich8_mac_ops = {
4013         /* check_mng_mode dependent on mac type */
4014         .check_for_link         = e1000_check_for_copper_link_ich8lan,
4015         /* cleanup_led dependent on mac type */
4016         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
4017         .get_bus_info           = e1000_get_bus_info_ich8lan,
4018         .set_lan_id             = e1000_set_lan_id_single_port,
4019         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
4020         /* led_on dependent on mac type */
4021         /* led_off dependent on mac type */
4022         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
4023         .reset_hw               = e1000_reset_hw_ich8lan,
4024         .init_hw                = e1000_init_hw_ich8lan,
4025         .setup_link             = e1000_setup_link_ich8lan,
4026         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
4027         /* id_led_init dependent on mac type */
4028         .config_collision_dist  = e1000e_config_collision_dist_generic,
4029 };
4030
4031 static const struct e1000_phy_operations ich8_phy_ops = {
4032         .acquire                = e1000_acquire_swflag_ich8lan,
4033         .check_reset_block      = e1000_check_reset_block_ich8lan,
4034         .commit                 = NULL,
4035         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
4036         .get_cable_length       = e1000e_get_cable_length_igp_2,
4037         .read_reg               = e1000e_read_phy_reg_igp,
4038         .release                = e1000_release_swflag_ich8lan,
4039         .reset                  = e1000_phy_hw_reset_ich8lan,
4040         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
4041         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
4042         .write_reg              = e1000e_write_phy_reg_igp,
4043 };
4044
4045 static const struct e1000_nvm_operations ich8_nvm_ops = {
4046         .acquire                = e1000_acquire_nvm_ich8lan,
4047         .read                   = e1000_read_nvm_ich8lan,
4048         .release                = e1000_release_nvm_ich8lan,
4049         .reload                 = e1000e_reload_nvm_generic,
4050         .update                 = e1000_update_nvm_checksum_ich8lan,
4051         .valid_led_default      = e1000_valid_led_default_ich8lan,
4052         .validate               = e1000_validate_nvm_checksum_ich8lan,
4053         .write                  = e1000_write_nvm_ich8lan,
4054 };
4055
4056 const struct e1000_info e1000_ich8_info = {
4057         .mac                    = e1000_ich8lan,
4058         .flags                  = FLAG_HAS_WOL
4059                                   | FLAG_IS_ICH
4060                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4061                                   | FLAG_HAS_AMT
4062                                   | FLAG_HAS_FLASH
4063                                   | FLAG_APME_IN_WUC,
4064         .pba                    = 8,
4065         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
4066         .get_variants           = e1000_get_variants_ich8lan,
4067         .mac_ops                = &ich8_mac_ops,
4068         .phy_ops                = &ich8_phy_ops,
4069         .nvm_ops                = &ich8_nvm_ops,
4070 };
4071
4072 const struct e1000_info e1000_ich9_info = {
4073         .mac                    = e1000_ich9lan,
4074         .flags                  = FLAG_HAS_JUMBO_FRAMES
4075                                   | FLAG_IS_ICH
4076                                   | FLAG_HAS_WOL
4077                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4078                                   | FLAG_HAS_AMT
4079                                   | FLAG_HAS_FLASH
4080                                   | FLAG_APME_IN_WUC,
4081         .pba                    = 18,
4082         .max_hw_frame_size      = DEFAULT_JUMBO,
4083         .get_variants           = e1000_get_variants_ich8lan,
4084         .mac_ops                = &ich8_mac_ops,
4085         .phy_ops                = &ich8_phy_ops,
4086         .nvm_ops                = &ich8_nvm_ops,
4087 };
4088
4089 const struct e1000_info e1000_ich10_info = {
4090         .mac                    = e1000_ich10lan,
4091         .flags                  = FLAG_HAS_JUMBO_FRAMES
4092                                   | FLAG_IS_ICH
4093                                   | FLAG_HAS_WOL
4094                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4095                                   | FLAG_HAS_AMT
4096                                   | FLAG_HAS_FLASH
4097                                   | FLAG_APME_IN_WUC,
4098         .pba                    = 18,
4099         .max_hw_frame_size      = DEFAULT_JUMBO,
4100         .get_variants           = e1000_get_variants_ich8lan,
4101         .mac_ops                = &ich8_mac_ops,
4102         .phy_ops                = &ich8_phy_ops,
4103         .nvm_ops                = &ich8_nvm_ops,
4104 };
4105
4106 const struct e1000_info e1000_pch_info = {
4107         .mac                    = e1000_pchlan,
4108         .flags                  = FLAG_IS_ICH
4109                                   | FLAG_HAS_WOL
4110                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4111                                   | FLAG_HAS_AMT
4112                                   | FLAG_HAS_FLASH
4113                                   | FLAG_HAS_JUMBO_FRAMES
4114                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4115                                   | FLAG_APME_IN_WUC,
4116         .flags2                 = FLAG2_HAS_PHY_STATS,
4117         .pba                    = 26,
4118         .max_hw_frame_size      = 4096,
4119         .get_variants           = e1000_get_variants_ich8lan,
4120         .mac_ops                = &ich8_mac_ops,
4121         .phy_ops                = &ich8_phy_ops,
4122         .nvm_ops                = &ich8_nvm_ops,
4123 };
4124
4125 const struct e1000_info e1000_pch2_info = {
4126         .mac                    = e1000_pch2lan,
4127         .flags                  = FLAG_IS_ICH
4128                                   | FLAG_HAS_WOL
4129                                   | FLAG_HAS_CTRLEXT_ON_LOAD
4130                                   | FLAG_HAS_AMT
4131                                   | FLAG_HAS_FLASH
4132                                   | FLAG_HAS_JUMBO_FRAMES
4133                                   | FLAG_APME_IN_WUC,
4134         .flags2                 = FLAG2_HAS_PHY_STATS
4135                                   | FLAG2_HAS_EEE,
4136         .pba                    = 26,
4137         .max_hw_frame_size      = DEFAULT_JUMBO,
4138         .get_variants           = e1000_get_variants_ich8lan,
4139         .mac_ops                = &ich8_mac_ops,
4140         .phy_ops                = &ich8_phy_ops,
4141         .nvm_ops                = &ich8_nvm_ops,
4142 };