]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/i40evf/i40e_txrx.c
Merge remote-tracking branch 'mac80211-next/master' into next
[karo-tx-linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29
30 #include "i40evf.h"
31 #include "i40e_prototype.h"
32
33 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34                                 u32 td_tag)
35 {
36         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
38                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
41 }
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45 /**
46  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47  * @ring:      the ring that owns the buffer
48  * @tx_buffer: the buffer to free
49  **/
50 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51                                             struct i40e_tx_buffer *tx_buffer)
52 {
53         if (tx_buffer->skb) {
54                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
55                         kfree(tx_buffer->raw_buf);
56                 else
57                         dev_kfree_skb_any(tx_buffer->skb);
58
59                 if (dma_unmap_len(tx_buffer, len))
60                         dma_unmap_single(ring->dev,
61                                          dma_unmap_addr(tx_buffer, dma),
62                                          dma_unmap_len(tx_buffer, len),
63                                          DMA_TO_DEVICE);
64         } else if (dma_unmap_len(tx_buffer, len)) {
65                 dma_unmap_page(ring->dev,
66                                dma_unmap_addr(tx_buffer, dma),
67                                dma_unmap_len(tx_buffer, len),
68                                DMA_TO_DEVICE);
69         }
70         tx_buffer->next_to_watch = NULL;
71         tx_buffer->skb = NULL;
72         dma_unmap_len_set(tx_buffer, len, 0);
73         /* tx_buffer must be completely set up in the transmit path */
74 }
75
76 /**
77  * i40evf_clean_tx_ring - Free any empty Tx buffers
78  * @tx_ring: ring to be cleaned
79  **/
80 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81 {
82         unsigned long bi_size;
83         u16 i;
84
85         /* ring already cleared, nothing to do */
86         if (!tx_ring->tx_bi)
87                 return;
88
89         /* Free all the Tx ring sk_buffs */
90         for (i = 0; i < tx_ring->count; i++)
91                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94         memset(tx_ring->tx_bi, 0, bi_size);
95
96         /* Zero out the descriptor ring */
97         memset(tx_ring->desc, 0, tx_ring->size);
98
99         tx_ring->next_to_use = 0;
100         tx_ring->next_to_clean = 0;
101
102         if (!tx_ring->netdev)
103                 return;
104
105         /* cleanup Tx queue statistics */
106         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107                                                   tx_ring->queue_index));
108 }
109
110 /**
111  * i40evf_free_tx_resources - Free Tx resources per queue
112  * @tx_ring: Tx descriptor ring for a specific queue
113  *
114  * Free all transmit software resources
115  **/
116 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117 {
118         i40evf_clean_tx_ring(tx_ring);
119         kfree(tx_ring->tx_bi);
120         tx_ring->tx_bi = NULL;
121
122         if (tx_ring->desc) {
123                 dma_free_coherent(tx_ring->dev, tx_ring->size,
124                                   tx_ring->desc, tx_ring->dma);
125                 tx_ring->desc = NULL;
126         }
127 }
128
129 /**
130  * i40e_get_head - Retrieve head from head writeback
131  * @tx_ring:  tx ring to fetch head of
132  *
133  * Returns value of Tx ring head based on value stored
134  * in head write-back location
135  **/
136 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
137 {
138         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
139
140         return le32_to_cpu(*(volatile __le32 *)head);
141 }
142
143 #define WB_STRIDE 0x3
144
145 /**
146  * i40e_clean_tx_irq - Reclaim resources after transmit completes
147  * @tx_ring:  tx ring to clean
148  * @budget:   how many cleans we're allowed
149  *
150  * Returns true if there's any budget left (e.g. the clean is finished)
151  **/
152 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
153 {
154         u16 i = tx_ring->next_to_clean;
155         struct i40e_tx_buffer *tx_buf;
156         struct i40e_tx_desc *tx_head;
157         struct i40e_tx_desc *tx_desc;
158         unsigned int total_packets = 0;
159         unsigned int total_bytes = 0;
160
161         tx_buf = &tx_ring->tx_bi[i];
162         tx_desc = I40E_TX_DESC(tx_ring, i);
163         i -= tx_ring->count;
164
165         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
166
167         do {
168                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
169
170                 /* if next_to_watch is not set then there is no work pending */
171                 if (!eop_desc)
172                         break;
173
174                 /* prevent any other reads prior to eop_desc */
175                 read_barrier_depends();
176
177                 /* we have caught up to head, no work left to do */
178                 if (tx_head == tx_desc)
179                         break;
180
181                 /* clear next_to_watch to prevent false hangs */
182                 tx_buf->next_to_watch = NULL;
183
184                 /* update the statistics for this packet */
185                 total_bytes += tx_buf->bytecount;
186                 total_packets += tx_buf->gso_segs;
187
188                 /* free the skb */
189                 dev_kfree_skb_any(tx_buf->skb);
190
191                 /* unmap skb header data */
192                 dma_unmap_single(tx_ring->dev,
193                                  dma_unmap_addr(tx_buf, dma),
194                                  dma_unmap_len(tx_buf, len),
195                                  DMA_TO_DEVICE);
196
197                 /* clear tx_buffer data */
198                 tx_buf->skb = NULL;
199                 dma_unmap_len_set(tx_buf, len, 0);
200
201                 /* unmap remaining buffers */
202                 while (tx_desc != eop_desc) {
203
204                         tx_buf++;
205                         tx_desc++;
206                         i++;
207                         if (unlikely(!i)) {
208                                 i -= tx_ring->count;
209                                 tx_buf = tx_ring->tx_bi;
210                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
211                         }
212
213                         /* unmap any remaining paged data */
214                         if (dma_unmap_len(tx_buf, len)) {
215                                 dma_unmap_page(tx_ring->dev,
216                                                dma_unmap_addr(tx_buf, dma),
217                                                dma_unmap_len(tx_buf, len),
218                                                DMA_TO_DEVICE);
219                                 dma_unmap_len_set(tx_buf, len, 0);
220                         }
221                 }
222
223                 /* move us one more past the eop_desc for start of next pkt */
224                 tx_buf++;
225                 tx_desc++;
226                 i++;
227                 if (unlikely(!i)) {
228                         i -= tx_ring->count;
229                         tx_buf = tx_ring->tx_bi;
230                         tx_desc = I40E_TX_DESC(tx_ring, 0);
231                 }
232
233                 prefetch(tx_desc);
234
235                 /* update budget accounting */
236                 budget--;
237         } while (likely(budget));
238
239         i += tx_ring->count;
240         tx_ring->next_to_clean = i;
241         u64_stats_update_begin(&tx_ring->syncp);
242         tx_ring->stats.bytes += total_bytes;
243         tx_ring->stats.packets += total_packets;
244         u64_stats_update_end(&tx_ring->syncp);
245         tx_ring->q_vector->tx.total_bytes += total_bytes;
246         tx_ring->q_vector->tx.total_packets += total_packets;
247
248         /* check to see if there are any non-cache aligned descriptors
249          * waiting to be written back, and kick the hardware to force
250          * them to be written back in case of napi polling
251          */
252         if (budget &&
253             !((i & WB_STRIDE) == WB_STRIDE) &&
254             !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
255             (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
256                 tx_ring->arm_wb = true;
257
258         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
259                                                       tx_ring->queue_index),
260                                   total_packets, total_bytes);
261
262 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
263         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
264                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
265                 /* Make sure that anybody stopping the queue after this
266                  * sees the new next_to_clean.
267                  */
268                 smp_mb();
269                 if (__netif_subqueue_stopped(tx_ring->netdev,
270                                              tx_ring->queue_index) &&
271                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
272                         netif_wake_subqueue(tx_ring->netdev,
273                                             tx_ring->queue_index);
274                         ++tx_ring->tx_stats.restart_queue;
275                 }
276         }
277
278         return !!budget;
279 }
280
281 /**
282  * i40evf_force_wb -Arm hardware to do a wb on noncache aligned descriptors
283  * @vsi: the VSI we care about
284  * @q_vector: the vector  on which to force writeback
285  *
286  **/
287 static void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
288 {
289         u16 flags = q_vector->tx.ring[0].flags;
290
291         if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
292                 u32 val;
293
294                 if (q_vector->arm_wb_state)
295                         return;
296
297                 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK;
298
299                 wr32(&vsi->back->hw,
300                      I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
301                                           vsi->base_vector - 1),
302                      val);
303                 q_vector->arm_wb_state = true;
304         } else {
305                 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
306                           I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
307                           I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
308                           I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK;
309                           /* allow 00 to be written to the index */
310
311                 wr32(&vsi->back->hw,
312                      I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
313                                           vsi->base_vector - 1), val);
314         }
315 }
316
317 /**
318  * i40e_set_new_dynamic_itr - Find new ITR level
319  * @rc: structure containing ring performance data
320  *
321  * Stores a new ITR value based on packets and byte counts during
322  * the last interrupt.  The advantage of per interrupt computation
323  * is faster updates and more accurate ITR for the current traffic
324  * pattern.  Constants in this function were computed based on
325  * theoretical maximum wire speed and thresholds were set based on
326  * testing data as well as attempting to minimize response time
327  * while increasing bulk throughput.
328  **/
329 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
330 {
331         enum i40e_latency_range new_latency_range = rc->latency_range;
332         u32 new_itr = rc->itr;
333         int bytes_per_int;
334
335         if (rc->total_packets == 0 || !rc->itr)
336                 return;
337
338         /* simple throttlerate management
339          *   0-10MB/s   lowest (100000 ints/s)
340          *  10-20MB/s   low    (20000 ints/s)
341          *  20-1249MB/s bulk   (8000 ints/s)
342          */
343         bytes_per_int = rc->total_bytes / rc->itr;
344         switch (new_latency_range) {
345         case I40E_LOWEST_LATENCY:
346                 if (bytes_per_int > 10)
347                         new_latency_range = I40E_LOW_LATENCY;
348                 break;
349         case I40E_LOW_LATENCY:
350                 if (bytes_per_int > 20)
351                         new_latency_range = I40E_BULK_LATENCY;
352                 else if (bytes_per_int <= 10)
353                         new_latency_range = I40E_LOWEST_LATENCY;
354                 break;
355         case I40E_BULK_LATENCY:
356                 if (bytes_per_int <= 20)
357                         new_latency_range = I40E_LOW_LATENCY;
358                 break;
359         default:
360                 if (bytes_per_int <= 20)
361                         new_latency_range = I40E_LOW_LATENCY;
362                 break;
363         }
364         rc->latency_range = new_latency_range;
365
366         switch (new_latency_range) {
367         case I40E_LOWEST_LATENCY:
368                 new_itr = I40E_ITR_100K;
369                 break;
370         case I40E_LOW_LATENCY:
371                 new_itr = I40E_ITR_20K;
372                 break;
373         case I40E_BULK_LATENCY:
374                 new_itr = I40E_ITR_8K;
375                 break;
376         default:
377                 break;
378         }
379
380         if (new_itr != rc->itr)
381                 rc->itr = new_itr;
382
383         rc->total_bytes = 0;
384         rc->total_packets = 0;
385 }
386
387 /*
388  * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
389  * @tx_ring: the tx ring to set up
390  *
391  * Return 0 on success, negative on error
392  **/
393 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
394 {
395         struct device *dev = tx_ring->dev;
396         int bi_size;
397
398         if (!dev)
399                 return -ENOMEM;
400
401         /* warn if we are about to overwrite the pointer */
402         WARN_ON(tx_ring->tx_bi);
403         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
404         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
405         if (!tx_ring->tx_bi)
406                 goto err;
407
408         /* round up to nearest 4K */
409         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
410         /* add u32 for head writeback, align after this takes care of
411          * guaranteeing this is at least one cache line in size
412          */
413         tx_ring->size += sizeof(u32);
414         tx_ring->size = ALIGN(tx_ring->size, 4096);
415         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
416                                            &tx_ring->dma, GFP_KERNEL);
417         if (!tx_ring->desc) {
418                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
419                          tx_ring->size);
420                 goto err;
421         }
422
423         tx_ring->next_to_use = 0;
424         tx_ring->next_to_clean = 0;
425         return 0;
426
427 err:
428         kfree(tx_ring->tx_bi);
429         tx_ring->tx_bi = NULL;
430         return -ENOMEM;
431 }
432
433 /**
434  * i40evf_clean_rx_ring - Free Rx buffers
435  * @rx_ring: ring to be cleaned
436  **/
437 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
438 {
439         struct device *dev = rx_ring->dev;
440         struct i40e_rx_buffer *rx_bi;
441         unsigned long bi_size;
442         u16 i;
443
444         /* ring already cleared, nothing to do */
445         if (!rx_ring->rx_bi)
446                 return;
447
448         if (ring_is_ps_enabled(rx_ring)) {
449                 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
450
451                 rx_bi = &rx_ring->rx_bi[0];
452                 if (rx_bi->hdr_buf) {
453                         dma_free_coherent(dev,
454                                           bufsz,
455                                           rx_bi->hdr_buf,
456                                           rx_bi->dma);
457                         for (i = 0; i < rx_ring->count; i++) {
458                                 rx_bi = &rx_ring->rx_bi[i];
459                                 rx_bi->dma = 0;
460                                 rx_bi->hdr_buf = NULL;
461                         }
462                 }
463         }
464         /* Free all the Rx ring sk_buffs */
465         for (i = 0; i < rx_ring->count; i++) {
466                 rx_bi = &rx_ring->rx_bi[i];
467                 if (rx_bi->dma) {
468                         dma_unmap_single(dev,
469                                          rx_bi->dma,
470                                          rx_ring->rx_buf_len,
471                                          DMA_FROM_DEVICE);
472                         rx_bi->dma = 0;
473                 }
474                 if (rx_bi->skb) {
475                         dev_kfree_skb(rx_bi->skb);
476                         rx_bi->skb = NULL;
477                 }
478                 if (rx_bi->page) {
479                         if (rx_bi->page_dma) {
480                                 dma_unmap_page(dev,
481                                                rx_bi->page_dma,
482                                                PAGE_SIZE / 2,
483                                                DMA_FROM_DEVICE);
484                                 rx_bi->page_dma = 0;
485                         }
486                         __free_page(rx_bi->page);
487                         rx_bi->page = NULL;
488                         rx_bi->page_offset = 0;
489                 }
490         }
491
492         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
493         memset(rx_ring->rx_bi, 0, bi_size);
494
495         /* Zero out the descriptor ring */
496         memset(rx_ring->desc, 0, rx_ring->size);
497
498         rx_ring->next_to_clean = 0;
499         rx_ring->next_to_use = 0;
500 }
501
502 /**
503  * i40evf_free_rx_resources - Free Rx resources
504  * @rx_ring: ring to clean the resources from
505  *
506  * Free all receive software resources
507  **/
508 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
509 {
510         i40evf_clean_rx_ring(rx_ring);
511         kfree(rx_ring->rx_bi);
512         rx_ring->rx_bi = NULL;
513
514         if (rx_ring->desc) {
515                 dma_free_coherent(rx_ring->dev, rx_ring->size,
516                                   rx_ring->desc, rx_ring->dma);
517                 rx_ring->desc = NULL;
518         }
519 }
520
521 /**
522  * i40evf_alloc_rx_headers - allocate rx header buffers
523  * @rx_ring: ring to alloc buffers
524  *
525  * Allocate rx header buffers for the entire ring. As these are static,
526  * this is only called when setting up a new ring.
527  **/
528 void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
529 {
530         struct device *dev = rx_ring->dev;
531         struct i40e_rx_buffer *rx_bi;
532         dma_addr_t dma;
533         void *buffer;
534         int buf_size;
535         int i;
536
537         if (rx_ring->rx_bi[0].hdr_buf)
538                 return;
539         /* Make sure the buffers don't cross cache line boundaries. */
540         buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
541         buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
542                                     &dma, GFP_KERNEL);
543         if (!buffer)
544                 return;
545         for (i = 0; i < rx_ring->count; i++) {
546                 rx_bi = &rx_ring->rx_bi[i];
547                 rx_bi->dma = dma + (i * buf_size);
548                 rx_bi->hdr_buf = buffer + (i * buf_size);
549         }
550 }
551
552 /**
553  * i40evf_setup_rx_descriptors - Allocate Rx descriptors
554  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
555  *
556  * Returns 0 on success, negative on failure
557  **/
558 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
559 {
560         struct device *dev = rx_ring->dev;
561         int bi_size;
562
563         /* warn if we are about to overwrite the pointer */
564         WARN_ON(rx_ring->rx_bi);
565         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
566         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
567         if (!rx_ring->rx_bi)
568                 goto err;
569
570         u64_stats_init(&rx_ring->syncp);
571
572         /* Round up to nearest 4K */
573         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
574                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
575                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
576         rx_ring->size = ALIGN(rx_ring->size, 4096);
577         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
578                                            &rx_ring->dma, GFP_KERNEL);
579
580         if (!rx_ring->desc) {
581                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
582                          rx_ring->size);
583                 goto err;
584         }
585
586         rx_ring->next_to_clean = 0;
587         rx_ring->next_to_use = 0;
588
589         return 0;
590 err:
591         kfree(rx_ring->rx_bi);
592         rx_ring->rx_bi = NULL;
593         return -ENOMEM;
594 }
595
596 /**
597  * i40e_release_rx_desc - Store the new tail and head values
598  * @rx_ring: ring to bump
599  * @val: new head index
600  **/
601 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
602 {
603         rx_ring->next_to_use = val;
604         /* Force memory writes to complete before letting h/w
605          * know there are new descriptors to fetch.  (Only
606          * applicable for weak-ordered memory model archs,
607          * such as IA-64).
608          */
609         wmb();
610         writel(val, rx_ring->tail);
611 }
612
613 /**
614  * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
615  * @rx_ring: ring to place buffers on
616  * @cleaned_count: number of buffers to replace
617  **/
618 void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
619 {
620         u16 i = rx_ring->next_to_use;
621         union i40e_rx_desc *rx_desc;
622         struct i40e_rx_buffer *bi;
623
624         /* do nothing if no valid netdev defined */
625         if (!rx_ring->netdev || !cleaned_count)
626                 return;
627
628         while (cleaned_count--) {
629                 rx_desc = I40E_RX_DESC(rx_ring, i);
630                 bi = &rx_ring->rx_bi[i];
631
632                 if (bi->skb) /* desc is in use */
633                         goto no_buffers;
634                 if (!bi->page) {
635                         bi->page = alloc_page(GFP_ATOMIC);
636                         if (!bi->page) {
637                                 rx_ring->rx_stats.alloc_page_failed++;
638                                 goto no_buffers;
639                         }
640                 }
641
642                 if (!bi->page_dma) {
643                         /* use a half page if we're re-using */
644                         bi->page_offset ^= PAGE_SIZE / 2;
645                         bi->page_dma = dma_map_page(rx_ring->dev,
646                                                     bi->page,
647                                                     bi->page_offset,
648                                                     PAGE_SIZE / 2,
649                                                     DMA_FROM_DEVICE);
650                         if (dma_mapping_error(rx_ring->dev,
651                                               bi->page_dma)) {
652                                 rx_ring->rx_stats.alloc_page_failed++;
653                                 bi->page_dma = 0;
654                                 goto no_buffers;
655                         }
656                 }
657
658                 dma_sync_single_range_for_device(rx_ring->dev,
659                                                  bi->dma,
660                                                  0,
661                                                  rx_ring->rx_hdr_len,
662                                                  DMA_FROM_DEVICE);
663                 /* Refresh the desc even if buffer_addrs didn't change
664                  * because each write-back erases this info.
665                  */
666                 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
667                 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
668                 i++;
669                 if (i == rx_ring->count)
670                         i = 0;
671         }
672
673 no_buffers:
674         if (rx_ring->next_to_use != i)
675                 i40e_release_rx_desc(rx_ring, i);
676 }
677
678 /**
679  * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
680  * @rx_ring: ring to place buffers on
681  * @cleaned_count: number of buffers to replace
682  **/
683 void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
684 {
685         u16 i = rx_ring->next_to_use;
686         union i40e_rx_desc *rx_desc;
687         struct i40e_rx_buffer *bi;
688         struct sk_buff *skb;
689
690         /* do nothing if no valid netdev defined */
691         if (!rx_ring->netdev || !cleaned_count)
692                 return;
693
694         while (cleaned_count--) {
695                 rx_desc = I40E_RX_DESC(rx_ring, i);
696                 bi = &rx_ring->rx_bi[i];
697                 skb = bi->skb;
698
699                 if (!skb) {
700                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
701                                                         rx_ring->rx_buf_len);
702                         if (!skb) {
703                                 rx_ring->rx_stats.alloc_buff_failed++;
704                                 goto no_buffers;
705                         }
706                         /* initialize queue mapping */
707                         skb_record_rx_queue(skb, rx_ring->queue_index);
708                         bi->skb = skb;
709                 }
710
711                 if (!bi->dma) {
712                         bi->dma = dma_map_single(rx_ring->dev,
713                                                  skb->data,
714                                                  rx_ring->rx_buf_len,
715                                                  DMA_FROM_DEVICE);
716                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
717                                 rx_ring->rx_stats.alloc_buff_failed++;
718                                 bi->dma = 0;
719                                 goto no_buffers;
720                         }
721                 }
722
723                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
724                 rx_desc->read.hdr_addr = 0;
725                 i++;
726                 if (i == rx_ring->count)
727                         i = 0;
728         }
729
730 no_buffers:
731         if (rx_ring->next_to_use != i)
732                 i40e_release_rx_desc(rx_ring, i);
733 }
734
735 /**
736  * i40e_receive_skb - Send a completed packet up the stack
737  * @rx_ring:  rx ring in play
738  * @skb: packet to send up
739  * @vlan_tag: vlan tag for packet
740  **/
741 static void i40e_receive_skb(struct i40e_ring *rx_ring,
742                              struct sk_buff *skb, u16 vlan_tag)
743 {
744         struct i40e_q_vector *q_vector = rx_ring->q_vector;
745         struct i40e_vsi *vsi = rx_ring->vsi;
746         u64 flags = vsi->back->flags;
747
748         if (vlan_tag & VLAN_VID_MASK)
749                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
750
751         if (flags & I40E_FLAG_IN_NETPOLL)
752                 netif_rx(skb);
753         else
754                 napi_gro_receive(&q_vector->napi, skb);
755 }
756
757 /**
758  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
759  * @vsi: the VSI we care about
760  * @skb: skb currently being received and modified
761  * @rx_status: status value of last descriptor in packet
762  * @rx_error: error value of last descriptor in packet
763  * @rx_ptype: ptype value of last descriptor in packet
764  **/
765 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
766                                     struct sk_buff *skb,
767                                     u32 rx_status,
768                                     u32 rx_error,
769                                     u16 rx_ptype)
770 {
771         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
772         bool ipv4 = false, ipv6 = false;
773         bool ipv4_tunnel, ipv6_tunnel;
774         __wsum rx_udp_csum;
775         struct iphdr *iph;
776         __sum16 csum;
777
778         ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
779                      (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
780         ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
781                      (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
782
783         skb->ip_summed = CHECKSUM_NONE;
784
785         /* Rx csum enabled and ip headers found? */
786         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
787                 return;
788
789         /* did the hardware decode the packet and checksum? */
790         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
791                 return;
792
793         /* both known and outer_ip must be set for the below code to work */
794         if (!(decoded.known && decoded.outer_ip))
795                 return;
796
797         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
798             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
799                 ipv4 = true;
800         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
801                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
802                 ipv6 = true;
803
804         if (ipv4 &&
805             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
806                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
807                 goto checksum_fail;
808
809         /* likely incorrect csum if alternate IP extension headers found */
810         if (ipv6 &&
811             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
812                 /* don't increment checksum err here, non-fatal err */
813                 return;
814
815         /* there was some L4 error, count error and punt packet to the stack */
816         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
817                 goto checksum_fail;
818
819         /* handle packets that were not able to be checksummed due
820          * to arrival speed, in this case the stack can compute
821          * the csum.
822          */
823         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
824                 return;
825
826         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
827          * it in the driver, hardware does not do it for us.
828          * Since L3L4P bit was set we assume a valid IHL value (>=5)
829          * so the total length of IPv4 header is IHL*4 bytes
830          * The UDP_0 bit *may* bet set if the *inner* header is UDP
831          */
832         if (ipv4_tunnel) {
833                 skb->transport_header = skb->mac_header +
834                                         sizeof(struct ethhdr) +
835                                         (ip_hdr(skb)->ihl * 4);
836
837                 /* Add 4 bytes for VLAN tagged packets */
838                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
839                                           skb->protocol == htons(ETH_P_8021AD))
840                                           ? VLAN_HLEN : 0;
841
842                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
843                     (udp_hdr(skb)->check != 0)) {
844                         rx_udp_csum = udp_csum(skb);
845                         iph = ip_hdr(skb);
846                         csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
847                                                  (skb->len -
848                                                   skb_transport_offset(skb)),
849                                                  IPPROTO_UDP, rx_udp_csum);
850
851                         if (udp_hdr(skb)->check != csum)
852                                 goto checksum_fail;
853
854                 } /* else its GRE and so no outer UDP header */
855         }
856
857         skb->ip_summed = CHECKSUM_UNNECESSARY;
858         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
859
860         return;
861
862 checksum_fail:
863         vsi->back->hw_csum_rx_error++;
864 }
865
866 /**
867  * i40e_rx_hash - returns the hash value from the Rx descriptor
868  * @ring: descriptor ring
869  * @rx_desc: specific descriptor
870  **/
871 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
872                                union i40e_rx_desc *rx_desc)
873 {
874         const __le64 rss_mask =
875                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
876                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
877
878         if ((ring->netdev->features & NETIF_F_RXHASH) &&
879             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
880                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
881         else
882                 return 0;
883 }
884
885 /**
886  * i40e_ptype_to_hash - get a hash type
887  * @ptype: the ptype value from the descriptor
888  *
889  * Returns a hash type to be used by skb_set_hash
890  **/
891 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
892 {
893         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
894
895         if (!decoded.known)
896                 return PKT_HASH_TYPE_NONE;
897
898         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
899             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
900                 return PKT_HASH_TYPE_L4;
901         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
902                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
903                 return PKT_HASH_TYPE_L3;
904         else
905                 return PKT_HASH_TYPE_L2;
906 }
907
908 /**
909  * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
910  * @rx_ring:  rx ring to clean
911  * @budget:   how many cleans we're allowed
912  *
913  * Returns true if there's any budget left (e.g. the clean is finished)
914  **/
915 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
916 {
917         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
918         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
919         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
920         const int current_node = numa_mem_id();
921         struct i40e_vsi *vsi = rx_ring->vsi;
922         u16 i = rx_ring->next_to_clean;
923         union i40e_rx_desc *rx_desc;
924         u32 rx_error, rx_status;
925         u8 rx_ptype;
926         u64 qword;
927
928         do {
929                 struct i40e_rx_buffer *rx_bi;
930                 struct sk_buff *skb;
931                 u16 vlan_tag;
932                 /* return some buffers to hardware, one at a time is too slow */
933                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
934                         i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
935                         cleaned_count = 0;
936                 }
937
938                 i = rx_ring->next_to_clean;
939                 rx_desc = I40E_RX_DESC(rx_ring, i);
940                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
941                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
942                         I40E_RXD_QW1_STATUS_SHIFT;
943
944                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
945                         break;
946
947                 /* This memory barrier is needed to keep us from reading
948                  * any other fields out of the rx_desc until we know the
949                  * DD bit is set.
950                  */
951                 dma_rmb();
952                 rx_bi = &rx_ring->rx_bi[i];
953                 skb = rx_bi->skb;
954                 if (likely(!skb)) {
955                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
956                                                         rx_ring->rx_hdr_len);
957                         if (!skb) {
958                                 rx_ring->rx_stats.alloc_buff_failed++;
959                                 break;
960                         }
961
962                         /* initialize queue mapping */
963                         skb_record_rx_queue(skb, rx_ring->queue_index);
964                         /* we are reusing so sync this buffer for CPU use */
965                         dma_sync_single_range_for_cpu(rx_ring->dev,
966                                                       rx_bi->dma,
967                                                       0,
968                                                       rx_ring->rx_hdr_len,
969                                                       DMA_FROM_DEVICE);
970                 }
971                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
972                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
973                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
974                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
975                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
976                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
977
978                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
979                            I40E_RXD_QW1_ERROR_SHIFT;
980                 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
981                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
982
983                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
984                            I40E_RXD_QW1_PTYPE_SHIFT;
985                 prefetch(rx_bi->page);
986                 rx_bi->skb = NULL;
987                 cleaned_count++;
988                 if (rx_hbo || rx_sph) {
989                         int len;
990
991                         if (rx_hbo)
992                                 len = I40E_RX_HDR_SIZE;
993                         else
994                                 len = rx_header_len;
995                         memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
996                 } else if (skb->len == 0) {
997                         int len;
998
999                         len = (rx_packet_len > skb_headlen(skb) ?
1000                                 skb_headlen(skb) : rx_packet_len);
1001                         memcpy(__skb_put(skb, len),
1002                                rx_bi->page + rx_bi->page_offset,
1003                                len);
1004                         rx_bi->page_offset += len;
1005                         rx_packet_len -= len;
1006                 }
1007
1008                 /* Get the rest of the data if this was a header split */
1009                 if (rx_packet_len) {
1010                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1011                                            rx_bi->page,
1012                                            rx_bi->page_offset,
1013                                            rx_packet_len);
1014
1015                         skb->len += rx_packet_len;
1016                         skb->data_len += rx_packet_len;
1017                         skb->truesize += rx_packet_len;
1018
1019                         if ((page_count(rx_bi->page) == 1) &&
1020                             (page_to_nid(rx_bi->page) == current_node))
1021                                 get_page(rx_bi->page);
1022                         else
1023                                 rx_bi->page = NULL;
1024
1025                         dma_unmap_page(rx_ring->dev,
1026                                        rx_bi->page_dma,
1027                                        PAGE_SIZE / 2,
1028                                        DMA_FROM_DEVICE);
1029                         rx_bi->page_dma = 0;
1030                 }
1031                 I40E_RX_INCREMENT(rx_ring, i);
1032
1033                 if (unlikely(
1034                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1035                         struct i40e_rx_buffer *next_buffer;
1036
1037                         next_buffer = &rx_ring->rx_bi[i];
1038                         next_buffer->skb = skb;
1039                         rx_ring->rx_stats.non_eop_descs++;
1040                         continue;
1041                 }
1042
1043                 /* ERR_MASK will only have valid bits if EOP set */
1044                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1045                         dev_kfree_skb_any(skb);
1046                         continue;
1047                 }
1048
1049                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1050                              i40e_ptype_to_hash(rx_ptype));
1051                 /* probably a little skewed due to removing CRC */
1052                 total_rx_bytes += skb->len;
1053                 total_rx_packets++;
1054
1055                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1056
1057                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1058
1059                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1060                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1061                          : 0;
1062 #ifdef I40E_FCOE
1063                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1064                         dev_kfree_skb_any(skb);
1065                         continue;
1066                 }
1067 #endif
1068                 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1069                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1070
1071                 rx_desc->wb.qword1.status_error_len = 0;
1072
1073         } while (likely(total_rx_packets < budget));
1074
1075         u64_stats_update_begin(&rx_ring->syncp);
1076         rx_ring->stats.packets += total_rx_packets;
1077         rx_ring->stats.bytes += total_rx_bytes;
1078         u64_stats_update_end(&rx_ring->syncp);
1079         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1080         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1081
1082         return total_rx_packets;
1083 }
1084
1085 /**
1086  * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1087  * @rx_ring:  rx ring to clean
1088  * @budget:   how many cleans we're allowed
1089  *
1090  * Returns number of packets cleaned
1091  **/
1092 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1093 {
1094         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1095         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1096         struct i40e_vsi *vsi = rx_ring->vsi;
1097         union i40e_rx_desc *rx_desc;
1098         u32 rx_error, rx_status;
1099         u16 rx_packet_len;
1100         u8 rx_ptype;
1101         u64 qword;
1102         u16 i;
1103
1104         do {
1105                 struct i40e_rx_buffer *rx_bi;
1106                 struct sk_buff *skb;
1107                 u16 vlan_tag;
1108                 /* return some buffers to hardware, one at a time is too slow */
1109                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1110                         i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1111                         cleaned_count = 0;
1112                 }
1113
1114                 i = rx_ring->next_to_clean;
1115                 rx_desc = I40E_RX_DESC(rx_ring, i);
1116                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1117                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1118                         I40E_RXD_QW1_STATUS_SHIFT;
1119
1120                 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1121                         break;
1122
1123                 /* This memory barrier is needed to keep us from reading
1124                  * any other fields out of the rx_desc until we know the
1125                  * DD bit is set.
1126                  */
1127                 dma_rmb();
1128
1129                 rx_bi = &rx_ring->rx_bi[i];
1130                 skb = rx_bi->skb;
1131                 prefetch(skb->data);
1132
1133                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1134                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1135
1136                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1137                            I40E_RXD_QW1_ERROR_SHIFT;
1138                 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1139
1140                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1141                            I40E_RXD_QW1_PTYPE_SHIFT;
1142                 rx_bi->skb = NULL;
1143                 cleaned_count++;
1144
1145                 /* Get the header and possibly the whole packet
1146                  * If this is an skb from previous receive dma will be 0
1147                  */
1148                 skb_put(skb, rx_packet_len);
1149                 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1150                                  DMA_FROM_DEVICE);
1151                 rx_bi->dma = 0;
1152
1153                 I40E_RX_INCREMENT(rx_ring, i);
1154
1155                 if (unlikely(
1156                     !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1157                         rx_ring->rx_stats.non_eop_descs++;
1158                         continue;
1159                 }
1160
1161                 /* ERR_MASK will only have valid bits if EOP set */
1162                 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1163                         dev_kfree_skb_any(skb);
1164                         continue;
1165                 }
1166
1167                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1168                              i40e_ptype_to_hash(rx_ptype));
1169                 /* probably a little skewed due to removing CRC */
1170                 total_rx_bytes += skb->len;
1171                 total_rx_packets++;
1172
1173                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1174
1175                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1176
1177                 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1178                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1179                          : 0;
1180                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1181
1182                 rx_desc->wb.qword1.status_error_len = 0;
1183         } while (likely(total_rx_packets < budget));
1184
1185         u64_stats_update_begin(&rx_ring->syncp);
1186         rx_ring->stats.packets += total_rx_packets;
1187         rx_ring->stats.bytes += total_rx_bytes;
1188         u64_stats_update_end(&rx_ring->syncp);
1189         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1190         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1191
1192         return total_rx_packets;
1193 }
1194
1195 /**
1196  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1197  * @vsi: the VSI we care about
1198  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1199  *
1200  **/
1201 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1202                                           struct i40e_q_vector *q_vector)
1203 {
1204         struct i40e_hw *hw = &vsi->back->hw;
1205         u16 old_itr;
1206         int vector;
1207         u32 val;
1208
1209         vector = (q_vector->v_idx + vsi->base_vector);
1210         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
1211                 old_itr = q_vector->rx.itr;
1212                 i40e_set_new_dynamic_itr(&q_vector->rx);
1213                 if (old_itr != q_vector->rx.itr) {
1214                         val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1215                         I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1216                         (I40E_RX_ITR <<
1217                                 I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1218                         (q_vector->rx.itr <<
1219                                 I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1220                 } else {
1221                         val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1222                         I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1223                         (I40E_ITR_NONE <<
1224                                 I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT);
1225                 }
1226                 if (!test_bit(__I40E_DOWN, &vsi->state))
1227                         wr32(hw, I40E_VFINT_DYN_CTLN1(vector - 1), val);
1228         } else {
1229                 i40evf_irq_enable_queues(vsi->back, 1
1230                         << q_vector->v_idx);
1231         }
1232         if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
1233                 old_itr = q_vector->tx.itr;
1234                 i40e_set_new_dynamic_itr(&q_vector->tx);
1235                 if (old_itr != q_vector->tx.itr) {
1236                         val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1237                                 I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1238                                 (I40E_TX_ITR <<
1239                                    I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1240                                 (q_vector->tx.itr <<
1241                                    I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1242
1243                 } else {
1244                         val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1245                                 I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1246                                 (I40E_ITR_NONE <<
1247                                    I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT);
1248                 }
1249                 if (!test_bit(__I40E_DOWN, &vsi->state))
1250                         wr32(hw, I40E_VFINT_DYN_CTLN1(vector - 1), val);
1251         } else {
1252                 i40evf_irq_enable_queues(vsi->back, BIT(q_vector->v_idx));
1253         }
1254 }
1255
1256 /**
1257  * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1258  * @napi: napi struct with our devices info in it
1259  * @budget: amount of work driver is allowed to do this pass, in packets
1260  *
1261  * This function will clean all queues associated with a q_vector.
1262  *
1263  * Returns the amount of work done
1264  **/
1265 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1266 {
1267         struct i40e_q_vector *q_vector =
1268                                container_of(napi, struct i40e_q_vector, napi);
1269         struct i40e_vsi *vsi = q_vector->vsi;
1270         struct i40e_ring *ring;
1271         bool clean_complete = true;
1272         bool arm_wb = false;
1273         int budget_per_ring;
1274         int cleaned;
1275
1276         if (test_bit(__I40E_DOWN, &vsi->state)) {
1277                 napi_complete(napi);
1278                 return 0;
1279         }
1280
1281         /* Since the actual Tx work is minimal, we can give the Tx a larger
1282          * budget and be more aggressive about cleaning up the Tx descriptors.
1283          */
1284         i40e_for_each_ring(ring, q_vector->tx) {
1285                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1286                 arm_wb |= ring->arm_wb;
1287                 ring->arm_wb = false;
1288         }
1289
1290         /* We attempt to distribute budget to each Rx queue fairly, but don't
1291          * allow the budget to go below 1 because that would exit polling early.
1292          */
1293         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1294
1295         i40e_for_each_ring(ring, q_vector->rx) {
1296                 if (ring_is_ps_enabled(ring))
1297                         cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1298                 else
1299                         cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1300                 /* if we didn't clean as many as budgeted, we must be done */
1301                 clean_complete &= (budget_per_ring != cleaned);
1302         }
1303
1304         /* If work not completed, return budget and polling will return */
1305         if (!clean_complete) {
1306                 if (arm_wb)
1307                         i40evf_force_wb(vsi, q_vector);
1308                 return budget;
1309         }
1310
1311         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1312                 q_vector->arm_wb_state = false;
1313
1314         /* Work is done so exit the polling mode and re-enable the interrupt */
1315         napi_complete(napi);
1316         i40e_update_enable_itr(vsi, q_vector);
1317         return 0;
1318 }
1319
1320 /**
1321  * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1322  * @skb:     send buffer
1323  * @tx_ring: ring to send buffer on
1324  * @flags:   the tx flags to be set
1325  *
1326  * Checks the skb and set up correspondingly several generic transmit flags
1327  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1328  *
1329  * Returns error code indicate the frame should be dropped upon error and the
1330  * otherwise  returns 0 to indicate the flags has been set properly.
1331  **/
1332 static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1333                                                struct i40e_ring *tx_ring,
1334                                                u32 *flags)
1335 {
1336         __be16 protocol = skb->protocol;
1337         u32  tx_flags = 0;
1338
1339         if (protocol == htons(ETH_P_8021Q) &&
1340             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1341                 /* When HW VLAN acceleration is turned off by the user the
1342                  * stack sets the protocol to 8021q so that the driver
1343                  * can take any steps required to support the SW only
1344                  * VLAN handling.  In our case the driver doesn't need
1345                  * to take any further steps so just set the protocol
1346                  * to the encapsulated ethertype.
1347                  */
1348                 skb->protocol = vlan_get_protocol(skb);
1349                 goto out;
1350         }
1351
1352         /* if we have a HW VLAN tag being added, default to the HW one */
1353         if (skb_vlan_tag_present(skb)) {
1354                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1355                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1356         /* else if it is a SW VLAN, check the next protocol and store the tag */
1357         } else if (protocol == htons(ETH_P_8021Q)) {
1358                 struct vlan_hdr *vhdr, _vhdr;
1359
1360                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1361                 if (!vhdr)
1362                         return -EINVAL;
1363
1364                 protocol = vhdr->h_vlan_encapsulated_proto;
1365                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1366                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1367         }
1368
1369 out:
1370         *flags = tx_flags;
1371         return 0;
1372 }
1373
1374 /**
1375  * i40e_tso - set up the tso context descriptor
1376  * @tx_ring:  ptr to the ring to send
1377  * @skb:      ptr to the skb we're sending
1378  * @hdr_len:  ptr to the size of the packet header
1379  * @cd_tunneling: ptr to context descriptor bits
1380  *
1381  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1382  **/
1383 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1384                     u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
1385                     u32 *cd_tunneling)
1386 {
1387         u32 cd_cmd, cd_tso_len, cd_mss;
1388         struct ipv6hdr *ipv6h;
1389         struct tcphdr *tcph;
1390         struct iphdr *iph;
1391         u32 l4len;
1392         int err;
1393
1394         if (!skb_is_gso(skb))
1395                 return 0;
1396
1397         err = skb_cow_head(skb, 0);
1398         if (err < 0)
1399                 return err;
1400
1401         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1402         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1403
1404         if (iph->version == 4) {
1405                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1406                 iph->tot_len = 0;
1407                 iph->check = 0;
1408                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1409                                                  0, IPPROTO_TCP, 0);
1410         } else if (ipv6h->version == 6) {
1411                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1412                 ipv6h->payload_len = 0;
1413                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1414                                                0, IPPROTO_TCP, 0);
1415         }
1416
1417         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1418         *hdr_len = (skb->encapsulation
1419                     ? (skb_inner_transport_header(skb) - skb->data)
1420                     : skb_transport_offset(skb)) + l4len;
1421
1422         /* find the field values */
1423         cd_cmd = I40E_TX_CTX_DESC_TSO;
1424         cd_tso_len = skb->len - *hdr_len;
1425         cd_mss = skb_shinfo(skb)->gso_size;
1426         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1427                                 ((u64)cd_tso_len <<
1428                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1429                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1430         return 1;
1431 }
1432
1433 /**
1434  * i40e_tx_enable_csum - Enable Tx checksum offloads
1435  * @skb: send buffer
1436  * @tx_flags: pointer to Tx flags currently set
1437  * @td_cmd: Tx descriptor command bits to set
1438  * @td_offset: Tx descriptor header offsets to set
1439  * @cd_tunneling: ptr to context desc bits
1440  **/
1441 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1442                                 u32 *td_cmd, u32 *td_offset,
1443                                 struct i40e_ring *tx_ring,
1444                                 u32 *cd_tunneling)
1445 {
1446         struct ipv6hdr *this_ipv6_hdr;
1447         unsigned int this_tcp_hdrlen;
1448         struct iphdr *this_ip_hdr;
1449         u32 network_hdr_len;
1450         u8 l4_hdr = 0;
1451         struct udphdr *oudph;
1452         struct iphdr *oiph;
1453         u32 l4_tunnel = 0;
1454
1455         if (skb->encapsulation) {
1456                 switch (ip_hdr(skb)->protocol) {
1457                 case IPPROTO_UDP:
1458                         oudph = udp_hdr(skb);
1459                         oiph = ip_hdr(skb);
1460                         l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
1461                         *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1462                         break;
1463                 default:
1464                         return;
1465                 }
1466                 network_hdr_len = skb_inner_network_header_len(skb);
1467                 this_ip_hdr = inner_ip_hdr(skb);
1468                 this_ipv6_hdr = inner_ipv6_hdr(skb);
1469                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1470
1471                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1472                         if (*tx_flags & I40E_TX_FLAGS_TSO) {
1473                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1474                                 ip_hdr(skb)->check = 0;
1475                         } else {
1476                                 *cd_tunneling |=
1477                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1478                         }
1479                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1480                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1481                         if (*tx_flags & I40E_TX_FLAGS_TSO)
1482                                 ip_hdr(skb)->check = 0;
1483                 }
1484
1485                 /* Now set the ctx descriptor fields */
1486                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1487                                    I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT      |
1488                                    l4_tunnel                             |
1489                                    ((skb_inner_network_offset(skb) -
1490                                         skb_transport_offset(skb)) >> 1) <<
1491                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1492                 if (this_ip_hdr->version == 6) {
1493                         *tx_flags &= ~I40E_TX_FLAGS_IPV4;
1494                         *tx_flags |= I40E_TX_FLAGS_IPV6;
1495                 }
1496
1497
1498                 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
1499                     (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING)        &&
1500                     (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
1501                         oudph->check = ~csum_tcpudp_magic(oiph->saddr,
1502                                         oiph->daddr,
1503                                         (skb->len - skb_transport_offset(skb)),
1504                                         IPPROTO_UDP, 0);
1505                         *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1506                 }
1507         } else {
1508                 network_hdr_len = skb_network_header_len(skb);
1509                 this_ip_hdr = ip_hdr(skb);
1510                 this_ipv6_hdr = ipv6_hdr(skb);
1511                 this_tcp_hdrlen = tcp_hdrlen(skb);
1512         }
1513
1514         /* Enable IP checksum offloads */
1515         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1516                 l4_hdr = this_ip_hdr->protocol;
1517                 /* the stack computes the IP header already, the only time we
1518                  * need the hardware to recompute it is in the case of TSO.
1519                  */
1520                 if (*tx_flags & I40E_TX_FLAGS_TSO) {
1521                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1522                         this_ip_hdr->check = 0;
1523                 } else {
1524                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1525                 }
1526                 /* Now set the td_offset for IP header length */
1527                 *td_offset = (network_hdr_len >> 2) <<
1528                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1529         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1530                 l4_hdr = this_ipv6_hdr->nexthdr;
1531                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1532                 /* Now set the td_offset for IP header length */
1533                 *td_offset = (network_hdr_len >> 2) <<
1534                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1535         }
1536         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1537         *td_offset |= (skb_network_offset(skb) >> 1) <<
1538                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1539
1540         /* Enable L4 checksum offloads */
1541         switch (l4_hdr) {
1542         case IPPROTO_TCP:
1543                 /* enable checksum offloads */
1544                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1545                 *td_offset |= (this_tcp_hdrlen >> 2) <<
1546                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1547                 break;
1548         case IPPROTO_SCTP:
1549                 /* enable SCTP checksum offload */
1550                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1551                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1552                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1553                 break;
1554         case IPPROTO_UDP:
1555                 /* enable UDP checksum offload */
1556                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1557                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1558                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1559                 break;
1560         default:
1561                 break;
1562         }
1563 }
1564
1565 /**
1566  * i40e_create_tx_ctx Build the Tx context descriptor
1567  * @tx_ring:  ring to create the descriptor on
1568  * @cd_type_cmd_tso_mss: Quad Word 1
1569  * @cd_tunneling: Quad Word 0 - bits 0-31
1570  * @cd_l2tag2: Quad Word 0 - bits 32-63
1571  **/
1572 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1573                                const u64 cd_type_cmd_tso_mss,
1574                                const u32 cd_tunneling, const u32 cd_l2tag2)
1575 {
1576         struct i40e_tx_context_desc *context_desc;
1577         int i = tx_ring->next_to_use;
1578
1579         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1580             !cd_tunneling && !cd_l2tag2)
1581                 return;
1582
1583         /* grab the next descriptor */
1584         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1585
1586         i++;
1587         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1588
1589         /* cpu_to_le32 and assign to struct fields */
1590         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1591         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1592         context_desc->rsvd = cpu_to_le16(0);
1593         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1594 }
1595
1596  /**
1597  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1598  * @skb:      send buffer
1599  * @tx_flags: collected send information
1600  *
1601  * Note: Our HW can't scatter-gather more than 8 fragments to build
1602  * a packet on the wire and so we need to figure out the cases where we
1603  * need to linearize the skb.
1604  **/
1605 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
1606 {
1607         struct skb_frag_struct *frag;
1608         bool linearize = false;
1609         unsigned int size = 0;
1610         u16 num_frags;
1611         u16 gso_segs;
1612
1613         num_frags = skb_shinfo(skb)->nr_frags;
1614         gso_segs = skb_shinfo(skb)->gso_segs;
1615
1616         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
1617                 u16 j = 0;
1618
1619                 if (num_frags < (I40E_MAX_BUFFER_TXD))
1620                         goto linearize_chk_done;
1621                 /* try the simple math, if we have too many frags per segment */
1622                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1623                     I40E_MAX_BUFFER_TXD) {
1624                         linearize = true;
1625                         goto linearize_chk_done;
1626                 }
1627                 frag = &skb_shinfo(skb)->frags[0];
1628                 /* we might still have more fragments per segment */
1629                 do {
1630                         size += skb_frag_size(frag);
1631                         frag++; j++;
1632                         if ((size >= skb_shinfo(skb)->gso_size) &&
1633                             (j < I40E_MAX_BUFFER_TXD)) {
1634                                 size = (size % skb_shinfo(skb)->gso_size);
1635                                 j = (size) ? 1 : 0;
1636                         }
1637                         if (j == I40E_MAX_BUFFER_TXD) {
1638                                 linearize = true;
1639                                 break;
1640                         }
1641                         num_frags--;
1642                 } while (num_frags);
1643         } else {
1644                 if (num_frags >= I40E_MAX_BUFFER_TXD)
1645                         linearize = true;
1646         }
1647
1648 linearize_chk_done:
1649         return linearize;
1650 }
1651
1652 /**
1653  * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1654  * @tx_ring: the ring to be checked
1655  * @size:    the size buffer we want to assure is available
1656  *
1657  * Returns -EBUSY if a stop is needed, else 0
1658  **/
1659 static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1660 {
1661         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1662         /* Memory barrier before checking head and tail */
1663         smp_mb();
1664
1665         /* Check again in a case another CPU has just made room available. */
1666         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1667                 return -EBUSY;
1668
1669         /* A reprieve! - use start_queue because it doesn't call schedule */
1670         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1671         ++tx_ring->tx_stats.restart_queue;
1672         return 0;
1673 }
1674
1675 /**
1676  * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
1677  * @tx_ring: the ring to be checked
1678  * @size:    the size buffer we want to assure is available
1679  *
1680  * Returns 0 if stop is not needed
1681  **/
1682 static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1683 {
1684         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1685                 return 0;
1686         return __i40evf_maybe_stop_tx(tx_ring, size);
1687 }
1688
1689 /**
1690  * i40evf_tx_map - Build the Tx descriptor
1691  * @tx_ring:  ring to send buffer on
1692  * @skb:      send buffer
1693  * @first:    first buffer info buffer to use
1694  * @tx_flags: collected send information
1695  * @hdr_len:  size of the packet header
1696  * @td_cmd:   the command field in the descriptor
1697  * @td_offset: offset for checksum or crc
1698  **/
1699 static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1700                                  struct i40e_tx_buffer *first, u32 tx_flags,
1701                                  const u8 hdr_len, u32 td_cmd, u32 td_offset)
1702 {
1703         unsigned int data_len = skb->data_len;
1704         unsigned int size = skb_headlen(skb);
1705         struct skb_frag_struct *frag;
1706         struct i40e_tx_buffer *tx_bi;
1707         struct i40e_tx_desc *tx_desc;
1708         u16 i = tx_ring->next_to_use;
1709         u32 td_tag = 0;
1710         dma_addr_t dma;
1711         u16 gso_segs;
1712
1713         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1714                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1715                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1716                          I40E_TX_FLAGS_VLAN_SHIFT;
1717         }
1718
1719         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1720                 gso_segs = skb_shinfo(skb)->gso_segs;
1721         else
1722                 gso_segs = 1;
1723
1724         /* multiply data chunks by size of headers */
1725         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1726         first->gso_segs = gso_segs;
1727         first->skb = skb;
1728         first->tx_flags = tx_flags;
1729
1730         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1731
1732         tx_desc = I40E_TX_DESC(tx_ring, i);
1733         tx_bi = first;
1734
1735         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1736                 if (dma_mapping_error(tx_ring->dev, dma))
1737                         goto dma_error;
1738
1739                 /* record length, and DMA address */
1740                 dma_unmap_len_set(tx_bi, len, size);
1741                 dma_unmap_addr_set(tx_bi, dma, dma);
1742
1743                 tx_desc->buffer_addr = cpu_to_le64(dma);
1744
1745                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1746                         tx_desc->cmd_type_offset_bsz =
1747                                 build_ctob(td_cmd, td_offset,
1748                                            I40E_MAX_DATA_PER_TXD, td_tag);
1749
1750                         tx_desc++;
1751                         i++;
1752                         if (i == tx_ring->count) {
1753                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
1754                                 i = 0;
1755                         }
1756
1757                         dma += I40E_MAX_DATA_PER_TXD;
1758                         size -= I40E_MAX_DATA_PER_TXD;
1759
1760                         tx_desc->buffer_addr = cpu_to_le64(dma);
1761                 }
1762
1763                 if (likely(!data_len))
1764                         break;
1765
1766                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1767                                                           size, td_tag);
1768
1769                 tx_desc++;
1770                 i++;
1771                 if (i == tx_ring->count) {
1772                         tx_desc = I40E_TX_DESC(tx_ring, 0);
1773                         i = 0;
1774                 }
1775
1776                 size = skb_frag_size(frag);
1777                 data_len -= size;
1778
1779                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1780                                        DMA_TO_DEVICE);
1781
1782                 tx_bi = &tx_ring->tx_bi[i];
1783         }
1784
1785         /* Place RS bit on last descriptor of any packet that spans across the
1786          * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1787          */
1788 #define WB_STRIDE 0x3
1789         if (((i & WB_STRIDE) != WB_STRIDE) &&
1790             (first <= &tx_ring->tx_bi[i]) &&
1791             (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1792                 tx_desc->cmd_type_offset_bsz =
1793                         build_ctob(td_cmd, td_offset, size, td_tag) |
1794                         cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1795                                          I40E_TXD_QW1_CMD_SHIFT);
1796         } else {
1797                 tx_desc->cmd_type_offset_bsz =
1798                         build_ctob(td_cmd, td_offset, size, td_tag) |
1799                         cpu_to_le64((u64)I40E_TXD_CMD <<
1800                                          I40E_TXD_QW1_CMD_SHIFT);
1801         }
1802
1803         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1804                                                  tx_ring->queue_index),
1805                              first->bytecount);
1806
1807         /* Force memory writes to complete before letting h/w
1808          * know there are new descriptors to fetch.  (Only
1809          * applicable for weak-ordered memory model archs,
1810          * such as IA-64).
1811          */
1812         wmb();
1813
1814         /* set next_to_watch value indicating a packet is present */
1815         first->next_to_watch = tx_desc;
1816
1817         i++;
1818         if (i == tx_ring->count)
1819                 i = 0;
1820
1821         tx_ring->next_to_use = i;
1822
1823         i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
1824         /* notify HW of packet */
1825         if (!skb->xmit_more ||
1826             netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
1827                                                    tx_ring->queue_index)))
1828                 writel(i, tx_ring->tail);
1829         else
1830                 prefetchw(tx_desc + 1);
1831
1832         return;
1833
1834 dma_error:
1835         dev_info(tx_ring->dev, "TX DMA map failed\n");
1836
1837         /* clear dma mappings for failed tx_bi map */
1838         for (;;) {
1839                 tx_bi = &tx_ring->tx_bi[i];
1840                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1841                 if (tx_bi == first)
1842                         break;
1843                 if (i == 0)
1844                         i = tx_ring->count;
1845                 i--;
1846         }
1847
1848         tx_ring->next_to_use = i;
1849 }
1850
1851 /**
1852  * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
1853  * @skb:     send buffer
1854  * @tx_ring: ring to send buffer on
1855  *
1856  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1857  * there is not enough descriptors available in this ring since we need at least
1858  * one descriptor.
1859  **/
1860 static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
1861                                                struct i40e_ring *tx_ring)
1862 {
1863         unsigned int f;
1864         int count = 0;
1865
1866         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1867          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1868          *       + 4 desc gap to avoid the cache line where head is,
1869          *       + 1 desc for context descriptor,
1870          * otherwise try next time
1871          */
1872         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1873                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1874
1875         count += TXD_USE_COUNT(skb_headlen(skb));
1876         if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1877                 tx_ring->tx_stats.tx_busy++;
1878                 return 0;
1879         }
1880         return count;
1881 }
1882
1883 /**
1884  * i40e_xmit_frame_ring - Sends buffer on Tx ring
1885  * @skb:     send buffer
1886  * @tx_ring: ring to send buffer on
1887  *
1888  * Returns NETDEV_TX_OK if sent, else an error code
1889  **/
1890 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1891                                         struct i40e_ring *tx_ring)
1892 {
1893         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1894         u32 cd_tunneling = 0, cd_l2tag2 = 0;
1895         struct i40e_tx_buffer *first;
1896         u32 td_offset = 0;
1897         u32 tx_flags = 0;
1898         __be16 protocol;
1899         u32 td_cmd = 0;
1900         u8 hdr_len = 0;
1901         int tso;
1902
1903         if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
1904                 return NETDEV_TX_BUSY;
1905
1906         /* prepare the xmit flags */
1907         if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1908                 goto out_drop;
1909
1910         /* obtain protocol of skb */
1911         protocol = vlan_get_protocol(skb);
1912
1913         /* record the location of the first descriptor for this packet */
1914         first = &tx_ring->tx_bi[tx_ring->next_to_use];
1915
1916         /* setup IPv4/IPv6 offloads */
1917         if (protocol == htons(ETH_P_IP))
1918                 tx_flags |= I40E_TX_FLAGS_IPV4;
1919         else if (protocol == htons(ETH_P_IPV6))
1920                 tx_flags |= I40E_TX_FLAGS_IPV6;
1921
1922         tso = i40e_tso(tx_ring, skb, &hdr_len,
1923                        &cd_type_cmd_tso_mss, &cd_tunneling);
1924
1925         if (tso < 0)
1926                 goto out_drop;
1927         else if (tso)
1928                 tx_flags |= I40E_TX_FLAGS_TSO;
1929
1930         if (i40e_chk_linearize(skb, tx_flags)) {
1931                 if (skb_linearize(skb))
1932                         goto out_drop;
1933                 tx_ring->tx_stats.tx_linearize++;
1934         }
1935         skb_tx_timestamp(skb);
1936
1937         /* always enable CRC insertion offload */
1938         td_cmd |= I40E_TX_DESC_CMD_ICRC;
1939
1940         /* Always offload the checksum, since it's in the data descriptor */
1941         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1942                 tx_flags |= I40E_TX_FLAGS_CSUM;
1943
1944                 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
1945                                     tx_ring, &cd_tunneling);
1946         }
1947
1948         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1949                            cd_tunneling, cd_l2tag2);
1950
1951         i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1952                       td_cmd, td_offset);
1953
1954         return NETDEV_TX_OK;
1955
1956 out_drop:
1957         dev_kfree_skb_any(skb);
1958         return NETDEV_TX_OK;
1959 }
1960
1961 /**
1962  * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1963  * @skb:    send buffer
1964  * @netdev: network interface device structure
1965  *
1966  * Returns NETDEV_TX_OK if sent, else an error code
1967  **/
1968 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1969 {
1970         struct i40evf_adapter *adapter = netdev_priv(netdev);
1971         struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1972
1973         /* hardware can't handle really short frames, hardware padding works
1974          * beyond this point
1975          */
1976         if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1977                 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1978                         return NETDEV_TX_OK;
1979                 skb->len = I40E_MIN_TX_LEN;
1980                 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1981         }
1982
1983         return i40e_xmit_frame_ring(skb, tx_ring);
1984 }