]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/intel/igb/igb_ethtool.c
Merge tag 'iwlwifi-next-for-kalle-2015-09-21' of git://git.kernel.org/pub/scm/linux...
[karo-tx-linux.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 /* ethtool support for igb */
25
26 #include <linux/vmalloc.h>
27 #include <linux/netdevice.h>
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/if_ether.h>
32 #include <linux/ethtool.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/highmem.h>
37 #include <linux/mdio.h>
38
39 #include "igb.h"
40
41 struct igb_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int sizeof_stat;
44         int stat_offset;
45 };
46
47 #define IGB_STAT(_name, _stat) { \
48         .stat_string = _name, \
49         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50         .stat_offset = offsetof(struct igb_adapter, _stat) \
51 }
52 static const struct igb_stats igb_gstrings_stats[] = {
53         IGB_STAT("rx_packets", stats.gprc),
54         IGB_STAT("tx_packets", stats.gptc),
55         IGB_STAT("rx_bytes", stats.gorc),
56         IGB_STAT("tx_bytes", stats.gotc),
57         IGB_STAT("rx_broadcast", stats.bprc),
58         IGB_STAT("tx_broadcast", stats.bptc),
59         IGB_STAT("rx_multicast", stats.mprc),
60         IGB_STAT("tx_multicast", stats.mptc),
61         IGB_STAT("multicast", stats.mprc),
62         IGB_STAT("collisions", stats.colc),
63         IGB_STAT("rx_crc_errors", stats.crcerrs),
64         IGB_STAT("rx_no_buffer_count", stats.rnbc),
65         IGB_STAT("rx_missed_errors", stats.mpc),
66         IGB_STAT("tx_aborted_errors", stats.ecol),
67         IGB_STAT("tx_carrier_errors", stats.tncrs),
68         IGB_STAT("tx_window_errors", stats.latecol),
69         IGB_STAT("tx_abort_late_coll", stats.latecol),
70         IGB_STAT("tx_deferred_ok", stats.dc),
71         IGB_STAT("tx_single_coll_ok", stats.scc),
72         IGB_STAT("tx_multi_coll_ok", stats.mcc),
73         IGB_STAT("tx_timeout_count", tx_timeout_count),
74         IGB_STAT("rx_long_length_errors", stats.roc),
75         IGB_STAT("rx_short_length_errors", stats.ruc),
76         IGB_STAT("rx_align_errors", stats.algnerrc),
77         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81         IGB_STAT("tx_flow_control_xon", stats.xontxc),
82         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83         IGB_STAT("rx_long_byte_count", stats.gorc),
84         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85         IGB_STAT("tx_smbus", stats.mgptc),
86         IGB_STAT("rx_smbus", stats.mgprc),
87         IGB_STAT("dropped_smbus", stats.mgpdc),
88         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
89         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
90         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
91         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
92         IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
93         IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 };
95
96 #define IGB_NETDEV_STAT(_net_stat) { \
97         .stat_string = __stringify(_net_stat), \
98         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102         IGB_NETDEV_STAT(rx_errors),
103         IGB_NETDEV_STAT(tx_errors),
104         IGB_NETDEV_STAT(tx_dropped),
105         IGB_NETDEV_STAT(rx_length_errors),
106         IGB_NETDEV_STAT(rx_over_errors),
107         IGB_NETDEV_STAT(rx_frame_errors),
108         IGB_NETDEV_STAT(rx_fifo_errors),
109         IGB_NETDEV_STAT(tx_fifo_errors),
110         IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112
113 #define IGB_GLOBAL_STATS_LEN    \
114         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN    \
116         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122 #define IGB_QUEUE_STATS_LEN \
123         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124           IGB_RX_QUEUE_STATS_LEN) + \
125          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126           IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131         "Register test  (offline)", "Eeprom test    (offline)",
132         "Interrupt test (offline)", "Loopback test  (offline)",
133         "Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139         struct igb_adapter *adapter = netdev_priv(netdev);
140         struct e1000_hw *hw = &adapter->hw;
141         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
142         struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
143         u32 status;
144         u32 speed;
145
146         status = rd32(E1000_STATUS);
147         if (hw->phy.media_type == e1000_media_type_copper) {
148
149                 ecmd->supported = (SUPPORTED_10baseT_Half |
150                                    SUPPORTED_10baseT_Full |
151                                    SUPPORTED_100baseT_Half |
152                                    SUPPORTED_100baseT_Full |
153                                    SUPPORTED_1000baseT_Full|
154                                    SUPPORTED_Autoneg |
155                                    SUPPORTED_TP |
156                                    SUPPORTED_Pause);
157                 ecmd->advertising = ADVERTISED_TP;
158
159                 if (hw->mac.autoneg == 1) {
160                         ecmd->advertising |= ADVERTISED_Autoneg;
161                         /* the e1000 autoneg seems to match ethtool nicely */
162                         ecmd->advertising |= hw->phy.autoneg_advertised;
163                 }
164
165                 ecmd->port = PORT_TP;
166                 ecmd->phy_address = hw->phy.addr;
167                 ecmd->transceiver = XCVR_INTERNAL;
168         } else {
169                 ecmd->supported = (SUPPORTED_FIBRE |
170                                    SUPPORTED_1000baseKX_Full |
171                                    SUPPORTED_Autoneg |
172                                    SUPPORTED_Pause);
173                 ecmd->advertising = (ADVERTISED_FIBRE |
174                                      ADVERTISED_1000baseKX_Full);
175                 if (hw->mac.type == e1000_i354) {
176                         if ((hw->device_id ==
177                              E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178                             !(status & E1000_STATUS_2P5_SKU_OVER)) {
179                                 ecmd->supported |= SUPPORTED_2500baseX_Full;
180                                 ecmd->supported &=
181                                         ~SUPPORTED_1000baseKX_Full;
182                                 ecmd->advertising |= ADVERTISED_2500baseX_Full;
183                                 ecmd->advertising &=
184                                         ~ADVERTISED_1000baseKX_Full;
185                         }
186                 }
187                 if (eth_flags->e100_base_fx) {
188                         ecmd->supported |= SUPPORTED_100baseT_Full;
189                         ecmd->advertising |= ADVERTISED_100baseT_Full;
190                 }
191                 if (hw->mac.autoneg == 1)
192                         ecmd->advertising |= ADVERTISED_Autoneg;
193
194                 ecmd->port = PORT_FIBRE;
195                 ecmd->transceiver = XCVR_EXTERNAL;
196         }
197         if (hw->mac.autoneg != 1)
198                 ecmd->advertising &= ~(ADVERTISED_Pause |
199                                        ADVERTISED_Asym_Pause);
200
201         switch (hw->fc.requested_mode) {
202         case e1000_fc_full:
203                 ecmd->advertising |= ADVERTISED_Pause;
204                 break;
205         case e1000_fc_rx_pause:
206                 ecmd->advertising |= (ADVERTISED_Pause |
207                                       ADVERTISED_Asym_Pause);
208                 break;
209         case e1000_fc_tx_pause:
210                 ecmd->advertising |=  ADVERTISED_Asym_Pause;
211                 break;
212         default:
213                 ecmd->advertising &= ~(ADVERTISED_Pause |
214                                        ADVERTISED_Asym_Pause);
215         }
216         if (status & E1000_STATUS_LU) {
217                 if ((status & E1000_STATUS_2P5_SKU) &&
218                     !(status & E1000_STATUS_2P5_SKU_OVER)) {
219                         speed = SPEED_2500;
220                 } else if (status & E1000_STATUS_SPEED_1000) {
221                         speed = SPEED_1000;
222                 } else if (status & E1000_STATUS_SPEED_100) {
223                         speed = SPEED_100;
224                 } else {
225                         speed = SPEED_10;
226                 }
227                 if ((status & E1000_STATUS_FD) ||
228                     hw->phy.media_type != e1000_media_type_copper)
229                         ecmd->duplex = DUPLEX_FULL;
230                 else
231                         ecmd->duplex = DUPLEX_HALF;
232         } else {
233                 speed = SPEED_UNKNOWN;
234                 ecmd->duplex = DUPLEX_UNKNOWN;
235         }
236         ethtool_cmd_speed_set(ecmd, speed);
237         if ((hw->phy.media_type == e1000_media_type_fiber) ||
238             hw->mac.autoneg)
239                 ecmd->autoneg = AUTONEG_ENABLE;
240         else
241                 ecmd->autoneg = AUTONEG_DISABLE;
242
243         /* MDI-X => 2; MDI =>1; Invalid =>0 */
244         if (hw->phy.media_type == e1000_media_type_copper)
245                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
246                                                       ETH_TP_MDI;
247         else
248                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
249
250         if (hw->phy.mdix == AUTO_ALL_MODES)
251                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
252         else
253                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
254
255         return 0;
256 }
257
258 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
259 {
260         struct igb_adapter *adapter = netdev_priv(netdev);
261         struct e1000_hw *hw = &adapter->hw;
262
263         /* When SoL/IDER sessions are active, autoneg/speed/duplex
264          * cannot be changed
265          */
266         if (igb_check_reset_block(hw)) {
267                 dev_err(&adapter->pdev->dev,
268                         "Cannot change link characteristics when SoL/IDER is active.\n");
269                 return -EINVAL;
270         }
271
272         /* MDI setting is only allowed when autoneg enabled because
273          * some hardware doesn't allow MDI setting when speed or
274          * duplex is forced.
275          */
276         if (ecmd->eth_tp_mdix_ctrl) {
277                 if (hw->phy.media_type != e1000_media_type_copper)
278                         return -EOPNOTSUPP;
279
280                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
281                     (ecmd->autoneg != AUTONEG_ENABLE)) {
282                         dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
283                         return -EINVAL;
284                 }
285         }
286
287         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
288                 usleep_range(1000, 2000);
289
290         if (ecmd->autoneg == AUTONEG_ENABLE) {
291                 hw->mac.autoneg = 1;
292                 if (hw->phy.media_type == e1000_media_type_fiber) {
293                         hw->phy.autoneg_advertised = ecmd->advertising |
294                                                      ADVERTISED_FIBRE |
295                                                      ADVERTISED_Autoneg;
296                         switch (adapter->link_speed) {
297                         case SPEED_2500:
298                                 hw->phy.autoneg_advertised =
299                                         ADVERTISED_2500baseX_Full;
300                                 break;
301                         case SPEED_1000:
302                                 hw->phy.autoneg_advertised =
303                                         ADVERTISED_1000baseT_Full;
304                                 break;
305                         case SPEED_100:
306                                 hw->phy.autoneg_advertised =
307                                         ADVERTISED_100baseT_Full;
308                                 break;
309                         default:
310                                 break;
311                         }
312                 } else {
313                         hw->phy.autoneg_advertised = ecmd->advertising |
314                                                      ADVERTISED_TP |
315                                                      ADVERTISED_Autoneg;
316                 }
317                 ecmd->advertising = hw->phy.autoneg_advertised;
318                 if (adapter->fc_autoneg)
319                         hw->fc.requested_mode = e1000_fc_default;
320         } else {
321                 u32 speed = ethtool_cmd_speed(ecmd);
322                 /* calling this overrides forced MDI setting */
323                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
324                         clear_bit(__IGB_RESETTING, &adapter->state);
325                         return -EINVAL;
326                 }
327         }
328
329         /* MDI-X => 2; MDI => 1; Auto => 3 */
330         if (ecmd->eth_tp_mdix_ctrl) {
331                 /* fix up the value for auto (3 => 0) as zero is mapped
332                  * internally to auto
333                  */
334                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
335                         hw->phy.mdix = AUTO_ALL_MODES;
336                 else
337                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
338         }
339
340         /* reset the link */
341         if (netif_running(adapter->netdev)) {
342                 igb_down(adapter);
343                 igb_up(adapter);
344         } else
345                 igb_reset(adapter);
346
347         clear_bit(__IGB_RESETTING, &adapter->state);
348         return 0;
349 }
350
351 static u32 igb_get_link(struct net_device *netdev)
352 {
353         struct igb_adapter *adapter = netdev_priv(netdev);
354         struct e1000_mac_info *mac = &adapter->hw.mac;
355
356         /* If the link is not reported up to netdev, interrupts are disabled,
357          * and so the physical link state may have changed since we last
358          * looked. Set get_link_status to make sure that the true link
359          * state is interrogated, rather than pulling a cached and possibly
360          * stale link state from the driver.
361          */
362         if (!netif_carrier_ok(netdev))
363                 mac->get_link_status = 1;
364
365         return igb_has_link(adapter);
366 }
367
368 static void igb_get_pauseparam(struct net_device *netdev,
369                                struct ethtool_pauseparam *pause)
370 {
371         struct igb_adapter *adapter = netdev_priv(netdev);
372         struct e1000_hw *hw = &adapter->hw;
373
374         pause->autoneg =
375                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
376
377         if (hw->fc.current_mode == e1000_fc_rx_pause)
378                 pause->rx_pause = 1;
379         else if (hw->fc.current_mode == e1000_fc_tx_pause)
380                 pause->tx_pause = 1;
381         else if (hw->fc.current_mode == e1000_fc_full) {
382                 pause->rx_pause = 1;
383                 pause->tx_pause = 1;
384         }
385 }
386
387 static int igb_set_pauseparam(struct net_device *netdev,
388                               struct ethtool_pauseparam *pause)
389 {
390         struct igb_adapter *adapter = netdev_priv(netdev);
391         struct e1000_hw *hw = &adapter->hw;
392         int retval = 0;
393
394         /* 100basefx does not support setting link flow control */
395         if (hw->dev_spec._82575.eth_flags.e100_base_fx)
396                 return -EINVAL;
397
398         adapter->fc_autoneg = pause->autoneg;
399
400         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
401                 usleep_range(1000, 2000);
402
403         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
404                 hw->fc.requested_mode = e1000_fc_default;
405                 if (netif_running(adapter->netdev)) {
406                         igb_down(adapter);
407                         igb_up(adapter);
408                 } else {
409                         igb_reset(adapter);
410                 }
411         } else {
412                 if (pause->rx_pause && pause->tx_pause)
413                         hw->fc.requested_mode = e1000_fc_full;
414                 else if (pause->rx_pause && !pause->tx_pause)
415                         hw->fc.requested_mode = e1000_fc_rx_pause;
416                 else if (!pause->rx_pause && pause->tx_pause)
417                         hw->fc.requested_mode = e1000_fc_tx_pause;
418                 else if (!pause->rx_pause && !pause->tx_pause)
419                         hw->fc.requested_mode = e1000_fc_none;
420
421                 hw->fc.current_mode = hw->fc.requested_mode;
422
423                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
424                           igb_force_mac_fc(hw) : igb_setup_link(hw));
425         }
426
427         clear_bit(__IGB_RESETTING, &adapter->state);
428         return retval;
429 }
430
431 static u32 igb_get_msglevel(struct net_device *netdev)
432 {
433         struct igb_adapter *adapter = netdev_priv(netdev);
434         return adapter->msg_enable;
435 }
436
437 static void igb_set_msglevel(struct net_device *netdev, u32 data)
438 {
439         struct igb_adapter *adapter = netdev_priv(netdev);
440         adapter->msg_enable = data;
441 }
442
443 static int igb_get_regs_len(struct net_device *netdev)
444 {
445 #define IGB_REGS_LEN 739
446         return IGB_REGS_LEN * sizeof(u32);
447 }
448
449 static void igb_get_regs(struct net_device *netdev,
450                          struct ethtool_regs *regs, void *p)
451 {
452         struct igb_adapter *adapter = netdev_priv(netdev);
453         struct e1000_hw *hw = &adapter->hw;
454         u32 *regs_buff = p;
455         u8 i;
456
457         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
458
459         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
460
461         /* General Registers */
462         regs_buff[0] = rd32(E1000_CTRL);
463         regs_buff[1] = rd32(E1000_STATUS);
464         regs_buff[2] = rd32(E1000_CTRL_EXT);
465         regs_buff[3] = rd32(E1000_MDIC);
466         regs_buff[4] = rd32(E1000_SCTL);
467         regs_buff[5] = rd32(E1000_CONNSW);
468         regs_buff[6] = rd32(E1000_VET);
469         regs_buff[7] = rd32(E1000_LEDCTL);
470         regs_buff[8] = rd32(E1000_PBA);
471         regs_buff[9] = rd32(E1000_PBS);
472         regs_buff[10] = rd32(E1000_FRTIMER);
473         regs_buff[11] = rd32(E1000_TCPTIMER);
474
475         /* NVM Register */
476         regs_buff[12] = rd32(E1000_EECD);
477
478         /* Interrupt */
479         /* Reading EICS for EICR because they read the
480          * same but EICS does not clear on read
481          */
482         regs_buff[13] = rd32(E1000_EICS);
483         regs_buff[14] = rd32(E1000_EICS);
484         regs_buff[15] = rd32(E1000_EIMS);
485         regs_buff[16] = rd32(E1000_EIMC);
486         regs_buff[17] = rd32(E1000_EIAC);
487         regs_buff[18] = rd32(E1000_EIAM);
488         /* Reading ICS for ICR because they read the
489          * same but ICS does not clear on read
490          */
491         regs_buff[19] = rd32(E1000_ICS);
492         regs_buff[20] = rd32(E1000_ICS);
493         regs_buff[21] = rd32(E1000_IMS);
494         regs_buff[22] = rd32(E1000_IMC);
495         regs_buff[23] = rd32(E1000_IAC);
496         regs_buff[24] = rd32(E1000_IAM);
497         regs_buff[25] = rd32(E1000_IMIRVP);
498
499         /* Flow Control */
500         regs_buff[26] = rd32(E1000_FCAL);
501         regs_buff[27] = rd32(E1000_FCAH);
502         regs_buff[28] = rd32(E1000_FCTTV);
503         regs_buff[29] = rd32(E1000_FCRTL);
504         regs_buff[30] = rd32(E1000_FCRTH);
505         regs_buff[31] = rd32(E1000_FCRTV);
506
507         /* Receive */
508         regs_buff[32] = rd32(E1000_RCTL);
509         regs_buff[33] = rd32(E1000_RXCSUM);
510         regs_buff[34] = rd32(E1000_RLPML);
511         regs_buff[35] = rd32(E1000_RFCTL);
512         regs_buff[36] = rd32(E1000_MRQC);
513         regs_buff[37] = rd32(E1000_VT_CTL);
514
515         /* Transmit */
516         regs_buff[38] = rd32(E1000_TCTL);
517         regs_buff[39] = rd32(E1000_TCTL_EXT);
518         regs_buff[40] = rd32(E1000_TIPG);
519         regs_buff[41] = rd32(E1000_DTXCTL);
520
521         /* Wake Up */
522         regs_buff[42] = rd32(E1000_WUC);
523         regs_buff[43] = rd32(E1000_WUFC);
524         regs_buff[44] = rd32(E1000_WUS);
525         regs_buff[45] = rd32(E1000_IPAV);
526         regs_buff[46] = rd32(E1000_WUPL);
527
528         /* MAC */
529         regs_buff[47] = rd32(E1000_PCS_CFG0);
530         regs_buff[48] = rd32(E1000_PCS_LCTL);
531         regs_buff[49] = rd32(E1000_PCS_LSTAT);
532         regs_buff[50] = rd32(E1000_PCS_ANADV);
533         regs_buff[51] = rd32(E1000_PCS_LPAB);
534         regs_buff[52] = rd32(E1000_PCS_NPTX);
535         regs_buff[53] = rd32(E1000_PCS_LPABNP);
536
537         /* Statistics */
538         regs_buff[54] = adapter->stats.crcerrs;
539         regs_buff[55] = adapter->stats.algnerrc;
540         regs_buff[56] = adapter->stats.symerrs;
541         regs_buff[57] = adapter->stats.rxerrc;
542         regs_buff[58] = adapter->stats.mpc;
543         regs_buff[59] = adapter->stats.scc;
544         regs_buff[60] = adapter->stats.ecol;
545         regs_buff[61] = adapter->stats.mcc;
546         regs_buff[62] = adapter->stats.latecol;
547         regs_buff[63] = adapter->stats.colc;
548         regs_buff[64] = adapter->stats.dc;
549         regs_buff[65] = adapter->stats.tncrs;
550         regs_buff[66] = adapter->stats.sec;
551         regs_buff[67] = adapter->stats.htdpmc;
552         regs_buff[68] = adapter->stats.rlec;
553         regs_buff[69] = adapter->stats.xonrxc;
554         regs_buff[70] = adapter->stats.xontxc;
555         regs_buff[71] = adapter->stats.xoffrxc;
556         regs_buff[72] = adapter->stats.xofftxc;
557         regs_buff[73] = adapter->stats.fcruc;
558         regs_buff[74] = adapter->stats.prc64;
559         regs_buff[75] = adapter->stats.prc127;
560         regs_buff[76] = adapter->stats.prc255;
561         regs_buff[77] = adapter->stats.prc511;
562         regs_buff[78] = adapter->stats.prc1023;
563         regs_buff[79] = adapter->stats.prc1522;
564         regs_buff[80] = adapter->stats.gprc;
565         regs_buff[81] = adapter->stats.bprc;
566         regs_buff[82] = adapter->stats.mprc;
567         regs_buff[83] = adapter->stats.gptc;
568         regs_buff[84] = adapter->stats.gorc;
569         regs_buff[86] = adapter->stats.gotc;
570         regs_buff[88] = adapter->stats.rnbc;
571         regs_buff[89] = adapter->stats.ruc;
572         regs_buff[90] = adapter->stats.rfc;
573         regs_buff[91] = adapter->stats.roc;
574         regs_buff[92] = adapter->stats.rjc;
575         regs_buff[93] = adapter->stats.mgprc;
576         regs_buff[94] = adapter->stats.mgpdc;
577         regs_buff[95] = adapter->stats.mgptc;
578         regs_buff[96] = adapter->stats.tor;
579         regs_buff[98] = adapter->stats.tot;
580         regs_buff[100] = adapter->stats.tpr;
581         regs_buff[101] = adapter->stats.tpt;
582         regs_buff[102] = adapter->stats.ptc64;
583         regs_buff[103] = adapter->stats.ptc127;
584         regs_buff[104] = adapter->stats.ptc255;
585         regs_buff[105] = adapter->stats.ptc511;
586         regs_buff[106] = adapter->stats.ptc1023;
587         regs_buff[107] = adapter->stats.ptc1522;
588         regs_buff[108] = adapter->stats.mptc;
589         regs_buff[109] = adapter->stats.bptc;
590         regs_buff[110] = adapter->stats.tsctc;
591         regs_buff[111] = adapter->stats.iac;
592         regs_buff[112] = adapter->stats.rpthc;
593         regs_buff[113] = adapter->stats.hgptc;
594         regs_buff[114] = adapter->stats.hgorc;
595         regs_buff[116] = adapter->stats.hgotc;
596         regs_buff[118] = adapter->stats.lenerrs;
597         regs_buff[119] = adapter->stats.scvpc;
598         regs_buff[120] = adapter->stats.hrmpc;
599
600         for (i = 0; i < 4; i++)
601                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
602         for (i = 0; i < 4; i++)
603                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
604         for (i = 0; i < 4; i++)
605                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
606         for (i = 0; i < 4; i++)
607                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
608         for (i = 0; i < 4; i++)
609                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
610         for (i = 0; i < 4; i++)
611                 regs_buff[141 + i] = rd32(E1000_RDH(i));
612         for (i = 0; i < 4; i++)
613                 regs_buff[145 + i] = rd32(E1000_RDT(i));
614         for (i = 0; i < 4; i++)
615                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
616
617         for (i = 0; i < 10; i++)
618                 regs_buff[153 + i] = rd32(E1000_EITR(i));
619         for (i = 0; i < 8; i++)
620                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
621         for (i = 0; i < 8; i++)
622                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
623         for (i = 0; i < 16; i++)
624                 regs_buff[179 + i] = rd32(E1000_RAL(i));
625         for (i = 0; i < 16; i++)
626                 regs_buff[195 + i] = rd32(E1000_RAH(i));
627
628         for (i = 0; i < 4; i++)
629                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
630         for (i = 0; i < 4; i++)
631                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
632         for (i = 0; i < 4; i++)
633                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
634         for (i = 0; i < 4; i++)
635                 regs_buff[223 + i] = rd32(E1000_TDH(i));
636         for (i = 0; i < 4; i++)
637                 regs_buff[227 + i] = rd32(E1000_TDT(i));
638         for (i = 0; i < 4; i++)
639                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
640         for (i = 0; i < 4; i++)
641                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
642         for (i = 0; i < 4; i++)
643                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
644         for (i = 0; i < 4; i++)
645                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
646
647         for (i = 0; i < 4; i++)
648                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
649         for (i = 0; i < 4; i++)
650                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
651         for (i = 0; i < 32; i++)
652                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
653         for (i = 0; i < 128; i++)
654                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
655         for (i = 0; i < 128; i++)
656                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
657         for (i = 0; i < 4; i++)
658                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
659
660         regs_buff[547] = rd32(E1000_TDFH);
661         regs_buff[548] = rd32(E1000_TDFT);
662         regs_buff[549] = rd32(E1000_TDFHS);
663         regs_buff[550] = rd32(E1000_TDFPC);
664
665         if (hw->mac.type > e1000_82580) {
666                 regs_buff[551] = adapter->stats.o2bgptc;
667                 regs_buff[552] = adapter->stats.b2ospc;
668                 regs_buff[553] = adapter->stats.o2bspc;
669                 regs_buff[554] = adapter->stats.b2ogprc;
670         }
671
672         if (hw->mac.type != e1000_82576)
673                 return;
674         for (i = 0; i < 12; i++)
675                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
676         for (i = 0; i < 4; i++)
677                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
678         for (i = 0; i < 12; i++)
679                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
680         for (i = 0; i < 12; i++)
681                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
682         for (i = 0; i < 12; i++)
683                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
684         for (i = 0; i < 12; i++)
685                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
686         for (i = 0; i < 12; i++)
687                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
688         for (i = 0; i < 12; i++)
689                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
690
691         for (i = 0; i < 12; i++)
692                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
693         for (i = 0; i < 12; i++)
694                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
695         for (i = 0; i < 12; i++)
696                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
697         for (i = 0; i < 12; i++)
698                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
699         for (i = 0; i < 12; i++)
700                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
701         for (i = 0; i < 12; i++)
702                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
703         for (i = 0; i < 12; i++)
704                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
705         for (i = 0; i < 12; i++)
706                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
707 }
708
709 static int igb_get_eeprom_len(struct net_device *netdev)
710 {
711         struct igb_adapter *adapter = netdev_priv(netdev);
712         return adapter->hw.nvm.word_size * 2;
713 }
714
715 static int igb_get_eeprom(struct net_device *netdev,
716                           struct ethtool_eeprom *eeprom, u8 *bytes)
717 {
718         struct igb_adapter *adapter = netdev_priv(netdev);
719         struct e1000_hw *hw = &adapter->hw;
720         u16 *eeprom_buff;
721         int first_word, last_word;
722         int ret_val = 0;
723         u16 i;
724
725         if (eeprom->len == 0)
726                 return -EINVAL;
727
728         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
729
730         first_word = eeprom->offset >> 1;
731         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
732
733         eeprom_buff = kmalloc(sizeof(u16) *
734                         (last_word - first_word + 1), GFP_KERNEL);
735         if (!eeprom_buff)
736                 return -ENOMEM;
737
738         if (hw->nvm.type == e1000_nvm_eeprom_spi)
739                 ret_val = hw->nvm.ops.read(hw, first_word,
740                                            last_word - first_word + 1,
741                                            eeprom_buff);
742         else {
743                 for (i = 0; i < last_word - first_word + 1; i++) {
744                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
745                                                    &eeprom_buff[i]);
746                         if (ret_val)
747                                 break;
748                 }
749         }
750
751         /* Device's eeprom is always little-endian, word addressable */
752         for (i = 0; i < last_word - first_word + 1; i++)
753                 le16_to_cpus(&eeprom_buff[i]);
754
755         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
756                         eeprom->len);
757         kfree(eeprom_buff);
758
759         return ret_val;
760 }
761
762 static int igb_set_eeprom(struct net_device *netdev,
763                           struct ethtool_eeprom *eeprom, u8 *bytes)
764 {
765         struct igb_adapter *adapter = netdev_priv(netdev);
766         struct e1000_hw *hw = &adapter->hw;
767         u16 *eeprom_buff;
768         void *ptr;
769         int max_len, first_word, last_word, ret_val = 0;
770         u16 i;
771
772         if (eeprom->len == 0)
773                 return -EOPNOTSUPP;
774
775         if ((hw->mac.type >= e1000_i210) &&
776             !igb_get_flash_presence_i210(hw)) {
777                 return -EOPNOTSUPP;
778         }
779
780         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
781                 return -EFAULT;
782
783         max_len = hw->nvm.word_size * 2;
784
785         first_word = eeprom->offset >> 1;
786         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
787         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
788         if (!eeprom_buff)
789                 return -ENOMEM;
790
791         ptr = (void *)eeprom_buff;
792
793         if (eeprom->offset & 1) {
794                 /* need read/modify/write of first changed EEPROM word
795                  * only the second byte of the word is being modified
796                  */
797                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
798                                             &eeprom_buff[0]);
799                 ptr++;
800         }
801         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
802                 /* need read/modify/write of last changed EEPROM word
803                  * only the first byte of the word is being modified
804                  */
805                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
806                                    &eeprom_buff[last_word - first_word]);
807         }
808
809         /* Device's eeprom is always little-endian, word addressable */
810         for (i = 0; i < last_word - first_word + 1; i++)
811                 le16_to_cpus(&eeprom_buff[i]);
812
813         memcpy(ptr, bytes, eeprom->len);
814
815         for (i = 0; i < last_word - first_word + 1; i++)
816                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
817
818         ret_val = hw->nvm.ops.write(hw, first_word,
819                                     last_word - first_word + 1, eeprom_buff);
820
821         /* Update the checksum if nvm write succeeded */
822         if (ret_val == 0)
823                 hw->nvm.ops.update(hw);
824
825         igb_set_fw_version(adapter);
826         kfree(eeprom_buff);
827         return ret_val;
828 }
829
830 static void igb_get_drvinfo(struct net_device *netdev,
831                             struct ethtool_drvinfo *drvinfo)
832 {
833         struct igb_adapter *adapter = netdev_priv(netdev);
834
835         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
836         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
837
838         /* EEPROM image version # is reported as firmware version # for
839          * 82575 controllers
840          */
841         strlcpy(drvinfo->fw_version, adapter->fw_version,
842                 sizeof(drvinfo->fw_version));
843         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
844                 sizeof(drvinfo->bus_info));
845         drvinfo->n_stats = IGB_STATS_LEN;
846         drvinfo->testinfo_len = IGB_TEST_LEN;
847         drvinfo->regdump_len = igb_get_regs_len(netdev);
848         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
849 }
850
851 static void igb_get_ringparam(struct net_device *netdev,
852                               struct ethtool_ringparam *ring)
853 {
854         struct igb_adapter *adapter = netdev_priv(netdev);
855
856         ring->rx_max_pending = IGB_MAX_RXD;
857         ring->tx_max_pending = IGB_MAX_TXD;
858         ring->rx_pending = adapter->rx_ring_count;
859         ring->tx_pending = adapter->tx_ring_count;
860 }
861
862 static int igb_set_ringparam(struct net_device *netdev,
863                              struct ethtool_ringparam *ring)
864 {
865         struct igb_adapter *adapter = netdev_priv(netdev);
866         struct igb_ring *temp_ring;
867         int i, err = 0;
868         u16 new_rx_count, new_tx_count;
869
870         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
871                 return -EINVAL;
872
873         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
874         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
875         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
876
877         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
878         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
879         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
880
881         if ((new_tx_count == adapter->tx_ring_count) &&
882             (new_rx_count == adapter->rx_ring_count)) {
883                 /* nothing to do */
884                 return 0;
885         }
886
887         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
888                 usleep_range(1000, 2000);
889
890         if (!netif_running(adapter->netdev)) {
891                 for (i = 0; i < adapter->num_tx_queues; i++)
892                         adapter->tx_ring[i]->count = new_tx_count;
893                 for (i = 0; i < adapter->num_rx_queues; i++)
894                         adapter->rx_ring[i]->count = new_rx_count;
895                 adapter->tx_ring_count = new_tx_count;
896                 adapter->rx_ring_count = new_rx_count;
897                 goto clear_reset;
898         }
899
900         if (adapter->num_tx_queues > adapter->num_rx_queues)
901                 temp_ring = vmalloc(adapter->num_tx_queues *
902                                     sizeof(struct igb_ring));
903         else
904                 temp_ring = vmalloc(adapter->num_rx_queues *
905                                     sizeof(struct igb_ring));
906
907         if (!temp_ring) {
908                 err = -ENOMEM;
909                 goto clear_reset;
910         }
911
912         igb_down(adapter);
913
914         /* We can't just free everything and then setup again,
915          * because the ISRs in MSI-X mode get passed pointers
916          * to the Tx and Rx ring structs.
917          */
918         if (new_tx_count != adapter->tx_ring_count) {
919                 for (i = 0; i < adapter->num_tx_queues; i++) {
920                         memcpy(&temp_ring[i], adapter->tx_ring[i],
921                                sizeof(struct igb_ring));
922
923                         temp_ring[i].count = new_tx_count;
924                         err = igb_setup_tx_resources(&temp_ring[i]);
925                         if (err) {
926                                 while (i) {
927                                         i--;
928                                         igb_free_tx_resources(&temp_ring[i]);
929                                 }
930                                 goto err_setup;
931                         }
932                 }
933
934                 for (i = 0; i < adapter->num_tx_queues; i++) {
935                         igb_free_tx_resources(adapter->tx_ring[i]);
936
937                         memcpy(adapter->tx_ring[i], &temp_ring[i],
938                                sizeof(struct igb_ring));
939                 }
940
941                 adapter->tx_ring_count = new_tx_count;
942         }
943
944         if (new_rx_count != adapter->rx_ring_count) {
945                 for (i = 0; i < adapter->num_rx_queues; i++) {
946                         memcpy(&temp_ring[i], adapter->rx_ring[i],
947                                sizeof(struct igb_ring));
948
949                         temp_ring[i].count = new_rx_count;
950                         err = igb_setup_rx_resources(&temp_ring[i]);
951                         if (err) {
952                                 while (i) {
953                                         i--;
954                                         igb_free_rx_resources(&temp_ring[i]);
955                                 }
956                                 goto err_setup;
957                         }
958
959                 }
960
961                 for (i = 0; i < adapter->num_rx_queues; i++) {
962                         igb_free_rx_resources(adapter->rx_ring[i]);
963
964                         memcpy(adapter->rx_ring[i], &temp_ring[i],
965                                sizeof(struct igb_ring));
966                 }
967
968                 adapter->rx_ring_count = new_rx_count;
969         }
970 err_setup:
971         igb_up(adapter);
972         vfree(temp_ring);
973 clear_reset:
974         clear_bit(__IGB_RESETTING, &adapter->state);
975         return err;
976 }
977
978 /* ethtool register test data */
979 struct igb_reg_test {
980         u16 reg;
981         u16 reg_offset;
982         u16 array_len;
983         u16 test_type;
984         u32 mask;
985         u32 write;
986 };
987
988 /* In the hardware, registers are laid out either singly, in arrays
989  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
990  * most tests take place on arrays or single registers (handled
991  * as a single-element array) and special-case the tables.
992  * Table tests are always pattern tests.
993  *
994  * We also make provision for some required setup steps by specifying
995  * registers to be written without any read-back testing.
996  */
997
998 #define PATTERN_TEST    1
999 #define SET_READ_TEST   2
1000 #define WRITE_NO_TEST   3
1001 #define TABLE32_TEST    4
1002 #define TABLE64_TEST_LO 5
1003 #define TABLE64_TEST_HI 6
1004
1005 /* i210 reg test */
1006 static struct igb_reg_test reg_test_i210[] = {
1007         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1008         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1009         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1010         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1011         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1012         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1013         /* RDH is read-only for i210, only test RDT. */
1014         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1015         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1016         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1017         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1018         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1021         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1022         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1023         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1024         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1025         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1026         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1027                                                 0xFFFFFFFF, 0xFFFFFFFF },
1028         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1029                                                 0x900FFFFF, 0xFFFFFFFF },
1030         { E1000_MTA,       0, 128, TABLE32_TEST,
1031                                                 0xFFFFFFFF, 0xFFFFFFFF },
1032         { 0, 0, 0, 0, 0 }
1033 };
1034
1035 /* i350 reg test */
1036 static struct igb_reg_test reg_test_i350[] = {
1037         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1038         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1039         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1040         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1041         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1042         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1044         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1045         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1046         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1047         /* RDH is read-only for i350, only test RDT. */
1048         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1050         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1051         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1052         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1053         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1054         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1055         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1056         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1057         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1058         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1059         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1060         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1061         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1062         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1063         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1064         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1065         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1066                                                 0xFFFFFFFF, 0xFFFFFFFF },
1067         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1068                                                 0xC3FFFFFF, 0xFFFFFFFF },
1069         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
1070                                                 0xFFFFFFFF, 0xFFFFFFFF },
1071         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
1072                                                 0xC3FFFFFF, 0xFFFFFFFF },
1073         { E1000_MTA,       0, 128, TABLE32_TEST,
1074                                                 0xFFFFFFFF, 0xFFFFFFFF },
1075         { 0, 0, 0, 0 }
1076 };
1077
1078 /* 82580 reg test */
1079 static struct igb_reg_test reg_test_82580[] = {
1080         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1082         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1083         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1084         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1085         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1087         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1088         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1089         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1090         /* RDH is read-only for 82580, only test RDT. */
1091         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1092         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1093         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1094         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1095         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1096         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1097         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1098         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1099         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1100         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1101         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1102         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1103         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1104         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1105         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1106         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1107         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1108         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1109                                                 0xFFFFFFFF, 0xFFFFFFFF },
1110         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1111                                                 0x83FFFFFF, 0xFFFFFFFF },
1112         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1113                                                 0xFFFFFFFF, 0xFFFFFFFF },
1114         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1115                                                 0x83FFFFFF, 0xFFFFFFFF },
1116         { E1000_MTA,       0, 128, TABLE32_TEST,
1117                                                 0xFFFFFFFF, 0xFFFFFFFF },
1118         { 0, 0, 0, 0 }
1119 };
1120
1121 /* 82576 reg test */
1122 static struct igb_reg_test reg_test_82576[] = {
1123         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1124         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1125         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1126         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1127         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1128         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1130         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1131         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1132         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1133         /* Enable all RX queues before testing. */
1134         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1135           E1000_RXDCTL_QUEUE_ENABLE },
1136         { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1137           E1000_RXDCTL_QUEUE_ENABLE },
1138         /* RDH is read-only for 82576, only test RDT. */
1139         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1141         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1142         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1143         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1144         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1145         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1146         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1147         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1148         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1149         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1153         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1154         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1155         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1156         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1157         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1158         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1159         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1160         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1161         { 0, 0, 0, 0 }
1162 };
1163
1164 /* 82575 register test */
1165 static struct igb_reg_test reg_test_82575[] = {
1166         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1168         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1169         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1171         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1172         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1173         /* Enable all four RX queues before testing. */
1174         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1175           E1000_RXDCTL_QUEUE_ENABLE },
1176         /* RDH is read-only for 82575, only test RDT. */
1177         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1178         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1179         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1180         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1181         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1182         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1183         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1184         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1185         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1186         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1187         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1188         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1189         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1190         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1191         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1192         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1193         { 0, 0, 0, 0 }
1194 };
1195
1196 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1197                              int reg, u32 mask, u32 write)
1198 {
1199         struct e1000_hw *hw = &adapter->hw;
1200         u32 pat, val;
1201         static const u32 _test[] = {
1202                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1203         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1204                 wr32(reg, (_test[pat] & write));
1205                 val = rd32(reg) & mask;
1206                 if (val != (_test[pat] & write & mask)) {
1207                         dev_err(&adapter->pdev->dev,
1208                                 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1209                                 reg, val, (_test[pat] & write & mask));
1210                         *data = reg;
1211                         return true;
1212                 }
1213         }
1214
1215         return false;
1216 }
1217
1218 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1219                               int reg, u32 mask, u32 write)
1220 {
1221         struct e1000_hw *hw = &adapter->hw;
1222         u32 val;
1223
1224         wr32(reg, write & mask);
1225         val = rd32(reg);
1226         if ((write & mask) != (val & mask)) {
1227                 dev_err(&adapter->pdev->dev,
1228                         "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1229                         reg, (val & mask), (write & mask));
1230                 *data = reg;
1231                 return true;
1232         }
1233
1234         return false;
1235 }
1236
1237 #define REG_PATTERN_TEST(reg, mask, write) \
1238         do { \
1239                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1240                         return 1; \
1241         } while (0)
1242
1243 #define REG_SET_AND_CHECK(reg, mask, write) \
1244         do { \
1245                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1246                         return 1; \
1247         } while (0)
1248
1249 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1250 {
1251         struct e1000_hw *hw = &adapter->hw;
1252         struct igb_reg_test *test;
1253         u32 value, before, after;
1254         u32 i, toggle;
1255
1256         switch (adapter->hw.mac.type) {
1257         case e1000_i350:
1258         case e1000_i354:
1259                 test = reg_test_i350;
1260                 toggle = 0x7FEFF3FF;
1261                 break;
1262         case e1000_i210:
1263         case e1000_i211:
1264                 test = reg_test_i210;
1265                 toggle = 0x7FEFF3FF;
1266                 break;
1267         case e1000_82580:
1268                 test = reg_test_82580;
1269                 toggle = 0x7FEFF3FF;
1270                 break;
1271         case e1000_82576:
1272                 test = reg_test_82576;
1273                 toggle = 0x7FFFF3FF;
1274                 break;
1275         default:
1276                 test = reg_test_82575;
1277                 toggle = 0x7FFFF3FF;
1278                 break;
1279         }
1280
1281         /* Because the status register is such a special case,
1282          * we handle it separately from the rest of the register
1283          * tests.  Some bits are read-only, some toggle, and some
1284          * are writable on newer MACs.
1285          */
1286         before = rd32(E1000_STATUS);
1287         value = (rd32(E1000_STATUS) & toggle);
1288         wr32(E1000_STATUS, toggle);
1289         after = rd32(E1000_STATUS) & toggle;
1290         if (value != after) {
1291                 dev_err(&adapter->pdev->dev,
1292                         "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1293                         after, value);
1294                 *data = 1;
1295                 return 1;
1296         }
1297         /* restore previous status */
1298         wr32(E1000_STATUS, before);
1299
1300         /* Perform the remainder of the register test, looping through
1301          * the test table until we either fail or reach the null entry.
1302          */
1303         while (test->reg) {
1304                 for (i = 0; i < test->array_len; i++) {
1305                         switch (test->test_type) {
1306                         case PATTERN_TEST:
1307                                 REG_PATTERN_TEST(test->reg +
1308                                                 (i * test->reg_offset),
1309                                                 test->mask,
1310                                                 test->write);
1311                                 break;
1312                         case SET_READ_TEST:
1313                                 REG_SET_AND_CHECK(test->reg +
1314                                                 (i * test->reg_offset),
1315                                                 test->mask,
1316                                                 test->write);
1317                                 break;
1318                         case WRITE_NO_TEST:
1319                                 writel(test->write,
1320                                     (adapter->hw.hw_addr + test->reg)
1321                                         + (i * test->reg_offset));
1322                                 break;
1323                         case TABLE32_TEST:
1324                                 REG_PATTERN_TEST(test->reg + (i * 4),
1325                                                 test->mask,
1326                                                 test->write);
1327                                 break;
1328                         case TABLE64_TEST_LO:
1329                                 REG_PATTERN_TEST(test->reg + (i * 8),
1330                                                 test->mask,
1331                                                 test->write);
1332                                 break;
1333                         case TABLE64_TEST_HI:
1334                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1335                                                 test->mask,
1336                                                 test->write);
1337                                 break;
1338                         }
1339                 }
1340                 test++;
1341         }
1342
1343         *data = 0;
1344         return 0;
1345 }
1346
1347 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1348 {
1349         struct e1000_hw *hw = &adapter->hw;
1350
1351         *data = 0;
1352
1353         /* Validate eeprom on all parts but flashless */
1354         switch (hw->mac.type) {
1355         case e1000_i210:
1356         case e1000_i211:
1357                 if (igb_get_flash_presence_i210(hw)) {
1358                         if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1359                                 *data = 2;
1360                 }
1361                 break;
1362         default:
1363                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1364                         *data = 2;
1365                 break;
1366         }
1367
1368         return *data;
1369 }
1370
1371 static irqreturn_t igb_test_intr(int irq, void *data)
1372 {
1373         struct igb_adapter *adapter = (struct igb_adapter *) data;
1374         struct e1000_hw *hw = &adapter->hw;
1375
1376         adapter->test_icr |= rd32(E1000_ICR);
1377
1378         return IRQ_HANDLED;
1379 }
1380
1381 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1382 {
1383         struct e1000_hw *hw = &adapter->hw;
1384         struct net_device *netdev = adapter->netdev;
1385         u32 mask, ics_mask, i = 0, shared_int = true;
1386         u32 irq = adapter->pdev->irq;
1387
1388         *data = 0;
1389
1390         /* Hook up test interrupt handler just for this test */
1391         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1392                 if (request_irq(adapter->msix_entries[0].vector,
1393                                 igb_test_intr, 0, netdev->name, adapter)) {
1394                         *data = 1;
1395                         return -1;
1396                 }
1397         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1398                 shared_int = false;
1399                 if (request_irq(irq,
1400                                 igb_test_intr, 0, netdev->name, adapter)) {
1401                         *data = 1;
1402                         return -1;
1403                 }
1404         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1405                                 netdev->name, adapter)) {
1406                 shared_int = false;
1407         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1408                  netdev->name, adapter)) {
1409                 *data = 1;
1410                 return -1;
1411         }
1412         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1413                 (shared_int ? "shared" : "unshared"));
1414
1415         /* Disable all the interrupts */
1416         wr32(E1000_IMC, ~0);
1417         wrfl();
1418         usleep_range(10000, 11000);
1419
1420         /* Define all writable bits for ICS */
1421         switch (hw->mac.type) {
1422         case e1000_82575:
1423                 ics_mask = 0x37F47EDD;
1424                 break;
1425         case e1000_82576:
1426                 ics_mask = 0x77D4FBFD;
1427                 break;
1428         case e1000_82580:
1429                 ics_mask = 0x77DCFED5;
1430                 break;
1431         case e1000_i350:
1432         case e1000_i354:
1433         case e1000_i210:
1434         case e1000_i211:
1435                 ics_mask = 0x77DCFED5;
1436                 break;
1437         default:
1438                 ics_mask = 0x7FFFFFFF;
1439                 break;
1440         }
1441
1442         /* Test each interrupt */
1443         for (; i < 31; i++) {
1444                 /* Interrupt to test */
1445                 mask = 1 << i;
1446
1447                 if (!(mask & ics_mask))
1448                         continue;
1449
1450                 if (!shared_int) {
1451                         /* Disable the interrupt to be reported in
1452                          * the cause register and then force the same
1453                          * interrupt and see if one gets posted.  If
1454                          * an interrupt was posted to the bus, the
1455                          * test failed.
1456                          */
1457                         adapter->test_icr = 0;
1458
1459                         /* Flush any pending interrupts */
1460                         wr32(E1000_ICR, ~0);
1461
1462                         wr32(E1000_IMC, mask);
1463                         wr32(E1000_ICS, mask);
1464                         wrfl();
1465                         usleep_range(10000, 11000);
1466
1467                         if (adapter->test_icr & mask) {
1468                                 *data = 3;
1469                                 break;
1470                         }
1471                 }
1472
1473                 /* Enable the interrupt to be reported in
1474                  * the cause register and then force the same
1475                  * interrupt and see if one gets posted.  If
1476                  * an interrupt was not posted to the bus, the
1477                  * test failed.
1478                  */
1479                 adapter->test_icr = 0;
1480
1481                 /* Flush any pending interrupts */
1482                 wr32(E1000_ICR, ~0);
1483
1484                 wr32(E1000_IMS, mask);
1485                 wr32(E1000_ICS, mask);
1486                 wrfl();
1487                 usleep_range(10000, 11000);
1488
1489                 if (!(adapter->test_icr & mask)) {
1490                         *data = 4;
1491                         break;
1492                 }
1493
1494                 if (!shared_int) {
1495                         /* Disable the other interrupts to be reported in
1496                          * the cause register and then force the other
1497                          * interrupts and see if any get posted.  If
1498                          * an interrupt was posted to the bus, the
1499                          * test failed.
1500                          */
1501                         adapter->test_icr = 0;
1502
1503                         /* Flush any pending interrupts */
1504                         wr32(E1000_ICR, ~0);
1505
1506                         wr32(E1000_IMC, ~mask);
1507                         wr32(E1000_ICS, ~mask);
1508                         wrfl();
1509                         usleep_range(10000, 11000);
1510
1511                         if (adapter->test_icr & mask) {
1512                                 *data = 5;
1513                                 break;
1514                         }
1515                 }
1516         }
1517
1518         /* Disable all the interrupts */
1519         wr32(E1000_IMC, ~0);
1520         wrfl();
1521         usleep_range(10000, 11000);
1522
1523         /* Unhook test interrupt handler */
1524         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1525                 free_irq(adapter->msix_entries[0].vector, adapter);
1526         else
1527                 free_irq(irq, adapter);
1528
1529         return *data;
1530 }
1531
1532 static void igb_free_desc_rings(struct igb_adapter *adapter)
1533 {
1534         igb_free_tx_resources(&adapter->test_tx_ring);
1535         igb_free_rx_resources(&adapter->test_rx_ring);
1536 }
1537
1538 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1539 {
1540         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1541         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1542         struct e1000_hw *hw = &adapter->hw;
1543         int ret_val;
1544
1545         /* Setup Tx descriptor ring and Tx buffers */
1546         tx_ring->count = IGB_DEFAULT_TXD;
1547         tx_ring->dev = &adapter->pdev->dev;
1548         tx_ring->netdev = adapter->netdev;
1549         tx_ring->reg_idx = adapter->vfs_allocated_count;
1550
1551         if (igb_setup_tx_resources(tx_ring)) {
1552                 ret_val = 1;
1553                 goto err_nomem;
1554         }
1555
1556         igb_setup_tctl(adapter);
1557         igb_configure_tx_ring(adapter, tx_ring);
1558
1559         /* Setup Rx descriptor ring and Rx buffers */
1560         rx_ring->count = IGB_DEFAULT_RXD;
1561         rx_ring->dev = &adapter->pdev->dev;
1562         rx_ring->netdev = adapter->netdev;
1563         rx_ring->reg_idx = adapter->vfs_allocated_count;
1564
1565         if (igb_setup_rx_resources(rx_ring)) {
1566                 ret_val = 3;
1567                 goto err_nomem;
1568         }
1569
1570         /* set the default queue to queue 0 of PF */
1571         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1572
1573         /* enable receive ring */
1574         igb_setup_rctl(adapter);
1575         igb_configure_rx_ring(adapter, rx_ring);
1576
1577         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1578
1579         return 0;
1580
1581 err_nomem:
1582         igb_free_desc_rings(adapter);
1583         return ret_val;
1584 }
1585
1586 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1587 {
1588         struct e1000_hw *hw = &adapter->hw;
1589
1590         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1591         igb_write_phy_reg(hw, 29, 0x001F);
1592         igb_write_phy_reg(hw, 30, 0x8FFC);
1593         igb_write_phy_reg(hw, 29, 0x001A);
1594         igb_write_phy_reg(hw, 30, 0x8FF0);
1595 }
1596
1597 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1598 {
1599         struct e1000_hw *hw = &adapter->hw;
1600         u32 ctrl_reg = 0;
1601
1602         hw->mac.autoneg = false;
1603
1604         if (hw->phy.type == e1000_phy_m88) {
1605                 if (hw->phy.id != I210_I_PHY_ID) {
1606                         /* Auto-MDI/MDIX Off */
1607                         igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1608                         /* reset to update Auto-MDI/MDIX */
1609                         igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1610                         /* autoneg off */
1611                         igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1612                 } else {
1613                         /* force 1000, set loopback  */
1614                         igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1615                         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1616                 }
1617         } else if (hw->phy.type == e1000_phy_82580) {
1618                 /* enable MII loopback */
1619                 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1620         }
1621
1622         /* add small delay to avoid loopback test failure */
1623         msleep(50);
1624
1625         /* force 1000, set loopback */
1626         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1627
1628         /* Now set up the MAC to the same speed/duplex as the PHY. */
1629         ctrl_reg = rd32(E1000_CTRL);
1630         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1631         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1632                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1633                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1634                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1635                      E1000_CTRL_SLU);    /* Set link up enable bit */
1636
1637         if (hw->phy.type == e1000_phy_m88)
1638                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1639
1640         wr32(E1000_CTRL, ctrl_reg);
1641
1642         /* Disable the receiver on the PHY so when a cable is plugged in, the
1643          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1644          */
1645         if (hw->phy.type == e1000_phy_m88)
1646                 igb_phy_disable_receiver(adapter);
1647
1648         mdelay(500);
1649         return 0;
1650 }
1651
1652 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1653 {
1654         return igb_integrated_phy_loopback(adapter);
1655 }
1656
1657 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1658 {
1659         struct e1000_hw *hw = &adapter->hw;
1660         u32 reg;
1661
1662         reg = rd32(E1000_CTRL_EXT);
1663
1664         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1665         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1666                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1667                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1668                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1669                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1670                 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1671                 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1672                         /* Enable DH89xxCC MPHY for near end loopback */
1673                         reg = rd32(E1000_MPHY_ADDR_CTL);
1674                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1675                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1676                         wr32(E1000_MPHY_ADDR_CTL, reg);
1677
1678                         reg = rd32(E1000_MPHY_DATA);
1679                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1680                         wr32(E1000_MPHY_DATA, reg);
1681                 }
1682
1683                 reg = rd32(E1000_RCTL);
1684                 reg |= E1000_RCTL_LBM_TCVR;
1685                 wr32(E1000_RCTL, reg);
1686
1687                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1688
1689                 reg = rd32(E1000_CTRL);
1690                 reg &= ~(E1000_CTRL_RFCE |
1691                          E1000_CTRL_TFCE |
1692                          E1000_CTRL_LRST);
1693                 reg |= E1000_CTRL_SLU |
1694                        E1000_CTRL_FD;
1695                 wr32(E1000_CTRL, reg);
1696
1697                 /* Unset switch control to serdes energy detect */
1698                 reg = rd32(E1000_CONNSW);
1699                 reg &= ~E1000_CONNSW_ENRGSRC;
1700                 wr32(E1000_CONNSW, reg);
1701
1702                 /* Unset sigdetect for SERDES loopback on
1703                  * 82580 and newer devices.
1704                  */
1705                 if (hw->mac.type >= e1000_82580) {
1706                         reg = rd32(E1000_PCS_CFG0);
1707                         reg |= E1000_PCS_CFG_IGN_SD;
1708                         wr32(E1000_PCS_CFG0, reg);
1709                 }
1710
1711                 /* Set PCS register for forced speed */
1712                 reg = rd32(E1000_PCS_LCTL);
1713                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1714                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1715                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1716                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1717                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1718                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1719                 wr32(E1000_PCS_LCTL, reg);
1720
1721                 return 0;
1722         }
1723
1724         return igb_set_phy_loopback(adapter);
1725 }
1726
1727 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1728 {
1729         struct e1000_hw *hw = &adapter->hw;
1730         u32 rctl;
1731         u16 phy_reg;
1732
1733         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1734         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1735         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1736         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1737         (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1738                 u32 reg;
1739
1740                 /* Disable near end loopback on DH89xxCC */
1741                 reg = rd32(E1000_MPHY_ADDR_CTL);
1742                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1743                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1744                 wr32(E1000_MPHY_ADDR_CTL, reg);
1745
1746                 reg = rd32(E1000_MPHY_DATA);
1747                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1748                 wr32(E1000_MPHY_DATA, reg);
1749         }
1750
1751         rctl = rd32(E1000_RCTL);
1752         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1753         wr32(E1000_RCTL, rctl);
1754
1755         hw->mac.autoneg = true;
1756         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1757         if (phy_reg & MII_CR_LOOPBACK) {
1758                 phy_reg &= ~MII_CR_LOOPBACK;
1759                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1760                 igb_phy_sw_reset(hw);
1761         }
1762 }
1763
1764 static void igb_create_lbtest_frame(struct sk_buff *skb,
1765                                     unsigned int frame_size)
1766 {
1767         memset(skb->data, 0xFF, frame_size);
1768         frame_size /= 2;
1769         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1770         memset(&skb->data[frame_size + 10], 0xBE, 1);
1771         memset(&skb->data[frame_size + 12], 0xAF, 1);
1772 }
1773
1774 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1775                                   unsigned int frame_size)
1776 {
1777         unsigned char *data;
1778         bool match = true;
1779
1780         frame_size >>= 1;
1781
1782         data = kmap(rx_buffer->page);
1783
1784         if (data[3] != 0xFF ||
1785             data[frame_size + 10] != 0xBE ||
1786             data[frame_size + 12] != 0xAF)
1787                 match = false;
1788
1789         kunmap(rx_buffer->page);
1790
1791         return match;
1792 }
1793
1794 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1795                                 struct igb_ring *tx_ring,
1796                                 unsigned int size)
1797 {
1798         union e1000_adv_rx_desc *rx_desc;
1799         struct igb_rx_buffer *rx_buffer_info;
1800         struct igb_tx_buffer *tx_buffer_info;
1801         u16 rx_ntc, tx_ntc, count = 0;
1802
1803         /* initialize next to clean and descriptor values */
1804         rx_ntc = rx_ring->next_to_clean;
1805         tx_ntc = tx_ring->next_to_clean;
1806         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1807
1808         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1809                 /* check Rx buffer */
1810                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1811
1812                 /* sync Rx buffer for CPU read */
1813                 dma_sync_single_for_cpu(rx_ring->dev,
1814                                         rx_buffer_info->dma,
1815                                         IGB_RX_BUFSZ,
1816                                         DMA_FROM_DEVICE);
1817
1818                 /* verify contents of skb */
1819                 if (igb_check_lbtest_frame(rx_buffer_info, size))
1820                         count++;
1821
1822                 /* sync Rx buffer for device write */
1823                 dma_sync_single_for_device(rx_ring->dev,
1824                                            rx_buffer_info->dma,
1825                                            IGB_RX_BUFSZ,
1826                                            DMA_FROM_DEVICE);
1827
1828                 /* unmap buffer on Tx side */
1829                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1830                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1831
1832                 /* increment Rx/Tx next to clean counters */
1833                 rx_ntc++;
1834                 if (rx_ntc == rx_ring->count)
1835                         rx_ntc = 0;
1836                 tx_ntc++;
1837                 if (tx_ntc == tx_ring->count)
1838                         tx_ntc = 0;
1839
1840                 /* fetch next descriptor */
1841                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1842         }
1843
1844         netdev_tx_reset_queue(txring_txq(tx_ring));
1845
1846         /* re-map buffers to ring, store next to clean values */
1847         igb_alloc_rx_buffers(rx_ring, count);
1848         rx_ring->next_to_clean = rx_ntc;
1849         tx_ring->next_to_clean = tx_ntc;
1850
1851         return count;
1852 }
1853
1854 static int igb_run_loopback_test(struct igb_adapter *adapter)
1855 {
1856         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1857         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1858         u16 i, j, lc, good_cnt;
1859         int ret_val = 0;
1860         unsigned int size = IGB_RX_HDR_LEN;
1861         netdev_tx_t tx_ret_val;
1862         struct sk_buff *skb;
1863
1864         /* allocate test skb */
1865         skb = alloc_skb(size, GFP_KERNEL);
1866         if (!skb)
1867                 return 11;
1868
1869         /* place data into test skb */
1870         igb_create_lbtest_frame(skb, size);
1871         skb_put(skb, size);
1872
1873         /* Calculate the loop count based on the largest descriptor ring
1874          * The idea is to wrap the largest ring a number of times using 64
1875          * send/receive pairs during each loop
1876          */
1877
1878         if (rx_ring->count <= tx_ring->count)
1879                 lc = ((tx_ring->count / 64) * 2) + 1;
1880         else
1881                 lc = ((rx_ring->count / 64) * 2) + 1;
1882
1883         for (j = 0; j <= lc; j++) { /* loop count loop */
1884                 /* reset count of good packets */
1885                 good_cnt = 0;
1886
1887                 /* place 64 packets on the transmit queue*/
1888                 for (i = 0; i < 64; i++) {
1889                         skb_get(skb);
1890                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1891                         if (tx_ret_val == NETDEV_TX_OK)
1892                                 good_cnt++;
1893                 }
1894
1895                 if (good_cnt != 64) {
1896                         ret_val = 12;
1897                         break;
1898                 }
1899
1900                 /* allow 200 milliseconds for packets to go from Tx to Rx */
1901                 msleep(200);
1902
1903                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1904                 if (good_cnt != 64) {
1905                         ret_val = 13;
1906                         break;
1907                 }
1908         } /* end loop count loop */
1909
1910         /* free the original skb */
1911         kfree_skb(skb);
1912
1913         return ret_val;
1914 }
1915
1916 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1917 {
1918         /* PHY loopback cannot be performed if SoL/IDER
1919          * sessions are active
1920          */
1921         if (igb_check_reset_block(&adapter->hw)) {
1922                 dev_err(&adapter->pdev->dev,
1923                         "Cannot do PHY loopback test when SoL/IDER is active.\n");
1924                 *data = 0;
1925                 goto out;
1926         }
1927
1928         if (adapter->hw.mac.type == e1000_i354) {
1929                 dev_info(&adapter->pdev->dev,
1930                         "Loopback test not supported on i354.\n");
1931                 *data = 0;
1932                 goto out;
1933         }
1934         *data = igb_setup_desc_rings(adapter);
1935         if (*data)
1936                 goto out;
1937         *data = igb_setup_loopback_test(adapter);
1938         if (*data)
1939                 goto err_loopback;
1940         *data = igb_run_loopback_test(adapter);
1941         igb_loopback_cleanup(adapter);
1942
1943 err_loopback:
1944         igb_free_desc_rings(adapter);
1945 out:
1946         return *data;
1947 }
1948
1949 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1950 {
1951         struct e1000_hw *hw = &adapter->hw;
1952         *data = 0;
1953         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1954                 int i = 0;
1955
1956                 hw->mac.serdes_has_link = false;
1957
1958                 /* On some blade server designs, link establishment
1959                  * could take as long as 2-3 minutes
1960                  */
1961                 do {
1962                         hw->mac.ops.check_for_link(&adapter->hw);
1963                         if (hw->mac.serdes_has_link)
1964                                 return *data;
1965                         msleep(20);
1966                 } while (i++ < 3750);
1967
1968                 *data = 1;
1969         } else {
1970                 hw->mac.ops.check_for_link(&adapter->hw);
1971                 if (hw->mac.autoneg)
1972                         msleep(5000);
1973
1974                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1975                         *data = 1;
1976         }
1977         return *data;
1978 }
1979
1980 static void igb_diag_test(struct net_device *netdev,
1981                           struct ethtool_test *eth_test, u64 *data)
1982 {
1983         struct igb_adapter *adapter = netdev_priv(netdev);
1984         u16 autoneg_advertised;
1985         u8 forced_speed_duplex, autoneg;
1986         bool if_running = netif_running(netdev);
1987
1988         set_bit(__IGB_TESTING, &adapter->state);
1989
1990         /* can't do offline tests on media switching devices */
1991         if (adapter->hw.dev_spec._82575.mas_capable)
1992                 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1993         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1994                 /* Offline tests */
1995
1996                 /* save speed, duplex, autoneg settings */
1997                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1998                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1999                 autoneg = adapter->hw.mac.autoneg;
2000
2001                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
2002
2003                 /* power up link for link test */
2004                 igb_power_up_link(adapter);
2005
2006                 /* Link test performed before hardware reset so autoneg doesn't
2007                  * interfere with test result
2008                  */
2009                 if (igb_link_test(adapter, &data[4]))
2010                         eth_test->flags |= ETH_TEST_FL_FAILED;
2011
2012                 if (if_running)
2013                         /* indicate we're in test mode */
2014                         dev_close(netdev);
2015                 else
2016                         igb_reset(adapter);
2017
2018                 if (igb_reg_test(adapter, &data[0]))
2019                         eth_test->flags |= ETH_TEST_FL_FAILED;
2020
2021                 igb_reset(adapter);
2022                 if (igb_eeprom_test(adapter, &data[1]))
2023                         eth_test->flags |= ETH_TEST_FL_FAILED;
2024
2025                 igb_reset(adapter);
2026                 if (igb_intr_test(adapter, &data[2]))
2027                         eth_test->flags |= ETH_TEST_FL_FAILED;
2028
2029                 igb_reset(adapter);
2030                 /* power up link for loopback test */
2031                 igb_power_up_link(adapter);
2032                 if (igb_loopback_test(adapter, &data[3]))
2033                         eth_test->flags |= ETH_TEST_FL_FAILED;
2034
2035                 /* restore speed, duplex, autoneg settings */
2036                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2037                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2038                 adapter->hw.mac.autoneg = autoneg;
2039
2040                 /* force this routine to wait until autoneg complete/timeout */
2041                 adapter->hw.phy.autoneg_wait_to_complete = true;
2042                 igb_reset(adapter);
2043                 adapter->hw.phy.autoneg_wait_to_complete = false;
2044
2045                 clear_bit(__IGB_TESTING, &adapter->state);
2046                 if (if_running)
2047                         dev_open(netdev);
2048         } else {
2049                 dev_info(&adapter->pdev->dev, "online testing starting\n");
2050
2051                 /* PHY is powered down when interface is down */
2052                 if (if_running && igb_link_test(adapter, &data[4]))
2053                         eth_test->flags |= ETH_TEST_FL_FAILED;
2054                 else
2055                         data[4] = 0;
2056
2057                 /* Online tests aren't run; pass by default */
2058                 data[0] = 0;
2059                 data[1] = 0;
2060                 data[2] = 0;
2061                 data[3] = 0;
2062
2063                 clear_bit(__IGB_TESTING, &adapter->state);
2064         }
2065         msleep_interruptible(4 * 1000);
2066 }
2067
2068 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2069 {
2070         struct igb_adapter *adapter = netdev_priv(netdev);
2071
2072         wol->wolopts = 0;
2073
2074         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2075                 return;
2076
2077         wol->supported = WAKE_UCAST | WAKE_MCAST |
2078                          WAKE_BCAST | WAKE_MAGIC |
2079                          WAKE_PHY;
2080
2081         /* apply any specific unsupported masks here */
2082         switch (adapter->hw.device_id) {
2083         default:
2084                 break;
2085         }
2086
2087         if (adapter->wol & E1000_WUFC_EX)
2088                 wol->wolopts |= WAKE_UCAST;
2089         if (adapter->wol & E1000_WUFC_MC)
2090                 wol->wolopts |= WAKE_MCAST;
2091         if (adapter->wol & E1000_WUFC_BC)
2092                 wol->wolopts |= WAKE_BCAST;
2093         if (adapter->wol & E1000_WUFC_MAG)
2094                 wol->wolopts |= WAKE_MAGIC;
2095         if (adapter->wol & E1000_WUFC_LNKC)
2096                 wol->wolopts |= WAKE_PHY;
2097 }
2098
2099 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2100 {
2101         struct igb_adapter *adapter = netdev_priv(netdev);
2102
2103         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2104                 return -EOPNOTSUPP;
2105
2106         if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2107                 return wol->wolopts ? -EOPNOTSUPP : 0;
2108
2109         /* these settings will always override what we currently have */
2110         adapter->wol = 0;
2111
2112         if (wol->wolopts & WAKE_UCAST)
2113                 adapter->wol |= E1000_WUFC_EX;
2114         if (wol->wolopts & WAKE_MCAST)
2115                 adapter->wol |= E1000_WUFC_MC;
2116         if (wol->wolopts & WAKE_BCAST)
2117                 adapter->wol |= E1000_WUFC_BC;
2118         if (wol->wolopts & WAKE_MAGIC)
2119                 adapter->wol |= E1000_WUFC_MAG;
2120         if (wol->wolopts & WAKE_PHY)
2121                 adapter->wol |= E1000_WUFC_LNKC;
2122         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2123
2124         return 0;
2125 }
2126
2127 /* bit defines for adapter->led_status */
2128 #define IGB_LED_ON              0
2129
2130 static int igb_set_phys_id(struct net_device *netdev,
2131                            enum ethtool_phys_id_state state)
2132 {
2133         struct igb_adapter *adapter = netdev_priv(netdev);
2134         struct e1000_hw *hw = &adapter->hw;
2135
2136         switch (state) {
2137         case ETHTOOL_ID_ACTIVE:
2138                 igb_blink_led(hw);
2139                 return 2;
2140         case ETHTOOL_ID_ON:
2141                 igb_blink_led(hw);
2142                 break;
2143         case ETHTOOL_ID_OFF:
2144                 igb_led_off(hw);
2145                 break;
2146         case ETHTOOL_ID_INACTIVE:
2147                 igb_led_off(hw);
2148                 clear_bit(IGB_LED_ON, &adapter->led_status);
2149                 igb_cleanup_led(hw);
2150                 break;
2151         }
2152
2153         return 0;
2154 }
2155
2156 static int igb_set_coalesce(struct net_device *netdev,
2157                             struct ethtool_coalesce *ec)
2158 {
2159         struct igb_adapter *adapter = netdev_priv(netdev);
2160         int i;
2161
2162         if (ec->rx_max_coalesced_frames ||
2163             ec->rx_coalesce_usecs_irq ||
2164             ec->rx_max_coalesced_frames_irq ||
2165             ec->tx_max_coalesced_frames ||
2166             ec->tx_coalesce_usecs_irq ||
2167             ec->stats_block_coalesce_usecs ||
2168             ec->use_adaptive_rx_coalesce ||
2169             ec->use_adaptive_tx_coalesce ||
2170             ec->pkt_rate_low ||
2171             ec->rx_coalesce_usecs_low ||
2172             ec->rx_max_coalesced_frames_low ||
2173             ec->tx_coalesce_usecs_low ||
2174             ec->tx_max_coalesced_frames_low ||
2175             ec->pkt_rate_high ||
2176             ec->rx_coalesce_usecs_high ||
2177             ec->rx_max_coalesced_frames_high ||
2178             ec->tx_coalesce_usecs_high ||
2179             ec->tx_max_coalesced_frames_high ||
2180             ec->rate_sample_interval)
2181                 return -ENOTSUPP;
2182
2183         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2184             ((ec->rx_coalesce_usecs > 3) &&
2185              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2186             (ec->rx_coalesce_usecs == 2))
2187                 return -EINVAL;
2188
2189         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2190             ((ec->tx_coalesce_usecs > 3) &&
2191              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2192             (ec->tx_coalesce_usecs == 2))
2193                 return -EINVAL;
2194
2195         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2196                 return -EINVAL;
2197
2198         /* If ITR is disabled, disable DMAC */
2199         if (ec->rx_coalesce_usecs == 0) {
2200                 if (adapter->flags & IGB_FLAG_DMAC)
2201                         adapter->flags &= ~IGB_FLAG_DMAC;
2202         }
2203
2204         /* convert to rate of irq's per second */
2205         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2206                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2207         else
2208                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2209
2210         /* convert to rate of irq's per second */
2211         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2212                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2213         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2214                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2215         else
2216                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2217
2218         for (i = 0; i < adapter->num_q_vectors; i++) {
2219                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2220                 q_vector->tx.work_limit = adapter->tx_work_limit;
2221                 if (q_vector->rx.ring)
2222                         q_vector->itr_val = adapter->rx_itr_setting;
2223                 else
2224                         q_vector->itr_val = adapter->tx_itr_setting;
2225                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2226                         q_vector->itr_val = IGB_START_ITR;
2227                 q_vector->set_itr = 1;
2228         }
2229
2230         return 0;
2231 }
2232
2233 static int igb_get_coalesce(struct net_device *netdev,
2234                             struct ethtool_coalesce *ec)
2235 {
2236         struct igb_adapter *adapter = netdev_priv(netdev);
2237
2238         if (adapter->rx_itr_setting <= 3)
2239                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2240         else
2241                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2242
2243         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2244                 if (adapter->tx_itr_setting <= 3)
2245                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2246                 else
2247                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2248         }
2249
2250         return 0;
2251 }
2252
2253 static int igb_nway_reset(struct net_device *netdev)
2254 {
2255         struct igb_adapter *adapter = netdev_priv(netdev);
2256         if (netif_running(netdev))
2257                 igb_reinit_locked(adapter);
2258         return 0;
2259 }
2260
2261 static int igb_get_sset_count(struct net_device *netdev, int sset)
2262 {
2263         switch (sset) {
2264         case ETH_SS_STATS:
2265                 return IGB_STATS_LEN;
2266         case ETH_SS_TEST:
2267                 return IGB_TEST_LEN;
2268         default:
2269                 return -ENOTSUPP;
2270         }
2271 }
2272
2273 static void igb_get_ethtool_stats(struct net_device *netdev,
2274                                   struct ethtool_stats *stats, u64 *data)
2275 {
2276         struct igb_adapter *adapter = netdev_priv(netdev);
2277         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2278         unsigned int start;
2279         struct igb_ring *ring;
2280         int i, j;
2281         char *p;
2282
2283         spin_lock(&adapter->stats64_lock);
2284         igb_update_stats(adapter, net_stats);
2285
2286         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2287                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2288                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2289                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2290         }
2291         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2292                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2293                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2294                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2295         }
2296         for (j = 0; j < adapter->num_tx_queues; j++) {
2297                 u64     restart2;
2298
2299                 ring = adapter->tx_ring[j];
2300                 do {
2301                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2302                         data[i]   = ring->tx_stats.packets;
2303                         data[i+1] = ring->tx_stats.bytes;
2304                         data[i+2] = ring->tx_stats.restart_queue;
2305                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2306                 do {
2307                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2308                         restart2  = ring->tx_stats.restart_queue2;
2309                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2310                 data[i+2] += restart2;
2311
2312                 i += IGB_TX_QUEUE_STATS_LEN;
2313         }
2314         for (j = 0; j < adapter->num_rx_queues; j++) {
2315                 ring = adapter->rx_ring[j];
2316                 do {
2317                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2318                         data[i]   = ring->rx_stats.packets;
2319                         data[i+1] = ring->rx_stats.bytes;
2320                         data[i+2] = ring->rx_stats.drops;
2321                         data[i+3] = ring->rx_stats.csum_err;
2322                         data[i+4] = ring->rx_stats.alloc_failed;
2323                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2324                 i += IGB_RX_QUEUE_STATS_LEN;
2325         }
2326         spin_unlock(&adapter->stats64_lock);
2327 }
2328
2329 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2330 {
2331         struct igb_adapter *adapter = netdev_priv(netdev);
2332         u8 *p = data;
2333         int i;
2334
2335         switch (stringset) {
2336         case ETH_SS_TEST:
2337                 memcpy(data, *igb_gstrings_test,
2338                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2339                 break;
2340         case ETH_SS_STATS:
2341                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2342                         memcpy(p, igb_gstrings_stats[i].stat_string,
2343                                ETH_GSTRING_LEN);
2344                         p += ETH_GSTRING_LEN;
2345                 }
2346                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2347                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2348                                ETH_GSTRING_LEN);
2349                         p += ETH_GSTRING_LEN;
2350                 }
2351                 for (i = 0; i < adapter->num_tx_queues; i++) {
2352                         sprintf(p, "tx_queue_%u_packets", i);
2353                         p += ETH_GSTRING_LEN;
2354                         sprintf(p, "tx_queue_%u_bytes", i);
2355                         p += ETH_GSTRING_LEN;
2356                         sprintf(p, "tx_queue_%u_restart", i);
2357                         p += ETH_GSTRING_LEN;
2358                 }
2359                 for (i = 0; i < adapter->num_rx_queues; i++) {
2360                         sprintf(p, "rx_queue_%u_packets", i);
2361                         p += ETH_GSTRING_LEN;
2362                         sprintf(p, "rx_queue_%u_bytes", i);
2363                         p += ETH_GSTRING_LEN;
2364                         sprintf(p, "rx_queue_%u_drops", i);
2365                         p += ETH_GSTRING_LEN;
2366                         sprintf(p, "rx_queue_%u_csum_err", i);
2367                         p += ETH_GSTRING_LEN;
2368                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2369                         p += ETH_GSTRING_LEN;
2370                 }
2371                 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2372                 break;
2373         }
2374 }
2375
2376 static int igb_get_ts_info(struct net_device *dev,
2377                            struct ethtool_ts_info *info)
2378 {
2379         struct igb_adapter *adapter = netdev_priv(dev);
2380
2381         if (adapter->ptp_clock)
2382                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2383         else
2384                 info->phc_index = -1;
2385
2386         switch (adapter->hw.mac.type) {
2387         case e1000_82575:
2388                 info->so_timestamping =
2389                         SOF_TIMESTAMPING_TX_SOFTWARE |
2390                         SOF_TIMESTAMPING_RX_SOFTWARE |
2391                         SOF_TIMESTAMPING_SOFTWARE;
2392                 return 0;
2393         case e1000_82576:
2394         case e1000_82580:
2395         case e1000_i350:
2396         case e1000_i354:
2397         case e1000_i210:
2398         case e1000_i211:
2399                 info->so_timestamping =
2400                         SOF_TIMESTAMPING_TX_SOFTWARE |
2401                         SOF_TIMESTAMPING_RX_SOFTWARE |
2402                         SOF_TIMESTAMPING_SOFTWARE |
2403                         SOF_TIMESTAMPING_TX_HARDWARE |
2404                         SOF_TIMESTAMPING_RX_HARDWARE |
2405                         SOF_TIMESTAMPING_RAW_HARDWARE;
2406
2407                 info->tx_types =
2408                         (1 << HWTSTAMP_TX_OFF) |
2409                         (1 << HWTSTAMP_TX_ON);
2410
2411                 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2412
2413                 /* 82576 does not support timestamping all packets. */
2414                 if (adapter->hw.mac.type >= e1000_82580)
2415                         info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2416                 else
2417                         info->rx_filters |=
2418                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2419                                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2420                                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2421
2422                 return 0;
2423         default:
2424                 return -EOPNOTSUPP;
2425         }
2426 }
2427
2428 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2429                                  struct ethtool_rxnfc *cmd)
2430 {
2431         cmd->data = 0;
2432
2433         /* Report default options for RSS on igb */
2434         switch (cmd->flow_type) {
2435         case TCP_V4_FLOW:
2436                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2437                 /* Fall through */
2438         case UDP_V4_FLOW:
2439                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2440                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2441                 /* Fall through */
2442         case SCTP_V4_FLOW:
2443         case AH_ESP_V4_FLOW:
2444         case AH_V4_FLOW:
2445         case ESP_V4_FLOW:
2446         case IPV4_FLOW:
2447                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2448                 break;
2449         case TCP_V6_FLOW:
2450                 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2451                 /* Fall through */
2452         case UDP_V6_FLOW:
2453                 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2454                         cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2455                 /* Fall through */
2456         case SCTP_V6_FLOW:
2457         case AH_ESP_V6_FLOW:
2458         case AH_V6_FLOW:
2459         case ESP_V6_FLOW:
2460         case IPV6_FLOW:
2461                 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2462                 break;
2463         default:
2464                 return -EINVAL;
2465         }
2466
2467         return 0;
2468 }
2469
2470 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2471                          u32 *rule_locs)
2472 {
2473         struct igb_adapter *adapter = netdev_priv(dev);
2474         int ret = -EOPNOTSUPP;
2475
2476         switch (cmd->cmd) {
2477         case ETHTOOL_GRXRINGS:
2478                 cmd->data = adapter->num_rx_queues;
2479                 ret = 0;
2480                 break;
2481         case ETHTOOL_GRXFH:
2482                 ret = igb_get_rss_hash_opts(adapter, cmd);
2483                 break;
2484         default:
2485                 break;
2486         }
2487
2488         return ret;
2489 }
2490
2491 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2492                        IGB_FLAG_RSS_FIELD_IPV6_UDP)
2493 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2494                                 struct ethtool_rxnfc *nfc)
2495 {
2496         u32 flags = adapter->flags;
2497
2498         /* RSS does not support anything other than hashing
2499          * to queues on src and dst IPs and ports
2500          */
2501         if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2502                           RXH_L4_B_0_1 | RXH_L4_B_2_3))
2503                 return -EINVAL;
2504
2505         switch (nfc->flow_type) {
2506         case TCP_V4_FLOW:
2507         case TCP_V6_FLOW:
2508                 if (!(nfc->data & RXH_IP_SRC) ||
2509                     !(nfc->data & RXH_IP_DST) ||
2510                     !(nfc->data & RXH_L4_B_0_1) ||
2511                     !(nfc->data & RXH_L4_B_2_3))
2512                         return -EINVAL;
2513                 break;
2514         case UDP_V4_FLOW:
2515                 if (!(nfc->data & RXH_IP_SRC) ||
2516                     !(nfc->data & RXH_IP_DST))
2517                         return -EINVAL;
2518                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2519                 case 0:
2520                         flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2521                         break;
2522                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2523                         flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2524                         break;
2525                 default:
2526                         return -EINVAL;
2527                 }
2528                 break;
2529         case UDP_V6_FLOW:
2530                 if (!(nfc->data & RXH_IP_SRC) ||
2531                     !(nfc->data & RXH_IP_DST))
2532                         return -EINVAL;
2533                 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2534                 case 0:
2535                         flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2536                         break;
2537                 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2538                         flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2539                         break;
2540                 default:
2541                         return -EINVAL;
2542                 }
2543                 break;
2544         case AH_ESP_V4_FLOW:
2545         case AH_V4_FLOW:
2546         case ESP_V4_FLOW:
2547         case SCTP_V4_FLOW:
2548         case AH_ESP_V6_FLOW:
2549         case AH_V6_FLOW:
2550         case ESP_V6_FLOW:
2551         case SCTP_V6_FLOW:
2552                 if (!(nfc->data & RXH_IP_SRC) ||
2553                     !(nfc->data & RXH_IP_DST) ||
2554                     (nfc->data & RXH_L4_B_0_1) ||
2555                     (nfc->data & RXH_L4_B_2_3))
2556                         return -EINVAL;
2557                 break;
2558         default:
2559                 return -EINVAL;
2560         }
2561
2562         /* if we changed something we need to update flags */
2563         if (flags != adapter->flags) {
2564                 struct e1000_hw *hw = &adapter->hw;
2565                 u32 mrqc = rd32(E1000_MRQC);
2566
2567                 if ((flags & UDP_RSS_FLAGS) &&
2568                     !(adapter->flags & UDP_RSS_FLAGS))
2569                         dev_err(&adapter->pdev->dev,
2570                                 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2571
2572                 adapter->flags = flags;
2573
2574                 /* Perform hash on these packet types */
2575                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2576                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2577                         E1000_MRQC_RSS_FIELD_IPV6 |
2578                         E1000_MRQC_RSS_FIELD_IPV6_TCP;
2579
2580                 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2581                           E1000_MRQC_RSS_FIELD_IPV6_UDP);
2582
2583                 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2584                         mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2585
2586                 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2587                         mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2588
2589                 wr32(E1000_MRQC, mrqc);
2590         }
2591
2592         return 0;
2593 }
2594
2595 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2596 {
2597         struct igb_adapter *adapter = netdev_priv(dev);
2598         int ret = -EOPNOTSUPP;
2599
2600         switch (cmd->cmd) {
2601         case ETHTOOL_SRXFH:
2602                 ret = igb_set_rss_hash_opt(adapter, cmd);
2603                 break;
2604         default:
2605                 break;
2606         }
2607
2608         return ret;
2609 }
2610
2611 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2612 {
2613         struct igb_adapter *adapter = netdev_priv(netdev);
2614         struct e1000_hw *hw = &adapter->hw;
2615         u32 ret_val;
2616         u16 phy_data;
2617
2618         if ((hw->mac.type < e1000_i350) ||
2619             (hw->phy.media_type != e1000_media_type_copper))
2620                 return -EOPNOTSUPP;
2621
2622         edata->supported = (SUPPORTED_1000baseT_Full |
2623                             SUPPORTED_100baseT_Full);
2624         if (!hw->dev_spec._82575.eee_disable)
2625                 edata->advertised =
2626                         mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2627
2628         /* The IPCNFG and EEER registers are not supported on I354. */
2629         if (hw->mac.type == e1000_i354) {
2630                 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2631         } else {
2632                 u32 eeer;
2633
2634                 eeer = rd32(E1000_EEER);
2635
2636                 /* EEE status on negotiated link */
2637                 if (eeer & E1000_EEER_EEE_NEG)
2638                         edata->eee_active = true;
2639
2640                 if (eeer & E1000_EEER_TX_LPI_EN)
2641                         edata->tx_lpi_enabled = true;
2642         }
2643
2644         /* EEE Link Partner Advertised */
2645         switch (hw->mac.type) {
2646         case e1000_i350:
2647                 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2648                                            &phy_data);
2649                 if (ret_val)
2650                         return -ENODATA;
2651
2652                 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2653                 break;
2654         case e1000_i354:
2655         case e1000_i210:
2656         case e1000_i211:
2657                 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2658                                              E1000_EEE_LP_ADV_DEV_I210,
2659                                              &phy_data);
2660                 if (ret_val)
2661                         return -ENODATA;
2662
2663                 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2664
2665                 break;
2666         default:
2667                 break;
2668         }
2669
2670         edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2671
2672         if ((hw->mac.type == e1000_i354) &&
2673             (edata->eee_enabled))
2674                 edata->tx_lpi_enabled = true;
2675
2676         /* Report correct negotiated EEE status for devices that
2677          * wrongly report EEE at half-duplex
2678          */
2679         if (adapter->link_duplex == HALF_DUPLEX) {
2680                 edata->eee_enabled = false;
2681                 edata->eee_active = false;
2682                 edata->tx_lpi_enabled = false;
2683                 edata->advertised &= ~edata->advertised;
2684         }
2685
2686         return 0;
2687 }
2688
2689 static int igb_set_eee(struct net_device *netdev,
2690                        struct ethtool_eee *edata)
2691 {
2692         struct igb_adapter *adapter = netdev_priv(netdev);
2693         struct e1000_hw *hw = &adapter->hw;
2694         struct ethtool_eee eee_curr;
2695         bool adv1g_eee = true, adv100m_eee = true;
2696         s32 ret_val;
2697
2698         if ((hw->mac.type < e1000_i350) ||
2699             (hw->phy.media_type != e1000_media_type_copper))
2700                 return -EOPNOTSUPP;
2701
2702         memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2703
2704         ret_val = igb_get_eee(netdev, &eee_curr);
2705         if (ret_val)
2706                 return ret_val;
2707
2708         if (eee_curr.eee_enabled) {
2709                 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2710                         dev_err(&adapter->pdev->dev,
2711                                 "Setting EEE tx-lpi is not supported\n");
2712                         return -EINVAL;
2713                 }
2714
2715                 /* Tx LPI timer is not implemented currently */
2716                 if (edata->tx_lpi_timer) {
2717                         dev_err(&adapter->pdev->dev,
2718                                 "Setting EEE Tx LPI timer is not supported\n");
2719                         return -EINVAL;
2720                 }
2721
2722                 if (!edata->advertised || (edata->advertised &
2723                     ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
2724                         dev_err(&adapter->pdev->dev,
2725                                 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
2726                         return -EINVAL;
2727                 }
2728                 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
2729                 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
2730
2731         } else if (!edata->eee_enabled) {
2732                 dev_err(&adapter->pdev->dev,
2733                         "Setting EEE options are not supported with EEE disabled\n");
2734                         return -EINVAL;
2735                 }
2736
2737         adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2738         if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2739                 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2740                 adapter->flags |= IGB_FLAG_EEE;
2741
2742                 /* reset link */
2743                 if (netif_running(netdev))
2744                         igb_reinit_locked(adapter);
2745                 else
2746                         igb_reset(adapter);
2747         }
2748
2749         if (hw->mac.type == e1000_i354)
2750                 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
2751         else
2752                 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
2753
2754         if (ret_val) {
2755                 dev_err(&adapter->pdev->dev,
2756                         "Problem setting EEE advertisement options\n");
2757                 return -EINVAL;
2758         }
2759
2760         return 0;
2761 }
2762
2763 static int igb_get_module_info(struct net_device *netdev,
2764                                struct ethtool_modinfo *modinfo)
2765 {
2766         struct igb_adapter *adapter = netdev_priv(netdev);
2767         struct e1000_hw *hw = &adapter->hw;
2768         u32 status = 0;
2769         u16 sff8472_rev, addr_mode;
2770         bool page_swap = false;
2771
2772         if ((hw->phy.media_type == e1000_media_type_copper) ||
2773             (hw->phy.media_type == e1000_media_type_unknown))
2774                 return -EOPNOTSUPP;
2775
2776         /* Check whether we support SFF-8472 or not */
2777         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2778         if (status)
2779                 return -EIO;
2780
2781         /* addressing mode is not supported */
2782         status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2783         if (status)
2784                 return -EIO;
2785
2786         /* addressing mode is not supported */
2787         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2788                 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2789                 page_swap = true;
2790         }
2791
2792         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2793                 /* We have an SFP, but it does not support SFF-8472 */
2794                 modinfo->type = ETH_MODULE_SFF_8079;
2795                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2796         } else {
2797                 /* We have an SFP which supports a revision of SFF-8472 */
2798                 modinfo->type = ETH_MODULE_SFF_8472;
2799                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2800         }
2801
2802         return 0;
2803 }
2804
2805 static int igb_get_module_eeprom(struct net_device *netdev,
2806                                  struct ethtool_eeprom *ee, u8 *data)
2807 {
2808         struct igb_adapter *adapter = netdev_priv(netdev);
2809         struct e1000_hw *hw = &adapter->hw;
2810         u32 status = 0;
2811         u16 *dataword;
2812         u16 first_word, last_word;
2813         int i = 0;
2814
2815         if (ee->len == 0)
2816                 return -EINVAL;
2817
2818         first_word = ee->offset >> 1;
2819         last_word = (ee->offset + ee->len - 1) >> 1;
2820
2821         dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2822                            GFP_KERNEL);
2823         if (!dataword)
2824                 return -ENOMEM;
2825
2826         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2827         for (i = 0; i < last_word - first_word + 1; i++) {
2828                 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2829                 if (status) {
2830                         /* Error occurred while reading module */
2831                         kfree(dataword);
2832                         return -EIO;
2833                 }
2834
2835                 be16_to_cpus(&dataword[i]);
2836         }
2837
2838         memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2839         kfree(dataword);
2840
2841         return 0;
2842 }
2843
2844 static int igb_ethtool_begin(struct net_device *netdev)
2845 {
2846         struct igb_adapter *adapter = netdev_priv(netdev);
2847         pm_runtime_get_sync(&adapter->pdev->dev);
2848         return 0;
2849 }
2850
2851 static void igb_ethtool_complete(struct net_device *netdev)
2852 {
2853         struct igb_adapter *adapter = netdev_priv(netdev);
2854         pm_runtime_put(&adapter->pdev->dev);
2855 }
2856
2857 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2858 {
2859         return IGB_RETA_SIZE;
2860 }
2861
2862 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
2863                         u8 *hfunc)
2864 {
2865         struct igb_adapter *adapter = netdev_priv(netdev);
2866         int i;
2867
2868         if (hfunc)
2869                 *hfunc = ETH_RSS_HASH_TOP;
2870         if (!indir)
2871                 return 0;
2872         for (i = 0; i < IGB_RETA_SIZE; i++)
2873                 indir[i] = adapter->rss_indir_tbl[i];
2874
2875         return 0;
2876 }
2877
2878 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2879 {
2880         struct e1000_hw *hw = &adapter->hw;
2881         u32 reg = E1000_RETA(0);
2882         u32 shift = 0;
2883         int i = 0;
2884
2885         switch (hw->mac.type) {
2886         case e1000_82575:
2887                 shift = 6;
2888                 break;
2889         case e1000_82576:
2890                 /* 82576 supports 2 RSS queues for SR-IOV */
2891                 if (adapter->vfs_allocated_count)
2892                         shift = 3;
2893                 break;
2894         default:
2895                 break;
2896         }
2897
2898         while (i < IGB_RETA_SIZE) {
2899                 u32 val = 0;
2900                 int j;
2901
2902                 for (j = 3; j >= 0; j--) {
2903                         val <<= 8;
2904                         val |= adapter->rss_indir_tbl[i + j];
2905                 }
2906
2907                 wr32(reg, val << shift);
2908                 reg += 4;
2909                 i += 4;
2910         }
2911 }
2912
2913 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
2914                         const u8 *key, const u8 hfunc)
2915 {
2916         struct igb_adapter *adapter = netdev_priv(netdev);
2917         struct e1000_hw *hw = &adapter->hw;
2918         int i;
2919         u32 num_queues;
2920
2921         /* We do not allow change in unsupported parameters */
2922         if (key ||
2923             (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
2924                 return -EOPNOTSUPP;
2925         if (!indir)
2926                 return 0;
2927
2928         num_queues = adapter->rss_queues;
2929
2930         switch (hw->mac.type) {
2931         case e1000_82576:
2932                 /* 82576 supports 2 RSS queues for SR-IOV */
2933                 if (adapter->vfs_allocated_count)
2934                         num_queues = 2;
2935                 break;
2936         default:
2937                 break;
2938         }
2939
2940         /* Verify user input. */
2941         for (i = 0; i < IGB_RETA_SIZE; i++)
2942                 if (indir[i] >= num_queues)
2943                         return -EINVAL;
2944
2945
2946         for (i = 0; i < IGB_RETA_SIZE; i++)
2947                 adapter->rss_indir_tbl[i] = indir[i];
2948
2949         igb_write_rss_indir_tbl(adapter);
2950
2951         return 0;
2952 }
2953
2954 static unsigned int igb_max_channels(struct igb_adapter *adapter)
2955 {
2956         struct e1000_hw *hw = &adapter->hw;
2957         unsigned int max_combined = 0;
2958
2959         switch (hw->mac.type) {
2960         case e1000_i211:
2961                 max_combined = IGB_MAX_RX_QUEUES_I211;
2962                 break;
2963         case e1000_82575:
2964         case e1000_i210:
2965                 max_combined = IGB_MAX_RX_QUEUES_82575;
2966                 break;
2967         case e1000_i350:
2968                 if (!!adapter->vfs_allocated_count) {
2969                         max_combined = 1;
2970                         break;
2971                 }
2972                 /* fall through */
2973         case e1000_82576:
2974                 if (!!adapter->vfs_allocated_count) {
2975                         max_combined = 2;
2976                         break;
2977                 }
2978                 /* fall through */
2979         case e1000_82580:
2980         case e1000_i354:
2981         default:
2982                 max_combined = IGB_MAX_RX_QUEUES;
2983                 break;
2984         }
2985
2986         return max_combined;
2987 }
2988
2989 static void igb_get_channels(struct net_device *netdev,
2990                              struct ethtool_channels *ch)
2991 {
2992         struct igb_adapter *adapter = netdev_priv(netdev);
2993
2994         /* Report maximum channels */
2995         ch->max_combined = igb_max_channels(adapter);
2996
2997         /* Report info for other vector */
2998         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2999                 ch->max_other = NON_Q_VECTORS;
3000                 ch->other_count = NON_Q_VECTORS;
3001         }
3002
3003         ch->combined_count = adapter->rss_queues;
3004 }
3005
3006 static int igb_set_channels(struct net_device *netdev,
3007                             struct ethtool_channels *ch)
3008 {
3009         struct igb_adapter *adapter = netdev_priv(netdev);
3010         unsigned int count = ch->combined_count;
3011         unsigned int max_combined = 0;
3012
3013         /* Verify they are not requesting separate vectors */
3014         if (!count || ch->rx_count || ch->tx_count)
3015                 return -EINVAL;
3016
3017         /* Verify other_count is valid and has not been changed */
3018         if (ch->other_count != NON_Q_VECTORS)
3019                 return -EINVAL;
3020
3021         /* Verify the number of channels doesn't exceed hw limits */
3022         max_combined = igb_max_channels(adapter);
3023         if (count > max_combined)
3024                 return -EINVAL;
3025
3026         if (count != adapter->rss_queues) {
3027                 adapter->rss_queues = count;
3028                 igb_set_flag_queue_pairs(adapter, max_combined);
3029
3030                 /* Hardware has to reinitialize queues and interrupts to
3031                  * match the new configuration.
3032                  */
3033                 return igb_reinit_queues(adapter);
3034         }
3035
3036         return 0;
3037 }
3038
3039 static const struct ethtool_ops igb_ethtool_ops = {
3040         .get_settings           = igb_get_settings,
3041         .set_settings           = igb_set_settings,
3042         .get_drvinfo            = igb_get_drvinfo,
3043         .get_regs_len           = igb_get_regs_len,
3044         .get_regs               = igb_get_regs,
3045         .get_wol                = igb_get_wol,
3046         .set_wol                = igb_set_wol,
3047         .get_msglevel           = igb_get_msglevel,
3048         .set_msglevel           = igb_set_msglevel,
3049         .nway_reset             = igb_nway_reset,
3050         .get_link               = igb_get_link,
3051         .get_eeprom_len         = igb_get_eeprom_len,
3052         .get_eeprom             = igb_get_eeprom,
3053         .set_eeprom             = igb_set_eeprom,
3054         .get_ringparam          = igb_get_ringparam,
3055         .set_ringparam          = igb_set_ringparam,
3056         .get_pauseparam         = igb_get_pauseparam,
3057         .set_pauseparam         = igb_set_pauseparam,
3058         .self_test              = igb_diag_test,
3059         .get_strings            = igb_get_strings,
3060         .set_phys_id            = igb_set_phys_id,
3061         .get_sset_count         = igb_get_sset_count,
3062         .get_ethtool_stats      = igb_get_ethtool_stats,
3063         .get_coalesce           = igb_get_coalesce,
3064         .set_coalesce           = igb_set_coalesce,
3065         .get_ts_info            = igb_get_ts_info,
3066         .get_rxnfc              = igb_get_rxnfc,
3067         .set_rxnfc              = igb_set_rxnfc,
3068         .get_eee                = igb_get_eee,
3069         .set_eee                = igb_set_eee,
3070         .get_module_info        = igb_get_module_info,
3071         .get_module_eeprom      = igb_get_module_eeprom,
3072         .get_rxfh_indir_size    = igb_get_rxfh_indir_size,
3073         .get_rxfh               = igb_get_rxfh,
3074         .set_rxfh               = igb_set_rxfh,
3075         .get_channels           = igb_get_channels,
3076         .set_channels           = igb_set_channels,
3077         .begin                  = igb_ethtool_begin,
3078         .complete               = igb_ethtool_complete,
3079 };
3080
3081 void igb_set_ethtool_ops(struct net_device *netdev)
3082 {
3083         netdev->ethtool_ops = &igb_ethtool_ops;
3084 }