]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/sfc/ef10.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[karo-tx-linux.git] / drivers / net / ethernet / sfc / ef10.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include <linux/in.h>
18 #include <linux/jhash.h>
19 #include <linux/wait.h>
20 #include <linux/workqueue.h>
21
22 /* Hardware control for EF10 architecture including 'Huntington'. */
23
24 #define EFX_EF10_DRVGEN_EV              7
25 enum {
26         EFX_EF10_TEST = 1,
27         EFX_EF10_REFILL,
28 };
29
30 /* The reserved RSS context value */
31 #define EFX_EF10_RSS_CONTEXT_INVALID    0xffffffff
32
33 /* The filter table(s) are managed by firmware and we have write-only
34  * access.  When removing filters we must identify them to the
35  * firmware by a 64-bit handle, but this is too wide for Linux kernel
36  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
37  * be able to tell in advance whether a requested insertion will
38  * replace an existing filter.  Therefore we maintain a software hash
39  * table, which should be at least as large as the hardware hash
40  * table.
41  *
42  * Huntington has a single 8K filter table shared between all filter
43  * types and both ports.
44  */
45 #define HUNT_FILTER_TBL_ROWS 8192
46
47 struct efx_ef10_filter_table {
48 /* The RX match field masks supported by this fw & hw, in order of priority */
49         enum efx_filter_match_flags rx_match_flags[
50                 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
51         unsigned int rx_match_count;
52
53         struct {
54                 unsigned long spec;     /* pointer to spec plus flag bits */
55 /* BUSY flag indicates that an update is in progress.  STACK_OLD is
56  * used to mark and sweep stack-owned MAC filters.
57  */
58 #define EFX_EF10_FILTER_FLAG_BUSY       1UL
59 #define EFX_EF10_FILTER_FLAG_STACK_OLD  2UL
60 #define EFX_EF10_FILTER_FLAGS           3UL
61                 u64 handle;             /* firmware handle */
62         } *entry;
63         wait_queue_head_t waitq;
64 /* Shadow of net_device address lists, guarded by mac_lock */
65 #define EFX_EF10_FILTER_STACK_UC_MAX    32
66 #define EFX_EF10_FILTER_STACK_MC_MAX    256
67         struct {
68                 u8 addr[ETH_ALEN];
69                 u16 id;
70         } stack_uc_list[EFX_EF10_FILTER_STACK_UC_MAX],
71           stack_mc_list[EFX_EF10_FILTER_STACK_MC_MAX];
72         int stack_uc_count;             /* negative for PROMISC */
73         int stack_mc_count;             /* negative for PROMISC/ALLMULTI */
74 };
75
76 /* An arbitrary search limit for the software hash table */
77 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
78
79 static void efx_ef10_rx_push_indir_table(struct efx_nic *efx);
80 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
81 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
82
83 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
84 {
85         efx_dword_t reg;
86
87         efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
88         return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
89                 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
90 }
91
92 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
93 {
94         return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
95 }
96
97 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
98 {
99         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
100         struct efx_ef10_nic_data *nic_data = efx->nic_data;
101         size_t outlen;
102         int rc;
103
104         BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
105
106         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
107                           outbuf, sizeof(outbuf), &outlen);
108         if (rc)
109                 return rc;
110         if (outlen < sizeof(outbuf)) {
111                 netif_err(efx, drv, efx->net_dev,
112                           "unable to read datapath firmware capabilities\n");
113                 return -EIO;
114         }
115
116         nic_data->datapath_caps =
117                 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
118
119         if (!(nic_data->datapath_caps &
120               (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
121                 netif_err(efx, drv, efx->net_dev,
122                           "current firmware does not support TSO\n");
123                 return -ENODEV;
124         }
125
126         if (!(nic_data->datapath_caps &
127               (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
128                 netif_err(efx, probe, efx->net_dev,
129                           "current firmware does not support an RX prefix\n");
130                 return -ENODEV;
131         }
132
133         return 0;
134 }
135
136 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
137 {
138         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
139         int rc;
140
141         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
142                           outbuf, sizeof(outbuf), NULL);
143         if (rc)
144                 return rc;
145         rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
146         return rc > 0 ? rc : -ERANGE;
147 }
148
149 static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
150 {
151         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
152         size_t outlen;
153         int rc;
154
155         BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
156
157         rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
158                           outbuf, sizeof(outbuf), &outlen);
159         if (rc)
160                 return rc;
161         if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
162                 return -EIO;
163
164         memcpy(mac_address,
165                MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE), ETH_ALEN);
166         return 0;
167 }
168
169 static int efx_ef10_probe(struct efx_nic *efx)
170 {
171         struct efx_ef10_nic_data *nic_data;
172         int i, rc;
173
174         /* We can have one VI for each 8K region.  However we need
175          * multiple TX queues per channel.
176          */
177         efx->max_channels =
178                 min_t(unsigned int,
179                       EFX_MAX_CHANNELS,
180                       resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
181                       (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
182         BUG_ON(efx->max_channels == 0);
183
184         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
185         if (!nic_data)
186                 return -ENOMEM;
187         efx->nic_data = nic_data;
188
189         rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
190                                   8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
191         if (rc)
192                 goto fail1;
193
194         /* Get the MC's warm boot count.  In case it's rebooting right
195          * now, be prepared to retry.
196          */
197         i = 0;
198         for (;;) {
199                 rc = efx_ef10_get_warm_boot_count(efx);
200                 if (rc >= 0)
201                         break;
202                 if (++i == 5)
203                         goto fail2;
204                 ssleep(1);
205         }
206         nic_data->warm_boot_count = rc;
207
208         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
209
210         /* In case we're recovering from a crash (kexec), we want to
211          * cancel any outstanding request by the previous user of this
212          * function.  We send a special message using the least
213          * significant bits of the 'high' (doorbell) register.
214          */
215         _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
216
217         rc = efx_mcdi_init(efx);
218         if (rc)
219                 goto fail2;
220
221         /* Reset (most) configuration for this function */
222         rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
223         if (rc)
224                 goto fail3;
225
226         /* Enable event logging */
227         rc = efx_mcdi_log_ctrl(efx, true, false, 0);
228         if (rc)
229                 goto fail3;
230
231         rc = efx_ef10_init_datapath_caps(efx);
232         if (rc < 0)
233                 goto fail3;
234
235         efx->rx_packet_len_offset =
236                 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
237
238         rc = efx_mcdi_port_get_number(efx);
239         if (rc < 0)
240                 goto fail3;
241         efx->port_num = rc;
242
243         rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
244         if (rc)
245                 goto fail3;
246
247         rc = efx_ef10_get_sysclk_freq(efx);
248         if (rc < 0)
249                 goto fail3;
250         efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
251
252         /* Check whether firmware supports bug 35388 workaround */
253         rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
254         if (rc == 0)
255                 nic_data->workaround_35388 = true;
256         else if (rc != -ENOSYS && rc != -ENOENT)
257                 goto fail3;
258         netif_dbg(efx, probe, efx->net_dev,
259                   "workaround for bug 35388 is %sabled\n",
260                   nic_data->workaround_35388 ? "en" : "dis");
261
262         rc = efx_mcdi_mon_probe(efx);
263         if (rc)
264                 goto fail3;
265
266         return 0;
267
268 fail3:
269         efx_mcdi_fini(efx);
270 fail2:
271         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
272 fail1:
273         kfree(nic_data);
274         efx->nic_data = NULL;
275         return rc;
276 }
277
278 static int efx_ef10_free_vis(struct efx_nic *efx)
279 {
280         int rc = efx_mcdi_rpc(efx, MC_CMD_FREE_VIS, NULL, 0, NULL, 0, NULL);
281
282         /* -EALREADY means nothing to free, so ignore */
283         if (rc == -EALREADY)
284                 rc = 0;
285         return rc;
286 }
287
288 #ifdef EFX_USE_PIO
289
290 static void efx_ef10_free_piobufs(struct efx_nic *efx)
291 {
292         struct efx_ef10_nic_data *nic_data = efx->nic_data;
293         MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
294         unsigned int i;
295         int rc;
296
297         BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
298
299         for (i = 0; i < nic_data->n_piobufs; i++) {
300                 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
301                                nic_data->piobuf_handle[i]);
302                 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
303                                   NULL, 0, NULL);
304                 WARN_ON(rc);
305         }
306
307         nic_data->n_piobufs = 0;
308 }
309
310 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
311 {
312         struct efx_ef10_nic_data *nic_data = efx->nic_data;
313         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
314         unsigned int i;
315         size_t outlen;
316         int rc = 0;
317
318         BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
319
320         for (i = 0; i < n; i++) {
321                 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
322                                   outbuf, sizeof(outbuf), &outlen);
323                 if (rc)
324                         break;
325                 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
326                         rc = -EIO;
327                         break;
328                 }
329                 nic_data->piobuf_handle[i] =
330                         MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
331                 netif_dbg(efx, probe, efx->net_dev,
332                           "allocated PIO buffer %u handle %x\n", i,
333                           nic_data->piobuf_handle[i]);
334         }
335
336         nic_data->n_piobufs = i;
337         if (rc)
338                 efx_ef10_free_piobufs(efx);
339         return rc;
340 }
341
342 static int efx_ef10_link_piobufs(struct efx_nic *efx)
343 {
344         struct efx_ef10_nic_data *nic_data = efx->nic_data;
345         MCDI_DECLARE_BUF(inbuf,
346                          max(MC_CMD_LINK_PIOBUF_IN_LEN,
347                              MC_CMD_UNLINK_PIOBUF_IN_LEN));
348         struct efx_channel *channel;
349         struct efx_tx_queue *tx_queue;
350         unsigned int offset, index;
351         int rc;
352
353         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
354         BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
355
356         /* Link a buffer to each VI in the write-combining mapping */
357         for (index = 0; index < nic_data->n_piobufs; ++index) {
358                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
359                                nic_data->piobuf_handle[index]);
360                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
361                                nic_data->pio_write_vi_base + index);
362                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
363                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
364                                   NULL, 0, NULL);
365                 if (rc) {
366                         netif_err(efx, drv, efx->net_dev,
367                                   "failed to link VI %u to PIO buffer %u (%d)\n",
368                                   nic_data->pio_write_vi_base + index, index,
369                                   rc);
370                         goto fail;
371                 }
372                 netif_dbg(efx, probe, efx->net_dev,
373                           "linked VI %u to PIO buffer %u\n",
374                           nic_data->pio_write_vi_base + index, index);
375         }
376
377         /* Link a buffer to each TX queue */
378         efx_for_each_channel(channel, efx) {
379                 efx_for_each_channel_tx_queue(tx_queue, channel) {
380                         /* We assign the PIO buffers to queues in
381                          * reverse order to allow for the following
382                          * special case.
383                          */
384                         offset = ((efx->tx_channel_offset + efx->n_tx_channels -
385                                    tx_queue->channel->channel - 1) *
386                                   efx_piobuf_size);
387                         index = offset / ER_DZ_TX_PIOBUF_SIZE;
388                         offset = offset % ER_DZ_TX_PIOBUF_SIZE;
389
390                         /* When the host page size is 4K, the first
391                          * host page in the WC mapping may be within
392                          * the same VI page as the last TX queue.  We
393                          * can only link one buffer to each VI.
394                          */
395                         if (tx_queue->queue == nic_data->pio_write_vi_base) {
396                                 BUG_ON(index != 0);
397                                 rc = 0;
398                         } else {
399                                 MCDI_SET_DWORD(inbuf,
400                                                LINK_PIOBUF_IN_PIOBUF_HANDLE,
401                                                nic_data->piobuf_handle[index]);
402                                 MCDI_SET_DWORD(inbuf,
403                                                LINK_PIOBUF_IN_TXQ_INSTANCE,
404                                                tx_queue->queue);
405                                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
406                                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
407                                                   NULL, 0, NULL);
408                         }
409
410                         if (rc) {
411                                 /* This is non-fatal; the TX path just
412                                  * won't use PIO for this queue
413                                  */
414                                 netif_err(efx, drv, efx->net_dev,
415                                           "failed to link VI %u to PIO buffer %u (%d)\n",
416                                           tx_queue->queue, index, rc);
417                                 tx_queue->piobuf = NULL;
418                         } else {
419                                 tx_queue->piobuf =
420                                         nic_data->pio_write_base +
421                                         index * EFX_VI_PAGE_SIZE + offset;
422                                 tx_queue->piobuf_offset = offset;
423                                 netif_dbg(efx, probe, efx->net_dev,
424                                           "linked VI %u to PIO buffer %u offset %x addr %p\n",
425                                           tx_queue->queue, index,
426                                           tx_queue->piobuf_offset,
427                                           tx_queue->piobuf);
428                         }
429                 }
430         }
431
432         return 0;
433
434 fail:
435         while (index--) {
436                 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
437                                nic_data->pio_write_vi_base + index);
438                 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
439                              inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
440                              NULL, 0, NULL);
441         }
442         return rc;
443 }
444
445 #else /* !EFX_USE_PIO */
446
447 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
448 {
449         return n == 0 ? 0 : -ENOBUFS;
450 }
451
452 static int efx_ef10_link_piobufs(struct efx_nic *efx)
453 {
454         return 0;
455 }
456
457 static void efx_ef10_free_piobufs(struct efx_nic *efx)
458 {
459 }
460
461 #endif /* EFX_USE_PIO */
462
463 static void efx_ef10_remove(struct efx_nic *efx)
464 {
465         struct efx_ef10_nic_data *nic_data = efx->nic_data;
466         int rc;
467
468         efx_mcdi_mon_remove(efx);
469
470         /* This needs to be after efx_ptp_remove_channel() with no filters */
471         efx_ef10_rx_free_indir_table(efx);
472
473         if (nic_data->wc_membase)
474                 iounmap(nic_data->wc_membase);
475
476         rc = efx_ef10_free_vis(efx);
477         WARN_ON(rc != 0);
478
479         if (!nic_data->must_restore_piobufs)
480                 efx_ef10_free_piobufs(efx);
481
482         efx_mcdi_fini(efx);
483         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
484         kfree(nic_data);
485 }
486
487 static int efx_ef10_alloc_vis(struct efx_nic *efx,
488                               unsigned int min_vis, unsigned int max_vis)
489 {
490         MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
491         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
492         struct efx_ef10_nic_data *nic_data = efx->nic_data;
493         size_t outlen;
494         int rc;
495
496         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
497         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
498         rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
499                           outbuf, sizeof(outbuf), &outlen);
500         if (rc != 0)
501                 return rc;
502
503         if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
504                 return -EIO;
505
506         netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
507                   MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
508
509         nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
510         nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
511         return 0;
512 }
513
514 /* Note that the failure path of this function does not free
515  * resources, as this will be done by efx_ef10_remove().
516  */
517 static int efx_ef10_dimension_resources(struct efx_nic *efx)
518 {
519         struct efx_ef10_nic_data *nic_data = efx->nic_data;
520         unsigned int uc_mem_map_size, wc_mem_map_size;
521         unsigned int min_vis, pio_write_vi_base, max_vis;
522         void __iomem *membase;
523         int rc;
524
525         min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
526
527 #ifdef EFX_USE_PIO
528         /* Try to allocate PIO buffers if wanted and if the full
529          * number of PIO buffers would be sufficient to allocate one
530          * copy-buffer per TX channel.  Failure is non-fatal, as there
531          * are only a small number of PIO buffers shared between all
532          * functions of the controller.
533          */
534         if (efx_piobuf_size != 0 &&
535             ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
536             efx->n_tx_channels) {
537                 unsigned int n_piobufs =
538                         DIV_ROUND_UP(efx->n_tx_channels,
539                                      ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
540
541                 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
542                 if (rc)
543                         netif_err(efx, probe, efx->net_dev,
544                                   "failed to allocate PIO buffers (%d)\n", rc);
545                 else
546                         netif_dbg(efx, probe, efx->net_dev,
547                                   "allocated %u PIO buffers\n", n_piobufs);
548         }
549 #else
550         nic_data->n_piobufs = 0;
551 #endif
552
553         /* PIO buffers should be mapped with write-combining enabled,
554          * and we want to make single UC and WC mappings rather than
555          * several of each (in fact that's the only option if host
556          * page size is >4K).  So we may allocate some extra VIs just
557          * for writing PIO buffers through.
558          */
559         uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
560                                      ER_DZ_TX_PIOBUF);
561         if (nic_data->n_piobufs) {
562                 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
563                 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
564                                                nic_data->n_piobufs) *
565                                               EFX_VI_PAGE_SIZE) -
566                                    uc_mem_map_size);
567                 max_vis = pio_write_vi_base + nic_data->n_piobufs;
568         } else {
569                 pio_write_vi_base = 0;
570                 wc_mem_map_size = 0;
571                 max_vis = min_vis;
572         }
573
574         /* In case the last attached driver failed to free VIs, do it now */
575         rc = efx_ef10_free_vis(efx);
576         if (rc != 0)
577                 return rc;
578
579         rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
580         if (rc != 0)
581                 return rc;
582
583         /* If we didn't get enough VIs to map all the PIO buffers, free the
584          * PIO buffers
585          */
586         if (nic_data->n_piobufs &&
587             nic_data->n_allocated_vis <
588             pio_write_vi_base + nic_data->n_piobufs) {
589                 netif_dbg(efx, probe, efx->net_dev,
590                           "%u VIs are not sufficient to map %u PIO buffers\n",
591                           nic_data->n_allocated_vis, nic_data->n_piobufs);
592                 efx_ef10_free_piobufs(efx);
593         }
594
595         /* Shrink the original UC mapping of the memory BAR */
596         membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
597         if (!membase) {
598                 netif_err(efx, probe, efx->net_dev,
599                           "could not shrink memory BAR to %x\n",
600                           uc_mem_map_size);
601                 return -ENOMEM;
602         }
603         iounmap(efx->membase);
604         efx->membase = membase;
605
606         /* Set up the WC mapping if needed */
607         if (wc_mem_map_size) {
608                 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
609                                                   uc_mem_map_size,
610                                                   wc_mem_map_size);
611                 if (!nic_data->wc_membase) {
612                         netif_err(efx, probe, efx->net_dev,
613                                   "could not allocate WC mapping of size %x\n",
614                                   wc_mem_map_size);
615                         return -ENOMEM;
616                 }
617                 nic_data->pio_write_vi_base = pio_write_vi_base;
618                 nic_data->pio_write_base =
619                         nic_data->wc_membase +
620                         (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
621                          uc_mem_map_size);
622
623                 rc = efx_ef10_link_piobufs(efx);
624                 if (rc)
625                         efx_ef10_free_piobufs(efx);
626         }
627
628         netif_dbg(efx, probe, efx->net_dev,
629                   "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
630                   &efx->membase_phys, efx->membase, uc_mem_map_size,
631                   nic_data->wc_membase, wc_mem_map_size);
632
633         return 0;
634 }
635
636 static int efx_ef10_init_nic(struct efx_nic *efx)
637 {
638         struct efx_ef10_nic_data *nic_data = efx->nic_data;
639         int rc;
640
641         if (nic_data->must_check_datapath_caps) {
642                 rc = efx_ef10_init_datapath_caps(efx);
643                 if (rc)
644                         return rc;
645                 nic_data->must_check_datapath_caps = false;
646         }
647
648         if (nic_data->must_realloc_vis) {
649                 /* We cannot let the number of VIs change now */
650                 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
651                                         nic_data->n_allocated_vis);
652                 if (rc)
653                         return rc;
654                 nic_data->must_realloc_vis = false;
655         }
656
657         if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
658                 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
659                 if (rc == 0) {
660                         rc = efx_ef10_link_piobufs(efx);
661                         if (rc)
662                                 efx_ef10_free_piobufs(efx);
663                 }
664
665                 /* Log an error on failure, but this is non-fatal */
666                 if (rc)
667                         netif_err(efx, drv, efx->net_dev,
668                                   "failed to restore PIO buffers (%d)\n", rc);
669                 nic_data->must_restore_piobufs = false;
670         }
671
672         efx_ef10_rx_push_indir_table(efx);
673         return 0;
674 }
675
676 static int efx_ef10_map_reset_flags(u32 *flags)
677 {
678         enum {
679                 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
680                                    ETH_RESET_SHARED_SHIFT),
681                 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
682                                   ETH_RESET_OFFLOAD | ETH_RESET_MAC |
683                                   ETH_RESET_PHY | ETH_RESET_MGMT) <<
684                                  ETH_RESET_SHARED_SHIFT)
685         };
686
687         /* We assume for now that our PCI function is permitted to
688          * reset everything.
689          */
690
691         if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
692                 *flags &= ~EF10_RESET_MC;
693                 return RESET_TYPE_WORLD;
694         }
695
696         if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
697                 *flags &= ~EF10_RESET_PORT;
698                 return RESET_TYPE_ALL;
699         }
700
701         /* no invisible reset implemented */
702
703         return -EINVAL;
704 }
705
706 #define EF10_DMA_STAT(ext_name, mcdi_name)                      \
707         [EF10_STAT_ ## ext_name] =                              \
708         { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
709 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)                \
710         [EF10_STAT_ ## int_name] =                              \
711         { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
712 #define EF10_OTHER_STAT(ext_name)                               \
713         [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
714
715 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
716         EF10_DMA_STAT(tx_bytes, TX_BYTES),
717         EF10_DMA_STAT(tx_packets, TX_PKTS),
718         EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
719         EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
720         EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
721         EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
722         EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
723         EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
724         EF10_DMA_STAT(tx_64, TX_64_PKTS),
725         EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
726         EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
727         EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
728         EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
729         EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
730         EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
731         EF10_DMA_STAT(rx_bytes, RX_BYTES),
732         EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
733         EF10_OTHER_STAT(rx_good_bytes),
734         EF10_OTHER_STAT(rx_bad_bytes),
735         EF10_DMA_STAT(rx_packets, RX_PKTS),
736         EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
737         EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
738         EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
739         EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
740         EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
741         EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
742         EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
743         EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
744         EF10_DMA_STAT(rx_64, RX_64_PKTS),
745         EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
746         EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
747         EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
748         EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
749         EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
750         EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
751         EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
752         EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
753         EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
754         EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
755         EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
756         EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
757         EF10_DMA_STAT(rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
758         EF10_DMA_STAT(rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
759         EF10_DMA_STAT(rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
760         EF10_DMA_STAT(rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
761         EF10_DMA_STAT(rx_pm_trunc_qbb, PM_TRUNC_QBB),
762         EF10_DMA_STAT(rx_pm_discard_qbb, PM_DISCARD_QBB),
763         EF10_DMA_STAT(rx_pm_discard_mapping, PM_DISCARD_MAPPING),
764         EF10_DMA_STAT(rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
765         EF10_DMA_STAT(rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
766         EF10_DMA_STAT(rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
767         EF10_DMA_STAT(rx_dp_emerg_fetch, RXDP_EMERGENCY_FETCH_CONDITIONS),
768         EF10_DMA_STAT(rx_dp_emerg_wait, RXDP_EMERGENCY_WAIT_CONDITIONS),
769 };
770
771 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) |           \
772                                (1ULL << EF10_STAT_tx_packets) |         \
773                                (1ULL << EF10_STAT_tx_pause) |           \
774                                (1ULL << EF10_STAT_tx_unicast) |         \
775                                (1ULL << EF10_STAT_tx_multicast) |       \
776                                (1ULL << EF10_STAT_tx_broadcast) |       \
777                                (1ULL << EF10_STAT_rx_bytes) |           \
778                                (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
779                                (1ULL << EF10_STAT_rx_good_bytes) |      \
780                                (1ULL << EF10_STAT_rx_bad_bytes) |       \
781                                (1ULL << EF10_STAT_rx_packets) |         \
782                                (1ULL << EF10_STAT_rx_good) |            \
783                                (1ULL << EF10_STAT_rx_bad) |             \
784                                (1ULL << EF10_STAT_rx_pause) |           \
785                                (1ULL << EF10_STAT_rx_control) |         \
786                                (1ULL << EF10_STAT_rx_unicast) |         \
787                                (1ULL << EF10_STAT_rx_multicast) |       \
788                                (1ULL << EF10_STAT_rx_broadcast) |       \
789                                (1ULL << EF10_STAT_rx_lt64) |            \
790                                (1ULL << EF10_STAT_rx_64) |              \
791                                (1ULL << EF10_STAT_rx_65_to_127) |       \
792                                (1ULL << EF10_STAT_rx_128_to_255) |      \
793                                (1ULL << EF10_STAT_rx_256_to_511) |      \
794                                (1ULL << EF10_STAT_rx_512_to_1023) |     \
795                                (1ULL << EF10_STAT_rx_1024_to_15xx) |    \
796                                (1ULL << EF10_STAT_rx_15xx_to_jumbo) |   \
797                                (1ULL << EF10_STAT_rx_gtjumbo) |         \
798                                (1ULL << EF10_STAT_rx_bad_gtjumbo) |     \
799                                (1ULL << EF10_STAT_rx_overflow) |        \
800                                (1ULL << EF10_STAT_rx_nodesc_drops))
801
802 /* These statistics are only provided by the 10G MAC.  For a 10G/40G
803  * switchable port we do not expose these because they might not
804  * include all the packets they should.
805  */
806 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) |       \
807                                  (1ULL << EF10_STAT_tx_lt64) |          \
808                                  (1ULL << EF10_STAT_tx_64) |            \
809                                  (1ULL << EF10_STAT_tx_65_to_127) |     \
810                                  (1ULL << EF10_STAT_tx_128_to_255) |    \
811                                  (1ULL << EF10_STAT_tx_256_to_511) |    \
812                                  (1ULL << EF10_STAT_tx_512_to_1023) |   \
813                                  (1ULL << EF10_STAT_tx_1024_to_15xx) |  \
814                                  (1ULL << EF10_STAT_tx_15xx_to_jumbo))
815
816 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
817  * switchable port we do expose these because the errors will otherwise
818  * be silent.
819  */
820 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) |  \
821                                   (1ULL << EF10_STAT_rx_length_error))
822
823 /* These statistics are only provided if the firmware supports the
824  * capability PM_AND_RXDP_COUNTERS.
825  */
826 #define HUNT_PM_AND_RXDP_STAT_MASK (                                    \
827         (1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) |                   \
828         (1ULL << EF10_STAT_rx_pm_discard_bb_overflow) |                 \
829         (1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) |                    \
830         (1ULL << EF10_STAT_rx_pm_discard_vfifo_full) |                  \
831         (1ULL << EF10_STAT_rx_pm_trunc_qbb) |                           \
832         (1ULL << EF10_STAT_rx_pm_discard_qbb) |                         \
833         (1ULL << EF10_STAT_rx_pm_discard_mapping) |                     \
834         (1ULL << EF10_STAT_rx_dp_q_disabled_packets) |                  \
835         (1ULL << EF10_STAT_rx_dp_di_dropped_packets) |                  \
836         (1ULL << EF10_STAT_rx_dp_streaming_packets) |                   \
837         (1ULL << EF10_STAT_rx_dp_emerg_fetch) |                         \
838         (1ULL << EF10_STAT_rx_dp_emerg_wait))
839
840 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
841 {
842         u64 raw_mask = HUNT_COMMON_STAT_MASK;
843         u32 port_caps = efx_mcdi_phy_get_caps(efx);
844         struct efx_ef10_nic_data *nic_data = efx->nic_data;
845
846         if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
847                 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
848         else
849                 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
850
851         if (nic_data->datapath_caps &
852             (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
853                 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
854
855         return raw_mask;
856 }
857
858 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
859 {
860         u64 raw_mask = efx_ef10_raw_stat_mask(efx);
861
862 #if BITS_PER_LONG == 64
863         mask[0] = raw_mask;
864 #else
865         mask[0] = raw_mask & 0xffffffff;
866         mask[1] = raw_mask >> 32;
867 #endif
868 }
869
870 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
871 {
872         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
873
874         efx_ef10_get_stat_mask(efx, mask);
875         return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
876                                       mask, names);
877 }
878
879 static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
880 {
881         struct efx_ef10_nic_data *nic_data = efx->nic_data;
882         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
883         __le64 generation_start, generation_end;
884         u64 *stats = nic_data->stats;
885         __le64 *dma_stats;
886
887         efx_ef10_get_stat_mask(efx, mask);
888
889         dma_stats = efx->stats_buffer.addr;
890         nic_data = efx->nic_data;
891
892         generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
893         if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
894                 return 0;
895         rmb();
896         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
897                              stats, efx->stats_buffer.addr, false);
898         rmb();
899         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
900         if (generation_end != generation_start)
901                 return -EAGAIN;
902
903         /* Update derived statistics */
904         stats[EF10_STAT_rx_good_bytes] =
905                 stats[EF10_STAT_rx_bytes] -
906                 stats[EF10_STAT_rx_bytes_minus_good_bytes];
907         efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
908                              stats[EF10_STAT_rx_bytes_minus_good_bytes]);
909
910         return 0;
911 }
912
913
914 static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
915                                     struct rtnl_link_stats64 *core_stats)
916 {
917         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
918         struct efx_ef10_nic_data *nic_data = efx->nic_data;
919         u64 *stats = nic_data->stats;
920         size_t stats_count = 0, index;
921         int retry;
922
923         efx_ef10_get_stat_mask(efx, mask);
924
925         /* If we're unlucky enough to read statistics during the DMA, wait
926          * up to 10ms for it to finish (typically takes <500us)
927          */
928         for (retry = 0; retry < 100; ++retry) {
929                 if (efx_ef10_try_update_nic_stats(efx) == 0)
930                         break;
931                 udelay(100);
932         }
933
934         if (full_stats) {
935                 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
936                         if (efx_ef10_stat_desc[index].name) {
937                                 *full_stats++ = stats[index];
938                                 ++stats_count;
939                         }
940                 }
941         }
942
943         if (core_stats) {
944                 core_stats->rx_packets = stats[EF10_STAT_rx_packets];
945                 core_stats->tx_packets = stats[EF10_STAT_tx_packets];
946                 core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
947                 core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
948                 core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops];
949                 core_stats->multicast = stats[EF10_STAT_rx_multicast];
950                 core_stats->rx_length_errors =
951                         stats[EF10_STAT_rx_gtjumbo] +
952                         stats[EF10_STAT_rx_length_error];
953                 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
954                 core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
955                 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
956                 core_stats->rx_errors = (core_stats->rx_length_errors +
957                                          core_stats->rx_crc_errors +
958                                          core_stats->rx_frame_errors);
959         }
960
961         return stats_count;
962 }
963
964 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
965 {
966         struct efx_nic *efx = channel->efx;
967         unsigned int mode, value;
968         efx_dword_t timer_cmd;
969
970         if (channel->irq_moderation) {
971                 mode = 3;
972                 value = channel->irq_moderation - 1;
973         } else {
974                 mode = 0;
975                 value = 0;
976         }
977
978         if (EFX_EF10_WORKAROUND_35388(efx)) {
979                 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
980                                      EFE_DD_EVQ_IND_TIMER_FLAGS,
981                                      ERF_DD_EVQ_IND_TIMER_MODE, mode,
982                                      ERF_DD_EVQ_IND_TIMER_VAL, value);
983                 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
984                                 channel->channel);
985         } else {
986                 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
987                                      ERF_DZ_TC_TIMER_VAL, value);
988                 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
989                                 channel->channel);
990         }
991 }
992
993 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
994 {
995         wol->supported = 0;
996         wol->wolopts = 0;
997         memset(&wol->sopass, 0, sizeof(wol->sopass));
998 }
999
1000 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1001 {
1002         if (type != 0)
1003                 return -EINVAL;
1004         return 0;
1005 }
1006
1007 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1008                                   const efx_dword_t *hdr, size_t hdr_len,
1009                                   const efx_dword_t *sdu, size_t sdu_len)
1010 {
1011         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1012         u8 *pdu = nic_data->mcdi_buf.addr;
1013
1014         memcpy(pdu, hdr, hdr_len);
1015         memcpy(pdu + hdr_len, sdu, sdu_len);
1016         wmb();
1017
1018         /* The hardware provides 'low' and 'high' (doorbell) registers
1019          * for passing the 64-bit address of an MCDI request to
1020          * firmware.  However the dwords are swapped by firmware.  The
1021          * least significant bits of the doorbell are then 0 for all
1022          * MCDI requests due to alignment.
1023          */
1024         _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1025                     ER_DZ_MC_DB_LWRD);
1026         _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1027                     ER_DZ_MC_DB_HWRD);
1028 }
1029
1030 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1031 {
1032         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1033         const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1034
1035         rmb();
1036         return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1037 }
1038
1039 static void
1040 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1041                             size_t offset, size_t outlen)
1042 {
1043         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1044         const u8 *pdu = nic_data->mcdi_buf.addr;
1045
1046         memcpy(outbuf, pdu + offset, outlen);
1047 }
1048
1049 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1050 {
1051         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1052         int rc;
1053
1054         rc = efx_ef10_get_warm_boot_count(efx);
1055         if (rc < 0) {
1056                 /* The firmware is presumably in the process of
1057                  * rebooting.  However, we are supposed to report each
1058                  * reboot just once, so we must only do that once we
1059                  * can read and store the updated warm boot count.
1060                  */
1061                 return 0;
1062         }
1063
1064         if (rc == nic_data->warm_boot_count)
1065                 return 0;
1066
1067         nic_data->warm_boot_count = rc;
1068
1069         /* All our allocations have been reset */
1070         nic_data->must_realloc_vis = true;
1071         nic_data->must_restore_filters = true;
1072         nic_data->must_restore_piobufs = true;
1073         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1074
1075         /* The datapath firmware might have been changed */
1076         nic_data->must_check_datapath_caps = true;
1077
1078         /* MAC statistics have been cleared on the NIC; clear the local
1079          * statistic that we update with efx_update_diff_stat().
1080          */
1081         nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
1082
1083         return -EIO;
1084 }
1085
1086 /* Handle an MSI interrupt
1087  *
1088  * Handle an MSI hardware interrupt.  This routine schedules event
1089  * queue processing.  No interrupt acknowledgement cycle is necessary.
1090  * Also, we never need to check that the interrupt is for us, since
1091  * MSI interrupts cannot be shared.
1092  */
1093 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1094 {
1095         struct efx_msi_context *context = dev_id;
1096         struct efx_nic *efx = context->efx;
1097
1098         netif_vdbg(efx, intr, efx->net_dev,
1099                    "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1100
1101         if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1102                 /* Note test interrupts */
1103                 if (context->index == efx->irq_level)
1104                         efx->last_irq_cpu = raw_smp_processor_id();
1105
1106                 /* Schedule processing of the channel */
1107                 efx_schedule_channel_irq(efx->channel[context->index]);
1108         }
1109
1110         return IRQ_HANDLED;
1111 }
1112
1113 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1114 {
1115         struct efx_nic *efx = dev_id;
1116         bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1117         struct efx_channel *channel;
1118         efx_dword_t reg;
1119         u32 queues;
1120
1121         /* Read the ISR which also ACKs the interrupts */
1122         efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1123         queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1124
1125         if (queues == 0)
1126                 return IRQ_NONE;
1127
1128         if (likely(soft_enabled)) {
1129                 /* Note test interrupts */
1130                 if (queues & (1U << efx->irq_level))
1131                         efx->last_irq_cpu = raw_smp_processor_id();
1132
1133                 efx_for_each_channel(channel, efx) {
1134                         if (queues & 1)
1135                                 efx_schedule_channel_irq(channel);
1136                         queues >>= 1;
1137                 }
1138         }
1139
1140         netif_vdbg(efx, intr, efx->net_dev,
1141                    "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1142                    irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1143
1144         return IRQ_HANDLED;
1145 }
1146
1147 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1148 {
1149         MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1150
1151         BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1152
1153         MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1154         (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1155                             inbuf, sizeof(inbuf), NULL, 0, NULL);
1156 }
1157
1158 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1159 {
1160         return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1161                                     (tx_queue->ptr_mask + 1) *
1162                                     sizeof(efx_qword_t),
1163                                     GFP_KERNEL);
1164 }
1165
1166 /* This writes to the TX_DESC_WPTR and also pushes data */
1167 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1168                                          const efx_qword_t *txd)
1169 {
1170         unsigned int write_ptr;
1171         efx_oword_t reg;
1172
1173         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1174         EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1175         reg.qword[0] = *txd;
1176         efx_writeo_page(tx_queue->efx, &reg,
1177                         ER_DZ_TX_DESC_UPD, tx_queue->queue);
1178 }
1179
1180 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1181 {
1182         MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1183                                                        EFX_BUF_SIZE));
1184         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
1185         bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1186         size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1187         struct efx_channel *channel = tx_queue->channel;
1188         struct efx_nic *efx = tx_queue->efx;
1189         size_t inlen, outlen;
1190         dma_addr_t dma_addr;
1191         efx_qword_t *txd;
1192         int rc;
1193         int i;
1194
1195         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1196         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1197         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1198         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1199         MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1200                               INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1201                               INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1202         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1203         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1204
1205         dma_addr = tx_queue->txd.buf.dma_addr;
1206
1207         netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1208                   tx_queue->queue, entries, (u64)dma_addr);
1209
1210         for (i = 0; i < entries; ++i) {
1211                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1212                 dma_addr += EFX_BUF_SIZE;
1213         }
1214
1215         inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1216
1217         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1218                           outbuf, sizeof(outbuf), &outlen);
1219         if (rc)
1220                 goto fail;
1221
1222         /* A previous user of this TX queue might have set us up the
1223          * bomb by writing a descriptor to the TX push collector but
1224          * not the doorbell.  (Each collector belongs to a port, not a
1225          * queue or function, so cannot easily be reset.)  We must
1226          * attempt to push a no-op descriptor in its place.
1227          */
1228         tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1229         tx_queue->insert_count = 1;
1230         txd = efx_tx_desc(tx_queue, 0);
1231         EFX_POPULATE_QWORD_4(*txd,
1232                              ESF_DZ_TX_DESC_IS_OPT, true,
1233                              ESF_DZ_TX_OPTION_TYPE,
1234                              ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1235                              ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1236                              ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1237         tx_queue->write_count = 1;
1238         wmb();
1239         efx_ef10_push_tx_desc(tx_queue, txd);
1240
1241         return;
1242
1243 fail:
1244         WARN_ON(true);
1245         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1246 }
1247
1248 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1249 {
1250         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1251         MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
1252         struct efx_nic *efx = tx_queue->efx;
1253         size_t outlen;
1254         int rc;
1255
1256         MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1257                        tx_queue->queue);
1258
1259         rc = efx_mcdi_rpc(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1260                           outbuf, sizeof(outbuf), &outlen);
1261
1262         if (rc && rc != -EALREADY)
1263                 goto fail;
1264
1265         return;
1266
1267 fail:
1268         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1269 }
1270
1271 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1272 {
1273         efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1274 }
1275
1276 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1277 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1278 {
1279         unsigned int write_ptr;
1280         efx_dword_t reg;
1281
1282         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1283         EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1284         efx_writed_page(tx_queue->efx, &reg,
1285                         ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1286 }
1287
1288 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1289 {
1290         unsigned int old_write_count = tx_queue->write_count;
1291         struct efx_tx_buffer *buffer;
1292         unsigned int write_ptr;
1293         efx_qword_t *txd;
1294
1295         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
1296
1297         do {
1298                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1299                 buffer = &tx_queue->buffer[write_ptr];
1300                 txd = efx_tx_desc(tx_queue, write_ptr);
1301                 ++tx_queue->write_count;
1302
1303                 /* Create TX descriptor ring entry */
1304                 if (buffer->flags & EFX_TX_BUF_OPTION) {
1305                         *txd = buffer->option;
1306                 } else {
1307                         BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1308                         EFX_POPULATE_QWORD_3(
1309                                 *txd,
1310                                 ESF_DZ_TX_KER_CONT,
1311                                 buffer->flags & EFX_TX_BUF_CONT,
1312                                 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1313                                 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1314                 }
1315         } while (tx_queue->write_count != tx_queue->insert_count);
1316
1317         wmb(); /* Ensure descriptors are written before they are fetched */
1318
1319         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1320                 txd = efx_tx_desc(tx_queue,
1321                                   old_write_count & tx_queue->ptr_mask);
1322                 efx_ef10_push_tx_desc(tx_queue, txd);
1323                 ++tx_queue->pushes;
1324         } else {
1325                 efx_ef10_notify_tx_desc(tx_queue);
1326         }
1327 }
1328
1329 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
1330 {
1331         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1332         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1333         size_t outlen;
1334         int rc;
1335
1336         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1337                        EVB_PORT_ID_ASSIGNED);
1338         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
1339                        MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
1340         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
1341                        EFX_MAX_CHANNELS);
1342
1343         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1344                 outbuf, sizeof(outbuf), &outlen);
1345         if (rc != 0)
1346                 return rc;
1347
1348         if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1349                 return -EIO;
1350
1351         *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1352
1353         return 0;
1354 }
1355
1356 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1357 {
1358         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1359         int rc;
1360
1361         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1362                        context);
1363
1364         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1365                             NULL, 0, NULL);
1366         WARN_ON(rc != 0);
1367 }
1368
1369 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1370 {
1371         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1372         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1373         int i, rc;
1374
1375         MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1376                        context);
1377         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1378                      MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1379
1380         for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1381                 MCDI_PTR(tablebuf,
1382                          RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1383                                 (u8) efx->rx_indir_table[i];
1384
1385         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1386                           sizeof(tablebuf), NULL, 0, NULL);
1387         if (rc != 0)
1388                 return rc;
1389
1390         MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1391                        context);
1392         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1393                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1394         for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1395                 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1396                         efx->rx_hash_key[i];
1397
1398         return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1399                             sizeof(keybuf), NULL, 0, NULL);
1400 }
1401
1402 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1403 {
1404         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1405
1406         if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1407                 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1408         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1409 }
1410
1411 static void efx_ef10_rx_push_indir_table(struct efx_nic *efx)
1412 {
1413         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1414         int rc;
1415
1416         netif_dbg(efx, drv, efx->net_dev, "pushing RX indirection table\n");
1417
1418         if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1419                 rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1420                 if (rc != 0)
1421                         goto fail;
1422         }
1423
1424         rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1425         if (rc != 0)
1426                 goto fail;
1427
1428         return;
1429
1430 fail:
1431         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1432 }
1433
1434 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1435 {
1436         return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1437                                     (rx_queue->ptr_mask + 1) *
1438                                     sizeof(efx_qword_t),
1439                                     GFP_KERNEL);
1440 }
1441
1442 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1443 {
1444         MCDI_DECLARE_BUF(inbuf,
1445                          MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1446                                                 EFX_BUF_SIZE));
1447         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1448         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1449         size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1450         struct efx_nic *efx = rx_queue->efx;
1451         size_t inlen, outlen;
1452         dma_addr_t dma_addr;
1453         int rc;
1454         int i;
1455
1456         rx_queue->scatter_n = 0;
1457         rx_queue->scatter_len = 0;
1458
1459         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1460         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1461         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1462         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1463                        efx_rx_queue_index(rx_queue));
1464         MCDI_POPULATE_DWORD_1(inbuf, INIT_RXQ_IN_FLAGS,
1465                               INIT_RXQ_IN_FLAG_PREFIX, 1);
1466         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1467         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1468
1469         dma_addr = rx_queue->rxd.buf.dma_addr;
1470
1471         netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1472                   efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1473
1474         for (i = 0; i < entries; ++i) {
1475                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1476                 dma_addr += EFX_BUF_SIZE;
1477         }
1478
1479         inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1480
1481         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1482                           outbuf, sizeof(outbuf), &outlen);
1483         if (rc)
1484                 goto fail;
1485
1486         return;
1487
1488 fail:
1489         WARN_ON(true);
1490         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1491 }
1492
1493 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1494 {
1495         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1496         MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1497         struct efx_nic *efx = rx_queue->efx;
1498         size_t outlen;
1499         int rc;
1500
1501         MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1502                        efx_rx_queue_index(rx_queue));
1503
1504         rc = efx_mcdi_rpc(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1505                           outbuf, sizeof(outbuf), &outlen);
1506
1507         if (rc && rc != -EALREADY)
1508                 goto fail;
1509
1510         return;
1511
1512 fail:
1513         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1514 }
1515
1516 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1517 {
1518         efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1519 }
1520
1521 /* This creates an entry in the RX descriptor queue */
1522 static inline void
1523 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1524 {
1525         struct efx_rx_buffer *rx_buf;
1526         efx_qword_t *rxd;
1527
1528         rxd = efx_rx_desc(rx_queue, index);
1529         rx_buf = efx_rx_buffer(rx_queue, index);
1530         EFX_POPULATE_QWORD_2(*rxd,
1531                              ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1532                              ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1533 }
1534
1535 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1536 {
1537         struct efx_nic *efx = rx_queue->efx;
1538         unsigned int write_count;
1539         efx_dword_t reg;
1540
1541         /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1542         write_count = rx_queue->added_count & ~7;
1543         if (rx_queue->notified_count == write_count)
1544                 return;
1545
1546         do
1547                 efx_ef10_build_rx_desc(
1548                         rx_queue,
1549                         rx_queue->notified_count & rx_queue->ptr_mask);
1550         while (++rx_queue->notified_count != write_count);
1551
1552         wmb();
1553         EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1554                              write_count & rx_queue->ptr_mask);
1555         efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1556                         efx_rx_queue_index(rx_queue));
1557 }
1558
1559 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1560
1561 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1562 {
1563         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1564         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1565         efx_qword_t event;
1566
1567         EFX_POPULATE_QWORD_2(event,
1568                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1569                              ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1570
1571         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1572
1573         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1574          * already swapped the data to little-endian order.
1575          */
1576         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1577                sizeof(efx_qword_t));
1578
1579         efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1580                            inbuf, sizeof(inbuf), 0,
1581                            efx_ef10_rx_defer_refill_complete, 0);
1582 }
1583
1584 static void
1585 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1586                                   int rc, efx_dword_t *outbuf,
1587                                   size_t outlen_actual)
1588 {
1589         /* nothing to do */
1590 }
1591
1592 static int efx_ef10_ev_probe(struct efx_channel *channel)
1593 {
1594         return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1595                                     (channel->eventq_mask + 1) *
1596                                     sizeof(efx_qword_t),
1597                                     GFP_KERNEL);
1598 }
1599
1600 static int efx_ef10_ev_init(struct efx_channel *channel)
1601 {
1602         MCDI_DECLARE_BUF(inbuf,
1603                          MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1604                                                 EFX_BUF_SIZE));
1605         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1606         size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1607         struct efx_nic *efx = channel->efx;
1608         struct efx_ef10_nic_data *nic_data;
1609         bool supports_rx_merge;
1610         size_t inlen, outlen;
1611         dma_addr_t dma_addr;
1612         int rc;
1613         int i;
1614
1615         nic_data = efx->nic_data;
1616         supports_rx_merge =
1617                 !!(nic_data->datapath_caps &
1618                    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1619
1620         /* Fill event queue with all ones (i.e. empty events) */
1621         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1622
1623         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1624         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1625         /* INIT_EVQ expects index in vector table, not absolute */
1626         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1627         MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1628                               INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1629                               INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1630                               INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1631                               INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1632         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1633                        MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1634         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1635         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1636         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1637                        MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1638         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1639
1640         dma_addr = channel->eventq.buf.dma_addr;
1641         for (i = 0; i < entries; ++i) {
1642                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1643                 dma_addr += EFX_BUF_SIZE;
1644         }
1645
1646         inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1647
1648         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1649                           outbuf, sizeof(outbuf), &outlen);
1650         if (rc)
1651                 goto fail;
1652
1653         /* IRQ return is ignored */
1654
1655         return 0;
1656
1657 fail:
1658         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1659         return rc;
1660 }
1661
1662 static void efx_ef10_ev_fini(struct efx_channel *channel)
1663 {
1664         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1665         MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1666         struct efx_nic *efx = channel->efx;
1667         size_t outlen;
1668         int rc;
1669
1670         MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1671
1672         rc = efx_mcdi_rpc(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1673                           outbuf, sizeof(outbuf), &outlen);
1674
1675         if (rc && rc != -EALREADY)
1676                 goto fail;
1677
1678         return;
1679
1680 fail:
1681         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1682 }
1683
1684 static void efx_ef10_ev_remove(struct efx_channel *channel)
1685 {
1686         efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1687 }
1688
1689 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1690                                            unsigned int rx_queue_label)
1691 {
1692         struct efx_nic *efx = rx_queue->efx;
1693
1694         netif_info(efx, hw, efx->net_dev,
1695                    "rx event arrived on queue %d labeled as queue %u\n",
1696                    efx_rx_queue_index(rx_queue), rx_queue_label);
1697
1698         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1699 }
1700
1701 static void
1702 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1703                              unsigned int actual, unsigned int expected)
1704 {
1705         unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1706         struct efx_nic *efx = rx_queue->efx;
1707
1708         netif_info(efx, hw, efx->net_dev,
1709                    "dropped %d events (index=%d expected=%d)\n",
1710                    dropped, actual, expected);
1711
1712         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1713 }
1714
1715 /* partially received RX was aborted. clean up. */
1716 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1717 {
1718         unsigned int rx_desc_ptr;
1719
1720         WARN_ON(rx_queue->scatter_n == 0);
1721
1722         netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1723                   "scattered RX aborted (dropping %u buffers)\n",
1724                   rx_queue->scatter_n);
1725
1726         rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1727
1728         efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1729                       0, EFX_RX_PKT_DISCARD);
1730
1731         rx_queue->removed_count += rx_queue->scatter_n;
1732         rx_queue->scatter_n = 0;
1733         rx_queue->scatter_len = 0;
1734         ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1735 }
1736
1737 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1738                                     const efx_qword_t *event)
1739 {
1740         unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1741         unsigned int n_descs, n_packets, i;
1742         struct efx_nic *efx = channel->efx;
1743         struct efx_rx_queue *rx_queue;
1744         bool rx_cont;
1745         u16 flags = 0;
1746
1747         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1748                 return 0;
1749
1750         /* Basic packet information */
1751         rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1752         next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1753         rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1754         rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1755         rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1756
1757         WARN_ON(EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT));
1758
1759         rx_queue = efx_channel_get_rx_queue(channel);
1760
1761         if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1762                 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1763
1764         n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1765                    ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1766
1767         if (n_descs != rx_queue->scatter_n + 1) {
1768                 /* detect rx abort */
1769                 if (unlikely(n_descs == rx_queue->scatter_n)) {
1770                         WARN_ON(rx_bytes != 0);
1771                         efx_ef10_handle_rx_abort(rx_queue);
1772                         return 0;
1773                 }
1774
1775                 if (unlikely(rx_queue->scatter_n != 0)) {
1776                         /* Scattered packet completions cannot be
1777                          * merged, so something has gone wrong.
1778                          */
1779                         efx_ef10_handle_rx_bad_lbits(
1780                                 rx_queue, next_ptr_lbits,
1781                                 (rx_queue->removed_count +
1782                                  rx_queue->scatter_n + 1) &
1783                                 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1784                         return 0;
1785                 }
1786
1787                 /* Merged completion for multiple non-scattered packets */
1788                 rx_queue->scatter_n = 1;
1789                 rx_queue->scatter_len = 0;
1790                 n_packets = n_descs;
1791                 ++channel->n_rx_merge_events;
1792                 channel->n_rx_merge_packets += n_packets;
1793                 flags |= EFX_RX_PKT_PREFIX_LEN;
1794         } else {
1795                 ++rx_queue->scatter_n;
1796                 rx_queue->scatter_len += rx_bytes;
1797                 if (rx_cont)
1798                         return 0;
1799                 n_packets = 1;
1800         }
1801
1802         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1803                 flags |= EFX_RX_PKT_DISCARD;
1804
1805         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1806                 channel->n_rx_ip_hdr_chksum_err += n_packets;
1807         } else if (unlikely(EFX_QWORD_FIELD(*event,
1808                                             ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1809                 channel->n_rx_tcp_udp_chksum_err += n_packets;
1810         } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1811                    rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1812                 flags |= EFX_RX_PKT_CSUMMED;
1813         }
1814
1815         if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1816                 flags |= EFX_RX_PKT_TCP;
1817
1818         channel->irq_mod_score += 2 * n_packets;
1819
1820         /* Handle received packet(s) */
1821         for (i = 0; i < n_packets; i++) {
1822                 efx_rx_packet(rx_queue,
1823                               rx_queue->removed_count & rx_queue->ptr_mask,
1824                               rx_queue->scatter_n, rx_queue->scatter_len,
1825                               flags);
1826                 rx_queue->removed_count += rx_queue->scatter_n;
1827         }
1828
1829         rx_queue->scatter_n = 0;
1830         rx_queue->scatter_len = 0;
1831
1832         return n_packets;
1833 }
1834
1835 static int
1836 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1837 {
1838         struct efx_nic *efx = channel->efx;
1839         struct efx_tx_queue *tx_queue;
1840         unsigned int tx_ev_desc_ptr;
1841         unsigned int tx_ev_q_label;
1842         int tx_descs = 0;
1843
1844         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1845                 return 0;
1846
1847         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1848                 return 0;
1849
1850         /* Transmit completion */
1851         tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1852         tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1853         tx_queue = efx_channel_get_tx_queue(channel,
1854                                             tx_ev_q_label % EFX_TXQ_TYPES);
1855         tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1856                     tx_queue->ptr_mask);
1857         efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1858
1859         return tx_descs;
1860 }
1861
1862 static void
1863 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1864 {
1865         struct efx_nic *efx = channel->efx;
1866         int subcode;
1867
1868         subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1869
1870         switch (subcode) {
1871         case ESE_DZ_DRV_TIMER_EV:
1872         case ESE_DZ_DRV_WAKE_UP_EV:
1873                 break;
1874         case ESE_DZ_DRV_START_UP_EV:
1875                 /* event queue init complete. ok. */
1876                 break;
1877         default:
1878                 netif_err(efx, hw, efx->net_dev,
1879                           "channel %d unknown driver event type %d"
1880                           " (data " EFX_QWORD_FMT ")\n",
1881                           channel->channel, subcode,
1882                           EFX_QWORD_VAL(*event));
1883
1884         }
1885 }
1886
1887 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1888                                                    efx_qword_t *event)
1889 {
1890         struct efx_nic *efx = channel->efx;
1891         u32 subcode;
1892
1893         subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1894
1895         switch (subcode) {
1896         case EFX_EF10_TEST:
1897                 channel->event_test_cpu = raw_smp_processor_id();
1898                 break;
1899         case EFX_EF10_REFILL:
1900                 /* The queue must be empty, so we won't receive any rx
1901                  * events, so efx_process_channel() won't refill the
1902                  * queue. Refill it here
1903                  */
1904                 efx_fast_push_rx_descriptors(&channel->rx_queue);
1905                 break;
1906         default:
1907                 netif_err(efx, hw, efx->net_dev,
1908                           "channel %d unknown driver event type %u"
1909                           " (data " EFX_QWORD_FMT ")\n",
1910                           channel->channel, (unsigned) subcode,
1911                           EFX_QWORD_VAL(*event));
1912         }
1913 }
1914
1915 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1916 {
1917         struct efx_nic *efx = channel->efx;
1918         efx_qword_t event, *p_event;
1919         unsigned int read_ptr;
1920         int ev_code;
1921         int tx_descs = 0;
1922         int spent = 0;
1923
1924         read_ptr = channel->eventq_read_ptr;
1925
1926         for (;;) {
1927                 p_event = efx_event(channel, read_ptr);
1928                 event = *p_event;
1929
1930                 if (!efx_event_present(&event))
1931                         break;
1932
1933                 EFX_SET_QWORD(*p_event);
1934
1935                 ++read_ptr;
1936
1937                 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1938
1939                 netif_vdbg(efx, drv, efx->net_dev,
1940                            "processing event on %d " EFX_QWORD_FMT "\n",
1941                            channel->channel, EFX_QWORD_VAL(event));
1942
1943                 switch (ev_code) {
1944                 case ESE_DZ_EV_CODE_MCDI_EV:
1945                         efx_mcdi_process_event(channel, &event);
1946                         break;
1947                 case ESE_DZ_EV_CODE_RX_EV:
1948                         spent += efx_ef10_handle_rx_event(channel, &event);
1949                         if (spent >= quota) {
1950                                 /* XXX can we split a merged event to
1951                                  * avoid going over-quota?
1952                                  */
1953                                 spent = quota;
1954                                 goto out;
1955                         }
1956                         break;
1957                 case ESE_DZ_EV_CODE_TX_EV:
1958                         tx_descs += efx_ef10_handle_tx_event(channel, &event);
1959                         if (tx_descs > efx->txq_entries) {
1960                                 spent = quota;
1961                                 goto out;
1962                         } else if (++spent == quota) {
1963                                 goto out;
1964                         }
1965                         break;
1966                 case ESE_DZ_EV_CODE_DRIVER_EV:
1967                         efx_ef10_handle_driver_event(channel, &event);
1968                         if (++spent == quota)
1969                                 goto out;
1970                         break;
1971                 case EFX_EF10_DRVGEN_EV:
1972                         efx_ef10_handle_driver_generated_event(channel, &event);
1973                         break;
1974                 default:
1975                         netif_err(efx, hw, efx->net_dev,
1976                                   "channel %d unknown event type %d"
1977                                   " (data " EFX_QWORD_FMT ")\n",
1978                                   channel->channel, ev_code,
1979                                   EFX_QWORD_VAL(event));
1980                 }
1981         }
1982
1983 out:
1984         channel->eventq_read_ptr = read_ptr;
1985         return spent;
1986 }
1987
1988 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
1989 {
1990         struct efx_nic *efx = channel->efx;
1991         efx_dword_t rptr;
1992
1993         if (EFX_EF10_WORKAROUND_35388(efx)) {
1994                 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
1995                              (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
1996                 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
1997                              (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
1998
1999                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2000                                      EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2001                                      ERF_DD_EVQ_IND_RPTR,
2002                                      (channel->eventq_read_ptr &
2003                                       channel->eventq_mask) >>
2004                                      ERF_DD_EVQ_IND_RPTR_WIDTH);
2005                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2006                                 channel->channel);
2007                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2008                                      EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2009                                      ERF_DD_EVQ_IND_RPTR,
2010                                      channel->eventq_read_ptr &
2011                                      ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2012                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2013                                 channel->channel);
2014         } else {
2015                 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2016                                      channel->eventq_read_ptr &
2017                                      channel->eventq_mask);
2018                 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2019         }
2020 }
2021
2022 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2023 {
2024         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2025         struct efx_nic *efx = channel->efx;
2026         efx_qword_t event;
2027         int rc;
2028
2029         EFX_POPULATE_QWORD_2(event,
2030                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2031                              ESF_DZ_EV_DATA, EFX_EF10_TEST);
2032
2033         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2034
2035         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2036          * already swapped the data to little-endian order.
2037          */
2038         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2039                sizeof(efx_qword_t));
2040
2041         rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2042                           NULL, 0, NULL);
2043         if (rc != 0)
2044                 goto fail;
2045
2046         return;
2047
2048 fail:
2049         WARN_ON(true);
2050         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2051 }
2052
2053 void efx_ef10_handle_drain_event(struct efx_nic *efx)
2054 {
2055         if (atomic_dec_and_test(&efx->active_queues))
2056                 wake_up(&efx->flush_wq);
2057
2058         WARN_ON(atomic_read(&efx->active_queues) < 0);
2059 }
2060
2061 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2062 {
2063         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2064         struct efx_channel *channel;
2065         struct efx_tx_queue *tx_queue;
2066         struct efx_rx_queue *rx_queue;
2067         int pending;
2068
2069         /* If the MC has just rebooted, the TX/RX queues will have already been
2070          * torn down, but efx->active_queues needs to be set to zero.
2071          */
2072         if (nic_data->must_realloc_vis) {
2073                 atomic_set(&efx->active_queues, 0);
2074                 return 0;
2075         }
2076
2077         /* Do not attempt to write to the NIC during EEH recovery */
2078         if (efx->state != STATE_RECOVERY) {
2079                 efx_for_each_channel(channel, efx) {
2080                         efx_for_each_channel_rx_queue(rx_queue, channel)
2081                                 efx_ef10_rx_fini(rx_queue);
2082                         efx_for_each_channel_tx_queue(tx_queue, channel)
2083                                 efx_ef10_tx_fini(tx_queue);
2084                 }
2085
2086                 wait_event_timeout(efx->flush_wq,
2087                                    atomic_read(&efx->active_queues) == 0,
2088                                    msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2089                 pending = atomic_read(&efx->active_queues);
2090                 if (pending) {
2091                         netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2092                                   pending);
2093                         return -ETIMEDOUT;
2094                 }
2095         }
2096
2097         return 0;
2098 }
2099
2100 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2101                                   const struct efx_filter_spec *right)
2102 {
2103         if ((left->match_flags ^ right->match_flags) |
2104             ((left->flags ^ right->flags) &
2105              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2106                 return false;
2107
2108         return memcmp(&left->outer_vid, &right->outer_vid,
2109                       sizeof(struct efx_filter_spec) -
2110                       offsetof(struct efx_filter_spec, outer_vid)) == 0;
2111 }
2112
2113 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2114 {
2115         BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2116         return jhash2((const u32 *)&spec->outer_vid,
2117                       (sizeof(struct efx_filter_spec) -
2118                        offsetof(struct efx_filter_spec, outer_vid)) / 4,
2119                       0);
2120         /* XXX should we randomise the initval? */
2121 }
2122
2123 /* Decide whether a filter should be exclusive or else should allow
2124  * delivery to additional recipients.  Currently we decide that
2125  * filters for specific local unicast MAC and IP addresses are
2126  * exclusive.
2127  */
2128 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2129 {
2130         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2131             !is_multicast_ether_addr(spec->loc_mac))
2132                 return true;
2133
2134         if ((spec->match_flags &
2135              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2136             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2137                 if (spec->ether_type == htons(ETH_P_IP) &&
2138                     !ipv4_is_multicast(spec->loc_host[0]))
2139                         return true;
2140                 if (spec->ether_type == htons(ETH_P_IPV6) &&
2141                     ((const u8 *)spec->loc_host)[0] != 0xff)
2142                         return true;
2143         }
2144
2145         return false;
2146 }
2147
2148 static struct efx_filter_spec *
2149 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2150                            unsigned int filter_idx)
2151 {
2152         return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2153                                           ~EFX_EF10_FILTER_FLAGS);
2154 }
2155
2156 static unsigned int
2157 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2158                            unsigned int filter_idx)
2159 {
2160         return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2161 }
2162
2163 static void
2164 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2165                           unsigned int filter_idx,
2166                           const struct efx_filter_spec *spec,
2167                           unsigned int flags)
2168 {
2169         table->entry[filter_idx].spec = (unsigned long)spec | flags;
2170 }
2171
2172 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2173                                       const struct efx_filter_spec *spec,
2174                                       efx_dword_t *inbuf, u64 handle,
2175                                       bool replacing)
2176 {
2177         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2178
2179         memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2180
2181         if (replacing) {
2182                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2183                                MC_CMD_FILTER_OP_IN_OP_REPLACE);
2184                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2185         } else {
2186                 u32 match_fields = 0;
2187
2188                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2189                                efx_ef10_filter_is_exclusive(spec) ?
2190                                MC_CMD_FILTER_OP_IN_OP_INSERT :
2191                                MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2192
2193                 /* Convert match flags and values.  Unlike almost
2194                  * everything else in MCDI, these fields are in
2195                  * network byte order.
2196                  */
2197                 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2198                         match_fields |=
2199                                 is_multicast_ether_addr(spec->loc_mac) ?
2200                                 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2201                                 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2202 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)                          \
2203                 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
2204                         match_fields |=                                      \
2205                                 1 << MC_CMD_FILTER_OP_IN_MATCH_ ##           \
2206                                 mcdi_field ## _LBN;                          \
2207                         BUILD_BUG_ON(                                        \
2208                                 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2209                                 sizeof(spec->gen_field));                    \
2210                         memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2211                                &spec->gen_field, sizeof(spec->gen_field));   \
2212                 }
2213                 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2214                 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2215                 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2216                 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2217                 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2218                 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2219                 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2220                 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2221                 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2222                 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2223 #undef COPY_FIELD
2224                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2225                                match_fields);
2226         }
2227
2228         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2229         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2230                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2231                        MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2232                        MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2233         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2234                        MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2235         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE, spec->dmaq_id);
2236         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2237                        (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2238                        MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2239                        MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2240         if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2241                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2242                                spec->rss_context !=
2243                                EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2244                                spec->rss_context : nic_data->rx_rss_context);
2245 }
2246
2247 static int efx_ef10_filter_push(struct efx_nic *efx,
2248                                 const struct efx_filter_spec *spec,
2249                                 u64 *handle, bool replacing)
2250 {
2251         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2252         MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2253         int rc;
2254
2255         efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2256         rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2257                           outbuf, sizeof(outbuf), NULL);
2258         if (rc == 0)
2259                 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2260         return rc;
2261 }
2262
2263 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2264                                         enum efx_filter_match_flags match_flags)
2265 {
2266         unsigned int match_pri;
2267
2268         for (match_pri = 0;
2269              match_pri < table->rx_match_count;
2270              match_pri++)
2271                 if (table->rx_match_flags[match_pri] == match_flags)
2272                         return match_pri;
2273
2274         return -EPROTONOSUPPORT;
2275 }
2276
2277 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2278                                   struct efx_filter_spec *spec,
2279                                   bool replace_equal)
2280 {
2281         struct efx_ef10_filter_table *table = efx->filter_state;
2282         DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2283         struct efx_filter_spec *saved_spec;
2284         unsigned int match_pri, hash;
2285         unsigned int priv_flags;
2286         bool replacing = false;
2287         int ins_index = -1;
2288         DEFINE_WAIT(wait);
2289         bool is_mc_recip;
2290         s32 rc;
2291
2292         /* For now, only support RX filters */
2293         if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2294             EFX_FILTER_FLAG_RX)
2295                 return -EINVAL;
2296
2297         rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2298         if (rc < 0)
2299                 return rc;
2300         match_pri = rc;
2301
2302         hash = efx_ef10_filter_hash(spec);
2303         is_mc_recip = efx_filter_is_mc_recipient(spec);
2304         if (is_mc_recip)
2305                 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2306
2307         /* Find any existing filters with the same match tuple or
2308          * else a free slot to insert at.  If any of them are busy,
2309          * we have to wait and retry.
2310          */
2311         for (;;) {
2312                 unsigned int depth = 1;
2313                 unsigned int i;
2314
2315                 spin_lock_bh(&efx->filter_lock);
2316
2317                 for (;;) {
2318                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2319                         saved_spec = efx_ef10_filter_entry_spec(table, i);
2320
2321                         if (!saved_spec) {
2322                                 if (ins_index < 0)
2323                                         ins_index = i;
2324                         } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2325                                 if (table->entry[i].spec &
2326                                     EFX_EF10_FILTER_FLAG_BUSY)
2327                                         break;
2328                                 if (spec->priority < saved_spec->priority &&
2329                                     !(saved_spec->priority ==
2330                                       EFX_FILTER_PRI_REQUIRED &&
2331                                       saved_spec->flags &
2332                                       EFX_FILTER_FLAG_RX_STACK)) {
2333                                         rc = -EPERM;
2334                                         goto out_unlock;
2335                                 }
2336                                 if (!is_mc_recip) {
2337                                         /* This is the only one */
2338                                         if (spec->priority ==
2339                                             saved_spec->priority &&
2340                                             !replace_equal) {
2341                                                 rc = -EEXIST;
2342                                                 goto out_unlock;
2343                                         }
2344                                         ins_index = i;
2345                                         goto found;
2346                                 } else if (spec->priority >
2347                                            saved_spec->priority ||
2348                                            (spec->priority ==
2349                                             saved_spec->priority &&
2350                                             replace_equal)) {
2351                                         if (ins_index < 0)
2352                                                 ins_index = i;
2353                                         else
2354                                                 __set_bit(depth, mc_rem_map);
2355                                 }
2356                         }
2357
2358                         /* Once we reach the maximum search depth, use
2359                          * the first suitable slot or return -EBUSY if
2360                          * there was none
2361                          */
2362                         if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2363                                 if (ins_index < 0) {
2364                                         rc = -EBUSY;
2365                                         goto out_unlock;
2366                                 }
2367                                 goto found;
2368                         }
2369
2370                         ++depth;
2371                 }
2372
2373                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2374                 spin_unlock_bh(&efx->filter_lock);
2375                 schedule();
2376         }
2377
2378 found:
2379         /* Create a software table entry if necessary, and mark it
2380          * busy.  We might yet fail to insert, but any attempt to
2381          * insert a conflicting filter while we're waiting for the
2382          * firmware must find the busy entry.
2383          */
2384         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2385         if (saved_spec) {
2386                 if (spec->flags & EFX_FILTER_FLAG_RX_STACK) {
2387                         /* Just make sure it won't be removed */
2388                         saved_spec->flags |= EFX_FILTER_FLAG_RX_STACK;
2389                         table->entry[ins_index].spec &=
2390                                 ~EFX_EF10_FILTER_FLAG_STACK_OLD;
2391                         rc = ins_index;
2392                         goto out_unlock;
2393                 }
2394                 replacing = true;
2395                 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2396         } else {
2397                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2398                 if (!saved_spec) {
2399                         rc = -ENOMEM;
2400                         goto out_unlock;
2401                 }
2402                 *saved_spec = *spec;
2403                 priv_flags = 0;
2404         }
2405         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2406                                   priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2407
2408         /* Mark lower-priority multicast recipients busy prior to removal */
2409         if (is_mc_recip) {
2410                 unsigned int depth, i;
2411
2412                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2413                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2414                         if (test_bit(depth, mc_rem_map))
2415                                 table->entry[i].spec |=
2416                                         EFX_EF10_FILTER_FLAG_BUSY;
2417                 }
2418         }
2419
2420         spin_unlock_bh(&efx->filter_lock);
2421
2422         rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2423                                   replacing);
2424
2425         /* Finalise the software table entry */
2426         spin_lock_bh(&efx->filter_lock);
2427         if (rc == 0) {
2428                 if (replacing) {
2429                         /* Update the fields that may differ */
2430                         saved_spec->priority = spec->priority;
2431                         saved_spec->flags &= EFX_FILTER_FLAG_RX_STACK;
2432                         saved_spec->flags |= spec->flags;
2433                         saved_spec->rss_context = spec->rss_context;
2434                         saved_spec->dmaq_id = spec->dmaq_id;
2435                 }
2436         } else if (!replacing) {
2437                 kfree(saved_spec);
2438                 saved_spec = NULL;
2439         }
2440         efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2441
2442         /* Remove and finalise entries for lower-priority multicast
2443          * recipients
2444          */
2445         if (is_mc_recip) {
2446                 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2447                 unsigned int depth, i;
2448
2449                 memset(inbuf, 0, sizeof(inbuf));
2450
2451                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2452                         if (!test_bit(depth, mc_rem_map))
2453                                 continue;
2454
2455                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2456                         saved_spec = efx_ef10_filter_entry_spec(table, i);
2457                         priv_flags = efx_ef10_filter_entry_flags(table, i);
2458
2459                         if (rc == 0) {
2460                                 spin_unlock_bh(&efx->filter_lock);
2461                                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2462                                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2463                                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2464                                                table->entry[i].handle);
2465                                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2466                                                   inbuf, sizeof(inbuf),
2467                                                   NULL, 0, NULL);
2468                                 spin_lock_bh(&efx->filter_lock);
2469                         }
2470
2471                         if (rc == 0) {
2472                                 kfree(saved_spec);
2473                                 saved_spec = NULL;
2474                                 priv_flags = 0;
2475                         } else {
2476                                 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2477                         }
2478                         efx_ef10_filter_set_entry(table, i, saved_spec,
2479                                                   priv_flags);
2480                 }
2481         }
2482
2483         /* If successful, return the inserted filter ID */
2484         if (rc == 0)
2485                 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2486
2487         wake_up_all(&table->waitq);
2488 out_unlock:
2489         spin_unlock_bh(&efx->filter_lock);
2490         finish_wait(&table->waitq, &wait);
2491         return rc;
2492 }
2493
2494 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2495 {
2496         /* no need to do anything here on EF10 */
2497 }
2498
2499 /* Remove a filter.
2500  * If !stack_requested, remove by ID
2501  * If stack_requested, remove by index
2502  * Filter ID may come from userland and must be range-checked.
2503  */
2504 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2505                                            enum efx_filter_priority priority,
2506                                            u32 filter_id, bool stack_requested)
2507 {
2508         unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2509         struct efx_ef10_filter_table *table = efx->filter_state;
2510         MCDI_DECLARE_BUF(inbuf,
2511                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2512                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2513         struct efx_filter_spec *spec;
2514         DEFINE_WAIT(wait);
2515         int rc;
2516
2517         /* Find the software table entry and mark it busy.  Don't
2518          * remove it yet; any attempt to update while we're waiting
2519          * for the firmware must find the busy entry.
2520          */
2521         for (;;) {
2522                 spin_lock_bh(&efx->filter_lock);
2523                 if (!(table->entry[filter_idx].spec &
2524                       EFX_EF10_FILTER_FLAG_BUSY))
2525                         break;
2526                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2527                 spin_unlock_bh(&efx->filter_lock);
2528                 schedule();
2529         }
2530         spec = efx_ef10_filter_entry_spec(table, filter_idx);
2531         if (!spec || spec->priority > priority ||
2532             (!stack_requested &&
2533              efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2534              filter_id / HUNT_FILTER_TBL_ROWS)) {
2535                 rc = -ENOENT;
2536                 goto out_unlock;
2537         }
2538         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2539         spin_unlock_bh(&efx->filter_lock);
2540
2541         if (spec->flags & EFX_FILTER_FLAG_RX_STACK && !stack_requested) {
2542                 /* Reset steering of a stack-owned filter */
2543
2544                 struct efx_filter_spec new_spec = *spec;
2545
2546                 new_spec.priority = EFX_FILTER_PRI_REQUIRED;
2547                 new_spec.flags = (EFX_FILTER_FLAG_RX |
2548                                   EFX_FILTER_FLAG_RX_RSS |
2549                                   EFX_FILTER_FLAG_RX_STACK);
2550                 new_spec.dmaq_id = 0;
2551                 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2552                 rc = efx_ef10_filter_push(efx, &new_spec,
2553                                           &table->entry[filter_idx].handle,
2554                                           true);
2555
2556                 spin_lock_bh(&efx->filter_lock);
2557                 if (rc == 0)
2558                         *spec = new_spec;
2559         } else {
2560                 /* Really remove the filter */
2561
2562                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2563                                efx_ef10_filter_is_exclusive(spec) ?
2564                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
2565                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2566                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2567                                table->entry[filter_idx].handle);
2568                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2569                                   inbuf, sizeof(inbuf), NULL, 0, NULL);
2570
2571                 spin_lock_bh(&efx->filter_lock);
2572                 if (rc == 0) {
2573                         kfree(spec);
2574                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2575                 }
2576         }
2577         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2578         wake_up_all(&table->waitq);
2579 out_unlock:
2580         spin_unlock_bh(&efx->filter_lock);
2581         finish_wait(&table->waitq, &wait);
2582         return rc;
2583 }
2584
2585 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2586                                        enum efx_filter_priority priority,
2587                                        u32 filter_id)
2588 {
2589         return efx_ef10_filter_remove_internal(efx, priority, filter_id, false);
2590 }
2591
2592 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2593                                     enum efx_filter_priority priority,
2594                                     u32 filter_id, struct efx_filter_spec *spec)
2595 {
2596         unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2597         struct efx_ef10_filter_table *table = efx->filter_state;
2598         const struct efx_filter_spec *saved_spec;
2599         int rc;
2600
2601         spin_lock_bh(&efx->filter_lock);
2602         saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2603         if (saved_spec && saved_spec->priority == priority &&
2604             efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2605             filter_id / HUNT_FILTER_TBL_ROWS) {
2606                 *spec = *saved_spec;
2607                 rc = 0;
2608         } else {
2609                 rc = -ENOENT;
2610         }
2611         spin_unlock_bh(&efx->filter_lock);
2612         return rc;
2613 }
2614
2615 static void efx_ef10_filter_clear_rx(struct efx_nic *efx,
2616                                      enum efx_filter_priority priority)
2617 {
2618         /* TODO */
2619 }
2620
2621 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2622                                          enum efx_filter_priority priority)
2623 {
2624         struct efx_ef10_filter_table *table = efx->filter_state;
2625         unsigned int filter_idx;
2626         s32 count = 0;
2627
2628         spin_lock_bh(&efx->filter_lock);
2629         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2630                 if (table->entry[filter_idx].spec &&
2631                     efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2632                     priority)
2633                         ++count;
2634         }
2635         spin_unlock_bh(&efx->filter_lock);
2636         return count;
2637 }
2638
2639 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2640 {
2641         struct efx_ef10_filter_table *table = efx->filter_state;
2642
2643         return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2644 }
2645
2646 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2647                                       enum efx_filter_priority priority,
2648                                       u32 *buf, u32 size)
2649 {
2650         struct efx_ef10_filter_table *table = efx->filter_state;
2651         struct efx_filter_spec *spec;
2652         unsigned int filter_idx;
2653         s32 count = 0;
2654
2655         spin_lock_bh(&efx->filter_lock);
2656         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2657                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2658                 if (spec && spec->priority == priority) {
2659                         if (count == size) {
2660                                 count = -EMSGSIZE;
2661                                 break;
2662                         }
2663                         buf[count++] = (efx_ef10_filter_rx_match_pri(
2664                                                 table, spec->match_flags) *
2665                                         HUNT_FILTER_TBL_ROWS +
2666                                         filter_idx);
2667                 }
2668         }
2669         spin_unlock_bh(&efx->filter_lock);
2670         return count;
2671 }
2672
2673 #ifdef CONFIG_RFS_ACCEL
2674
2675 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2676
2677 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2678                                       struct efx_filter_spec *spec)
2679 {
2680         struct efx_ef10_filter_table *table = efx->filter_state;
2681         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2682         struct efx_filter_spec *saved_spec;
2683         unsigned int hash, i, depth = 1;
2684         bool replacing = false;
2685         int ins_index = -1;
2686         u64 cookie;
2687         s32 rc;
2688
2689         /* Must be an RX filter without RSS and not for a multicast
2690          * destination address (RFS only works for connected sockets).
2691          * These restrictions allow us to pass only a tiny amount of
2692          * data through to the completion function.
2693          */
2694         EFX_WARN_ON_PARANOID(spec->flags !=
2695                              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2696         EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2697         EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2698
2699         hash = efx_ef10_filter_hash(spec);
2700
2701         spin_lock_bh(&efx->filter_lock);
2702
2703         /* Find any existing filter with the same match tuple or else
2704          * a free slot to insert at.  If an existing filter is busy,
2705          * we have to give up.
2706          */
2707         for (;;) {
2708                 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2709                 saved_spec = efx_ef10_filter_entry_spec(table, i);
2710
2711                 if (!saved_spec) {
2712                         if (ins_index < 0)
2713                                 ins_index = i;
2714                 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2715                         if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2716                                 rc = -EBUSY;
2717                                 goto fail_unlock;
2718                         }
2719                         EFX_WARN_ON_PARANOID(saved_spec->flags &
2720                                              EFX_FILTER_FLAG_RX_STACK);
2721                         if (spec->priority < saved_spec->priority) {
2722                                 rc = -EPERM;
2723                                 goto fail_unlock;
2724                         }
2725                         ins_index = i;
2726                         break;
2727                 }
2728
2729                 /* Once we reach the maximum search depth, use the
2730                  * first suitable slot or return -EBUSY if there was
2731                  * none
2732                  */
2733                 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2734                         if (ins_index < 0) {
2735                                 rc = -EBUSY;
2736                                 goto fail_unlock;
2737                         }
2738                         break;
2739                 }
2740
2741                 ++depth;
2742         }
2743
2744         /* Create a software table entry if necessary, and mark it
2745          * busy.  We might yet fail to insert, but any attempt to
2746          * insert a conflicting filter while we're waiting for the
2747          * firmware must find the busy entry.
2748          */
2749         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2750         if (saved_spec) {
2751                 replacing = true;
2752         } else {
2753                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2754                 if (!saved_spec) {
2755                         rc = -ENOMEM;
2756                         goto fail_unlock;
2757                 }
2758                 *saved_spec = *spec;
2759         }
2760         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2761                                   EFX_EF10_FILTER_FLAG_BUSY);
2762
2763         spin_unlock_bh(&efx->filter_lock);
2764
2765         /* Pack up the variables needed on completion */
2766         cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2767
2768         efx_ef10_filter_push_prep(efx, spec, inbuf,
2769                                   table->entry[ins_index].handle, replacing);
2770         efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2771                            MC_CMD_FILTER_OP_OUT_LEN,
2772                            efx_ef10_filter_rfs_insert_complete, cookie);
2773
2774         return ins_index;
2775
2776 fail_unlock:
2777         spin_unlock_bh(&efx->filter_lock);
2778         return rc;
2779 }
2780
2781 static void
2782 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2783                                     int rc, efx_dword_t *outbuf,
2784                                     size_t outlen_actual)
2785 {
2786         struct efx_ef10_filter_table *table = efx->filter_state;
2787         unsigned int ins_index, dmaq_id;
2788         struct efx_filter_spec *spec;
2789         bool replacing;
2790
2791         /* Unpack the cookie */
2792         replacing = cookie >> 31;
2793         ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2794         dmaq_id = cookie & 0xffff;
2795
2796         spin_lock_bh(&efx->filter_lock);
2797         spec = efx_ef10_filter_entry_spec(table, ins_index);
2798         if (rc == 0) {
2799                 table->entry[ins_index].handle =
2800                         MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2801                 if (replacing)
2802                         spec->dmaq_id = dmaq_id;
2803         } else if (!replacing) {
2804                 kfree(spec);
2805                 spec = NULL;
2806         }
2807         efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2808         spin_unlock_bh(&efx->filter_lock);
2809
2810         wake_up_all(&table->waitq);
2811 }
2812
2813 static void
2814 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2815                                     unsigned long filter_idx,
2816                                     int rc, efx_dword_t *outbuf,
2817                                     size_t outlen_actual);
2818
2819 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2820                                            unsigned int filter_idx)
2821 {
2822         struct efx_ef10_filter_table *table = efx->filter_state;
2823         struct efx_filter_spec *spec =
2824                 efx_ef10_filter_entry_spec(table, filter_idx);
2825         MCDI_DECLARE_BUF(inbuf,
2826                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2827                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2828
2829         if (!spec ||
2830             (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2831             spec->priority != EFX_FILTER_PRI_HINT ||
2832             !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2833                                  flow_id, filter_idx))
2834                 return false;
2835
2836         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2837                        MC_CMD_FILTER_OP_IN_OP_REMOVE);
2838         MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2839                        table->entry[filter_idx].handle);
2840         if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2841                                efx_ef10_filter_rfs_expire_complete, filter_idx))
2842                 return false;
2843
2844         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2845         return true;
2846 }
2847
2848 static void
2849 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2850                                     unsigned long filter_idx,
2851                                     int rc, efx_dword_t *outbuf,
2852                                     size_t outlen_actual)
2853 {
2854         struct efx_ef10_filter_table *table = efx->filter_state;
2855         struct efx_filter_spec *spec =
2856                 efx_ef10_filter_entry_spec(table, filter_idx);
2857
2858         spin_lock_bh(&efx->filter_lock);
2859         if (rc == 0) {
2860                 kfree(spec);
2861                 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2862         }
2863         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2864         wake_up_all(&table->waitq);
2865         spin_unlock_bh(&efx->filter_lock);
2866 }
2867
2868 #endif /* CONFIG_RFS_ACCEL */
2869
2870 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2871 {
2872         int match_flags = 0;
2873
2874 #define MAP_FLAG(gen_flag, mcdi_field) {                                \
2875                 u32 old_mcdi_flags = mcdi_flags;                        \
2876                 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##      \
2877                                 mcdi_field ## _LBN);                    \
2878                 if (mcdi_flags != old_mcdi_flags)                       \
2879                         match_flags |= EFX_FILTER_MATCH_ ## gen_flag;   \
2880         }
2881         MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2882         MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2883         MAP_FLAG(REM_HOST, SRC_IP);
2884         MAP_FLAG(LOC_HOST, DST_IP);
2885         MAP_FLAG(REM_MAC, SRC_MAC);
2886         MAP_FLAG(REM_PORT, SRC_PORT);
2887         MAP_FLAG(LOC_MAC, DST_MAC);
2888         MAP_FLAG(LOC_PORT, DST_PORT);
2889         MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2890         MAP_FLAG(INNER_VID, INNER_VLAN);
2891         MAP_FLAG(OUTER_VID, OUTER_VLAN);
2892         MAP_FLAG(IP_PROTO, IP_PROTO);
2893 #undef MAP_FLAG
2894
2895         /* Did we map them all? */
2896         if (mcdi_flags)
2897                 return -EINVAL;
2898
2899         return match_flags;
2900 }
2901
2902 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2903 {
2904         MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
2905         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
2906         unsigned int pd_match_pri, pd_match_count;
2907         struct efx_ef10_filter_table *table;
2908         size_t outlen;
2909         int rc;
2910
2911         table = kzalloc(sizeof(*table), GFP_KERNEL);
2912         if (!table)
2913                 return -ENOMEM;
2914
2915         /* Find out which RX filter types are supported, and their priorities */
2916         MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
2917                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
2918         rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
2919                           inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
2920                           &outlen);
2921         if (rc)
2922                 goto fail;
2923         pd_match_count = MCDI_VAR_ARRAY_LEN(
2924                 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
2925         table->rx_match_count = 0;
2926
2927         for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
2928                 u32 mcdi_flags =
2929                         MCDI_ARRAY_DWORD(
2930                                 outbuf,
2931                                 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
2932                                 pd_match_pri);
2933                 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
2934                 if (rc < 0) {
2935                         netif_dbg(efx, probe, efx->net_dev,
2936                                   "%s: fw flags %#x pri %u not supported in driver\n",
2937                                   __func__, mcdi_flags, pd_match_pri);
2938                 } else {
2939                         netif_dbg(efx, probe, efx->net_dev,
2940                                   "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
2941                                   __func__, mcdi_flags, pd_match_pri,
2942                                   rc, table->rx_match_count);
2943                         table->rx_match_flags[table->rx_match_count++] = rc;
2944                 }
2945         }
2946
2947         table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
2948         if (!table->entry) {
2949                 rc = -ENOMEM;
2950                 goto fail;
2951         }
2952
2953         efx->filter_state = table;
2954         init_waitqueue_head(&table->waitq);
2955         return 0;
2956
2957 fail:
2958         kfree(table);
2959         return rc;
2960 }
2961
2962 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
2963 {
2964         struct efx_ef10_filter_table *table = efx->filter_state;
2965         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2966         struct efx_filter_spec *spec;
2967         unsigned int filter_idx;
2968         bool failed = false;
2969         int rc;
2970
2971         if (!nic_data->must_restore_filters)
2972                 return;
2973
2974         spin_lock_bh(&efx->filter_lock);
2975
2976         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2977                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2978                 if (!spec)
2979                         continue;
2980
2981                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2982                 spin_unlock_bh(&efx->filter_lock);
2983
2984                 rc = efx_ef10_filter_push(efx, spec,
2985                                           &table->entry[filter_idx].handle,
2986                                           false);
2987                 if (rc)
2988                         failed = true;
2989
2990                 spin_lock_bh(&efx->filter_lock);
2991                 if (rc) {
2992                         kfree(spec);
2993                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2994                 } else {
2995                         table->entry[filter_idx].spec &=
2996                                 ~EFX_EF10_FILTER_FLAG_BUSY;
2997                 }
2998         }
2999
3000         spin_unlock_bh(&efx->filter_lock);
3001
3002         if (failed)
3003                 netif_err(efx, hw, efx->net_dev,
3004                           "unable to restore all filters\n");
3005         else
3006                 nic_data->must_restore_filters = false;
3007 }
3008
3009 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3010 {
3011         struct efx_ef10_filter_table *table = efx->filter_state;
3012         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3013         struct efx_filter_spec *spec;
3014         unsigned int filter_idx;
3015         int rc;
3016
3017         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3018                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3019                 if (!spec)
3020                         continue;
3021
3022                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3023                                efx_ef10_filter_is_exclusive(spec) ?
3024                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
3025                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3026                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3027                                table->entry[filter_idx].handle);
3028                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3029                                   NULL, 0, NULL);
3030
3031                 WARN_ON(rc != 0);
3032                 kfree(spec);
3033         }
3034
3035         vfree(table->entry);
3036         kfree(table);
3037 }
3038
3039 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
3040 {
3041         struct efx_ef10_filter_table *table = efx->filter_state;
3042         struct net_device *net_dev = efx->net_dev;
3043         struct efx_filter_spec spec;
3044         bool remove_failed = false;
3045         struct netdev_hw_addr *uc;
3046         struct netdev_hw_addr *mc;
3047         unsigned int filter_idx;
3048         int i, n, rc;
3049
3050         if (!efx_dev_registered(efx))
3051                 return;
3052
3053         /* Mark old filters that may need to be removed */
3054         spin_lock_bh(&efx->filter_lock);
3055         n = table->stack_uc_count < 0 ? 1 : table->stack_uc_count;
3056         for (i = 0; i < n; i++) {
3057                 filter_idx = table->stack_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3058                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_STACK_OLD;
3059         }
3060         n = table->stack_mc_count < 0 ? 1 : table->stack_mc_count;
3061         for (i = 0; i < n; i++) {
3062                 filter_idx = table->stack_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3063                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_STACK_OLD;
3064         }
3065         spin_unlock_bh(&efx->filter_lock);
3066
3067         /* Copy/convert the address lists; add the primary station
3068          * address and broadcast address
3069          */
3070         netif_addr_lock_bh(net_dev);
3071         if (net_dev->flags & IFF_PROMISC ||
3072             netdev_uc_count(net_dev) >= EFX_EF10_FILTER_STACK_UC_MAX) {
3073                 table->stack_uc_count = -1;
3074         } else {
3075                 table->stack_uc_count = 1 + netdev_uc_count(net_dev);
3076                 memcpy(table->stack_uc_list[0].addr, net_dev->dev_addr,
3077                        ETH_ALEN);
3078                 i = 1;
3079                 netdev_for_each_uc_addr(uc, net_dev) {
3080                         memcpy(table->stack_uc_list[i].addr,
3081                                uc->addr, ETH_ALEN);
3082                         i++;
3083                 }
3084         }
3085         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3086             netdev_mc_count(net_dev) >= EFX_EF10_FILTER_STACK_MC_MAX) {
3087                 table->stack_mc_count = -1;
3088         } else {
3089                 table->stack_mc_count = 1 + netdev_mc_count(net_dev);
3090                 eth_broadcast_addr(table->stack_mc_list[0].addr);
3091                 i = 1;
3092                 netdev_for_each_mc_addr(mc, net_dev) {
3093                         memcpy(table->stack_mc_list[i].addr,
3094                                mc->addr, ETH_ALEN);
3095                         i++;
3096                 }
3097         }
3098         netif_addr_unlock_bh(net_dev);
3099
3100         /* Insert/renew unicast filters */
3101         if (table->stack_uc_count >= 0) {
3102                 for (i = 0; i < table->stack_uc_count; i++) {
3103                         efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
3104                                            EFX_FILTER_FLAG_RX_RSS |
3105                                            EFX_FILTER_FLAG_RX_STACK,
3106                                            0);
3107                         efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3108                                                  table->stack_uc_list[i].addr);
3109                         rc = efx_ef10_filter_insert(efx, &spec, true);
3110                         if (rc < 0) {
3111                                 /* Fall back to unicast-promisc */
3112                                 while (i--)
3113                                         efx_ef10_filter_remove_safe(
3114                                                 efx, EFX_FILTER_PRI_REQUIRED,
3115                                                 table->stack_uc_list[i].id);
3116                                 table->stack_uc_count = -1;
3117                                 break;
3118                         }
3119                         table->stack_uc_list[i].id = rc;
3120                 }
3121         }
3122         if (table->stack_uc_count < 0) {
3123                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
3124                                    EFX_FILTER_FLAG_RX_RSS |
3125                                    EFX_FILTER_FLAG_RX_STACK,
3126                                    0);
3127                 efx_filter_set_uc_def(&spec);
3128                 rc = efx_ef10_filter_insert(efx, &spec, true);
3129                 if (rc < 0) {
3130                         WARN_ON(1);
3131                         table->stack_uc_count = 0;
3132                 } else {
3133                         table->stack_uc_list[0].id = rc;
3134                 }
3135         }
3136
3137         /* Insert/renew multicast filters */
3138         if (table->stack_mc_count >= 0) {
3139                 for (i = 0; i < table->stack_mc_count; i++) {
3140                         efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
3141                                            EFX_FILTER_FLAG_RX_RSS |
3142                                            EFX_FILTER_FLAG_RX_STACK,
3143                                            0);
3144                         efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3145                                                  table->stack_mc_list[i].addr);
3146                         rc = efx_ef10_filter_insert(efx, &spec, true);
3147                         if (rc < 0) {
3148                                 /* Fall back to multicast-promisc */
3149                                 while (i--)
3150                                         efx_ef10_filter_remove_safe(
3151                                                 efx, EFX_FILTER_PRI_REQUIRED,
3152                                                 table->stack_mc_list[i].id);
3153                                 table->stack_mc_count = -1;
3154                                 break;
3155                         }
3156                         table->stack_mc_list[i].id = rc;
3157                 }
3158         }
3159         if (table->stack_mc_count < 0) {
3160                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_REQUIRED,
3161                                    EFX_FILTER_FLAG_RX_RSS |
3162                                    EFX_FILTER_FLAG_RX_STACK,
3163                                    0);
3164                 efx_filter_set_mc_def(&spec);
3165                 rc = efx_ef10_filter_insert(efx, &spec, true);
3166                 if (rc < 0) {
3167                         WARN_ON(1);
3168                         table->stack_mc_count = 0;
3169                 } else {
3170                         table->stack_mc_list[0].id = rc;
3171                 }
3172         }
3173
3174         /* Remove filters that weren't renewed.  Since nothing else
3175          * changes the STACK_OLD flag or removes these filters, we
3176          * don't need to hold the filter_lock while scanning for
3177          * these filters.
3178          */
3179         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3180                 if (ACCESS_ONCE(table->entry[i].spec) &
3181                     EFX_EF10_FILTER_FLAG_STACK_OLD) {
3182                         if (efx_ef10_filter_remove_internal(efx,
3183                                         EFX_FILTER_PRI_REQUIRED,
3184                                         i, true) < 0)
3185                                 remove_failed = true;
3186                 }
3187         }
3188         WARN_ON(remove_failed);
3189 }
3190
3191 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3192 {
3193         efx_ef10_filter_sync_rx_mode(efx);
3194
3195         return efx_mcdi_set_mac(efx);
3196 }
3197
3198 #ifdef CONFIG_SFC_MTD
3199
3200 struct efx_ef10_nvram_type_info {
3201         u16 type, type_mask;
3202         u8 port;
3203         const char *name;
3204 };
3205
3206 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3207         { NVRAM_PARTITION_TYPE_MC_FIRMWARE,        0,    0, "sfc_mcfw" },
3208         { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3209         { NVRAM_PARTITION_TYPE_EXPANSION_ROM,      0,    0, "sfc_exp_rom" },
3210         { NVRAM_PARTITION_TYPE_STATIC_CONFIG,      0,    0, "sfc_static_cfg" },
3211         { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,     0,    0, "sfc_dynamic_cfg" },
3212         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3213         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3214         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3215         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3216         { NVRAM_PARTITION_TYPE_PHY_MIN,            0xff, 0, "sfc_phy_fw" },
3217 };
3218
3219 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3220                                         struct efx_mcdi_mtd_partition *part,
3221                                         unsigned int type)
3222 {
3223         MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3224         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3225         const struct efx_ef10_nvram_type_info *info;
3226         size_t size, erase_size, outlen;
3227         bool protected;
3228         int rc;
3229
3230         for (info = efx_ef10_nvram_types; ; info++) {
3231                 if (info ==
3232                     efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
3233                         return -ENODEV;
3234                 if ((type & ~info->type_mask) == info->type)
3235                         break;
3236         }
3237         if (info->port != efx_port_num(efx))
3238                 return -ENODEV;
3239
3240         rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3241         if (rc)
3242                 return rc;
3243         if (protected)
3244                 return -ENODEV; /* hide it */
3245
3246         part->nvram_type = type;
3247
3248         MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3249         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3250                           outbuf, sizeof(outbuf), &outlen);
3251         if (rc)
3252                 return rc;
3253         if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3254                 return -EIO;
3255         if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3256             (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3257                 part->fw_subtype = MCDI_DWORD(outbuf,
3258                                               NVRAM_METADATA_OUT_SUBTYPE);
3259
3260         part->common.dev_type_name = "EF10 NVRAM manager";
3261         part->common.type_name = info->name;
3262
3263         part->common.mtd.type = MTD_NORFLASH;
3264         part->common.mtd.flags = MTD_CAP_NORFLASH;
3265         part->common.mtd.size = size;
3266         part->common.mtd.erasesize = erase_size;
3267
3268         return 0;
3269 }
3270
3271 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3272 {
3273         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3274         struct efx_mcdi_mtd_partition *parts;
3275         size_t outlen, n_parts_total, i, n_parts;
3276         unsigned int type;
3277         int rc;
3278
3279         ASSERT_RTNL();
3280
3281         BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3282         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3283                           outbuf, sizeof(outbuf), &outlen);
3284         if (rc)
3285                 return rc;
3286         if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3287                 return -EIO;
3288
3289         n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3290         if (n_parts_total >
3291             MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3292                 return -EIO;
3293
3294         parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3295         if (!parts)
3296                 return -ENOMEM;
3297
3298         n_parts = 0;
3299         for (i = 0; i < n_parts_total; i++) {
3300                 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3301                                         i);
3302                 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
3303                 if (rc == 0)
3304                         n_parts++;
3305                 else if (rc != -ENODEV)
3306                         goto fail;
3307         }
3308
3309         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3310 fail:
3311         if (rc)
3312                 kfree(parts);
3313         return rc;
3314 }
3315
3316 #endif /* CONFIG_SFC_MTD */
3317
3318 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3319 {
3320         _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3321 }
3322
3323 const struct efx_nic_type efx_hunt_a0_nic_type = {
3324         .mem_map_size = efx_ef10_mem_map_size,
3325         .probe = efx_ef10_probe,
3326         .remove = efx_ef10_remove,
3327         .dimension_resources = efx_ef10_dimension_resources,
3328         .init = efx_ef10_init_nic,
3329         .fini = efx_port_dummy_op_void,
3330         .map_reset_reason = efx_mcdi_map_reset_reason,
3331         .map_reset_flags = efx_ef10_map_reset_flags,
3332         .reset = efx_mcdi_reset,
3333         .probe_port = efx_mcdi_port_probe,
3334         .remove_port = efx_mcdi_port_remove,
3335         .fini_dmaq = efx_ef10_fini_dmaq,
3336         .describe_stats = efx_ef10_describe_stats,
3337         .update_stats = efx_ef10_update_stats,
3338         .start_stats = efx_mcdi_mac_start_stats,
3339         .stop_stats = efx_mcdi_mac_stop_stats,
3340         .set_id_led = efx_mcdi_set_id_led,
3341         .push_irq_moderation = efx_ef10_push_irq_moderation,
3342         .reconfigure_mac = efx_ef10_mac_reconfigure,
3343         .check_mac_fault = efx_mcdi_mac_check_fault,
3344         .reconfigure_port = efx_mcdi_port_reconfigure,
3345         .get_wol = efx_ef10_get_wol,
3346         .set_wol = efx_ef10_set_wol,
3347         .resume_wol = efx_port_dummy_op_void,
3348         /* TODO: test_chip */
3349         .test_nvram = efx_mcdi_nvram_test_all,
3350         .mcdi_request = efx_ef10_mcdi_request,
3351         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
3352         .mcdi_read_response = efx_ef10_mcdi_read_response,
3353         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3354         .irq_enable_master = efx_port_dummy_op_void,
3355         .irq_test_generate = efx_ef10_irq_test_generate,
3356         .irq_disable_non_ev = efx_port_dummy_op_void,
3357         .irq_handle_msi = efx_ef10_msi_interrupt,
3358         .irq_handle_legacy = efx_ef10_legacy_interrupt,
3359         .tx_probe = efx_ef10_tx_probe,
3360         .tx_init = efx_ef10_tx_init,
3361         .tx_remove = efx_ef10_tx_remove,
3362         .tx_write = efx_ef10_tx_write,
3363         .rx_push_indir_table = efx_ef10_rx_push_indir_table,
3364         .rx_probe = efx_ef10_rx_probe,
3365         .rx_init = efx_ef10_rx_init,
3366         .rx_remove = efx_ef10_rx_remove,
3367         .rx_write = efx_ef10_rx_write,
3368         .rx_defer_refill = efx_ef10_rx_defer_refill,
3369         .ev_probe = efx_ef10_ev_probe,
3370         .ev_init = efx_ef10_ev_init,
3371         .ev_fini = efx_ef10_ev_fini,
3372         .ev_remove = efx_ef10_ev_remove,
3373         .ev_process = efx_ef10_ev_process,
3374         .ev_read_ack = efx_ef10_ev_read_ack,
3375         .ev_test_generate = efx_ef10_ev_test_generate,
3376         .filter_table_probe = efx_ef10_filter_table_probe,
3377         .filter_table_restore = efx_ef10_filter_table_restore,
3378         .filter_table_remove = efx_ef10_filter_table_remove,
3379         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3380         .filter_insert = efx_ef10_filter_insert,
3381         .filter_remove_safe = efx_ef10_filter_remove_safe,
3382         .filter_get_safe = efx_ef10_filter_get_safe,
3383         .filter_clear_rx = efx_ef10_filter_clear_rx,
3384         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
3385         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3386         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3387 #ifdef CONFIG_RFS_ACCEL
3388         .filter_rfs_insert = efx_ef10_filter_rfs_insert,
3389         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3390 #endif
3391 #ifdef CONFIG_SFC_MTD
3392         .mtd_probe = efx_ef10_mtd_probe,
3393         .mtd_rename = efx_mcdi_mtd_rename,
3394         .mtd_read = efx_mcdi_mtd_read,
3395         .mtd_erase = efx_mcdi_mtd_erase,
3396         .mtd_write = efx_mcdi_mtd_write,
3397         .mtd_sync = efx_mcdi_mtd_sync,
3398 #endif
3399         .ptp_write_host_time = efx_ef10_ptp_write_host_time,
3400
3401         .revision = EFX_REV_HUNT_A0,
3402         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3403         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3404         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3405         .can_rx_scatter = true,
3406         .always_rx_scatter = true,
3407         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3408         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3409         .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3410                              NETIF_F_RXHASH | NETIF_F_NTUPLE),
3411         .mcdi_max_ver = 2,
3412         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3413 };