]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/ixgbe/ixgbe_phy.c
ixgbe: add comment on SFP+ ID for Active DA
[karo-tx-linux.git] / drivers / net / ixgbe / ixgbe_phy.c
1 /*******************************************************************************
2
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
34
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
49
50 /**
51  *  ixgbe_identify_phy_generic - Get physical layer module
52  *  @hw: pointer to hardware structure
53  *
54  *  Determines the physical layer module found on the current adapter.
55  **/
56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
57 {
58         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59         u32 phy_addr;
60
61         if (hw->phy.type == ixgbe_phy_unknown) {
62                 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
63                         hw->phy.mdio.prtad = phy_addr;
64                         if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
65                                 ixgbe_get_phy_id(hw);
66                                 hw->phy.type =
67                                         ixgbe_get_phy_type_from_id(hw->phy.id);
68                                 status = 0;
69                                 break;
70                         }
71                 }
72                 /* clear value if nothing found */
73                 hw->phy.mdio.prtad = 0;
74         } else {
75                 status = 0;
76         }
77
78         return status;
79 }
80
81 /**
82  *  ixgbe_get_phy_id - Get the phy type
83  *  @hw: pointer to hardware structure
84  *
85  **/
86 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
87 {
88         u32 status;
89         u16 phy_id_high = 0;
90         u16 phy_id_low = 0;
91
92         status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
93                                       &phy_id_high);
94
95         if (status == 0) {
96                 hw->phy.id = (u32)(phy_id_high << 16);
97                 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
98                                               &phy_id_low);
99                 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
100                 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
101         }
102         return status;
103 }
104
105 /**
106  *  ixgbe_get_phy_type_from_id - Get the phy type
107  *  @hw: pointer to hardware structure
108  *
109  **/
110 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
111 {
112         enum ixgbe_phy_type phy_type;
113
114         switch (phy_id) {
115         case TN1010_PHY_ID:
116                 phy_type = ixgbe_phy_tn;
117                 break;
118         case QT2022_PHY_ID:
119                 phy_type = ixgbe_phy_qt;
120                 break;
121         case ATH_PHY_ID:
122                 phy_type = ixgbe_phy_nl;
123                 break;
124         default:
125                 phy_type = ixgbe_phy_unknown;
126                 break;
127         }
128
129         return phy_type;
130 }
131
132 /**
133  *  ixgbe_reset_phy_generic - Performs a PHY reset
134  *  @hw: pointer to hardware structure
135  **/
136 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
137 {
138         /* Don't reset PHY if it's shut down due to overtemp. */
139         if (!hw->phy.reset_if_overtemp &&
140             (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
141                 return 0;
142
143         /*
144          * Perform soft PHY reset to the PHY_XS.
145          * This will cause a soft reset to the PHY
146          */
147         return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
148                                      MDIO_CTRL1_RESET);
149 }
150
151 /**
152  *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
153  *  @hw: pointer to hardware structure
154  *  @reg_addr: 32 bit address of PHY register to read
155  *  @phy_data: Pointer to read data from PHY register
156  **/
157 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
158                                u32 device_type, u16 *phy_data)
159 {
160         u32 command;
161         u32 i;
162         u32 data;
163         s32 status = 0;
164         u16 gssr;
165
166         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
167                 gssr = IXGBE_GSSR_PHY1_SM;
168         else
169                 gssr = IXGBE_GSSR_PHY0_SM;
170
171         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
172                 status = IXGBE_ERR_SWFW_SYNC;
173
174         if (status == 0) {
175                 /* Setup and write the address cycle command */
176                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
177                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
178                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
179                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
180
181                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
182
183                 /*
184                  * Check every 10 usec to see if the address cycle completed.
185                  * The MDI Command bit will clear when the operation is
186                  * complete
187                  */
188                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
189                         udelay(10);
190
191                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
192
193                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
194                                 break;
195                 }
196
197                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
198                         hw_dbg(hw, "PHY address command did not complete.\n");
199                         status = IXGBE_ERR_PHY;
200                 }
201
202                 if (status == 0) {
203                         /*
204                          * Address cycle complete, setup and write the read
205                          * command
206                          */
207                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
208                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
209                                    (hw->phy.mdio.prtad <<
210                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
211                                    (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
212
213                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
214
215                         /*
216                          * Check every 10 usec to see if the address cycle
217                          * completed. The MDI Command bit will clear when the
218                          * operation is complete
219                          */
220                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
221                                 udelay(10);
222
223                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
224
225                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
226                                         break;
227                         }
228
229                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
230                                 hw_dbg(hw, "PHY read command didn't complete\n");
231                                 status = IXGBE_ERR_PHY;
232                         } else {
233                                 /*
234                                  * Read operation is complete.  Get the data
235                                  * from MSRWD
236                                  */
237                                 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
238                                 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
239                                 *phy_data = (u16)(data);
240                         }
241                 }
242
243                 ixgbe_release_swfw_sync(hw, gssr);
244         }
245
246         return status;
247 }
248
249 /**
250  *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
251  *  @hw: pointer to hardware structure
252  *  @reg_addr: 32 bit PHY register to write
253  *  @device_type: 5 bit device type
254  *  @phy_data: Data to write to the PHY register
255  **/
256 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
257                                 u32 device_type, u16 phy_data)
258 {
259         u32 command;
260         u32 i;
261         s32 status = 0;
262         u16 gssr;
263
264         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
265                 gssr = IXGBE_GSSR_PHY1_SM;
266         else
267                 gssr = IXGBE_GSSR_PHY0_SM;
268
269         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
270                 status = IXGBE_ERR_SWFW_SYNC;
271
272         if (status == 0) {
273                 /* Put the data in the MDI single read and write data register*/
274                 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
275
276                 /* Setup and write the address cycle command */
277                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
278                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
279                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
280                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
281
282                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
283
284                 /*
285                  * Check every 10 usec to see if the address cycle completed.
286                  * The MDI Command bit will clear when the operation is
287                  * complete
288                  */
289                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
290                         udelay(10);
291
292                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
293
294                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
295                                 break;
296                 }
297
298                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
299                         hw_dbg(hw, "PHY address cmd didn't complete\n");
300                         status = IXGBE_ERR_PHY;
301                 }
302
303                 if (status == 0) {
304                         /*
305                          * Address cycle complete, setup and write the write
306                          * command
307                          */
308                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
309                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
310                                    (hw->phy.mdio.prtad <<
311                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
312                                    (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
313
314                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
315
316                         /*
317                          * Check every 10 usec to see if the address cycle
318                          * completed. The MDI Command bit will clear when the
319                          * operation is complete
320                          */
321                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
322                                 udelay(10);
323
324                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
325
326                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
327                                         break;
328                         }
329
330                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
331                                 hw_dbg(hw, "PHY address cmd didn't complete\n");
332                                 status = IXGBE_ERR_PHY;
333                         }
334                 }
335
336                 ixgbe_release_swfw_sync(hw, gssr);
337         }
338
339         return status;
340 }
341
342 /**
343  *  ixgbe_setup_phy_link_generic - Set and restart autoneg
344  *  @hw: pointer to hardware structure
345  *
346  *  Restart autonegotiation and PHY and waits for completion.
347  **/
348 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
349 {
350         s32 status = IXGBE_NOT_IMPLEMENTED;
351         u32 time_out;
352         u32 max_time_out = 10;
353         u16 autoneg_reg;
354
355         /*
356          * Set advertisement settings in PHY based on autoneg_advertised
357          * settings. If autoneg_advertised = 0, then advertise default values
358          * tnx devices cannot be "forced" to a autoneg 10G and fail.  But can
359          * for a 1G.
360          */
361         hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
362
363         if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
364                 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
365         else
366                 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
367
368         hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
369
370         /* Restart PHY autonegotiation and wait for completion */
371         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
372
373         autoneg_reg |= MDIO_AN_CTRL1_RESTART;
374
375         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
376
377         /* Wait for autonegotiation to finish */
378         for (time_out = 0; time_out < max_time_out; time_out++) {
379                 udelay(10);
380                 /* Restart PHY autonegotiation and wait for completion */
381                 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
382                                               &autoneg_reg);
383
384                 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
385                 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
386                         status = 0;
387                         break;
388                 }
389         }
390
391         if (time_out == max_time_out)
392                 status = IXGBE_ERR_LINK_SETUP;
393
394         return status;
395 }
396
397 /**
398  *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
399  *  @hw: pointer to hardware structure
400  *  @speed: new link speed
401  *  @autoneg: true if autonegotiation enabled
402  **/
403 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
404                                        ixgbe_link_speed speed,
405                                        bool autoneg,
406                                        bool autoneg_wait_to_complete)
407 {
408
409         /*
410          * Clear autoneg_advertised and set new values based on input link
411          * speed.
412          */
413         hw->phy.autoneg_advertised = 0;
414
415         if (speed & IXGBE_LINK_SPEED_10GB_FULL)
416                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
417
418         if (speed & IXGBE_LINK_SPEED_1GB_FULL)
419                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
420
421         /* Setup link based on the new speed settings */
422         hw->phy.ops.setup_link(hw);
423
424         return 0;
425 }
426
427 /**
428  *  ixgbe_reset_phy_nl - Performs a PHY reset
429  *  @hw: pointer to hardware structure
430  **/
431 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
432 {
433         u16 phy_offset, control, eword, edata, block_crc;
434         bool end_data = false;
435         u16 list_offset, data_offset;
436         u16 phy_data = 0;
437         s32 ret_val = 0;
438         u32 i;
439
440         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
441
442         /* reset the PHY and poll for completion */
443         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
444                               (phy_data | MDIO_CTRL1_RESET));
445
446         for (i = 0; i < 100; i++) {
447                 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
448                                      &phy_data);
449                 if ((phy_data & MDIO_CTRL1_RESET) == 0)
450                         break;
451                 msleep(10);
452         }
453
454         if ((phy_data & MDIO_CTRL1_RESET) != 0) {
455                 hw_dbg(hw, "PHY reset did not complete.\n");
456                 ret_val = IXGBE_ERR_PHY;
457                 goto out;
458         }
459
460         /* Get init offsets */
461         ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
462                                                       &data_offset);
463         if (ret_val != 0)
464                 goto out;
465
466         ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
467         data_offset++;
468         while (!end_data) {
469                 /*
470                  * Read control word from PHY init contents offset
471                  */
472                 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
473                 control = (eword & IXGBE_CONTROL_MASK_NL) >>
474                            IXGBE_CONTROL_SHIFT_NL;
475                 edata = eword & IXGBE_DATA_MASK_NL;
476                 switch (control) {
477                 case IXGBE_DELAY_NL:
478                         data_offset++;
479                         hw_dbg(hw, "DELAY: %d MS\n", edata);
480                         msleep(edata);
481                         break;
482                 case IXGBE_DATA_NL:
483                         hw_dbg(hw, "DATA:\n");
484                         data_offset++;
485                         hw->eeprom.ops.read(hw, data_offset++,
486                                             &phy_offset);
487                         for (i = 0; i < edata; i++) {
488                                 hw->eeprom.ops.read(hw, data_offset, &eword);
489                                 hw->phy.ops.write_reg(hw, phy_offset,
490                                                       MDIO_MMD_PMAPMD, eword);
491                                 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
492                                        phy_offset);
493                                 data_offset++;
494                                 phy_offset++;
495                         }
496                         break;
497                 case IXGBE_CONTROL_NL:
498                         data_offset++;
499                         hw_dbg(hw, "CONTROL:\n");
500                         if (edata == IXGBE_CONTROL_EOL_NL) {
501                                 hw_dbg(hw, "EOL\n");
502                                 end_data = true;
503                         } else if (edata == IXGBE_CONTROL_SOL_NL) {
504                                 hw_dbg(hw, "SOL\n");
505                         } else {
506                                 hw_dbg(hw, "Bad control value\n");
507                                 ret_val = IXGBE_ERR_PHY;
508                                 goto out;
509                         }
510                         break;
511                 default:
512                         hw_dbg(hw, "Bad control type\n");
513                         ret_val = IXGBE_ERR_PHY;
514                         goto out;
515                 }
516         }
517
518 out:
519         return ret_val;
520 }
521
522 /**
523  *  ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
524  *                                      the PHY type.
525  *  @hw: pointer to hardware structure
526  *
527  *  Searches for and indentifies the SFP module.  Assings appropriate PHY type.
528  **/
529 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
530 {
531         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
532         u32 vendor_oui = 0;
533         enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
534         u8 identifier = 0;
535         u8 comp_codes_1g = 0;
536         u8 comp_codes_10g = 0;
537         u8 oui_bytes[3] = {0, 0, 0};
538         u8 cable_tech = 0;
539         u8 cable_spec = 0;
540         u16 enforce_sfp = 0;
541
542         if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
543                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
544                 status = IXGBE_ERR_SFP_NOT_PRESENT;
545                 goto out;
546         }
547
548         status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
549                                              &identifier);
550
551         if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
552                 status = IXGBE_ERR_SFP_NOT_PRESENT;
553                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
554                 if (hw->phy.type != ixgbe_phy_nl) {
555                         hw->phy.id = 0;
556                         hw->phy.type = ixgbe_phy_unknown;
557                 }
558                 goto out;
559         }
560
561         if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
562                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
563                                             &comp_codes_1g);
564                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
565                                             &comp_codes_10g);
566                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
567                                             &cable_tech);
568
569                 /* ID Module
570                  * =========
571                  * 0    SFP_DA_CU
572                  * 1    SFP_SR
573                  * 2    SFP_LR
574                  * 3    SFP_DA_CORE0 - 82599-specific
575                  * 4    SFP_DA_CORE1 - 82599-specific
576                  * 5    SFP_SR/LR_CORE0 - 82599-specific
577                  * 6    SFP_SR/LR_CORE1 - 82599-specific
578                  * 7    SFP_act_lmt_DA_CORE0 - 82599-specific
579                  * 8    SFP_act_lmt_DA_CORE1 - 82599-specific
580                  */
581                 if (hw->mac.type == ixgbe_mac_82598EB) {
582                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
583                                 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
584                         else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
585                                 hw->phy.sfp_type = ixgbe_sfp_type_sr;
586                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
587                                 hw->phy.sfp_type = ixgbe_sfp_type_lr;
588                         else
589                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
590                 } else if (hw->mac.type == ixgbe_mac_82599EB) {
591                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
592                                 if (hw->bus.lan_id == 0)
593                                         hw->phy.sfp_type =
594                                                      ixgbe_sfp_type_da_cu_core0;
595                                 else
596                                         hw->phy.sfp_type =
597                                                      ixgbe_sfp_type_da_cu_core1;
598                         } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
599                                 hw->phy.ops.read_i2c_eeprom(
600                                                 hw, IXGBE_SFF_CABLE_SPEC_COMP,
601                                                 &cable_spec);
602                                 if (cable_spec &
603                                     IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
604                                         if (hw->bus.lan_id == 0)
605                                                 hw->phy.sfp_type =
606                                                 ixgbe_sfp_type_da_act_lmt_core0;
607                                         else
608                                                 hw->phy.sfp_type =
609                                                 ixgbe_sfp_type_da_act_lmt_core1;
610                                 } else {
611                                         hw->phy.sfp_type =
612                                                 ixgbe_sfp_type_unknown;
613                                 }
614                         } else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
615                                 if (hw->bus.lan_id == 0)
616                                         hw->phy.sfp_type =
617                                                       ixgbe_sfp_type_srlr_core0;
618                                 else
619                                         hw->phy.sfp_type =
620                                                       ixgbe_sfp_type_srlr_core1;
621                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
622                                 if (hw->bus.lan_id == 0)
623                                         hw->phy.sfp_type =
624                                                       ixgbe_sfp_type_srlr_core0;
625                                 else
626                                         hw->phy.sfp_type =
627                                                       ixgbe_sfp_type_srlr_core1;
628                         else
629                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
630                 }
631
632                 if (hw->phy.sfp_type != stored_sfp_type)
633                         hw->phy.sfp_setup_needed = true;
634
635                 /* Determine if the SFP+ PHY is dual speed or not. */
636                 hw->phy.multispeed_fiber = false;
637                 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
638                    (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
639                    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
640                    (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
641                         hw->phy.multispeed_fiber = true;
642
643                 /* Determine PHY vendor */
644                 if (hw->phy.type != ixgbe_phy_nl) {
645                         hw->phy.id = identifier;
646                         hw->phy.ops.read_i2c_eeprom(hw,
647                                                     IXGBE_SFF_VENDOR_OUI_BYTE0,
648                                                     &oui_bytes[0]);
649                         hw->phy.ops.read_i2c_eeprom(hw,
650                                                     IXGBE_SFF_VENDOR_OUI_BYTE1,
651                                                     &oui_bytes[1]);
652                         hw->phy.ops.read_i2c_eeprom(hw,
653                                                     IXGBE_SFF_VENDOR_OUI_BYTE2,
654                                                     &oui_bytes[2]);
655
656                         vendor_oui =
657                           ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
658                            (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
659                            (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
660
661                         switch (vendor_oui) {
662                         case IXGBE_SFF_VENDOR_OUI_TYCO:
663                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
664                                         hw->phy.type =
665                                                 ixgbe_phy_sfp_passive_tyco;
666                                 break;
667                         case IXGBE_SFF_VENDOR_OUI_FTL:
668                                 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
669                                         hw->phy.type = ixgbe_phy_sfp_ftl_active;
670                                 else
671                                         hw->phy.type = ixgbe_phy_sfp_ftl;
672                                 break;
673                         case IXGBE_SFF_VENDOR_OUI_AVAGO:
674                                 hw->phy.type = ixgbe_phy_sfp_avago;
675                                 break;
676                         case IXGBE_SFF_VENDOR_OUI_INTEL:
677                                 hw->phy.type = ixgbe_phy_sfp_intel;
678                                 break;
679                         default:
680                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
681                                         hw->phy.type =
682                                                 ixgbe_phy_sfp_passive_unknown;
683                                 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
684                                         hw->phy.type =
685                                                 ixgbe_phy_sfp_active_unknown;
686                                 else
687                                         hw->phy.type = ixgbe_phy_sfp_unknown;
688                                 break;
689                         }
690                 }
691
692                 /* All passive DA cables are supported */
693                 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
694                     IXGBE_SFF_DA_ACTIVE_CABLE)) {
695                         status = 0;
696                         goto out;
697                 }
698
699                 /* 1G SFP modules are not supported */
700                 if (comp_codes_10g == 0) {
701                         hw->phy.type = ixgbe_phy_sfp_unsupported;
702                         status = IXGBE_ERR_SFP_NOT_SUPPORTED;
703                         goto out;
704                 }
705
706                 /* Anything else 82598-based is supported */
707                 if (hw->mac.type == ixgbe_mac_82598EB) {
708                         status = 0;
709                         goto out;
710                 }
711
712                 /* This is guaranteed to be 82599, no need to check for NULL */
713                 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
714                 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
715                         /* Make sure we're a supported PHY type */
716                         if (hw->phy.type == ixgbe_phy_sfp_intel) {
717                                 status = 0;
718                         } else {
719                                 hw_dbg(hw, "SFP+ module not supported\n");
720                                 hw->phy.type = ixgbe_phy_sfp_unsupported;
721                                 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
722                         }
723                 } else {
724                         status = 0;
725                 }
726         }
727
728 out:
729         return status;
730 }
731
732 /**
733  *  ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
734  *  if it supports a given SFP+ module type, if so it returns the offsets to the
735  *  phy init sequence block.
736  *  @hw: pointer to hardware structure
737  *  @list_offset: offset to the SFP ID list
738  *  @data_offset: offset to the SFP data block
739  **/
740 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
741                                         u16 *list_offset,
742                                         u16 *data_offset)
743 {
744         u16 sfp_id;
745
746         if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
747                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
748
749         if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
750                 return IXGBE_ERR_SFP_NOT_PRESENT;
751
752         if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
753             (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
754                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
755
756         /* Read offset to PHY init contents */
757         hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
758
759         if ((!*list_offset) || (*list_offset == 0xFFFF))
760                 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
761
762         /* Shift offset to first ID word */
763         (*list_offset)++;
764
765         /*
766          * Find the matching SFP ID in the EEPROM
767          * and program the init sequence
768          */
769         hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
770
771         while (sfp_id != IXGBE_PHY_INIT_END_NL) {
772                 if (sfp_id == hw->phy.sfp_type) {
773                         (*list_offset)++;
774                         hw->eeprom.ops.read(hw, *list_offset, data_offset);
775                         if ((!*data_offset) || (*data_offset == 0xFFFF)) {
776                                 hw_dbg(hw, "SFP+ module not supported\n");
777                                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
778                         } else {
779                                 break;
780                         }
781                 } else {
782                         (*list_offset) += 2;
783                         if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
784                                 return IXGBE_ERR_PHY;
785                 }
786         }
787
788         if (sfp_id == IXGBE_PHY_INIT_END_NL) {
789                 hw_dbg(hw, "No matching SFP+ module found\n");
790                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
791         }
792
793         return 0;
794 }
795
796 /**
797  *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
798  *  @hw: pointer to hardware structure
799  *  @byte_offset: EEPROM byte offset to read
800  *  @eeprom_data: value read
801  *
802  *  Performs byte read operation to SFP module's EEPROM over I2C interface.
803  **/
804 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
805                                   u8 *eeprom_data)
806 {
807         return hw->phy.ops.read_i2c_byte(hw, byte_offset,
808                                          IXGBE_I2C_EEPROM_DEV_ADDR,
809                                          eeprom_data);
810 }
811
812 /**
813  *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
814  *  @hw: pointer to hardware structure
815  *  @byte_offset: EEPROM byte offset to write
816  *  @eeprom_data: value to write
817  *
818  *  Performs byte write operation to SFP module's EEPROM over I2C interface.
819  **/
820 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
821                                    u8 eeprom_data)
822 {
823         return hw->phy.ops.write_i2c_byte(hw, byte_offset,
824                                           IXGBE_I2C_EEPROM_DEV_ADDR,
825                                           eeprom_data);
826 }
827
828 /**
829  *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
830  *  @hw: pointer to hardware structure
831  *  @byte_offset: byte offset to read
832  *  @data: value read
833  *
834  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
835  *  a specified deivce address.
836  **/
837 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
838                                 u8 dev_addr, u8 *data)
839 {
840         s32 status = 0;
841         u32 max_retry = 1;
842         u32 retry = 0;
843         bool nack = 1;
844
845         do {
846                 ixgbe_i2c_start(hw);
847
848                 /* Device Address and write indication */
849                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
850                 if (status != 0)
851                         goto fail;
852
853                 status = ixgbe_get_i2c_ack(hw);
854                 if (status != 0)
855                         goto fail;
856
857                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
858                 if (status != 0)
859                         goto fail;
860
861                 status = ixgbe_get_i2c_ack(hw);
862                 if (status != 0)
863                         goto fail;
864
865                 ixgbe_i2c_start(hw);
866
867                 /* Device Address and read indication */
868                 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
869                 if (status != 0)
870                         goto fail;
871
872                 status = ixgbe_get_i2c_ack(hw);
873                 if (status != 0)
874                         goto fail;
875
876                 status = ixgbe_clock_in_i2c_byte(hw, data);
877                 if (status != 0)
878                         goto fail;
879
880                 status = ixgbe_clock_out_i2c_bit(hw, nack);
881                 if (status != 0)
882                         goto fail;
883
884                 ixgbe_i2c_stop(hw);
885                 break;
886
887 fail:
888                 ixgbe_i2c_bus_clear(hw);
889                 retry++;
890                 if (retry < max_retry)
891                         hw_dbg(hw, "I2C byte read error - Retrying.\n");
892                 else
893                         hw_dbg(hw, "I2C byte read error.\n");
894
895         } while (retry < max_retry);
896
897         return status;
898 }
899
900 /**
901  *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
902  *  @hw: pointer to hardware structure
903  *  @byte_offset: byte offset to write
904  *  @data: value to write
905  *
906  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
907  *  a specified device address.
908  **/
909 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
910                                  u8 dev_addr, u8 data)
911 {
912         s32 status = 0;
913         u32 max_retry = 1;
914         u32 retry = 0;
915
916         do {
917                 ixgbe_i2c_start(hw);
918
919                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
920                 if (status != 0)
921                         goto fail;
922
923                 status = ixgbe_get_i2c_ack(hw);
924                 if (status != 0)
925                         goto fail;
926
927                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
928                 if (status != 0)
929                         goto fail;
930
931                 status = ixgbe_get_i2c_ack(hw);
932                 if (status != 0)
933                         goto fail;
934
935                 status = ixgbe_clock_out_i2c_byte(hw, data);
936                 if (status != 0)
937                         goto fail;
938
939                 status = ixgbe_get_i2c_ack(hw);
940                 if (status != 0)
941                         goto fail;
942
943                 ixgbe_i2c_stop(hw);
944                 break;
945
946 fail:
947                 ixgbe_i2c_bus_clear(hw);
948                 retry++;
949                 if (retry < max_retry)
950                         hw_dbg(hw, "I2C byte write error - Retrying.\n");
951                 else
952                         hw_dbg(hw, "I2C byte write error.\n");
953         } while (retry < max_retry);
954
955         return status;
956 }
957
958 /**
959  *  ixgbe_i2c_start - Sets I2C start condition
960  *  @hw: pointer to hardware structure
961  *
962  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
963  **/
964 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
965 {
966         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
967
968         /* Start condition must begin with data and clock high */
969         ixgbe_set_i2c_data(hw, &i2cctl, 1);
970         ixgbe_raise_i2c_clk(hw, &i2cctl);
971
972         /* Setup time for start condition (4.7us) */
973         udelay(IXGBE_I2C_T_SU_STA);
974
975         ixgbe_set_i2c_data(hw, &i2cctl, 0);
976
977         /* Hold time for start condition (4us) */
978         udelay(IXGBE_I2C_T_HD_STA);
979
980         ixgbe_lower_i2c_clk(hw, &i2cctl);
981
982         /* Minimum low period of clock is 4.7 us */
983         udelay(IXGBE_I2C_T_LOW);
984
985 }
986
987 /**
988  *  ixgbe_i2c_stop - Sets I2C stop condition
989  *  @hw: pointer to hardware structure
990  *
991  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
992  **/
993 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
994 {
995         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
996
997         /* Stop condition must begin with data low and clock high */
998         ixgbe_set_i2c_data(hw, &i2cctl, 0);
999         ixgbe_raise_i2c_clk(hw, &i2cctl);
1000
1001         /* Setup time for stop condition (4us) */
1002         udelay(IXGBE_I2C_T_SU_STO);
1003
1004         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1005
1006         /* bus free time between stop and start (4.7us)*/
1007         udelay(IXGBE_I2C_T_BUF);
1008 }
1009
1010 /**
1011  *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1012  *  @hw: pointer to hardware structure
1013  *  @data: data byte to clock in
1014  *
1015  *  Clocks in one byte data via I2C data/clock
1016  **/
1017 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1018 {
1019         s32 status = 0;
1020         s32 i;
1021         bool bit = 0;
1022
1023         for (i = 7; i >= 0; i--) {
1024                 status = ixgbe_clock_in_i2c_bit(hw, &bit);
1025                 *data |= bit << i;
1026
1027                 if (status != 0)
1028                         break;
1029         }
1030
1031         return status;
1032 }
1033
1034 /**
1035  *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1036  *  @hw: pointer to hardware structure
1037  *  @data: data byte clocked out
1038  *
1039  *  Clocks out one byte data via I2C data/clock
1040  **/
1041 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1042 {
1043         s32 status = 0;
1044         s32 i;
1045         u32 i2cctl;
1046         bool bit = 0;
1047
1048         for (i = 7; i >= 0; i--) {
1049                 bit = (data >> i) & 0x1;
1050                 status = ixgbe_clock_out_i2c_bit(hw, bit);
1051
1052                 if (status != 0)
1053                         break;
1054         }
1055
1056         /* Release SDA line (set high) */
1057         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1058         i2cctl |= IXGBE_I2C_DATA_OUT;
1059         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1060
1061         return status;
1062 }
1063
1064 /**
1065  *  ixgbe_get_i2c_ack - Polls for I2C ACK
1066  *  @hw: pointer to hardware structure
1067  *
1068  *  Clocks in/out one bit via I2C data/clock
1069  **/
1070 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1071 {
1072         s32 status;
1073         u32 i = 0;
1074         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1075         u32 timeout = 10;
1076         bool ack = 1;
1077
1078         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1079
1080         if (status != 0)
1081                 goto out;
1082
1083         /* Minimum high period of clock is 4us */
1084         udelay(IXGBE_I2C_T_HIGH);
1085
1086         /* Poll for ACK.  Note that ACK in I2C spec is
1087          * transition from 1 to 0 */
1088         for (i = 0; i < timeout; i++) {
1089                 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1090                 ack = ixgbe_get_i2c_data(&i2cctl);
1091
1092                 udelay(1);
1093                 if (ack == 0)
1094                         break;
1095         }
1096
1097         if (ack == 1) {
1098                 hw_dbg(hw, "I2C ack was not received.\n");
1099                 status = IXGBE_ERR_I2C;
1100         }
1101
1102         ixgbe_lower_i2c_clk(hw, &i2cctl);
1103
1104         /* Minimum low period of clock is 4.7 us */
1105         udelay(IXGBE_I2C_T_LOW);
1106
1107 out:
1108         return status;
1109 }
1110
1111 /**
1112  *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1113  *  @hw: pointer to hardware structure
1114  *  @data: read data value
1115  *
1116  *  Clocks in one bit via I2C data/clock
1117  **/
1118 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1119 {
1120         s32 status;
1121         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1122
1123         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1124
1125         /* Minimum high period of clock is 4us */
1126         udelay(IXGBE_I2C_T_HIGH);
1127
1128         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1129         *data = ixgbe_get_i2c_data(&i2cctl);
1130
1131         ixgbe_lower_i2c_clk(hw, &i2cctl);
1132
1133         /* Minimum low period of clock is 4.7 us */
1134         udelay(IXGBE_I2C_T_LOW);
1135
1136         return status;
1137 }
1138
1139 /**
1140  *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1141  *  @hw: pointer to hardware structure
1142  *  @data: data value to write
1143  *
1144  *  Clocks out one bit via I2C data/clock
1145  **/
1146 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1147 {
1148         s32 status;
1149         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1150
1151         status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1152         if (status == 0) {
1153                 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1154
1155                 /* Minimum high period of clock is 4us */
1156                 udelay(IXGBE_I2C_T_HIGH);
1157
1158                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1159
1160                 /* Minimum low period of clock is 4.7 us.
1161                  * This also takes care of the data hold time.
1162                  */
1163                 udelay(IXGBE_I2C_T_LOW);
1164         } else {
1165                 status = IXGBE_ERR_I2C;
1166                 hw_dbg(hw, "I2C data was not set to %X\n", data);
1167         }
1168
1169         return status;
1170 }
1171 /**
1172  *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1173  *  @hw: pointer to hardware structure
1174  *  @i2cctl: Current value of I2CCTL register
1175  *
1176  *  Raises the I2C clock line '0'->'1'
1177  **/
1178 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1179 {
1180         s32 status = 0;
1181
1182         *i2cctl |= IXGBE_I2C_CLK_OUT;
1183
1184         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1185
1186         /* SCL rise time (1000ns) */
1187         udelay(IXGBE_I2C_T_RISE);
1188
1189         return status;
1190 }
1191
1192 /**
1193  *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1194  *  @hw: pointer to hardware structure
1195  *  @i2cctl: Current value of I2CCTL register
1196  *
1197  *  Lowers the I2C clock line '1'->'0'
1198  **/
1199 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1200 {
1201
1202         *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1203
1204         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1205
1206         /* SCL fall time (300ns) */
1207         udelay(IXGBE_I2C_T_FALL);
1208 }
1209
1210 /**
1211  *  ixgbe_set_i2c_data - Sets the I2C data bit
1212  *  @hw: pointer to hardware structure
1213  *  @i2cctl: Current value of I2CCTL register
1214  *  @data: I2C data value (0 or 1) to set
1215  *
1216  *  Sets the I2C data bit
1217  **/
1218 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1219 {
1220         s32 status = 0;
1221
1222         if (data)
1223                 *i2cctl |= IXGBE_I2C_DATA_OUT;
1224         else
1225                 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1226
1227         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1228
1229         /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1230         udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1231
1232         /* Verify data was set correctly */
1233         *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1234         if (data != ixgbe_get_i2c_data(i2cctl)) {
1235                 status = IXGBE_ERR_I2C;
1236                 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1237         }
1238
1239         return status;
1240 }
1241
1242 /**
1243  *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
1244  *  @hw: pointer to hardware structure
1245  *  @i2cctl: Current value of I2CCTL register
1246  *
1247  *  Returns the I2C data bit value
1248  **/
1249 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1250 {
1251         bool data;
1252
1253         if (*i2cctl & IXGBE_I2C_DATA_IN)
1254                 data = 1;
1255         else
1256                 data = 0;
1257
1258         return data;
1259 }
1260
1261 /**
1262  *  ixgbe_i2c_bus_clear - Clears the I2C bus
1263  *  @hw: pointer to hardware structure
1264  *
1265  *  Clears the I2C bus by sending nine clock pulses.
1266  *  Used when data line is stuck low.
1267  **/
1268 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1269 {
1270         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1271         u32 i;
1272
1273         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1274
1275         for (i = 0; i < 9; i++) {
1276                 ixgbe_raise_i2c_clk(hw, &i2cctl);
1277
1278                 /* Min high period of clock is 4us */
1279                 udelay(IXGBE_I2C_T_HIGH);
1280
1281                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1282
1283                 /* Min low period of clock is 4.7us*/
1284                 udelay(IXGBE_I2C_T_LOW);
1285         }
1286
1287         /* Put the i2c bus back to default state */
1288         ixgbe_i2c_stop(hw);
1289 }
1290
1291 /**
1292  *  ixgbe_check_phy_link_tnx - Determine link and speed status
1293  *  @hw: pointer to hardware structure
1294  *
1295  *  Reads the VS1 register to determine if link is up and the current speed for
1296  *  the PHY.
1297  **/
1298 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1299                              bool *link_up)
1300 {
1301         s32 status = 0;
1302         u32 time_out;
1303         u32 max_time_out = 10;
1304         u16 phy_link = 0;
1305         u16 phy_speed = 0;
1306         u16 phy_data = 0;
1307
1308         /* Initialize speed and link to default case */
1309         *link_up = false;
1310         *speed = IXGBE_LINK_SPEED_10GB_FULL;
1311
1312         /*
1313          * Check current speed and link status of the PHY register.
1314          * This is a vendor specific register and may have to
1315          * be changed for other copper PHYs.
1316          */
1317         for (time_out = 0; time_out < max_time_out; time_out++) {
1318                 udelay(10);
1319                 status = hw->phy.ops.read_reg(hw,
1320                                         IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
1321                                         MDIO_MMD_VEND1,
1322                                         &phy_data);
1323                 phy_link = phy_data &
1324                            IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1325                 phy_speed = phy_data &
1326                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1327                 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1328                         *link_up = true;
1329                         if (phy_speed ==
1330                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1331                                 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1332                         break;
1333                 }
1334         }
1335
1336         return status;
1337 }
1338
1339 /**
1340  *  ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1341  *  @hw: pointer to hardware structure
1342  *  @firmware_version: pointer to the PHY Firmware Version
1343  **/
1344 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1345                                        u16 *firmware_version)
1346 {
1347         s32 status = 0;
1348
1349         status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
1350                                       firmware_version);
1351
1352         return status;
1353 }
1354
1355 /**
1356  *  ixgbe_tn_check_overtemp - Checks if an overtemp occured.
1357  *  @hw: pointer to hardware structure
1358  *
1359  *  Checks if the LASI temp alarm status was triggered due to overtemp
1360  **/
1361 s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1362 {
1363         s32 status = 0;
1364         u16 phy_data = 0;
1365
1366         if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1367                 goto out;
1368
1369         /* Check that the LASI temp alarm status was triggered */
1370         hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1371                              MDIO_MMD_PMAPMD, &phy_data);
1372
1373         if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1374                 goto out;
1375
1376         status = IXGBE_ERR_OVERTEMP;
1377 out:
1378         return status;
1379 }