]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ath/ath5k/phy.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[karo-tx-linux.git] / drivers / net / wireless / ath / ath5k / phy.c
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22
23 #include <linux/delay.h>
24
25 #include "ath5k.h"
26 #include "reg.h"
27 #include "base.h"
28 #include "rfbuffer.h"
29 #include "rfgain.h"
30
31 /*
32  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
33  */
34 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
35                                         const struct ath5k_rf_reg *rf_regs,
36                                         u32 val, u8 reg_id, bool set)
37 {
38         const struct ath5k_rf_reg *rfreg = NULL;
39         u8 offset, bank, num_bits, col, position;
40         u16 entry;
41         u32 mask, data, last_bit, bits_shifted, first_bit;
42         u32 *rfb;
43         s32 bits_left;
44         int i;
45
46         data = 0;
47         rfb = ah->ah_rf_banks;
48
49         for (i = 0; i < ah->ah_rf_regs_count; i++) {
50                 if (rf_regs[i].index == reg_id) {
51                         rfreg = &rf_regs[i];
52                         break;
53                 }
54         }
55
56         if (rfb == NULL || rfreg == NULL) {
57                 ATH5K_PRINTF("Rf register not found!\n");
58                 /* should not happen */
59                 return 0;
60         }
61
62         bank = rfreg->bank;
63         num_bits = rfreg->field.len;
64         first_bit = rfreg->field.pos;
65         col = rfreg->field.col;
66
67         /* first_bit is an offset from bank's
68          * start. Since we have all banks on
69          * the same array, we use this offset
70          * to mark each bank's start */
71         offset = ah->ah_offset[bank];
72
73         /* Boundary check */
74         if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
75                 ATH5K_PRINTF("invalid values at offset %u\n", offset);
76                 return 0;
77         }
78
79         entry = ((first_bit - 1) / 8) + offset;
80         position = (first_bit - 1) % 8;
81
82         if (set)
83                 data = ath5k_hw_bitswap(val, num_bits);
84
85         for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
86         position = 0, entry++) {
87
88                 last_bit = (position + bits_left > 8) ? 8 :
89                                         position + bits_left;
90
91                 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
92                                                                 (col * 8);
93
94                 if (set) {
95                         rfb[entry] &= ~mask;
96                         rfb[entry] |= ((data << position) << (col * 8)) & mask;
97                         data >>= (8 - position);
98                 } else {
99                         data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
100                                 << bits_shifted;
101                         bits_shifted += last_bit - position;
102                 }
103
104                 bits_left -= 8 - position;
105         }
106
107         data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
108
109         return data;
110 }
111
112 /**********************\
113 * RF Gain optimization *
114 \**********************/
115
116 /*
117  * This code is used to optimize rf gain on different environments
118  * (temperature mostly) based on feedback from a power detector.
119  *
120  * It's only used on RF5111 and RF5112, later RF chips seem to have
121  * auto adjustment on hw -notice they have a much smaller BANK 7 and
122  * no gain optimization ladder-.
123  *
124  * For more infos check out this patent doc
125  * http://www.freepatentsonline.com/7400691.html
126  *
127  * This paper describes power drops as seen on the receiver due to
128  * probe packets
129  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
130  * %20of%20Power%20Control.pdf
131  *
132  * And this is the MadWiFi bug entry related to the above
133  * http://madwifi-project.org/ticket/1659
134  * with various measurements and diagrams
135  *
136  * TODO: Deal with power drops due to probes by setting an apropriate
137  * tx power on the probe packets ! Make this part of the calibration process.
138  */
139
140 /* Initialize ah_gain durring attach */
141 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
142 {
143         /* Initialize the gain optimization values */
144         switch (ah->ah_radio) {
145         case AR5K_RF5111:
146                 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
147                 ah->ah_gain.g_low = 20;
148                 ah->ah_gain.g_high = 35;
149                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
150                 break;
151         case AR5K_RF5112:
152                 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
153                 ah->ah_gain.g_low = 20;
154                 ah->ah_gain.g_high = 85;
155                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
156                 break;
157         default:
158                 return -EINVAL;
159         }
160
161         return 0;
162 }
163
164 /* Schedule a gain probe check on the next transmited packet.
165  * That means our next packet is going to be sent with lower
166  * tx power and a Peak to Average Power Detector (PAPD) will try
167  * to measure the gain.
168  *
169  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
170  * just after we enable the probe so that we don't mess with
171  * standard traffic ? Maybe it's time to use sw interrupts and
172  * a probe tasklet !!!
173  */
174 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
175 {
176
177         /* Skip if gain calibration is inactive or
178          * we already handle a probe request */
179         if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
180                 return;
181
182         /* Send the packet with 2dB below max power as
183          * patent doc suggest */
184         ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
185                         AR5K_PHY_PAPD_PROBE_TXPOWER) |
186                         AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
187
188         ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
189
190 }
191
192 /* Calculate gain_F measurement correction
193  * based on the current step for RF5112 rev. 2 */
194 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
195 {
196         u32 mix, step;
197         u32 *rf;
198         const struct ath5k_gain_opt *go;
199         const struct ath5k_gain_opt_step *g_step;
200         const struct ath5k_rf_reg *rf_regs;
201
202         /* Only RF5112 Rev. 2 supports it */
203         if ((ah->ah_radio != AR5K_RF5112) ||
204         (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
205                 return 0;
206
207         go = &rfgain_opt_5112;
208         rf_regs = rf_regs_5112a;
209         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
210
211         g_step = &go->go_step[ah->ah_gain.g_step_idx];
212
213         if (ah->ah_rf_banks == NULL)
214                 return 0;
215
216         rf = ah->ah_rf_banks;
217         ah->ah_gain.g_f_corr = 0;
218
219         /* No VGA (Variable Gain Amplifier) override, skip */
220         if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
221                 return 0;
222
223         /* Mix gain stepping */
224         step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
225
226         /* Mix gain override */
227         mix = g_step->gos_param[0];
228
229         switch (mix) {
230         case 3:
231                 ah->ah_gain.g_f_corr = step * 2;
232                 break;
233         case 2:
234                 ah->ah_gain.g_f_corr = (step - 5) * 2;
235                 break;
236         case 1:
237                 ah->ah_gain.g_f_corr = step;
238                 break;
239         default:
240                 ah->ah_gain.g_f_corr = 0;
241                 break;
242         }
243
244         return ah->ah_gain.g_f_corr;
245 }
246
247 /* Check if current gain_F measurement is in the range of our
248  * power detector windows. If we get a measurement outside range
249  * we know it's not accurate (detectors can't measure anything outside
250  * their detection window) so we must ignore it */
251 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
252 {
253         const struct ath5k_rf_reg *rf_regs;
254         u32 step, mix_ovr, level[4];
255         u32 *rf;
256
257         if (ah->ah_rf_banks == NULL)
258                 return false;
259
260         rf = ah->ah_rf_banks;
261
262         if (ah->ah_radio == AR5K_RF5111) {
263
264                 rf_regs = rf_regs_5111;
265                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
266
267                 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
268                         false);
269
270                 level[0] = 0;
271                 level[1] = (step == 63) ? 50 : step + 4;
272                 level[2] = (step != 63) ? 64 : level[0];
273                 level[3] = level[2] + 50 ;
274
275                 ah->ah_gain.g_high = level[3] -
276                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
277                 ah->ah_gain.g_low = level[0] +
278                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
279         } else {
280
281                 rf_regs = rf_regs_5112;
282                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
283
284                 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
285                         false);
286
287                 level[0] = level[2] = 0;
288
289                 if (mix_ovr == 1) {
290                         level[1] = level[3] = 83;
291                 } else {
292                         level[1] = level[3] = 107;
293                         ah->ah_gain.g_high = 55;
294                 }
295         }
296
297         return (ah->ah_gain.g_current >= level[0] &&
298                         ah->ah_gain.g_current <= level[1]) ||
299                 (ah->ah_gain.g_current >= level[2] &&
300                         ah->ah_gain.g_current <= level[3]);
301 }
302
303 /* Perform gain_F adjustment by choosing the right set
304  * of parameters from rf gain optimization ladder */
305 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
306 {
307         const struct ath5k_gain_opt *go;
308         const struct ath5k_gain_opt_step *g_step;
309         int ret = 0;
310
311         switch (ah->ah_radio) {
312         case AR5K_RF5111:
313                 go = &rfgain_opt_5111;
314                 break;
315         case AR5K_RF5112:
316                 go = &rfgain_opt_5112;
317                 break;
318         default:
319                 return 0;
320         }
321
322         g_step = &go->go_step[ah->ah_gain.g_step_idx];
323
324         if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
325
326                 /* Reached maximum */
327                 if (ah->ah_gain.g_step_idx == 0)
328                         return -1;
329
330                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
331                                 ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
332                                 ah->ah_gain.g_step_idx > 0;
333                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
334                         ah->ah_gain.g_target -= 2 *
335                             (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
336                             g_step->gos_gain);
337
338                 ret = 1;
339                 goto done;
340         }
341
342         if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
343
344                 /* Reached minimum */
345                 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
346                         return -2;
347
348                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
349                                 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
350                                 ah->ah_gain.g_step_idx < go->go_steps_count-1;
351                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
352                         ah->ah_gain.g_target -= 2 *
353                             (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
354                             g_step->gos_gain);
355
356                 ret = 2;
357                 goto done;
358         }
359
360 done:
361         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
362                 "ret %d, gain step %u, current gain %u, target gain %u\n",
363                 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
364                 ah->ah_gain.g_target);
365
366         return ret;
367 }
368
369 /* Main callback for thermal rf gain calibration engine
370  * Check for a new gain reading and schedule an adjustment
371  * if needed.
372  *
373  * TODO: Use sw interrupt to schedule reset if gain_F needs
374  * adjustment */
375 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
376 {
377         u32 data, type;
378         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
379
380         ATH5K_TRACE(ah->ah_sc);
381
382         if (ah->ah_rf_banks == NULL ||
383         ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
384                 return AR5K_RFGAIN_INACTIVE;
385
386         /* No check requested, either engine is inactive
387          * or an adjustment is already requested */
388         if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
389                 goto done;
390
391         /* Read the PAPD (Peak to Average Power Detector)
392          * register */
393         data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
394
395         /* No probe is scheduled, read gain_F measurement */
396         if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
397                 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
398                 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
399
400                 /* If tx packet is CCK correct the gain_F measurement
401                  * by cck ofdm gain delta */
402                 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
403                         if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
404                                 ah->ah_gain.g_current +=
405                                         ee->ee_cck_ofdm_gain_delta;
406                         else
407                                 ah->ah_gain.g_current +=
408                                         AR5K_GAIN_CCK_PROBE_CORR;
409                 }
410
411                 /* Further correct gain_F measurement for
412                  * RF5112A radios */
413                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
414                         ath5k_hw_rf_gainf_corr(ah);
415                         ah->ah_gain.g_current =
416                                 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
417                                 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
418                                 0;
419                 }
420
421                 /* Check if measurement is ok and if we need
422                  * to adjust gain, schedule a gain adjustment,
423                  * else switch back to the acive state */
424                 if (ath5k_hw_rf_check_gainf_readback(ah) &&
425                 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
426                 ath5k_hw_rf_gainf_adjust(ah)) {
427                         ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
428                 } else {
429                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
430                 }
431         }
432
433 done:
434         return ah->ah_gain.g_state;
435 }
436
437 /* Write initial rf gain table to set the RF sensitivity
438  * this one works on all RF chips and has nothing to do
439  * with gain_F calibration */
440 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
441 {
442         const struct ath5k_ini_rfgain *ath5k_rfg;
443         unsigned int i, size;
444
445         switch (ah->ah_radio) {
446         case AR5K_RF5111:
447                 ath5k_rfg = rfgain_5111;
448                 size = ARRAY_SIZE(rfgain_5111);
449                 break;
450         case AR5K_RF5112:
451                 ath5k_rfg = rfgain_5112;
452                 size = ARRAY_SIZE(rfgain_5112);
453                 break;
454         case AR5K_RF2413:
455                 ath5k_rfg = rfgain_2413;
456                 size = ARRAY_SIZE(rfgain_2413);
457                 break;
458         case AR5K_RF2316:
459                 ath5k_rfg = rfgain_2316;
460                 size = ARRAY_SIZE(rfgain_2316);
461                 break;
462         case AR5K_RF5413:
463                 ath5k_rfg = rfgain_5413;
464                 size = ARRAY_SIZE(rfgain_5413);
465                 break;
466         case AR5K_RF2317:
467         case AR5K_RF2425:
468                 ath5k_rfg = rfgain_2425;
469                 size = ARRAY_SIZE(rfgain_2425);
470                 break;
471         default:
472                 return -EINVAL;
473         }
474
475         switch (freq) {
476         case AR5K_INI_RFGAIN_2GHZ:
477         case AR5K_INI_RFGAIN_5GHZ:
478                 break;
479         default:
480                 return -EINVAL;
481         }
482
483         for (i = 0; i < size; i++) {
484                 AR5K_REG_WAIT(i);
485                 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
486                         (u32)ath5k_rfg[i].rfg_register);
487         }
488
489         return 0;
490 }
491
492
493
494 /********************\
495 * RF Registers setup *
496 \********************/
497
498
499 /*
500  * Setup RF registers by writing rf buffer on hw
501  */
502 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
503                 unsigned int mode)
504 {
505         const struct ath5k_rf_reg *rf_regs;
506         const struct ath5k_ini_rfbuffer *ini_rfb;
507         const struct ath5k_gain_opt *go = NULL;
508         const struct ath5k_gain_opt_step *g_step;
509         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
510         u8 ee_mode = 0;
511         u32 *rfb;
512         int i, obdb = -1, bank = -1;
513
514         switch (ah->ah_radio) {
515         case AR5K_RF5111:
516                 rf_regs = rf_regs_5111;
517                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
518                 ini_rfb = rfb_5111;
519                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
520                 go = &rfgain_opt_5111;
521                 break;
522         case AR5K_RF5112:
523                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
524                         rf_regs = rf_regs_5112a;
525                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
526                         ini_rfb = rfb_5112a;
527                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
528                 } else {
529                         rf_regs = rf_regs_5112;
530                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
531                         ini_rfb = rfb_5112;
532                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
533                 }
534                 go = &rfgain_opt_5112;
535                 break;
536         case AR5K_RF2413:
537                 rf_regs = rf_regs_2413;
538                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
539                 ini_rfb = rfb_2413;
540                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
541                 break;
542         case AR5K_RF2316:
543                 rf_regs = rf_regs_2316;
544                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
545                 ini_rfb = rfb_2316;
546                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
547                 break;
548         case AR5K_RF5413:
549                 rf_regs = rf_regs_5413;
550                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
551                 ini_rfb = rfb_5413;
552                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
553                 break;
554         case AR5K_RF2317:
555                 rf_regs = rf_regs_2425;
556                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
557                 ini_rfb = rfb_2317;
558                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
559                 break;
560         case AR5K_RF2425:
561                 rf_regs = rf_regs_2425;
562                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
563                 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
564                         ini_rfb = rfb_2425;
565                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
566                 } else {
567                         ini_rfb = rfb_2417;
568                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
569                 }
570                 break;
571         default:
572                 return -EINVAL;
573         }
574
575         /* If it's the first time we set rf buffer, allocate
576          * ah->ah_rf_banks based on ah->ah_rf_banks_size
577          * we set above */
578         if (ah->ah_rf_banks == NULL) {
579                 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
580                                                                 GFP_KERNEL);
581                 if (ah->ah_rf_banks == NULL) {
582                         ATH5K_ERR(ah->ah_sc, "out of memory\n");
583                         return -ENOMEM;
584                 }
585         }
586
587         /* Copy values to modify them */
588         rfb = ah->ah_rf_banks;
589
590         for (i = 0; i < ah->ah_rf_banks_size; i++) {
591                 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
592                         ATH5K_ERR(ah->ah_sc, "invalid bank\n");
593                         return -EINVAL;
594                 }
595
596                 /* Bank changed, write down the offset */
597                 if (bank != ini_rfb[i].rfb_bank) {
598                         bank = ini_rfb[i].rfb_bank;
599                         ah->ah_offset[bank] = i;
600                 }
601
602                 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
603         }
604
605         /* Set Output and Driver bias current (OB/DB) */
606         if (channel->hw_value & CHANNEL_2GHZ) {
607
608                 if (channel->hw_value & CHANNEL_CCK)
609                         ee_mode = AR5K_EEPROM_MODE_11B;
610                 else
611                         ee_mode = AR5K_EEPROM_MODE_11G;
612
613                 /* For RF511X/RF211X combination we
614                  * use b_OB and b_DB parameters stored
615                  * in eeprom on ee->ee_ob[ee_mode][0]
616                  *
617                  * For all other chips we use OB/DB for 2Ghz
618                  * stored in the b/g modal section just like
619                  * 802.11a on ee->ee_ob[ee_mode][1] */
620                 if ((ah->ah_radio == AR5K_RF5111) ||
621                 (ah->ah_radio == AR5K_RF5112))
622                         obdb = 0;
623                 else
624                         obdb = 1;
625
626                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
627                                                 AR5K_RF_OB_2GHZ, true);
628
629                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
630                                                 AR5K_RF_DB_2GHZ, true);
631
632         /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
633         } else if ((channel->hw_value & CHANNEL_5GHZ) ||
634                         (ah->ah_radio == AR5K_RF5111)) {
635
636                 /* For 11a, Turbo and XR we need to choose
637                  * OB/DB based on frequency range */
638                 ee_mode = AR5K_EEPROM_MODE_11A;
639                 obdb =   channel->center_freq >= 5725 ? 3 :
640                         (channel->center_freq >= 5500 ? 2 :
641                         (channel->center_freq >= 5260 ? 1 :
642                          (channel->center_freq > 4000 ? 0 : -1)));
643
644                 if (obdb < 0)
645                         return -EINVAL;
646
647                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
648                                                 AR5K_RF_OB_5GHZ, true);
649
650                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
651                                                 AR5K_RF_DB_5GHZ, true);
652         }
653
654         g_step = &go->go_step[ah->ah_gain.g_step_idx];
655
656         /* Bank Modifications (chip-specific) */
657         if (ah->ah_radio == AR5K_RF5111) {
658
659                 /* Set gain_F settings according to current step */
660                 if (channel->hw_value & CHANNEL_OFDM) {
661
662                         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
663                                         AR5K_PHY_FRAME_CTL_TX_CLIP,
664                                         g_step->gos_param[0]);
665
666                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
667                                                         AR5K_RF_PWD_90, true);
668
669                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
670                                                         AR5K_RF_PWD_84, true);
671
672                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
673                                                 AR5K_RF_RFGAIN_SEL, true);
674
675                         /* We programmed gain_F parameters, switch back
676                          * to active state */
677                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
678
679                 }
680
681                 /* Bank 6/7 setup */
682
683                 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
684                                                 AR5K_RF_PWD_XPD, true);
685
686                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
687                                                 AR5K_RF_XPD_GAIN, true);
688
689                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
690                                                 AR5K_RF_GAIN_I, true);
691
692                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
693                                                 AR5K_RF_PLO_SEL, true);
694
695                 /* TODO: Half/quarter channel support */
696         }
697
698         if (ah->ah_radio == AR5K_RF5112) {
699
700                 /* Set gain_F settings according to current step */
701                 if (channel->hw_value & CHANNEL_OFDM) {
702
703                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
704                                                 AR5K_RF_MIXGAIN_OVR, true);
705
706                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
707                                                 AR5K_RF_PWD_138, true);
708
709                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
710                                                 AR5K_RF_PWD_137, true);
711
712                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
713                                                 AR5K_RF_PWD_136, true);
714
715                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
716                                                 AR5K_RF_PWD_132, true);
717
718                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
719                                                 AR5K_RF_PWD_131, true);
720
721                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
722                                                 AR5K_RF_PWD_130, true);
723
724                         /* We programmed gain_F parameters, switch back
725                          * to active state */
726                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
727                 }
728
729                 /* Bank 6/7 setup */
730
731                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
732                                                 AR5K_RF_XPD_SEL, true);
733
734                 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
735                         /* Rev. 1 supports only one xpd */
736                         ath5k_hw_rfb_op(ah, rf_regs,
737                                                 ee->ee_x_gain[ee_mode],
738                                                 AR5K_RF_XPD_GAIN, true);
739
740                 } else {
741                         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
742                         if (ee->ee_pd_gains[ee_mode] > 1) {
743                                 ath5k_hw_rfb_op(ah, rf_regs,
744                                                 pdg_curve_to_idx[0],
745                                                 AR5K_RF_PD_GAIN_LO, true);
746                                 ath5k_hw_rfb_op(ah, rf_regs,
747                                                 pdg_curve_to_idx[1],
748                                                 AR5K_RF_PD_GAIN_HI, true);
749                         } else {
750                                 ath5k_hw_rfb_op(ah, rf_regs,
751                                                 pdg_curve_to_idx[0],
752                                                 AR5K_RF_PD_GAIN_LO, true);
753                                 ath5k_hw_rfb_op(ah, rf_regs,
754                                                 pdg_curve_to_idx[0],
755                                                 AR5K_RF_PD_GAIN_HI, true);
756                         }
757
758                         /* Lower synth voltage on Rev 2 */
759                         ath5k_hw_rfb_op(ah, rf_regs, 2,
760                                         AR5K_RF_HIGH_VC_CP, true);
761
762                         ath5k_hw_rfb_op(ah, rf_regs, 2,
763                                         AR5K_RF_MID_VC_CP, true);
764
765                         ath5k_hw_rfb_op(ah, rf_regs, 2,
766                                         AR5K_RF_LOW_VC_CP, true);
767
768                         ath5k_hw_rfb_op(ah, rf_regs, 2,
769                                         AR5K_RF_PUSH_UP, true);
770
771                         /* Decrease power consumption on 5213+ BaseBand */
772                         if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
773                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
774                                                 AR5K_RF_PAD2GND, true);
775
776                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
777                                                 AR5K_RF_XB2_LVL, true);
778
779                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
780                                                 AR5K_RF_XB5_LVL, true);
781
782                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
783                                                 AR5K_RF_PWD_167, true);
784
785                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
786                                                 AR5K_RF_PWD_166, true);
787                         }
788                 }
789
790                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
791                                                 AR5K_RF_GAIN_I, true);
792
793                 /* TODO: Half/quarter channel support */
794
795         }
796
797         if (ah->ah_radio == AR5K_RF5413 &&
798         channel->hw_value & CHANNEL_2GHZ) {
799
800                 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
801                                                                         true);
802
803                 /* Set optimum value for early revisions (on pci-e chips) */
804                 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
805                 ah->ah_mac_srev < AR5K_SREV_AR5413)
806                         ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
807                                                 AR5K_RF_PWD_ICLOBUF_2G, true);
808
809         }
810
811         /* Write RF banks on hw */
812         for (i = 0; i < ah->ah_rf_banks_size; i++) {
813                 AR5K_REG_WAIT(i);
814                 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
815         }
816
817         return 0;
818 }
819
820
821 /**************************\
822   PHY/RF channel functions
823 \**************************/
824
825 /*
826  * Check if a channel is supported
827  */
828 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
829 {
830         /* Check if the channel is in our supported range */
831         if (flags & CHANNEL_2GHZ) {
832                 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
833                     (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
834                         return true;
835         } else if (flags & CHANNEL_5GHZ)
836                 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
837                     (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
838                         return true;
839
840         return false;
841 }
842
843 /*
844  * Convertion needed for RF5110
845  */
846 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
847 {
848         u32 athchan;
849
850         /*
851          * Convert IEEE channel/MHz to an internal channel value used
852          * by the AR5210 chipset. This has not been verified with
853          * newer chipsets like the AR5212A who have a completely
854          * different RF/PHY part.
855          */
856         athchan = (ath5k_hw_bitswap(
857                         (ieee80211_frequency_to_channel(
858                                 channel->center_freq) - 24) / 2, 5)
859                                 << 1) | (1 << 6) | 0x1;
860         return athchan;
861 }
862
863 /*
864  * Set channel on RF5110
865  */
866 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
867                 struct ieee80211_channel *channel)
868 {
869         u32 data;
870
871         /*
872          * Set the channel and wait
873          */
874         data = ath5k_hw_rf5110_chan2athchan(channel);
875         ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
876         ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
877         mdelay(1);
878
879         return 0;
880 }
881
882 /*
883  * Convertion needed for 5111
884  */
885 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
886                 struct ath5k_athchan_2ghz *athchan)
887 {
888         int channel;
889
890         /* Cast this value to catch negative channel numbers (>= -19) */
891         channel = (int)ieee;
892
893         /*
894          * Map 2GHz IEEE channel to 5GHz Atheros channel
895          */
896         if (channel <= 13) {
897                 athchan->a2_athchan = 115 + channel;
898                 athchan->a2_flags = 0x46;
899         } else if (channel == 14) {
900                 athchan->a2_athchan = 124;
901                 athchan->a2_flags = 0x44;
902         } else if (channel >= 15 && channel <= 26) {
903                 athchan->a2_athchan = ((channel - 14) * 4) + 132;
904                 athchan->a2_flags = 0x46;
905         } else
906                 return -EINVAL;
907
908         return 0;
909 }
910
911 /*
912  * Set channel on 5111
913  */
914 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
915                 struct ieee80211_channel *channel)
916 {
917         struct ath5k_athchan_2ghz ath5k_channel_2ghz;
918         unsigned int ath5k_channel =
919                 ieee80211_frequency_to_channel(channel->center_freq);
920         u32 data0, data1, clock;
921         int ret;
922
923         /*
924          * Set the channel on the RF5111 radio
925          */
926         data0 = data1 = 0;
927
928         if (channel->hw_value & CHANNEL_2GHZ) {
929                 /* Map 2GHz channel to 5GHz Atheros channel ID */
930                 ret = ath5k_hw_rf5111_chan2athchan(
931                         ieee80211_frequency_to_channel(channel->center_freq),
932                         &ath5k_channel_2ghz);
933                 if (ret)
934                         return ret;
935
936                 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
937                 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
938                     << 5) | (1 << 4);
939         }
940
941         if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
942                 clock = 1;
943                 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
944                         (clock << 1) | (1 << 10) | 1;
945         } else {
946                 clock = 0;
947                 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
948                         << 2) | (clock << 1) | (1 << 10) | 1;
949         }
950
951         ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
952                         AR5K_RF_BUFFER);
953         ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
954                         AR5K_RF_BUFFER_CONTROL_3);
955
956         return 0;
957 }
958
959 /*
960  * Set channel on 5112 and newer
961  */
962 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
963                 struct ieee80211_channel *channel)
964 {
965         u32 data, data0, data1, data2;
966         u16 c;
967
968         data = data0 = data1 = data2 = 0;
969         c = channel->center_freq;
970
971         if (c < 4800) {
972                 if (!((c - 2224) % 5)) {
973                         data0 = ((2 * (c - 704)) - 3040) / 10;
974                         data1 = 1;
975                 } else if (!((c - 2192) % 5)) {
976                         data0 = ((2 * (c - 672)) - 3040) / 10;
977                         data1 = 0;
978                 } else
979                         return -EINVAL;
980
981                 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
982         } else if ((c - (c % 5)) != 2 || c > 5435) {
983                 if (!(c % 20) && c >= 5120) {
984                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
985                         data2 = ath5k_hw_bitswap(3, 2);
986                 } else if (!(c % 10)) {
987                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
988                         data2 = ath5k_hw_bitswap(2, 2);
989                 } else if (!(c % 5)) {
990                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
991                         data2 = ath5k_hw_bitswap(1, 2);
992                 } else
993                         return -EINVAL;
994         } else {
995                 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
996                 data2 = ath5k_hw_bitswap(0, 2);
997         }
998
999         data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1000
1001         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1002         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1003
1004         return 0;
1005 }
1006
1007 /*
1008  * Set the channel on the RF2425
1009  */
1010 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1011                 struct ieee80211_channel *channel)
1012 {
1013         u32 data, data0, data2;
1014         u16 c;
1015
1016         data = data0 = data2 = 0;
1017         c = channel->center_freq;
1018
1019         if (c < 4800) {
1020                 data0 = ath5k_hw_bitswap((c - 2272), 8);
1021                 data2 = 0;
1022         /* ? 5GHz ? */
1023         } else if ((c - (c % 5)) != 2 || c > 5435) {
1024                 if (!(c % 20) && c < 5120)
1025                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1026                 else if (!(c % 10))
1027                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1028                 else if (!(c % 5))
1029                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1030                 else
1031                         return -EINVAL;
1032                 data2 = ath5k_hw_bitswap(1, 2);
1033         } else {
1034                 data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1035                 data2 = ath5k_hw_bitswap(0, 2);
1036         }
1037
1038         data = (data0 << 4) | data2 << 2 | 0x1001;
1039
1040         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1041         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1042
1043         return 0;
1044 }
1045
1046 /*
1047  * Set a channel on the radio chip
1048  */
1049 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1050 {
1051         int ret;
1052         /*
1053          * Check bounds supported by the PHY (we don't care about regultory
1054          * restrictions at this point). Note: hw_value already has the band
1055          * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1056          * of the band by that */
1057         if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1058                 ATH5K_ERR(ah->ah_sc,
1059                         "channel frequency (%u MHz) out of supported "
1060                         "band range\n",
1061                         channel->center_freq);
1062                         return -EINVAL;
1063         }
1064
1065         /*
1066          * Set the channel and wait
1067          */
1068         switch (ah->ah_radio) {
1069         case AR5K_RF5110:
1070                 ret = ath5k_hw_rf5110_channel(ah, channel);
1071                 break;
1072         case AR5K_RF5111:
1073                 ret = ath5k_hw_rf5111_channel(ah, channel);
1074                 break;
1075         case AR5K_RF2425:
1076                 ret = ath5k_hw_rf2425_channel(ah, channel);
1077                 break;
1078         default:
1079                 ret = ath5k_hw_rf5112_channel(ah, channel);
1080                 break;
1081         }
1082
1083         if (ret)
1084                 return ret;
1085
1086         /* Set JAPAN setting for channel 14 */
1087         if (channel->center_freq == 2484) {
1088                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1089                                 AR5K_PHY_CCKTXCTL_JAPAN);
1090         } else {
1091                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1092                                 AR5K_PHY_CCKTXCTL_WORLD);
1093         }
1094
1095         ah->ah_current_channel = channel;
1096         ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1097
1098         return 0;
1099 }
1100
1101 /*****************\
1102   PHY calibration
1103 \*****************/
1104
1105 void
1106 ath5k_hw_calibration_poll(struct ath5k_hw *ah)
1107 {
1108         /* Calibration interval in jiffies */
1109         unsigned long cal_intval;
1110
1111         cal_intval = msecs_to_jiffies(ah->ah_cal_intval * 1000);
1112
1113         /* Initialize timestamp if needed */
1114         if (!ah->ah_cal_tstamp)
1115                 ah->ah_cal_tstamp = jiffies;
1116
1117         /* For now we always do full calibration
1118          * Mark software interrupt mask and fire software
1119          * interrupt (bit gets auto-cleared) */
1120         if (time_is_before_eq_jiffies(ah->ah_cal_tstamp + cal_intval)) {
1121                 ah->ah_cal_tstamp = jiffies;
1122                 ah->ah_swi_mask = AR5K_SWI_FULL_CALIBRATION;
1123                 AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI);
1124         }
1125 }
1126
1127 static int sign_extend(int val, const int nbits)
1128 {
1129         int order = BIT(nbits-1);
1130         return (val ^ order) - order;
1131 }
1132
1133 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1134 {
1135         s32 val;
1136
1137         val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1138         return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1139 }
1140
1141 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1142 {
1143         int i;
1144
1145         ah->ah_nfcal_hist.index = 0;
1146         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1147                 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1148 }
1149
1150 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1151 {
1152         struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1153         hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1154         hist->nfval[hist->index] = noise_floor;
1155 }
1156
1157 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1158 {
1159         s16 sort[ATH5K_NF_CAL_HIST_MAX];
1160         s16 tmp;
1161         int i, j;
1162
1163         memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1164         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1165                 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1166                         if (sort[j] > sort[j-1]) {
1167                                 tmp = sort[j];
1168                                 sort[j] = sort[j-1];
1169                                 sort[j-1] = tmp;
1170                         }
1171                 }
1172         }
1173         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1174                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1175                         "cal %d:%d\n", i, sort[i]);
1176         }
1177         return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1178 }
1179
1180 /*
1181  * When we tell the hardware to perform a noise floor calibration
1182  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1183  * sample-and-hold the minimum noise level seen at the antennas.
1184  * This value is then stored in a ring buffer of recently measured
1185  * noise floor values so we have a moving window of the last few
1186  * samples.
1187  *
1188  * The median of the values in the history is then loaded into the
1189  * hardware for its own use for RSSI and CCA measurements.
1190  */
1191 static void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1192 {
1193         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1194         u32 val;
1195         s16 nf, threshold;
1196         u8 ee_mode;
1197
1198         /* keep last value if calibration hasn't completed */
1199         if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1200                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1201                         "NF did not complete in calibration window\n");
1202
1203                 return;
1204         }
1205
1206         switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1207         case CHANNEL_A:
1208         case CHANNEL_T:
1209         case CHANNEL_XR:
1210                 ee_mode = AR5K_EEPROM_MODE_11A;
1211                 break;
1212         case CHANNEL_G:
1213         case CHANNEL_TG:
1214                 ee_mode = AR5K_EEPROM_MODE_11G;
1215                 break;
1216         default:
1217         case CHANNEL_B:
1218                 ee_mode = AR5K_EEPROM_MODE_11B;
1219                 break;
1220         }
1221
1222
1223         /* completed NF calibration, test threshold */
1224         nf = ath5k_hw_read_measured_noise_floor(ah);
1225         threshold = ee->ee_noise_floor_thr[ee_mode];
1226
1227         if (nf > threshold) {
1228                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1229                         "noise floor failure detected; "
1230                         "read %d, threshold %d\n",
1231                         nf, threshold);
1232
1233                 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1234         }
1235
1236         ath5k_hw_update_nfcal_hist(ah, nf);
1237         nf = ath5k_hw_get_median_noise_floor(ah);
1238
1239         /* load noise floor (in .5 dBm) so the hardware will use it */
1240         val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1241         val |= (nf * 2) & AR5K_PHY_NF_M;
1242         ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1243
1244         AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1245                 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1246
1247         ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1248                 0, false);
1249
1250         /*
1251          * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1252          * so that we're not capped by the median we just loaded.
1253          * This will be used as the initial value for the next noise
1254          * floor calibration.
1255          */
1256         val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1257         ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1258         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1259                 AR5K_PHY_AGCCTL_NF_EN |
1260                 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1261                 AR5K_PHY_AGCCTL_NF);
1262
1263         ah->ah_noise_floor = nf;
1264
1265         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1266                 "noise floor calibrated: %d\n", nf);
1267 }
1268
1269 /*
1270  * Perform a PHY calibration on RF5110
1271  * -Fix BPSK/QAM Constellation (I/Q correction)
1272  * -Calculate Noise Floor
1273  */
1274 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1275                 struct ieee80211_channel *channel)
1276 {
1277         u32 phy_sig, phy_agc, phy_sat, beacon;
1278         int ret;
1279
1280         /*
1281          * Disable beacons and RX/TX queues, wait
1282          */
1283         AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1284                 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1285         beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1286         ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1287
1288         mdelay(2);
1289
1290         /*
1291          * Set the channel (with AGC turned off)
1292          */
1293         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1294         udelay(10);
1295         ret = ath5k_hw_channel(ah, channel);
1296
1297         /*
1298          * Activate PHY and wait
1299          */
1300         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1301         mdelay(1);
1302
1303         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1304
1305         if (ret)
1306                 return ret;
1307
1308         /*
1309          * Calibrate the radio chip
1310          */
1311
1312         /* Remember normal state */
1313         phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1314         phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1315         phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1316
1317         /* Update radio registers */
1318         ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1319                 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1320
1321         ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1322                         AR5K_PHY_AGCCOARSE_LO)) |
1323                 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1324                 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1325
1326         ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1327                         AR5K_PHY_ADCSAT_THR)) |
1328                 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1329                 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1330
1331         udelay(20);
1332
1333         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1334         udelay(10);
1335         ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1336         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1337
1338         mdelay(1);
1339
1340         /*
1341          * Enable calibration and wait until completion
1342          */
1343         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1344
1345         ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1346                         AR5K_PHY_AGCCTL_CAL, 0, false);
1347
1348         /* Reset to normal state */
1349         ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1350         ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1351         ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1352
1353         if (ret) {
1354                 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1355                                 channel->center_freq);
1356                 return ret;
1357         }
1358
1359         ath5k_hw_update_noise_floor(ah);
1360
1361         /*
1362          * Re-enable RX/TX and beacons
1363          */
1364         AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1365                 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1366         ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1367
1368         return 0;
1369 }
1370
1371 /*
1372  * Perform a PHY calibration on RF5111/5112 and newer chips
1373  */
1374 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1375                 struct ieee80211_channel *channel)
1376 {
1377         u32 i_pwr, q_pwr;
1378         s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1379         int i;
1380         ATH5K_TRACE(ah->ah_sc);
1381
1382         if (!ah->ah_calibration ||
1383                 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1384                 goto done;
1385
1386         /* Calibration has finished, get the results and re-run */
1387
1388         /* work around empty results which can apparently happen on 5212 */
1389         for (i = 0; i <= 10; i++) {
1390                 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1391                 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1392                 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1393                 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1394                         "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1395                 if (i_pwr && q_pwr)
1396                         break;
1397         }
1398
1399         i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1400
1401         if (ah->ah_version == AR5K_AR5211)
1402                 q_coffd = q_pwr >> 6;
1403         else
1404                 q_coffd = q_pwr >> 7;
1405
1406         /* protect against divide by 0 and loss of sign bits */
1407         if (i_coffd == 0 || q_coffd < 2)
1408                 goto done;
1409
1410         i_coff = (-iq_corr) / i_coffd;
1411         i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1412
1413         q_coff = (i_pwr / q_coffd) - 128;
1414         q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1415
1416         ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1417                         "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1418                         i_coff, q_coff, i_coffd, q_coffd);
1419
1420         /* Commit new I/Q values (set enable bit last to match HAL sources) */
1421         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1422         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1423         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1424
1425         /* Re-enable calibration -if we don't we'll commit
1426          * the same values again and again */
1427         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1428                         AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1429         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1430
1431 done:
1432
1433         /* TODO: Separate noise floor calibration from I/Q calibration
1434          * since noise floor calibration interrupts rx path while I/Q
1435          * calibration doesn't. We don't need to run noise floor calibration
1436          * as often as I/Q calibration.*/
1437         ath5k_hw_update_noise_floor(ah);
1438
1439         /* Initiate a gain_F calibration */
1440         ath5k_hw_request_rfgain_probe(ah);
1441
1442         return 0;
1443 }
1444
1445 /*
1446  * Perform a PHY calibration
1447  */
1448 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1449                 struct ieee80211_channel *channel)
1450 {
1451         int ret;
1452
1453         if (ah->ah_radio == AR5K_RF5110)
1454                 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1455         else
1456                 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1457
1458         return ret;
1459 }
1460
1461 /***************************\
1462 * Spur mitigation functions *
1463 \***************************/
1464
1465 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1466                                 struct ieee80211_channel *channel)
1467 {
1468         u8 refclk_freq;
1469
1470         if ((ah->ah_radio == AR5K_RF5112) ||
1471         (ah->ah_radio == AR5K_RF5413) ||
1472         (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1473                 refclk_freq = 40;
1474         else
1475                 refclk_freq = 32;
1476
1477         if ((channel->center_freq % refclk_freq != 0) &&
1478         ((channel->center_freq % refclk_freq < 10) ||
1479         (channel->center_freq % refclk_freq > 22)))
1480                 return true;
1481         else
1482                 return false;
1483 }
1484
1485 void
1486 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1487                                 struct ieee80211_channel *channel)
1488 {
1489         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1490         u32 mag_mask[4] = {0, 0, 0, 0};
1491         u32 pilot_mask[2] = {0, 0};
1492         /* Note: fbin values are scaled up by 2 */
1493         u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1494         s32 spur_delta_phase, spur_freq_sigma_delta;
1495         s32 spur_offset, num_symbols_x16;
1496         u8 num_symbol_offsets, i, freq_band;
1497
1498         /* Convert current frequency to fbin value (the same way channels
1499          * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1500          * up by 2 so we can compare it later */
1501         if (channel->hw_value & CHANNEL_2GHZ) {
1502                 chan_fbin = (channel->center_freq - 2300) * 10;
1503                 freq_band = AR5K_EEPROM_BAND_2GHZ;
1504         } else {
1505                 chan_fbin = (channel->center_freq - 4900) * 10;
1506                 freq_band = AR5K_EEPROM_BAND_5GHZ;
1507         }
1508
1509         /* Check if any spur_chan_fbin from EEPROM is
1510          * within our current channel's spur detection range */
1511         spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1512         spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1513         /* XXX: Half/Quarter channels ?*/
1514         if (channel->hw_value & CHANNEL_TURBO)
1515                 spur_detection_window *= 2;
1516
1517         for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1518                 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1519
1520                 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1521                  * so it's zero if we got nothing from EEPROM */
1522                 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1523                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1524                         break;
1525                 }
1526
1527                 if ((chan_fbin - spur_detection_window <=
1528                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1529                 (chan_fbin + spur_detection_window >=
1530                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1531                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1532                         break;
1533                 }
1534         }
1535
1536         /* We need to enable spur filter for this channel */
1537         if (spur_chan_fbin) {
1538                 spur_offset = spur_chan_fbin - chan_fbin;
1539                 /*
1540                  * Calculate deltas:
1541                  * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1542                  * spur_delta_phase -> spur_offset / chip_freq << 11
1543                  * Note: Both values have 100KHz resolution
1544                  */
1545                 /* XXX: Half/Quarter rate channels ? */
1546                 switch (channel->hw_value) {
1547                 case CHANNEL_A:
1548                         /* Both sample_freq and chip_freq are 40MHz */
1549                         spur_delta_phase = (spur_offset << 17) / 25;
1550                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1551                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1552                         break;
1553                 case CHANNEL_G:
1554                         /* sample_freq -> 40MHz chip_freq -> 44MHz
1555                          * (for b compatibility) */
1556                         spur_freq_sigma_delta = (spur_offset << 8) / 55;
1557                         spur_delta_phase = (spur_offset << 17) / 25;
1558                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1559                         break;
1560                 case CHANNEL_T:
1561                 case CHANNEL_TG:
1562                         /* Both sample_freq and chip_freq are 80MHz */
1563                         spur_delta_phase = (spur_offset << 16) / 25;
1564                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1565                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1566                         break;
1567                 default:
1568                         return;
1569                 }
1570
1571                 /* Calculate pilot and magnitude masks */
1572
1573                 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1574                  * and divide by symbol_width to find how many symbols we have
1575                  * Note: number of symbols is scaled up by 16 */
1576                 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1577
1578                 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1579                 if (!(num_symbols_x16 & 0xF))
1580                         /* _X_ */
1581                         num_symbol_offsets = 3;
1582                 else
1583                         /* _xx_ */
1584                         num_symbol_offsets = 4;
1585
1586                 for (i = 0; i < num_symbol_offsets; i++) {
1587
1588                         /* Calculate pilot mask */
1589                         s32 curr_sym_off =
1590                                 (num_symbols_x16 / 16) + i + 25;
1591
1592                         /* Pilot magnitude mask seems to be a way to
1593                          * declare the boundaries for our detection
1594                          * window or something, it's 2 for the middle
1595                          * value(s) where the symbol is expected to be
1596                          * and 1 on the boundary values */
1597                         u8 plt_mag_map =
1598                                 (i == 0 || i == (num_symbol_offsets - 1))
1599                                                                 ? 1 : 2;
1600
1601                         if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1602                                 if (curr_sym_off <= 25)
1603                                         pilot_mask[0] |= 1 << curr_sym_off;
1604                                 else if (curr_sym_off >= 27)
1605                                         pilot_mask[0] |= 1 << (curr_sym_off - 1);
1606                         } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1607                                 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1608
1609                         /* Calculate magnitude mask (for viterbi decoder) */
1610                         if (curr_sym_off >= -1 && curr_sym_off <= 14)
1611                                 mag_mask[0] |=
1612                                         plt_mag_map << (curr_sym_off + 1) * 2;
1613                         else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1614                                 mag_mask[1] |=
1615                                         plt_mag_map << (curr_sym_off - 15) * 2;
1616                         else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1617                                 mag_mask[2] |=
1618                                         plt_mag_map << (curr_sym_off - 31) * 2;
1619                         else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1620                                 mag_mask[3] |=
1621                                         plt_mag_map << (curr_sym_off - 47) * 2;
1622
1623                 }
1624
1625                 /* Write settings on hw to enable spur filter */
1626                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1627                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1628                 /* XXX: Self correlator also ? */
1629                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1630                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1631                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1632                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1633
1634                 /* Set delta phase and freq sigma delta */
1635                 ath5k_hw_reg_write(ah,
1636                                 AR5K_REG_SM(spur_delta_phase,
1637                                         AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1638                                 AR5K_REG_SM(spur_freq_sigma_delta,
1639                                 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1640                                 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1641                                 AR5K_PHY_TIMING_11);
1642
1643                 /* Write pilot masks */
1644                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1645                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1646                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1647                                         pilot_mask[1]);
1648
1649                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1650                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1651                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1652                                         pilot_mask[1]);
1653
1654                 /* Write magnitude masks */
1655                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1656                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1657                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1658                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1659                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1660                                         mag_mask[3]);
1661
1662                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1663                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1664                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1665                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1666                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1667                                         mag_mask[3]);
1668
1669         } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1670         AR5K_PHY_IQ_SPUR_FILT_EN) {
1671                 /* Clean up spur mitigation settings and disable fliter */
1672                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1673                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1674                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1675                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1676                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1677                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1678                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1679
1680                 /* Clear pilot masks */
1681                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1682                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1683                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1684                                         0);
1685
1686                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1687                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1688                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1689                                         0);
1690
1691                 /* Clear magnitude masks */
1692                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1693                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1694                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1695                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1696                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1697                                         0);
1698
1699                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1700                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1701                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1702                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1703                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1704                                         0);
1705         }
1706 }
1707
1708 /********************\
1709   Misc PHY functions
1710 \********************/
1711
1712 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1713 {
1714         ATH5K_TRACE(ah->ah_sc);
1715         /*Just a try M.F.*/
1716         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1717
1718         return 0;
1719 }
1720
1721 /*
1722  * Get the PHY Chip revision
1723  */
1724 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1725 {
1726         unsigned int i;
1727         u32 srev;
1728         u16 ret;
1729
1730         ATH5K_TRACE(ah->ah_sc);
1731
1732         /*
1733          * Set the radio chip access register
1734          */
1735         switch (chan) {
1736         case CHANNEL_2GHZ:
1737                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1738                 break;
1739         case CHANNEL_5GHZ:
1740                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1741                 break;
1742         default:
1743                 return 0;
1744         }
1745
1746         mdelay(2);
1747
1748         /* ...wait until PHY is ready and read the selected radio revision */
1749         ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1750
1751         for (i = 0; i < 8; i++)
1752                 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1753
1754         if (ah->ah_version == AR5K_AR5210) {
1755                 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1756                 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1757         } else {
1758                 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1759                 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1760                                 ((srev & 0x0f) << 4), 8);
1761         }
1762
1763         /* Reset to the 5GHz mode */
1764         ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1765
1766         return ret;
1767 }
1768
1769 /*****************\
1770 * Antenna control *
1771 \*****************/
1772
1773 static void /*TODO:Boundary check*/
1774 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1775 {
1776         ATH5K_TRACE(ah->ah_sc);
1777
1778         if (ah->ah_version != AR5K_AR5210)
1779                 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1780 }
1781
1782 /*
1783  * Enable/disable fast rx antenna diversity
1784  */
1785 static void
1786 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1787 {
1788         switch (ee_mode) {
1789         case AR5K_EEPROM_MODE_11G:
1790                 /* XXX: This is set to
1791                  * disabled on initvals !!! */
1792         case AR5K_EEPROM_MODE_11A:
1793                 if (enable)
1794                         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1795                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1796                 else
1797                         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1798                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1799                 break;
1800         case AR5K_EEPROM_MODE_11B:
1801                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1802                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1803                 break;
1804         default:
1805                 return;
1806         }
1807
1808         if (enable) {
1809                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1810                                 AR5K_PHY_RESTART_DIV_GC, 0xc);
1811
1812                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1813                                         AR5K_PHY_FAST_ANT_DIV_EN);
1814         } else {
1815                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1816                                 AR5K_PHY_RESTART_DIV_GC, 0x8);
1817
1818                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1819                                         AR5K_PHY_FAST_ANT_DIV_EN);
1820         }
1821 }
1822
1823 /*
1824  * Set antenna operating mode
1825  */
1826 void
1827 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1828 {
1829         struct ieee80211_channel *channel = ah->ah_current_channel;
1830         bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1831         bool use_def_for_sg;
1832         u8 def_ant, tx_ant, ee_mode;
1833         u32 sta_id1 = 0;
1834
1835         def_ant = ah->ah_def_ant;
1836
1837         ATH5K_TRACE(ah->ah_sc);
1838
1839         switch (channel->hw_value & CHANNEL_MODES) {
1840         case CHANNEL_A:
1841         case CHANNEL_T:
1842         case CHANNEL_XR:
1843                 ee_mode = AR5K_EEPROM_MODE_11A;
1844                 break;
1845         case CHANNEL_G:
1846         case CHANNEL_TG:
1847                 ee_mode = AR5K_EEPROM_MODE_11G;
1848                 break;
1849         case CHANNEL_B:
1850                 ee_mode = AR5K_EEPROM_MODE_11B;
1851                 break;
1852         default:
1853                 ATH5K_ERR(ah->ah_sc,
1854                         "invalid channel: %d\n", channel->center_freq);
1855                 return;
1856         }
1857
1858         switch (ant_mode) {
1859         case AR5K_ANTMODE_DEFAULT:
1860                 tx_ant = 0;
1861                 use_def_for_tx = false;
1862                 update_def_on_tx = false;
1863                 use_def_for_rts = false;
1864                 use_def_for_sg = false;
1865                 fast_div = true;
1866                 break;
1867         case AR5K_ANTMODE_FIXED_A:
1868                 def_ant = 1;
1869                 tx_ant = 1;
1870                 use_def_for_tx = true;
1871                 update_def_on_tx = false;
1872                 use_def_for_rts = true;
1873                 use_def_for_sg = true;
1874                 fast_div = false;
1875                 break;
1876         case AR5K_ANTMODE_FIXED_B:
1877                 def_ant = 2;
1878                 tx_ant = 2;
1879                 use_def_for_tx = true;
1880                 update_def_on_tx = false;
1881                 use_def_for_rts = true;
1882                 use_def_for_sg = true;
1883                 fast_div = false;
1884                 break;
1885         case AR5K_ANTMODE_SINGLE_AP:
1886                 def_ant = 1;    /* updated on tx */
1887                 tx_ant = 0;
1888                 use_def_for_tx = true;
1889                 update_def_on_tx = true;
1890                 use_def_for_rts = true;
1891                 use_def_for_sg = true;
1892                 fast_div = true;
1893                 break;
1894         case AR5K_ANTMODE_SECTOR_AP:
1895                 tx_ant = 1;     /* variable */
1896                 use_def_for_tx = false;
1897                 update_def_on_tx = false;
1898                 use_def_for_rts = true;
1899                 use_def_for_sg = false;
1900                 fast_div = false;
1901                 break;
1902         case AR5K_ANTMODE_SECTOR_STA:
1903                 tx_ant = 1;     /* variable */
1904                 use_def_for_tx = true;
1905                 update_def_on_tx = false;
1906                 use_def_for_rts = true;
1907                 use_def_for_sg = false;
1908                 fast_div = true;
1909                 break;
1910         case AR5K_ANTMODE_DEBUG:
1911                 def_ant = 1;
1912                 tx_ant = 2;
1913                 use_def_for_tx = false;
1914                 update_def_on_tx = false;
1915                 use_def_for_rts = false;
1916                 use_def_for_sg = false;
1917                 fast_div = false;
1918                 break;
1919         default:
1920                 return;
1921         }
1922
1923         ah->ah_tx_ant = tx_ant;
1924         ah->ah_ant_mode = ant_mode;
1925         ah->ah_def_ant = def_ant;
1926
1927         sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1928         sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1929         sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1930         sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1931
1932         AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1933
1934         if (sta_id1)
1935                 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1936
1937         /* Note: set diversity before default antenna
1938          * because it won't work correctly */
1939         ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1940         ath5k_hw_set_def_antenna(ah, def_ant);
1941 }
1942
1943
1944 /****************\
1945 * TX power setup *
1946 \****************/
1947
1948 /*
1949  * Helper functions
1950  */
1951
1952 /*
1953  * Do linear interpolation between two given (x, y) points
1954  */
1955 static s16
1956 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1957                                         s16 y_left, s16 y_right)
1958 {
1959         s16 ratio, result;
1960
1961         /* Avoid divide by zero and skip interpolation
1962          * if we have the same point */
1963         if ((x_left == x_right) || (y_left == y_right))
1964                 return y_left;
1965
1966         /*
1967          * Since we use ints and not fps, we need to scale up in
1968          * order to get a sane ratio value (or else we 'll eg. get
1969          * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1970          * to have some accuracy both for 0.5 and 0.25 steps.
1971          */
1972         ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1973
1974         /* Now scale down to be in range */
1975         result = y_left + (ratio * (target - x_left) / 100);
1976
1977         return result;
1978 }
1979
1980 /*
1981  * Find vertical boundary (min pwr) for the linear PCDAC curve.
1982  *
1983  * Since we have the top of the curve and we draw the line below
1984  * until we reach 1 (1 pcdac step) we need to know which point
1985  * (x value) that is so that we don't go below y axis and have negative
1986  * pcdac values when creating the curve, or fill the table with zeroes.
1987  */
1988 static s16
1989 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1990                                 const s16 *pwrL, const s16 *pwrR)
1991 {
1992         s8 tmp;
1993         s16 min_pwrL, min_pwrR;
1994         s16 pwr_i;
1995
1996         /* Some vendors write the same pcdac value twice !!! */
1997         if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1998                 return max(pwrL[0], pwrR[0]);
1999
2000         if (pwrL[0] == pwrL[1])
2001                 min_pwrL = pwrL[0];
2002         else {
2003                 pwr_i = pwrL[0];
2004                 do {
2005                         pwr_i--;
2006                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2007                                                         pwrL[0], pwrL[1],
2008                                                         stepL[0], stepL[1]);
2009                 } while (tmp > 1);
2010
2011                 min_pwrL = pwr_i;
2012         }
2013
2014         if (pwrR[0] == pwrR[1])
2015                 min_pwrR = pwrR[0];
2016         else {
2017                 pwr_i = pwrR[0];
2018                 do {
2019                         pwr_i--;
2020                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2021                                                         pwrR[0], pwrR[1],
2022                                                         stepR[0], stepR[1]);
2023                 } while (tmp > 1);
2024
2025                 min_pwrR = pwr_i;
2026         }
2027
2028         /* Keep the right boundary so that it works for both curves */
2029         return max(min_pwrL, min_pwrR);
2030 }
2031
2032 /*
2033  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2034  * Power to PCDAC curve.
2035  *
2036  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2037  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2038  * PCDAC/PDADC step for each curve is 64 but we can write more than
2039  * one curves on hw so we can go up to 128 (which is the max step we
2040  * can write on the final table).
2041  *
2042  * We write y values (PCDAC/PDADC steps) on hw.
2043  */
2044 static void
2045 ath5k_create_power_curve(s16 pmin, s16 pmax,
2046                         const s16 *pwr, const u8 *vpd,
2047                         u8 num_points,
2048                         u8 *vpd_table, u8 type)
2049 {
2050         u8 idx[2] = { 0, 1 };
2051         s16 pwr_i = 2*pmin;
2052         int i;
2053
2054         if (num_points < 2)
2055                 return;
2056
2057         /* We want the whole line, so adjust boundaries
2058          * to cover the entire power range. Note that
2059          * power values are already 0.25dB so no need
2060          * to multiply pwr_i by 2 */
2061         if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2062                 pwr_i = pmin;
2063                 pmin = 0;
2064                 pmax = 63;
2065         }
2066
2067         /* Find surrounding turning points (TPs)
2068          * and interpolate between them */
2069         for (i = 0; (i <= (u16) (pmax - pmin)) &&
2070         (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2071
2072                 /* We passed the right TP, move to the next set of TPs
2073                  * if we pass the last TP, extrapolate above using the last
2074                  * two TPs for ratio */
2075                 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2076                         idx[0]++;
2077                         idx[1]++;
2078                 }
2079
2080                 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2081                                                 pwr[idx[0]], pwr[idx[1]],
2082                                                 vpd[idx[0]], vpd[idx[1]]);
2083
2084                 /* Increase by 0.5dB
2085                  * (0.25 dB units) */
2086                 pwr_i += 2;
2087         }
2088 }
2089
2090 /*
2091  * Get the surrounding per-channel power calibration piers
2092  * for a given frequency so that we can interpolate between
2093  * them and come up with an apropriate dataset for our current
2094  * channel.
2095  */
2096 static void
2097 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2098                         struct ieee80211_channel *channel,
2099                         struct ath5k_chan_pcal_info **pcinfo_l,
2100                         struct ath5k_chan_pcal_info **pcinfo_r)
2101 {
2102         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2103         struct ath5k_chan_pcal_info *pcinfo;
2104         u8 idx_l, idx_r;
2105         u8 mode, max, i;
2106         u32 target = channel->center_freq;
2107
2108         idx_l = 0;
2109         idx_r = 0;
2110
2111         if (!(channel->hw_value & CHANNEL_OFDM)) {
2112                 pcinfo = ee->ee_pwr_cal_b;
2113                 mode = AR5K_EEPROM_MODE_11B;
2114         } else if (channel->hw_value & CHANNEL_2GHZ) {
2115                 pcinfo = ee->ee_pwr_cal_g;
2116                 mode = AR5K_EEPROM_MODE_11G;
2117         } else {
2118                 pcinfo = ee->ee_pwr_cal_a;
2119                 mode = AR5K_EEPROM_MODE_11A;
2120         }
2121         max = ee->ee_n_piers[mode] - 1;
2122
2123         /* Frequency is below our calibrated
2124          * range. Use the lowest power curve
2125          * we have */
2126         if (target < pcinfo[0].freq) {
2127                 idx_l = idx_r = 0;
2128                 goto done;
2129         }
2130
2131         /* Frequency is above our calibrated
2132          * range. Use the highest power curve
2133          * we have */
2134         if (target > pcinfo[max].freq) {
2135                 idx_l = idx_r = max;
2136                 goto done;
2137         }
2138
2139         /* Frequency is inside our calibrated
2140          * channel range. Pick the surrounding
2141          * calibration piers so that we can
2142          * interpolate */
2143         for (i = 0; i <= max; i++) {
2144
2145                 /* Frequency matches one of our calibration
2146                  * piers, no need to interpolate, just use
2147                  * that calibration pier */
2148                 if (pcinfo[i].freq == target) {
2149                         idx_l = idx_r = i;
2150                         goto done;
2151                 }
2152
2153                 /* We found a calibration pier that's above
2154                  * frequency, use this pier and the previous
2155                  * one to interpolate */
2156                 if (target < pcinfo[i].freq) {
2157                         idx_r = i;
2158                         idx_l = idx_r - 1;
2159                         goto done;
2160                 }
2161         }
2162
2163 done:
2164         *pcinfo_l = &pcinfo[idx_l];
2165         *pcinfo_r = &pcinfo[idx_r];
2166
2167         return;
2168 }
2169
2170 /*
2171  * Get the surrounding per-rate power calibration data
2172  * for a given frequency and interpolate between power
2173  * values to set max target power supported by hw for
2174  * each rate.
2175  */
2176 static void
2177 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2178                         struct ieee80211_channel *channel,
2179                         struct ath5k_rate_pcal_info *rates)
2180 {
2181         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2182         struct ath5k_rate_pcal_info *rpinfo;
2183         u8 idx_l, idx_r;
2184         u8 mode, max, i;
2185         u32 target = channel->center_freq;
2186
2187         idx_l = 0;
2188         idx_r = 0;
2189
2190         if (!(channel->hw_value & CHANNEL_OFDM)) {
2191                 rpinfo = ee->ee_rate_tpwr_b;
2192                 mode = AR5K_EEPROM_MODE_11B;
2193         } else if (channel->hw_value & CHANNEL_2GHZ) {
2194                 rpinfo = ee->ee_rate_tpwr_g;
2195                 mode = AR5K_EEPROM_MODE_11G;
2196         } else {
2197                 rpinfo = ee->ee_rate_tpwr_a;
2198                 mode = AR5K_EEPROM_MODE_11A;
2199         }
2200         max = ee->ee_rate_target_pwr_num[mode] - 1;
2201
2202         /* Get the surrounding calibration
2203          * piers - same as above */
2204         if (target < rpinfo[0].freq) {
2205                 idx_l = idx_r = 0;
2206                 goto done;
2207         }
2208
2209         if (target > rpinfo[max].freq) {
2210                 idx_l = idx_r = max;
2211                 goto done;
2212         }
2213
2214         for (i = 0; i <= max; i++) {
2215
2216                 if (rpinfo[i].freq == target) {
2217                         idx_l = idx_r = i;
2218                         goto done;
2219                 }
2220
2221                 if (target < rpinfo[i].freq) {
2222                         idx_r = i;
2223                         idx_l = idx_r - 1;
2224                         goto done;
2225                 }
2226         }
2227
2228 done:
2229         /* Now interpolate power value, based on the frequency */
2230         rates->freq = target;
2231
2232         rates->target_power_6to24 =
2233                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2234                                         rpinfo[idx_r].freq,
2235                                         rpinfo[idx_l].target_power_6to24,
2236                                         rpinfo[idx_r].target_power_6to24);
2237
2238         rates->target_power_36 =
2239                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2240                                         rpinfo[idx_r].freq,
2241                                         rpinfo[idx_l].target_power_36,
2242                                         rpinfo[idx_r].target_power_36);
2243
2244         rates->target_power_48 =
2245                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2246                                         rpinfo[idx_r].freq,
2247                                         rpinfo[idx_l].target_power_48,
2248                                         rpinfo[idx_r].target_power_48);
2249
2250         rates->target_power_54 =
2251                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2252                                         rpinfo[idx_r].freq,
2253                                         rpinfo[idx_l].target_power_54,
2254                                         rpinfo[idx_r].target_power_54);
2255 }
2256
2257 /*
2258  * Get the max edge power for this channel if
2259  * we have such data from EEPROM's Conformance Test
2260  * Limits (CTL), and limit max power if needed.
2261  */
2262 static void
2263 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2264                         struct ieee80211_channel *channel)
2265 {
2266         struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2267         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2268         struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2269         u8 *ctl_val = ee->ee_ctl;
2270         s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2271         s16 edge_pwr = 0;
2272         u8 rep_idx;
2273         u8 i, ctl_mode;
2274         u8 ctl_idx = 0xFF;
2275         u32 target = channel->center_freq;
2276
2277         ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2278
2279         switch (channel->hw_value & CHANNEL_MODES) {
2280         case CHANNEL_A:
2281                 ctl_mode |= AR5K_CTL_11A;
2282                 break;
2283         case CHANNEL_G:
2284                 ctl_mode |= AR5K_CTL_11G;
2285                 break;
2286         case CHANNEL_B:
2287                 ctl_mode |= AR5K_CTL_11B;
2288                 break;
2289         case CHANNEL_T:
2290                 ctl_mode |= AR5K_CTL_TURBO;
2291                 break;
2292         case CHANNEL_TG:
2293                 ctl_mode |= AR5K_CTL_TURBOG;
2294                 break;
2295         case CHANNEL_XR:
2296                 /* Fall through */
2297         default:
2298                 return;
2299         }
2300
2301         for (i = 0; i < ee->ee_ctls; i++) {
2302                 if (ctl_val[i] == ctl_mode) {
2303                         ctl_idx = i;
2304                         break;
2305                 }
2306         }
2307
2308         /* If we have a CTL dataset available grab it and find the
2309          * edge power for our frequency */
2310         if (ctl_idx == 0xFF)
2311                 return;
2312
2313         /* Edge powers are sorted by frequency from lower
2314          * to higher. Each CTL corresponds to 8 edge power
2315          * measurements. */
2316         rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2317
2318         /* Don't do boundaries check because we
2319          * might have more that one bands defined
2320          * for this mode */
2321
2322         /* Get the edge power that's closer to our
2323          * frequency */
2324         for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2325                 rep_idx += i;
2326                 if (target <= rep[rep_idx].freq)
2327                         edge_pwr = (s16) rep[rep_idx].edge;
2328         }
2329
2330         if (edge_pwr)
2331                 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2332 }
2333
2334
2335 /*
2336  * Power to PCDAC table functions
2337  */
2338
2339 /*
2340  * Fill Power to PCDAC table on RF5111
2341  *
2342  * No further processing is needed for RF5111, the only thing we have to
2343  * do is fill the values below and above calibration range since eeprom data
2344  * may not cover the entire PCDAC table.
2345  */
2346 static void
2347 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2348                                                         s16 *table_max)
2349 {
2350         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2351         u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
2352         u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2353         s16     min_pwr, max_pwr;
2354
2355         /* Get table boundaries */
2356         min_pwr = table_min[0];
2357         pcdac_0 = pcdac_tmp[0];
2358
2359         max_pwr = table_max[0];
2360         pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2361
2362         /* Extrapolate below minimum using pcdac_0 */
2363         pcdac_i = 0;
2364         for (i = 0; i < min_pwr; i++)
2365                 pcdac_out[pcdac_i++] = pcdac_0;
2366
2367         /* Copy values from pcdac_tmp */
2368         pwr_idx = min_pwr;
2369         for (i = 0 ; pwr_idx <= max_pwr &&
2370         pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2371                 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2372                 pwr_idx++;
2373         }
2374
2375         /* Extrapolate above maximum */
2376         while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2377                 pcdac_out[pcdac_i++] = pcdac_n;
2378
2379 }
2380
2381 /*
2382  * Combine available XPD Curves and fill Linear Power to PCDAC table
2383  * on RF5112
2384  *
2385  * RFX112 can have up to 2 curves (one for low txpower range and one for
2386  * higher txpower range). We need to put them both on pcdac_out and place
2387  * them in the correct location. In case we only have one curve available
2388  * just fit it on pcdac_out (it's supposed to cover the entire range of
2389  * available pwr levels since it's always the higher power curve). Extrapolate
2390  * below and above final table if needed.
2391  */
2392 static void
2393 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2394                                                 s16 *table_max, u8 pdcurves)
2395 {
2396         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2397         u8      *pcdac_low_pwr;
2398         u8      *pcdac_high_pwr;
2399         u8      *pcdac_tmp;
2400         u8      pwr;
2401         s16     max_pwr_idx;
2402         s16     min_pwr_idx;
2403         s16     mid_pwr_idx = 0;
2404         /* Edge flag turs on the 7nth bit on the PCDAC
2405          * to delcare the higher power curve (force values
2406          * to be greater than 64). If we only have one curve
2407          * we don't need to set this, if we have 2 curves and
2408          * fill the table backwards this can also be used to
2409          * switch from higher power curve to lower power curve */
2410         u8      edge_flag;
2411         int     i;
2412
2413         /* When we have only one curve available
2414          * that's the higher power curve. If we have
2415          * two curves the first is the high power curve
2416          * and the next is the low power curve. */
2417         if (pdcurves > 1) {
2418                 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2419                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2420                 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2421                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2422
2423                 /* If table size goes beyond 31.5dB, keep the
2424                  * upper 31.5dB range when setting tx power.
2425                  * Note: 126 = 31.5 dB in quarter dB steps */
2426                 if (table_max[0] - table_min[1] > 126)
2427                         min_pwr_idx = table_max[0] - 126;
2428                 else
2429                         min_pwr_idx = table_min[1];
2430
2431                 /* Since we fill table backwards
2432                  * start from high power curve */
2433                 pcdac_tmp = pcdac_high_pwr;
2434
2435                 edge_flag = 0x40;
2436         } else {
2437                 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2438                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2439                 min_pwr_idx = table_min[0];
2440                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2441                 pcdac_tmp = pcdac_high_pwr;
2442                 edge_flag = 0;
2443         }
2444
2445         /* This is used when setting tx power*/
2446         ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2447
2448         /* Fill Power to PCDAC table backwards */
2449         pwr = max_pwr_idx;
2450         for (i = 63; i >= 0; i--) {
2451                 /* Entering lower power range, reset
2452                  * edge flag and set pcdac_tmp to lower
2453                  * power curve.*/
2454                 if (edge_flag == 0x40 &&
2455                 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2456                         edge_flag = 0x00;
2457                         pcdac_tmp = pcdac_low_pwr;
2458                         pwr = mid_pwr_idx/2;
2459                 }
2460
2461                 /* Don't go below 1, extrapolate below if we have
2462                  * already swithced to the lower power curve -or
2463                  * we only have one curve and edge_flag is zero
2464                  * anyway */
2465                 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2466                         while (i >= 0) {
2467                                 pcdac_out[i] = pcdac_out[i + 1];
2468                                 i--;
2469                         }
2470                         break;
2471                 }
2472
2473                 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2474
2475                 /* Extrapolate above if pcdac is greater than
2476                  * 126 -this can happen because we OR pcdac_out
2477                  * value with edge_flag on high power curve */
2478                 if (pcdac_out[i] > 126)
2479                         pcdac_out[i] = 126;
2480
2481                 /* Decrease by a 0.5dB step */
2482                 pwr--;
2483         }
2484 }
2485
2486 /* Write PCDAC values on hw */
2487 static void
2488 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2489 {
2490         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2491         int     i;
2492
2493         /*
2494          * Write TX power values
2495          */
2496         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2497                 ath5k_hw_reg_write(ah,
2498                         (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2499                         (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2500                         AR5K_PHY_PCDAC_TXPOWER(i));
2501         }
2502 }
2503
2504
2505 /*
2506  * Power to PDADC table functions
2507  */
2508
2509 /*
2510  * Set the gain boundaries and create final Power to PDADC table
2511  *
2512  * We can have up to 4 pd curves, we need to do a simmilar process
2513  * as we do for RF5112. This time we don't have an edge_flag but we
2514  * set the gain boundaries on a separate register.
2515  */
2516 static void
2517 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2518                         s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2519 {
2520         u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2521         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2522         u8 *pdadc_tmp;
2523         s16 pdadc_0;
2524         u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2525         u8 pd_gain_overlap;
2526
2527         /* Note: Register value is initialized on initvals
2528          * there is no feedback from hw.
2529          * XXX: What about pd_gain_overlap from EEPROM ? */
2530         pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2531                 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2532
2533         /* Create final PDADC table */
2534         for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2535                 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2536
2537                 if (pdg == pdcurves - 1)
2538                         /* 2 dB boundary stretch for last
2539                          * (higher power) curve */
2540                         gain_boundaries[pdg] = pwr_max[pdg] + 4;
2541                 else
2542                         /* Set gain boundary in the middle
2543                          * between this curve and the next one */
2544                         gain_boundaries[pdg] =
2545                                 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2546
2547                 /* Sanity check in case our 2 db stretch got out of
2548                  * range. */
2549                 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2550                         gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2551
2552                 /* For the first curve (lower power)
2553                  * start from 0 dB */
2554                 if (pdg == 0)
2555                         pdadc_0 = 0;
2556                 else
2557                         /* For the other curves use the gain overlap */
2558                         pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2559                                                         pd_gain_overlap;
2560
2561                 /* Force each power step to be at least 0.5 dB */
2562                 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2563                         pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2564                 else
2565                         pwr_step = 1;
2566
2567                 /* If pdadc_0 is negative, we need to extrapolate
2568                  * below this pdgain by a number of pwr_steps */
2569                 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2570                         s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2571                         pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2572                         pdadc_0++;
2573                 }
2574
2575                 /* Set last pwr level, using gain boundaries */
2576                 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2577                 /* Limit it to be inside pwr range */
2578                 table_size = pwr_max[pdg] - pwr_min[pdg];
2579                 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2580
2581                 /* Fill pdadc_out table */
2582                 while (pdadc_0 < max_idx)
2583                         pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2584
2585                 /* Need to extrapolate above this pdgain? */
2586                 if (pdadc_n <= max_idx)
2587                         continue;
2588
2589                 /* Force each power step to be at least 0.5 dB */
2590                 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2591                         pwr_step = pdadc_tmp[table_size - 1] -
2592                                                 pdadc_tmp[table_size - 2];
2593                 else
2594                         pwr_step = 1;
2595
2596                 /* Extrapolate above */
2597                 while ((pdadc_0 < (s16) pdadc_n) &&
2598                 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2599                         s16 tmp = pdadc_tmp[table_size - 1] +
2600                                         (pdadc_0 - max_idx) * pwr_step;
2601                         pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2602                         pdadc_0++;
2603                 }
2604         }
2605
2606         while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2607                 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2608                 pdg++;
2609         }
2610
2611         while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2612                 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2613                 pdadc_i++;
2614         }
2615
2616         /* Set gain boundaries */
2617         ath5k_hw_reg_write(ah,
2618                 AR5K_REG_SM(pd_gain_overlap,
2619                         AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2620                 AR5K_REG_SM(gain_boundaries[0],
2621                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2622                 AR5K_REG_SM(gain_boundaries[1],
2623                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2624                 AR5K_REG_SM(gain_boundaries[2],
2625                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2626                 AR5K_REG_SM(gain_boundaries[3],
2627                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2628                 AR5K_PHY_TPC_RG5);
2629
2630         /* Used for setting rate power table */
2631         ah->ah_txpower.txp_min_idx = pwr_min[0];
2632
2633 }
2634
2635 /* Write PDADC values on hw */
2636 static void
2637 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2638                         u8 pdcurves, u8 *pdg_to_idx)
2639 {
2640         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2641         u32 reg;
2642         u8 i;
2643
2644         /* Select the right pdgain curves */
2645
2646         /* Clear current settings */
2647         reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2648         reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2649                 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2650                 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2651                 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2652
2653         /*
2654          * Use pd_gains curve from eeprom
2655          *
2656          * This overrides the default setting from initvals
2657          * in case some vendors (e.g. Zcomax) don't use the default
2658          * curves. If we don't honor their settings we 'll get a
2659          * 5dB (1 * gain overlap ?) drop.
2660          */
2661         reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2662
2663         switch (pdcurves) {
2664         case 3:
2665                 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2666                 /* Fall through */
2667         case 2:
2668                 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2669                 /* Fall through */
2670         case 1:
2671                 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2672                 break;
2673         }
2674         ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2675
2676         /*
2677          * Write TX power values
2678          */
2679         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2680                 ath5k_hw_reg_write(ah,
2681                         ((pdadc_out[4*i + 0] & 0xff) << 0) |
2682                         ((pdadc_out[4*i + 1] & 0xff) << 8) |
2683                         ((pdadc_out[4*i + 2] & 0xff) << 16) |
2684                         ((pdadc_out[4*i + 3] & 0xff) << 24),
2685                         AR5K_PHY_PDADC_TXPOWER(i));
2686         }
2687 }
2688
2689
2690 /*
2691  * Common code for PCDAC/PDADC tables
2692  */
2693
2694 /*
2695  * This is the main function that uses all of the above
2696  * to set PCDAC/PDADC table on hw for the current channel.
2697  * This table is used for tx power calibration on the basband,
2698  * without it we get weird tx power levels and in some cases
2699  * distorted spectral mask
2700  */
2701 static int
2702 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2703                         struct ieee80211_channel *channel,
2704                         u8 ee_mode, u8 type)
2705 {
2706         struct ath5k_pdgain_info *pdg_L, *pdg_R;
2707         struct ath5k_chan_pcal_info *pcinfo_L;
2708         struct ath5k_chan_pcal_info *pcinfo_R;
2709         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2710         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2711         s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2712         s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2713         u8 *tmpL;
2714         u8 *tmpR;
2715         u32 target = channel->center_freq;
2716         int pdg, i;
2717
2718         /* Get surounding freq piers for this channel */
2719         ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2720                                                 &pcinfo_L,
2721                                                 &pcinfo_R);
2722
2723         /* Loop over pd gain curves on
2724          * surounding freq piers by index */
2725         for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2726
2727                 /* Fill curves in reverse order
2728                  * from lower power (max gain)
2729                  * to higher power. Use curve -> idx
2730                  * backmapping we did on eeprom init */
2731                 u8 idx = pdg_curve_to_idx[pdg];
2732
2733                 /* Grab the needed curves by index */
2734                 pdg_L = &pcinfo_L->pd_curves[idx];
2735                 pdg_R = &pcinfo_R->pd_curves[idx];
2736
2737                 /* Initialize the temp tables */
2738                 tmpL = ah->ah_txpower.tmpL[pdg];
2739                 tmpR = ah->ah_txpower.tmpR[pdg];
2740
2741                 /* Set curve's x boundaries and create
2742                  * curves so that they cover the same
2743                  * range (if we don't do that one table
2744                  * will have values on some range and the
2745                  * other one won't have any so interpolation
2746                  * will fail) */
2747                 table_min[pdg] = min(pdg_L->pd_pwr[0],
2748                                         pdg_R->pd_pwr[0]) / 2;
2749
2750                 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2751                                 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2752
2753                 /* Now create the curves on surrounding channels
2754                  * and interpolate if needed to get the final
2755                  * curve for this gain on this channel */
2756                 switch (type) {
2757                 case AR5K_PWRTABLE_LINEAR_PCDAC:
2758                         /* Override min/max so that we don't loose
2759                          * accuracy (don't divide by 2) */
2760                         table_min[pdg] = min(pdg_L->pd_pwr[0],
2761                                                 pdg_R->pd_pwr[0]);
2762
2763                         table_max[pdg] =
2764                                 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2765                                         pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2766
2767                         /* Override minimum so that we don't get
2768                          * out of bounds while extrapolating
2769                          * below. Don't do this when we have 2
2770                          * curves and we are on the high power curve
2771                          * because table_min is ok in this case */
2772                         if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2773
2774                                 table_min[pdg] =
2775                                         ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2776                                                                 pdg_R->pd_step,
2777                                                                 pdg_L->pd_pwr,
2778                                                                 pdg_R->pd_pwr);
2779
2780                                 /* Don't go too low because we will
2781                                  * miss the upper part of the curve.
2782                                  * Note: 126 = 31.5dB (max power supported)
2783                                  * in 0.25dB units */
2784                                 if (table_max[pdg] - table_min[pdg] > 126)
2785                                         table_min[pdg] = table_max[pdg] - 126;
2786                         }
2787
2788                         /* Fall through */
2789                 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2790                 case AR5K_PWRTABLE_PWR_TO_PDADC:
2791
2792                         ath5k_create_power_curve(table_min[pdg],
2793                                                 table_max[pdg],
2794                                                 pdg_L->pd_pwr,
2795                                                 pdg_L->pd_step,
2796                                                 pdg_L->pd_points, tmpL, type);
2797
2798                         /* We are in a calibration
2799                          * pier, no need to interpolate
2800                          * between freq piers */
2801                         if (pcinfo_L == pcinfo_R)
2802                                 continue;
2803
2804                         ath5k_create_power_curve(table_min[pdg],
2805                                                 table_max[pdg],
2806                                                 pdg_R->pd_pwr,
2807                                                 pdg_R->pd_step,
2808                                                 pdg_R->pd_points, tmpR, type);
2809                         break;
2810                 default:
2811                         return -EINVAL;
2812                 }
2813
2814                 /* Interpolate between curves
2815                  * of surounding freq piers to
2816                  * get the final curve for this
2817                  * pd gain. Re-use tmpL for interpolation
2818                  * output */
2819                 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2820                 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2821                         tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2822                                                         (s16) pcinfo_L->freq,
2823                                                         (s16) pcinfo_R->freq,
2824                                                         (s16) tmpL[i],
2825                                                         (s16) tmpR[i]);
2826                 }
2827         }
2828
2829         /* Now we have a set of curves for this
2830          * channel on tmpL (x range is table_max - table_min
2831          * and y values are tmpL[pdg][]) sorted in the same
2832          * order as EEPROM (because we've used the backmapping).
2833          * So for RF5112 it's from higher power to lower power
2834          * and for RF2413 it's from lower power to higher power.
2835          * For RF5111 we only have one curve. */
2836
2837         /* Fill min and max power levels for this
2838          * channel by interpolating the values on
2839          * surounding channels to complete the dataset */
2840         ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2841                                         (s16) pcinfo_L->freq,
2842                                         (s16) pcinfo_R->freq,
2843                                         pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2844
2845         ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2846                                         (s16) pcinfo_L->freq,
2847                                         (s16) pcinfo_R->freq,
2848                                         pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2849
2850         /* We are ready to go, fill PCDAC/PDADC
2851          * table and write settings on hardware */
2852         switch (type) {
2853         case AR5K_PWRTABLE_LINEAR_PCDAC:
2854                 /* For RF5112 we can have one or two curves
2855                  * and each curve covers a certain power lvl
2856                  * range so we need to do some more processing */
2857                 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2858                                                 ee->ee_pd_gains[ee_mode]);
2859
2860                 /* Set txp.offset so that we can
2861                  * match max power value with max
2862                  * table index */
2863                 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2864
2865                 /* Write settings on hw */
2866                 ath5k_setup_pcdac_table(ah);
2867                 break;
2868         case AR5K_PWRTABLE_PWR_TO_PCDAC:
2869                 /* We are done for RF5111 since it has only
2870                  * one curve, just fit the curve on the table */
2871                 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2872
2873                 /* No rate powertable adjustment for RF5111 */
2874                 ah->ah_txpower.txp_min_idx = 0;
2875                 ah->ah_txpower.txp_offset = 0;
2876
2877                 /* Write settings on hw */
2878                 ath5k_setup_pcdac_table(ah);
2879                 break;
2880         case AR5K_PWRTABLE_PWR_TO_PDADC:
2881                 /* Set PDADC boundaries and fill
2882                  * final PDADC table */
2883                 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2884                                                 ee->ee_pd_gains[ee_mode]);
2885
2886                 /* Write settings on hw */
2887                 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2888
2889                 /* Set txp.offset, note that table_min
2890                  * can be negative */
2891                 ah->ah_txpower.txp_offset = table_min[0];
2892                 break;
2893         default:
2894                 return -EINVAL;
2895         }
2896
2897         return 0;
2898 }
2899
2900
2901 /*
2902  * Per-rate tx power setting
2903  *
2904  * This is the code that sets the desired tx power (below
2905  * maximum) on hw for each rate (we also have TPC that sets
2906  * power per packet). We do that by providing an index on the
2907  * PCDAC/PDADC table we set up.
2908  */
2909
2910 /*
2911  * Set rate power table
2912  *
2913  * For now we only limit txpower based on maximum tx power
2914  * supported by hw (what's inside rate_info). We need to limit
2915  * this even more, based on regulatory domain etc.
2916  *
2917  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2918  * and is indexed as follows:
2919  * rates[0] - rates[7] -> OFDM rates
2920  * rates[8] - rates[14] -> CCK rates
2921  * rates[15] -> XR rates (they all have the same power)
2922  */
2923 static void
2924 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2925                         struct ath5k_rate_pcal_info *rate_info,
2926                         u8 ee_mode)
2927 {
2928         unsigned int i;
2929         u16 *rates;
2930
2931         /* max_pwr is power level we got from driver/user in 0.5dB
2932          * units, switch to 0.25dB units so we can compare */
2933         max_pwr *= 2;
2934         max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2935
2936         /* apply rate limits */
2937         rates = ah->ah_txpower.txp_rates_power_table;
2938
2939         /* OFDM rates 6 to 24Mb/s */
2940         for (i = 0; i < 5; i++)
2941                 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2942
2943         /* Rest OFDM rates */
2944         rates[5] = min(rates[0], rate_info->target_power_36);
2945         rates[6] = min(rates[0], rate_info->target_power_48);
2946         rates[7] = min(rates[0], rate_info->target_power_54);
2947
2948         /* CCK rates */
2949         /* 1L */
2950         rates[8] = min(rates[0], rate_info->target_power_6to24);
2951         /* 2L */
2952         rates[9] = min(rates[0], rate_info->target_power_36);
2953         /* 2S */
2954         rates[10] = min(rates[0], rate_info->target_power_36);
2955         /* 5L */
2956         rates[11] = min(rates[0], rate_info->target_power_48);
2957         /* 5S */
2958         rates[12] = min(rates[0], rate_info->target_power_48);
2959         /* 11L */
2960         rates[13] = min(rates[0], rate_info->target_power_54);
2961         /* 11S */
2962         rates[14] = min(rates[0], rate_info->target_power_54);
2963
2964         /* XR rates */
2965         rates[15] = min(rates[0], rate_info->target_power_6to24);
2966
2967         /* CCK rates have different peak to average ratio
2968          * so we have to tweak their power so that gainf
2969          * correction works ok. For this we use OFDM to
2970          * CCK delta from eeprom */
2971         if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2972         (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2973                 for (i = 8; i <= 15; i++)
2974                         rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2975
2976         /* Now that we have all rates setup use table offset to
2977          * match the power range set by user with the power indices
2978          * on PCDAC/PDADC table */
2979         for (i = 0; i < 16; i++) {
2980                 rates[i] += ah->ah_txpower.txp_offset;
2981                 /* Don't get out of bounds */
2982                 if (rates[i] > 63)
2983                         rates[i] = 63;
2984         }
2985
2986         /* Min/max in 0.25dB units */
2987         ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2988         ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2989         ah->ah_txpower.txp_ofdm = rates[7];
2990 }
2991
2992
2993 /*
2994  * Set transmition power
2995  */
2996 int
2997 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2998                 u8 ee_mode, u8 txpower)
2999 {
3000         struct ath5k_rate_pcal_info rate_info;
3001         u8 type;
3002         int ret;
3003
3004         ATH5K_TRACE(ah->ah_sc);
3005         if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3006                 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3007                 return -EINVAL;
3008         }
3009
3010         /* Reset TX power values */
3011         memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3012         ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3013         ah->ah_txpower.txp_min_pwr = 0;
3014         ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3015
3016         /* Initialize TX power table */
3017         switch (ah->ah_radio) {
3018         case AR5K_RF5111:
3019                 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3020                 break;
3021         case AR5K_RF5112:
3022                 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3023                 break;
3024         case AR5K_RF2413:
3025         case AR5K_RF5413:
3026         case AR5K_RF2316:
3027         case AR5K_RF2317:
3028         case AR5K_RF2425:
3029                 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3030                 break;
3031         default:
3032                 return -EINVAL;
3033         }
3034
3035         /* FIXME: Only on channel/mode change */
3036         ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3037         if (ret)
3038                 return ret;
3039
3040         /* Limit max power if we have a CTL available */
3041         ath5k_get_max_ctl_power(ah, channel);
3042
3043         /* FIXME: Tx power limit for this regdomain
3044          * XXX: Mac80211/CRDA will do that anyway ? */
3045
3046         /* FIXME: Antenna reduction stuff */
3047
3048         /* FIXME: Limit power on turbo modes */
3049
3050         /* FIXME: TPC scale reduction */
3051
3052         /* Get surounding channels for per-rate power table
3053          * calibration */
3054         ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3055
3056         /* Setup rate power table */
3057         ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3058
3059         /* Write rate power table on hw */
3060         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3061                 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3062                 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3063
3064         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3065                 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3066                 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3067
3068         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3069                 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3070                 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3071
3072         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3073                 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3074                 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3075
3076         /* FIXME: TPC support */
3077         if (ah->ah_txpower.txp_tpc) {
3078                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3079                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3080
3081                 ath5k_hw_reg_write(ah,
3082                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3083                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3084                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3085                         AR5K_TPC);
3086         } else {
3087                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3088                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3089         }
3090
3091         return 0;
3092 }
3093
3094 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3095 {
3096         /*Just a try M.F.*/
3097         struct ieee80211_channel *channel = ah->ah_current_channel;
3098         u8 ee_mode;
3099
3100         ATH5K_TRACE(ah->ah_sc);
3101
3102         switch (channel->hw_value & CHANNEL_MODES) {
3103         case CHANNEL_A:
3104         case CHANNEL_T:
3105         case CHANNEL_XR:
3106                 ee_mode = AR5K_EEPROM_MODE_11A;
3107                 break;
3108         case CHANNEL_G:
3109         case CHANNEL_TG:
3110                 ee_mode = AR5K_EEPROM_MODE_11G;
3111                 break;
3112         case CHANNEL_B:
3113                 ee_mode = AR5K_EEPROM_MODE_11B;
3114                 break;
3115         default:
3116                 ATH5K_ERR(ah->ah_sc,
3117                         "invalid channel: %d\n", channel->center_freq);
3118                 return -EINVAL;
3119         }
3120
3121         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3122                 "changing txpower to %d\n", txpower);
3123
3124         return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3125 }