]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/power/ab8500_fg.c
staging: zcache: disable ZCACHE_DEBUG due to build error
[karo-tx-linux.git] / drivers / power / ab8500_fg.c
1 /*
2  * Copyright (C) ST-Ericsson AB 2012
3  *
4  * Main and Back-up battery management driver.
5  *
6  * Note: Backup battery management is required in case of Li-Ion battery and not
7  * for capacitive battery. HREF boards have capacitive battery and hence backup
8  * battery management is not used and the supported code is available in this
9  * driver.
10  *
11  * License Terms: GNU General Public License v2
12  * Author:
13  *      Johan Palsson <johan.palsson@stericsson.com>
14  *      Karl Komierowski <karl.komierowski@stericsson.com>
15  *      Arun R Murthy <arun.murthy@stericsson.com>
16  */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/of.h>
29 #include <linux/completion.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/abx500.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/mfd/abx500/ab8500-bm.h>
34 #include <linux/mfd/abx500/ab8500-gpadc.h>
35 #include <linux/kernel.h>
36
37 #define MILLI_TO_MICRO                  1000
38 #define FG_LSB_IN_MA                    1627
39 #define QLSB_NANO_AMP_HOURS_X10         1129
40 #define INS_CURR_TIMEOUT                (3 * HZ)
41
42 #define SEC_TO_SAMPLE(S)                (S * 4)
43
44 #define NBR_AVG_SAMPLES                 20
45
46 #define LOW_BAT_CHECK_INTERVAL          (HZ / 16) /* 62.5 ms */
47
48 #define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
49 #define BATT_OK_MIN                     2360 /* mV */
50 #define BATT_OK_INCREMENT               50 /* mV */
51 #define BATT_OK_MAX_NR_INCREMENTS       0xE
52
53 /* FG constants */
54 #define BATT_OVV                        0x01
55
56 #define interpolate(x, x1, y1, x2, y2) \
57         ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
58
59 #define to_ab8500_fg_device_info(x) container_of((x), \
60         struct ab8500_fg, fg_psy);
61
62 /**
63  * struct ab8500_fg_interrupts - ab8500 fg interupts
64  * @name:       name of the interrupt
65  * @isr         function pointer to the isr
66  */
67 struct ab8500_fg_interrupts {
68         char *name;
69         irqreturn_t (*isr)(int irq, void *data);
70 };
71
72 enum ab8500_fg_discharge_state {
73         AB8500_FG_DISCHARGE_INIT,
74         AB8500_FG_DISCHARGE_INITMEASURING,
75         AB8500_FG_DISCHARGE_INIT_RECOVERY,
76         AB8500_FG_DISCHARGE_RECOVERY,
77         AB8500_FG_DISCHARGE_READOUT_INIT,
78         AB8500_FG_DISCHARGE_READOUT,
79         AB8500_FG_DISCHARGE_WAKEUP,
80 };
81
82 static char *discharge_state[] = {
83         "DISCHARGE_INIT",
84         "DISCHARGE_INITMEASURING",
85         "DISCHARGE_INIT_RECOVERY",
86         "DISCHARGE_RECOVERY",
87         "DISCHARGE_READOUT_INIT",
88         "DISCHARGE_READOUT",
89         "DISCHARGE_WAKEUP",
90 };
91
92 enum ab8500_fg_charge_state {
93         AB8500_FG_CHARGE_INIT,
94         AB8500_FG_CHARGE_READOUT,
95 };
96
97 static char *charge_state[] = {
98         "CHARGE_INIT",
99         "CHARGE_READOUT",
100 };
101
102 enum ab8500_fg_calibration_state {
103         AB8500_FG_CALIB_INIT,
104         AB8500_FG_CALIB_WAIT,
105         AB8500_FG_CALIB_END,
106 };
107
108 struct ab8500_fg_avg_cap {
109         int avg;
110         int samples[NBR_AVG_SAMPLES];
111         __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
112         int pos;
113         int nbr_samples;
114         int sum;
115 };
116
117 struct ab8500_fg_cap_scaling {
118         bool enable;
119         int cap_to_scale[2];
120         int disable_cap_level;
121         int scaled_cap;
122 };
123
124 struct ab8500_fg_battery_capacity {
125         int max_mah_design;
126         int max_mah;
127         int mah;
128         int permille;
129         int level;
130         int prev_mah;
131         int prev_percent;
132         int prev_level;
133         int user_mah;
134         struct ab8500_fg_cap_scaling cap_scale;
135 };
136
137 struct ab8500_fg_flags {
138         bool fg_enabled;
139         bool conv_done;
140         bool charging;
141         bool fully_charged;
142         bool force_full;
143         bool low_bat_delay;
144         bool low_bat;
145         bool bat_ovv;
146         bool batt_unknown;
147         bool calibrate;
148         bool user_cap;
149         bool batt_id_received;
150 };
151
152 struct inst_curr_result_list {
153         struct list_head list;
154         int *result;
155 };
156
157 /**
158  * struct ab8500_fg - ab8500 FG device information
159  * @dev:                Pointer to the structure device
160  * @node:               a list of AB8500 FGs, hence prepared for reentrance
161  * @irq                 holds the CCEOC interrupt number
162  * @vbat:               Battery voltage in mV
163  * @vbat_nom:           Nominal battery voltage in mV
164  * @inst_curr:          Instantenous battery current in mA
165  * @avg_curr:           Average battery current in mA
166  * @bat_temp            battery temperature
167  * @fg_samples:         Number of samples used in the FG accumulation
168  * @accu_charge:        Accumulated charge from the last conversion
169  * @recovery_cnt:       Counter for recovery mode
170  * @high_curr_cnt:      Counter for high current mode
171  * @init_cnt:           Counter for init mode
172  * @low_bat_cnt         Counter for number of consecutive low battery measures
173  * @nbr_cceoc_irq_cnt   Counter for number of CCEOC irqs received since enabled
174  * @recovery_needed:    Indicate if recovery is needed
175  * @high_curr_mode:     Indicate if we're in high current mode
176  * @init_capacity:      Indicate if initial capacity measuring should be done
177  * @turn_off_fg:        True if fg was off before current measurement
178  * @calib_state         State during offset calibration
179  * @discharge_state:    Current discharge state
180  * @charge_state:       Current charge state
181  * @ab8500_fg_started   Completion struct used for the instant current start
182  * @ab8500_fg_complete  Completion struct used for the instant current reading
183  * @flags:              Structure for information about events triggered
184  * @bat_cap:            Structure for battery capacity specific parameters
185  * @avg_cap:            Average capacity filter
186  * @parent:             Pointer to the struct ab8500
187  * @gpadc:              Pointer to the struct gpadc
188  * @bm:                 Platform specific battery management information
189  * @fg_psy:             Structure that holds the FG specific battery properties
190  * @fg_wq:              Work queue for running the FG algorithm
191  * @fg_periodic_work:   Work to run the FG algorithm periodically
192  * @fg_low_bat_work:    Work to check low bat condition
193  * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
194  * @fg_work:            Work to run the FG algorithm instantly
195  * @fg_acc_cur_work:    Work to read the FG accumulator
196  * @fg_check_hw_failure_work:   Work for checking HW state
197  * @cc_lock:            Mutex for locking the CC
198  * @fg_kobject:         Structure of type kobject
199  */
200 struct ab8500_fg {
201         struct device *dev;
202         struct list_head node;
203         int irq;
204         int vbat;
205         int vbat_nom;
206         int inst_curr;
207         int avg_curr;
208         int bat_temp;
209         int fg_samples;
210         int accu_charge;
211         int recovery_cnt;
212         int high_curr_cnt;
213         int init_cnt;
214         int low_bat_cnt;
215         int nbr_cceoc_irq_cnt;
216         bool recovery_needed;
217         bool high_curr_mode;
218         bool init_capacity;
219         bool turn_off_fg;
220         enum ab8500_fg_calibration_state calib_state;
221         enum ab8500_fg_discharge_state discharge_state;
222         enum ab8500_fg_charge_state charge_state;
223         struct completion ab8500_fg_started;
224         struct completion ab8500_fg_complete;
225         struct ab8500_fg_flags flags;
226         struct ab8500_fg_battery_capacity bat_cap;
227         struct ab8500_fg_avg_cap avg_cap;
228         struct ab8500 *parent;
229         struct ab8500_gpadc *gpadc;
230         struct abx500_bm_data *bm;
231         struct power_supply fg_psy;
232         struct workqueue_struct *fg_wq;
233         struct delayed_work fg_periodic_work;
234         struct delayed_work fg_low_bat_work;
235         struct delayed_work fg_reinit_work;
236         struct work_struct fg_work;
237         struct work_struct fg_acc_cur_work;
238         struct delayed_work fg_check_hw_failure_work;
239         struct mutex cc_lock;
240         struct kobject fg_kobject;
241 };
242 static LIST_HEAD(ab8500_fg_list);
243
244 /**
245  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
246  * (i.e. the first fuel gauge in the instance list)
247  */
248 struct ab8500_fg *ab8500_fg_get(void)
249 {
250         struct ab8500_fg *fg;
251
252         if (list_empty(&ab8500_fg_list))
253                 return NULL;
254
255         fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
256         return fg;
257 }
258
259 /* Main battery properties */
260 static enum power_supply_property ab8500_fg_props[] = {
261         POWER_SUPPLY_PROP_VOLTAGE_NOW,
262         POWER_SUPPLY_PROP_CURRENT_NOW,
263         POWER_SUPPLY_PROP_CURRENT_AVG,
264         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
265         POWER_SUPPLY_PROP_ENERGY_FULL,
266         POWER_SUPPLY_PROP_ENERGY_NOW,
267         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
268         POWER_SUPPLY_PROP_CHARGE_FULL,
269         POWER_SUPPLY_PROP_CHARGE_NOW,
270         POWER_SUPPLY_PROP_CAPACITY,
271         POWER_SUPPLY_PROP_CAPACITY_LEVEL,
272 };
273
274 /*
275  * This array maps the raw hex value to lowbat voltage used by the AB8500
276  * Values taken from the UM0836
277  */
278 static int ab8500_fg_lowbat_voltage_map[] = {
279         2300 ,
280         2325 ,
281         2350 ,
282         2375 ,
283         2400 ,
284         2425 ,
285         2450 ,
286         2475 ,
287         2500 ,
288         2525 ,
289         2550 ,
290         2575 ,
291         2600 ,
292         2625 ,
293         2650 ,
294         2675 ,
295         2700 ,
296         2725 ,
297         2750 ,
298         2775 ,
299         2800 ,
300         2825 ,
301         2850 ,
302         2875 ,
303         2900 ,
304         2925 ,
305         2950 ,
306         2975 ,
307         3000 ,
308         3025 ,
309         3050 ,
310         3075 ,
311         3100 ,
312         3125 ,
313         3150 ,
314         3175 ,
315         3200 ,
316         3225 ,
317         3250 ,
318         3275 ,
319         3300 ,
320         3325 ,
321         3350 ,
322         3375 ,
323         3400 ,
324         3425 ,
325         3450 ,
326         3475 ,
327         3500 ,
328         3525 ,
329         3550 ,
330         3575 ,
331         3600 ,
332         3625 ,
333         3650 ,
334         3675 ,
335         3700 ,
336         3725 ,
337         3750 ,
338         3775 ,
339         3800 ,
340         3825 ,
341         3850 ,
342         3850 ,
343 };
344
345 static u8 ab8500_volt_to_regval(int voltage)
346 {
347         int i;
348
349         if (voltage < ab8500_fg_lowbat_voltage_map[0])
350                 return 0;
351
352         for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
353                 if (voltage < ab8500_fg_lowbat_voltage_map[i])
354                         return (u8) i - 1;
355         }
356
357         /* If not captured above, return index of last element */
358         return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
359 }
360
361 /**
362  * ab8500_fg_is_low_curr() - Low or high current mode
363  * @di:         pointer to the ab8500_fg structure
364  * @curr:       the current to base or our decision on
365  *
366  * Low current mode if the current consumption is below a certain threshold
367  */
368 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
369 {
370         /*
371          * We want to know if we're in low current mode
372          */
373         if (curr > -di->bm->fg_params->high_curr_threshold)
374                 return true;
375         else
376                 return false;
377 }
378
379 /**
380  * ab8500_fg_add_cap_sample() - Add capacity to average filter
381  * @di:         pointer to the ab8500_fg structure
382  * @sample:     the capacity in mAh to add to the filter
383  *
384  * A capacity is added to the filter and a new mean capacity is calculated and
385  * returned
386  */
387 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
388 {
389         struct timespec ts;
390         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
391
392         getnstimeofday(&ts);
393
394         do {
395                 avg->sum += sample - avg->samples[avg->pos];
396                 avg->samples[avg->pos] = sample;
397                 avg->time_stamps[avg->pos] = ts.tv_sec;
398                 avg->pos++;
399
400                 if (avg->pos == NBR_AVG_SAMPLES)
401                         avg->pos = 0;
402
403                 if (avg->nbr_samples < NBR_AVG_SAMPLES)
404                         avg->nbr_samples++;
405
406                 /*
407                  * Check the time stamp for each sample. If too old,
408                  * replace with latest sample
409                  */
410         } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
411
412         avg->avg = avg->sum / avg->nbr_samples;
413
414         return avg->avg;
415 }
416
417 /**
418  * ab8500_fg_clear_cap_samples() - Clear average filter
419  * @di:         pointer to the ab8500_fg structure
420  *
421  * The capacity filter is is reset to zero.
422  */
423 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
424 {
425         int i;
426         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
427
428         avg->pos = 0;
429         avg->nbr_samples = 0;
430         avg->sum = 0;
431         avg->avg = 0;
432
433         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
434                 avg->samples[i] = 0;
435                 avg->time_stamps[i] = 0;
436         }
437 }
438
439 /**
440  * ab8500_fg_fill_cap_sample() - Fill average filter
441  * @di:         pointer to the ab8500_fg structure
442  * @sample:     the capacity in mAh to fill the filter with
443  *
444  * The capacity filter is filled with a capacity in mAh
445  */
446 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
447 {
448         int i;
449         struct timespec ts;
450         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
451
452         getnstimeofday(&ts);
453
454         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
455                 avg->samples[i] = sample;
456                 avg->time_stamps[i] = ts.tv_sec;
457         }
458
459         avg->pos = 0;
460         avg->nbr_samples = NBR_AVG_SAMPLES;
461         avg->sum = sample * NBR_AVG_SAMPLES;
462         avg->avg = sample;
463 }
464
465 /**
466  * ab8500_fg_coulomb_counter() - enable coulomb counter
467  * @di:         pointer to the ab8500_fg structure
468  * @enable:     enable/disable
469  *
470  * Enable/Disable coulomb counter.
471  * On failure returns negative value.
472  */
473 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
474 {
475         int ret = 0;
476         mutex_lock(&di->cc_lock);
477         if (enable) {
478                 /* To be able to reprogram the number of samples, we have to
479                  * first stop the CC and then enable it again */
480                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
481                         AB8500_RTC_CC_CONF_REG, 0x00);
482                 if (ret)
483                         goto cc_err;
484
485                 /* Program the samples */
486                 ret = abx500_set_register_interruptible(di->dev,
487                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
488                         di->fg_samples);
489                 if (ret)
490                         goto cc_err;
491
492                 /* Start the CC */
493                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
494                         AB8500_RTC_CC_CONF_REG,
495                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
496                 if (ret)
497                         goto cc_err;
498
499                 di->flags.fg_enabled = true;
500         } else {
501                 /* Clear any pending read requests */
502                 ret = abx500_mask_and_set_register_interruptible(di->dev,
503                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
504                         (RESET_ACCU | READ_REQ), 0);
505                 if (ret)
506                         goto cc_err;
507
508                 ret = abx500_set_register_interruptible(di->dev,
509                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
510                 if (ret)
511                         goto cc_err;
512
513                 /* Stop the CC */
514                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
515                         AB8500_RTC_CC_CONF_REG, 0);
516                 if (ret)
517                         goto cc_err;
518
519                 di->flags.fg_enabled = false;
520
521         }
522         dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
523                 enable, di->fg_samples);
524
525         mutex_unlock(&di->cc_lock);
526
527         return ret;
528 cc_err:
529         dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
530         mutex_unlock(&di->cc_lock);
531         return ret;
532 }
533
534 /**
535  * ab8500_fg_inst_curr_start() - start battery instantaneous current
536  * @di:         pointer to the ab8500_fg structure
537  *
538  * Returns 0 or error code
539  * Note: This is part "one" and has to be called before
540  * ab8500_fg_inst_curr_finalize()
541  */
542 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
543 {
544         u8 reg_val;
545         int ret;
546
547         mutex_lock(&di->cc_lock);
548
549         di->nbr_cceoc_irq_cnt = 0;
550         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
551                 AB8500_RTC_CC_CONF_REG, &reg_val);
552         if (ret < 0)
553                 goto fail;
554
555         if (!(reg_val & CC_PWR_UP_ENA)) {
556                 dev_dbg(di->dev, "%s Enable FG\n", __func__);
557                 di->turn_off_fg = true;
558
559                 /* Program the samples */
560                 ret = abx500_set_register_interruptible(di->dev,
561                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
562                         SEC_TO_SAMPLE(10));
563                 if (ret)
564                         goto fail;
565
566                 /* Start the CC */
567                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
568                         AB8500_RTC_CC_CONF_REG,
569                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
570                 if (ret)
571                         goto fail;
572         } else {
573                 di->turn_off_fg = false;
574         }
575
576         /* Return and WFI */
577         INIT_COMPLETION(di->ab8500_fg_started);
578         INIT_COMPLETION(di->ab8500_fg_complete);
579         enable_irq(di->irq);
580
581         /* Note: cc_lock is still locked */
582         return 0;
583 fail:
584         mutex_unlock(&di->cc_lock);
585         return ret;
586 }
587
588 /**
589  * ab8500_fg_inst_curr_started() - check if fg conversion has started
590  * @di:         pointer to the ab8500_fg structure
591  *
592  * Returns 1 if conversion started, 0 if still waiting
593  */
594 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
595 {
596         return completion_done(&di->ab8500_fg_started);
597 }
598
599 /**
600  * ab8500_fg_inst_curr_done() - check if fg conversion is done
601  * @di:         pointer to the ab8500_fg structure
602  *
603  * Returns 1 if conversion done, 0 if still waiting
604  */
605 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
606 {
607         return completion_done(&di->ab8500_fg_complete);
608 }
609
610 /**
611  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
612  * @di:         pointer to the ab8500_fg structure
613  * @res:        battery instantenous current(on success)
614  *
615  * Returns 0 or an error code
616  * Note: This is part "two" and has to be called at earliest 250 ms
617  * after ab8500_fg_inst_curr_start()
618  */
619 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
620 {
621         u8 low, high;
622         int val;
623         int ret;
624         int timeout;
625
626         if (!completion_done(&di->ab8500_fg_complete)) {
627                 timeout = wait_for_completion_timeout(
628                         &di->ab8500_fg_complete,
629                         INS_CURR_TIMEOUT);
630                 dev_dbg(di->dev, "Finalize time: %d ms\n",
631                         ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
632                 if (!timeout) {
633                         ret = -ETIME;
634                         disable_irq(di->irq);
635                         di->nbr_cceoc_irq_cnt = 0;
636                         dev_err(di->dev, "completion timed out [%d]\n",
637                                 __LINE__);
638                         goto fail;
639                 }
640         }
641
642         disable_irq(di->irq);
643         di->nbr_cceoc_irq_cnt = 0;
644
645         ret = abx500_mask_and_set_register_interruptible(di->dev,
646                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
647                         READ_REQ, READ_REQ);
648
649         /* 100uS between read request and read is needed */
650         usleep_range(100, 100);
651
652         /* Read CC Sample conversion value Low and high */
653         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
654                 AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
655         if (ret < 0)
656                 goto fail;
657
658         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
659                 AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
660         if (ret < 0)
661                 goto fail;
662
663         /*
664          * negative value for Discharging
665          * convert 2's compliment into decimal
666          */
667         if (high & 0x10)
668                 val = (low | (high << 8) | 0xFFFFE000);
669         else
670                 val = (low | (high << 8));
671
672         /*
673          * Convert to unit value in mA
674          * Full scale input voltage is
675          * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
676          * Given a 250ms conversion cycle time the LSB corresponds
677          * to 112.9 nAh. Convert to current by dividing by the conversion
678          * time in hours (250ms = 1 / (3600 * 4)h)
679          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
680          */
681         val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
682                 (1000 * di->bm->fg_res);
683
684         if (di->turn_off_fg) {
685                 dev_dbg(di->dev, "%s Disable FG\n", __func__);
686
687                 /* Clear any pending read requests */
688                 ret = abx500_set_register_interruptible(di->dev,
689                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
690                 if (ret)
691                         goto fail;
692
693                 /* Stop the CC */
694                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
695                         AB8500_RTC_CC_CONF_REG, 0);
696                 if (ret)
697                         goto fail;
698         }
699         mutex_unlock(&di->cc_lock);
700         (*res) = val;
701
702         return 0;
703 fail:
704         mutex_unlock(&di->cc_lock);
705         return ret;
706 }
707
708 /**
709  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
710  * @di:         pointer to the ab8500_fg structure
711  * @res:        battery instantenous current(on success)
712  *
713  * Returns 0 else error code
714  */
715 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
716 {
717         int ret;
718         int timeout;
719         int res = 0;
720
721         ret = ab8500_fg_inst_curr_start(di);
722         if (ret) {
723                 dev_err(di->dev, "Failed to initialize fg_inst\n");
724                 return 0;
725         }
726
727         /* Wait for CC to actually start */
728         if (!completion_done(&di->ab8500_fg_started)) {
729                 timeout = wait_for_completion_timeout(
730                         &di->ab8500_fg_started,
731                         INS_CURR_TIMEOUT);
732                 dev_dbg(di->dev, "Start time: %d ms\n",
733                         ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
734                 if (!timeout) {
735                         ret = -ETIME;
736                         dev_err(di->dev, "completion timed out [%d]\n",
737                                 __LINE__);
738                         goto fail;
739                 }
740         }
741
742         ret = ab8500_fg_inst_curr_finalize(di, &res);
743         if (ret) {
744                 dev_err(di->dev, "Failed to finalize fg_inst\n");
745                 return 0;
746         }
747
748         dev_dbg(di->dev, "%s instant current: %d", __func__, res);
749         return res;
750 fail:
751         disable_irq(di->irq);
752         mutex_unlock(&di->cc_lock);
753         return ret;
754 }
755
756 /**
757  * ab8500_fg_acc_cur_work() - average battery current
758  * @work:       pointer to the work_struct structure
759  *
760  * Updated the average battery current obtained from the
761  * coulomb counter.
762  */
763 static void ab8500_fg_acc_cur_work(struct work_struct *work)
764 {
765         int val;
766         int ret;
767         u8 low, med, high;
768
769         struct ab8500_fg *di = container_of(work,
770                 struct ab8500_fg, fg_acc_cur_work);
771
772         mutex_lock(&di->cc_lock);
773         ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
774                 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
775         if (ret)
776                 goto exit;
777
778         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
779                 AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
780         if (ret < 0)
781                 goto exit;
782
783         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
784                 AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
785         if (ret < 0)
786                 goto exit;
787
788         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
789                 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
790         if (ret < 0)
791                 goto exit;
792
793         /* Check for sign bit in case of negative value, 2's compliment */
794         if (high & 0x10)
795                 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
796         else
797                 val = (low | (med << 8) | (high << 16));
798
799         /*
800          * Convert to uAh
801          * Given a 250ms conversion cycle time the LSB corresponds
802          * to 112.9 nAh.
803          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
804          */
805         di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
806                 (100 * di->bm->fg_res);
807
808         /*
809          * Convert to unit value in mA
810          * by dividing by the conversion
811          * time in hours (= samples / (3600 * 4)h)
812          * and multiply with 1000
813          */
814         di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
815                 (1000 * di->bm->fg_res * (di->fg_samples / 4));
816
817         di->flags.conv_done = true;
818
819         mutex_unlock(&di->cc_lock);
820
821         queue_work(di->fg_wq, &di->fg_work);
822
823         dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
824                                 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
825         return;
826 exit:
827         dev_err(di->dev,
828                 "Failed to read or write gas gauge registers\n");
829         mutex_unlock(&di->cc_lock);
830         queue_work(di->fg_wq, &di->fg_work);
831 }
832
833 /**
834  * ab8500_fg_bat_voltage() - get battery voltage
835  * @di:         pointer to the ab8500_fg structure
836  *
837  * Returns battery voltage(on success) else error code
838  */
839 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
840 {
841         int vbat;
842         static int prev;
843
844         vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
845         if (vbat < 0) {
846                 dev_err(di->dev,
847                         "%s gpadc conversion failed, using previous value\n",
848                         __func__);
849                 return prev;
850         }
851
852         prev = vbat;
853         return vbat;
854 }
855
856 /**
857  * ab8500_fg_volt_to_capacity() - Voltage based capacity
858  * @di:         pointer to the ab8500_fg structure
859  * @voltage:    The voltage to convert to a capacity
860  *
861  * Returns battery capacity in per mille based on voltage
862  */
863 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
864 {
865         int i, tbl_size;
866         struct abx500_v_to_cap *tbl;
867         int cap = 0;
868
869         tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
870         tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
871
872         for (i = 0; i < tbl_size; ++i) {
873                 if (voltage > tbl[i].voltage)
874                         break;
875         }
876
877         if ((i > 0) && (i < tbl_size)) {
878                 cap = interpolate(voltage,
879                         tbl[i].voltage,
880                         tbl[i].capacity * 10,
881                         tbl[i-1].voltage,
882                         tbl[i-1].capacity * 10);
883         } else if (i == 0) {
884                 cap = 1000;
885         } else {
886                 cap = 0;
887         }
888
889         dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
890                 __func__, voltage, cap);
891
892         return cap;
893 }
894
895 /**
896  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
897  * @di:         pointer to the ab8500_fg structure
898  *
899  * Returns battery capacity based on battery voltage that is not compensated
900  * for the voltage drop due to the load
901  */
902 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
903 {
904         di->vbat = ab8500_fg_bat_voltage(di);
905         return ab8500_fg_volt_to_capacity(di, di->vbat);
906 }
907
908 /**
909  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
910  * @di:         pointer to the ab8500_fg structure
911  *
912  * Returns battery inner resistance added with the fuel gauge resistor value
913  * to get the total resistance in the whole link from gnd to bat+ node.
914  */
915 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
916 {
917         int i, tbl_size;
918         struct batres_vs_temp *tbl;
919         int resist = 0;
920
921         tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
922         tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
923
924         for (i = 0; i < tbl_size; ++i) {
925                 if (di->bat_temp / 10 > tbl[i].temp)
926                         break;
927         }
928
929         if ((i > 0) && (i < tbl_size)) {
930                 resist = interpolate(di->bat_temp / 10,
931                         tbl[i].temp,
932                         tbl[i].resist,
933                         tbl[i-1].temp,
934                         tbl[i-1].resist);
935         } else if (i == 0) {
936                 resist = tbl[0].resist;
937         } else {
938                 resist = tbl[tbl_size - 1].resist;
939         }
940
941         dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
942             " fg resistance %d, total: %d (mOhm)\n",
943                 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
944                 (di->bm->fg_res / 10) + resist);
945
946         /* fg_res variable is in 0.1mOhm */
947         resist += di->bm->fg_res / 10;
948
949         return resist;
950 }
951
952 /**
953  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
954  * @di:         pointer to the ab8500_fg structure
955  *
956  * Returns battery capacity based on battery voltage that is load compensated
957  * for the voltage drop
958  */
959 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
960 {
961         int vbat_comp, res;
962         int i = 0;
963         int vbat = 0;
964
965         ab8500_fg_inst_curr_start(di);
966
967         do {
968                 vbat += ab8500_fg_bat_voltage(di);
969                 i++;
970                 usleep_range(5000, 6000);
971         } while (!ab8500_fg_inst_curr_done(di));
972
973         ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
974
975         di->vbat = vbat / i;
976         res = ab8500_fg_battery_resistance(di);
977
978         /* Use Ohms law to get the load compensated voltage */
979         vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
980
981         dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
982                 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
983                 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
984
985         return ab8500_fg_volt_to_capacity(di, vbat_comp);
986 }
987
988 /**
989  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
990  * @di:         pointer to the ab8500_fg structure
991  * @cap_mah:    capacity in mAh
992  *
993  * Converts capacity in mAh to capacity in permille
994  */
995 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
996 {
997         return (cap_mah * 1000) / di->bat_cap.max_mah_design;
998 }
999
1000 /**
1001  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1002  * @di:         pointer to the ab8500_fg structure
1003  * @cap_pm:     capacity in permille
1004  *
1005  * Converts capacity in permille to capacity in mAh
1006  */
1007 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1008 {
1009         return cap_pm * di->bat_cap.max_mah_design / 1000;
1010 }
1011
1012 /**
1013  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1014  * @di:         pointer to the ab8500_fg structure
1015  * @cap_mah:    capacity in mAh
1016  *
1017  * Converts capacity in mAh to capacity in uWh
1018  */
1019 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1020 {
1021         u64 div_res;
1022         u32 div_rem;
1023
1024         div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1025         div_rem = do_div(div_res, 1000);
1026
1027         /* Make sure to round upwards if necessary */
1028         if (div_rem >= 1000 / 2)
1029                 div_res++;
1030
1031         return (int) div_res;
1032 }
1033
1034 /**
1035  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1036  * @di:         pointer to the ab8500_fg structure
1037  *
1038  * Return the capacity in mAh based on previous calculated capcity and the FG
1039  * accumulator register value. The filter is filled with this capacity
1040  */
1041 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1042 {
1043         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1044                 __func__,
1045                 di->bat_cap.mah,
1046                 di->accu_charge);
1047
1048         /* Capacity should not be less than 0 */
1049         if (di->bat_cap.mah + di->accu_charge > 0)
1050                 di->bat_cap.mah += di->accu_charge;
1051         else
1052                 di->bat_cap.mah = 0;
1053         /*
1054          * We force capacity to 100% once when the algorithm
1055          * reports that it's full.
1056          */
1057         if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1058                 di->flags.force_full) {
1059                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1060         }
1061
1062         ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1063         di->bat_cap.permille =
1064                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1065
1066         /* We need to update battery voltage and inst current when charging */
1067         di->vbat = ab8500_fg_bat_voltage(di);
1068         di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1069
1070         return di->bat_cap.mah;
1071 }
1072
1073 /**
1074  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1075  * @di:         pointer to the ab8500_fg structure
1076  * @comp:       if voltage should be load compensated before capacity calc
1077  *
1078  * Return the capacity in mAh based on the battery voltage. The voltage can
1079  * either be load compensated or not. This value is added to the filter and a
1080  * new mean value is calculated and returned.
1081  */
1082 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1083 {
1084         int permille, mah;
1085
1086         if (comp)
1087                 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1088         else
1089                 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1090
1091         mah = ab8500_fg_convert_permille_to_mah(di, permille);
1092
1093         di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1094         di->bat_cap.permille =
1095                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1096
1097         return di->bat_cap.mah;
1098 }
1099
1100 /**
1101  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1102  * @di:         pointer to the ab8500_fg structure
1103  *
1104  * Return the capacity in mAh based on previous calculated capcity and the FG
1105  * accumulator register value. This value is added to the filter and a
1106  * new mean value is calculated and returned.
1107  */
1108 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1109 {
1110         int permille_volt, permille;
1111
1112         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1113                 __func__,
1114                 di->bat_cap.mah,
1115                 di->accu_charge);
1116
1117         /* Capacity should not be less than 0 */
1118         if (di->bat_cap.mah + di->accu_charge > 0)
1119                 di->bat_cap.mah += di->accu_charge;
1120         else
1121                 di->bat_cap.mah = 0;
1122
1123         if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1124                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1125
1126         /*
1127          * Check against voltage based capacity. It can not be lower
1128          * than what the uncompensated voltage says
1129          */
1130         permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1131         permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1132
1133         if (permille < permille_volt) {
1134                 di->bat_cap.permille = permille_volt;
1135                 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1136                         di->bat_cap.permille);
1137
1138                 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1139                         __func__,
1140                         permille,
1141                         permille_volt);
1142
1143                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1144         } else {
1145                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1146                 di->bat_cap.permille =
1147                         ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1148         }
1149
1150         return di->bat_cap.mah;
1151 }
1152
1153 /**
1154  * ab8500_fg_capacity_level() - Get the battery capacity level
1155  * @di:         pointer to the ab8500_fg structure
1156  *
1157  * Get the battery capacity level based on the capacity in percent
1158  */
1159 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1160 {
1161         int ret, percent;
1162
1163         percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1164
1165         if (percent <= di->bm->cap_levels->critical ||
1166                 di->flags.low_bat)
1167                 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1168         else if (percent <= di->bm->cap_levels->low)
1169                 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1170         else if (percent <= di->bm->cap_levels->normal)
1171                 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1172         else if (percent <= di->bm->cap_levels->high)
1173                 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1174         else
1175                 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1176
1177         return ret;
1178 }
1179
1180 /**
1181  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1182  * @di:         pointer to the ab8500_fg structure
1183  *
1184  * Calculates the capacity to be shown to upper layers. Scales the capacity
1185  * to have 100% as a reference from the actual capacity upon removal of charger
1186  * when charging is in maintenance mode.
1187  */
1188 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1189 {
1190         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1191         int capacity = di->bat_cap.prev_percent;
1192
1193         if (!cs->enable)
1194                 return capacity;
1195
1196         /*
1197          * As long as we are in fully charge mode scale the capacity
1198          * to show 100%.
1199          */
1200         if (di->flags.fully_charged) {
1201                 cs->cap_to_scale[0] = 100;
1202                 cs->cap_to_scale[1] =
1203                         max(capacity, di->bm->fg_params->maint_thres);
1204                 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1205                          cs->cap_to_scale[0], cs->cap_to_scale[1]);
1206         }
1207
1208         /* Calculates the scaled capacity. */
1209         if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1210                                         && (cs->cap_to_scale[1] > 0))
1211                 capacity = min(100,
1212                                  DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1213                                                  cs->cap_to_scale[0],
1214                                                  cs->cap_to_scale[1]));
1215
1216         if (di->flags.charging) {
1217                 if (capacity < cs->disable_cap_level) {
1218                         cs->disable_cap_level = capacity;
1219                         dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1220                                 cs->disable_cap_level);
1221                 } else if (!di->flags.fully_charged) {
1222                         if (di->bat_cap.prev_percent >=
1223                             cs->disable_cap_level) {
1224                                 dev_dbg(di->dev, "Disabling scaled capacity\n");
1225                                 cs->enable = false;
1226                                 capacity = di->bat_cap.prev_percent;
1227                         } else {
1228                                 dev_dbg(di->dev,
1229                                         "Waiting in cap to level %d%%\n",
1230                                         cs->disable_cap_level);
1231                                 capacity = cs->disable_cap_level;
1232                         }
1233                 }
1234         }
1235
1236         return capacity;
1237 }
1238
1239 /**
1240  * ab8500_fg_update_cap_scalers() - Capacity scaling
1241  * @di:         pointer to the ab8500_fg structure
1242  *
1243  * To be called when state change from charge<->discharge to update
1244  * the capacity scalers.
1245  */
1246 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1247 {
1248         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1249
1250         if (!cs->enable)
1251                 return;
1252         if (di->flags.charging) {
1253                 di->bat_cap.cap_scale.disable_cap_level =
1254                         di->bat_cap.cap_scale.scaled_cap;
1255                 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1256                                 di->bat_cap.cap_scale.disable_cap_level);
1257         } else {
1258                 if (cs->scaled_cap != 100) {
1259                         cs->cap_to_scale[0] = cs->scaled_cap;
1260                         cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1261                 } else {
1262                         cs->cap_to_scale[0] = 100;
1263                         cs->cap_to_scale[1] =
1264                                 max(di->bat_cap.prev_percent,
1265                                     di->bm->fg_params->maint_thres);
1266                 }
1267
1268                 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1269                                 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1270         }
1271 }
1272
1273 /**
1274  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1275  * @di:         pointer to the ab8500_fg structure
1276  * @init:       capacity is allowed to go up in init mode
1277  *
1278  * Check if capacity or capacity limit has changed and notify the system
1279  * about it using the power_supply framework
1280  */
1281 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1282 {
1283         bool changed = false;
1284         int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1285
1286         di->bat_cap.level = ab8500_fg_capacity_level(di);
1287
1288         if (di->bat_cap.level != di->bat_cap.prev_level) {
1289                 /*
1290                  * We do not allow reported capacity level to go up
1291                  * unless we're charging or if we're in init
1292                  */
1293                 if (!(!di->flags.charging && di->bat_cap.level >
1294                         di->bat_cap.prev_level) || init) {
1295                         dev_dbg(di->dev, "level changed from %d to %d\n",
1296                                 di->bat_cap.prev_level,
1297                                 di->bat_cap.level);
1298                         di->bat_cap.prev_level = di->bat_cap.level;
1299                         changed = true;
1300                 } else {
1301                         dev_dbg(di->dev, "level not allowed to go up "
1302                                 "since no charger is connected: %d to %d\n",
1303                                 di->bat_cap.prev_level,
1304                                 di->bat_cap.level);
1305                 }
1306         }
1307
1308         /*
1309          * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1310          * shutdown
1311          */
1312         if (di->flags.low_bat) {
1313                 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1314                 di->bat_cap.prev_percent = 0;
1315                 di->bat_cap.permille = 0;
1316                 percent = 0;
1317                 di->bat_cap.prev_mah = 0;
1318                 di->bat_cap.mah = 0;
1319                 changed = true;
1320         } else if (di->flags.fully_charged) {
1321                 /*
1322                  * We report 100% if algorithm reported fully charged
1323                  * and show 100% during maintenance charging (scaling).
1324                  */
1325                 if (di->flags.force_full) {
1326                         di->bat_cap.prev_percent = percent;
1327                         di->bat_cap.prev_mah = di->bat_cap.mah;
1328
1329                         changed = true;
1330
1331                         if (!di->bat_cap.cap_scale.enable &&
1332                                                 di->bm->capacity_scaling) {
1333                                 di->bat_cap.cap_scale.enable = true;
1334                                 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1335                                 di->bat_cap.cap_scale.cap_to_scale[1] =
1336                                                 di->bat_cap.prev_percent;
1337                                 di->bat_cap.cap_scale.disable_cap_level = 100;
1338                         }
1339                 } else if (di->bat_cap.prev_percent != percent) {
1340                         dev_dbg(di->dev,
1341                                 "battery reported full "
1342                                 "but capacity dropping: %d\n",
1343                                 percent);
1344                         di->bat_cap.prev_percent = percent;
1345                         di->bat_cap.prev_mah = di->bat_cap.mah;
1346
1347                         changed = true;
1348                 }
1349         } else if (di->bat_cap.prev_percent != percent) {
1350                 if (percent == 0) {
1351                         /*
1352                          * We will not report 0% unless we've got
1353                          * the LOW_BAT IRQ, no matter what the FG
1354                          * algorithm says.
1355                          */
1356                         di->bat_cap.prev_percent = 1;
1357                         di->bat_cap.permille = 1;
1358                         di->bat_cap.prev_mah = 1;
1359                         di->bat_cap.mah = 1;
1360                         percent = 1;
1361
1362                         changed = true;
1363                 } else if (!(!di->flags.charging &&
1364                         percent > di->bat_cap.prev_percent) || init) {
1365                         /*
1366                          * We do not allow reported capacity to go up
1367                          * unless we're charging or if we're in init
1368                          */
1369                         dev_dbg(di->dev,
1370                                 "capacity changed from %d to %d (%d)\n",
1371                                 di->bat_cap.prev_percent,
1372                                 percent,
1373                                 di->bat_cap.permille);
1374                         di->bat_cap.prev_percent = percent;
1375                         di->bat_cap.prev_mah = di->bat_cap.mah;
1376
1377                         changed = true;
1378                 } else {
1379                         dev_dbg(di->dev, "capacity not allowed to go up since "
1380                                 "no charger is connected: %d to %d (%d)\n",
1381                                 di->bat_cap.prev_percent,
1382                                 percent,
1383                                 di->bat_cap.permille);
1384                 }
1385         }
1386
1387         if (changed) {
1388                 if (di->bm->capacity_scaling) {
1389                         di->bat_cap.cap_scale.scaled_cap =
1390                                 ab8500_fg_calculate_scaled_capacity(di);
1391
1392                         dev_info(di->dev, "capacity=%d (%d)\n",
1393                                 di->bat_cap.prev_percent,
1394                                 di->bat_cap.cap_scale.scaled_cap);
1395                 }
1396                 power_supply_changed(&di->fg_psy);
1397                 if (di->flags.fully_charged && di->flags.force_full) {
1398                         dev_dbg(di->dev, "Battery full, notifying.\n");
1399                         di->flags.force_full = false;
1400                         sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1401                 }
1402                 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1403         }
1404 }
1405
1406 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1407         enum ab8500_fg_charge_state new_state)
1408 {
1409         dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1410                 di->charge_state,
1411                 charge_state[di->charge_state],
1412                 new_state,
1413                 charge_state[new_state]);
1414
1415         di->charge_state = new_state;
1416 }
1417
1418 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1419         enum ab8500_fg_discharge_state new_state)
1420 {
1421         dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1422                 di->discharge_state,
1423                 discharge_state[di->discharge_state],
1424                 new_state,
1425                 discharge_state[new_state]);
1426
1427         di->discharge_state = new_state;
1428 }
1429
1430 /**
1431  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1432  * @di:         pointer to the ab8500_fg structure
1433  *
1434  * Battery capacity calculation state machine for when we're charging
1435  */
1436 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1437 {
1438         /*
1439          * If we change to discharge mode
1440          * we should start with recovery
1441          */
1442         if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1443                 ab8500_fg_discharge_state_to(di,
1444                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1445
1446         switch (di->charge_state) {
1447         case AB8500_FG_CHARGE_INIT:
1448                 di->fg_samples = SEC_TO_SAMPLE(
1449                         di->bm->fg_params->accu_charging);
1450
1451                 ab8500_fg_coulomb_counter(di, true);
1452                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1453
1454                 break;
1455
1456         case AB8500_FG_CHARGE_READOUT:
1457                 /*
1458                  * Read the FG and calculate the new capacity
1459                  */
1460                 mutex_lock(&di->cc_lock);
1461                 if (!di->flags.conv_done && !di->flags.force_full) {
1462                         /* Wasn't the CC IRQ that got us here */
1463                         mutex_unlock(&di->cc_lock);
1464                         dev_dbg(di->dev, "%s CC conv not done\n",
1465                                 __func__);
1466
1467                         break;
1468                 }
1469                 di->flags.conv_done = false;
1470                 mutex_unlock(&di->cc_lock);
1471
1472                 ab8500_fg_calc_cap_charging(di);
1473
1474                 break;
1475
1476         default:
1477                 break;
1478         }
1479
1480         /* Check capacity limits */
1481         ab8500_fg_check_capacity_limits(di, false);
1482 }
1483
1484 static void force_capacity(struct ab8500_fg *di)
1485 {
1486         int cap;
1487
1488         ab8500_fg_clear_cap_samples(di);
1489         cap = di->bat_cap.user_mah;
1490         if (cap > di->bat_cap.max_mah_design) {
1491                 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1492                         " %d\n", cap, di->bat_cap.max_mah_design);
1493                 cap = di->bat_cap.max_mah_design;
1494         }
1495         ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1496         di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1497         di->bat_cap.mah = cap;
1498         ab8500_fg_check_capacity_limits(di, true);
1499 }
1500
1501 static bool check_sysfs_capacity(struct ab8500_fg *di)
1502 {
1503         int cap, lower, upper;
1504         int cap_permille;
1505
1506         cap = di->bat_cap.user_mah;
1507
1508         cap_permille = ab8500_fg_convert_mah_to_permille(di,
1509                 di->bat_cap.user_mah);
1510
1511         lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1512         upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1513
1514         if (lower < 0)
1515                 lower = 0;
1516         /* 1000 is permille, -> 100 percent */
1517         if (upper > 1000)
1518                 upper = 1000;
1519
1520         dev_dbg(di->dev, "Capacity limits:"
1521                 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1522                 lower, cap_permille, upper, cap, di->bat_cap.mah);
1523
1524         /* If within limits, use the saved capacity and exit estimation...*/
1525         if (cap_permille > lower && cap_permille < upper) {
1526                 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1527                 force_capacity(di);
1528                 return true;
1529         }
1530         dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1531         return false;
1532 }
1533
1534 /**
1535  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1536  * @di:         pointer to the ab8500_fg structure
1537  *
1538  * Battery capacity calculation state machine for when we're discharging
1539  */
1540 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1541 {
1542         int sleep_time;
1543
1544         /* If we change to charge mode we should start with init */
1545         if (di->charge_state != AB8500_FG_CHARGE_INIT)
1546                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1547
1548         switch (di->discharge_state) {
1549         case AB8500_FG_DISCHARGE_INIT:
1550                 /* We use the FG IRQ to work on */
1551                 di->init_cnt = 0;
1552                 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1553                 ab8500_fg_coulomb_counter(di, true);
1554                 ab8500_fg_discharge_state_to(di,
1555                         AB8500_FG_DISCHARGE_INITMEASURING);
1556
1557                 /* Intentional fallthrough */
1558         case AB8500_FG_DISCHARGE_INITMEASURING:
1559                 /*
1560                  * Discard a number of samples during startup.
1561                  * After that, use compensated voltage for a few
1562                  * samples to get an initial capacity.
1563                  * Then go to READOUT
1564                  */
1565                 sleep_time = di->bm->fg_params->init_timer;
1566
1567                 /* Discard the first [x] seconds */
1568                 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1569                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1570
1571                         ab8500_fg_check_capacity_limits(di, true);
1572                 }
1573
1574                 di->init_cnt += sleep_time;
1575                 if (di->init_cnt > di->bm->fg_params->init_total_time)
1576                         ab8500_fg_discharge_state_to(di,
1577                                 AB8500_FG_DISCHARGE_READOUT_INIT);
1578
1579                 break;
1580
1581         case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1582                 di->recovery_cnt = 0;
1583                 di->recovery_needed = true;
1584                 ab8500_fg_discharge_state_to(di,
1585                         AB8500_FG_DISCHARGE_RECOVERY);
1586
1587                 /* Intentional fallthrough */
1588
1589         case AB8500_FG_DISCHARGE_RECOVERY:
1590                 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1591
1592                 /*
1593                  * We should check the power consumption
1594                  * If low, go to READOUT (after x min) or
1595                  * RECOVERY_SLEEP if time left.
1596                  * If high, go to READOUT
1597                  */
1598                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1599
1600                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1601                         if (di->recovery_cnt >
1602                                 di->bm->fg_params->recovery_total_time) {
1603                                 di->fg_samples = SEC_TO_SAMPLE(
1604                                         di->bm->fg_params->accu_high_curr);
1605                                 ab8500_fg_coulomb_counter(di, true);
1606                                 ab8500_fg_discharge_state_to(di,
1607                                         AB8500_FG_DISCHARGE_READOUT);
1608                                 di->recovery_needed = false;
1609                         } else {
1610                                 queue_delayed_work(di->fg_wq,
1611                                         &di->fg_periodic_work,
1612                                         sleep_time * HZ);
1613                         }
1614                         di->recovery_cnt += sleep_time;
1615                 } else {
1616                         di->fg_samples = SEC_TO_SAMPLE(
1617                                 di->bm->fg_params->accu_high_curr);
1618                         ab8500_fg_coulomb_counter(di, true);
1619                         ab8500_fg_discharge_state_to(di,
1620                                 AB8500_FG_DISCHARGE_READOUT);
1621                 }
1622                 break;
1623
1624         case AB8500_FG_DISCHARGE_READOUT_INIT:
1625                 di->fg_samples = SEC_TO_SAMPLE(
1626                         di->bm->fg_params->accu_high_curr);
1627                 ab8500_fg_coulomb_counter(di, true);
1628                 ab8500_fg_discharge_state_to(di,
1629                                 AB8500_FG_DISCHARGE_READOUT);
1630                 break;
1631
1632         case AB8500_FG_DISCHARGE_READOUT:
1633                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1634
1635                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1636                         /* Detect mode change */
1637                         if (di->high_curr_mode) {
1638                                 di->high_curr_mode = false;
1639                                 di->high_curr_cnt = 0;
1640                         }
1641
1642                         if (di->recovery_needed) {
1643                                 ab8500_fg_discharge_state_to(di,
1644                                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1645
1646                                 queue_delayed_work(di->fg_wq,
1647                                         &di->fg_periodic_work, 0);
1648
1649                                 break;
1650                         }
1651
1652                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1653                 } else {
1654                         mutex_lock(&di->cc_lock);
1655                         if (!di->flags.conv_done) {
1656                                 /* Wasn't the CC IRQ that got us here */
1657                                 mutex_unlock(&di->cc_lock);
1658                                 dev_dbg(di->dev, "%s CC conv not done\n",
1659                                         __func__);
1660
1661                                 break;
1662                         }
1663                         di->flags.conv_done = false;
1664                         mutex_unlock(&di->cc_lock);
1665
1666                         /* Detect mode change */
1667                         if (!di->high_curr_mode) {
1668                                 di->high_curr_mode = true;
1669                                 di->high_curr_cnt = 0;
1670                         }
1671
1672                         di->high_curr_cnt +=
1673                                 di->bm->fg_params->accu_high_curr;
1674                         if (di->high_curr_cnt >
1675                                 di->bm->fg_params->high_curr_time)
1676                                 di->recovery_needed = true;
1677
1678                         ab8500_fg_calc_cap_discharge_fg(di);
1679                 }
1680
1681                 ab8500_fg_check_capacity_limits(di, false);
1682
1683                 break;
1684
1685         case AB8500_FG_DISCHARGE_WAKEUP:
1686                 ab8500_fg_coulomb_counter(di, true);
1687                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1688
1689                 di->fg_samples = SEC_TO_SAMPLE(
1690                         di->bm->fg_params->accu_high_curr);
1691                 ab8500_fg_coulomb_counter(di, true);
1692                 ab8500_fg_discharge_state_to(di,
1693                                 AB8500_FG_DISCHARGE_READOUT);
1694
1695                 ab8500_fg_check_capacity_limits(di, false);
1696
1697                 break;
1698
1699         default:
1700                 break;
1701         }
1702 }
1703
1704 /**
1705  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1706  * @di:         pointer to the ab8500_fg structure
1707  *
1708  */
1709 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1710 {
1711         int ret;
1712
1713         switch (di->calib_state) {
1714         case AB8500_FG_CALIB_INIT:
1715                 dev_dbg(di->dev, "Calibration ongoing...\n");
1716
1717                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1718                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1719                         CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1720                 if (ret < 0)
1721                         goto err;
1722
1723                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1724                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1725                         CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1726                 if (ret < 0)
1727                         goto err;
1728                 di->calib_state = AB8500_FG_CALIB_WAIT;
1729                 break;
1730         case AB8500_FG_CALIB_END:
1731                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1732                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1733                         CC_MUXOFFSET, CC_MUXOFFSET);
1734                 if (ret < 0)
1735                         goto err;
1736                 di->flags.calibrate = false;
1737                 dev_dbg(di->dev, "Calibration done...\n");
1738                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1739                 break;
1740         case AB8500_FG_CALIB_WAIT:
1741                 dev_dbg(di->dev, "Calibration WFI\n");
1742         default:
1743                 break;
1744         }
1745         return;
1746 err:
1747         /* Something went wrong, don't calibrate then */
1748         dev_err(di->dev, "failed to calibrate the CC\n");
1749         di->flags.calibrate = false;
1750         di->calib_state = AB8500_FG_CALIB_INIT;
1751         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1752 }
1753
1754 /**
1755  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1756  * @di:         pointer to the ab8500_fg structure
1757  *
1758  * Entry point for the battery capacity calculation state machine
1759  */
1760 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1761 {
1762         if (di->flags.calibrate)
1763                 ab8500_fg_algorithm_calibrate(di);
1764         else {
1765                 if (di->flags.charging)
1766                         ab8500_fg_algorithm_charging(di);
1767                 else
1768                         ab8500_fg_algorithm_discharging(di);
1769         }
1770
1771         dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1772                 "%d %d %d %d %d %d %d\n",
1773                 di->bat_cap.max_mah_design,
1774                 di->bat_cap.mah,
1775                 di->bat_cap.permille,
1776                 di->bat_cap.level,
1777                 di->bat_cap.prev_mah,
1778                 di->bat_cap.prev_percent,
1779                 di->bat_cap.prev_level,
1780                 di->vbat,
1781                 di->inst_curr,
1782                 di->avg_curr,
1783                 di->accu_charge,
1784                 di->flags.charging,
1785                 di->charge_state,
1786                 di->discharge_state,
1787                 di->high_curr_mode,
1788                 di->recovery_needed);
1789 }
1790
1791 /**
1792  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1793  * @work:       pointer to the work_struct structure
1794  *
1795  * Work queue function for periodic work
1796  */
1797 static void ab8500_fg_periodic_work(struct work_struct *work)
1798 {
1799         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1800                 fg_periodic_work.work);
1801
1802         if (di->init_capacity) {
1803                 /* Get an initial capacity calculation */
1804                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1805                 ab8500_fg_check_capacity_limits(di, true);
1806                 di->init_capacity = false;
1807
1808                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1809         } else if (di->flags.user_cap) {
1810                 if (check_sysfs_capacity(di)) {
1811                         ab8500_fg_check_capacity_limits(di, true);
1812                         if (di->flags.charging)
1813                                 ab8500_fg_charge_state_to(di,
1814                                         AB8500_FG_CHARGE_INIT);
1815                         else
1816                                 ab8500_fg_discharge_state_to(di,
1817                                         AB8500_FG_DISCHARGE_READOUT_INIT);
1818                 }
1819                 di->flags.user_cap = false;
1820                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1821         } else
1822                 ab8500_fg_algorithm(di);
1823
1824 }
1825
1826 /**
1827  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1828  * @work:       pointer to the work_struct structure
1829  *
1830  * Work queue function for checking the OVV_BAT condition
1831  */
1832 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1833 {
1834         int ret;
1835         u8 reg_value;
1836
1837         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1838                 fg_check_hw_failure_work.work);
1839
1840         /*
1841          * If we have had a battery over-voltage situation,
1842          * check ovv-bit to see if it should be reset.
1843          */
1844         ret = abx500_get_register_interruptible(di->dev,
1845                 AB8500_CHARGER, AB8500_CH_STAT_REG,
1846                 &reg_value);
1847         if (ret < 0) {
1848                 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1849                 return;
1850         }
1851         if ((reg_value & BATT_OVV) == BATT_OVV) {
1852                 if (!di->flags.bat_ovv) {
1853                         dev_dbg(di->dev, "Battery OVV\n");
1854                         di->flags.bat_ovv = true;
1855                         power_supply_changed(&di->fg_psy);
1856                 }
1857                 /* Not yet recovered from ovv, reschedule this test */
1858                 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1859                                    HZ);
1860                 } else {
1861                         dev_dbg(di->dev, "Battery recovered from OVV\n");
1862                         di->flags.bat_ovv = false;
1863                         power_supply_changed(&di->fg_psy);
1864         }
1865 }
1866
1867 /**
1868  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1869  * @work:       pointer to the work_struct structure
1870  *
1871  * Work queue function for checking the LOW_BAT condition
1872  */
1873 static void ab8500_fg_low_bat_work(struct work_struct *work)
1874 {
1875         int vbat;
1876
1877         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1878                 fg_low_bat_work.work);
1879
1880         vbat = ab8500_fg_bat_voltage(di);
1881
1882         /* Check if LOW_BAT still fulfilled */
1883         if (vbat < di->bm->fg_params->lowbat_threshold) {
1884                 /* Is it time to shut down? */
1885                 if (di->low_bat_cnt < 1) {
1886                         di->flags.low_bat = true;
1887                         dev_warn(di->dev, "Shut down pending...\n");
1888                 } else {
1889                         /*
1890                         * Else we need to re-schedule this check to be able to detect
1891                         * if the voltage increases again during charging or
1892                         * due to decreasing load.
1893                         */
1894                         di->low_bat_cnt--;
1895                         dev_warn(di->dev, "Battery voltage still LOW\n");
1896                         queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1897                                 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1898                 }
1899         } else {
1900                 di->flags.low_bat_delay = false;
1901                 di->low_bat_cnt = 10;
1902                 dev_warn(di->dev, "Battery voltage OK again\n");
1903         }
1904
1905         /* This is needed to dispatch LOW_BAT */
1906         ab8500_fg_check_capacity_limits(di, false);
1907 }
1908
1909 /**
1910  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1911  * to the target voltage.
1912  * @di:       pointer to the ab8500_fg structure
1913  * @target    target voltage
1914  *
1915  * Returns bit pattern closest to the target voltage
1916  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1917  */
1918
1919 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1920 {
1921         if (target > BATT_OK_MIN +
1922                 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1923                 return BATT_OK_MAX_NR_INCREMENTS;
1924         if (target < BATT_OK_MIN)
1925                 return 0;
1926         return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1927 }
1928
1929 /**
1930  * ab8500_fg_battok_init_hw_register - init battok levels
1931  * @di:       pointer to the ab8500_fg structure
1932  *
1933  */
1934
1935 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1936 {
1937         int selected;
1938         int sel0;
1939         int sel1;
1940         int cbp_sel0;
1941         int cbp_sel1;
1942         int ret;
1943         int new_val;
1944
1945         sel0 = di->bm->fg_params->battok_falling_th_sel0;
1946         sel1 = di->bm->fg_params->battok_raising_th_sel1;
1947
1948         cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1949         cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1950
1951         selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1952
1953         if (selected != sel0)
1954                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1955                         sel0, selected, cbp_sel0);
1956
1957         selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1958
1959         if (selected != sel1)
1960                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1961                         sel1, selected, cbp_sel1);
1962
1963         new_val = cbp_sel0 | (cbp_sel1 << 4);
1964
1965         dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1966         ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1967                 AB8500_BATT_OK_REG, new_val);
1968         return ret;
1969 }
1970
1971 /**
1972  * ab8500_fg_instant_work() - Run the FG state machine instantly
1973  * @work:       pointer to the work_struct structure
1974  *
1975  * Work queue function for instant work
1976  */
1977 static void ab8500_fg_instant_work(struct work_struct *work)
1978 {
1979         struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1980
1981         ab8500_fg_algorithm(di);
1982 }
1983
1984 /**
1985  * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1986  * @irq:       interrupt number
1987  * @_di:       pointer to the ab8500_fg structure
1988  *
1989  * Returns IRQ status(IRQ_HANDLED)
1990  */
1991 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1992 {
1993         struct ab8500_fg *di = _di;
1994         if (!di->nbr_cceoc_irq_cnt) {
1995                 di->nbr_cceoc_irq_cnt++;
1996                 complete(&di->ab8500_fg_started);
1997         } else {
1998                 di->nbr_cceoc_irq_cnt = 0;
1999                 complete(&di->ab8500_fg_complete);
2000         }
2001         return IRQ_HANDLED;
2002 }
2003
2004 /**
2005  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2006  * @irq:       interrupt number
2007  * @_di:       pointer to the ab8500_fg structure
2008  *
2009  * Returns IRQ status(IRQ_HANDLED)
2010  */
2011 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2012 {
2013         struct ab8500_fg *di = _di;
2014         di->calib_state = AB8500_FG_CALIB_END;
2015         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2016         return IRQ_HANDLED;
2017 }
2018
2019 /**
2020  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2021  * @irq:       interrupt number
2022  * @_di:       pointer to the ab8500_fg structure
2023  *
2024  * Returns IRQ status(IRQ_HANDLED)
2025  */
2026 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2027 {
2028         struct ab8500_fg *di = _di;
2029
2030         queue_work(di->fg_wq, &di->fg_acc_cur_work);
2031
2032         return IRQ_HANDLED;
2033 }
2034
2035 /**
2036  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2037  * @irq:       interrupt number
2038  * @_di:       pointer to the ab8500_fg structure
2039  *
2040  * Returns IRQ status(IRQ_HANDLED)
2041  */
2042 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2043 {
2044         struct ab8500_fg *di = _di;
2045
2046         dev_dbg(di->dev, "Battery OVV\n");
2047
2048         /* Schedule a new HW failure check */
2049         queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2050
2051         return IRQ_HANDLED;
2052 }
2053
2054 /**
2055  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2056  * @irq:       interrupt number
2057  * @_di:       pointer to the ab8500_fg structure
2058  *
2059  * Returns IRQ status(IRQ_HANDLED)
2060  */
2061 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2062 {
2063         struct ab8500_fg *di = _di;
2064
2065         /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2066         if (!di->flags.low_bat_delay) {
2067                 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2068                 di->flags.low_bat_delay = true;
2069                 /*
2070                  * Start a timer to check LOW_BAT again after some time
2071                  * This is done to avoid shutdown on single voltage dips
2072                  */
2073                 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2074                         round_jiffies(LOW_BAT_CHECK_INTERVAL));
2075         }
2076         return IRQ_HANDLED;
2077 }
2078
2079 /**
2080  * ab8500_fg_get_property() - get the fg properties
2081  * @psy:        pointer to the power_supply structure
2082  * @psp:        pointer to the power_supply_property structure
2083  * @val:        pointer to the power_supply_propval union
2084  *
2085  * This function gets called when an application tries to get the
2086  * fg properties by reading the sysfs files.
2087  * voltage_now:         battery voltage
2088  * current_now:         battery instant current
2089  * current_avg:         battery average current
2090  * charge_full_design:  capacity where battery is considered full
2091  * charge_now:          battery capacity in nAh
2092  * capacity:            capacity in percent
2093  * capacity_level:      capacity level
2094  *
2095  * Returns error code in case of failure else 0 on success
2096  */
2097 static int ab8500_fg_get_property(struct power_supply *psy,
2098         enum power_supply_property psp,
2099         union power_supply_propval *val)
2100 {
2101         struct ab8500_fg *di;
2102
2103         di = to_ab8500_fg_device_info(psy);
2104
2105         /*
2106          * If battery is identified as unknown and charging of unknown
2107          * batteries is disabled, we always report 100% capacity and
2108          * capacity level UNKNOWN, since we can't calculate
2109          * remaining capacity
2110          */
2111
2112         switch (psp) {
2113         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2114                 if (di->flags.bat_ovv)
2115                         val->intval = BATT_OVV_VALUE * 1000;
2116                 else
2117                         val->intval = di->vbat * 1000;
2118                 break;
2119         case POWER_SUPPLY_PROP_CURRENT_NOW:
2120                 val->intval = di->inst_curr * 1000;
2121                 break;
2122         case POWER_SUPPLY_PROP_CURRENT_AVG:
2123                 val->intval = di->avg_curr * 1000;
2124                 break;
2125         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2126                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2127                                 di->bat_cap.max_mah_design);
2128                 break;
2129         case POWER_SUPPLY_PROP_ENERGY_FULL:
2130                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2131                                 di->bat_cap.max_mah);
2132                 break;
2133         case POWER_SUPPLY_PROP_ENERGY_NOW:
2134                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2135                                 di->flags.batt_id_received)
2136                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2137                                         di->bat_cap.max_mah);
2138                 else
2139                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2140                                         di->bat_cap.prev_mah);
2141                 break;
2142         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2143                 val->intval = di->bat_cap.max_mah_design;
2144                 break;
2145         case POWER_SUPPLY_PROP_CHARGE_FULL:
2146                 val->intval = di->bat_cap.max_mah;
2147                 break;
2148         case POWER_SUPPLY_PROP_CHARGE_NOW:
2149                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2150                                 di->flags.batt_id_received)
2151                         val->intval = di->bat_cap.max_mah;
2152                 else
2153                         val->intval = di->bat_cap.prev_mah;
2154                 break;
2155         case POWER_SUPPLY_PROP_CAPACITY:
2156                 if (di->bm->capacity_scaling)
2157                         val->intval = di->bat_cap.cap_scale.scaled_cap;
2158                 else if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2159                                 di->flags.batt_id_received)
2160                         val->intval = 100;
2161                 else
2162                         val->intval = di->bat_cap.prev_percent;
2163                 break;
2164         case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2165                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2166                                 di->flags.batt_id_received)
2167                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2168                 else
2169                         val->intval = di->bat_cap.prev_level;
2170                 break;
2171         default:
2172                 return -EINVAL;
2173         }
2174         return 0;
2175 }
2176
2177 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2178 {
2179         struct power_supply *psy;
2180         struct power_supply *ext;
2181         struct ab8500_fg *di;
2182         union power_supply_propval ret;
2183         int i, j;
2184         bool psy_found = false;
2185
2186         psy = (struct power_supply *)data;
2187         ext = dev_get_drvdata(dev);
2188         di = to_ab8500_fg_device_info(psy);
2189
2190         /*
2191          * For all psy where the name of your driver
2192          * appears in any supplied_to
2193          */
2194         for (i = 0; i < ext->num_supplicants; i++) {
2195                 if (!strcmp(ext->supplied_to[i], psy->name))
2196                         psy_found = true;
2197         }
2198
2199         if (!psy_found)
2200                 return 0;
2201
2202         /* Go through all properties for the psy */
2203         for (j = 0; j < ext->num_properties; j++) {
2204                 enum power_supply_property prop;
2205                 prop = ext->properties[j];
2206
2207                 if (ext->get_property(ext, prop, &ret))
2208                         continue;
2209
2210                 switch (prop) {
2211                 case POWER_SUPPLY_PROP_STATUS:
2212                         switch (ext->type) {
2213                         case POWER_SUPPLY_TYPE_BATTERY:
2214                                 switch (ret.intval) {
2215                                 case POWER_SUPPLY_STATUS_UNKNOWN:
2216                                 case POWER_SUPPLY_STATUS_DISCHARGING:
2217                                 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2218                                         if (!di->flags.charging)
2219                                                 break;
2220                                         di->flags.charging = false;
2221                                         di->flags.fully_charged = false;
2222                                         if (di->bm->capacity_scaling)
2223                                                 ab8500_fg_update_cap_scalers(di);
2224                                         queue_work(di->fg_wq, &di->fg_work);
2225                                         break;
2226                                 case POWER_SUPPLY_STATUS_FULL:
2227                                         if (di->flags.fully_charged)
2228                                                 break;
2229                                         di->flags.fully_charged = true;
2230                                         di->flags.force_full = true;
2231                                         /* Save current capacity as maximum */
2232                                         di->bat_cap.max_mah = di->bat_cap.mah;
2233                                         queue_work(di->fg_wq, &di->fg_work);
2234                                         break;
2235                                 case POWER_SUPPLY_STATUS_CHARGING:
2236                                         if (di->flags.charging &&
2237                                                 !di->flags.fully_charged)
2238                                                 break;
2239                                         di->flags.charging = true;
2240                                         di->flags.fully_charged = false;
2241                                         if (di->bm->capacity_scaling)
2242                                                 ab8500_fg_update_cap_scalers(di);
2243                                         queue_work(di->fg_wq, &di->fg_work);
2244                                         break;
2245                                 };
2246                         default:
2247                                 break;
2248                         };
2249                         break;
2250                 case POWER_SUPPLY_PROP_TECHNOLOGY:
2251                         switch (ext->type) {
2252                         case POWER_SUPPLY_TYPE_BATTERY:
2253                                 if (!di->flags.batt_id_received &&
2254                                     di->bm->batt_id != BATTERY_UNKNOWN) {
2255                                         const struct abx500_battery_type *b;
2256
2257                                         b = &(di->bm->bat_type[di->bm->batt_id]);
2258
2259                                         di->flags.batt_id_received = true;
2260
2261                                         di->bat_cap.max_mah_design =
2262                                                 MILLI_TO_MICRO *
2263                                                 b->charge_full_design;
2264
2265                                         di->bat_cap.max_mah =
2266                                                 di->bat_cap.max_mah_design;
2267
2268                                         di->vbat_nom = b->nominal_voltage;
2269                                 }
2270
2271                                 if (ret.intval)
2272                                         di->flags.batt_unknown = false;
2273                                 else
2274                                         di->flags.batt_unknown = true;
2275                                 break;
2276                         default:
2277                                 break;
2278                         }
2279                         break;
2280                 case POWER_SUPPLY_PROP_TEMP:
2281                         switch (ext->type) {
2282                         case POWER_SUPPLY_TYPE_BATTERY:
2283                                 if (di->flags.batt_id_received)
2284                                         di->bat_temp = ret.intval;
2285                                 break;
2286                         default:
2287                                 break;
2288                         }
2289                         break;
2290                 default:
2291                         break;
2292                 }
2293         }
2294         return 0;
2295 }
2296
2297 /**
2298  * ab8500_fg_init_hw_registers() - Set up FG related registers
2299  * @di:         pointer to the ab8500_fg structure
2300  *
2301  * Set up battery OVV, low battery voltage registers
2302  */
2303 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2304 {
2305         int ret;
2306
2307         /* Set VBAT OVV threshold */
2308         ret = abx500_mask_and_set_register_interruptible(di->dev,
2309                 AB8500_CHARGER,
2310                 AB8500_BATT_OVV,
2311                 BATT_OVV_TH_4P75,
2312                 BATT_OVV_TH_4P75);
2313         if (ret) {
2314                 dev_err(di->dev, "failed to set BATT_OVV\n");
2315                 goto out;
2316         }
2317
2318         /* Enable VBAT OVV detection */
2319         ret = abx500_mask_and_set_register_interruptible(di->dev,
2320                 AB8500_CHARGER,
2321                 AB8500_BATT_OVV,
2322                 BATT_OVV_ENA,
2323                 BATT_OVV_ENA);
2324         if (ret) {
2325                 dev_err(di->dev, "failed to enable BATT_OVV\n");
2326                 goto out;
2327         }
2328
2329         /* Low Battery Voltage */
2330         ret = abx500_set_register_interruptible(di->dev,
2331                 AB8500_SYS_CTRL2_BLOCK,
2332                 AB8500_LOW_BAT_REG,
2333                 ab8500_volt_to_regval(
2334                         di->bm->fg_params->lowbat_threshold) << 1 |
2335                 LOW_BAT_ENABLE);
2336         if (ret) {
2337                 dev_err(di->dev, "%s write failed\n", __func__);
2338                 goto out;
2339         }
2340
2341         /* Battery OK threshold */
2342         ret = ab8500_fg_battok_init_hw_register(di);
2343         if (ret) {
2344                 dev_err(di->dev, "BattOk init write failed.\n");
2345                 goto out;
2346         }
2347 out:
2348         return ret;
2349 }
2350
2351 /**
2352  * ab8500_fg_external_power_changed() - callback for power supply changes
2353  * @psy:       pointer to the structure power_supply
2354  *
2355  * This function is the entry point of the pointer external_power_changed
2356  * of the structure power_supply.
2357  * This function gets executed when there is a change in any external power
2358  * supply that this driver needs to be notified of.
2359  */
2360 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2361 {
2362         struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2363
2364         class_for_each_device(power_supply_class, NULL,
2365                 &di->fg_psy, ab8500_fg_get_ext_psy_data);
2366 }
2367
2368 /**
2369  * abab8500_fg_reinit_work() - work to reset the FG algorithm
2370  * @work:       pointer to the work_struct structure
2371  *
2372  * Used to reset the current battery capacity to be able to
2373  * retrigger a new voltage base capacity calculation. For
2374  * test and verification purpose.
2375  */
2376 static void ab8500_fg_reinit_work(struct work_struct *work)
2377 {
2378         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2379                 fg_reinit_work.work);
2380
2381         if (di->flags.calibrate == false) {
2382                 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2383                 ab8500_fg_clear_cap_samples(di);
2384                 ab8500_fg_calc_cap_discharge_voltage(di, true);
2385                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2386                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2387                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2388
2389         } else {
2390                 dev_err(di->dev, "Residual offset calibration ongoing "
2391                         "retrying..\n");
2392                 /* Wait one second until next try*/
2393                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2394                         round_jiffies(1));
2395         }
2396 }
2397
2398 /**
2399  * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2400  *
2401  * This function can be used to force the FG algorithm to recalculate a new
2402  * voltage based battery capacity.
2403  */
2404 void ab8500_fg_reinit(void)
2405 {
2406         struct ab8500_fg *di = ab8500_fg_get();
2407         /* User won't be notified if a null pointer returned. */
2408         if (di != NULL)
2409                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2410 }
2411
2412 /* Exposure to the sysfs interface */
2413
2414 struct ab8500_fg_sysfs_entry {
2415         struct attribute attr;
2416         ssize_t (*show)(struct ab8500_fg *, char *);
2417         ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2418 };
2419
2420 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2421 {
2422         return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2423 }
2424
2425 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2426                                  size_t count)
2427 {
2428         unsigned long charge_full;
2429         ssize_t ret = -EINVAL;
2430
2431         ret = strict_strtoul(buf, 10, &charge_full);
2432
2433         dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2434
2435         if (!ret) {
2436                 di->bat_cap.max_mah = (int) charge_full;
2437                 ret = count;
2438         }
2439         return ret;
2440 }
2441
2442 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2443 {
2444         return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2445 }
2446
2447 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2448                                  size_t count)
2449 {
2450         unsigned long charge_now;
2451         ssize_t ret;
2452
2453         ret = strict_strtoul(buf, 10, &charge_now);
2454
2455         dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2456                 ret, charge_now, di->bat_cap.prev_mah);
2457
2458         if (!ret) {
2459                 di->bat_cap.user_mah = (int) charge_now;
2460                 di->flags.user_cap = true;
2461                 ret = count;
2462                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2463         }
2464         return ret;
2465 }
2466
2467 static struct ab8500_fg_sysfs_entry charge_full_attr =
2468         __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2469
2470 static struct ab8500_fg_sysfs_entry charge_now_attr =
2471         __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2472
2473 static ssize_t
2474 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2475 {
2476         struct ab8500_fg_sysfs_entry *entry;
2477         struct ab8500_fg *di;
2478
2479         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2480         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2481
2482         if (!entry->show)
2483                 return -EIO;
2484
2485         return entry->show(di, buf);
2486 }
2487 static ssize_t
2488 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2489                 size_t count)
2490 {
2491         struct ab8500_fg_sysfs_entry *entry;
2492         struct ab8500_fg *di;
2493
2494         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2495         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2496
2497         if (!entry->store)
2498                 return -EIO;
2499
2500         return entry->store(di, buf, count);
2501 }
2502
2503 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2504         .show = ab8500_fg_show,
2505         .store = ab8500_fg_store,
2506 };
2507
2508 static struct attribute *ab8500_fg_attrs[] = {
2509         &charge_full_attr.attr,
2510         &charge_now_attr.attr,
2511         NULL,
2512 };
2513
2514 static struct kobj_type ab8500_fg_ktype = {
2515         .sysfs_ops = &ab8500_fg_sysfs_ops,
2516         .default_attrs = ab8500_fg_attrs,
2517 };
2518
2519 /**
2520  * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2521  * @di:                pointer to the struct ab8500_chargalg
2522  *
2523  * This function removes the entry in sysfs.
2524  */
2525 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2526 {
2527         kobject_del(&di->fg_kobject);
2528 }
2529
2530 /**
2531  * ab8500_chargalg_sysfs_init() - init of sysfs entry
2532  * @di:                pointer to the struct ab8500_chargalg
2533  *
2534  * This function adds an entry in sysfs.
2535  * Returns error code in case of failure else 0(on success)
2536  */
2537 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2538 {
2539         int ret = 0;
2540
2541         ret = kobject_init_and_add(&di->fg_kobject,
2542                 &ab8500_fg_ktype,
2543                 NULL, "battery");
2544         if (ret < 0)
2545                 dev_err(di->dev, "failed to create sysfs entry\n");
2546
2547         return ret;
2548 }
2549 /* Exposure to the sysfs interface <<END>> */
2550
2551 #if defined(CONFIG_PM)
2552 static int ab8500_fg_resume(struct platform_device *pdev)
2553 {
2554         struct ab8500_fg *di = platform_get_drvdata(pdev);
2555
2556         /*
2557          * Change state if we're not charging. If we're charging we will wake
2558          * up on the FG IRQ
2559          */
2560         if (!di->flags.charging) {
2561                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2562                 queue_work(di->fg_wq, &di->fg_work);
2563         }
2564
2565         return 0;
2566 }
2567
2568 static int ab8500_fg_suspend(struct platform_device *pdev,
2569         pm_message_t state)
2570 {
2571         struct ab8500_fg *di = platform_get_drvdata(pdev);
2572
2573         flush_delayed_work(&di->fg_periodic_work);
2574         flush_work(&di->fg_work);
2575         flush_work(&di->fg_acc_cur_work);
2576         flush_delayed_work(&di->fg_reinit_work);
2577         flush_delayed_work(&di->fg_low_bat_work);
2578         flush_delayed_work(&di->fg_check_hw_failure_work);
2579
2580         /*
2581          * If the FG is enabled we will disable it before going to suspend
2582          * only if we're not charging
2583          */
2584         if (di->flags.fg_enabled && !di->flags.charging)
2585                 ab8500_fg_coulomb_counter(di, false);
2586
2587         return 0;
2588 }
2589 #else
2590 #define ab8500_fg_suspend      NULL
2591 #define ab8500_fg_resume       NULL
2592 #endif
2593
2594 static int ab8500_fg_remove(struct platform_device *pdev)
2595 {
2596         int ret = 0;
2597         struct ab8500_fg *di = platform_get_drvdata(pdev);
2598
2599         list_del(&di->node);
2600
2601         /* Disable coulomb counter */
2602         ret = ab8500_fg_coulomb_counter(di, false);
2603         if (ret)
2604                 dev_err(di->dev, "failed to disable coulomb counter\n");
2605
2606         destroy_workqueue(di->fg_wq);
2607         ab8500_fg_sysfs_exit(di);
2608
2609         flush_scheduled_work();
2610         power_supply_unregister(&di->fg_psy);
2611         platform_set_drvdata(pdev, NULL);
2612         return ret;
2613 }
2614
2615 /* ab8500 fg driver interrupts and their respective isr */
2616 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2617         {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2618         {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2619         {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2620         {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2621         {"CCEOC", ab8500_fg_cc_data_end_handler},
2622 };
2623
2624 static char *supply_interface[] = {
2625         "ab8500_chargalg",
2626         "ab8500_usb",
2627 };
2628
2629 static int ab8500_fg_probe(struct platform_device *pdev)
2630 {
2631         struct device_node *np = pdev->dev.of_node;
2632         struct abx500_bm_data *plat = pdev->dev.platform_data;
2633         struct ab8500_fg *di;
2634         int i, irq;
2635         int ret = 0;
2636
2637         di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
2638         if (!di) {
2639                 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
2640                 return -ENOMEM;
2641         }
2642
2643         if (!plat) {
2644                 dev_err(&pdev->dev, "no battery management data supplied\n");
2645                 return -EINVAL;
2646         }
2647         di->bm = plat;
2648
2649         if (np) {
2650                 ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
2651                 if (ret) {
2652                         dev_err(&pdev->dev, "failed to get battery information\n");
2653                         return ret;
2654                 }
2655         }
2656
2657         mutex_init(&di->cc_lock);
2658
2659         /* get parent data */
2660         di->dev = &pdev->dev;
2661         di->parent = dev_get_drvdata(pdev->dev.parent);
2662         di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
2663
2664         di->fg_psy.name = "ab8500_fg";
2665         di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
2666         di->fg_psy.properties = ab8500_fg_props;
2667         di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
2668         di->fg_psy.get_property = ab8500_fg_get_property;
2669         di->fg_psy.supplied_to = supply_interface;
2670         di->fg_psy.num_supplicants = ARRAY_SIZE(supply_interface),
2671         di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
2672
2673         di->bat_cap.max_mah_design = MILLI_TO_MICRO *
2674                 di->bm->bat_type[di->bm->batt_id].charge_full_design;
2675
2676         di->bat_cap.max_mah = di->bat_cap.max_mah_design;
2677
2678         di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
2679
2680         di->init_capacity = true;
2681
2682         ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2683         ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2684
2685         /* Create a work queue for running the FG algorithm */
2686         di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
2687         if (di->fg_wq == NULL) {
2688                 dev_err(di->dev, "failed to create work queue\n");
2689                 return -ENOMEM;
2690         }
2691
2692         /* Init work for running the fg algorithm instantly */
2693         INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
2694
2695         /* Init work for getting the battery accumulated current */
2696         INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
2697
2698         /* Init work for reinitialising the fg algorithm */
2699         INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
2700                 ab8500_fg_reinit_work);
2701
2702         /* Work delayed Queue to run the state machine */
2703         INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
2704                 ab8500_fg_periodic_work);
2705
2706         /* Work to check low battery condition */
2707         INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
2708                 ab8500_fg_low_bat_work);
2709
2710         /* Init work for HW failure check */
2711         INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
2712                 ab8500_fg_check_hw_failure_work);
2713
2714         /* Reset battery low voltage flag */
2715         di->flags.low_bat = false;
2716
2717         /* Initialize low battery counter */
2718         di->low_bat_cnt = 10;
2719
2720         /* Initialize OVV, and other registers */
2721         ret = ab8500_fg_init_hw_registers(di);
2722         if (ret) {
2723                 dev_err(di->dev, "failed to initialize registers\n");
2724                 goto free_inst_curr_wq;
2725         }
2726
2727         /* Consider battery unknown until we're informed otherwise */
2728         di->flags.batt_unknown = true;
2729         di->flags.batt_id_received = false;
2730
2731         /* Register FG power supply class */
2732         ret = power_supply_register(di->dev, &di->fg_psy);
2733         if (ret) {
2734                 dev_err(di->dev, "failed to register FG psy\n");
2735                 goto free_inst_curr_wq;
2736         }
2737
2738         di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
2739         ab8500_fg_coulomb_counter(di, true);
2740
2741         /*
2742          * Initialize completion used to notify completion and start
2743          * of inst current
2744          */
2745         init_completion(&di->ab8500_fg_started);
2746         init_completion(&di->ab8500_fg_complete);
2747
2748         /* Register interrupts */
2749         for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
2750                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2751                 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
2752                         IRQF_SHARED | IRQF_NO_SUSPEND,
2753                         ab8500_fg_irq[i].name, di);
2754
2755                 if (ret != 0) {
2756                         dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
2757                                 , ab8500_fg_irq[i].name, irq, ret);
2758                         goto free_irq;
2759                 }
2760                 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
2761                         ab8500_fg_irq[i].name, irq, ret);
2762         }
2763         di->irq = platform_get_irq_byname(pdev, "CCEOC");
2764         disable_irq(di->irq);
2765         di->nbr_cceoc_irq_cnt = 0;
2766
2767         platform_set_drvdata(pdev, di);
2768
2769         ret = ab8500_fg_sysfs_init(di);
2770         if (ret) {
2771                 dev_err(di->dev, "failed to create sysfs entry\n");
2772                 goto free_irq;
2773         }
2774
2775         /* Calibrate the fg first time */
2776         di->flags.calibrate = true;
2777         di->calib_state = AB8500_FG_CALIB_INIT;
2778
2779         /* Use room temp as default value until we get an update from driver. */
2780         di->bat_temp = 210;
2781
2782         /* Run the FG algorithm */
2783         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2784
2785         list_add_tail(&di->node, &ab8500_fg_list);
2786
2787         return ret;
2788
2789 free_irq:
2790         power_supply_unregister(&di->fg_psy);
2791
2792         /* We also have to free all successfully registered irqs */
2793         for (i = i - 1; i >= 0; i--) {
2794                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2795                 free_irq(irq, di);
2796         }
2797 free_inst_curr_wq:
2798         destroy_workqueue(di->fg_wq);
2799         return ret;
2800 }
2801
2802 static const struct of_device_id ab8500_fg_match[] = {
2803         { .compatible = "stericsson,ab8500-fg", },
2804         { },
2805 };
2806
2807 static struct platform_driver ab8500_fg_driver = {
2808         .probe = ab8500_fg_probe,
2809         .remove = ab8500_fg_remove,
2810         .suspend = ab8500_fg_suspend,
2811         .resume = ab8500_fg_resume,
2812         .driver = {
2813                 .name = "ab8500-fg",
2814                 .owner = THIS_MODULE,
2815                 .of_match_table = ab8500_fg_match,
2816         },
2817 };
2818
2819 static int __init ab8500_fg_init(void)
2820 {
2821         return platform_driver_register(&ab8500_fg_driver);
2822 }
2823
2824 static void __exit ab8500_fg_exit(void)
2825 {
2826         platform_driver_unregister(&ab8500_fg_driver);
2827 }
2828
2829 subsys_initcall_sync(ab8500_fg_init);
2830 module_exit(ab8500_fg_exit);
2831
2832 MODULE_LICENSE("GPL v2");
2833 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2834 MODULE_ALIAS("platform:ab8500-fg");
2835 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");