]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/power/ab8500_fg.c
wireless: remove conflicting version of print_hex_dump_bytes
[karo-tx-linux.git] / drivers / power / ab8500_fg.c
1 /*
2  * Copyright (C) ST-Ericsson AB 2012
3  *
4  * Main and Back-up battery management driver.
5  *
6  * Note: Backup battery management is required in case of Li-Ion battery and not
7  * for capacitive battery. HREF boards have capacitive battery and hence backup
8  * battery management is not used and the supported code is available in this
9  * driver.
10  *
11  * License Terms: GNU General Public License v2
12  * Author:
13  *      Johan Palsson <johan.palsson@stericsson.com>
14  *      Karl Komierowski <karl.komierowski@stericsson.com>
15  *      Arun R Murthy <arun.murthy@stericsson.com>
16  */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/of.h>
29 #include <linux/completion.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/abx500.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/mfd/abx500/ab8500-bm.h>
34 #include <linux/mfd/abx500/ab8500-gpadc.h>
35
36 #define MILLI_TO_MICRO                  1000
37 #define FG_LSB_IN_MA                    1627
38 #define QLSB_NANO_AMP_HOURS_X10         1129
39 #define INS_CURR_TIMEOUT                (3 * HZ)
40
41 #define SEC_TO_SAMPLE(S)                (S * 4)
42
43 #define NBR_AVG_SAMPLES                 20
44
45 #define LOW_BAT_CHECK_INTERVAL          (2 * HZ)
46
47 #define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
48 #define BATT_OK_MIN                     2360 /* mV */
49 #define BATT_OK_INCREMENT               50 /* mV */
50 #define BATT_OK_MAX_NR_INCREMENTS       0xE
51
52 /* FG constants */
53 #define BATT_OVV                        0x01
54
55 #define interpolate(x, x1, y1, x2, y2) \
56         ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
57
58 #define to_ab8500_fg_device_info(x) container_of((x), \
59         struct ab8500_fg, fg_psy);
60
61 /**
62  * struct ab8500_fg_interrupts - ab8500 fg interupts
63  * @name:       name of the interrupt
64  * @isr         function pointer to the isr
65  */
66 struct ab8500_fg_interrupts {
67         char *name;
68         irqreturn_t (*isr)(int irq, void *data);
69 };
70
71 enum ab8500_fg_discharge_state {
72         AB8500_FG_DISCHARGE_INIT,
73         AB8500_FG_DISCHARGE_INITMEASURING,
74         AB8500_FG_DISCHARGE_INIT_RECOVERY,
75         AB8500_FG_DISCHARGE_RECOVERY,
76         AB8500_FG_DISCHARGE_READOUT_INIT,
77         AB8500_FG_DISCHARGE_READOUT,
78         AB8500_FG_DISCHARGE_WAKEUP,
79 };
80
81 static char *discharge_state[] = {
82         "DISCHARGE_INIT",
83         "DISCHARGE_INITMEASURING",
84         "DISCHARGE_INIT_RECOVERY",
85         "DISCHARGE_RECOVERY",
86         "DISCHARGE_READOUT_INIT",
87         "DISCHARGE_READOUT",
88         "DISCHARGE_WAKEUP",
89 };
90
91 enum ab8500_fg_charge_state {
92         AB8500_FG_CHARGE_INIT,
93         AB8500_FG_CHARGE_READOUT,
94 };
95
96 static char *charge_state[] = {
97         "CHARGE_INIT",
98         "CHARGE_READOUT",
99 };
100
101 enum ab8500_fg_calibration_state {
102         AB8500_FG_CALIB_INIT,
103         AB8500_FG_CALIB_WAIT,
104         AB8500_FG_CALIB_END,
105 };
106
107 struct ab8500_fg_avg_cap {
108         int avg;
109         int samples[NBR_AVG_SAMPLES];
110         __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
111         int pos;
112         int nbr_samples;
113         int sum;
114 };
115
116 struct ab8500_fg_battery_capacity {
117         int max_mah_design;
118         int max_mah;
119         int mah;
120         int permille;
121         int level;
122         int prev_mah;
123         int prev_percent;
124         int prev_level;
125         int user_mah;
126 };
127
128 struct ab8500_fg_flags {
129         bool fg_enabled;
130         bool conv_done;
131         bool charging;
132         bool fully_charged;
133         bool force_full;
134         bool low_bat_delay;
135         bool low_bat;
136         bool bat_ovv;
137         bool batt_unknown;
138         bool calibrate;
139         bool user_cap;
140         bool batt_id_received;
141 };
142
143 struct inst_curr_result_list {
144         struct list_head list;
145         int *result;
146 };
147
148 /**
149  * struct ab8500_fg - ab8500 FG device information
150  * @dev:                Pointer to the structure device
151  * @node:               a list of AB8500 FGs, hence prepared for reentrance
152  * @irq                 holds the CCEOC interrupt number
153  * @vbat:               Battery voltage in mV
154  * @vbat_nom:           Nominal battery voltage in mV
155  * @inst_curr:          Instantenous battery current in mA
156  * @avg_curr:           Average battery current in mA
157  * @bat_temp            battery temperature
158  * @fg_samples:         Number of samples used in the FG accumulation
159  * @accu_charge:        Accumulated charge from the last conversion
160  * @recovery_cnt:       Counter for recovery mode
161  * @high_curr_cnt:      Counter for high current mode
162  * @init_cnt:           Counter for init mode
163  * @recovery_needed:    Indicate if recovery is needed
164  * @high_curr_mode:     Indicate if we're in high current mode
165  * @init_capacity:      Indicate if initial capacity measuring should be done
166  * @turn_off_fg:        True if fg was off before current measurement
167  * @calib_state         State during offset calibration
168  * @discharge_state:    Current discharge state
169  * @charge_state:       Current charge state
170  * @ab8500_fg_complete  Completion struct used for the instant current reading
171  * @flags:              Structure for information about events triggered
172  * @bat_cap:            Structure for battery capacity specific parameters
173  * @avg_cap:            Average capacity filter
174  * @parent:             Pointer to the struct ab8500
175  * @gpadc:              Pointer to the struct gpadc
176  * @bat:                Pointer to the abx500_bm platform data
177  * @fg_psy:             Structure that holds the FG specific battery properties
178  * @fg_wq:              Work queue for running the FG algorithm
179  * @fg_periodic_work:   Work to run the FG algorithm periodically
180  * @fg_low_bat_work:    Work to check low bat condition
181  * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
182  * @fg_work:            Work to run the FG algorithm instantly
183  * @fg_acc_cur_work:    Work to read the FG accumulator
184  * @fg_check_hw_failure_work:   Work for checking HW state
185  * @cc_lock:            Mutex for locking the CC
186  * @fg_kobject:         Structure of type kobject
187  */
188 struct ab8500_fg {
189         struct device *dev;
190         struct list_head node;
191         int irq;
192         int vbat;
193         int vbat_nom;
194         int inst_curr;
195         int avg_curr;
196         int bat_temp;
197         int fg_samples;
198         int accu_charge;
199         int recovery_cnt;
200         int high_curr_cnt;
201         int init_cnt;
202         bool recovery_needed;
203         bool high_curr_mode;
204         bool init_capacity;
205         bool turn_off_fg;
206         enum ab8500_fg_calibration_state calib_state;
207         enum ab8500_fg_discharge_state discharge_state;
208         enum ab8500_fg_charge_state charge_state;
209         struct completion ab8500_fg_complete;
210         struct ab8500_fg_flags flags;
211         struct ab8500_fg_battery_capacity bat_cap;
212         struct ab8500_fg_avg_cap avg_cap;
213         struct ab8500 *parent;
214         struct ab8500_gpadc *gpadc;
215         struct abx500_bm_data *bat;
216         struct power_supply fg_psy;
217         struct workqueue_struct *fg_wq;
218         struct delayed_work fg_periodic_work;
219         struct delayed_work fg_low_bat_work;
220         struct delayed_work fg_reinit_work;
221         struct work_struct fg_work;
222         struct work_struct fg_acc_cur_work;
223         struct delayed_work fg_check_hw_failure_work;
224         struct mutex cc_lock;
225         struct kobject fg_kobject;
226 };
227 static LIST_HEAD(ab8500_fg_list);
228
229 /**
230  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
231  * (i.e. the first fuel gauge in the instance list)
232  */
233 struct ab8500_fg *ab8500_fg_get(void)
234 {
235         struct ab8500_fg *fg;
236
237         if (list_empty(&ab8500_fg_list))
238                 return NULL;
239
240         fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
241         return fg;
242 }
243
244 /* Main battery properties */
245 static enum power_supply_property ab8500_fg_props[] = {
246         POWER_SUPPLY_PROP_VOLTAGE_NOW,
247         POWER_SUPPLY_PROP_CURRENT_NOW,
248         POWER_SUPPLY_PROP_CURRENT_AVG,
249         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
250         POWER_SUPPLY_PROP_ENERGY_FULL,
251         POWER_SUPPLY_PROP_ENERGY_NOW,
252         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
253         POWER_SUPPLY_PROP_CHARGE_FULL,
254         POWER_SUPPLY_PROP_CHARGE_NOW,
255         POWER_SUPPLY_PROP_CAPACITY,
256         POWER_SUPPLY_PROP_CAPACITY_LEVEL,
257 };
258
259 /*
260  * This array maps the raw hex value to lowbat voltage used by the AB8500
261  * Values taken from the UM0836
262  */
263 static int ab8500_fg_lowbat_voltage_map[] = {
264         2300 ,
265         2325 ,
266         2350 ,
267         2375 ,
268         2400 ,
269         2425 ,
270         2450 ,
271         2475 ,
272         2500 ,
273         2525 ,
274         2550 ,
275         2575 ,
276         2600 ,
277         2625 ,
278         2650 ,
279         2675 ,
280         2700 ,
281         2725 ,
282         2750 ,
283         2775 ,
284         2800 ,
285         2825 ,
286         2850 ,
287         2875 ,
288         2900 ,
289         2925 ,
290         2950 ,
291         2975 ,
292         3000 ,
293         3025 ,
294         3050 ,
295         3075 ,
296         3100 ,
297         3125 ,
298         3150 ,
299         3175 ,
300         3200 ,
301         3225 ,
302         3250 ,
303         3275 ,
304         3300 ,
305         3325 ,
306         3350 ,
307         3375 ,
308         3400 ,
309         3425 ,
310         3450 ,
311         3475 ,
312         3500 ,
313         3525 ,
314         3550 ,
315         3575 ,
316         3600 ,
317         3625 ,
318         3650 ,
319         3675 ,
320         3700 ,
321         3725 ,
322         3750 ,
323         3775 ,
324         3800 ,
325         3825 ,
326         3850 ,
327         3850 ,
328 };
329
330 static u8 ab8500_volt_to_regval(int voltage)
331 {
332         int i;
333
334         if (voltage < ab8500_fg_lowbat_voltage_map[0])
335                 return 0;
336
337         for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
338                 if (voltage < ab8500_fg_lowbat_voltage_map[i])
339                         return (u8) i - 1;
340         }
341
342         /* If not captured above, return index of last element */
343         return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
344 }
345
346 /**
347  * ab8500_fg_is_low_curr() - Low or high current mode
348  * @di:         pointer to the ab8500_fg structure
349  * @curr:       the current to base or our decision on
350  *
351  * Low current mode if the current consumption is below a certain threshold
352  */
353 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
354 {
355         /*
356          * We want to know if we're in low current mode
357          */
358         if (curr > -di->bat->fg_params->high_curr_threshold)
359                 return true;
360         else
361                 return false;
362 }
363
364 /**
365  * ab8500_fg_add_cap_sample() - Add capacity to average filter
366  * @di:         pointer to the ab8500_fg structure
367  * @sample:     the capacity in mAh to add to the filter
368  *
369  * A capacity is added to the filter and a new mean capacity is calculated and
370  * returned
371  */
372 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
373 {
374         struct timespec ts;
375         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
376
377         getnstimeofday(&ts);
378
379         do {
380                 avg->sum += sample - avg->samples[avg->pos];
381                 avg->samples[avg->pos] = sample;
382                 avg->time_stamps[avg->pos] = ts.tv_sec;
383                 avg->pos++;
384
385                 if (avg->pos == NBR_AVG_SAMPLES)
386                         avg->pos = 0;
387
388                 if (avg->nbr_samples < NBR_AVG_SAMPLES)
389                         avg->nbr_samples++;
390
391                 /*
392                  * Check the time stamp for each sample. If too old,
393                  * replace with latest sample
394                  */
395         } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
396
397         avg->avg = avg->sum / avg->nbr_samples;
398
399         return avg->avg;
400 }
401
402 /**
403  * ab8500_fg_clear_cap_samples() - Clear average filter
404  * @di:         pointer to the ab8500_fg structure
405  *
406  * The capacity filter is is reset to zero.
407  */
408 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
409 {
410         int i;
411         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
412
413         avg->pos = 0;
414         avg->nbr_samples = 0;
415         avg->sum = 0;
416         avg->avg = 0;
417
418         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
419                 avg->samples[i] = 0;
420                 avg->time_stamps[i] = 0;
421         }
422 }
423
424 /**
425  * ab8500_fg_fill_cap_sample() - Fill average filter
426  * @di:         pointer to the ab8500_fg structure
427  * @sample:     the capacity in mAh to fill the filter with
428  *
429  * The capacity filter is filled with a capacity in mAh
430  */
431 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
432 {
433         int i;
434         struct timespec ts;
435         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
436
437         getnstimeofday(&ts);
438
439         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
440                 avg->samples[i] = sample;
441                 avg->time_stamps[i] = ts.tv_sec;
442         }
443
444         avg->pos = 0;
445         avg->nbr_samples = NBR_AVG_SAMPLES;
446         avg->sum = sample * NBR_AVG_SAMPLES;
447         avg->avg = sample;
448 }
449
450 /**
451  * ab8500_fg_coulomb_counter() - enable coulomb counter
452  * @di:         pointer to the ab8500_fg structure
453  * @enable:     enable/disable
454  *
455  * Enable/Disable coulomb counter.
456  * On failure returns negative value.
457  */
458 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
459 {
460         int ret = 0;
461         mutex_lock(&di->cc_lock);
462         if (enable) {
463                 /* To be able to reprogram the number of samples, we have to
464                  * first stop the CC and then enable it again */
465                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
466                         AB8500_RTC_CC_CONF_REG, 0x00);
467                 if (ret)
468                         goto cc_err;
469
470                 /* Program the samples */
471                 ret = abx500_set_register_interruptible(di->dev,
472                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
473                         di->fg_samples);
474                 if (ret)
475                         goto cc_err;
476
477                 /* Start the CC */
478                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
479                         AB8500_RTC_CC_CONF_REG,
480                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
481                 if (ret)
482                         goto cc_err;
483
484                 di->flags.fg_enabled = true;
485         } else {
486                 /* Clear any pending read requests */
487                 ret = abx500_set_register_interruptible(di->dev,
488                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
489                 if (ret)
490                         goto cc_err;
491
492                 ret = abx500_set_register_interruptible(di->dev,
493                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
494                 if (ret)
495                         goto cc_err;
496
497                 /* Stop the CC */
498                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
499                         AB8500_RTC_CC_CONF_REG, 0);
500                 if (ret)
501                         goto cc_err;
502
503                 di->flags.fg_enabled = false;
504
505         }
506         dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
507                 enable, di->fg_samples);
508
509         mutex_unlock(&di->cc_lock);
510
511         return ret;
512 cc_err:
513         dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
514         mutex_unlock(&di->cc_lock);
515         return ret;
516 }
517
518 /**
519  * ab8500_fg_inst_curr_start() - start battery instantaneous current
520  * @di:         pointer to the ab8500_fg structure
521  *
522  * Returns 0 or error code
523  * Note: This is part "one" and has to be called before
524  * ab8500_fg_inst_curr_finalize()
525  */
526  int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
527 {
528         u8 reg_val;
529         int ret;
530
531         mutex_lock(&di->cc_lock);
532
533         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
534                 AB8500_RTC_CC_CONF_REG, &reg_val);
535         if (ret < 0)
536                 goto fail;
537
538         if (!(reg_val & CC_PWR_UP_ENA)) {
539                 dev_dbg(di->dev, "%s Enable FG\n", __func__);
540                 di->turn_off_fg = true;
541
542                 /* Program the samples */
543                 ret = abx500_set_register_interruptible(di->dev,
544                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
545                         SEC_TO_SAMPLE(10));
546                 if (ret)
547                         goto fail;
548
549                 /* Start the CC */
550                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
551                         AB8500_RTC_CC_CONF_REG,
552                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
553                 if (ret)
554                         goto fail;
555         } else {
556                 di->turn_off_fg = false;
557         }
558
559         /* Return and WFI */
560         INIT_COMPLETION(di->ab8500_fg_complete);
561         enable_irq(di->irq);
562
563         /* Note: cc_lock is still locked */
564         return 0;
565 fail:
566         mutex_unlock(&di->cc_lock);
567         return ret;
568 }
569
570 /**
571  * ab8500_fg_inst_curr_done() - check if fg conversion is done
572  * @di:         pointer to the ab8500_fg structure
573  *
574  * Returns 1 if conversion done, 0 if still waiting
575  */
576 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
577 {
578         return completion_done(&di->ab8500_fg_complete);
579 }
580
581 /**
582  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
583  * @di:         pointer to the ab8500_fg structure
584  * @res:        battery instantenous current(on success)
585  *
586  * Returns 0 or an error code
587  * Note: This is part "two" and has to be called at earliest 250 ms
588  * after ab8500_fg_inst_curr_start()
589  */
590 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
591 {
592         u8 low, high;
593         int val;
594         int ret;
595         int timeout;
596
597         if (!completion_done(&di->ab8500_fg_complete)) {
598                 timeout = wait_for_completion_timeout(&di->ab8500_fg_complete,
599                         INS_CURR_TIMEOUT);
600                 dev_dbg(di->dev, "Finalize time: %d ms\n",
601                         ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
602                 if (!timeout) {
603                         ret = -ETIME;
604                         disable_irq(di->irq);
605                         dev_err(di->dev, "completion timed out [%d]\n",
606                                 __LINE__);
607                         goto fail;
608                 }
609         }
610
611         disable_irq(di->irq);
612
613         ret = abx500_mask_and_set_register_interruptible(di->dev,
614                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
615                         READ_REQ, READ_REQ);
616
617         /* 100uS between read request and read is needed */
618         usleep_range(100, 100);
619
620         /* Read CC Sample conversion value Low and high */
621         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
622                 AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
623         if (ret < 0)
624                 goto fail;
625
626         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
627                 AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
628         if (ret < 0)
629                 goto fail;
630
631         /*
632          * negative value for Discharging
633          * convert 2's compliment into decimal
634          */
635         if (high & 0x10)
636                 val = (low | (high << 8) | 0xFFFFE000);
637         else
638                 val = (low | (high << 8));
639
640         /*
641          * Convert to unit value in mA
642          * Full scale input voltage is
643          * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
644          * Given a 250ms conversion cycle time the LSB corresponds
645          * to 112.9 nAh. Convert to current by dividing by the conversion
646          * time in hours (250ms = 1 / (3600 * 4)h)
647          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
648          */
649         val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
650                 (1000 * di->bat->fg_res);
651
652         if (di->turn_off_fg) {
653                 dev_dbg(di->dev, "%s Disable FG\n", __func__);
654
655                 /* Clear any pending read requests */
656                 ret = abx500_set_register_interruptible(di->dev,
657                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
658                 if (ret)
659                         goto fail;
660
661                 /* Stop the CC */
662                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
663                         AB8500_RTC_CC_CONF_REG, 0);
664                 if (ret)
665                         goto fail;
666         }
667         mutex_unlock(&di->cc_lock);
668         (*res) = val;
669
670         return 0;
671 fail:
672         mutex_unlock(&di->cc_lock);
673         return ret;
674 }
675
676 /**
677  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
678  * @di:         pointer to the ab8500_fg structure
679  * @res:        battery instantenous current(on success)
680  *
681  * Returns 0 else error code
682  */
683 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
684 {
685         int ret;
686         int res = 0;
687
688         ret = ab8500_fg_inst_curr_start(di);
689         if (ret) {
690                 dev_err(di->dev, "Failed to initialize fg_inst\n");
691                 return 0;
692         }
693
694         ret = ab8500_fg_inst_curr_finalize(di, &res);
695         if (ret) {
696                 dev_err(di->dev, "Failed to finalize fg_inst\n");
697                 return 0;
698         }
699
700         return res;
701 }
702
703 /**
704  * ab8500_fg_acc_cur_work() - average battery current
705  * @work:       pointer to the work_struct structure
706  *
707  * Updated the average battery current obtained from the
708  * coulomb counter.
709  */
710 static void ab8500_fg_acc_cur_work(struct work_struct *work)
711 {
712         int val;
713         int ret;
714         u8 low, med, high;
715
716         struct ab8500_fg *di = container_of(work,
717                 struct ab8500_fg, fg_acc_cur_work);
718
719         mutex_lock(&di->cc_lock);
720         ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
721                 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
722         if (ret)
723                 goto exit;
724
725         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
726                 AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
727         if (ret < 0)
728                 goto exit;
729
730         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
731                 AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
732         if (ret < 0)
733                 goto exit;
734
735         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
736                 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
737         if (ret < 0)
738                 goto exit;
739
740         /* Check for sign bit in case of negative value, 2's compliment */
741         if (high & 0x10)
742                 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
743         else
744                 val = (low | (med << 8) | (high << 16));
745
746         /*
747          * Convert to uAh
748          * Given a 250ms conversion cycle time the LSB corresponds
749          * to 112.9 nAh.
750          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
751          */
752         di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
753                 (100 * di->bat->fg_res);
754
755         /*
756          * Convert to unit value in mA
757          * Full scale input voltage is
758          * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
759          * Given a 250ms conversion cycle time the LSB corresponds
760          * to 112.9 nAh. Convert to current by dividing by the conversion
761          * time in hours (= samples / (3600 * 4)h)
762          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
763          */
764         di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
765                 (1000 * di->bat->fg_res * (di->fg_samples / 4));
766
767         di->flags.conv_done = true;
768
769         mutex_unlock(&di->cc_lock);
770
771         queue_work(di->fg_wq, &di->fg_work);
772
773         return;
774 exit:
775         dev_err(di->dev,
776                 "Failed to read or write gas gauge registers\n");
777         mutex_unlock(&di->cc_lock);
778         queue_work(di->fg_wq, &di->fg_work);
779 }
780
781 /**
782  * ab8500_fg_bat_voltage() - get battery voltage
783  * @di:         pointer to the ab8500_fg structure
784  *
785  * Returns battery voltage(on success) else error code
786  */
787 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
788 {
789         int vbat;
790         static int prev;
791
792         vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
793         if (vbat < 0) {
794                 dev_err(di->dev,
795                         "%s gpadc conversion failed, using previous value\n",
796                         __func__);
797                 return prev;
798         }
799
800         prev = vbat;
801         return vbat;
802 }
803
804 /**
805  * ab8500_fg_volt_to_capacity() - Voltage based capacity
806  * @di:         pointer to the ab8500_fg structure
807  * @voltage:    The voltage to convert to a capacity
808  *
809  * Returns battery capacity in per mille based on voltage
810  */
811 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
812 {
813         int i, tbl_size;
814         struct abx500_v_to_cap *tbl;
815         int cap = 0;
816
817         tbl = di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl,
818         tbl_size = di->bat->bat_type[di->bat->batt_id].n_v_cap_tbl_elements;
819
820         for (i = 0; i < tbl_size; ++i) {
821                 if (voltage > tbl[i].voltage)
822                         break;
823         }
824
825         if ((i > 0) && (i < tbl_size)) {
826                 cap = interpolate(voltage,
827                         tbl[i].voltage,
828                         tbl[i].capacity * 10,
829                         tbl[i-1].voltage,
830                         tbl[i-1].capacity * 10);
831         } else if (i == 0) {
832                 cap = 1000;
833         } else {
834                 cap = 0;
835         }
836
837         dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
838                 __func__, voltage, cap);
839
840         return cap;
841 }
842
843 /**
844  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
845  * @di:         pointer to the ab8500_fg structure
846  *
847  * Returns battery capacity based on battery voltage that is not compensated
848  * for the voltage drop due to the load
849  */
850 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
851 {
852         di->vbat = ab8500_fg_bat_voltage(di);
853         return ab8500_fg_volt_to_capacity(di, di->vbat);
854 }
855
856 /**
857  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
858  * @di:         pointer to the ab8500_fg structure
859  *
860  * Returns battery inner resistance added with the fuel gauge resistor value
861  * to get the total resistance in the whole link from gnd to bat+ node.
862  */
863 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
864 {
865         int i, tbl_size;
866         struct batres_vs_temp *tbl;
867         int resist = 0;
868
869         tbl = di->bat->bat_type[di->bat->batt_id].batres_tbl;
870         tbl_size = di->bat->bat_type[di->bat->batt_id].n_batres_tbl_elements;
871
872         for (i = 0; i < tbl_size; ++i) {
873                 if (di->bat_temp / 10 > tbl[i].temp)
874                         break;
875         }
876
877         if ((i > 0) && (i < tbl_size)) {
878                 resist = interpolate(di->bat_temp / 10,
879                         tbl[i].temp,
880                         tbl[i].resist,
881                         tbl[i-1].temp,
882                         tbl[i-1].resist);
883         } else if (i == 0) {
884                 resist = tbl[0].resist;
885         } else {
886                 resist = tbl[tbl_size - 1].resist;
887         }
888
889         dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
890             " fg resistance %d, total: %d (mOhm)\n",
891                 __func__, di->bat_temp, resist, di->bat->fg_res / 10,
892                 (di->bat->fg_res / 10) + resist);
893
894         /* fg_res variable is in 0.1mOhm */
895         resist += di->bat->fg_res / 10;
896
897         return resist;
898 }
899
900 /**
901  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
902  * @di:         pointer to the ab8500_fg structure
903  *
904  * Returns battery capacity based on battery voltage that is load compensated
905  * for the voltage drop
906  */
907 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
908 {
909         int vbat_comp, res;
910         int i = 0;
911         int vbat = 0;
912
913         ab8500_fg_inst_curr_start(di);
914
915         do {
916                 vbat += ab8500_fg_bat_voltage(di);
917                 i++;
918                 msleep(5);
919         } while (!ab8500_fg_inst_curr_done(di));
920
921         ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
922
923         di->vbat = vbat / i;
924         res = ab8500_fg_battery_resistance(di);
925
926         /* Use Ohms law to get the load compensated voltage */
927         vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
928
929         dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
930                 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
931                 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
932
933         return ab8500_fg_volt_to_capacity(di, vbat_comp);
934 }
935
936 /**
937  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
938  * @di:         pointer to the ab8500_fg structure
939  * @cap_mah:    capacity in mAh
940  *
941  * Converts capacity in mAh to capacity in permille
942  */
943 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
944 {
945         return (cap_mah * 1000) / di->bat_cap.max_mah_design;
946 }
947
948 /**
949  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
950  * @di:         pointer to the ab8500_fg structure
951  * @cap_pm:     capacity in permille
952  *
953  * Converts capacity in permille to capacity in mAh
954  */
955 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
956 {
957         return cap_pm * di->bat_cap.max_mah_design / 1000;
958 }
959
960 /**
961  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
962  * @di:         pointer to the ab8500_fg structure
963  * @cap_mah:    capacity in mAh
964  *
965  * Converts capacity in mAh to capacity in uWh
966  */
967 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
968 {
969         u64 div_res;
970         u32 div_rem;
971
972         div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
973         div_rem = do_div(div_res, 1000);
974
975         /* Make sure to round upwards if necessary */
976         if (div_rem >= 1000 / 2)
977                 div_res++;
978
979         return (int) div_res;
980 }
981
982 /**
983  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
984  * @di:         pointer to the ab8500_fg structure
985  *
986  * Return the capacity in mAh based on previous calculated capcity and the FG
987  * accumulator register value. The filter is filled with this capacity
988  */
989 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
990 {
991         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
992                 __func__,
993                 di->bat_cap.mah,
994                 di->accu_charge);
995
996         /* Capacity should not be less than 0 */
997         if (di->bat_cap.mah + di->accu_charge > 0)
998                 di->bat_cap.mah += di->accu_charge;
999         else
1000                 di->bat_cap.mah = 0;
1001         /*
1002          * We force capacity to 100% once when the algorithm
1003          * reports that it's full.
1004          */
1005         if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1006                 di->flags.force_full) {
1007                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1008         }
1009
1010         ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1011         di->bat_cap.permille =
1012                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1013
1014         /* We need to update battery voltage and inst current when charging */
1015         di->vbat = ab8500_fg_bat_voltage(di);
1016         di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1017
1018         return di->bat_cap.mah;
1019 }
1020
1021 /**
1022  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1023  * @di:         pointer to the ab8500_fg structure
1024  * @comp:       if voltage should be load compensated before capacity calc
1025  *
1026  * Return the capacity in mAh based on the battery voltage. The voltage can
1027  * either be load compensated or not. This value is added to the filter and a
1028  * new mean value is calculated and returned.
1029  */
1030 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1031 {
1032         int permille, mah;
1033
1034         if (comp)
1035                 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1036         else
1037                 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1038
1039         mah = ab8500_fg_convert_permille_to_mah(di, permille);
1040
1041         di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1042         di->bat_cap.permille =
1043                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1044
1045         return di->bat_cap.mah;
1046 }
1047
1048 /**
1049  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1050  * @di:         pointer to the ab8500_fg structure
1051  *
1052  * Return the capacity in mAh based on previous calculated capcity and the FG
1053  * accumulator register value. This value is added to the filter and a
1054  * new mean value is calculated and returned.
1055  */
1056 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1057 {
1058         int permille_volt, permille;
1059
1060         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1061                 __func__,
1062                 di->bat_cap.mah,
1063                 di->accu_charge);
1064
1065         /* Capacity should not be less than 0 */
1066         if (di->bat_cap.mah + di->accu_charge > 0)
1067                 di->bat_cap.mah += di->accu_charge;
1068         else
1069                 di->bat_cap.mah = 0;
1070
1071         if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1072                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1073
1074         /*
1075          * Check against voltage based capacity. It can not be lower
1076          * than what the uncompensated voltage says
1077          */
1078         permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1079         permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1080
1081         if (permille < permille_volt) {
1082                 di->bat_cap.permille = permille_volt;
1083                 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1084                         di->bat_cap.permille);
1085
1086                 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1087                         __func__,
1088                         permille,
1089                         permille_volt);
1090
1091                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1092         } else {
1093                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1094                 di->bat_cap.permille =
1095                         ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1096         }
1097
1098         return di->bat_cap.mah;
1099 }
1100
1101 /**
1102  * ab8500_fg_capacity_level() - Get the battery capacity level
1103  * @di:         pointer to the ab8500_fg structure
1104  *
1105  * Get the battery capacity level based on the capacity in percent
1106  */
1107 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1108 {
1109         int ret, percent;
1110
1111         percent = di->bat_cap.permille / 10;
1112
1113         if (percent <= di->bat->cap_levels->critical ||
1114                 di->flags.low_bat)
1115                 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1116         else if (percent <= di->bat->cap_levels->low)
1117                 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1118         else if (percent <= di->bat->cap_levels->normal)
1119                 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1120         else if (percent <= di->bat->cap_levels->high)
1121                 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1122         else
1123                 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1124
1125         return ret;
1126 }
1127
1128 /**
1129  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1130  * @di:         pointer to the ab8500_fg structure
1131  * @init:       capacity is allowed to go up in init mode
1132  *
1133  * Check if capacity or capacity limit has changed and notify the system
1134  * about it using the power_supply framework
1135  */
1136 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1137 {
1138         bool changed = false;
1139
1140         di->bat_cap.level = ab8500_fg_capacity_level(di);
1141
1142         if (di->bat_cap.level != di->bat_cap.prev_level) {
1143                 /*
1144                  * We do not allow reported capacity level to go up
1145                  * unless we're charging or if we're in init
1146                  */
1147                 if (!(!di->flags.charging && di->bat_cap.level >
1148                         di->bat_cap.prev_level) || init) {
1149                         dev_dbg(di->dev, "level changed from %d to %d\n",
1150                                 di->bat_cap.prev_level,
1151                                 di->bat_cap.level);
1152                         di->bat_cap.prev_level = di->bat_cap.level;
1153                         changed = true;
1154                 } else {
1155                         dev_dbg(di->dev, "level not allowed to go up "
1156                                 "since no charger is connected: %d to %d\n",
1157                                 di->bat_cap.prev_level,
1158                                 di->bat_cap.level);
1159                 }
1160         }
1161
1162         /*
1163          * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1164          * shutdown
1165          */
1166         if (di->flags.low_bat) {
1167                 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1168                 di->bat_cap.prev_percent = 0;
1169                 di->bat_cap.permille = 0;
1170                 di->bat_cap.prev_mah = 0;
1171                 di->bat_cap.mah = 0;
1172                 changed = true;
1173         } else if (di->flags.fully_charged) {
1174                 /*
1175                  * We report 100% if algorithm reported fully charged
1176                  * unless capacity drops too much
1177                  */
1178                 if (di->flags.force_full) {
1179                         di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1180                         di->bat_cap.prev_mah = di->bat_cap.mah;
1181                 } else if (!di->flags.force_full &&
1182                         di->bat_cap.prev_percent !=
1183                         (di->bat_cap.permille) / 10 &&
1184                         (di->bat_cap.permille / 10) <
1185                         di->bat->fg_params->maint_thres) {
1186                         dev_dbg(di->dev,
1187                                 "battery reported full "
1188                                 "but capacity dropping: %d\n",
1189                                 di->bat_cap.permille / 10);
1190                         di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1191                         di->bat_cap.prev_mah = di->bat_cap.mah;
1192
1193                         changed = true;
1194                 }
1195         } else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) {
1196                 if (di->bat_cap.permille / 10 == 0) {
1197                         /*
1198                          * We will not report 0% unless we've got
1199                          * the LOW_BAT IRQ, no matter what the FG
1200                          * algorithm says.
1201                          */
1202                         di->bat_cap.prev_percent = 1;
1203                         di->bat_cap.permille = 1;
1204                         di->bat_cap.prev_mah = 1;
1205                         di->bat_cap.mah = 1;
1206
1207                         changed = true;
1208                 } else if (!(!di->flags.charging &&
1209                         (di->bat_cap.permille / 10) >
1210                         di->bat_cap.prev_percent) || init) {
1211                         /*
1212                          * We do not allow reported capacity to go up
1213                          * unless we're charging or if we're in init
1214                          */
1215                         dev_dbg(di->dev,
1216                                 "capacity changed from %d to %d (%d)\n",
1217                                 di->bat_cap.prev_percent,
1218                                 di->bat_cap.permille / 10,
1219                                 di->bat_cap.permille);
1220                         di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1221                         di->bat_cap.prev_mah = di->bat_cap.mah;
1222
1223                         changed = true;
1224                 } else {
1225                         dev_dbg(di->dev, "capacity not allowed to go up since "
1226                                 "no charger is connected: %d to %d (%d)\n",
1227                                 di->bat_cap.prev_percent,
1228                                 di->bat_cap.permille / 10,
1229                                 di->bat_cap.permille);
1230                 }
1231         }
1232
1233         if (changed) {
1234                 power_supply_changed(&di->fg_psy);
1235                 if (di->flags.fully_charged && di->flags.force_full) {
1236                         dev_dbg(di->dev, "Battery full, notifying.\n");
1237                         di->flags.force_full = false;
1238                         sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1239                 }
1240                 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1241         }
1242 }
1243
1244 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1245         enum ab8500_fg_charge_state new_state)
1246 {
1247         dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1248                 di->charge_state,
1249                 charge_state[di->charge_state],
1250                 new_state,
1251                 charge_state[new_state]);
1252
1253         di->charge_state = new_state;
1254 }
1255
1256 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1257         enum ab8500_fg_discharge_state new_state)
1258 {
1259         dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1260                 di->discharge_state,
1261                 discharge_state[di->discharge_state],
1262                 new_state,
1263                 discharge_state[new_state]);
1264
1265         di->discharge_state = new_state;
1266 }
1267
1268 /**
1269  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1270  * @di:         pointer to the ab8500_fg structure
1271  *
1272  * Battery capacity calculation state machine for when we're charging
1273  */
1274 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1275 {
1276         /*
1277          * If we change to discharge mode
1278          * we should start with recovery
1279          */
1280         if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1281                 ab8500_fg_discharge_state_to(di,
1282                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1283
1284         switch (di->charge_state) {
1285         case AB8500_FG_CHARGE_INIT:
1286                 di->fg_samples = SEC_TO_SAMPLE(
1287                         di->bat->fg_params->accu_charging);
1288
1289                 ab8500_fg_coulomb_counter(di, true);
1290                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1291
1292                 break;
1293
1294         case AB8500_FG_CHARGE_READOUT:
1295                 /*
1296                  * Read the FG and calculate the new capacity
1297                  */
1298                 mutex_lock(&di->cc_lock);
1299                 if (!di->flags.conv_done) {
1300                         /* Wasn't the CC IRQ that got us here */
1301                         mutex_unlock(&di->cc_lock);
1302                         dev_dbg(di->dev, "%s CC conv not done\n",
1303                                 __func__);
1304
1305                         break;
1306                 }
1307                 di->flags.conv_done = false;
1308                 mutex_unlock(&di->cc_lock);
1309
1310                 ab8500_fg_calc_cap_charging(di);
1311
1312                 break;
1313
1314         default:
1315                 break;
1316         }
1317
1318         /* Check capacity limits */
1319         ab8500_fg_check_capacity_limits(di, false);
1320 }
1321
1322 static void force_capacity(struct ab8500_fg *di)
1323 {
1324         int cap;
1325
1326         ab8500_fg_clear_cap_samples(di);
1327         cap = di->bat_cap.user_mah;
1328         if (cap > di->bat_cap.max_mah_design) {
1329                 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1330                         " %d\n", cap, di->bat_cap.max_mah_design);
1331                 cap = di->bat_cap.max_mah_design;
1332         }
1333         ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1334         di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1335         di->bat_cap.mah = cap;
1336         ab8500_fg_check_capacity_limits(di, true);
1337 }
1338
1339 static bool check_sysfs_capacity(struct ab8500_fg *di)
1340 {
1341         int cap, lower, upper;
1342         int cap_permille;
1343
1344         cap = di->bat_cap.user_mah;
1345
1346         cap_permille = ab8500_fg_convert_mah_to_permille(di,
1347                 di->bat_cap.user_mah);
1348
1349         lower = di->bat_cap.permille - di->bat->fg_params->user_cap_limit * 10;
1350         upper = di->bat_cap.permille + di->bat->fg_params->user_cap_limit * 10;
1351
1352         if (lower < 0)
1353                 lower = 0;
1354         /* 1000 is permille, -> 100 percent */
1355         if (upper > 1000)
1356                 upper = 1000;
1357
1358         dev_dbg(di->dev, "Capacity limits:"
1359                 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1360                 lower, cap_permille, upper, cap, di->bat_cap.mah);
1361
1362         /* If within limits, use the saved capacity and exit estimation...*/
1363         if (cap_permille > lower && cap_permille < upper) {
1364                 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1365                 force_capacity(di);
1366                 return true;
1367         }
1368         dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1369         return false;
1370 }
1371
1372 /**
1373  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1374  * @di:         pointer to the ab8500_fg structure
1375  *
1376  * Battery capacity calculation state machine for when we're discharging
1377  */
1378 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1379 {
1380         int sleep_time;
1381
1382         /* If we change to charge mode we should start with init */
1383         if (di->charge_state != AB8500_FG_CHARGE_INIT)
1384                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1385
1386         switch (di->discharge_state) {
1387         case AB8500_FG_DISCHARGE_INIT:
1388                 /* We use the FG IRQ to work on */
1389                 di->init_cnt = 0;
1390                 di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
1391                 ab8500_fg_coulomb_counter(di, true);
1392                 ab8500_fg_discharge_state_to(di,
1393                         AB8500_FG_DISCHARGE_INITMEASURING);
1394
1395                 /* Intentional fallthrough */
1396         case AB8500_FG_DISCHARGE_INITMEASURING:
1397                 /*
1398                  * Discard a number of samples during startup.
1399                  * After that, use compensated voltage for a few
1400                  * samples to get an initial capacity.
1401                  * Then go to READOUT
1402                  */
1403                 sleep_time = di->bat->fg_params->init_timer;
1404
1405                 /* Discard the first [x] seconds */
1406                 if (di->init_cnt >
1407                         di->bat->fg_params->init_discard_time) {
1408                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1409
1410                         ab8500_fg_check_capacity_limits(di, true);
1411                 }
1412
1413                 di->init_cnt += sleep_time;
1414                 if (di->init_cnt > di->bat->fg_params->init_total_time)
1415                         ab8500_fg_discharge_state_to(di,
1416                                 AB8500_FG_DISCHARGE_READOUT_INIT);
1417
1418                 break;
1419
1420         case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1421                 di->recovery_cnt = 0;
1422                 di->recovery_needed = true;
1423                 ab8500_fg_discharge_state_to(di,
1424                         AB8500_FG_DISCHARGE_RECOVERY);
1425
1426                 /* Intentional fallthrough */
1427
1428         case AB8500_FG_DISCHARGE_RECOVERY:
1429                 sleep_time = di->bat->fg_params->recovery_sleep_timer;
1430
1431                 /*
1432                  * We should check the power consumption
1433                  * If low, go to READOUT (after x min) or
1434                  * RECOVERY_SLEEP if time left.
1435                  * If high, go to READOUT
1436                  */
1437                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1438
1439                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1440                         if (di->recovery_cnt >
1441                                 di->bat->fg_params->recovery_total_time) {
1442                                 di->fg_samples = SEC_TO_SAMPLE(
1443                                         di->bat->fg_params->accu_high_curr);
1444                                 ab8500_fg_coulomb_counter(di, true);
1445                                 ab8500_fg_discharge_state_to(di,
1446                                         AB8500_FG_DISCHARGE_READOUT);
1447                                 di->recovery_needed = false;
1448                         } else {
1449                                 queue_delayed_work(di->fg_wq,
1450                                         &di->fg_periodic_work,
1451                                         sleep_time * HZ);
1452                         }
1453                         di->recovery_cnt += sleep_time;
1454                 } else {
1455                         di->fg_samples = SEC_TO_SAMPLE(
1456                                 di->bat->fg_params->accu_high_curr);
1457                         ab8500_fg_coulomb_counter(di, true);
1458                         ab8500_fg_discharge_state_to(di,
1459                                 AB8500_FG_DISCHARGE_READOUT);
1460                 }
1461                 break;
1462
1463         case AB8500_FG_DISCHARGE_READOUT_INIT:
1464                 di->fg_samples = SEC_TO_SAMPLE(
1465                         di->bat->fg_params->accu_high_curr);
1466                 ab8500_fg_coulomb_counter(di, true);
1467                 ab8500_fg_discharge_state_to(di,
1468                                 AB8500_FG_DISCHARGE_READOUT);
1469                 break;
1470
1471         case AB8500_FG_DISCHARGE_READOUT:
1472                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1473
1474                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1475                         /* Detect mode change */
1476                         if (di->high_curr_mode) {
1477                                 di->high_curr_mode = false;
1478                                 di->high_curr_cnt = 0;
1479                         }
1480
1481                         if (di->recovery_needed) {
1482                                 ab8500_fg_discharge_state_to(di,
1483                                         AB8500_FG_DISCHARGE_RECOVERY);
1484
1485                                 queue_delayed_work(di->fg_wq,
1486                                         &di->fg_periodic_work, 0);
1487
1488                                 break;
1489                         }
1490
1491                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1492                 } else {
1493                         mutex_lock(&di->cc_lock);
1494                         if (!di->flags.conv_done) {
1495                                 /* Wasn't the CC IRQ that got us here */
1496                                 mutex_unlock(&di->cc_lock);
1497                                 dev_dbg(di->dev, "%s CC conv not done\n",
1498                                         __func__);
1499
1500                                 break;
1501                         }
1502                         di->flags.conv_done = false;
1503                         mutex_unlock(&di->cc_lock);
1504
1505                         /* Detect mode change */
1506                         if (!di->high_curr_mode) {
1507                                 di->high_curr_mode = true;
1508                                 di->high_curr_cnt = 0;
1509                         }
1510
1511                         di->high_curr_cnt +=
1512                                 di->bat->fg_params->accu_high_curr;
1513                         if (di->high_curr_cnt >
1514                                 di->bat->fg_params->high_curr_time)
1515                                 di->recovery_needed = true;
1516
1517                         ab8500_fg_calc_cap_discharge_fg(di);
1518                 }
1519
1520                 ab8500_fg_check_capacity_limits(di, false);
1521
1522                 break;
1523
1524         case AB8500_FG_DISCHARGE_WAKEUP:
1525                 ab8500_fg_coulomb_counter(di, true);
1526                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1527
1528                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1529
1530                 di->fg_samples = SEC_TO_SAMPLE(
1531                         di->bat->fg_params->accu_high_curr);
1532                 ab8500_fg_coulomb_counter(di, true);
1533                 ab8500_fg_discharge_state_to(di,
1534                                 AB8500_FG_DISCHARGE_READOUT);
1535
1536                 ab8500_fg_check_capacity_limits(di, false);
1537
1538                 break;
1539
1540         default:
1541                 break;
1542         }
1543 }
1544
1545 /**
1546  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1547  * @di:         pointer to the ab8500_fg structure
1548  *
1549  */
1550 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1551 {
1552         int ret;
1553
1554         switch (di->calib_state) {
1555         case AB8500_FG_CALIB_INIT:
1556                 dev_dbg(di->dev, "Calibration ongoing...\n");
1557
1558                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1559                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1560                         CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1561                 if (ret < 0)
1562                         goto err;
1563
1564                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1565                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1566                         CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1567                 if (ret < 0)
1568                         goto err;
1569                 di->calib_state = AB8500_FG_CALIB_WAIT;
1570                 break;
1571         case AB8500_FG_CALIB_END:
1572                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1573                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1574                         CC_MUXOFFSET, CC_MUXOFFSET);
1575                 if (ret < 0)
1576                         goto err;
1577                 di->flags.calibrate = false;
1578                 dev_dbg(di->dev, "Calibration done...\n");
1579                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1580                 break;
1581         case AB8500_FG_CALIB_WAIT:
1582                 dev_dbg(di->dev, "Calibration WFI\n");
1583         default:
1584                 break;
1585         }
1586         return;
1587 err:
1588         /* Something went wrong, don't calibrate then */
1589         dev_err(di->dev, "failed to calibrate the CC\n");
1590         di->flags.calibrate = false;
1591         di->calib_state = AB8500_FG_CALIB_INIT;
1592         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1593 }
1594
1595 /**
1596  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1597  * @di:         pointer to the ab8500_fg structure
1598  *
1599  * Entry point for the battery capacity calculation state machine
1600  */
1601 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1602 {
1603         if (di->flags.calibrate)
1604                 ab8500_fg_algorithm_calibrate(di);
1605         else {
1606                 if (di->flags.charging)
1607                         ab8500_fg_algorithm_charging(di);
1608                 else
1609                         ab8500_fg_algorithm_discharging(di);
1610         }
1611
1612         dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1613                 "%d %d %d %d %d %d %d\n",
1614                 di->bat_cap.max_mah_design,
1615                 di->bat_cap.mah,
1616                 di->bat_cap.permille,
1617                 di->bat_cap.level,
1618                 di->bat_cap.prev_mah,
1619                 di->bat_cap.prev_percent,
1620                 di->bat_cap.prev_level,
1621                 di->vbat,
1622                 di->inst_curr,
1623                 di->avg_curr,
1624                 di->accu_charge,
1625                 di->flags.charging,
1626                 di->charge_state,
1627                 di->discharge_state,
1628                 di->high_curr_mode,
1629                 di->recovery_needed);
1630 }
1631
1632 /**
1633  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1634  * @work:       pointer to the work_struct structure
1635  *
1636  * Work queue function for periodic work
1637  */
1638 static void ab8500_fg_periodic_work(struct work_struct *work)
1639 {
1640         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1641                 fg_periodic_work.work);
1642
1643         if (di->init_capacity) {
1644                 /* A dummy read that will return 0 */
1645                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1646                 /* Get an initial capacity calculation */
1647                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1648                 ab8500_fg_check_capacity_limits(di, true);
1649                 di->init_capacity = false;
1650
1651                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1652         } else if (di->flags.user_cap) {
1653                 if (check_sysfs_capacity(di)) {
1654                         ab8500_fg_check_capacity_limits(di, true);
1655                         if (di->flags.charging)
1656                                 ab8500_fg_charge_state_to(di,
1657                                         AB8500_FG_CHARGE_INIT);
1658                         else
1659                                 ab8500_fg_discharge_state_to(di,
1660                                         AB8500_FG_DISCHARGE_READOUT_INIT);
1661                 }
1662                 di->flags.user_cap = false;
1663                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1664         } else
1665                 ab8500_fg_algorithm(di);
1666
1667 }
1668
1669 /**
1670  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1671  * @work:       pointer to the work_struct structure
1672  *
1673  * Work queue function for checking the OVV_BAT condition
1674  */
1675 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1676 {
1677         int ret;
1678         u8 reg_value;
1679
1680         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1681                 fg_check_hw_failure_work.work);
1682
1683         /*
1684          * If we have had a battery over-voltage situation,
1685          * check ovv-bit to see if it should be reset.
1686          */
1687         if (di->flags.bat_ovv) {
1688                 ret = abx500_get_register_interruptible(di->dev,
1689                         AB8500_CHARGER, AB8500_CH_STAT_REG,
1690                         &reg_value);
1691                 if (ret < 0) {
1692                         dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1693                         return;
1694                 }
1695                 if ((reg_value & BATT_OVV) != BATT_OVV) {
1696                         dev_dbg(di->dev, "Battery recovered from OVV\n");
1697                         di->flags.bat_ovv = false;
1698                         power_supply_changed(&di->fg_psy);
1699                         return;
1700                 }
1701
1702                 /* Not yet recovered from ovv, reschedule this test */
1703                 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1704                                    round_jiffies(HZ));
1705         }
1706 }
1707
1708 /**
1709  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1710  * @work:       pointer to the work_struct structure
1711  *
1712  * Work queue function for checking the LOW_BAT condition
1713  */
1714 static void ab8500_fg_low_bat_work(struct work_struct *work)
1715 {
1716         int vbat;
1717
1718         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1719                 fg_low_bat_work.work);
1720
1721         vbat = ab8500_fg_bat_voltage(di);
1722
1723         /* Check if LOW_BAT still fulfilled */
1724         if (vbat < di->bat->fg_params->lowbat_threshold) {
1725                 di->flags.low_bat = true;
1726                 dev_warn(di->dev, "Battery voltage still LOW\n");
1727
1728                 /*
1729                  * We need to re-schedule this check to be able to detect
1730                  * if the voltage increases again during charging
1731                  */
1732                 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1733                         round_jiffies(LOW_BAT_CHECK_INTERVAL));
1734         } else {
1735                 di->flags.low_bat = false;
1736                 dev_warn(di->dev, "Battery voltage OK again\n");
1737         }
1738
1739         /* This is needed to dispatch LOW_BAT */
1740         ab8500_fg_check_capacity_limits(di, false);
1741
1742         /* Set this flag to check if LOW_BAT IRQ still occurs */
1743         di->flags.low_bat_delay = false;
1744 }
1745
1746 /**
1747  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1748  * to the target voltage.
1749  * @di:       pointer to the ab8500_fg structure
1750  * @target    target voltage
1751  *
1752  * Returns bit pattern closest to the target voltage
1753  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1754  */
1755
1756 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1757 {
1758         if (target > BATT_OK_MIN +
1759                 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1760                 return BATT_OK_MAX_NR_INCREMENTS;
1761         if (target < BATT_OK_MIN)
1762                 return 0;
1763         return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1764 }
1765
1766 /**
1767  * ab8500_fg_battok_init_hw_register - init battok levels
1768  * @di:       pointer to the ab8500_fg structure
1769  *
1770  */
1771
1772 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1773 {
1774         int selected;
1775         int sel0;
1776         int sel1;
1777         int cbp_sel0;
1778         int cbp_sel1;
1779         int ret;
1780         int new_val;
1781
1782         sel0 = di->bat->fg_params->battok_falling_th_sel0;
1783         sel1 = di->bat->fg_params->battok_raising_th_sel1;
1784
1785         cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1786         cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1787
1788         selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1789
1790         if (selected != sel0)
1791                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1792                         sel0, selected, cbp_sel0);
1793
1794         selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1795
1796         if (selected != sel1)
1797                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1798                         sel1, selected, cbp_sel1);
1799
1800         new_val = cbp_sel0 | (cbp_sel1 << 4);
1801
1802         dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1803         ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1804                 AB8500_BATT_OK_REG, new_val);
1805         return ret;
1806 }
1807
1808 /**
1809  * ab8500_fg_instant_work() - Run the FG state machine instantly
1810  * @work:       pointer to the work_struct structure
1811  *
1812  * Work queue function for instant work
1813  */
1814 static void ab8500_fg_instant_work(struct work_struct *work)
1815 {
1816         struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1817
1818         ab8500_fg_algorithm(di);
1819 }
1820
1821 /**
1822  * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1823  * @irq:       interrupt number
1824  * @_di:       pointer to the ab8500_fg structure
1825  *
1826  * Returns IRQ status(IRQ_HANDLED)
1827  */
1828 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1829 {
1830         struct ab8500_fg *di = _di;
1831         complete(&di->ab8500_fg_complete);
1832         return IRQ_HANDLED;
1833 }
1834
1835 /**
1836  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1837  * @irq:       interrupt number
1838  * @_di:       pointer to the ab8500_fg structure
1839  *
1840  * Returns IRQ status(IRQ_HANDLED)
1841  */
1842 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
1843 {
1844         struct ab8500_fg *di = _di;
1845         di->calib_state = AB8500_FG_CALIB_END;
1846         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1847         return IRQ_HANDLED;
1848 }
1849
1850 /**
1851  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1852  * @irq:       interrupt number
1853  * @_di:       pointer to the ab8500_fg structure
1854  *
1855  * Returns IRQ status(IRQ_HANDLED)
1856  */
1857 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
1858 {
1859         struct ab8500_fg *di = _di;
1860
1861         queue_work(di->fg_wq, &di->fg_acc_cur_work);
1862
1863         return IRQ_HANDLED;
1864 }
1865
1866 /**
1867  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
1868  * @irq:       interrupt number
1869  * @_di:       pointer to the ab8500_fg structure
1870  *
1871  * Returns IRQ status(IRQ_HANDLED)
1872  */
1873 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
1874 {
1875         struct ab8500_fg *di = _di;
1876
1877         dev_dbg(di->dev, "Battery OVV\n");
1878         di->flags.bat_ovv = true;
1879         power_supply_changed(&di->fg_psy);
1880
1881         /* Schedule a new HW failure check */
1882         queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
1883
1884         return IRQ_HANDLED;
1885 }
1886
1887 /**
1888  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
1889  * @irq:       interrupt number
1890  * @_di:       pointer to the ab8500_fg structure
1891  *
1892  * Returns IRQ status(IRQ_HANDLED)
1893  */
1894 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
1895 {
1896         struct ab8500_fg *di = _di;
1897
1898         if (!di->flags.low_bat_delay) {
1899                 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
1900                 di->flags.low_bat_delay = true;
1901                 /*
1902                  * Start a timer to check LOW_BAT again after some time
1903                  * This is done to avoid shutdown on single voltage dips
1904                  */
1905                 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1906                         round_jiffies(LOW_BAT_CHECK_INTERVAL));
1907         }
1908         return IRQ_HANDLED;
1909 }
1910
1911 /**
1912  * ab8500_fg_get_property() - get the fg properties
1913  * @psy:        pointer to the power_supply structure
1914  * @psp:        pointer to the power_supply_property structure
1915  * @val:        pointer to the power_supply_propval union
1916  *
1917  * This function gets called when an application tries to get the
1918  * fg properties by reading the sysfs files.
1919  * voltage_now:         battery voltage
1920  * current_now:         battery instant current
1921  * current_avg:         battery average current
1922  * charge_full_design:  capacity where battery is considered full
1923  * charge_now:          battery capacity in nAh
1924  * capacity:            capacity in percent
1925  * capacity_level:      capacity level
1926  *
1927  * Returns error code in case of failure else 0 on success
1928  */
1929 static int ab8500_fg_get_property(struct power_supply *psy,
1930         enum power_supply_property psp,
1931         union power_supply_propval *val)
1932 {
1933         struct ab8500_fg *di;
1934
1935         di = to_ab8500_fg_device_info(psy);
1936
1937         /*
1938          * If battery is identified as unknown and charging of unknown
1939          * batteries is disabled, we always report 100% capacity and
1940          * capacity level UNKNOWN, since we can't calculate
1941          * remaining capacity
1942          */
1943
1944         switch (psp) {
1945         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1946                 if (di->flags.bat_ovv)
1947                         val->intval = BATT_OVV_VALUE * 1000;
1948                 else
1949                         val->intval = di->vbat * 1000;
1950                 break;
1951         case POWER_SUPPLY_PROP_CURRENT_NOW:
1952                 val->intval = di->inst_curr * 1000;
1953                 break;
1954         case POWER_SUPPLY_PROP_CURRENT_AVG:
1955                 val->intval = di->avg_curr * 1000;
1956                 break;
1957         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
1958                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
1959                                 di->bat_cap.max_mah_design);
1960                 break;
1961         case POWER_SUPPLY_PROP_ENERGY_FULL:
1962                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
1963                                 di->bat_cap.max_mah);
1964                 break;
1965         case POWER_SUPPLY_PROP_ENERGY_NOW:
1966                 if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1967                                 di->flags.batt_id_received)
1968                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
1969                                         di->bat_cap.max_mah);
1970                 else
1971                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
1972                                         di->bat_cap.prev_mah);
1973                 break;
1974         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
1975                 val->intval = di->bat_cap.max_mah_design;
1976                 break;
1977         case POWER_SUPPLY_PROP_CHARGE_FULL:
1978                 val->intval = di->bat_cap.max_mah;
1979                 break;
1980         case POWER_SUPPLY_PROP_CHARGE_NOW:
1981                 if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1982                                 di->flags.batt_id_received)
1983                         val->intval = di->bat_cap.max_mah;
1984                 else
1985                         val->intval = di->bat_cap.prev_mah;
1986                 break;
1987         case POWER_SUPPLY_PROP_CAPACITY:
1988                 if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1989                                 di->flags.batt_id_received)
1990                         val->intval = 100;
1991                 else
1992                         val->intval = di->bat_cap.prev_percent;
1993                 break;
1994         case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1995                 if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1996                                 di->flags.batt_id_received)
1997                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1998                 else
1999                         val->intval = di->bat_cap.prev_level;
2000                 break;
2001         default:
2002                 return -EINVAL;
2003         }
2004         return 0;
2005 }
2006
2007 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2008 {
2009         struct power_supply *psy;
2010         struct power_supply *ext;
2011         struct ab8500_fg *di;
2012         union power_supply_propval ret;
2013         int i, j;
2014         bool psy_found = false;
2015
2016         psy = (struct power_supply *)data;
2017         ext = dev_get_drvdata(dev);
2018         di = to_ab8500_fg_device_info(psy);
2019
2020         /*
2021          * For all psy where the name of your driver
2022          * appears in any supplied_to
2023          */
2024         for (i = 0; i < ext->num_supplicants; i++) {
2025                 if (!strcmp(ext->supplied_to[i], psy->name))
2026                         psy_found = true;
2027         }
2028
2029         if (!psy_found)
2030                 return 0;
2031
2032         /* Go through all properties for the psy */
2033         for (j = 0; j < ext->num_properties; j++) {
2034                 enum power_supply_property prop;
2035                 prop = ext->properties[j];
2036
2037                 if (ext->get_property(ext, prop, &ret))
2038                         continue;
2039
2040                 switch (prop) {
2041                 case POWER_SUPPLY_PROP_STATUS:
2042                         switch (ext->type) {
2043                         case POWER_SUPPLY_TYPE_BATTERY:
2044                                 switch (ret.intval) {
2045                                 case POWER_SUPPLY_STATUS_UNKNOWN:
2046                                 case POWER_SUPPLY_STATUS_DISCHARGING:
2047                                 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2048                                         if (!di->flags.charging)
2049                                                 break;
2050                                         di->flags.charging = false;
2051                                         di->flags.fully_charged = false;
2052                                         queue_work(di->fg_wq, &di->fg_work);
2053                                         break;
2054                                 case POWER_SUPPLY_STATUS_FULL:
2055                                         if (di->flags.fully_charged)
2056                                                 break;
2057                                         di->flags.fully_charged = true;
2058                                         di->flags.force_full = true;
2059                                         /* Save current capacity as maximum */
2060                                         di->bat_cap.max_mah = di->bat_cap.mah;
2061                                         queue_work(di->fg_wq, &di->fg_work);
2062                                         break;
2063                                 case POWER_SUPPLY_STATUS_CHARGING:
2064                                         if (di->flags.charging)
2065                                                 break;
2066                                         di->flags.charging = true;
2067                                         di->flags.fully_charged = false;
2068                                         queue_work(di->fg_wq, &di->fg_work);
2069                                         break;
2070                                 };
2071                         default:
2072                                 break;
2073                         };
2074                         break;
2075                 case POWER_SUPPLY_PROP_TECHNOLOGY:
2076                         switch (ext->type) {
2077                         case POWER_SUPPLY_TYPE_BATTERY:
2078                                 if (!di->flags.batt_id_received) {
2079                                         const struct abx500_battery_type *b;
2080
2081                                         b = &(di->bat->bat_type[di->bat->batt_id]);
2082
2083                                         di->flags.batt_id_received = true;
2084
2085                                         di->bat_cap.max_mah_design =
2086                                                 MILLI_TO_MICRO *
2087                                                 b->charge_full_design;
2088
2089                                         di->bat_cap.max_mah =
2090                                                 di->bat_cap.max_mah_design;
2091
2092                                         di->vbat_nom = b->nominal_voltage;
2093                                 }
2094
2095                                 if (ret.intval)
2096                                         di->flags.batt_unknown = false;
2097                                 else
2098                                         di->flags.batt_unknown = true;
2099                                 break;
2100                         default:
2101                                 break;
2102                         }
2103                         break;
2104                 case POWER_SUPPLY_PROP_TEMP:
2105                         switch (ext->type) {
2106                         case POWER_SUPPLY_TYPE_BATTERY:
2107                             if (di->flags.batt_id_received)
2108                                 di->bat_temp = ret.intval;
2109                                 break;
2110                         default:
2111                                 break;
2112                         }
2113                         break;
2114                 default:
2115                         break;
2116                 }
2117         }
2118         return 0;
2119 }
2120
2121 /**
2122  * ab8500_fg_init_hw_registers() - Set up FG related registers
2123  * @di:         pointer to the ab8500_fg structure
2124  *
2125  * Set up battery OVV, low battery voltage registers
2126  */
2127 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2128 {
2129         int ret;
2130
2131         /* Set VBAT OVV threshold */
2132         ret = abx500_mask_and_set_register_interruptible(di->dev,
2133                 AB8500_CHARGER,
2134                 AB8500_BATT_OVV,
2135                 BATT_OVV_TH_4P75,
2136                 BATT_OVV_TH_4P75);
2137         if (ret) {
2138                 dev_err(di->dev, "failed to set BATT_OVV\n");
2139                 goto out;
2140         }
2141
2142         /* Enable VBAT OVV detection */
2143         ret = abx500_mask_and_set_register_interruptible(di->dev,
2144                 AB8500_CHARGER,
2145                 AB8500_BATT_OVV,
2146                 BATT_OVV_ENA,
2147                 BATT_OVV_ENA);
2148         if (ret) {
2149                 dev_err(di->dev, "failed to enable BATT_OVV\n");
2150                 goto out;
2151         }
2152
2153         /* Low Battery Voltage */
2154         ret = abx500_set_register_interruptible(di->dev,
2155                 AB8500_SYS_CTRL2_BLOCK,
2156                 AB8500_LOW_BAT_REG,
2157                 ab8500_volt_to_regval(
2158                         di->bat->fg_params->lowbat_threshold) << 1 |
2159                 LOW_BAT_ENABLE);
2160         if (ret) {
2161                 dev_err(di->dev, "%s write failed\n", __func__);
2162                 goto out;
2163         }
2164
2165         /* Battery OK threshold */
2166         ret = ab8500_fg_battok_init_hw_register(di);
2167         if (ret) {
2168                 dev_err(di->dev, "BattOk init write failed.\n");
2169                 goto out;
2170         }
2171 out:
2172         return ret;
2173 }
2174
2175 /**
2176  * ab8500_fg_external_power_changed() - callback for power supply changes
2177  * @psy:       pointer to the structure power_supply
2178  *
2179  * This function is the entry point of the pointer external_power_changed
2180  * of the structure power_supply.
2181  * This function gets executed when there is a change in any external power
2182  * supply that this driver needs to be notified of.
2183  */
2184 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2185 {
2186         struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2187
2188         class_for_each_device(power_supply_class, NULL,
2189                 &di->fg_psy, ab8500_fg_get_ext_psy_data);
2190 }
2191
2192 /**
2193  * abab8500_fg_reinit_work() - work to reset the FG algorithm
2194  * @work:       pointer to the work_struct structure
2195  *
2196  * Used to reset the current battery capacity to be able to
2197  * retrigger a new voltage base capacity calculation. For
2198  * test and verification purpose.
2199  */
2200 static void ab8500_fg_reinit_work(struct work_struct *work)
2201 {
2202         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2203                 fg_reinit_work.work);
2204
2205         if (di->flags.calibrate == false) {
2206                 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2207                 ab8500_fg_clear_cap_samples(di);
2208                 ab8500_fg_calc_cap_discharge_voltage(di, true);
2209                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2210                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2211                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2212
2213         } else {
2214                 dev_err(di->dev, "Residual offset calibration ongoing "
2215                         "retrying..\n");
2216                 /* Wait one second until next try*/
2217                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2218                         round_jiffies(1));
2219         }
2220 }
2221
2222 /**
2223  * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2224  *
2225  * This function can be used to force the FG algorithm to recalculate a new
2226  * voltage based battery capacity.
2227  */
2228 void ab8500_fg_reinit(void)
2229 {
2230         struct ab8500_fg *di = ab8500_fg_get();
2231         /* User won't be notified if a null pointer returned. */
2232         if (di != NULL)
2233                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2234 }
2235
2236 /* Exposure to the sysfs interface */
2237
2238 struct ab8500_fg_sysfs_entry {
2239         struct attribute attr;
2240         ssize_t (*show)(struct ab8500_fg *, char *);
2241         ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2242 };
2243
2244 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2245 {
2246         return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2247 }
2248
2249 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2250                                  size_t count)
2251 {
2252         unsigned long charge_full;
2253         ssize_t ret = -EINVAL;
2254
2255         ret = strict_strtoul(buf, 10, &charge_full);
2256
2257         dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2258
2259         if (!ret) {
2260                 di->bat_cap.max_mah = (int) charge_full;
2261                 ret = count;
2262         }
2263         return ret;
2264 }
2265
2266 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2267 {
2268         return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2269 }
2270
2271 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2272                                  size_t count)
2273 {
2274         unsigned long charge_now;
2275         ssize_t ret;
2276
2277         ret = strict_strtoul(buf, 10, &charge_now);
2278
2279         dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2280                 ret, charge_now, di->bat_cap.prev_mah);
2281
2282         if (!ret) {
2283                 di->bat_cap.user_mah = (int) charge_now;
2284                 di->flags.user_cap = true;
2285                 ret = count;
2286                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2287         }
2288         return ret;
2289 }
2290
2291 static struct ab8500_fg_sysfs_entry charge_full_attr =
2292         __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2293
2294 static struct ab8500_fg_sysfs_entry charge_now_attr =
2295         __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2296
2297 static ssize_t
2298 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2299 {
2300         struct ab8500_fg_sysfs_entry *entry;
2301         struct ab8500_fg *di;
2302
2303         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2304         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2305
2306         if (!entry->show)
2307                 return -EIO;
2308
2309         return entry->show(di, buf);
2310 }
2311 static ssize_t
2312 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2313                 size_t count)
2314 {
2315         struct ab8500_fg_sysfs_entry *entry;
2316         struct ab8500_fg *di;
2317
2318         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2319         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2320
2321         if (!entry->store)
2322                 return -EIO;
2323
2324         return entry->store(di, buf, count);
2325 }
2326
2327 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2328         .show = ab8500_fg_show,
2329         .store = ab8500_fg_store,
2330 };
2331
2332 static struct attribute *ab8500_fg_attrs[] = {
2333         &charge_full_attr.attr,
2334         &charge_now_attr.attr,
2335         NULL,
2336 };
2337
2338 static struct kobj_type ab8500_fg_ktype = {
2339         .sysfs_ops = &ab8500_fg_sysfs_ops,
2340         .default_attrs = ab8500_fg_attrs,
2341 };
2342
2343 /**
2344  * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2345  * @di:                pointer to the struct ab8500_chargalg
2346  *
2347  * This function removes the entry in sysfs.
2348  */
2349 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2350 {
2351         kobject_del(&di->fg_kobject);
2352 }
2353
2354 /**
2355  * ab8500_chargalg_sysfs_init() - init of sysfs entry
2356  * @di:                pointer to the struct ab8500_chargalg
2357  *
2358  * This function adds an entry in sysfs.
2359  * Returns error code in case of failure else 0(on success)
2360  */
2361 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2362 {
2363         int ret = 0;
2364
2365         ret = kobject_init_and_add(&di->fg_kobject,
2366                 &ab8500_fg_ktype,
2367                 NULL, "battery");
2368         if (ret < 0)
2369                 dev_err(di->dev, "failed to create sysfs entry\n");
2370
2371         return ret;
2372 }
2373 /* Exposure to the sysfs interface <<END>> */
2374
2375 #if defined(CONFIG_PM)
2376 static int ab8500_fg_resume(struct platform_device *pdev)
2377 {
2378         struct ab8500_fg *di = platform_get_drvdata(pdev);
2379
2380         /*
2381          * Change state if we're not charging. If we're charging we will wake
2382          * up on the FG IRQ
2383          */
2384         if (!di->flags.charging) {
2385                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2386                 queue_work(di->fg_wq, &di->fg_work);
2387         }
2388
2389         return 0;
2390 }
2391
2392 static int ab8500_fg_suspend(struct platform_device *pdev,
2393         pm_message_t state)
2394 {
2395         struct ab8500_fg *di = platform_get_drvdata(pdev);
2396
2397         flush_delayed_work(&di->fg_periodic_work);
2398
2399         /*
2400          * If the FG is enabled we will disable it before going to suspend
2401          * only if we're not charging
2402          */
2403         if (di->flags.fg_enabled && !di->flags.charging)
2404                 ab8500_fg_coulomb_counter(di, false);
2405
2406         return 0;
2407 }
2408 #else
2409 #define ab8500_fg_suspend      NULL
2410 #define ab8500_fg_resume       NULL
2411 #endif
2412
2413 static int ab8500_fg_remove(struct platform_device *pdev)
2414 {
2415         int ret = 0;
2416         struct ab8500_fg *di = platform_get_drvdata(pdev);
2417
2418         list_del(&di->node);
2419
2420         /* Disable coulomb counter */
2421         ret = ab8500_fg_coulomb_counter(di, false);
2422         if (ret)
2423                 dev_err(di->dev, "failed to disable coulomb counter\n");
2424
2425         destroy_workqueue(di->fg_wq);
2426         ab8500_fg_sysfs_exit(di);
2427
2428         flush_scheduled_work();
2429         power_supply_unregister(&di->fg_psy);
2430         platform_set_drvdata(pdev, NULL);
2431         return ret;
2432 }
2433
2434 /* ab8500 fg driver interrupts and their respective isr */
2435 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2436         {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2437         {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2438         {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2439         {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2440         {"CCEOC", ab8500_fg_cc_data_end_handler},
2441 };
2442
2443 static char *supply_interface[] = {
2444         "ab8500_chargalg",
2445         "ab8500_usb",
2446 };
2447
2448 static int ab8500_fg_probe(struct platform_device *pdev)
2449 {
2450         struct device_node *np = pdev->dev.of_node;
2451         struct ab8500_fg *di;
2452         int i, irq;
2453         int ret = 0;
2454
2455         di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
2456         if (!di) {
2457                 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
2458                 return -ENOMEM;
2459         }
2460         di->bat = pdev->mfd_cell->platform_data;
2461         if (!di->bat) {
2462                 if (np) {
2463                         ret = bmdevs_of_probe(&pdev->dev, np, &di->bat);
2464                         if (ret) {
2465                                 dev_err(&pdev->dev,
2466                                         "failed to get battery information\n");
2467                                 return ret;
2468                         }
2469                 } else {
2470                         dev_err(&pdev->dev, "missing dt node for ab8500_fg\n");
2471                         return -EINVAL;
2472                 }
2473         } else {
2474                 dev_info(&pdev->dev, "falling back to legacy platform data\n");
2475         }
2476
2477         mutex_init(&di->cc_lock);
2478
2479         /* get parent data */
2480         di->dev = &pdev->dev;
2481         di->parent = dev_get_drvdata(pdev->dev.parent);
2482         di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
2483
2484         di->fg_psy.name = "ab8500_fg";
2485         di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
2486         di->fg_psy.properties = ab8500_fg_props;
2487         di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
2488         di->fg_psy.get_property = ab8500_fg_get_property;
2489         di->fg_psy.supplied_to = supply_interface;
2490         di->fg_psy.num_supplicants = ARRAY_SIZE(supply_interface),
2491         di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
2492
2493         di->bat_cap.max_mah_design = MILLI_TO_MICRO *
2494                 di->bat->bat_type[di->bat->batt_id].charge_full_design;
2495
2496         di->bat_cap.max_mah = di->bat_cap.max_mah_design;
2497
2498         di->vbat_nom = di->bat->bat_type[di->bat->batt_id].nominal_voltage;
2499
2500         di->init_capacity = true;
2501
2502         ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2503         ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2504
2505         /* Create a work queue for running the FG algorithm */
2506         di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
2507         if (di->fg_wq == NULL) {
2508                 dev_err(di->dev, "failed to create work queue\n");
2509                 return -ENOMEM;
2510         }
2511
2512         /* Init work for running the fg algorithm instantly */
2513         INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
2514
2515         /* Init work for getting the battery accumulated current */
2516         INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
2517
2518         /* Init work for reinitialising the fg algorithm */
2519         INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
2520                 ab8500_fg_reinit_work);
2521
2522         /* Work delayed Queue to run the state machine */
2523         INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
2524                 ab8500_fg_periodic_work);
2525
2526         /* Work to check low battery condition */
2527         INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
2528                 ab8500_fg_low_bat_work);
2529
2530         /* Init work for HW failure check */
2531         INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
2532                 ab8500_fg_check_hw_failure_work);
2533
2534         /* Initialize OVV, and other registers */
2535         ret = ab8500_fg_init_hw_registers(di);
2536         if (ret) {
2537                 dev_err(di->dev, "failed to initialize registers\n");
2538                 goto free_inst_curr_wq;
2539         }
2540
2541         /* Consider battery unknown until we're informed otherwise */
2542         di->flags.batt_unknown = true;
2543         di->flags.batt_id_received = false;
2544
2545         /* Register FG power supply class */
2546         ret = power_supply_register(di->dev, &di->fg_psy);
2547         if (ret) {
2548                 dev_err(di->dev, "failed to register FG psy\n");
2549                 goto free_inst_curr_wq;
2550         }
2551
2552         di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
2553         ab8500_fg_coulomb_counter(di, true);
2554
2555         /* Initialize completion used to notify completion of inst current */
2556         init_completion(&di->ab8500_fg_complete);
2557
2558         /* Register interrupts */
2559         for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
2560                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2561                 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
2562                         IRQF_SHARED | IRQF_NO_SUSPEND,
2563                         ab8500_fg_irq[i].name, di);
2564
2565                 if (ret != 0) {
2566                         dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
2567                                 , ab8500_fg_irq[i].name, irq, ret);
2568                         goto free_irq;
2569                 }
2570                 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
2571                         ab8500_fg_irq[i].name, irq, ret);
2572         }
2573         di->irq = platform_get_irq_byname(pdev, "CCEOC");
2574         disable_irq(di->irq);
2575
2576         platform_set_drvdata(pdev, di);
2577
2578         ret = ab8500_fg_sysfs_init(di);
2579         if (ret) {
2580                 dev_err(di->dev, "failed to create sysfs entry\n");
2581                 goto free_irq;
2582         }
2583
2584         /* Calibrate the fg first time */
2585         di->flags.calibrate = true;
2586         di->calib_state = AB8500_FG_CALIB_INIT;
2587
2588         /* Use room temp as default value until we get an update from driver. */
2589         di->bat_temp = 210;
2590
2591         /* Run the FG algorithm */
2592         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2593
2594         list_add_tail(&di->node, &ab8500_fg_list);
2595
2596         return ret;
2597
2598 free_irq:
2599         power_supply_unregister(&di->fg_psy);
2600
2601         /* We also have to free all successfully registered irqs */
2602         for (i = i - 1; i >= 0; i--) {
2603                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2604                 free_irq(irq, di);
2605         }
2606 free_inst_curr_wq:
2607         destroy_workqueue(di->fg_wq);
2608         return ret;
2609 }
2610
2611 static const struct of_device_id ab8500_fg_match[] = {
2612         { .compatible = "stericsson,ab8500-fg", },
2613         { },
2614 };
2615
2616 static struct platform_driver ab8500_fg_driver = {
2617         .probe = ab8500_fg_probe,
2618         .remove = ab8500_fg_remove,
2619         .suspend = ab8500_fg_suspend,
2620         .resume = ab8500_fg_resume,
2621         .driver = {
2622                 .name = "ab8500-fg",
2623                 .owner = THIS_MODULE,
2624                 .of_match_table = ab8500_fg_match,
2625         },
2626 };
2627
2628 static int __init ab8500_fg_init(void)
2629 {
2630         return platform_driver_register(&ab8500_fg_driver);
2631 }
2632
2633 static void __exit ab8500_fg_exit(void)
2634 {
2635         platform_driver_unregister(&ab8500_fg_driver);
2636 }
2637
2638 subsys_initcall_sync(ab8500_fg_init);
2639 module_exit(ab8500_fg_exit);
2640
2641 MODULE_LICENSE("GPL v2");
2642 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2643 MODULE_ALIAS("platform:ab8500-fg");
2644 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");