]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
regmap: rbtree: When adding a reg do a bsearch for target node
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112 static void _regulator_put(struct regulator *regulator);
113
114 static struct regulator_dev *dev_to_rdev(struct device *dev)
115 {
116         return container_of(dev, struct regulator_dev, dev);
117 }
118
119 static const char *rdev_get_name(struct regulator_dev *rdev)
120 {
121         if (rdev->constraints && rdev->constraints->name)
122                 return rdev->constraints->name;
123         else if (rdev->desc->name)
124                 return rdev->desc->name;
125         else
126                 return "";
127 }
128
129 static bool have_full_constraints(void)
130 {
131         return has_full_constraints || of_have_populated_dt();
132 }
133
134 /**
135  * of_get_regulator - get a regulator device node based on supply name
136  * @dev: Device pointer for the consumer (of regulator) device
137  * @supply: regulator supply name
138  *
139  * Extract the regulator device node corresponding to the supply name.
140  * returns the device node corresponding to the regulator if found, else
141  * returns NULL.
142  */
143 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
144 {
145         struct device_node *regnode = NULL;
146         char prop_name[32]; /* 32 is max size of property name */
147
148         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
149
150         snprintf(prop_name, 32, "%s-supply", supply);
151         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
152
153         if (!regnode) {
154                 dev_dbg(dev, "Looking up %s property in node %s failed",
155                                 prop_name, dev->of_node->full_name);
156                 return NULL;
157         }
158         return regnode;
159 }
160
161 static int _regulator_can_change_status(struct regulator_dev *rdev)
162 {
163         if (!rdev->constraints)
164                 return 0;
165
166         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
167                 return 1;
168         else
169                 return 0;
170 }
171
172 /* Platform voltage constraint check */
173 static int regulator_check_voltage(struct regulator_dev *rdev,
174                                    int *min_uV, int *max_uV)
175 {
176         BUG_ON(*min_uV > *max_uV);
177
178         if (!rdev->constraints) {
179                 rdev_err(rdev, "no constraints\n");
180                 return -ENODEV;
181         }
182         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
183                 rdev_err(rdev, "operation not allowed\n");
184                 return -EPERM;
185         }
186
187         if (*max_uV > rdev->constraints->max_uV)
188                 *max_uV = rdev->constraints->max_uV;
189         if (*min_uV < rdev->constraints->min_uV)
190                 *min_uV = rdev->constraints->min_uV;
191
192         if (*min_uV > *max_uV) {
193                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
194                          *min_uV, *max_uV);
195                 return -EINVAL;
196         }
197
198         return 0;
199 }
200
201 /* Make sure we select a voltage that suits the needs of all
202  * regulator consumers
203  */
204 static int regulator_check_consumers(struct regulator_dev *rdev,
205                                      int *min_uV, int *max_uV)
206 {
207         struct regulator *regulator;
208
209         list_for_each_entry(regulator, &rdev->consumer_list, list) {
210                 /*
211                  * Assume consumers that didn't say anything are OK
212                  * with anything in the constraint range.
213                  */
214                 if (!regulator->min_uV && !regulator->max_uV)
215                         continue;
216
217                 if (*max_uV > regulator->max_uV)
218                         *max_uV = regulator->max_uV;
219                 if (*min_uV < regulator->min_uV)
220                         *min_uV = regulator->min_uV;
221         }
222
223         if (*min_uV > *max_uV) {
224                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
225                         *min_uV, *max_uV);
226                 return -EINVAL;
227         }
228
229         return 0;
230 }
231
232 /* current constraint check */
233 static int regulator_check_current_limit(struct regulator_dev *rdev,
234                                         int *min_uA, int *max_uA)
235 {
236         BUG_ON(*min_uA > *max_uA);
237
238         if (!rdev->constraints) {
239                 rdev_err(rdev, "no constraints\n");
240                 return -ENODEV;
241         }
242         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
243                 rdev_err(rdev, "operation not allowed\n");
244                 return -EPERM;
245         }
246
247         if (*max_uA > rdev->constraints->max_uA)
248                 *max_uA = rdev->constraints->max_uA;
249         if (*min_uA < rdev->constraints->min_uA)
250                 *min_uA = rdev->constraints->min_uA;
251
252         if (*min_uA > *max_uA) {
253                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
254                          *min_uA, *max_uA);
255                 return -EINVAL;
256         }
257
258         return 0;
259 }
260
261 /* operating mode constraint check */
262 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
263 {
264         switch (*mode) {
265         case REGULATOR_MODE_FAST:
266         case REGULATOR_MODE_NORMAL:
267         case REGULATOR_MODE_IDLE:
268         case REGULATOR_MODE_STANDBY:
269                 break;
270         default:
271                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
272                 return -EINVAL;
273         }
274
275         if (!rdev->constraints) {
276                 rdev_err(rdev, "no constraints\n");
277                 return -ENODEV;
278         }
279         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
280                 rdev_err(rdev, "operation not allowed\n");
281                 return -EPERM;
282         }
283
284         /* The modes are bitmasks, the most power hungry modes having
285          * the lowest values. If the requested mode isn't supported
286          * try higher modes. */
287         while (*mode) {
288                 if (rdev->constraints->valid_modes_mask & *mode)
289                         return 0;
290                 *mode /= 2;
291         }
292
293         return -EINVAL;
294 }
295
296 /* dynamic regulator mode switching constraint check */
297 static int regulator_check_drms(struct regulator_dev *rdev)
298 {
299         if (!rdev->constraints) {
300                 rdev_err(rdev, "no constraints\n");
301                 return -ENODEV;
302         }
303         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
304                 rdev_dbg(rdev, "operation not allowed\n");
305                 return -EPERM;
306         }
307         return 0;
308 }
309
310 static ssize_t regulator_uV_show(struct device *dev,
311                                 struct device_attribute *attr, char *buf)
312 {
313         struct regulator_dev *rdev = dev_get_drvdata(dev);
314         ssize_t ret;
315
316         mutex_lock(&rdev->mutex);
317         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
318         mutex_unlock(&rdev->mutex);
319
320         return ret;
321 }
322 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
323
324 static ssize_t regulator_uA_show(struct device *dev,
325                                 struct device_attribute *attr, char *buf)
326 {
327         struct regulator_dev *rdev = dev_get_drvdata(dev);
328
329         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
330 }
331 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
332
333 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
334                          char *buf)
335 {
336         struct regulator_dev *rdev = dev_get_drvdata(dev);
337
338         return sprintf(buf, "%s\n", rdev_get_name(rdev));
339 }
340 static DEVICE_ATTR_RO(name);
341
342 static ssize_t regulator_print_opmode(char *buf, int mode)
343 {
344         switch (mode) {
345         case REGULATOR_MODE_FAST:
346                 return sprintf(buf, "fast\n");
347         case REGULATOR_MODE_NORMAL:
348                 return sprintf(buf, "normal\n");
349         case REGULATOR_MODE_IDLE:
350                 return sprintf(buf, "idle\n");
351         case REGULATOR_MODE_STANDBY:
352                 return sprintf(buf, "standby\n");
353         }
354         return sprintf(buf, "unknown\n");
355 }
356
357 static ssize_t regulator_opmode_show(struct device *dev,
358                                     struct device_attribute *attr, char *buf)
359 {
360         struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363 }
364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366 static ssize_t regulator_print_state(char *buf, int state)
367 {
368         if (state > 0)
369                 return sprintf(buf, "enabled\n");
370         else if (state == 0)
371                 return sprintf(buf, "disabled\n");
372         else
373                 return sprintf(buf, "unknown\n");
374 }
375
376 static ssize_t regulator_state_show(struct device *dev,
377                                    struct device_attribute *attr, char *buf)
378 {
379         struct regulator_dev *rdev = dev_get_drvdata(dev);
380         ssize_t ret;
381
382         mutex_lock(&rdev->mutex);
383         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384         mutex_unlock(&rdev->mutex);
385
386         return ret;
387 }
388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390 static ssize_t regulator_status_show(struct device *dev,
391                                    struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394         int status;
395         char *label;
396
397         status = rdev->desc->ops->get_status(rdev);
398         if (status < 0)
399                 return status;
400
401         switch (status) {
402         case REGULATOR_STATUS_OFF:
403                 label = "off";
404                 break;
405         case REGULATOR_STATUS_ON:
406                 label = "on";
407                 break;
408         case REGULATOR_STATUS_ERROR:
409                 label = "error";
410                 break;
411         case REGULATOR_STATUS_FAST:
412                 label = "fast";
413                 break;
414         case REGULATOR_STATUS_NORMAL:
415                 label = "normal";
416                 break;
417         case REGULATOR_STATUS_IDLE:
418                 label = "idle";
419                 break;
420         case REGULATOR_STATUS_STANDBY:
421                 label = "standby";
422                 break;
423         case REGULATOR_STATUS_BYPASS:
424                 label = "bypass";
425                 break;
426         case REGULATOR_STATUS_UNDEFINED:
427                 label = "undefined";
428                 break;
429         default:
430                 return -ERANGE;
431         }
432
433         return sprintf(buf, "%s\n", label);
434 }
435 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
436
437 static ssize_t regulator_min_uA_show(struct device *dev,
438                                     struct device_attribute *attr, char *buf)
439 {
440         struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442         if (!rdev->constraints)
443                 return sprintf(buf, "constraint not defined\n");
444
445         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
446 }
447 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
448
449 static ssize_t regulator_max_uA_show(struct device *dev,
450                                     struct device_attribute *attr, char *buf)
451 {
452         struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454         if (!rdev->constraints)
455                 return sprintf(buf, "constraint not defined\n");
456
457         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
458 }
459 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
460
461 static ssize_t regulator_min_uV_show(struct device *dev,
462                                     struct device_attribute *attr, char *buf)
463 {
464         struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466         if (!rdev->constraints)
467                 return sprintf(buf, "constraint not defined\n");
468
469         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
470 }
471 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
472
473 static ssize_t regulator_max_uV_show(struct device *dev,
474                                     struct device_attribute *attr, char *buf)
475 {
476         struct regulator_dev *rdev = dev_get_drvdata(dev);
477
478         if (!rdev->constraints)
479                 return sprintf(buf, "constraint not defined\n");
480
481         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
482 }
483 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
484
485 static ssize_t regulator_total_uA_show(struct device *dev,
486                                       struct device_attribute *attr, char *buf)
487 {
488         struct regulator_dev *rdev = dev_get_drvdata(dev);
489         struct regulator *regulator;
490         int uA = 0;
491
492         mutex_lock(&rdev->mutex);
493         list_for_each_entry(regulator, &rdev->consumer_list, list)
494                 uA += regulator->uA_load;
495         mutex_unlock(&rdev->mutex);
496         return sprintf(buf, "%d\n", uA);
497 }
498 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
499
500 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
501                               char *buf)
502 {
503         struct regulator_dev *rdev = dev_get_drvdata(dev);
504         return sprintf(buf, "%d\n", rdev->use_count);
505 }
506 static DEVICE_ATTR_RO(num_users);
507
508 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
509                          char *buf)
510 {
511         struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513         switch (rdev->desc->type) {
514         case REGULATOR_VOLTAGE:
515                 return sprintf(buf, "voltage\n");
516         case REGULATOR_CURRENT:
517                 return sprintf(buf, "current\n");
518         }
519         return sprintf(buf, "unknown\n");
520 }
521 static DEVICE_ATTR_RO(type);
522
523 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
524                                 struct device_attribute *attr, char *buf)
525 {
526         struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
529 }
530 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
531                 regulator_suspend_mem_uV_show, NULL);
532
533 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
534                                 struct device_attribute *attr, char *buf)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
539 }
540 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
541                 regulator_suspend_disk_uV_show, NULL);
542
543 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
544                                 struct device_attribute *attr, char *buf)
545 {
546         struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
549 }
550 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
551                 regulator_suspend_standby_uV_show, NULL);
552
553 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
554                                 struct device_attribute *attr, char *buf)
555 {
556         struct regulator_dev *rdev = dev_get_drvdata(dev);
557
558         return regulator_print_opmode(buf,
559                 rdev->constraints->state_mem.mode);
560 }
561 static DEVICE_ATTR(suspend_mem_mode, 0444,
562                 regulator_suspend_mem_mode_show, NULL);
563
564 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
565                                 struct device_attribute *attr, char *buf)
566 {
567         struct regulator_dev *rdev = dev_get_drvdata(dev);
568
569         return regulator_print_opmode(buf,
570                 rdev->constraints->state_disk.mode);
571 }
572 static DEVICE_ATTR(suspend_disk_mode, 0444,
573                 regulator_suspend_disk_mode_show, NULL);
574
575 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
576                                 struct device_attribute *attr, char *buf)
577 {
578         struct regulator_dev *rdev = dev_get_drvdata(dev);
579
580         return regulator_print_opmode(buf,
581                 rdev->constraints->state_standby.mode);
582 }
583 static DEVICE_ATTR(suspend_standby_mode, 0444,
584                 regulator_suspend_standby_mode_show, NULL);
585
586 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
587                                    struct device_attribute *attr, char *buf)
588 {
589         struct regulator_dev *rdev = dev_get_drvdata(dev);
590
591         return regulator_print_state(buf,
592                         rdev->constraints->state_mem.enabled);
593 }
594 static DEVICE_ATTR(suspend_mem_state, 0444,
595                 regulator_suspend_mem_state_show, NULL);
596
597 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
598                                    struct device_attribute *attr, char *buf)
599 {
600         struct regulator_dev *rdev = dev_get_drvdata(dev);
601
602         return regulator_print_state(buf,
603                         rdev->constraints->state_disk.enabled);
604 }
605 static DEVICE_ATTR(suspend_disk_state, 0444,
606                 regulator_suspend_disk_state_show, NULL);
607
608 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
609                                    struct device_attribute *attr, char *buf)
610 {
611         struct regulator_dev *rdev = dev_get_drvdata(dev);
612
613         return regulator_print_state(buf,
614                         rdev->constraints->state_standby.enabled);
615 }
616 static DEVICE_ATTR(suspend_standby_state, 0444,
617                 regulator_suspend_standby_state_show, NULL);
618
619 static ssize_t regulator_bypass_show(struct device *dev,
620                                      struct device_attribute *attr, char *buf)
621 {
622         struct regulator_dev *rdev = dev_get_drvdata(dev);
623         const char *report;
624         bool bypass;
625         int ret;
626
627         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
628
629         if (ret != 0)
630                 report = "unknown";
631         else if (bypass)
632                 report = "enabled";
633         else
634                 report = "disabled";
635
636         return sprintf(buf, "%s\n", report);
637 }
638 static DEVICE_ATTR(bypass, 0444,
639                    regulator_bypass_show, NULL);
640
641 /* Calculate the new optimum regulator operating mode based on the new total
642  * consumer load. All locks held by caller */
643 static int drms_uA_update(struct regulator_dev *rdev)
644 {
645         struct regulator *sibling;
646         int current_uA = 0, output_uV, input_uV, err;
647         unsigned int mode;
648
649         lockdep_assert_held_once(&rdev->mutex);
650
651         /*
652          * first check to see if we can set modes at all, otherwise just
653          * tell the consumer everything is OK.
654          */
655         err = regulator_check_drms(rdev);
656         if (err < 0)
657                 return 0;
658
659         if (!rdev->desc->ops->get_optimum_mode &&
660             !rdev->desc->ops->set_load)
661                 return 0;
662
663         if (!rdev->desc->ops->set_mode &&
664             !rdev->desc->ops->set_load)
665                 return -EINVAL;
666
667         /* get output voltage */
668         output_uV = _regulator_get_voltage(rdev);
669         if (output_uV <= 0) {
670                 rdev_err(rdev, "invalid output voltage found\n");
671                 return -EINVAL;
672         }
673
674         /* get input voltage */
675         input_uV = 0;
676         if (rdev->supply)
677                 input_uV = regulator_get_voltage(rdev->supply);
678         if (input_uV <= 0)
679                 input_uV = rdev->constraints->input_uV;
680         if (input_uV <= 0) {
681                 rdev_err(rdev, "invalid input voltage found\n");
682                 return -EINVAL;
683         }
684
685         /* calc total requested load */
686         list_for_each_entry(sibling, &rdev->consumer_list, list)
687                 current_uA += sibling->uA_load;
688
689         current_uA += rdev->constraints->system_load;
690
691         if (rdev->desc->ops->set_load) {
692                 /* set the optimum mode for our new total regulator load */
693                 err = rdev->desc->ops->set_load(rdev, current_uA);
694                 if (err < 0)
695                         rdev_err(rdev, "failed to set load %d\n", current_uA);
696         } else {
697                 /* now get the optimum mode for our new total regulator load */
698                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
699                                                          output_uV, current_uA);
700
701                 /* check the new mode is allowed */
702                 err = regulator_mode_constrain(rdev, &mode);
703                 if (err < 0) {
704                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
705                                  current_uA, input_uV, output_uV);
706                         return err;
707                 }
708
709                 err = rdev->desc->ops->set_mode(rdev, mode);
710                 if (err < 0)
711                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
712         }
713
714         return err;
715 }
716
717 static int suspend_set_state(struct regulator_dev *rdev,
718         struct regulator_state *rstate)
719 {
720         int ret = 0;
721
722         /* If we have no suspend mode configration don't set anything;
723          * only warn if the driver implements set_suspend_voltage or
724          * set_suspend_mode callback.
725          */
726         if (!rstate->enabled && !rstate->disabled) {
727                 if (rdev->desc->ops->set_suspend_voltage ||
728                     rdev->desc->ops->set_suspend_mode)
729                         rdev_warn(rdev, "No configuration\n");
730                 return 0;
731         }
732
733         if (rstate->enabled && rstate->disabled) {
734                 rdev_err(rdev, "invalid configuration\n");
735                 return -EINVAL;
736         }
737
738         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
739                 ret = rdev->desc->ops->set_suspend_enable(rdev);
740         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
741                 ret = rdev->desc->ops->set_suspend_disable(rdev);
742         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
743                 ret = 0;
744
745         if (ret < 0) {
746                 rdev_err(rdev, "failed to enabled/disable\n");
747                 return ret;
748         }
749
750         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
751                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
752                 if (ret < 0) {
753                         rdev_err(rdev, "failed to set voltage\n");
754                         return ret;
755                 }
756         }
757
758         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
759                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
760                 if (ret < 0) {
761                         rdev_err(rdev, "failed to set mode\n");
762                         return ret;
763                 }
764         }
765         return ret;
766 }
767
768 /* locks held by caller */
769 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
770 {
771         lockdep_assert_held_once(&rdev->mutex);
772
773         if (!rdev->constraints)
774                 return -EINVAL;
775
776         switch (state) {
777         case PM_SUSPEND_STANDBY:
778                 return suspend_set_state(rdev,
779                         &rdev->constraints->state_standby);
780         case PM_SUSPEND_MEM:
781                 return suspend_set_state(rdev,
782                         &rdev->constraints->state_mem);
783         case PM_SUSPEND_MAX:
784                 return suspend_set_state(rdev,
785                         &rdev->constraints->state_disk);
786         default:
787                 return -EINVAL;
788         }
789 }
790
791 static void print_constraints(struct regulator_dev *rdev)
792 {
793         struct regulation_constraints *constraints = rdev->constraints;
794         char buf[160] = "";
795         size_t len = sizeof(buf) - 1;
796         int count = 0;
797         int ret;
798
799         if (constraints->min_uV && constraints->max_uV) {
800                 if (constraints->min_uV == constraints->max_uV)
801                         count += scnprintf(buf + count, len - count, "%d mV ",
802                                            constraints->min_uV / 1000);
803                 else
804                         count += scnprintf(buf + count, len - count,
805                                            "%d <--> %d mV ",
806                                            constraints->min_uV / 1000,
807                                            constraints->max_uV / 1000);
808         }
809
810         if (!constraints->min_uV ||
811             constraints->min_uV != constraints->max_uV) {
812                 ret = _regulator_get_voltage(rdev);
813                 if (ret > 0)
814                         count += scnprintf(buf + count, len - count,
815                                            "at %d mV ", ret / 1000);
816         }
817
818         if (constraints->uV_offset)
819                 count += scnprintf(buf + count, len - count, "%dmV offset ",
820                                    constraints->uV_offset / 1000);
821
822         if (constraints->min_uA && constraints->max_uA) {
823                 if (constraints->min_uA == constraints->max_uA)
824                         count += scnprintf(buf + count, len - count, "%d mA ",
825                                            constraints->min_uA / 1000);
826                 else
827                         count += scnprintf(buf + count, len - count,
828                                            "%d <--> %d mA ",
829                                            constraints->min_uA / 1000,
830                                            constraints->max_uA / 1000);
831         }
832
833         if (!constraints->min_uA ||
834             constraints->min_uA != constraints->max_uA) {
835                 ret = _regulator_get_current_limit(rdev);
836                 if (ret > 0)
837                         count += scnprintf(buf + count, len - count,
838                                            "at %d mA ", ret / 1000);
839         }
840
841         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
842                 count += scnprintf(buf + count, len - count, "fast ");
843         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
844                 count += scnprintf(buf + count, len - count, "normal ");
845         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
846                 count += scnprintf(buf + count, len - count, "idle ");
847         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
848                 count += scnprintf(buf + count, len - count, "standby");
849
850         if (!count)
851                 scnprintf(buf, len, "no parameters");
852
853         rdev_dbg(rdev, "%s\n", buf);
854
855         if ((constraints->min_uV != constraints->max_uV) &&
856             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
857                 rdev_warn(rdev,
858                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
859 }
860
861 static int machine_constraints_voltage(struct regulator_dev *rdev,
862         struct regulation_constraints *constraints)
863 {
864         const struct regulator_ops *ops = rdev->desc->ops;
865         int ret;
866
867         /* do we need to apply the constraint voltage */
868         if (rdev->constraints->apply_uV &&
869             rdev->constraints->min_uV == rdev->constraints->max_uV) {
870                 int current_uV = _regulator_get_voltage(rdev);
871                 if (current_uV < 0) {
872                         rdev_err(rdev,
873                                  "failed to get the current voltage(%d)\n",
874                                  current_uV);
875                         return current_uV;
876                 }
877                 if (current_uV < rdev->constraints->min_uV ||
878                     current_uV > rdev->constraints->max_uV) {
879                         ret = _regulator_do_set_voltage(
880                                 rdev, rdev->constraints->min_uV,
881                                 rdev->constraints->max_uV);
882                         if (ret < 0) {
883                                 rdev_err(rdev,
884                                         "failed to apply %duV constraint(%d)\n",
885                                         rdev->constraints->min_uV, ret);
886                                 return ret;
887                         }
888                 }
889         }
890
891         /* constrain machine-level voltage specs to fit
892          * the actual range supported by this regulator.
893          */
894         if (ops->list_voltage && rdev->desc->n_voltages) {
895                 int     count = rdev->desc->n_voltages;
896                 int     i;
897                 int     min_uV = INT_MAX;
898                 int     max_uV = INT_MIN;
899                 int     cmin = constraints->min_uV;
900                 int     cmax = constraints->max_uV;
901
902                 /* it's safe to autoconfigure fixed-voltage supplies
903                    and the constraints are used by list_voltage. */
904                 if (count == 1 && !cmin) {
905                         cmin = 1;
906                         cmax = INT_MAX;
907                         constraints->min_uV = cmin;
908                         constraints->max_uV = cmax;
909                 }
910
911                 /* voltage constraints are optional */
912                 if ((cmin == 0) && (cmax == 0))
913                         return 0;
914
915                 /* else require explicit machine-level constraints */
916                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
917                         rdev_err(rdev, "invalid voltage constraints\n");
918                         return -EINVAL;
919                 }
920
921                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
922                 for (i = 0; i < count; i++) {
923                         int     value;
924
925                         value = ops->list_voltage(rdev, i);
926                         if (value <= 0)
927                                 continue;
928
929                         /* maybe adjust [min_uV..max_uV] */
930                         if (value >= cmin && value < min_uV)
931                                 min_uV = value;
932                         if (value <= cmax && value > max_uV)
933                                 max_uV = value;
934                 }
935
936                 /* final: [min_uV..max_uV] valid iff constraints valid */
937                 if (max_uV < min_uV) {
938                         rdev_err(rdev,
939                                  "unsupportable voltage constraints %u-%uuV\n",
940                                  min_uV, max_uV);
941                         return -EINVAL;
942                 }
943
944                 /* use regulator's subset of machine constraints */
945                 if (constraints->min_uV < min_uV) {
946                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
947                                  constraints->min_uV, min_uV);
948                         constraints->min_uV = min_uV;
949                 }
950                 if (constraints->max_uV > max_uV) {
951                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
952                                  constraints->max_uV, max_uV);
953                         constraints->max_uV = max_uV;
954                 }
955         }
956
957         return 0;
958 }
959
960 static int machine_constraints_current(struct regulator_dev *rdev,
961         struct regulation_constraints *constraints)
962 {
963         const struct regulator_ops *ops = rdev->desc->ops;
964         int ret;
965
966         if (!constraints->min_uA && !constraints->max_uA)
967                 return 0;
968
969         if (constraints->min_uA > constraints->max_uA) {
970                 rdev_err(rdev, "Invalid current constraints\n");
971                 return -EINVAL;
972         }
973
974         if (!ops->set_current_limit || !ops->get_current_limit) {
975                 rdev_warn(rdev, "Operation of current configuration missing\n");
976                 return 0;
977         }
978
979         /* Set regulator current in constraints range */
980         ret = ops->set_current_limit(rdev, constraints->min_uA,
981                         constraints->max_uA);
982         if (ret < 0) {
983                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
984                 return ret;
985         }
986
987         return 0;
988 }
989
990 static int _regulator_do_enable(struct regulator_dev *rdev);
991
992 /**
993  * set_machine_constraints - sets regulator constraints
994  * @rdev: regulator source
995  * @constraints: constraints to apply
996  *
997  * Allows platform initialisation code to define and constrain
998  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
999  * Constraints *must* be set by platform code in order for some
1000  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1001  * set_mode.
1002  */
1003 static int set_machine_constraints(struct regulator_dev *rdev,
1004         const struct regulation_constraints *constraints)
1005 {
1006         int ret = 0;
1007         const struct regulator_ops *ops = rdev->desc->ops;
1008
1009         if (constraints)
1010                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1011                                             GFP_KERNEL);
1012         else
1013                 rdev->constraints = kzalloc(sizeof(*constraints),
1014                                             GFP_KERNEL);
1015         if (!rdev->constraints)
1016                 return -ENOMEM;
1017
1018         ret = machine_constraints_voltage(rdev, rdev->constraints);
1019         if (ret != 0)
1020                 goto out;
1021
1022         ret = machine_constraints_current(rdev, rdev->constraints);
1023         if (ret != 0)
1024                 goto out;
1025
1026         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1027                 ret = ops->set_input_current_limit(rdev,
1028                                                    rdev->constraints->ilim_uA);
1029                 if (ret < 0) {
1030                         rdev_err(rdev, "failed to set input limit\n");
1031                         goto out;
1032                 }
1033         }
1034
1035         /* do we need to setup our suspend state */
1036         if (rdev->constraints->initial_state) {
1037                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1038                 if (ret < 0) {
1039                         rdev_err(rdev, "failed to set suspend state\n");
1040                         goto out;
1041                 }
1042         }
1043
1044         if (rdev->constraints->initial_mode) {
1045                 if (!ops->set_mode) {
1046                         rdev_err(rdev, "no set_mode operation\n");
1047                         ret = -EINVAL;
1048                         goto out;
1049                 }
1050
1051                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1052                 if (ret < 0) {
1053                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1054                         goto out;
1055                 }
1056         }
1057
1058         /* If the constraints say the regulator should be on at this point
1059          * and we have control then make sure it is enabled.
1060          */
1061         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1062                 ret = _regulator_do_enable(rdev);
1063                 if (ret < 0 && ret != -EINVAL) {
1064                         rdev_err(rdev, "failed to enable\n");
1065                         goto out;
1066                 }
1067         }
1068
1069         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1070                 && ops->set_ramp_delay) {
1071                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1072                 if (ret < 0) {
1073                         rdev_err(rdev, "failed to set ramp_delay\n");
1074                         goto out;
1075                 }
1076         }
1077
1078         if (rdev->constraints->pull_down && ops->set_pull_down) {
1079                 ret = ops->set_pull_down(rdev);
1080                 if (ret < 0) {
1081                         rdev_err(rdev, "failed to set pull down\n");
1082                         goto out;
1083                 }
1084         }
1085
1086         if (rdev->constraints->soft_start && ops->set_soft_start) {
1087                 ret = ops->set_soft_start(rdev);
1088                 if (ret < 0) {
1089                         rdev_err(rdev, "failed to set soft start\n");
1090                         goto out;
1091                 }
1092         }
1093
1094         if (rdev->constraints->over_current_protection
1095                 && ops->set_over_current_protection) {
1096                 ret = ops->set_over_current_protection(rdev);
1097                 if (ret < 0) {
1098                         rdev_err(rdev, "failed to set over current protection\n");
1099                         goto out;
1100                 }
1101         }
1102
1103         print_constraints(rdev);
1104         return 0;
1105 out:
1106         kfree(rdev->constraints);
1107         rdev->constraints = NULL;
1108         return ret;
1109 }
1110
1111 /**
1112  * set_supply - set regulator supply regulator
1113  * @rdev: regulator name
1114  * @supply_rdev: supply regulator name
1115  *
1116  * Called by platform initialisation code to set the supply regulator for this
1117  * regulator. This ensures that a regulators supply will also be enabled by the
1118  * core if it's child is enabled.
1119  */
1120 static int set_supply(struct regulator_dev *rdev,
1121                       struct regulator_dev *supply_rdev)
1122 {
1123         int err;
1124
1125         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1126
1127         if (!try_module_get(supply_rdev->owner))
1128                 return -ENODEV;
1129
1130         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1131         if (rdev->supply == NULL) {
1132                 err = -ENOMEM;
1133                 return err;
1134         }
1135         supply_rdev->open_count++;
1136
1137         return 0;
1138 }
1139
1140 /**
1141  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1142  * @rdev:         regulator source
1143  * @consumer_dev_name: dev_name() string for device supply applies to
1144  * @supply:       symbolic name for supply
1145  *
1146  * Allows platform initialisation code to map physical regulator
1147  * sources to symbolic names for supplies for use by devices.  Devices
1148  * should use these symbolic names to request regulators, avoiding the
1149  * need to provide board-specific regulator names as platform data.
1150  */
1151 static int set_consumer_device_supply(struct regulator_dev *rdev,
1152                                       const char *consumer_dev_name,
1153                                       const char *supply)
1154 {
1155         struct regulator_map *node;
1156         int has_dev;
1157
1158         if (supply == NULL)
1159                 return -EINVAL;
1160
1161         if (consumer_dev_name != NULL)
1162                 has_dev = 1;
1163         else
1164                 has_dev = 0;
1165
1166         list_for_each_entry(node, &regulator_map_list, list) {
1167                 if (node->dev_name && consumer_dev_name) {
1168                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1169                                 continue;
1170                 } else if (node->dev_name || consumer_dev_name) {
1171                         continue;
1172                 }
1173
1174                 if (strcmp(node->supply, supply) != 0)
1175                         continue;
1176
1177                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1178                          consumer_dev_name,
1179                          dev_name(&node->regulator->dev),
1180                          node->regulator->desc->name,
1181                          supply,
1182                          dev_name(&rdev->dev), rdev_get_name(rdev));
1183                 return -EBUSY;
1184         }
1185
1186         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1187         if (node == NULL)
1188                 return -ENOMEM;
1189
1190         node->regulator = rdev;
1191         node->supply = supply;
1192
1193         if (has_dev) {
1194                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1195                 if (node->dev_name == NULL) {
1196                         kfree(node);
1197                         return -ENOMEM;
1198                 }
1199         }
1200
1201         list_add(&node->list, &regulator_map_list);
1202         return 0;
1203 }
1204
1205 static void unset_regulator_supplies(struct regulator_dev *rdev)
1206 {
1207         struct regulator_map *node, *n;
1208
1209         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1210                 if (rdev == node->regulator) {
1211                         list_del(&node->list);
1212                         kfree(node->dev_name);
1213                         kfree(node);
1214                 }
1215         }
1216 }
1217
1218 #define REG_STR_SIZE    64
1219
1220 static struct regulator *create_regulator(struct regulator_dev *rdev,
1221                                           struct device *dev,
1222                                           const char *supply_name)
1223 {
1224         struct regulator *regulator;
1225         char buf[REG_STR_SIZE];
1226         int err, size;
1227
1228         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1229         if (regulator == NULL)
1230                 return NULL;
1231
1232         mutex_lock(&rdev->mutex);
1233         regulator->rdev = rdev;
1234         list_add(&regulator->list, &rdev->consumer_list);
1235
1236         if (dev) {
1237                 regulator->dev = dev;
1238
1239                 /* Add a link to the device sysfs entry */
1240                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1241                                  dev->kobj.name, supply_name);
1242                 if (size >= REG_STR_SIZE)
1243                         goto overflow_err;
1244
1245                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1246                 if (regulator->supply_name == NULL)
1247                         goto overflow_err;
1248
1249                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1250                                         buf);
1251                 if (err) {
1252                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1253                                   dev->kobj.name, err);
1254                         /* non-fatal */
1255                 }
1256         } else {
1257                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1258                 if (regulator->supply_name == NULL)
1259                         goto overflow_err;
1260         }
1261
1262         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1263                                                 rdev->debugfs);
1264         if (!regulator->debugfs) {
1265                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1266         } else {
1267                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1268                                    &regulator->uA_load);
1269                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1270                                    &regulator->min_uV);
1271                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1272                                    &regulator->max_uV);
1273         }
1274
1275         /*
1276          * Check now if the regulator is an always on regulator - if
1277          * it is then we don't need to do nearly so much work for
1278          * enable/disable calls.
1279          */
1280         if (!_regulator_can_change_status(rdev) &&
1281             _regulator_is_enabled(rdev))
1282                 regulator->always_on = true;
1283
1284         mutex_unlock(&rdev->mutex);
1285         return regulator;
1286 overflow_err:
1287         list_del(&regulator->list);
1288         kfree(regulator);
1289         mutex_unlock(&rdev->mutex);
1290         return NULL;
1291 }
1292
1293 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1294 {
1295         if (rdev->constraints && rdev->constraints->enable_time)
1296                 return rdev->constraints->enable_time;
1297         if (!rdev->desc->ops->enable_time)
1298                 return rdev->desc->enable_time;
1299         return rdev->desc->ops->enable_time(rdev);
1300 }
1301
1302 static struct regulator_supply_alias *regulator_find_supply_alias(
1303                 struct device *dev, const char *supply)
1304 {
1305         struct regulator_supply_alias *map;
1306
1307         list_for_each_entry(map, &regulator_supply_alias_list, list)
1308                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1309                         return map;
1310
1311         return NULL;
1312 }
1313
1314 static void regulator_supply_alias(struct device **dev, const char **supply)
1315 {
1316         struct regulator_supply_alias *map;
1317
1318         map = regulator_find_supply_alias(*dev, *supply);
1319         if (map) {
1320                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1321                                 *supply, map->alias_supply,
1322                                 dev_name(map->alias_dev));
1323                 *dev = map->alias_dev;
1324                 *supply = map->alias_supply;
1325         }
1326 }
1327
1328 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1329                                                   const char *supply,
1330                                                   int *ret)
1331 {
1332         struct regulator_dev *r;
1333         struct device_node *node;
1334         struct regulator_map *map;
1335         const char *devname = NULL;
1336
1337         regulator_supply_alias(&dev, &supply);
1338
1339         /* first do a dt based lookup */
1340         if (dev && dev->of_node) {
1341                 node = of_get_regulator(dev, supply);
1342                 if (node) {
1343                         list_for_each_entry(r, &regulator_list, list)
1344                                 if (r->dev.parent &&
1345                                         node == r->dev.of_node)
1346                                         return r;
1347                         *ret = -EPROBE_DEFER;
1348                         return NULL;
1349                 } else {
1350                         /*
1351                          * If we couldn't even get the node then it's
1352                          * not just that the device didn't register
1353                          * yet, there's no node and we'll never
1354                          * succeed.
1355                          */
1356                         *ret = -ENODEV;
1357                 }
1358         }
1359
1360         /* if not found, try doing it non-dt way */
1361         if (dev)
1362                 devname = dev_name(dev);
1363
1364         list_for_each_entry(r, &regulator_list, list)
1365                 if (strcmp(rdev_get_name(r), supply) == 0)
1366                         return r;
1367
1368         list_for_each_entry(map, &regulator_map_list, list) {
1369                 /* If the mapping has a device set up it must match */
1370                 if (map->dev_name &&
1371                     (!devname || strcmp(map->dev_name, devname)))
1372                         continue;
1373
1374                 if (strcmp(map->supply, supply) == 0)
1375                         return map->regulator;
1376         }
1377
1378
1379         return NULL;
1380 }
1381
1382 static int regulator_resolve_supply(struct regulator_dev *rdev)
1383 {
1384         struct regulator_dev *r;
1385         struct device *dev = rdev->dev.parent;
1386         int ret;
1387
1388         /* No supply to resovle? */
1389         if (!rdev->supply_name)
1390                 return 0;
1391
1392         /* Supply already resolved? */
1393         if (rdev->supply)
1394                 return 0;
1395
1396         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1397         if (ret == -ENODEV) {
1398                 /*
1399                  * No supply was specified for this regulator and
1400                  * there will never be one.
1401                  */
1402                 return 0;
1403         }
1404
1405         if (!r) {
1406                 if (have_full_constraints()) {
1407                         r = dummy_regulator_rdev;
1408                 } else {
1409                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1410                                 rdev->supply_name, rdev->desc->name);
1411                         return -EPROBE_DEFER;
1412                 }
1413         }
1414
1415         /* Recursively resolve the supply of the supply */
1416         ret = regulator_resolve_supply(r);
1417         if (ret < 0)
1418                 return ret;
1419
1420         ret = set_supply(rdev, r);
1421         if (ret < 0)
1422                 return ret;
1423
1424         /* Cascade always-on state to supply */
1425         if (_regulator_is_enabled(rdev)) {
1426                 ret = regulator_enable(rdev->supply);
1427                 if (ret < 0) {
1428                         if (rdev->supply)
1429                                 _regulator_put(rdev->supply);
1430                         return ret;
1431                 }
1432         }
1433
1434         return 0;
1435 }
1436
1437 /* Internal regulator request function */
1438 static struct regulator *_regulator_get(struct device *dev, const char *id,
1439                                         bool exclusive, bool allow_dummy)
1440 {
1441         struct regulator_dev *rdev;
1442         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1443         const char *devname = NULL;
1444         int ret;
1445
1446         if (id == NULL) {
1447                 pr_err("get() with no identifier\n");
1448                 return ERR_PTR(-EINVAL);
1449         }
1450
1451         if (dev)
1452                 devname = dev_name(dev);
1453
1454         if (have_full_constraints())
1455                 ret = -ENODEV;
1456         else
1457                 ret = -EPROBE_DEFER;
1458
1459         mutex_lock(&regulator_list_mutex);
1460
1461         rdev = regulator_dev_lookup(dev, id, &ret);
1462         if (rdev)
1463                 goto found;
1464
1465         regulator = ERR_PTR(ret);
1466
1467         /*
1468          * If we have return value from dev_lookup fail, we do not expect to
1469          * succeed, so, quit with appropriate error value
1470          */
1471         if (ret && ret != -ENODEV)
1472                 goto out;
1473
1474         if (!devname)
1475                 devname = "deviceless";
1476
1477         /*
1478          * Assume that a regulator is physically present and enabled
1479          * even if it isn't hooked up and just provide a dummy.
1480          */
1481         if (have_full_constraints() && allow_dummy) {
1482                 pr_warn("%s supply %s not found, using dummy regulator\n",
1483                         devname, id);
1484
1485                 rdev = dummy_regulator_rdev;
1486                 goto found;
1487         /* Don't log an error when called from regulator_get_optional() */
1488         } else if (!have_full_constraints() || exclusive) {
1489                 dev_warn(dev, "dummy supplies not allowed\n");
1490         }
1491
1492         mutex_unlock(&regulator_list_mutex);
1493         return regulator;
1494
1495 found:
1496         if (rdev->exclusive) {
1497                 regulator = ERR_PTR(-EPERM);
1498                 goto out;
1499         }
1500
1501         if (exclusive && rdev->open_count) {
1502                 regulator = ERR_PTR(-EBUSY);
1503                 goto out;
1504         }
1505
1506         ret = regulator_resolve_supply(rdev);
1507         if (ret < 0) {
1508                 regulator = ERR_PTR(ret);
1509                 goto out;
1510         }
1511
1512         if (!try_module_get(rdev->owner))
1513                 goto out;
1514
1515         regulator = create_regulator(rdev, dev, id);
1516         if (regulator == NULL) {
1517                 regulator = ERR_PTR(-ENOMEM);
1518                 module_put(rdev->owner);
1519                 goto out;
1520         }
1521
1522         rdev->open_count++;
1523         if (exclusive) {
1524                 rdev->exclusive = 1;
1525
1526                 ret = _regulator_is_enabled(rdev);
1527                 if (ret > 0)
1528                         rdev->use_count = 1;
1529                 else
1530                         rdev->use_count = 0;
1531         }
1532
1533 out:
1534         mutex_unlock(&regulator_list_mutex);
1535
1536         return regulator;
1537 }
1538
1539 /**
1540  * regulator_get - lookup and obtain a reference to a regulator.
1541  * @dev: device for regulator "consumer"
1542  * @id: Supply name or regulator ID.
1543  *
1544  * Returns a struct regulator corresponding to the regulator producer,
1545  * or IS_ERR() condition containing errno.
1546  *
1547  * Use of supply names configured via regulator_set_device_supply() is
1548  * strongly encouraged.  It is recommended that the supply name used
1549  * should match the name used for the supply and/or the relevant
1550  * device pins in the datasheet.
1551  */
1552 struct regulator *regulator_get(struct device *dev, const char *id)
1553 {
1554         return _regulator_get(dev, id, false, true);
1555 }
1556 EXPORT_SYMBOL_GPL(regulator_get);
1557
1558 /**
1559  * regulator_get_exclusive - obtain exclusive access to a regulator.
1560  * @dev: device for regulator "consumer"
1561  * @id: Supply name or regulator ID.
1562  *
1563  * Returns a struct regulator corresponding to the regulator producer,
1564  * or IS_ERR() condition containing errno.  Other consumers will be
1565  * unable to obtain this regulator while this reference is held and the
1566  * use count for the regulator will be initialised to reflect the current
1567  * state of the regulator.
1568  *
1569  * This is intended for use by consumers which cannot tolerate shared
1570  * use of the regulator such as those which need to force the
1571  * regulator off for correct operation of the hardware they are
1572  * controlling.
1573  *
1574  * Use of supply names configured via regulator_set_device_supply() is
1575  * strongly encouraged.  It is recommended that the supply name used
1576  * should match the name used for the supply and/or the relevant
1577  * device pins in the datasheet.
1578  */
1579 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1580 {
1581         return _regulator_get(dev, id, true, false);
1582 }
1583 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1584
1585 /**
1586  * regulator_get_optional - obtain optional access to a regulator.
1587  * @dev: device for regulator "consumer"
1588  * @id: Supply name or regulator ID.
1589  *
1590  * Returns a struct regulator corresponding to the regulator producer,
1591  * or IS_ERR() condition containing errno.
1592  *
1593  * This is intended for use by consumers for devices which can have
1594  * some supplies unconnected in normal use, such as some MMC devices.
1595  * It can allow the regulator core to provide stub supplies for other
1596  * supplies requested using normal regulator_get() calls without
1597  * disrupting the operation of drivers that can handle absent
1598  * supplies.
1599  *
1600  * Use of supply names configured via regulator_set_device_supply() is
1601  * strongly encouraged.  It is recommended that the supply name used
1602  * should match the name used for the supply and/or the relevant
1603  * device pins in the datasheet.
1604  */
1605 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1606 {
1607         return _regulator_get(dev, id, false, false);
1608 }
1609 EXPORT_SYMBOL_GPL(regulator_get_optional);
1610
1611 /* regulator_list_mutex lock held by regulator_put() */
1612 static void _regulator_put(struct regulator *regulator)
1613 {
1614         struct regulator_dev *rdev;
1615
1616         if (IS_ERR_OR_NULL(regulator))
1617                 return;
1618
1619         lockdep_assert_held_once(&regulator_list_mutex);
1620
1621         rdev = regulator->rdev;
1622
1623         debugfs_remove_recursive(regulator->debugfs);
1624
1625         /* remove any sysfs entries */
1626         if (regulator->dev)
1627                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1628         mutex_lock(&rdev->mutex);
1629         list_del(&regulator->list);
1630
1631         rdev->open_count--;
1632         rdev->exclusive = 0;
1633         mutex_unlock(&rdev->mutex);
1634
1635         kfree(regulator->supply_name);
1636         kfree(regulator);
1637
1638         module_put(rdev->owner);
1639 }
1640
1641 /**
1642  * regulator_put - "free" the regulator source
1643  * @regulator: regulator source
1644  *
1645  * Note: drivers must ensure that all regulator_enable calls made on this
1646  * regulator source are balanced by regulator_disable calls prior to calling
1647  * this function.
1648  */
1649 void regulator_put(struct regulator *regulator)
1650 {
1651         mutex_lock(&regulator_list_mutex);
1652         _regulator_put(regulator);
1653         mutex_unlock(&regulator_list_mutex);
1654 }
1655 EXPORT_SYMBOL_GPL(regulator_put);
1656
1657 /**
1658  * regulator_register_supply_alias - Provide device alias for supply lookup
1659  *
1660  * @dev: device that will be given as the regulator "consumer"
1661  * @id: Supply name or regulator ID
1662  * @alias_dev: device that should be used to lookup the supply
1663  * @alias_id: Supply name or regulator ID that should be used to lookup the
1664  * supply
1665  *
1666  * All lookups for id on dev will instead be conducted for alias_id on
1667  * alias_dev.
1668  */
1669 int regulator_register_supply_alias(struct device *dev, const char *id,
1670                                     struct device *alias_dev,
1671                                     const char *alias_id)
1672 {
1673         struct regulator_supply_alias *map;
1674
1675         map = regulator_find_supply_alias(dev, id);
1676         if (map)
1677                 return -EEXIST;
1678
1679         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1680         if (!map)
1681                 return -ENOMEM;
1682
1683         map->src_dev = dev;
1684         map->src_supply = id;
1685         map->alias_dev = alias_dev;
1686         map->alias_supply = alias_id;
1687
1688         list_add(&map->list, &regulator_supply_alias_list);
1689
1690         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1691                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1692
1693         return 0;
1694 }
1695 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1696
1697 /**
1698  * regulator_unregister_supply_alias - Remove device alias
1699  *
1700  * @dev: device that will be given as the regulator "consumer"
1701  * @id: Supply name or regulator ID
1702  *
1703  * Remove a lookup alias if one exists for id on dev.
1704  */
1705 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1706 {
1707         struct regulator_supply_alias *map;
1708
1709         map = regulator_find_supply_alias(dev, id);
1710         if (map) {
1711                 list_del(&map->list);
1712                 kfree(map);
1713         }
1714 }
1715 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1716
1717 /**
1718  * regulator_bulk_register_supply_alias - register multiple aliases
1719  *
1720  * @dev: device that will be given as the regulator "consumer"
1721  * @id: List of supply names or regulator IDs
1722  * @alias_dev: device that should be used to lookup the supply
1723  * @alias_id: List of supply names or regulator IDs that should be used to
1724  * lookup the supply
1725  * @num_id: Number of aliases to register
1726  *
1727  * @return 0 on success, an errno on failure.
1728  *
1729  * This helper function allows drivers to register several supply
1730  * aliases in one operation.  If any of the aliases cannot be
1731  * registered any aliases that were registered will be removed
1732  * before returning to the caller.
1733  */
1734 int regulator_bulk_register_supply_alias(struct device *dev,
1735                                          const char *const *id,
1736                                          struct device *alias_dev,
1737                                          const char *const *alias_id,
1738                                          int num_id)
1739 {
1740         int i;
1741         int ret;
1742
1743         for (i = 0; i < num_id; ++i) {
1744                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1745                                                       alias_id[i]);
1746                 if (ret < 0)
1747                         goto err;
1748         }
1749
1750         return 0;
1751
1752 err:
1753         dev_err(dev,
1754                 "Failed to create supply alias %s,%s -> %s,%s\n",
1755                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1756
1757         while (--i >= 0)
1758                 regulator_unregister_supply_alias(dev, id[i]);
1759
1760         return ret;
1761 }
1762 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1763
1764 /**
1765  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1766  *
1767  * @dev: device that will be given as the regulator "consumer"
1768  * @id: List of supply names or regulator IDs
1769  * @num_id: Number of aliases to unregister
1770  *
1771  * This helper function allows drivers to unregister several supply
1772  * aliases in one operation.
1773  */
1774 void regulator_bulk_unregister_supply_alias(struct device *dev,
1775                                             const char *const *id,
1776                                             int num_id)
1777 {
1778         int i;
1779
1780         for (i = 0; i < num_id; ++i)
1781                 regulator_unregister_supply_alias(dev, id[i]);
1782 }
1783 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1784
1785
1786 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1787 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1788                                 const struct regulator_config *config)
1789 {
1790         struct regulator_enable_gpio *pin;
1791         struct gpio_desc *gpiod;
1792         int ret;
1793
1794         gpiod = gpio_to_desc(config->ena_gpio);
1795
1796         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1797                 if (pin->gpiod == gpiod) {
1798                         rdev_dbg(rdev, "GPIO %d is already used\n",
1799                                 config->ena_gpio);
1800                         goto update_ena_gpio_to_rdev;
1801                 }
1802         }
1803
1804         ret = gpio_request_one(config->ena_gpio,
1805                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1806                                 rdev_get_name(rdev));
1807         if (ret)
1808                 return ret;
1809
1810         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1811         if (pin == NULL) {
1812                 gpio_free(config->ena_gpio);
1813                 return -ENOMEM;
1814         }
1815
1816         pin->gpiod = gpiod;
1817         pin->ena_gpio_invert = config->ena_gpio_invert;
1818         list_add(&pin->list, &regulator_ena_gpio_list);
1819
1820 update_ena_gpio_to_rdev:
1821         pin->request_count++;
1822         rdev->ena_pin = pin;
1823         return 0;
1824 }
1825
1826 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1827 {
1828         struct regulator_enable_gpio *pin, *n;
1829
1830         if (!rdev->ena_pin)
1831                 return;
1832
1833         /* Free the GPIO only in case of no use */
1834         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1835                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1836                         if (pin->request_count <= 1) {
1837                                 pin->request_count = 0;
1838                                 gpiod_put(pin->gpiod);
1839                                 list_del(&pin->list);
1840                                 kfree(pin);
1841                                 rdev->ena_pin = NULL;
1842                                 return;
1843                         } else {
1844                                 pin->request_count--;
1845                         }
1846                 }
1847         }
1848 }
1849
1850 /**
1851  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1852  * @rdev: regulator_dev structure
1853  * @enable: enable GPIO at initial use?
1854  *
1855  * GPIO is enabled in case of initial use. (enable_count is 0)
1856  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1857  */
1858 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1859 {
1860         struct regulator_enable_gpio *pin = rdev->ena_pin;
1861
1862         if (!pin)
1863                 return -EINVAL;
1864
1865         if (enable) {
1866                 /* Enable GPIO at initial use */
1867                 if (pin->enable_count == 0)
1868                         gpiod_set_value_cansleep(pin->gpiod,
1869                                                  !pin->ena_gpio_invert);
1870
1871                 pin->enable_count++;
1872         } else {
1873                 if (pin->enable_count > 1) {
1874                         pin->enable_count--;
1875                         return 0;
1876                 }
1877
1878                 /* Disable GPIO if not used */
1879                 if (pin->enable_count <= 1) {
1880                         gpiod_set_value_cansleep(pin->gpiod,
1881                                                  pin->ena_gpio_invert);
1882                         pin->enable_count = 0;
1883                 }
1884         }
1885
1886         return 0;
1887 }
1888
1889 /**
1890  * _regulator_enable_delay - a delay helper function
1891  * @delay: time to delay in microseconds
1892  *
1893  * Delay for the requested amount of time as per the guidelines in:
1894  *
1895  *     Documentation/timers/timers-howto.txt
1896  *
1897  * The assumption here is that regulators will never be enabled in
1898  * atomic context and therefore sleeping functions can be used.
1899  */
1900 static void _regulator_enable_delay(unsigned int delay)
1901 {
1902         unsigned int ms = delay / 1000;
1903         unsigned int us = delay % 1000;
1904
1905         if (ms > 0) {
1906                 /*
1907                  * For small enough values, handle super-millisecond
1908                  * delays in the usleep_range() call below.
1909                  */
1910                 if (ms < 20)
1911                         us += ms * 1000;
1912                 else
1913                         msleep(ms);
1914         }
1915
1916         /*
1917          * Give the scheduler some room to coalesce with any other
1918          * wakeup sources. For delays shorter than 10 us, don't even
1919          * bother setting up high-resolution timers and just busy-
1920          * loop.
1921          */
1922         if (us >= 10)
1923                 usleep_range(us, us + 100);
1924         else
1925                 udelay(us);
1926 }
1927
1928 static int _regulator_do_enable(struct regulator_dev *rdev)
1929 {
1930         int ret, delay;
1931
1932         /* Query before enabling in case configuration dependent.  */
1933         ret = _regulator_get_enable_time(rdev);
1934         if (ret >= 0) {
1935                 delay = ret;
1936         } else {
1937                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1938                 delay = 0;
1939         }
1940
1941         trace_regulator_enable(rdev_get_name(rdev));
1942
1943         if (rdev->desc->off_on_delay) {
1944                 /* if needed, keep a distance of off_on_delay from last time
1945                  * this regulator was disabled.
1946                  */
1947                 unsigned long start_jiffy = jiffies;
1948                 unsigned long intended, max_delay, remaining;
1949
1950                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1951                 intended = rdev->last_off_jiffy + max_delay;
1952
1953                 if (time_before(start_jiffy, intended)) {
1954                         /* calc remaining jiffies to deal with one-time
1955                          * timer wrapping.
1956                          * in case of multiple timer wrapping, either it can be
1957                          * detected by out-of-range remaining, or it cannot be
1958                          * detected and we gets a panelty of
1959                          * _regulator_enable_delay().
1960                          */
1961                         remaining = intended - start_jiffy;
1962                         if (remaining <= max_delay)
1963                                 _regulator_enable_delay(
1964                                                 jiffies_to_usecs(remaining));
1965                 }
1966         }
1967
1968         if (rdev->ena_pin) {
1969                 if (!rdev->ena_gpio_state) {
1970                         ret = regulator_ena_gpio_ctrl(rdev, true);
1971                         if (ret < 0)
1972                                 return ret;
1973                         rdev->ena_gpio_state = 1;
1974                 }
1975         } else if (rdev->desc->ops->enable) {
1976                 ret = rdev->desc->ops->enable(rdev);
1977                 if (ret < 0)
1978                         return ret;
1979         } else {
1980                 return -EINVAL;
1981         }
1982
1983         /* Allow the regulator to ramp; it would be useful to extend
1984          * this for bulk operations so that the regulators can ramp
1985          * together.  */
1986         trace_regulator_enable_delay(rdev_get_name(rdev));
1987
1988         _regulator_enable_delay(delay);
1989
1990         trace_regulator_enable_complete(rdev_get_name(rdev));
1991
1992         return 0;
1993 }
1994
1995 /* locks held by regulator_enable() */
1996 static int _regulator_enable(struct regulator_dev *rdev)
1997 {
1998         int ret;
1999
2000         lockdep_assert_held_once(&rdev->mutex);
2001
2002         /* check voltage and requested load before enabling */
2003         if (rdev->constraints &&
2004             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2005                 drms_uA_update(rdev);
2006
2007         if (rdev->use_count == 0) {
2008                 /* The regulator may on if it's not switchable or left on */
2009                 ret = _regulator_is_enabled(rdev);
2010                 if (ret == -EINVAL || ret == 0) {
2011                         if (!_regulator_can_change_status(rdev))
2012                                 return -EPERM;
2013
2014                         ret = _regulator_do_enable(rdev);
2015                         if (ret < 0)
2016                                 return ret;
2017
2018                 } else if (ret < 0) {
2019                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2020                         return ret;
2021                 }
2022                 /* Fallthrough on positive return values - already enabled */
2023         }
2024
2025         rdev->use_count++;
2026
2027         return 0;
2028 }
2029
2030 /**
2031  * regulator_enable - enable regulator output
2032  * @regulator: regulator source
2033  *
2034  * Request that the regulator be enabled with the regulator output at
2035  * the predefined voltage or current value.  Calls to regulator_enable()
2036  * must be balanced with calls to regulator_disable().
2037  *
2038  * NOTE: the output value can be set by other drivers, boot loader or may be
2039  * hardwired in the regulator.
2040  */
2041 int regulator_enable(struct regulator *regulator)
2042 {
2043         struct regulator_dev *rdev = regulator->rdev;
2044         int ret = 0;
2045
2046         if (regulator->always_on)
2047                 return 0;
2048
2049         if (rdev->supply) {
2050                 ret = regulator_enable(rdev->supply);
2051                 if (ret != 0)
2052                         return ret;
2053         }
2054
2055         mutex_lock(&rdev->mutex);
2056         ret = _regulator_enable(rdev);
2057         mutex_unlock(&rdev->mutex);
2058
2059         if (ret != 0 && rdev->supply)
2060                 regulator_disable(rdev->supply);
2061
2062         return ret;
2063 }
2064 EXPORT_SYMBOL_GPL(regulator_enable);
2065
2066 static int _regulator_do_disable(struct regulator_dev *rdev)
2067 {
2068         int ret;
2069
2070         trace_regulator_disable(rdev_get_name(rdev));
2071
2072         if (rdev->ena_pin) {
2073                 if (rdev->ena_gpio_state) {
2074                         ret = regulator_ena_gpio_ctrl(rdev, false);
2075                         if (ret < 0)
2076                                 return ret;
2077                         rdev->ena_gpio_state = 0;
2078                 }
2079
2080         } else if (rdev->desc->ops->disable) {
2081                 ret = rdev->desc->ops->disable(rdev);
2082                 if (ret != 0)
2083                         return ret;
2084         }
2085
2086         /* cares about last_off_jiffy only if off_on_delay is required by
2087          * device.
2088          */
2089         if (rdev->desc->off_on_delay)
2090                 rdev->last_off_jiffy = jiffies;
2091
2092         trace_regulator_disable_complete(rdev_get_name(rdev));
2093
2094         return 0;
2095 }
2096
2097 /* locks held by regulator_disable() */
2098 static int _regulator_disable(struct regulator_dev *rdev)
2099 {
2100         int ret = 0;
2101
2102         lockdep_assert_held_once(&rdev->mutex);
2103
2104         if (WARN(rdev->use_count <= 0,
2105                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2106                 return -EIO;
2107
2108         /* are we the last user and permitted to disable ? */
2109         if (rdev->use_count == 1 &&
2110             (rdev->constraints && !rdev->constraints->always_on)) {
2111
2112                 /* we are last user */
2113                 if (_regulator_can_change_status(rdev)) {
2114                         ret = _notifier_call_chain(rdev,
2115                                                    REGULATOR_EVENT_PRE_DISABLE,
2116                                                    NULL);
2117                         if (ret & NOTIFY_STOP_MASK)
2118                                 return -EINVAL;
2119
2120                         ret = _regulator_do_disable(rdev);
2121                         if (ret < 0) {
2122                                 rdev_err(rdev, "failed to disable\n");
2123                                 _notifier_call_chain(rdev,
2124                                                 REGULATOR_EVENT_ABORT_DISABLE,
2125                                                 NULL);
2126                                 return ret;
2127                         }
2128                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2129                                         NULL);
2130                 }
2131
2132                 rdev->use_count = 0;
2133         } else if (rdev->use_count > 1) {
2134
2135                 if (rdev->constraints &&
2136                         (rdev->constraints->valid_ops_mask &
2137                         REGULATOR_CHANGE_DRMS))
2138                         drms_uA_update(rdev);
2139
2140                 rdev->use_count--;
2141         }
2142
2143         return ret;
2144 }
2145
2146 /**
2147  * regulator_disable - disable regulator output
2148  * @regulator: regulator source
2149  *
2150  * Disable the regulator output voltage or current.  Calls to
2151  * regulator_enable() must be balanced with calls to
2152  * regulator_disable().
2153  *
2154  * NOTE: this will only disable the regulator output if no other consumer
2155  * devices have it enabled, the regulator device supports disabling and
2156  * machine constraints permit this operation.
2157  */
2158 int regulator_disable(struct regulator *regulator)
2159 {
2160         struct regulator_dev *rdev = regulator->rdev;
2161         int ret = 0;
2162
2163         if (regulator->always_on)
2164                 return 0;
2165
2166         mutex_lock(&rdev->mutex);
2167         ret = _regulator_disable(rdev);
2168         mutex_unlock(&rdev->mutex);
2169
2170         if (ret == 0 && rdev->supply)
2171                 regulator_disable(rdev->supply);
2172
2173         return ret;
2174 }
2175 EXPORT_SYMBOL_GPL(regulator_disable);
2176
2177 /* locks held by regulator_force_disable() */
2178 static int _regulator_force_disable(struct regulator_dev *rdev)
2179 {
2180         int ret = 0;
2181
2182         lockdep_assert_held_once(&rdev->mutex);
2183
2184         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2185                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2186         if (ret & NOTIFY_STOP_MASK)
2187                 return -EINVAL;
2188
2189         ret = _regulator_do_disable(rdev);
2190         if (ret < 0) {
2191                 rdev_err(rdev, "failed to force disable\n");
2192                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2193                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2194                 return ret;
2195         }
2196
2197         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2198                         REGULATOR_EVENT_DISABLE, NULL);
2199
2200         return 0;
2201 }
2202
2203 /**
2204  * regulator_force_disable - force disable regulator output
2205  * @regulator: regulator source
2206  *
2207  * Forcibly disable the regulator output voltage or current.
2208  * NOTE: this *will* disable the regulator output even if other consumer
2209  * devices have it enabled. This should be used for situations when device
2210  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2211  */
2212 int regulator_force_disable(struct regulator *regulator)
2213 {
2214         struct regulator_dev *rdev = regulator->rdev;
2215         int ret;
2216
2217         mutex_lock(&rdev->mutex);
2218         regulator->uA_load = 0;
2219         ret = _regulator_force_disable(regulator->rdev);
2220         mutex_unlock(&rdev->mutex);
2221
2222         if (rdev->supply)
2223                 while (rdev->open_count--)
2224                         regulator_disable(rdev->supply);
2225
2226         return ret;
2227 }
2228 EXPORT_SYMBOL_GPL(regulator_force_disable);
2229
2230 static void regulator_disable_work(struct work_struct *work)
2231 {
2232         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2233                                                   disable_work.work);
2234         int count, i, ret;
2235
2236         mutex_lock(&rdev->mutex);
2237
2238         BUG_ON(!rdev->deferred_disables);
2239
2240         count = rdev->deferred_disables;
2241         rdev->deferred_disables = 0;
2242
2243         for (i = 0; i < count; i++) {
2244                 ret = _regulator_disable(rdev);
2245                 if (ret != 0)
2246                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2247         }
2248
2249         mutex_unlock(&rdev->mutex);
2250
2251         if (rdev->supply) {
2252                 for (i = 0; i < count; i++) {
2253                         ret = regulator_disable(rdev->supply);
2254                         if (ret != 0) {
2255                                 rdev_err(rdev,
2256                                          "Supply disable failed: %d\n", ret);
2257                         }
2258                 }
2259         }
2260 }
2261
2262 /**
2263  * regulator_disable_deferred - disable regulator output with delay
2264  * @regulator: regulator source
2265  * @ms: miliseconds until the regulator is disabled
2266  *
2267  * Execute regulator_disable() on the regulator after a delay.  This
2268  * is intended for use with devices that require some time to quiesce.
2269  *
2270  * NOTE: this will only disable the regulator output if no other consumer
2271  * devices have it enabled, the regulator device supports disabling and
2272  * machine constraints permit this operation.
2273  */
2274 int regulator_disable_deferred(struct regulator *regulator, int ms)
2275 {
2276         struct regulator_dev *rdev = regulator->rdev;
2277         int ret;
2278
2279         if (regulator->always_on)
2280                 return 0;
2281
2282         if (!ms)
2283                 return regulator_disable(regulator);
2284
2285         mutex_lock(&rdev->mutex);
2286         rdev->deferred_disables++;
2287         mutex_unlock(&rdev->mutex);
2288
2289         ret = queue_delayed_work(system_power_efficient_wq,
2290                                  &rdev->disable_work,
2291                                  msecs_to_jiffies(ms));
2292         if (ret < 0)
2293                 return ret;
2294         else
2295                 return 0;
2296 }
2297 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2298
2299 static int _regulator_is_enabled(struct regulator_dev *rdev)
2300 {
2301         /* A GPIO control always takes precedence */
2302         if (rdev->ena_pin)
2303                 return rdev->ena_gpio_state;
2304
2305         /* If we don't know then assume that the regulator is always on */
2306         if (!rdev->desc->ops->is_enabled)
2307                 return 1;
2308
2309         return rdev->desc->ops->is_enabled(rdev);
2310 }
2311
2312 /**
2313  * regulator_is_enabled - is the regulator output enabled
2314  * @regulator: regulator source
2315  *
2316  * Returns positive if the regulator driver backing the source/client
2317  * has requested that the device be enabled, zero if it hasn't, else a
2318  * negative errno code.
2319  *
2320  * Note that the device backing this regulator handle can have multiple
2321  * users, so it might be enabled even if regulator_enable() was never
2322  * called for this particular source.
2323  */
2324 int regulator_is_enabled(struct regulator *regulator)
2325 {
2326         int ret;
2327
2328         if (regulator->always_on)
2329                 return 1;
2330
2331         mutex_lock(&regulator->rdev->mutex);
2332         ret = _regulator_is_enabled(regulator->rdev);
2333         mutex_unlock(&regulator->rdev->mutex);
2334
2335         return ret;
2336 }
2337 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2338
2339 /**
2340  * regulator_can_change_voltage - check if regulator can change voltage
2341  * @regulator: regulator source
2342  *
2343  * Returns positive if the regulator driver backing the source/client
2344  * can change its voltage, false otherwise. Useful for detecting fixed
2345  * or dummy regulators and disabling voltage change logic in the client
2346  * driver.
2347  */
2348 int regulator_can_change_voltage(struct regulator *regulator)
2349 {
2350         struct regulator_dev    *rdev = regulator->rdev;
2351
2352         if (rdev->constraints &&
2353             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2354                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2355                         return 1;
2356
2357                 if (rdev->desc->continuous_voltage_range &&
2358                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2359                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2360                         return 1;
2361         }
2362
2363         return 0;
2364 }
2365 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2366
2367 /**
2368  * regulator_count_voltages - count regulator_list_voltage() selectors
2369  * @regulator: regulator source
2370  *
2371  * Returns number of selectors, or negative errno.  Selectors are
2372  * numbered starting at zero, and typically correspond to bitfields
2373  * in hardware registers.
2374  */
2375 int regulator_count_voltages(struct regulator *regulator)
2376 {
2377         struct regulator_dev    *rdev = regulator->rdev;
2378
2379         if (rdev->desc->n_voltages)
2380                 return rdev->desc->n_voltages;
2381
2382         if (!rdev->supply)
2383                 return -EINVAL;
2384
2385         return regulator_count_voltages(rdev->supply);
2386 }
2387 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2388
2389 /**
2390  * regulator_list_voltage - enumerate supported voltages
2391  * @regulator: regulator source
2392  * @selector: identify voltage to list
2393  * Context: can sleep
2394  *
2395  * Returns a voltage that can be passed to @regulator_set_voltage(),
2396  * zero if this selector code can't be used on this system, or a
2397  * negative errno.
2398  */
2399 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2400 {
2401         struct regulator_dev *rdev = regulator->rdev;
2402         const struct regulator_ops *ops = rdev->desc->ops;
2403         int ret;
2404
2405         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2406                 return rdev->desc->fixed_uV;
2407
2408         if (ops->list_voltage) {
2409                 if (selector >= rdev->desc->n_voltages)
2410                         return -EINVAL;
2411                 mutex_lock(&rdev->mutex);
2412                 ret = ops->list_voltage(rdev, selector);
2413                 mutex_unlock(&rdev->mutex);
2414         } else if (rdev->supply) {
2415                 ret = regulator_list_voltage(rdev->supply, selector);
2416         } else {
2417                 return -EINVAL;
2418         }
2419
2420         if (ret > 0) {
2421                 if (ret < rdev->constraints->min_uV)
2422                         ret = 0;
2423                 else if (ret > rdev->constraints->max_uV)
2424                         ret = 0;
2425         }
2426
2427         return ret;
2428 }
2429 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2430
2431 /**
2432  * regulator_get_regmap - get the regulator's register map
2433  * @regulator: regulator source
2434  *
2435  * Returns the register map for the given regulator, or an ERR_PTR value
2436  * if the regulator doesn't use regmap.
2437  */
2438 struct regmap *regulator_get_regmap(struct regulator *regulator)
2439 {
2440         struct regmap *map = regulator->rdev->regmap;
2441
2442         return map ? map : ERR_PTR(-EOPNOTSUPP);
2443 }
2444
2445 /**
2446  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2447  * @regulator: regulator source
2448  * @vsel_reg: voltage selector register, output parameter
2449  * @vsel_mask: mask for voltage selector bitfield, output parameter
2450  *
2451  * Returns the hardware register offset and bitmask used for setting the
2452  * regulator voltage. This might be useful when configuring voltage-scaling
2453  * hardware or firmware that can make I2C requests behind the kernel's back,
2454  * for example.
2455  *
2456  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2457  * and 0 is returned, otherwise a negative errno is returned.
2458  */
2459 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2460                                          unsigned *vsel_reg,
2461                                          unsigned *vsel_mask)
2462 {
2463         struct regulator_dev *rdev = regulator->rdev;
2464         const struct regulator_ops *ops = rdev->desc->ops;
2465
2466         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2467                 return -EOPNOTSUPP;
2468
2469          *vsel_reg = rdev->desc->vsel_reg;
2470          *vsel_mask = rdev->desc->vsel_mask;
2471
2472          return 0;
2473 }
2474 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2475
2476 /**
2477  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2478  * @regulator: regulator source
2479  * @selector: identify voltage to list
2480  *
2481  * Converts the selector to a hardware-specific voltage selector that can be
2482  * directly written to the regulator registers. The address of the voltage
2483  * register can be determined by calling @regulator_get_hardware_vsel_register.
2484  *
2485  * On error a negative errno is returned.
2486  */
2487 int regulator_list_hardware_vsel(struct regulator *regulator,
2488                                  unsigned selector)
2489 {
2490         struct regulator_dev *rdev = regulator->rdev;
2491         const struct regulator_ops *ops = rdev->desc->ops;
2492
2493         if (selector >= rdev->desc->n_voltages)
2494                 return -EINVAL;
2495         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2496                 return -EOPNOTSUPP;
2497
2498         return selector;
2499 }
2500 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2501
2502 /**
2503  * regulator_get_linear_step - return the voltage step size between VSEL values
2504  * @regulator: regulator source
2505  *
2506  * Returns the voltage step size between VSEL values for linear
2507  * regulators, or return 0 if the regulator isn't a linear regulator.
2508  */
2509 unsigned int regulator_get_linear_step(struct regulator *regulator)
2510 {
2511         struct regulator_dev *rdev = regulator->rdev;
2512
2513         return rdev->desc->uV_step;
2514 }
2515 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2516
2517 /**
2518  * regulator_is_supported_voltage - check if a voltage range can be supported
2519  *
2520  * @regulator: Regulator to check.
2521  * @min_uV: Minimum required voltage in uV.
2522  * @max_uV: Maximum required voltage in uV.
2523  *
2524  * Returns a boolean or a negative error code.
2525  */
2526 int regulator_is_supported_voltage(struct regulator *regulator,
2527                                    int min_uV, int max_uV)
2528 {
2529         struct regulator_dev *rdev = regulator->rdev;
2530         int i, voltages, ret;
2531
2532         /* If we can't change voltage check the current voltage */
2533         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2534                 ret = regulator_get_voltage(regulator);
2535                 if (ret >= 0)
2536                         return min_uV <= ret && ret <= max_uV;
2537                 else
2538                         return ret;
2539         }
2540
2541         /* Any voltage within constrains range is fine? */
2542         if (rdev->desc->continuous_voltage_range)
2543                 return min_uV >= rdev->constraints->min_uV &&
2544                                 max_uV <= rdev->constraints->max_uV;
2545
2546         ret = regulator_count_voltages(regulator);
2547         if (ret < 0)
2548                 return ret;
2549         voltages = ret;
2550
2551         for (i = 0; i < voltages; i++) {
2552                 ret = regulator_list_voltage(regulator, i);
2553
2554                 if (ret >= min_uV && ret <= max_uV)
2555                         return 1;
2556         }
2557
2558         return 0;
2559 }
2560 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2561
2562 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2563                                        int min_uV, int max_uV,
2564                                        unsigned *selector)
2565 {
2566         struct pre_voltage_change_data data;
2567         int ret;
2568
2569         data.old_uV = _regulator_get_voltage(rdev);
2570         data.min_uV = min_uV;
2571         data.max_uV = max_uV;
2572         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2573                                    &data);
2574         if (ret & NOTIFY_STOP_MASK)
2575                 return -EINVAL;
2576
2577         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2578         if (ret >= 0)
2579                 return ret;
2580
2581         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2582                              (void *)data.old_uV);
2583
2584         return ret;
2585 }
2586
2587 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2588                                            int uV, unsigned selector)
2589 {
2590         struct pre_voltage_change_data data;
2591         int ret;
2592
2593         data.old_uV = _regulator_get_voltage(rdev);
2594         data.min_uV = uV;
2595         data.max_uV = uV;
2596         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2597                                    &data);
2598         if (ret & NOTIFY_STOP_MASK)
2599                 return -EINVAL;
2600
2601         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2602         if (ret >= 0)
2603                 return ret;
2604
2605         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2606                              (void *)data.old_uV);
2607
2608         return ret;
2609 }
2610
2611 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2612                                      int min_uV, int max_uV)
2613 {
2614         int ret;
2615         int delay = 0;
2616         int best_val = 0;
2617         unsigned int selector;
2618         int old_selector = -1;
2619
2620         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2621
2622         min_uV += rdev->constraints->uV_offset;
2623         max_uV += rdev->constraints->uV_offset;
2624
2625         /*
2626          * If we can't obtain the old selector there is not enough
2627          * info to call set_voltage_time_sel().
2628          */
2629         if (_regulator_is_enabled(rdev) &&
2630             rdev->desc->ops->set_voltage_time_sel &&
2631             rdev->desc->ops->get_voltage_sel) {
2632                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2633                 if (old_selector < 0)
2634                         return old_selector;
2635         }
2636
2637         if (rdev->desc->ops->set_voltage) {
2638                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2639                                                   &selector);
2640
2641                 if (ret >= 0) {
2642                         if (rdev->desc->ops->list_voltage)
2643                                 best_val = rdev->desc->ops->list_voltage(rdev,
2644                                                                          selector);
2645                         else
2646                                 best_val = _regulator_get_voltage(rdev);
2647                 }
2648
2649         } else if (rdev->desc->ops->set_voltage_sel) {
2650                 if (rdev->desc->ops->map_voltage) {
2651                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2652                                                            max_uV);
2653                 } else {
2654                         if (rdev->desc->ops->list_voltage ==
2655                             regulator_list_voltage_linear)
2656                                 ret = regulator_map_voltage_linear(rdev,
2657                                                                 min_uV, max_uV);
2658                         else if (rdev->desc->ops->list_voltage ==
2659                                  regulator_list_voltage_linear_range)
2660                                 ret = regulator_map_voltage_linear_range(rdev,
2661                                                                 min_uV, max_uV);
2662                         else
2663                                 ret = regulator_map_voltage_iterate(rdev,
2664                                                                 min_uV, max_uV);
2665                 }
2666
2667                 if (ret >= 0) {
2668                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2669                         if (min_uV <= best_val && max_uV >= best_val) {
2670                                 selector = ret;
2671                                 if (old_selector == selector)
2672                                         ret = 0;
2673                                 else
2674                                         ret = _regulator_call_set_voltage_sel(
2675                                                 rdev, best_val, selector);
2676                         } else {
2677                                 ret = -EINVAL;
2678                         }
2679                 }
2680         } else {
2681                 ret = -EINVAL;
2682         }
2683
2684         /* Call set_voltage_time_sel if successfully obtained old_selector */
2685         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2686                 && old_selector != selector) {
2687
2688                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2689                                                 old_selector, selector);
2690                 if (delay < 0) {
2691                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2692                                   delay);
2693                         delay = 0;
2694                 }
2695
2696                 /* Insert any necessary delays */
2697                 if (delay >= 1000) {
2698                         mdelay(delay / 1000);
2699                         udelay(delay % 1000);
2700                 } else if (delay) {
2701                         udelay(delay);
2702                 }
2703         }
2704
2705         if (ret == 0 && best_val >= 0) {
2706                 unsigned long data = best_val;
2707
2708                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2709                                      (void *)data);
2710         }
2711
2712         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2713
2714         return ret;
2715 }
2716
2717 /**
2718  * regulator_set_voltage - set regulator output voltage
2719  * @regulator: regulator source
2720  * @min_uV: Minimum required voltage in uV
2721  * @max_uV: Maximum acceptable voltage in uV
2722  *
2723  * Sets a voltage regulator to the desired output voltage. This can be set
2724  * during any regulator state. IOW, regulator can be disabled or enabled.
2725  *
2726  * If the regulator is enabled then the voltage will change to the new value
2727  * immediately otherwise if the regulator is disabled the regulator will
2728  * output at the new voltage when enabled.
2729  *
2730  * NOTE: If the regulator is shared between several devices then the lowest
2731  * request voltage that meets the system constraints will be used.
2732  * Regulator system constraints must be set for this regulator before
2733  * calling this function otherwise this call will fail.
2734  */
2735 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2736 {
2737         struct regulator_dev *rdev = regulator->rdev;
2738         int ret = 0;
2739         int old_min_uV, old_max_uV;
2740         int current_uV;
2741
2742         mutex_lock(&rdev->mutex);
2743
2744         /* If we're setting the same range as last time the change
2745          * should be a noop (some cpufreq implementations use the same
2746          * voltage for multiple frequencies, for example).
2747          */
2748         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2749                 goto out;
2750
2751         /* If we're trying to set a range that overlaps the current voltage,
2752          * return successfully even though the regulator does not support
2753          * changing the voltage.
2754          */
2755         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2756                 current_uV = _regulator_get_voltage(rdev);
2757                 if (min_uV <= current_uV && current_uV <= max_uV) {
2758                         regulator->min_uV = min_uV;
2759                         regulator->max_uV = max_uV;
2760                         goto out;
2761                 }
2762         }
2763
2764         /* sanity check */
2765         if (!rdev->desc->ops->set_voltage &&
2766             !rdev->desc->ops->set_voltage_sel) {
2767                 ret = -EINVAL;
2768                 goto out;
2769         }
2770
2771         /* constraints check */
2772         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2773         if (ret < 0)
2774                 goto out;
2775
2776         /* restore original values in case of error */
2777         old_min_uV = regulator->min_uV;
2778         old_max_uV = regulator->max_uV;
2779         regulator->min_uV = min_uV;
2780         regulator->max_uV = max_uV;
2781
2782         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2783         if (ret < 0)
2784                 goto out2;
2785
2786         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2787         if (ret < 0)
2788                 goto out2;
2789
2790 out:
2791         mutex_unlock(&rdev->mutex);
2792         return ret;
2793 out2:
2794         regulator->min_uV = old_min_uV;
2795         regulator->max_uV = old_max_uV;
2796         mutex_unlock(&rdev->mutex);
2797         return ret;
2798 }
2799 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2800
2801 /**
2802  * regulator_set_voltage_time - get raise/fall time
2803  * @regulator: regulator source
2804  * @old_uV: starting voltage in microvolts
2805  * @new_uV: target voltage in microvolts
2806  *
2807  * Provided with the starting and ending voltage, this function attempts to
2808  * calculate the time in microseconds required to rise or fall to this new
2809  * voltage.
2810  */
2811 int regulator_set_voltage_time(struct regulator *regulator,
2812                                int old_uV, int new_uV)
2813 {
2814         struct regulator_dev *rdev = regulator->rdev;
2815         const struct regulator_ops *ops = rdev->desc->ops;
2816         int old_sel = -1;
2817         int new_sel = -1;
2818         int voltage;
2819         int i;
2820
2821         /* Currently requires operations to do this */
2822         if (!ops->list_voltage || !ops->set_voltage_time_sel
2823             || !rdev->desc->n_voltages)
2824                 return -EINVAL;
2825
2826         for (i = 0; i < rdev->desc->n_voltages; i++) {
2827                 /* We only look for exact voltage matches here */
2828                 voltage = regulator_list_voltage(regulator, i);
2829                 if (voltage < 0)
2830                         return -EINVAL;
2831                 if (voltage == 0)
2832                         continue;
2833                 if (voltage == old_uV)
2834                         old_sel = i;
2835                 if (voltage == new_uV)
2836                         new_sel = i;
2837         }
2838
2839         if (old_sel < 0 || new_sel < 0)
2840                 return -EINVAL;
2841
2842         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2843 }
2844 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2845
2846 /**
2847  * regulator_set_voltage_time_sel - get raise/fall time
2848  * @rdev: regulator source device
2849  * @old_selector: selector for starting voltage
2850  * @new_selector: selector for target voltage
2851  *
2852  * Provided with the starting and target voltage selectors, this function
2853  * returns time in microseconds required to rise or fall to this new voltage
2854  *
2855  * Drivers providing ramp_delay in regulation_constraints can use this as their
2856  * set_voltage_time_sel() operation.
2857  */
2858 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2859                                    unsigned int old_selector,
2860                                    unsigned int new_selector)
2861 {
2862         unsigned int ramp_delay = 0;
2863         int old_volt, new_volt;
2864
2865         if (rdev->constraints->ramp_delay)
2866                 ramp_delay = rdev->constraints->ramp_delay;
2867         else if (rdev->desc->ramp_delay)
2868                 ramp_delay = rdev->desc->ramp_delay;
2869
2870         if (ramp_delay == 0) {
2871                 rdev_warn(rdev, "ramp_delay not set\n");
2872                 return 0;
2873         }
2874
2875         /* sanity check */
2876         if (!rdev->desc->ops->list_voltage)
2877                 return -EINVAL;
2878
2879         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2880         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2881
2882         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2883 }
2884 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2885
2886 /**
2887  * regulator_sync_voltage - re-apply last regulator output voltage
2888  * @regulator: regulator source
2889  *
2890  * Re-apply the last configured voltage.  This is intended to be used
2891  * where some external control source the consumer is cooperating with
2892  * has caused the configured voltage to change.
2893  */
2894 int regulator_sync_voltage(struct regulator *regulator)
2895 {
2896         struct regulator_dev *rdev = regulator->rdev;
2897         int ret, min_uV, max_uV;
2898
2899         mutex_lock(&rdev->mutex);
2900
2901         if (!rdev->desc->ops->set_voltage &&
2902             !rdev->desc->ops->set_voltage_sel) {
2903                 ret = -EINVAL;
2904                 goto out;
2905         }
2906
2907         /* This is only going to work if we've had a voltage configured. */
2908         if (!regulator->min_uV && !regulator->max_uV) {
2909                 ret = -EINVAL;
2910                 goto out;
2911         }
2912
2913         min_uV = regulator->min_uV;
2914         max_uV = regulator->max_uV;
2915
2916         /* This should be a paranoia check... */
2917         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2918         if (ret < 0)
2919                 goto out;
2920
2921         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2922         if (ret < 0)
2923                 goto out;
2924
2925         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2926
2927 out:
2928         mutex_unlock(&rdev->mutex);
2929         return ret;
2930 }
2931 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2932
2933 static int _regulator_get_voltage(struct regulator_dev *rdev)
2934 {
2935         int sel, ret;
2936
2937         if (rdev->desc->ops->get_voltage_sel) {
2938                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2939                 if (sel < 0)
2940                         return sel;
2941                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2942         } else if (rdev->desc->ops->get_voltage) {
2943                 ret = rdev->desc->ops->get_voltage(rdev);
2944         } else if (rdev->desc->ops->list_voltage) {
2945                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2946         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2947                 ret = rdev->desc->fixed_uV;
2948         } else if (rdev->supply) {
2949                 ret = regulator_get_voltage(rdev->supply);
2950         } else {
2951                 return -EINVAL;
2952         }
2953
2954         if (ret < 0)
2955                 return ret;
2956         return ret - rdev->constraints->uV_offset;
2957 }
2958
2959 /**
2960  * regulator_get_voltage - get regulator output voltage
2961  * @regulator: regulator source
2962  *
2963  * This returns the current regulator voltage in uV.
2964  *
2965  * NOTE: If the regulator is disabled it will return the voltage value. This
2966  * function should not be used to determine regulator state.
2967  */
2968 int regulator_get_voltage(struct regulator *regulator)
2969 {
2970         int ret;
2971
2972         mutex_lock(&regulator->rdev->mutex);
2973
2974         ret = _regulator_get_voltage(regulator->rdev);
2975
2976         mutex_unlock(&regulator->rdev->mutex);
2977
2978         return ret;
2979 }
2980 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2981
2982 /**
2983  * regulator_set_current_limit - set regulator output current limit
2984  * @regulator: regulator source
2985  * @min_uA: Minimum supported current in uA
2986  * @max_uA: Maximum supported current in uA
2987  *
2988  * Sets current sink to the desired output current. This can be set during
2989  * any regulator state. IOW, regulator can be disabled or enabled.
2990  *
2991  * If the regulator is enabled then the current will change to the new value
2992  * immediately otherwise if the regulator is disabled the regulator will
2993  * output at the new current when enabled.
2994  *
2995  * NOTE: Regulator system constraints must be set for this regulator before
2996  * calling this function otherwise this call will fail.
2997  */
2998 int regulator_set_current_limit(struct regulator *regulator,
2999                                int min_uA, int max_uA)
3000 {
3001         struct regulator_dev *rdev = regulator->rdev;
3002         int ret;
3003
3004         mutex_lock(&rdev->mutex);
3005
3006         /* sanity check */
3007         if (!rdev->desc->ops->set_current_limit) {
3008                 ret = -EINVAL;
3009                 goto out;
3010         }
3011
3012         /* constraints check */
3013         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3014         if (ret < 0)
3015                 goto out;
3016
3017         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3018 out:
3019         mutex_unlock(&rdev->mutex);
3020         return ret;
3021 }
3022 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3023
3024 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3025 {
3026         int ret;
3027
3028         mutex_lock(&rdev->mutex);
3029
3030         /* sanity check */
3031         if (!rdev->desc->ops->get_current_limit) {
3032                 ret = -EINVAL;
3033                 goto out;
3034         }
3035
3036         ret = rdev->desc->ops->get_current_limit(rdev);
3037 out:
3038         mutex_unlock(&rdev->mutex);
3039         return ret;
3040 }
3041
3042 /**
3043  * regulator_get_current_limit - get regulator output current
3044  * @regulator: regulator source
3045  *
3046  * This returns the current supplied by the specified current sink in uA.
3047  *
3048  * NOTE: If the regulator is disabled it will return the current value. This
3049  * function should not be used to determine regulator state.
3050  */
3051 int regulator_get_current_limit(struct regulator *regulator)
3052 {
3053         return _regulator_get_current_limit(regulator->rdev);
3054 }
3055 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3056
3057 /**
3058  * regulator_set_mode - set regulator operating mode
3059  * @regulator: regulator source
3060  * @mode: operating mode - one of the REGULATOR_MODE constants
3061  *
3062  * Set regulator operating mode to increase regulator efficiency or improve
3063  * regulation performance.
3064  *
3065  * NOTE: Regulator system constraints must be set for this regulator before
3066  * calling this function otherwise this call will fail.
3067  */
3068 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3069 {
3070         struct regulator_dev *rdev = regulator->rdev;
3071         int ret;
3072         int regulator_curr_mode;
3073
3074         mutex_lock(&rdev->mutex);
3075
3076         /* sanity check */
3077         if (!rdev->desc->ops->set_mode) {
3078                 ret = -EINVAL;
3079                 goto out;
3080         }
3081
3082         /* return if the same mode is requested */
3083         if (rdev->desc->ops->get_mode) {
3084                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3085                 if (regulator_curr_mode == mode) {
3086                         ret = 0;
3087                         goto out;
3088                 }
3089         }
3090
3091         /* constraints check */
3092         ret = regulator_mode_constrain(rdev, &mode);
3093         if (ret < 0)
3094                 goto out;
3095
3096         ret = rdev->desc->ops->set_mode(rdev, mode);
3097 out:
3098         mutex_unlock(&rdev->mutex);
3099         return ret;
3100 }
3101 EXPORT_SYMBOL_GPL(regulator_set_mode);
3102
3103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3104 {
3105         int ret;
3106
3107         mutex_lock(&rdev->mutex);
3108
3109         /* sanity check */
3110         if (!rdev->desc->ops->get_mode) {
3111                 ret = -EINVAL;
3112                 goto out;
3113         }
3114
3115         ret = rdev->desc->ops->get_mode(rdev);
3116 out:
3117         mutex_unlock(&rdev->mutex);
3118         return ret;
3119 }
3120
3121 /**
3122  * regulator_get_mode - get regulator operating mode
3123  * @regulator: regulator source
3124  *
3125  * Get the current regulator operating mode.
3126  */
3127 unsigned int regulator_get_mode(struct regulator *regulator)
3128 {
3129         return _regulator_get_mode(regulator->rdev);
3130 }
3131 EXPORT_SYMBOL_GPL(regulator_get_mode);
3132
3133 /**
3134  * regulator_set_load - set regulator load
3135  * @regulator: regulator source
3136  * @uA_load: load current
3137  *
3138  * Notifies the regulator core of a new device load. This is then used by
3139  * DRMS (if enabled by constraints) to set the most efficient regulator
3140  * operating mode for the new regulator loading.
3141  *
3142  * Consumer devices notify their supply regulator of the maximum power
3143  * they will require (can be taken from device datasheet in the power
3144  * consumption tables) when they change operational status and hence power
3145  * state. Examples of operational state changes that can affect power
3146  * consumption are :-
3147  *
3148  *    o Device is opened / closed.
3149  *    o Device I/O is about to begin or has just finished.
3150  *    o Device is idling in between work.
3151  *
3152  * This information is also exported via sysfs to userspace.
3153  *
3154  * DRMS will sum the total requested load on the regulator and change
3155  * to the most efficient operating mode if platform constraints allow.
3156  *
3157  * On error a negative errno is returned.
3158  */
3159 int regulator_set_load(struct regulator *regulator, int uA_load)
3160 {
3161         struct regulator_dev *rdev = regulator->rdev;
3162         int ret;
3163
3164         mutex_lock(&rdev->mutex);
3165         regulator->uA_load = uA_load;
3166         ret = drms_uA_update(rdev);
3167         mutex_unlock(&rdev->mutex);
3168
3169         return ret;
3170 }
3171 EXPORT_SYMBOL_GPL(regulator_set_load);
3172
3173 /**
3174  * regulator_allow_bypass - allow the regulator to go into bypass mode
3175  *
3176  * @regulator: Regulator to configure
3177  * @enable: enable or disable bypass mode
3178  *
3179  * Allow the regulator to go into bypass mode if all other consumers
3180  * for the regulator also enable bypass mode and the machine
3181  * constraints allow this.  Bypass mode means that the regulator is
3182  * simply passing the input directly to the output with no regulation.
3183  */
3184 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3185 {
3186         struct regulator_dev *rdev = regulator->rdev;
3187         int ret = 0;
3188
3189         if (!rdev->desc->ops->set_bypass)
3190                 return 0;
3191
3192         if (rdev->constraints &&
3193             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3194                 return 0;
3195
3196         mutex_lock(&rdev->mutex);
3197
3198         if (enable && !regulator->bypass) {
3199                 rdev->bypass_count++;
3200
3201                 if (rdev->bypass_count == rdev->open_count) {
3202                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3203                         if (ret != 0)
3204                                 rdev->bypass_count--;
3205                 }
3206
3207         } else if (!enable && regulator->bypass) {
3208                 rdev->bypass_count--;
3209
3210                 if (rdev->bypass_count != rdev->open_count) {
3211                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3212                         if (ret != 0)
3213                                 rdev->bypass_count++;
3214                 }
3215         }
3216
3217         if (ret == 0)
3218                 regulator->bypass = enable;
3219
3220         mutex_unlock(&rdev->mutex);
3221
3222         return ret;
3223 }
3224 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3225
3226 /**
3227  * regulator_register_notifier - register regulator event notifier
3228  * @regulator: regulator source
3229  * @nb: notifier block
3230  *
3231  * Register notifier block to receive regulator events.
3232  */
3233 int regulator_register_notifier(struct regulator *regulator,
3234                               struct notifier_block *nb)
3235 {
3236         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3237                                                 nb);
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3240
3241 /**
3242  * regulator_unregister_notifier - unregister regulator event notifier
3243  * @regulator: regulator source
3244  * @nb: notifier block
3245  *
3246  * Unregister regulator event notifier block.
3247  */
3248 int regulator_unregister_notifier(struct regulator *regulator,
3249                                 struct notifier_block *nb)
3250 {
3251         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3252                                                   nb);
3253 }
3254 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3255
3256 /* notify regulator consumers and downstream regulator consumers.
3257  * Note mutex must be held by caller.
3258  */
3259 static int _notifier_call_chain(struct regulator_dev *rdev,
3260                                   unsigned long event, void *data)
3261 {
3262         /* call rdev chain first */
3263         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3264 }
3265
3266 /**
3267  * regulator_bulk_get - get multiple regulator consumers
3268  *
3269  * @dev:           Device to supply
3270  * @num_consumers: Number of consumers to register
3271  * @consumers:     Configuration of consumers; clients are stored here.
3272  *
3273  * @return 0 on success, an errno on failure.
3274  *
3275  * This helper function allows drivers to get several regulator
3276  * consumers in one operation.  If any of the regulators cannot be
3277  * acquired then any regulators that were allocated will be freed
3278  * before returning to the caller.
3279  */
3280 int regulator_bulk_get(struct device *dev, int num_consumers,
3281                        struct regulator_bulk_data *consumers)
3282 {
3283         int i;
3284         int ret;
3285
3286         for (i = 0; i < num_consumers; i++)
3287                 consumers[i].consumer = NULL;
3288
3289         for (i = 0; i < num_consumers; i++) {
3290                 consumers[i].consumer = regulator_get(dev,
3291                                                       consumers[i].supply);
3292                 if (IS_ERR(consumers[i].consumer)) {
3293                         ret = PTR_ERR(consumers[i].consumer);
3294                         dev_err(dev, "Failed to get supply '%s': %d\n",
3295                                 consumers[i].supply, ret);
3296                         consumers[i].consumer = NULL;
3297                         goto err;
3298                 }
3299         }
3300
3301         return 0;
3302
3303 err:
3304         while (--i >= 0)
3305                 regulator_put(consumers[i].consumer);
3306
3307         return ret;
3308 }
3309 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3310
3311 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3312 {
3313         struct regulator_bulk_data *bulk = data;
3314
3315         bulk->ret = regulator_enable(bulk->consumer);
3316 }
3317
3318 /**
3319  * regulator_bulk_enable - enable multiple regulator consumers
3320  *
3321  * @num_consumers: Number of consumers
3322  * @consumers:     Consumer data; clients are stored here.
3323  * @return         0 on success, an errno on failure
3324  *
3325  * This convenience API allows consumers to enable multiple regulator
3326  * clients in a single API call.  If any consumers cannot be enabled
3327  * then any others that were enabled will be disabled again prior to
3328  * return.
3329  */
3330 int regulator_bulk_enable(int num_consumers,
3331                           struct regulator_bulk_data *consumers)
3332 {
3333         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3334         int i;
3335         int ret = 0;
3336
3337         for (i = 0; i < num_consumers; i++) {
3338                 if (consumers[i].consumer->always_on)
3339                         consumers[i].ret = 0;
3340                 else
3341                         async_schedule_domain(regulator_bulk_enable_async,
3342                                               &consumers[i], &async_domain);
3343         }
3344
3345         async_synchronize_full_domain(&async_domain);
3346
3347         /* If any consumer failed we need to unwind any that succeeded */
3348         for (i = 0; i < num_consumers; i++) {
3349                 if (consumers[i].ret != 0) {
3350                         ret = consumers[i].ret;
3351                         goto err;
3352                 }
3353         }
3354
3355         return 0;
3356
3357 err:
3358         for (i = 0; i < num_consumers; i++) {
3359                 if (consumers[i].ret < 0)
3360                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3361                                consumers[i].ret);
3362                 else
3363                         regulator_disable(consumers[i].consumer);
3364         }
3365
3366         return ret;
3367 }
3368 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3369
3370 /**
3371  * regulator_bulk_disable - disable multiple regulator consumers
3372  *
3373  * @num_consumers: Number of consumers
3374  * @consumers:     Consumer data; clients are stored here.
3375  * @return         0 on success, an errno on failure
3376  *
3377  * This convenience API allows consumers to disable multiple regulator
3378  * clients in a single API call.  If any consumers cannot be disabled
3379  * then any others that were disabled will be enabled again prior to
3380  * return.
3381  */
3382 int regulator_bulk_disable(int num_consumers,
3383                            struct regulator_bulk_data *consumers)
3384 {
3385         int i;
3386         int ret, r;
3387
3388         for (i = num_consumers - 1; i >= 0; --i) {
3389                 ret = regulator_disable(consumers[i].consumer);
3390                 if (ret != 0)
3391                         goto err;
3392         }
3393
3394         return 0;
3395
3396 err:
3397         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3398         for (++i; i < num_consumers; ++i) {
3399                 r = regulator_enable(consumers[i].consumer);
3400                 if (r != 0)
3401                         pr_err("Failed to reename %s: %d\n",
3402                                consumers[i].supply, r);
3403         }
3404
3405         return ret;
3406 }
3407 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3408
3409 /**
3410  * regulator_bulk_force_disable - force disable multiple regulator consumers
3411  *
3412  * @num_consumers: Number of consumers
3413  * @consumers:     Consumer data; clients are stored here.
3414  * @return         0 on success, an errno on failure
3415  *
3416  * This convenience API allows consumers to forcibly disable multiple regulator
3417  * clients in a single API call.
3418  * NOTE: This should be used for situations when device damage will
3419  * likely occur if the regulators are not disabled (e.g. over temp).
3420  * Although regulator_force_disable function call for some consumers can
3421  * return error numbers, the function is called for all consumers.
3422  */
3423 int regulator_bulk_force_disable(int num_consumers,
3424                            struct regulator_bulk_data *consumers)
3425 {
3426         int i;
3427         int ret;
3428
3429         for (i = 0; i < num_consumers; i++)
3430                 consumers[i].ret =
3431                             regulator_force_disable(consumers[i].consumer);
3432
3433         for (i = 0; i < num_consumers; i++) {
3434                 if (consumers[i].ret != 0) {
3435                         ret = consumers[i].ret;
3436                         goto out;
3437                 }
3438         }
3439
3440         return 0;
3441 out:
3442         return ret;
3443 }
3444 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3445
3446 /**
3447  * regulator_bulk_free - free multiple regulator consumers
3448  *
3449  * @num_consumers: Number of consumers
3450  * @consumers:     Consumer data; clients are stored here.
3451  *
3452  * This convenience API allows consumers to free multiple regulator
3453  * clients in a single API call.
3454  */
3455 void regulator_bulk_free(int num_consumers,
3456                          struct regulator_bulk_data *consumers)
3457 {
3458         int i;
3459
3460         for (i = 0; i < num_consumers; i++) {
3461                 regulator_put(consumers[i].consumer);
3462                 consumers[i].consumer = NULL;
3463         }
3464 }
3465 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3466
3467 /**
3468  * regulator_notifier_call_chain - call regulator event notifier
3469  * @rdev: regulator source
3470  * @event: notifier block
3471  * @data: callback-specific data.
3472  *
3473  * Called by regulator drivers to notify clients a regulator event has
3474  * occurred. We also notify regulator clients downstream.
3475  * Note lock must be held by caller.
3476  */
3477 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3478                                   unsigned long event, void *data)
3479 {
3480         lockdep_assert_held_once(&rdev->mutex);
3481
3482         _notifier_call_chain(rdev, event, data);
3483         return NOTIFY_DONE;
3484
3485 }
3486 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3487
3488 /**
3489  * regulator_mode_to_status - convert a regulator mode into a status
3490  *
3491  * @mode: Mode to convert
3492  *
3493  * Convert a regulator mode into a status.
3494  */
3495 int regulator_mode_to_status(unsigned int mode)
3496 {
3497         switch (mode) {
3498         case REGULATOR_MODE_FAST:
3499                 return REGULATOR_STATUS_FAST;
3500         case REGULATOR_MODE_NORMAL:
3501                 return REGULATOR_STATUS_NORMAL;
3502         case REGULATOR_MODE_IDLE:
3503                 return REGULATOR_STATUS_IDLE;
3504         case REGULATOR_MODE_STANDBY:
3505                 return REGULATOR_STATUS_STANDBY;
3506         default:
3507                 return REGULATOR_STATUS_UNDEFINED;
3508         }
3509 }
3510 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3511
3512 static struct attribute *regulator_dev_attrs[] = {
3513         &dev_attr_name.attr,
3514         &dev_attr_num_users.attr,
3515         &dev_attr_type.attr,
3516         &dev_attr_microvolts.attr,
3517         &dev_attr_microamps.attr,
3518         &dev_attr_opmode.attr,
3519         &dev_attr_state.attr,
3520         &dev_attr_status.attr,
3521         &dev_attr_bypass.attr,
3522         &dev_attr_requested_microamps.attr,
3523         &dev_attr_min_microvolts.attr,
3524         &dev_attr_max_microvolts.attr,
3525         &dev_attr_min_microamps.attr,
3526         &dev_attr_max_microamps.attr,
3527         &dev_attr_suspend_standby_state.attr,
3528         &dev_attr_suspend_mem_state.attr,
3529         &dev_attr_suspend_disk_state.attr,
3530         &dev_attr_suspend_standby_microvolts.attr,
3531         &dev_attr_suspend_mem_microvolts.attr,
3532         &dev_attr_suspend_disk_microvolts.attr,
3533         &dev_attr_suspend_standby_mode.attr,
3534         &dev_attr_suspend_mem_mode.attr,
3535         &dev_attr_suspend_disk_mode.attr,
3536         NULL
3537 };
3538
3539 /*
3540  * To avoid cluttering sysfs (and memory) with useless state, only
3541  * create attributes that can be meaningfully displayed.
3542  */
3543 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3544                                          struct attribute *attr, int idx)
3545 {
3546         struct device *dev = kobj_to_dev(kobj);
3547         struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3548         const struct regulator_ops *ops = rdev->desc->ops;
3549         umode_t mode = attr->mode;
3550
3551         /* these three are always present */
3552         if (attr == &dev_attr_name.attr ||
3553             attr == &dev_attr_num_users.attr ||
3554             attr == &dev_attr_type.attr)
3555                 return mode;
3556
3557         /* some attributes need specific methods to be displayed */
3558         if (attr == &dev_attr_microvolts.attr) {
3559                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3560                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3561                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3562                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3563                         return mode;
3564                 return 0;
3565         }
3566
3567         if (attr == &dev_attr_microamps.attr)
3568                 return ops->get_current_limit ? mode : 0;
3569
3570         if (attr == &dev_attr_opmode.attr)
3571                 return ops->get_mode ? mode : 0;
3572
3573         if (attr == &dev_attr_state.attr)
3574                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3575
3576         if (attr == &dev_attr_status.attr)
3577                 return ops->get_status ? mode : 0;
3578
3579         if (attr == &dev_attr_bypass.attr)
3580                 return ops->get_bypass ? mode : 0;
3581
3582         /* some attributes are type-specific */
3583         if (attr == &dev_attr_requested_microamps.attr)
3584                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3585
3586         /* constraints need specific supporting methods */
3587         if (attr == &dev_attr_min_microvolts.attr ||
3588             attr == &dev_attr_max_microvolts.attr)
3589                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3590
3591         if (attr == &dev_attr_min_microamps.attr ||
3592             attr == &dev_attr_max_microamps.attr)
3593                 return ops->set_current_limit ? mode : 0;
3594
3595         if (attr == &dev_attr_suspend_standby_state.attr ||
3596             attr == &dev_attr_suspend_mem_state.attr ||
3597             attr == &dev_attr_suspend_disk_state.attr)
3598                 return mode;
3599
3600         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3601             attr == &dev_attr_suspend_mem_microvolts.attr ||
3602             attr == &dev_attr_suspend_disk_microvolts.attr)
3603                 return ops->set_suspend_voltage ? mode : 0;
3604
3605         if (attr == &dev_attr_suspend_standby_mode.attr ||
3606             attr == &dev_attr_suspend_mem_mode.attr ||
3607             attr == &dev_attr_suspend_disk_mode.attr)
3608                 return ops->set_suspend_mode ? mode : 0;
3609
3610         return mode;
3611 }
3612
3613 static const struct attribute_group regulator_dev_group = {
3614         .attrs = regulator_dev_attrs,
3615         .is_visible = regulator_attr_is_visible,
3616 };
3617
3618 static const struct attribute_group *regulator_dev_groups[] = {
3619         &regulator_dev_group,
3620         NULL
3621 };
3622
3623 static void regulator_dev_release(struct device *dev)
3624 {
3625         struct regulator_dev *rdev = dev_get_drvdata(dev);
3626
3627         kfree(rdev->constraints);
3628         of_node_put(rdev->dev.of_node);
3629         kfree(rdev);
3630 }
3631
3632 static struct class regulator_class = {
3633         .name = "regulator",
3634         .dev_release = regulator_dev_release,
3635         .dev_groups = regulator_dev_groups,
3636 };
3637
3638 static void rdev_init_debugfs(struct regulator_dev *rdev)
3639 {
3640         struct device *parent = rdev->dev.parent;
3641         const char *rname = rdev_get_name(rdev);
3642         char name[NAME_MAX];
3643
3644         /* Avoid duplicate debugfs directory names */
3645         if (parent && rname == rdev->desc->name) {
3646                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3647                          rname);
3648                 rname = name;
3649         }
3650
3651         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3652         if (!rdev->debugfs) {
3653                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3654                 return;
3655         }
3656
3657         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3658                            &rdev->use_count);
3659         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3660                            &rdev->open_count);
3661         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3662                            &rdev->bypass_count);
3663 }
3664
3665 /**
3666  * regulator_register - register regulator
3667  * @regulator_desc: regulator to register
3668  * @cfg: runtime configuration for regulator
3669  *
3670  * Called by regulator drivers to register a regulator.
3671  * Returns a valid pointer to struct regulator_dev on success
3672  * or an ERR_PTR() on error.
3673  */
3674 struct regulator_dev *
3675 regulator_register(const struct regulator_desc *regulator_desc,
3676                    const struct regulator_config *cfg)
3677 {
3678         const struct regulation_constraints *constraints = NULL;
3679         const struct regulator_init_data *init_data;
3680         struct regulator_config *config = NULL;
3681         static atomic_t regulator_no = ATOMIC_INIT(-1);
3682         struct regulator_dev *rdev;
3683         struct device *dev;
3684         int ret, i;
3685
3686         if (regulator_desc == NULL || cfg == NULL)
3687                 return ERR_PTR(-EINVAL);
3688
3689         dev = cfg->dev;
3690         WARN_ON(!dev);
3691
3692         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3693                 return ERR_PTR(-EINVAL);
3694
3695         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3696             regulator_desc->type != REGULATOR_CURRENT)
3697                 return ERR_PTR(-EINVAL);
3698
3699         /* Only one of each should be implemented */
3700         WARN_ON(regulator_desc->ops->get_voltage &&
3701                 regulator_desc->ops->get_voltage_sel);
3702         WARN_ON(regulator_desc->ops->set_voltage &&
3703                 regulator_desc->ops->set_voltage_sel);
3704
3705         /* If we're using selectors we must implement list_voltage. */
3706         if (regulator_desc->ops->get_voltage_sel &&
3707             !regulator_desc->ops->list_voltage) {
3708                 return ERR_PTR(-EINVAL);
3709         }
3710         if (regulator_desc->ops->set_voltage_sel &&
3711             !regulator_desc->ops->list_voltage) {
3712                 return ERR_PTR(-EINVAL);
3713         }
3714
3715         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3716         if (rdev == NULL)
3717                 return ERR_PTR(-ENOMEM);
3718
3719         /*
3720          * Duplicate the config so the driver could override it after
3721          * parsing init data.
3722          */
3723         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3724         if (config == NULL) {
3725                 kfree(rdev);
3726                 return ERR_PTR(-ENOMEM);
3727         }
3728
3729         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3730                                                &rdev->dev.of_node);
3731         if (!init_data) {
3732                 init_data = config->init_data;
3733                 rdev->dev.of_node = of_node_get(config->of_node);
3734         }
3735
3736         mutex_lock(&regulator_list_mutex);
3737
3738         mutex_init(&rdev->mutex);
3739         rdev->reg_data = config->driver_data;
3740         rdev->owner = regulator_desc->owner;
3741         rdev->desc = regulator_desc;
3742         if (config->regmap)
3743                 rdev->regmap = config->regmap;
3744         else if (dev_get_regmap(dev, NULL))
3745                 rdev->regmap = dev_get_regmap(dev, NULL);
3746         else if (dev->parent)
3747                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3748         INIT_LIST_HEAD(&rdev->consumer_list);
3749         INIT_LIST_HEAD(&rdev->list);
3750         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3751         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3752
3753         /* preform any regulator specific init */
3754         if (init_data && init_data->regulator_init) {
3755                 ret = init_data->regulator_init(rdev->reg_data);
3756                 if (ret < 0)
3757                         goto clean;
3758         }
3759
3760         /* register with sysfs */
3761         rdev->dev.class = &regulator_class;
3762         rdev->dev.parent = dev;
3763         dev_set_name(&rdev->dev, "regulator.%lu",
3764                     (unsigned long) atomic_inc_return(&regulator_no));
3765         ret = device_register(&rdev->dev);
3766         if (ret != 0) {
3767                 put_device(&rdev->dev);
3768                 goto clean;
3769         }
3770
3771         dev_set_drvdata(&rdev->dev, rdev);
3772
3773         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3774             gpio_is_valid(config->ena_gpio)) {
3775                 ret = regulator_ena_gpio_request(rdev, config);
3776                 if (ret != 0) {
3777                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3778                                  config->ena_gpio, ret);
3779                         goto wash;
3780                 }
3781         }
3782
3783         /* set regulator constraints */
3784         if (init_data)
3785                 constraints = &init_data->constraints;
3786
3787         ret = set_machine_constraints(rdev, constraints);
3788         if (ret < 0)
3789                 goto scrub;
3790
3791         if (init_data && init_data->supply_regulator)
3792                 rdev->supply_name = init_data->supply_regulator;
3793         else if (regulator_desc->supply_name)
3794                 rdev->supply_name = regulator_desc->supply_name;
3795
3796         /* add consumers devices */
3797         if (init_data) {
3798                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3799                         ret = set_consumer_device_supply(rdev,
3800                                 init_data->consumer_supplies[i].dev_name,
3801                                 init_data->consumer_supplies[i].supply);
3802                         if (ret < 0) {
3803                                 dev_err(dev, "Failed to set supply %s\n",
3804                                         init_data->consumer_supplies[i].supply);
3805                                 goto unset_supplies;
3806                         }
3807                 }
3808         }
3809
3810         list_add(&rdev->list, &regulator_list);
3811
3812         rdev_init_debugfs(rdev);
3813 out:
3814         mutex_unlock(&regulator_list_mutex);
3815         kfree(config);
3816         return rdev;
3817
3818 unset_supplies:
3819         unset_regulator_supplies(rdev);
3820
3821 scrub:
3822         regulator_ena_gpio_free(rdev);
3823         kfree(rdev->constraints);
3824 wash:
3825         device_unregister(&rdev->dev);
3826         /* device core frees rdev */
3827         rdev = ERR_PTR(ret);
3828         goto out;
3829
3830 clean:
3831         kfree(rdev);
3832         rdev = ERR_PTR(ret);
3833         goto out;
3834 }
3835 EXPORT_SYMBOL_GPL(regulator_register);
3836
3837 /**
3838  * regulator_unregister - unregister regulator
3839  * @rdev: regulator to unregister
3840  *
3841  * Called by regulator drivers to unregister a regulator.
3842  */
3843 void regulator_unregister(struct regulator_dev *rdev)
3844 {
3845         if (rdev == NULL)
3846                 return;
3847
3848         if (rdev->supply) {
3849                 while (rdev->use_count--)
3850                         regulator_disable(rdev->supply);
3851                 regulator_put(rdev->supply);
3852         }
3853         mutex_lock(&regulator_list_mutex);
3854         debugfs_remove_recursive(rdev->debugfs);
3855         flush_work(&rdev->disable_work.work);
3856         WARN_ON(rdev->open_count);
3857         unset_regulator_supplies(rdev);
3858         list_del(&rdev->list);
3859         mutex_unlock(&regulator_list_mutex);
3860         regulator_ena_gpio_free(rdev);
3861         device_unregister(&rdev->dev);
3862 }
3863 EXPORT_SYMBOL_GPL(regulator_unregister);
3864
3865 /**
3866  * regulator_suspend_prepare - prepare regulators for system wide suspend
3867  * @state: system suspend state
3868  *
3869  * Configure each regulator with it's suspend operating parameters for state.
3870  * This will usually be called by machine suspend code prior to supending.
3871  */
3872 int regulator_suspend_prepare(suspend_state_t state)
3873 {
3874         struct regulator_dev *rdev;
3875         int ret = 0;
3876
3877         /* ON is handled by regulator active state */
3878         if (state == PM_SUSPEND_ON)
3879                 return -EINVAL;
3880
3881         mutex_lock(&regulator_list_mutex);
3882         list_for_each_entry(rdev, &regulator_list, list) {
3883
3884                 mutex_lock(&rdev->mutex);
3885                 ret = suspend_prepare(rdev, state);
3886                 mutex_unlock(&rdev->mutex);
3887
3888                 if (ret < 0) {
3889                         rdev_err(rdev, "failed to prepare\n");
3890                         goto out;
3891                 }
3892         }
3893 out:
3894         mutex_unlock(&regulator_list_mutex);
3895         return ret;
3896 }
3897 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3898
3899 /**
3900  * regulator_suspend_finish - resume regulators from system wide suspend
3901  *
3902  * Turn on regulators that might be turned off by regulator_suspend_prepare
3903  * and that should be turned on according to the regulators properties.
3904  */
3905 int regulator_suspend_finish(void)
3906 {
3907         struct regulator_dev *rdev;
3908         int ret = 0, error;
3909
3910         mutex_lock(&regulator_list_mutex);
3911         list_for_each_entry(rdev, &regulator_list, list) {
3912                 mutex_lock(&rdev->mutex);
3913                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3914                         if (!_regulator_is_enabled(rdev)) {
3915                                 error = _regulator_do_enable(rdev);
3916                                 if (error)
3917                                         ret = error;
3918                         }
3919                 } else {
3920                         if (!have_full_constraints())
3921                                 goto unlock;
3922                         if (!_regulator_is_enabled(rdev))
3923                                 goto unlock;
3924
3925                         error = _regulator_do_disable(rdev);
3926                         if (error)
3927                                 ret = error;
3928                 }
3929 unlock:
3930                 mutex_unlock(&rdev->mutex);
3931         }
3932         mutex_unlock(&regulator_list_mutex);
3933         return ret;
3934 }
3935 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3936
3937 /**
3938  * regulator_has_full_constraints - the system has fully specified constraints
3939  *
3940  * Calling this function will cause the regulator API to disable all
3941  * regulators which have a zero use count and don't have an always_on
3942  * constraint in a late_initcall.
3943  *
3944  * The intention is that this will become the default behaviour in a
3945  * future kernel release so users are encouraged to use this facility
3946  * now.
3947  */
3948 void regulator_has_full_constraints(void)
3949 {
3950         has_full_constraints = 1;
3951 }
3952 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3953
3954 /**
3955  * rdev_get_drvdata - get rdev regulator driver data
3956  * @rdev: regulator
3957  *
3958  * Get rdev regulator driver private data. This call can be used in the
3959  * regulator driver context.
3960  */
3961 void *rdev_get_drvdata(struct regulator_dev *rdev)
3962 {
3963         return rdev->reg_data;
3964 }
3965 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3966
3967 /**
3968  * regulator_get_drvdata - get regulator driver data
3969  * @regulator: regulator
3970  *
3971  * Get regulator driver private data. This call can be used in the consumer
3972  * driver context when non API regulator specific functions need to be called.
3973  */
3974 void *regulator_get_drvdata(struct regulator *regulator)
3975 {
3976         return regulator->rdev->reg_data;
3977 }
3978 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3979
3980 /**
3981  * regulator_set_drvdata - set regulator driver data
3982  * @regulator: regulator
3983  * @data: data
3984  */
3985 void regulator_set_drvdata(struct regulator *regulator, void *data)
3986 {
3987         regulator->rdev->reg_data = data;
3988 }
3989 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3990
3991 /**
3992  * regulator_get_id - get regulator ID
3993  * @rdev: regulator
3994  */
3995 int rdev_get_id(struct regulator_dev *rdev)
3996 {
3997         return rdev->desc->id;
3998 }
3999 EXPORT_SYMBOL_GPL(rdev_get_id);
4000
4001 struct device *rdev_get_dev(struct regulator_dev *rdev)
4002 {
4003         return &rdev->dev;
4004 }
4005 EXPORT_SYMBOL_GPL(rdev_get_dev);
4006
4007 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4008 {
4009         return reg_init_data->driver_data;
4010 }
4011 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4012
4013 #ifdef CONFIG_DEBUG_FS
4014 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4015                                     size_t count, loff_t *ppos)
4016 {
4017         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4018         ssize_t len, ret = 0;
4019         struct regulator_map *map;
4020
4021         if (!buf)
4022                 return -ENOMEM;
4023
4024         list_for_each_entry(map, &regulator_map_list, list) {
4025                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4026                                "%s -> %s.%s\n",
4027                                rdev_get_name(map->regulator), map->dev_name,
4028                                map->supply);
4029                 if (len >= 0)
4030                         ret += len;
4031                 if (ret > PAGE_SIZE) {
4032                         ret = PAGE_SIZE;
4033                         break;
4034                 }
4035         }
4036
4037         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4038
4039         kfree(buf);
4040
4041         return ret;
4042 }
4043 #endif
4044
4045 static const struct file_operations supply_map_fops = {
4046 #ifdef CONFIG_DEBUG_FS
4047         .read = supply_map_read_file,
4048         .llseek = default_llseek,
4049 #endif
4050 };
4051
4052 #ifdef CONFIG_DEBUG_FS
4053 static void regulator_summary_show_subtree(struct seq_file *s,
4054                                            struct regulator_dev *rdev,
4055                                            int level)
4056 {
4057         struct list_head *list = s->private;
4058         struct regulator_dev *child;
4059         struct regulation_constraints *c;
4060         struct regulator *consumer;
4061
4062         if (!rdev)
4063                 return;
4064
4065         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4066                    level * 3 + 1, "",
4067                    30 - level * 3, rdev_get_name(rdev),
4068                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4069
4070         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4071         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4072
4073         c = rdev->constraints;
4074         if (c) {
4075                 switch (rdev->desc->type) {
4076                 case REGULATOR_VOLTAGE:
4077                         seq_printf(s, "%5dmV %5dmV ",
4078                                    c->min_uV / 1000, c->max_uV / 1000);
4079                         break;
4080                 case REGULATOR_CURRENT:
4081                         seq_printf(s, "%5dmA %5dmA ",
4082                                    c->min_uA / 1000, c->max_uA / 1000);
4083                         break;
4084                 }
4085         }
4086
4087         seq_puts(s, "\n");
4088
4089         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4090                 if (consumer->dev->class == &regulator_class)
4091                         continue;
4092
4093                 seq_printf(s, "%*s%-*s ",
4094                            (level + 1) * 3 + 1, "",
4095                            30 - (level + 1) * 3, dev_name(consumer->dev));
4096
4097                 switch (rdev->desc->type) {
4098                 case REGULATOR_VOLTAGE:
4099                         seq_printf(s, "%37dmV %5dmV",
4100                                    consumer->min_uV / 1000,
4101                                    consumer->max_uV / 1000);
4102                         break;
4103                 case REGULATOR_CURRENT:
4104                         break;
4105                 }
4106
4107                 seq_puts(s, "\n");
4108         }
4109
4110         list_for_each_entry(child, list, list) {
4111                 /* handle only non-root regulators supplied by current rdev */
4112                 if (!child->supply || child->supply->rdev != rdev)
4113                         continue;
4114
4115                 regulator_summary_show_subtree(s, child, level + 1);
4116         }
4117 }
4118
4119 static int regulator_summary_show(struct seq_file *s, void *data)
4120 {
4121         struct list_head *list = s->private;
4122         struct regulator_dev *rdev;
4123
4124         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4125         seq_puts(s, "-------------------------------------------------------------------------------\n");
4126
4127         mutex_lock(&regulator_list_mutex);
4128
4129         list_for_each_entry(rdev, list, list) {
4130                 if (rdev->supply)
4131                         continue;
4132
4133                 regulator_summary_show_subtree(s, rdev, 0);
4134         }
4135
4136         mutex_unlock(&regulator_list_mutex);
4137
4138         return 0;
4139 }
4140
4141 static int regulator_summary_open(struct inode *inode, struct file *file)
4142 {
4143         return single_open(file, regulator_summary_show, inode->i_private);
4144 }
4145 #endif
4146
4147 static const struct file_operations regulator_summary_fops = {
4148 #ifdef CONFIG_DEBUG_FS
4149         .open           = regulator_summary_open,
4150         .read           = seq_read,
4151         .llseek         = seq_lseek,
4152         .release        = single_release,
4153 #endif
4154 };
4155
4156 static int __init regulator_init(void)
4157 {
4158         int ret;
4159
4160         ret = class_register(&regulator_class);
4161
4162         debugfs_root = debugfs_create_dir("regulator", NULL);
4163         if (!debugfs_root)
4164                 pr_warn("regulator: Failed to create debugfs directory\n");
4165
4166         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4167                             &supply_map_fops);
4168
4169         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4170                             &regulator_list, &regulator_summary_fops);
4171
4172         regulator_dummy_init();
4173
4174         return ret;
4175 }
4176
4177 /* init early to allow our consumers to complete system booting */
4178 core_initcall(regulator_init);
4179
4180 static int __init regulator_late_cleanup(struct device *dev, void *data)
4181 {
4182         struct regulator_dev *rdev = dev_to_rdev(dev);
4183         const struct regulator_ops *ops = rdev->desc->ops;
4184         struct regulation_constraints *c = rdev->constraints;
4185         int enabled, ret;
4186
4187         if (c && c->always_on)
4188                 return 0;
4189
4190         if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4191                 return 0;
4192
4193         mutex_lock(&rdev->mutex);
4194
4195         if (rdev->use_count)
4196                 goto unlock;
4197
4198         /* If we can't read the status assume it's on. */
4199         if (ops->is_enabled)
4200                 enabled = ops->is_enabled(rdev);
4201         else
4202                 enabled = 1;
4203
4204         if (!enabled)
4205                 goto unlock;
4206
4207         if (have_full_constraints()) {
4208                 /* We log since this may kill the system if it goes
4209                  * wrong. */
4210                 rdev_info(rdev, "disabling\n");
4211                 ret = _regulator_do_disable(rdev);
4212                 if (ret != 0)
4213                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4214         } else {
4215                 /* The intention is that in future we will
4216                  * assume that full constraints are provided
4217                  * so warn even if we aren't going to do
4218                  * anything here.
4219                  */
4220                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4221         }
4222
4223 unlock:
4224         mutex_unlock(&rdev->mutex);
4225
4226         return 0;
4227 }
4228
4229 static int __init regulator_init_complete(void)
4230 {
4231         /*
4232          * Since DT doesn't provide an idiomatic mechanism for
4233          * enabling full constraints and since it's much more natural
4234          * with DT to provide them just assume that a DT enabled
4235          * system has full constraints.
4236          */
4237         if (of_have_populated_dt())
4238                 has_full_constraints = true;
4239
4240         /* If we have a full configuration then disable any regulators
4241          * we have permission to change the status for and which are
4242          * not in use or always_on.  This is effectively the default
4243          * for DT and ACPI as they have full constraints.
4244          */
4245         class_for_each_device(&regulator_class, NULL, NULL,
4246                               regulator_late_cleanup);
4247
4248         return 0;
4249 }
4250 late_initcall_sync(regulator_init_complete);