]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/scsi/hpsa.c
Merge remote-tracking branch 'usb/usb-next'
[karo-tx-linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_dbg.h>
45 #include <linux/cciss_ioctl.h>
46 #include <linux/string.h>
47 #include <linux/bitmap.h>
48 #include <linux/atomic.h>
49 #include <linux/jiffies.h>
50 #include <linux/percpu-defs.h>
51 #include <linux/percpu.h>
52 #include <asm/unaligned.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
56
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.10-0"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
61
62 /* How long to wait for CISS doorbell communication */
63 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
64 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
65 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
66 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
67 #define MAX_IOCTL_CONFIG_WAIT 1000
68
69 /*define how many times we will try a command because of bus resets */
70 #define MAX_CMD_RETRIES 3
71
72 /* Embedded module documentation macros - see modules.h */
73 MODULE_AUTHOR("Hewlett-Packard Company");
74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
75         HPSA_DRIVER_VERSION);
76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77 MODULE_VERSION(HPSA_DRIVER_VERSION);
78 MODULE_LICENSE("GPL");
79
80 static int hpsa_allow_any;
81 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_allow_any,
83                 "Allow hpsa driver to access unknown HP Smart Array hardware");
84 static int hpsa_simple_mode;
85 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_simple_mode,
87         "Use 'simple mode' rather than 'performant mode'");
88
89 /* define the PCI info for the cards we can control */
90 static const struct pci_device_id hpsa_pci_device_id[] = {
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
131         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
132         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
133         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
134         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
137         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
138         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
139         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
140         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
141         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
142         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
143                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
144         {0,}
145 };
146
147 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
148
149 /*  board_id = Subsystem Device ID & Vendor ID
150  *  product = Marketing Name for the board
151  *  access = Address of the struct of function pointers
152  */
153 static struct board_type products[] = {
154         {0x3241103C, "Smart Array P212", &SA5_access},
155         {0x3243103C, "Smart Array P410", &SA5_access},
156         {0x3245103C, "Smart Array P410i", &SA5_access},
157         {0x3247103C, "Smart Array P411", &SA5_access},
158         {0x3249103C, "Smart Array P812", &SA5_access},
159         {0x324A103C, "Smart Array P712m", &SA5_access},
160         {0x324B103C, "Smart Array P711m", &SA5_access},
161         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
162         {0x3350103C, "Smart Array P222", &SA5_access},
163         {0x3351103C, "Smart Array P420", &SA5_access},
164         {0x3352103C, "Smart Array P421", &SA5_access},
165         {0x3353103C, "Smart Array P822", &SA5_access},
166         {0x3354103C, "Smart Array P420i", &SA5_access},
167         {0x3355103C, "Smart Array P220i", &SA5_access},
168         {0x3356103C, "Smart Array P721m", &SA5_access},
169         {0x1921103C, "Smart Array P830i", &SA5_access},
170         {0x1922103C, "Smart Array P430", &SA5_access},
171         {0x1923103C, "Smart Array P431", &SA5_access},
172         {0x1924103C, "Smart Array P830", &SA5_access},
173         {0x1926103C, "Smart Array P731m", &SA5_access},
174         {0x1928103C, "Smart Array P230i", &SA5_access},
175         {0x1929103C, "Smart Array P530", &SA5_access},
176         {0x21BD103C, "Smart Array P244br", &SA5_access},
177         {0x21BE103C, "Smart Array P741m", &SA5_access},
178         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
179         {0x21C0103C, "Smart Array P440ar", &SA5_access},
180         {0x21C1103C, "Smart Array P840ar", &SA5_access},
181         {0x21C2103C, "Smart Array P440", &SA5_access},
182         {0x21C3103C, "Smart Array P441", &SA5_access},
183         {0x21C4103C, "Smart Array", &SA5_access},
184         {0x21C5103C, "Smart Array P841", &SA5_access},
185         {0x21C6103C, "Smart HBA H244br", &SA5_access},
186         {0x21C7103C, "Smart HBA H240", &SA5_access},
187         {0x21C8103C, "Smart HBA H241", &SA5_access},
188         {0x21C9103C, "Smart Array", &SA5_access},
189         {0x21CA103C, "Smart Array P246br", &SA5_access},
190         {0x21CB103C, "Smart Array P840", &SA5_access},
191         {0x21CC103C, "Smart Array", &SA5_access},
192         {0x21CD103C, "Smart Array", &SA5_access},
193         {0x21CE103C, "Smart HBA", &SA5_access},
194         {0x05809005, "SmartHBA-SA", &SA5_access},
195         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
196         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
197         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
198         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
199         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
200         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
201         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
202         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
203         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
204         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
205         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
206 };
207
208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209 static const struct scsi_cmnd hpsa_cmd_busy;
210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211 static const struct scsi_cmnd hpsa_cmd_idle;
212 static int number_of_controllers;
213
214 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
215 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
216 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
217
218 #ifdef CONFIG_COMPAT
219 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
220         void __user *arg);
221 #endif
222
223 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
224 static struct CommandList *cmd_alloc(struct ctlr_info *h);
225 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
226 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
227                                             struct scsi_cmnd *scmd);
228 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
229         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
230         int cmd_type);
231 static void hpsa_free_cmd_pool(struct ctlr_info *h);
232 #define VPD_PAGE (1 << 8)
233
234 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
235 static void hpsa_scan_start(struct Scsi_Host *);
236 static int hpsa_scan_finished(struct Scsi_Host *sh,
237         unsigned long elapsed_time);
238 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
239
240 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
241 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
242 static int hpsa_slave_alloc(struct scsi_device *sdev);
243 static int hpsa_slave_configure(struct scsi_device *sdev);
244 static void hpsa_slave_destroy(struct scsi_device *sdev);
245
246 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
247 static int check_for_unit_attention(struct ctlr_info *h,
248         struct CommandList *c);
249 static void check_ioctl_unit_attention(struct ctlr_info *h,
250         struct CommandList *c);
251 /* performant mode helper functions */
252 static void calc_bucket_map(int *bucket, int num_buckets,
253         int nsgs, int min_blocks, u32 *bucket_map);
254 static void hpsa_free_performant_mode(struct ctlr_info *h);
255 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
256 static inline u32 next_command(struct ctlr_info *h, u8 q);
257 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
258                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
259                                u64 *cfg_offset);
260 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
261                                     unsigned long *memory_bar);
262 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
263 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
264                                      int wait_for_ready);
265 static inline void finish_cmd(struct CommandList *c);
266 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
267 #define BOARD_NOT_READY 0
268 #define BOARD_READY 1
269 static void hpsa_drain_accel_commands(struct ctlr_info *h);
270 static void hpsa_flush_cache(struct ctlr_info *h);
271 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
272         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
273         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
274 static void hpsa_command_resubmit_worker(struct work_struct *work);
275 static u32 lockup_detected(struct ctlr_info *h);
276 static int detect_controller_lockup(struct ctlr_info *h);
277 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device);
278
279 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
280 {
281         unsigned long *priv = shost_priv(sdev->host);
282         return (struct ctlr_info *) *priv;
283 }
284
285 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
286 {
287         unsigned long *priv = shost_priv(sh);
288         return (struct ctlr_info *) *priv;
289 }
290
291 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
292 {
293         return c->scsi_cmd == SCSI_CMD_IDLE;
294 }
295
296 static inline bool hpsa_is_pending_event(struct CommandList *c)
297 {
298         return c->abort_pending || c->reset_pending;
299 }
300
301 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
302 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
303                         u8 *sense_key, u8 *asc, u8 *ascq)
304 {
305         struct scsi_sense_hdr sshdr;
306         bool rc;
307
308         *sense_key = -1;
309         *asc = -1;
310         *ascq = -1;
311
312         if (sense_data_len < 1)
313                 return;
314
315         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
316         if (rc) {
317                 *sense_key = sshdr.sense_key;
318                 *asc = sshdr.asc;
319                 *ascq = sshdr.ascq;
320         }
321 }
322
323 static int check_for_unit_attention(struct ctlr_info *h,
324         struct CommandList *c)
325 {
326         u8 sense_key, asc, ascq;
327         int sense_len;
328
329         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
330                 sense_len = sizeof(c->err_info->SenseInfo);
331         else
332                 sense_len = c->err_info->SenseLen;
333
334         decode_sense_data(c->err_info->SenseInfo, sense_len,
335                                 &sense_key, &asc, &ascq);
336         if (sense_key != UNIT_ATTENTION || asc == 0xff)
337                 return 0;
338
339         switch (asc) {
340         case STATE_CHANGED:
341                 dev_warn(&h->pdev->dev,
342                         "%s: a state change detected, command retried\n",
343                         h->devname);
344                 break;
345         case LUN_FAILED:
346                 dev_warn(&h->pdev->dev,
347                         "%s: LUN failure detected\n", h->devname);
348                 break;
349         case REPORT_LUNS_CHANGED:
350                 dev_warn(&h->pdev->dev,
351                         "%s: report LUN data changed\n", h->devname);
352         /*
353          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
354          * target (array) devices.
355          */
356                 break;
357         case POWER_OR_RESET:
358                 dev_warn(&h->pdev->dev,
359                         "%s: a power on or device reset detected\n",
360                         h->devname);
361                 break;
362         case UNIT_ATTENTION_CLEARED:
363                 dev_warn(&h->pdev->dev,
364                         "%s: unit attention cleared by another initiator\n",
365                         h->devname);
366                 break;
367         default:
368                 dev_warn(&h->pdev->dev,
369                         "%s: unknown unit attention detected\n",
370                         h->devname);
371                 break;
372         }
373         return 1;
374 }
375
376 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
377 {
378         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
379                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
380                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
381                 return 0;
382         dev_warn(&h->pdev->dev, HPSA "device busy");
383         return 1;
384 }
385
386 static u32 lockup_detected(struct ctlr_info *h);
387 static ssize_t host_show_lockup_detected(struct device *dev,
388                 struct device_attribute *attr, char *buf)
389 {
390         int ld;
391         struct ctlr_info *h;
392         struct Scsi_Host *shost = class_to_shost(dev);
393
394         h = shost_to_hba(shost);
395         ld = lockup_detected(h);
396
397         return sprintf(buf, "ld=%d\n", ld);
398 }
399
400 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
401                                          struct device_attribute *attr,
402                                          const char *buf, size_t count)
403 {
404         int status, len;
405         struct ctlr_info *h;
406         struct Scsi_Host *shost = class_to_shost(dev);
407         char tmpbuf[10];
408
409         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
410                 return -EACCES;
411         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
412         strncpy(tmpbuf, buf, len);
413         tmpbuf[len] = '\0';
414         if (sscanf(tmpbuf, "%d", &status) != 1)
415                 return -EINVAL;
416         h = shost_to_hba(shost);
417         h->acciopath_status = !!status;
418         dev_warn(&h->pdev->dev,
419                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
420                 h->acciopath_status ? "enabled" : "disabled");
421         return count;
422 }
423
424 static ssize_t host_store_raid_offload_debug(struct device *dev,
425                                          struct device_attribute *attr,
426                                          const char *buf, size_t count)
427 {
428         int debug_level, len;
429         struct ctlr_info *h;
430         struct Scsi_Host *shost = class_to_shost(dev);
431         char tmpbuf[10];
432
433         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
434                 return -EACCES;
435         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
436         strncpy(tmpbuf, buf, len);
437         tmpbuf[len] = '\0';
438         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
439                 return -EINVAL;
440         if (debug_level < 0)
441                 debug_level = 0;
442         h = shost_to_hba(shost);
443         h->raid_offload_debug = debug_level;
444         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
445                 h->raid_offload_debug);
446         return count;
447 }
448
449 static ssize_t host_store_rescan(struct device *dev,
450                                  struct device_attribute *attr,
451                                  const char *buf, size_t count)
452 {
453         struct ctlr_info *h;
454         struct Scsi_Host *shost = class_to_shost(dev);
455         h = shost_to_hba(shost);
456         hpsa_scan_start(h->scsi_host);
457         return count;
458 }
459
460 static ssize_t host_show_firmware_revision(struct device *dev,
461              struct device_attribute *attr, char *buf)
462 {
463         struct ctlr_info *h;
464         struct Scsi_Host *shost = class_to_shost(dev);
465         unsigned char *fwrev;
466
467         h = shost_to_hba(shost);
468         if (!h->hba_inquiry_data)
469                 return 0;
470         fwrev = &h->hba_inquiry_data[32];
471         return snprintf(buf, 20, "%c%c%c%c\n",
472                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
473 }
474
475 static ssize_t host_show_commands_outstanding(struct device *dev,
476              struct device_attribute *attr, char *buf)
477 {
478         struct Scsi_Host *shost = class_to_shost(dev);
479         struct ctlr_info *h = shost_to_hba(shost);
480
481         return snprintf(buf, 20, "%d\n",
482                         atomic_read(&h->commands_outstanding));
483 }
484
485 static ssize_t host_show_transport_mode(struct device *dev,
486         struct device_attribute *attr, char *buf)
487 {
488         struct ctlr_info *h;
489         struct Scsi_Host *shost = class_to_shost(dev);
490
491         h = shost_to_hba(shost);
492         return snprintf(buf, 20, "%s\n",
493                 h->transMethod & CFGTBL_Trans_Performant ?
494                         "performant" : "simple");
495 }
496
497 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
498         struct device_attribute *attr, char *buf)
499 {
500         struct ctlr_info *h;
501         struct Scsi_Host *shost = class_to_shost(dev);
502
503         h = shost_to_hba(shost);
504         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
505                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
506 }
507
508 /* List of controllers which cannot be hard reset on kexec with reset_devices */
509 static u32 unresettable_controller[] = {
510         0x324a103C, /* Smart Array P712m */
511         0x324b103C, /* Smart Array P711m */
512         0x3223103C, /* Smart Array P800 */
513         0x3234103C, /* Smart Array P400 */
514         0x3235103C, /* Smart Array P400i */
515         0x3211103C, /* Smart Array E200i */
516         0x3212103C, /* Smart Array E200 */
517         0x3213103C, /* Smart Array E200i */
518         0x3214103C, /* Smart Array E200i */
519         0x3215103C, /* Smart Array E200i */
520         0x3237103C, /* Smart Array E500 */
521         0x323D103C, /* Smart Array P700m */
522         0x40800E11, /* Smart Array 5i */
523         0x409C0E11, /* Smart Array 6400 */
524         0x409D0E11, /* Smart Array 6400 EM */
525         0x40700E11, /* Smart Array 5300 */
526         0x40820E11, /* Smart Array 532 */
527         0x40830E11, /* Smart Array 5312 */
528         0x409A0E11, /* Smart Array 641 */
529         0x409B0E11, /* Smart Array 642 */
530         0x40910E11, /* Smart Array 6i */
531 };
532
533 /* List of controllers which cannot even be soft reset */
534 static u32 soft_unresettable_controller[] = {
535         0x40800E11, /* Smart Array 5i */
536         0x40700E11, /* Smart Array 5300 */
537         0x40820E11, /* Smart Array 532 */
538         0x40830E11, /* Smart Array 5312 */
539         0x409A0E11, /* Smart Array 641 */
540         0x409B0E11, /* Smart Array 642 */
541         0x40910E11, /* Smart Array 6i */
542         /* Exclude 640x boards.  These are two pci devices in one slot
543          * which share a battery backed cache module.  One controls the
544          * cache, the other accesses the cache through the one that controls
545          * it.  If we reset the one controlling the cache, the other will
546          * likely not be happy.  Just forbid resetting this conjoined mess.
547          * The 640x isn't really supported by hpsa anyway.
548          */
549         0x409C0E11, /* Smart Array 6400 */
550         0x409D0E11, /* Smart Array 6400 EM */
551 };
552
553 static u32 needs_abort_tags_swizzled[] = {
554         0x323D103C, /* Smart Array P700m */
555         0x324a103C, /* Smart Array P712m */
556         0x324b103C, /* SmartArray P711m */
557 };
558
559 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
560 {
561         int i;
562
563         for (i = 0; i < nelems; i++)
564                 if (a[i] == board_id)
565                         return 1;
566         return 0;
567 }
568
569 static int ctlr_is_hard_resettable(u32 board_id)
570 {
571         return !board_id_in_array(unresettable_controller,
572                         ARRAY_SIZE(unresettable_controller), board_id);
573 }
574
575 static int ctlr_is_soft_resettable(u32 board_id)
576 {
577         return !board_id_in_array(soft_unresettable_controller,
578                         ARRAY_SIZE(soft_unresettable_controller), board_id);
579 }
580
581 static int ctlr_is_resettable(u32 board_id)
582 {
583         return ctlr_is_hard_resettable(board_id) ||
584                 ctlr_is_soft_resettable(board_id);
585 }
586
587 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
588 {
589         return board_id_in_array(needs_abort_tags_swizzled,
590                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
591 }
592
593 static ssize_t host_show_resettable(struct device *dev,
594         struct device_attribute *attr, char *buf)
595 {
596         struct ctlr_info *h;
597         struct Scsi_Host *shost = class_to_shost(dev);
598
599         h = shost_to_hba(shost);
600         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
601 }
602
603 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
604 {
605         return (scsi3addr[3] & 0xC0) == 0x40;
606 }
607
608 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
609         "1(+0)ADM", "UNKNOWN"
610 };
611 #define HPSA_RAID_0     0
612 #define HPSA_RAID_4     1
613 #define HPSA_RAID_1     2       /* also used for RAID 10 */
614 #define HPSA_RAID_5     3       /* also used for RAID 50 */
615 #define HPSA_RAID_51    4
616 #define HPSA_RAID_6     5       /* also used for RAID 60 */
617 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
618 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
619
620 static ssize_t raid_level_show(struct device *dev,
621              struct device_attribute *attr, char *buf)
622 {
623         ssize_t l = 0;
624         unsigned char rlevel;
625         struct ctlr_info *h;
626         struct scsi_device *sdev;
627         struct hpsa_scsi_dev_t *hdev;
628         unsigned long flags;
629
630         sdev = to_scsi_device(dev);
631         h = sdev_to_hba(sdev);
632         spin_lock_irqsave(&h->lock, flags);
633         hdev = sdev->hostdata;
634         if (!hdev) {
635                 spin_unlock_irqrestore(&h->lock, flags);
636                 return -ENODEV;
637         }
638
639         /* Is this even a logical drive? */
640         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
641                 spin_unlock_irqrestore(&h->lock, flags);
642                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
643                 return l;
644         }
645
646         rlevel = hdev->raid_level;
647         spin_unlock_irqrestore(&h->lock, flags);
648         if (rlevel > RAID_UNKNOWN)
649                 rlevel = RAID_UNKNOWN;
650         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
651         return l;
652 }
653
654 static ssize_t lunid_show(struct device *dev,
655              struct device_attribute *attr, char *buf)
656 {
657         struct ctlr_info *h;
658         struct scsi_device *sdev;
659         struct hpsa_scsi_dev_t *hdev;
660         unsigned long flags;
661         unsigned char lunid[8];
662
663         sdev = to_scsi_device(dev);
664         h = sdev_to_hba(sdev);
665         spin_lock_irqsave(&h->lock, flags);
666         hdev = sdev->hostdata;
667         if (!hdev) {
668                 spin_unlock_irqrestore(&h->lock, flags);
669                 return -ENODEV;
670         }
671         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
672         spin_unlock_irqrestore(&h->lock, flags);
673         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
674                 lunid[0], lunid[1], lunid[2], lunid[3],
675                 lunid[4], lunid[5], lunid[6], lunid[7]);
676 }
677
678 static ssize_t unique_id_show(struct device *dev,
679              struct device_attribute *attr, char *buf)
680 {
681         struct ctlr_info *h;
682         struct scsi_device *sdev;
683         struct hpsa_scsi_dev_t *hdev;
684         unsigned long flags;
685         unsigned char sn[16];
686
687         sdev = to_scsi_device(dev);
688         h = sdev_to_hba(sdev);
689         spin_lock_irqsave(&h->lock, flags);
690         hdev = sdev->hostdata;
691         if (!hdev) {
692                 spin_unlock_irqrestore(&h->lock, flags);
693                 return -ENODEV;
694         }
695         memcpy(sn, hdev->device_id, sizeof(sn));
696         spin_unlock_irqrestore(&h->lock, flags);
697         return snprintf(buf, 16 * 2 + 2,
698                         "%02X%02X%02X%02X%02X%02X%02X%02X"
699                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
700                         sn[0], sn[1], sn[2], sn[3],
701                         sn[4], sn[5], sn[6], sn[7],
702                         sn[8], sn[9], sn[10], sn[11],
703                         sn[12], sn[13], sn[14], sn[15]);
704 }
705
706 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
707              struct device_attribute *attr, char *buf)
708 {
709         struct ctlr_info *h;
710         struct scsi_device *sdev;
711         struct hpsa_scsi_dev_t *hdev;
712         unsigned long flags;
713         int offload_enabled;
714
715         sdev = to_scsi_device(dev);
716         h = sdev_to_hba(sdev);
717         spin_lock_irqsave(&h->lock, flags);
718         hdev = sdev->hostdata;
719         if (!hdev) {
720                 spin_unlock_irqrestore(&h->lock, flags);
721                 return -ENODEV;
722         }
723         offload_enabled = hdev->offload_enabled;
724         spin_unlock_irqrestore(&h->lock, flags);
725         return snprintf(buf, 20, "%d\n", offload_enabled);
726 }
727
728 #define MAX_PATHS 8
729 #define PATH_STRING_LEN 50
730
731 static ssize_t path_info_show(struct device *dev,
732              struct device_attribute *attr, char *buf)
733 {
734         struct ctlr_info *h;
735         struct scsi_device *sdev;
736         struct hpsa_scsi_dev_t *hdev;
737         unsigned long flags;
738         int i;
739         int output_len = 0;
740         u8 box;
741         u8 bay;
742         u8 path_map_index = 0;
743         char *active;
744         unsigned char phys_connector[2];
745         unsigned char path[MAX_PATHS][PATH_STRING_LEN];
746
747         memset(path, 0, MAX_PATHS * PATH_STRING_LEN);
748         sdev = to_scsi_device(dev);
749         h = sdev_to_hba(sdev);
750         spin_lock_irqsave(&h->devlock, flags);
751         hdev = sdev->hostdata;
752         if (!hdev) {
753                 spin_unlock_irqrestore(&h->devlock, flags);
754                 return -ENODEV;
755         }
756
757         bay = hdev->bay;
758         for (i = 0; i < MAX_PATHS; i++) {
759                 path_map_index = 1<<i;
760                 if (i == hdev->active_path_index)
761                         active = "Active";
762                 else if (hdev->path_map & path_map_index)
763                         active = "Inactive";
764                 else
765                         continue;
766
767                 output_len = snprintf(path[i],
768                                 PATH_STRING_LEN, "[%d:%d:%d:%d] %20.20s ",
769                                 h->scsi_host->host_no,
770                                 hdev->bus, hdev->target, hdev->lun,
771                                 scsi_device_type(hdev->devtype));
772
773                 if (is_ext_target(h, hdev) ||
774                         (hdev->devtype == TYPE_RAID) ||
775                         is_logical_dev_addr_mode(hdev->scsi3addr)) {
776                         output_len += snprintf(path[i] + output_len,
777                                                 PATH_STRING_LEN, "%s\n",
778                                                 active);
779                         continue;
780                 }
781
782                 box = hdev->box[i];
783                 memcpy(&phys_connector, &hdev->phys_connector[i],
784                         sizeof(phys_connector));
785                 if (phys_connector[0] < '0')
786                         phys_connector[0] = '0';
787                 if (phys_connector[1] < '0')
788                         phys_connector[1] = '0';
789                 if (hdev->phys_connector[i] > 0)
790                         output_len += snprintf(path[i] + output_len,
791                                 PATH_STRING_LEN,
792                                 "PORT: %.2s ",
793                                 phys_connector);
794                 if (hdev->devtype == TYPE_DISK &&
795                         hdev->expose_state != HPSA_DO_NOT_EXPOSE) {
796                         if (box == 0 || box == 0xFF) {
797                                 output_len += snprintf(path[i] + output_len,
798                                         PATH_STRING_LEN,
799                                         "BAY: %hhu %s\n",
800                                         bay, active);
801                         } else {
802                                 output_len += snprintf(path[i] + output_len,
803                                         PATH_STRING_LEN,
804                                         "BOX: %hhu BAY: %hhu %s\n",
805                                         box, bay, active);
806                         }
807                 } else if (box != 0 && box != 0xFF) {
808                         output_len += snprintf(path[i] + output_len,
809                                 PATH_STRING_LEN, "BOX: %hhu %s\n",
810                                 box, active);
811                 } else
812                         output_len += snprintf(path[i] + output_len,
813                                 PATH_STRING_LEN, "%s\n", active);
814         }
815
816         spin_unlock_irqrestore(&h->devlock, flags);
817         return snprintf(buf, output_len+1, "%s%s%s%s%s%s%s%s",
818                 path[0], path[1], path[2], path[3],
819                 path[4], path[5], path[6], path[7]);
820 }
821
822 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
823 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
824 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
825 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
826 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
827                         host_show_hp_ssd_smart_path_enabled, NULL);
828 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
829 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
830                 host_show_hp_ssd_smart_path_status,
831                 host_store_hp_ssd_smart_path_status);
832 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
833                         host_store_raid_offload_debug);
834 static DEVICE_ATTR(firmware_revision, S_IRUGO,
835         host_show_firmware_revision, NULL);
836 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
837         host_show_commands_outstanding, NULL);
838 static DEVICE_ATTR(transport_mode, S_IRUGO,
839         host_show_transport_mode, NULL);
840 static DEVICE_ATTR(resettable, S_IRUGO,
841         host_show_resettable, NULL);
842 static DEVICE_ATTR(lockup_detected, S_IRUGO,
843         host_show_lockup_detected, NULL);
844
845 static struct device_attribute *hpsa_sdev_attrs[] = {
846         &dev_attr_raid_level,
847         &dev_attr_lunid,
848         &dev_attr_unique_id,
849         &dev_attr_hp_ssd_smart_path_enabled,
850         &dev_attr_path_info,
851         &dev_attr_lockup_detected,
852         NULL,
853 };
854
855 static struct device_attribute *hpsa_shost_attrs[] = {
856         &dev_attr_rescan,
857         &dev_attr_firmware_revision,
858         &dev_attr_commands_outstanding,
859         &dev_attr_transport_mode,
860         &dev_attr_resettable,
861         &dev_attr_hp_ssd_smart_path_status,
862         &dev_attr_raid_offload_debug,
863         NULL,
864 };
865
866 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
867                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
868
869 static struct scsi_host_template hpsa_driver_template = {
870         .module                 = THIS_MODULE,
871         .name                   = HPSA,
872         .proc_name              = HPSA,
873         .queuecommand           = hpsa_scsi_queue_command,
874         .scan_start             = hpsa_scan_start,
875         .scan_finished          = hpsa_scan_finished,
876         .change_queue_depth     = hpsa_change_queue_depth,
877         .this_id                = -1,
878         .use_clustering         = ENABLE_CLUSTERING,
879         .eh_abort_handler       = hpsa_eh_abort_handler,
880         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
881         .ioctl                  = hpsa_ioctl,
882         .slave_alloc            = hpsa_slave_alloc,
883         .slave_configure        = hpsa_slave_configure,
884         .slave_destroy          = hpsa_slave_destroy,
885 #ifdef CONFIG_COMPAT
886         .compat_ioctl           = hpsa_compat_ioctl,
887 #endif
888         .sdev_attrs = hpsa_sdev_attrs,
889         .shost_attrs = hpsa_shost_attrs,
890         .max_sectors = 8192,
891         .no_write_same = 1,
892 };
893
894 static inline u32 next_command(struct ctlr_info *h, u8 q)
895 {
896         u32 a;
897         struct reply_queue_buffer *rq = &h->reply_queue[q];
898
899         if (h->transMethod & CFGTBL_Trans_io_accel1)
900                 return h->access.command_completed(h, q);
901
902         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
903                 return h->access.command_completed(h, q);
904
905         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
906                 a = rq->head[rq->current_entry];
907                 rq->current_entry++;
908                 atomic_dec(&h->commands_outstanding);
909         } else {
910                 a = FIFO_EMPTY;
911         }
912         /* Check for wraparound */
913         if (rq->current_entry == h->max_commands) {
914                 rq->current_entry = 0;
915                 rq->wraparound ^= 1;
916         }
917         return a;
918 }
919
920 /*
921  * There are some special bits in the bus address of the
922  * command that we have to set for the controller to know
923  * how to process the command:
924  *
925  * Normal performant mode:
926  * bit 0: 1 means performant mode, 0 means simple mode.
927  * bits 1-3 = block fetch table entry
928  * bits 4-6 = command type (== 0)
929  *
930  * ioaccel1 mode:
931  * bit 0 = "performant mode" bit.
932  * bits 1-3 = block fetch table entry
933  * bits 4-6 = command type (== 110)
934  * (command type is needed because ioaccel1 mode
935  * commands are submitted through the same register as normal
936  * mode commands, so this is how the controller knows whether
937  * the command is normal mode or ioaccel1 mode.)
938  *
939  * ioaccel2 mode:
940  * bit 0 = "performant mode" bit.
941  * bits 1-4 = block fetch table entry (note extra bit)
942  * bits 4-6 = not needed, because ioaccel2 mode has
943  * a separate special register for submitting commands.
944  */
945
946 /*
947  * set_performant_mode: Modify the tag for cciss performant
948  * set bit 0 for pull model, bits 3-1 for block fetch
949  * register number
950  */
951 #define DEFAULT_REPLY_QUEUE (-1)
952 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
953                                         int reply_queue)
954 {
955         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
956                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
957                 if (unlikely(!h->msix_vector))
958                         return;
959                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
960                         c->Header.ReplyQueue =
961                                 raw_smp_processor_id() % h->nreply_queues;
962                 else
963                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
964         }
965 }
966
967 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
968                                                 struct CommandList *c,
969                                                 int reply_queue)
970 {
971         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
972
973         /*
974          * Tell the controller to post the reply to the queue for this
975          * processor.  This seems to give the best I/O throughput.
976          */
977         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
978                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
979         else
980                 cp->ReplyQueue = reply_queue % h->nreply_queues;
981         /*
982          * Set the bits in the address sent down to include:
983          *  - performant mode bit (bit 0)
984          *  - pull count (bits 1-3)
985          *  - command type (bits 4-6)
986          */
987         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
988                                         IOACCEL1_BUSADDR_CMDTYPE;
989 }
990
991 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
992                                                 struct CommandList *c,
993                                                 int reply_queue)
994 {
995         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
996                 &h->ioaccel2_cmd_pool[c->cmdindex];
997
998         /* Tell the controller to post the reply to the queue for this
999          * processor.  This seems to give the best I/O throughput.
1000          */
1001         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1002                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1003         else
1004                 cp->reply_queue = reply_queue % h->nreply_queues;
1005         /* Set the bits in the address sent down to include:
1006          *  - performant mode bit not used in ioaccel mode 2
1007          *  - pull count (bits 0-3)
1008          *  - command type isn't needed for ioaccel2
1009          */
1010         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1011 }
1012
1013 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1014                                                 struct CommandList *c,
1015                                                 int reply_queue)
1016 {
1017         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1018
1019         /*
1020          * Tell the controller to post the reply to the queue for this
1021          * processor.  This seems to give the best I/O throughput.
1022          */
1023         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1024                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1025         else
1026                 cp->reply_queue = reply_queue % h->nreply_queues;
1027         /*
1028          * Set the bits in the address sent down to include:
1029          *  - performant mode bit not used in ioaccel mode 2
1030          *  - pull count (bits 0-3)
1031          *  - command type isn't needed for ioaccel2
1032          */
1033         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1034 }
1035
1036 static int is_firmware_flash_cmd(u8 *cdb)
1037 {
1038         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1039 }
1040
1041 /*
1042  * During firmware flash, the heartbeat register may not update as frequently
1043  * as it should.  So we dial down lockup detection during firmware flash. and
1044  * dial it back up when firmware flash completes.
1045  */
1046 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1047 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1048 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1049                 struct CommandList *c)
1050 {
1051         if (!is_firmware_flash_cmd(c->Request.CDB))
1052                 return;
1053         atomic_inc(&h->firmware_flash_in_progress);
1054         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1055 }
1056
1057 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1058                 struct CommandList *c)
1059 {
1060         if (is_firmware_flash_cmd(c->Request.CDB) &&
1061                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1062                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1063 }
1064
1065 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1066         struct CommandList *c, int reply_queue)
1067 {
1068         dial_down_lockup_detection_during_fw_flash(h, c);
1069         atomic_inc(&h->commands_outstanding);
1070         switch (c->cmd_type) {
1071         case CMD_IOACCEL1:
1072                 set_ioaccel1_performant_mode(h, c, reply_queue);
1073                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1074                 break;
1075         case CMD_IOACCEL2:
1076                 set_ioaccel2_performant_mode(h, c, reply_queue);
1077                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1078                 break;
1079         case IOACCEL2_TMF:
1080                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1081                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1082                 break;
1083         default:
1084                 set_performant_mode(h, c, reply_queue);
1085                 h->access.submit_command(h, c);
1086         }
1087 }
1088
1089 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1090 {
1091         if (unlikely(hpsa_is_pending_event(c)))
1092                 return finish_cmd(c);
1093
1094         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1095 }
1096
1097 static inline int is_hba_lunid(unsigned char scsi3addr[])
1098 {
1099         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1100 }
1101
1102 static inline int is_scsi_rev_5(struct ctlr_info *h)
1103 {
1104         if (!h->hba_inquiry_data)
1105                 return 0;
1106         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1107                 return 1;
1108         return 0;
1109 }
1110
1111 static int hpsa_find_target_lun(struct ctlr_info *h,
1112         unsigned char scsi3addr[], int bus, int *target, int *lun)
1113 {
1114         /* finds an unused bus, target, lun for a new physical device
1115          * assumes h->devlock is held
1116          */
1117         int i, found = 0;
1118         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1119
1120         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1121
1122         for (i = 0; i < h->ndevices; i++) {
1123                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1124                         __set_bit(h->dev[i]->target, lun_taken);
1125         }
1126
1127         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1128         if (i < HPSA_MAX_DEVICES) {
1129                 /* *bus = 1; */
1130                 *target = i;
1131                 *lun = 0;
1132                 found = 1;
1133         }
1134         return !found;
1135 }
1136
1137 static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1138         struct hpsa_scsi_dev_t *dev, char *description)
1139 {
1140         dev_printk(level, &h->pdev->dev,
1141                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1142                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1143                         description,
1144                         scsi_device_type(dev->devtype),
1145                         dev->vendor,
1146                         dev->model,
1147                         dev->raid_level > RAID_UNKNOWN ?
1148                                 "RAID-?" : raid_label[dev->raid_level],
1149                         dev->offload_config ? '+' : '-',
1150                         dev->offload_enabled ? '+' : '-',
1151                         dev->expose_state);
1152 }
1153
1154 /* Add an entry into h->dev[] array. */
1155 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
1156                 struct hpsa_scsi_dev_t *device,
1157                 struct hpsa_scsi_dev_t *added[], int *nadded)
1158 {
1159         /* assumes h->devlock is held */
1160         int n = h->ndevices;
1161         int i;
1162         unsigned char addr1[8], addr2[8];
1163         struct hpsa_scsi_dev_t *sd;
1164
1165         if (n >= HPSA_MAX_DEVICES) {
1166                 dev_err(&h->pdev->dev, "too many devices, some will be "
1167                         "inaccessible.\n");
1168                 return -1;
1169         }
1170
1171         /* physical devices do not have lun or target assigned until now. */
1172         if (device->lun != -1)
1173                 /* Logical device, lun is already assigned. */
1174                 goto lun_assigned;
1175
1176         /* If this device a non-zero lun of a multi-lun device
1177          * byte 4 of the 8-byte LUN addr will contain the logical
1178          * unit no, zero otherwise.
1179          */
1180         if (device->scsi3addr[4] == 0) {
1181                 /* This is not a non-zero lun of a multi-lun device */
1182                 if (hpsa_find_target_lun(h, device->scsi3addr,
1183                         device->bus, &device->target, &device->lun) != 0)
1184                         return -1;
1185                 goto lun_assigned;
1186         }
1187
1188         /* This is a non-zero lun of a multi-lun device.
1189          * Search through our list and find the device which
1190          * has the same 8 byte LUN address, excepting byte 4 and 5.
1191          * Assign the same bus and target for this new LUN.
1192          * Use the logical unit number from the firmware.
1193          */
1194         memcpy(addr1, device->scsi3addr, 8);
1195         addr1[4] = 0;
1196         addr1[5] = 0;
1197         for (i = 0; i < n; i++) {
1198                 sd = h->dev[i];
1199                 memcpy(addr2, sd->scsi3addr, 8);
1200                 addr2[4] = 0;
1201                 addr2[5] = 0;
1202                 /* differ only in byte 4 and 5? */
1203                 if (memcmp(addr1, addr2, 8) == 0) {
1204                         device->bus = sd->bus;
1205                         device->target = sd->target;
1206                         device->lun = device->scsi3addr[4];
1207                         break;
1208                 }
1209         }
1210         if (device->lun == -1) {
1211                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1212                         " suspect firmware bug or unsupported hardware "
1213                         "configuration.\n");
1214                         return -1;
1215         }
1216
1217 lun_assigned:
1218
1219         h->dev[n] = device;
1220         h->ndevices++;
1221         added[*nadded] = device;
1222         (*nadded)++;
1223         hpsa_show_dev_msg(KERN_INFO, h, device,
1224                 device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1225         device->offload_to_be_enabled = device->offload_enabled;
1226         device->offload_enabled = 0;
1227         return 0;
1228 }
1229
1230 /* Update an entry in h->dev[] array. */
1231 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
1232         int entry, struct hpsa_scsi_dev_t *new_entry)
1233 {
1234         int offload_enabled;
1235         /* assumes h->devlock is held */
1236         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1237
1238         /* Raid level changed. */
1239         h->dev[entry]->raid_level = new_entry->raid_level;
1240
1241         /* Raid offload parameters changed.  Careful about the ordering. */
1242         if (new_entry->offload_config && new_entry->offload_enabled) {
1243                 /*
1244                  * if drive is newly offload_enabled, we want to copy the
1245                  * raid map data first.  If previously offload_enabled and
1246                  * offload_config were set, raid map data had better be
1247                  * the same as it was before.  if raid map data is changed
1248                  * then it had better be the case that
1249                  * h->dev[entry]->offload_enabled is currently 0.
1250                  */
1251                 h->dev[entry]->raid_map = new_entry->raid_map;
1252                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1253         }
1254         if (new_entry->hba_ioaccel_enabled) {
1255                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1256                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1257         }
1258         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1259         h->dev[entry]->offload_config = new_entry->offload_config;
1260         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1261         h->dev[entry]->queue_depth = new_entry->queue_depth;
1262
1263         /*
1264          * We can turn off ioaccel offload now, but need to delay turning
1265          * it on until we can update h->dev[entry]->phys_disk[], but we
1266          * can't do that until all the devices are updated.
1267          */
1268         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1269         if (!new_entry->offload_enabled)
1270                 h->dev[entry]->offload_enabled = 0;
1271
1272         offload_enabled = h->dev[entry]->offload_enabled;
1273         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1274         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1275         h->dev[entry]->offload_enabled = offload_enabled;
1276 }
1277
1278 /* Replace an entry from h->dev[] array. */
1279 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1280         int entry, struct hpsa_scsi_dev_t *new_entry,
1281         struct hpsa_scsi_dev_t *added[], int *nadded,
1282         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1283 {
1284         /* assumes h->devlock is held */
1285         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1286         removed[*nremoved] = h->dev[entry];
1287         (*nremoved)++;
1288
1289         /*
1290          * New physical devices won't have target/lun assigned yet
1291          * so we need to preserve the values in the slot we are replacing.
1292          */
1293         if (new_entry->target == -1) {
1294                 new_entry->target = h->dev[entry]->target;
1295                 new_entry->lun = h->dev[entry]->lun;
1296         }
1297
1298         h->dev[entry] = new_entry;
1299         added[*nadded] = new_entry;
1300         (*nadded)++;
1301         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1302         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1303         new_entry->offload_enabled = 0;
1304 }
1305
1306 /* Remove an entry from h->dev[] array. */
1307 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1308         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1309 {
1310         /* assumes h->devlock is held */
1311         int i;
1312         struct hpsa_scsi_dev_t *sd;
1313
1314         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1315
1316         sd = h->dev[entry];
1317         removed[*nremoved] = h->dev[entry];
1318         (*nremoved)++;
1319
1320         for (i = entry; i < h->ndevices-1; i++)
1321                 h->dev[i] = h->dev[i+1];
1322         h->ndevices--;
1323         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1324 }
1325
1326 #define SCSI3ADDR_EQ(a, b) ( \
1327         (a)[7] == (b)[7] && \
1328         (a)[6] == (b)[6] && \
1329         (a)[5] == (b)[5] && \
1330         (a)[4] == (b)[4] && \
1331         (a)[3] == (b)[3] && \
1332         (a)[2] == (b)[2] && \
1333         (a)[1] == (b)[1] && \
1334         (a)[0] == (b)[0])
1335
1336 static void fixup_botched_add(struct ctlr_info *h,
1337         struct hpsa_scsi_dev_t *added)
1338 {
1339         /* called when scsi_add_device fails in order to re-adjust
1340          * h->dev[] to match the mid layer's view.
1341          */
1342         unsigned long flags;
1343         int i, j;
1344
1345         spin_lock_irqsave(&h->lock, flags);
1346         for (i = 0; i < h->ndevices; i++) {
1347                 if (h->dev[i] == added) {
1348                         for (j = i; j < h->ndevices-1; j++)
1349                                 h->dev[j] = h->dev[j+1];
1350                         h->ndevices--;
1351                         break;
1352                 }
1353         }
1354         spin_unlock_irqrestore(&h->lock, flags);
1355         kfree(added);
1356 }
1357
1358 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1359         struct hpsa_scsi_dev_t *dev2)
1360 {
1361         /* we compare everything except lun and target as these
1362          * are not yet assigned.  Compare parts likely
1363          * to differ first
1364          */
1365         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1366                 sizeof(dev1->scsi3addr)) != 0)
1367                 return 0;
1368         if (memcmp(dev1->device_id, dev2->device_id,
1369                 sizeof(dev1->device_id)) != 0)
1370                 return 0;
1371         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1372                 return 0;
1373         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1374                 return 0;
1375         if (dev1->devtype != dev2->devtype)
1376                 return 0;
1377         if (dev1->bus != dev2->bus)
1378                 return 0;
1379         return 1;
1380 }
1381
1382 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1383         struct hpsa_scsi_dev_t *dev2)
1384 {
1385         /* Device attributes that can change, but don't mean
1386          * that the device is a different device, nor that the OS
1387          * needs to be told anything about the change.
1388          */
1389         if (dev1->raid_level != dev2->raid_level)
1390                 return 1;
1391         if (dev1->offload_config != dev2->offload_config)
1392                 return 1;
1393         if (dev1->offload_enabled != dev2->offload_enabled)
1394                 return 1;
1395         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1396                 if (dev1->queue_depth != dev2->queue_depth)
1397                         return 1;
1398         return 0;
1399 }
1400
1401 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1402  * and return needle location in *index.  If scsi3addr matches, but not
1403  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1404  * location in *index.
1405  * In the case of a minor device attribute change, such as RAID level, just
1406  * return DEVICE_UPDATED, along with the updated device's location in index.
1407  * If needle not found, return DEVICE_NOT_FOUND.
1408  */
1409 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1410         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1411         int *index)
1412 {
1413         int i;
1414 #define DEVICE_NOT_FOUND 0
1415 #define DEVICE_CHANGED 1
1416 #define DEVICE_SAME 2
1417 #define DEVICE_UPDATED 3
1418         for (i = 0; i < haystack_size; i++) {
1419                 if (haystack[i] == NULL) /* previously removed. */
1420                         continue;
1421                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1422                         *index = i;
1423                         if (device_is_the_same(needle, haystack[i])) {
1424                                 if (device_updated(needle, haystack[i]))
1425                                         return DEVICE_UPDATED;
1426                                 return DEVICE_SAME;
1427                         } else {
1428                                 /* Keep offline devices offline */
1429                                 if (needle->volume_offline)
1430                                         return DEVICE_NOT_FOUND;
1431                                 return DEVICE_CHANGED;
1432                         }
1433                 }
1434         }
1435         *index = -1;
1436         return DEVICE_NOT_FOUND;
1437 }
1438
1439 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1440                                         unsigned char scsi3addr[])
1441 {
1442         struct offline_device_entry *device;
1443         unsigned long flags;
1444
1445         /* Check to see if device is already on the list */
1446         spin_lock_irqsave(&h->offline_device_lock, flags);
1447         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1448                 if (memcmp(device->scsi3addr, scsi3addr,
1449                         sizeof(device->scsi3addr)) == 0) {
1450                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1451                         return;
1452                 }
1453         }
1454         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1455
1456         /* Device is not on the list, add it. */
1457         device = kmalloc(sizeof(*device), GFP_KERNEL);
1458         if (!device) {
1459                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1460                 return;
1461         }
1462         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1463         spin_lock_irqsave(&h->offline_device_lock, flags);
1464         list_add_tail(&device->offline_list, &h->offline_device_list);
1465         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1466 }
1467
1468 /* Print a message explaining various offline volume states */
1469 static void hpsa_show_volume_status(struct ctlr_info *h,
1470         struct hpsa_scsi_dev_t *sd)
1471 {
1472         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1473                 dev_info(&h->pdev->dev,
1474                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1475                         h->scsi_host->host_no,
1476                         sd->bus, sd->target, sd->lun);
1477         switch (sd->volume_offline) {
1478         case HPSA_LV_OK:
1479                 break;
1480         case HPSA_LV_UNDERGOING_ERASE:
1481                 dev_info(&h->pdev->dev,
1482                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1483                         h->scsi_host->host_no,
1484                         sd->bus, sd->target, sd->lun);
1485                 break;
1486         case HPSA_LV_NOT_AVAILABLE:
1487                 dev_info(&h->pdev->dev,
1488                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1489                         h->scsi_host->host_no,
1490                         sd->bus, sd->target, sd->lun);
1491                 break;
1492         case HPSA_LV_UNDERGOING_RPI:
1493                 dev_info(&h->pdev->dev,
1494                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1495                         h->scsi_host->host_no,
1496                         sd->bus, sd->target, sd->lun);
1497                 break;
1498         case HPSA_LV_PENDING_RPI:
1499                 dev_info(&h->pdev->dev,
1500                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1501                         h->scsi_host->host_no,
1502                         sd->bus, sd->target, sd->lun);
1503                 break;
1504         case HPSA_LV_ENCRYPTED_NO_KEY:
1505                 dev_info(&h->pdev->dev,
1506                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1507                         h->scsi_host->host_no,
1508                         sd->bus, sd->target, sd->lun);
1509                 break;
1510         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1511                 dev_info(&h->pdev->dev,
1512                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1513                         h->scsi_host->host_no,
1514                         sd->bus, sd->target, sd->lun);
1515                 break;
1516         case HPSA_LV_UNDERGOING_ENCRYPTION:
1517                 dev_info(&h->pdev->dev,
1518                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1519                         h->scsi_host->host_no,
1520                         sd->bus, sd->target, sd->lun);
1521                 break;
1522         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1523                 dev_info(&h->pdev->dev,
1524                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1525                         h->scsi_host->host_no,
1526                         sd->bus, sd->target, sd->lun);
1527                 break;
1528         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1529                 dev_info(&h->pdev->dev,
1530                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1531                         h->scsi_host->host_no,
1532                         sd->bus, sd->target, sd->lun);
1533                 break;
1534         case HPSA_LV_PENDING_ENCRYPTION:
1535                 dev_info(&h->pdev->dev,
1536                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1537                         h->scsi_host->host_no,
1538                         sd->bus, sd->target, sd->lun);
1539                 break;
1540         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1541                 dev_info(&h->pdev->dev,
1542                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1543                         h->scsi_host->host_no,
1544                         sd->bus, sd->target, sd->lun);
1545                 break;
1546         }
1547 }
1548
1549 /*
1550  * Figure the list of physical drive pointers for a logical drive with
1551  * raid offload configured.
1552  */
1553 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1554                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1555                                 struct hpsa_scsi_dev_t *logical_drive)
1556 {
1557         struct raid_map_data *map = &logical_drive->raid_map;
1558         struct raid_map_disk_data *dd = &map->data[0];
1559         int i, j;
1560         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1561                                 le16_to_cpu(map->metadata_disks_per_row);
1562         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1563                                 le16_to_cpu(map->layout_map_count) *
1564                                 total_disks_per_row;
1565         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1566                                 total_disks_per_row;
1567         int qdepth;
1568
1569         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1570                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1571
1572         logical_drive->nphysical_disks = nraid_map_entries;
1573
1574         qdepth = 0;
1575         for (i = 0; i < nraid_map_entries; i++) {
1576                 logical_drive->phys_disk[i] = NULL;
1577                 if (!logical_drive->offload_config)
1578                         continue;
1579                 for (j = 0; j < ndevices; j++) {
1580                         if (dev[j]->devtype != TYPE_DISK)
1581                                 continue;
1582                         if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1583                                 continue;
1584                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1585                                 continue;
1586
1587                         logical_drive->phys_disk[i] = dev[j];
1588                         if (i < nphys_disk)
1589                                 qdepth = min(h->nr_cmds, qdepth +
1590                                     logical_drive->phys_disk[i]->queue_depth);
1591                         break;
1592                 }
1593
1594                 /*
1595                  * This can happen if a physical drive is removed and
1596                  * the logical drive is degraded.  In that case, the RAID
1597                  * map data will refer to a physical disk which isn't actually
1598                  * present.  And in that case offload_enabled should already
1599                  * be 0, but we'll turn it off here just in case
1600                  */
1601                 if (!logical_drive->phys_disk[i]) {
1602                         logical_drive->offload_enabled = 0;
1603                         logical_drive->offload_to_be_enabled = 0;
1604                         logical_drive->queue_depth = 8;
1605                 }
1606         }
1607         if (nraid_map_entries)
1608                 /*
1609                  * This is correct for reads, too high for full stripe writes,
1610                  * way too high for partial stripe writes
1611                  */
1612                 logical_drive->queue_depth = qdepth;
1613         else
1614                 logical_drive->queue_depth = h->nr_cmds;
1615 }
1616
1617 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1618                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1619 {
1620         int i;
1621
1622         for (i = 0; i < ndevices; i++) {
1623                 if (dev[i]->devtype != TYPE_DISK)
1624                         continue;
1625                 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1626                         continue;
1627
1628                 /*
1629                  * If offload is currently enabled, the RAID map and
1630                  * phys_disk[] assignment *better* not be changing
1631                  * and since it isn't changing, we do not need to
1632                  * update it.
1633                  */
1634                 if (dev[i]->offload_enabled)
1635                         continue;
1636
1637                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1638         }
1639 }
1640
1641 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1642         struct hpsa_scsi_dev_t *sd[], int nsds)
1643 {
1644         /* sd contains scsi3 addresses and devtypes, and inquiry
1645          * data.  This function takes what's in sd to be the current
1646          * reality and updates h->dev[] to reflect that reality.
1647          */
1648         int i, entry, device_change, changes = 0;
1649         struct hpsa_scsi_dev_t *csd;
1650         unsigned long flags;
1651         struct hpsa_scsi_dev_t **added, **removed;
1652         int nadded, nremoved;
1653         struct Scsi_Host *sh = NULL;
1654
1655         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1656         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1657
1658         if (!added || !removed) {
1659                 dev_warn(&h->pdev->dev, "out of memory in "
1660                         "adjust_hpsa_scsi_table\n");
1661                 goto free_and_out;
1662         }
1663
1664         spin_lock_irqsave(&h->devlock, flags);
1665
1666         /* find any devices in h->dev[] that are not in
1667          * sd[] and remove them from h->dev[], and for any
1668          * devices which have changed, remove the old device
1669          * info and add the new device info.
1670          * If minor device attributes change, just update
1671          * the existing device structure.
1672          */
1673         i = 0;
1674         nremoved = 0;
1675         nadded = 0;
1676         while (i < h->ndevices) {
1677                 csd = h->dev[i];
1678                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1679                 if (device_change == DEVICE_NOT_FOUND) {
1680                         changes++;
1681                         hpsa_scsi_remove_entry(h, hostno, i,
1682                                 removed, &nremoved);
1683                         continue; /* remove ^^^, hence i not incremented */
1684                 } else if (device_change == DEVICE_CHANGED) {
1685                         changes++;
1686                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1687                                 added, &nadded, removed, &nremoved);
1688                         /* Set it to NULL to prevent it from being freed
1689                          * at the bottom of hpsa_update_scsi_devices()
1690                          */
1691                         sd[entry] = NULL;
1692                 } else if (device_change == DEVICE_UPDATED) {
1693                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1694                 }
1695                 i++;
1696         }
1697
1698         /* Now, make sure every device listed in sd[] is also
1699          * listed in h->dev[], adding them if they aren't found
1700          */
1701
1702         for (i = 0; i < nsds; i++) {
1703                 if (!sd[i]) /* if already added above. */
1704                         continue;
1705
1706                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1707                  * as the SCSI mid-layer does not handle such devices well.
1708                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1709                  * at 160Hz, and prevents the system from coming up.
1710                  */
1711                 if (sd[i]->volume_offline) {
1712                         hpsa_show_volume_status(h, sd[i]);
1713                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1714                         continue;
1715                 }
1716
1717                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1718                                         h->ndevices, &entry);
1719                 if (device_change == DEVICE_NOT_FOUND) {
1720                         changes++;
1721                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1722                                 added, &nadded) != 0)
1723                                 break;
1724                         sd[i] = NULL; /* prevent from being freed later. */
1725                 } else if (device_change == DEVICE_CHANGED) {
1726                         /* should never happen... */
1727                         changes++;
1728                         dev_warn(&h->pdev->dev,
1729                                 "device unexpectedly changed.\n");
1730                         /* but if it does happen, we just ignore that device */
1731                 }
1732         }
1733         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1734
1735         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1736          * any logical drives that need it enabled.
1737          */
1738         for (i = 0; i < h->ndevices; i++)
1739                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1740
1741         spin_unlock_irqrestore(&h->devlock, flags);
1742
1743         /* Monitor devices which are in one of several NOT READY states to be
1744          * brought online later. This must be done without holding h->devlock,
1745          * so don't touch h->dev[]
1746          */
1747         for (i = 0; i < nsds; i++) {
1748                 if (!sd[i]) /* if already added above. */
1749                         continue;
1750                 if (sd[i]->volume_offline)
1751                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1752         }
1753
1754         /* Don't notify scsi mid layer of any changes the first time through
1755          * (or if there are no changes) scsi_scan_host will do it later the
1756          * first time through.
1757          */
1758         if (hostno == -1 || !changes)
1759                 goto free_and_out;
1760
1761         sh = h->scsi_host;
1762         /* Notify scsi mid layer of any removed devices */
1763         for (i = 0; i < nremoved; i++) {
1764                 if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1765                         struct scsi_device *sdev =
1766                                 scsi_device_lookup(sh, removed[i]->bus,
1767                                         removed[i]->target, removed[i]->lun);
1768                         if (sdev != NULL) {
1769                                 scsi_remove_device(sdev);
1770                                 scsi_device_put(sdev);
1771                         } else {
1772                                 /*
1773                                  * We don't expect to get here.
1774                                  * future cmds to this device will get selection
1775                                  * timeout as if the device was gone.
1776                                  */
1777                                 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1778                                         "didn't find device for removal.");
1779                         }
1780                 }
1781                 kfree(removed[i]);
1782                 removed[i] = NULL;
1783         }
1784
1785         /* Notify scsi mid layer of any added devices */
1786         for (i = 0; i < nadded; i++) {
1787                 if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1788                         continue;
1789                 if (scsi_add_device(sh, added[i]->bus,
1790                         added[i]->target, added[i]->lun) == 0)
1791                         continue;
1792                 hpsa_show_dev_msg(KERN_WARNING, h, added[i],
1793                                         "addition failed, device not added.");
1794                 /* now we have to remove it from h->dev,
1795                  * since it didn't get added to scsi mid layer
1796                  */
1797                 fixup_botched_add(h, added[i]);
1798                 added[i] = NULL;
1799         }
1800
1801 free_and_out:
1802         kfree(added);
1803         kfree(removed);
1804 }
1805
1806 /*
1807  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1808  * Assume's h->devlock is held.
1809  */
1810 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1811         int bus, int target, int lun)
1812 {
1813         int i;
1814         struct hpsa_scsi_dev_t *sd;
1815
1816         for (i = 0; i < h->ndevices; i++) {
1817                 sd = h->dev[i];
1818                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1819                         return sd;
1820         }
1821         return NULL;
1822 }
1823
1824 static int hpsa_slave_alloc(struct scsi_device *sdev)
1825 {
1826         struct hpsa_scsi_dev_t *sd;
1827         unsigned long flags;
1828         struct ctlr_info *h;
1829
1830         h = sdev_to_hba(sdev);
1831         spin_lock_irqsave(&h->devlock, flags);
1832         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1833                 sdev_id(sdev), sdev->lun);
1834         if (likely(sd)) {
1835                 atomic_set(&sd->ioaccel_cmds_out, 0);
1836                 sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1837         } else
1838                 sdev->hostdata = NULL;
1839         spin_unlock_irqrestore(&h->devlock, flags);
1840         return 0;
1841 }
1842
1843 /* configure scsi device based on internal per-device structure */
1844 static int hpsa_slave_configure(struct scsi_device *sdev)
1845 {
1846         struct hpsa_scsi_dev_t *sd;
1847         int queue_depth;
1848
1849         sd = sdev->hostdata;
1850         sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1851
1852         if (sd)
1853                 queue_depth = sd->queue_depth != 0 ?
1854                         sd->queue_depth : sdev->host->can_queue;
1855         else
1856                 queue_depth = sdev->host->can_queue;
1857
1858         scsi_change_queue_depth(sdev, queue_depth);
1859
1860         return 0;
1861 }
1862
1863 static void hpsa_slave_destroy(struct scsi_device *sdev)
1864 {
1865         /* nothing to do. */
1866 }
1867
1868 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1869 {
1870         int i;
1871
1872         if (!h->ioaccel2_cmd_sg_list)
1873                 return;
1874         for (i = 0; i < h->nr_cmds; i++) {
1875                 kfree(h->ioaccel2_cmd_sg_list[i]);
1876                 h->ioaccel2_cmd_sg_list[i] = NULL;
1877         }
1878         kfree(h->ioaccel2_cmd_sg_list);
1879         h->ioaccel2_cmd_sg_list = NULL;
1880 }
1881
1882 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1883 {
1884         int i;
1885
1886         if (h->chainsize <= 0)
1887                 return 0;
1888
1889         h->ioaccel2_cmd_sg_list =
1890                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1891                                         GFP_KERNEL);
1892         if (!h->ioaccel2_cmd_sg_list)
1893                 return -ENOMEM;
1894         for (i = 0; i < h->nr_cmds; i++) {
1895                 h->ioaccel2_cmd_sg_list[i] =
1896                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1897                                         h->maxsgentries, GFP_KERNEL);
1898                 if (!h->ioaccel2_cmd_sg_list[i])
1899                         goto clean;
1900         }
1901         return 0;
1902
1903 clean:
1904         hpsa_free_ioaccel2_sg_chain_blocks(h);
1905         return -ENOMEM;
1906 }
1907
1908 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1909 {
1910         int i;
1911
1912         if (!h->cmd_sg_list)
1913                 return;
1914         for (i = 0; i < h->nr_cmds; i++) {
1915                 kfree(h->cmd_sg_list[i]);
1916                 h->cmd_sg_list[i] = NULL;
1917         }
1918         kfree(h->cmd_sg_list);
1919         h->cmd_sg_list = NULL;
1920 }
1921
1922 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1923 {
1924         int i;
1925
1926         if (h->chainsize <= 0)
1927                 return 0;
1928
1929         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1930                                 GFP_KERNEL);
1931         if (!h->cmd_sg_list) {
1932                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1933                 return -ENOMEM;
1934         }
1935         for (i = 0; i < h->nr_cmds; i++) {
1936                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1937                                                 h->chainsize, GFP_KERNEL);
1938                 if (!h->cmd_sg_list[i]) {
1939                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1940                         goto clean;
1941                 }
1942         }
1943         return 0;
1944
1945 clean:
1946         hpsa_free_sg_chain_blocks(h);
1947         return -ENOMEM;
1948 }
1949
1950 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1951         struct io_accel2_cmd *cp, struct CommandList *c)
1952 {
1953         struct ioaccel2_sg_element *chain_block;
1954         u64 temp64;
1955         u32 chain_size;
1956
1957         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1958         chain_size = le32_to_cpu(cp->data_len);
1959         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1960                                 PCI_DMA_TODEVICE);
1961         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1962                 /* prevent subsequent unmapping */
1963                 cp->sg->address = 0;
1964                 return -1;
1965         }
1966         cp->sg->address = cpu_to_le64(temp64);
1967         return 0;
1968 }
1969
1970 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
1971         struct io_accel2_cmd *cp)
1972 {
1973         struct ioaccel2_sg_element *chain_sg;
1974         u64 temp64;
1975         u32 chain_size;
1976
1977         chain_sg = cp->sg;
1978         temp64 = le64_to_cpu(chain_sg->address);
1979         chain_size = le32_to_cpu(cp->data_len);
1980         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
1981 }
1982
1983 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1984         struct CommandList *c)
1985 {
1986         struct SGDescriptor *chain_sg, *chain_block;
1987         u64 temp64;
1988         u32 chain_len;
1989
1990         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1991         chain_block = h->cmd_sg_list[c->cmdindex];
1992         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1993         chain_len = sizeof(*chain_sg) *
1994                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1995         chain_sg->Len = cpu_to_le32(chain_len);
1996         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1997                                 PCI_DMA_TODEVICE);
1998         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1999                 /* prevent subsequent unmapping */
2000                 chain_sg->Addr = cpu_to_le64(0);
2001                 return -1;
2002         }
2003         chain_sg->Addr = cpu_to_le64(temp64);
2004         return 0;
2005 }
2006
2007 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2008         struct CommandList *c)
2009 {
2010         struct SGDescriptor *chain_sg;
2011
2012         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2013                 return;
2014
2015         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2016         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2017                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2018 }
2019
2020
2021 /* Decode the various types of errors on ioaccel2 path.
2022  * Return 1 for any error that should generate a RAID path retry.
2023  * Return 0 for errors that don't require a RAID path retry.
2024  */
2025 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2026                                         struct CommandList *c,
2027                                         struct scsi_cmnd *cmd,
2028                                         struct io_accel2_cmd *c2)
2029 {
2030         int data_len;
2031         int retry = 0;
2032         u32 ioaccel2_resid = 0;
2033
2034         switch (c2->error_data.serv_response) {
2035         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2036                 switch (c2->error_data.status) {
2037                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2038                         break;
2039                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2040                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2041                         if (c2->error_data.data_present !=
2042                                         IOACCEL2_SENSE_DATA_PRESENT) {
2043                                 memset(cmd->sense_buffer, 0,
2044                                         SCSI_SENSE_BUFFERSIZE);
2045                                 break;
2046                         }
2047                         /* copy the sense data */
2048                         data_len = c2->error_data.sense_data_len;
2049                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2050                                 data_len = SCSI_SENSE_BUFFERSIZE;
2051                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2052                                 data_len =
2053                                         sizeof(c2->error_data.sense_data_buff);
2054                         memcpy(cmd->sense_buffer,
2055                                 c2->error_data.sense_data_buff, data_len);
2056                         retry = 1;
2057                         break;
2058                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2059                         retry = 1;
2060                         break;
2061                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2062                         retry = 1;
2063                         break;
2064                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2065                         retry = 1;
2066                         break;
2067                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2068                         retry = 1;
2069                         break;
2070                 default:
2071                         retry = 1;
2072                         break;
2073                 }
2074                 break;
2075         case IOACCEL2_SERV_RESPONSE_FAILURE:
2076                 switch (c2->error_data.status) {
2077                 case IOACCEL2_STATUS_SR_IO_ERROR:
2078                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2079                 case IOACCEL2_STATUS_SR_OVERRUN:
2080                         retry = 1;
2081                         break;
2082                 case IOACCEL2_STATUS_SR_UNDERRUN:
2083                         cmd->result = (DID_OK << 16);           /* host byte */
2084                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2085                         ioaccel2_resid = get_unaligned_le32(
2086                                                 &c2->error_data.resid_cnt[0]);
2087                         scsi_set_resid(cmd, ioaccel2_resid);
2088                         break;
2089                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2090                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2091                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2092                         /* We will get an event from ctlr to trigger rescan */
2093                         retry = 1;
2094                         break;
2095                 default:
2096                         retry = 1;
2097                 }
2098                 break;
2099         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2100                 break;
2101         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2102                 break;
2103         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2104                 retry = 1;
2105                 break;
2106         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2107                 break;
2108         default:
2109                 retry = 1;
2110                 break;
2111         }
2112
2113         return retry;   /* retry on raid path? */
2114 }
2115
2116 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2117                 struct CommandList *c)
2118 {
2119         bool do_wake = false;
2120
2121         /*
2122          * Prevent the following race in the abort handler:
2123          *
2124          * 1. LLD is requested to abort a SCSI command
2125          * 2. The SCSI command completes
2126          * 3. The struct CommandList associated with step 2 is made available
2127          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2128          * 5. Abort handler follows scsi_cmnd->host_scribble and
2129          *    finds struct CommandList and tries to aborts it
2130          * Now we have aborted the wrong command.
2131          *
2132          * Reset c->scsi_cmd here so that the abort or reset handler will know
2133          * this command has completed.  Then, check to see if the handler is
2134          * waiting for this command, and, if so, wake it.
2135          */
2136         c->scsi_cmd = SCSI_CMD_IDLE;
2137         mb();   /* Declare command idle before checking for pending events. */
2138         if (c->abort_pending) {
2139                 do_wake = true;
2140                 c->abort_pending = false;
2141         }
2142         if (c->reset_pending) {
2143                 unsigned long flags;
2144                 struct hpsa_scsi_dev_t *dev;
2145
2146                 /*
2147                  * There appears to be a reset pending; lock the lock and
2148                  * reconfirm.  If so, then decrement the count of outstanding
2149                  * commands and wake the reset command if this is the last one.
2150                  */
2151                 spin_lock_irqsave(&h->lock, flags);
2152                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2153                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2154                         do_wake = true;
2155                 c->reset_pending = NULL;
2156                 spin_unlock_irqrestore(&h->lock, flags);
2157         }
2158
2159         if (do_wake)
2160                 wake_up_all(&h->event_sync_wait_queue);
2161 }
2162
2163 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2164                                       struct CommandList *c)
2165 {
2166         hpsa_cmd_resolve_events(h, c);
2167         cmd_tagged_free(h, c);
2168 }
2169
2170 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2171                 struct CommandList *c, struct scsi_cmnd *cmd)
2172 {
2173         hpsa_cmd_resolve_and_free(h, c);
2174         cmd->scsi_done(cmd);
2175 }
2176
2177 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2178 {
2179         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2180         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2181 }
2182
2183 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2184 {
2185         cmd->result = DID_ABORT << 16;
2186 }
2187
2188 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2189                                     struct scsi_cmnd *cmd)
2190 {
2191         hpsa_set_scsi_cmd_aborted(cmd);
2192         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2193                          c->Request.CDB, c->err_info->ScsiStatus);
2194         hpsa_cmd_resolve_and_free(h, c);
2195 }
2196
2197 static void process_ioaccel2_completion(struct ctlr_info *h,
2198                 struct CommandList *c, struct scsi_cmnd *cmd,
2199                 struct hpsa_scsi_dev_t *dev)
2200 {
2201         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2202
2203         /* check for good status */
2204         if (likely(c2->error_data.serv_response == 0 &&
2205                         c2->error_data.status == 0))
2206                 return hpsa_cmd_free_and_done(h, c, cmd);
2207
2208         /*
2209          * Any RAID offload error results in retry which will use
2210          * the normal I/O path so the controller can handle whatever's
2211          * wrong.
2212          */
2213         if (is_logical_dev_addr_mode(dev->scsi3addr) &&
2214                 c2->error_data.serv_response ==
2215                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2216                 if (c2->error_data.status ==
2217                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2218                         dev->offload_enabled = 0;
2219
2220                 return hpsa_retry_cmd(h, c);
2221         }
2222
2223         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2224                 return hpsa_retry_cmd(h, c);
2225
2226         return hpsa_cmd_free_and_done(h, c, cmd);
2227 }
2228
2229 /* Returns 0 on success, < 0 otherwise. */
2230 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2231                                         struct CommandList *cp)
2232 {
2233         u8 tmf_status = cp->err_info->ScsiStatus;
2234
2235         switch (tmf_status) {
2236         case CISS_TMF_COMPLETE:
2237                 /*
2238                  * CISS_TMF_COMPLETE never happens, instead,
2239                  * ei->CommandStatus == 0 for this case.
2240                  */
2241         case CISS_TMF_SUCCESS:
2242                 return 0;
2243         case CISS_TMF_INVALID_FRAME:
2244         case CISS_TMF_NOT_SUPPORTED:
2245         case CISS_TMF_FAILED:
2246         case CISS_TMF_WRONG_LUN:
2247         case CISS_TMF_OVERLAPPED_TAG:
2248                 break;
2249         default:
2250                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2251                                 tmf_status);
2252                 break;
2253         }
2254         return -tmf_status;
2255 }
2256
2257 static void complete_scsi_command(struct CommandList *cp)
2258 {
2259         struct scsi_cmnd *cmd;
2260         struct ctlr_info *h;
2261         struct ErrorInfo *ei;
2262         struct hpsa_scsi_dev_t *dev;
2263         struct io_accel2_cmd *c2;
2264
2265         u8 sense_key;
2266         u8 asc;      /* additional sense code */
2267         u8 ascq;     /* additional sense code qualifier */
2268         unsigned long sense_data_size;
2269
2270         ei = cp->err_info;
2271         cmd = cp->scsi_cmd;
2272         h = cp->h;
2273         dev = cmd->device->hostdata;
2274         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2275
2276         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2277         if ((cp->cmd_type == CMD_SCSI) &&
2278                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2279                 hpsa_unmap_sg_chain_block(h, cp);
2280
2281         if ((cp->cmd_type == CMD_IOACCEL2) &&
2282                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2283                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2284
2285         cmd->result = (DID_OK << 16);           /* host byte */
2286         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2287
2288         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2289                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2290
2291         /*
2292          * We check for lockup status here as it may be set for
2293          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2294          * fail_all_oustanding_cmds()
2295          */
2296         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2297                 /* DID_NO_CONNECT will prevent a retry */
2298                 cmd->result = DID_NO_CONNECT << 16;
2299                 return hpsa_cmd_free_and_done(h, cp, cmd);
2300         }
2301
2302         if ((unlikely(hpsa_is_pending_event(cp)))) {
2303                 if (cp->reset_pending)
2304                         return hpsa_cmd_resolve_and_free(h, cp);
2305                 if (cp->abort_pending)
2306                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2307         }
2308
2309         if (cp->cmd_type == CMD_IOACCEL2)
2310                 return process_ioaccel2_completion(h, cp, cmd, dev);
2311
2312         scsi_set_resid(cmd, ei->ResidualCnt);
2313         if (ei->CommandStatus == 0)
2314                 return hpsa_cmd_free_and_done(h, cp, cmd);
2315
2316         /* For I/O accelerator commands, copy over some fields to the normal
2317          * CISS header used below for error handling.
2318          */
2319         if (cp->cmd_type == CMD_IOACCEL1) {
2320                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2321                 cp->Header.SGList = scsi_sg_count(cmd);
2322                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2323                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2324                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2325                 cp->Header.tag = c->tag;
2326                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2327                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2328
2329                 /* Any RAID offload error results in retry which will use
2330                  * the normal I/O path so the controller can handle whatever's
2331                  * wrong.
2332                  */
2333                 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2334                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2335                                 dev->offload_enabled = 0;
2336                         return hpsa_retry_cmd(h, cp);
2337                 }
2338         }
2339
2340         /* an error has occurred */
2341         switch (ei->CommandStatus) {
2342
2343         case CMD_TARGET_STATUS:
2344                 cmd->result |= ei->ScsiStatus;
2345                 /* copy the sense data */
2346                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2347                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2348                 else
2349                         sense_data_size = sizeof(ei->SenseInfo);
2350                 if (ei->SenseLen < sense_data_size)
2351                         sense_data_size = ei->SenseLen;
2352                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2353                 if (ei->ScsiStatus)
2354                         decode_sense_data(ei->SenseInfo, sense_data_size,
2355                                 &sense_key, &asc, &ascq);
2356                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2357                         if (sense_key == ABORTED_COMMAND) {
2358                                 cmd->result |= DID_SOFT_ERROR << 16;
2359                                 break;
2360                         }
2361                         break;
2362                 }
2363                 /* Problem was not a check condition
2364                  * Pass it up to the upper layers...
2365                  */
2366                 if (ei->ScsiStatus) {
2367                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2368                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2369                                 "Returning result: 0x%x\n",
2370                                 cp, ei->ScsiStatus,
2371                                 sense_key, asc, ascq,
2372                                 cmd->result);
2373                 } else {  /* scsi status is zero??? How??? */
2374                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2375                                 "Returning no connection.\n", cp),
2376
2377                         /* Ordinarily, this case should never happen,
2378                          * but there is a bug in some released firmware
2379                          * revisions that allows it to happen if, for
2380                          * example, a 4100 backplane loses power and
2381                          * the tape drive is in it.  We assume that
2382                          * it's a fatal error of some kind because we
2383                          * can't show that it wasn't. We will make it
2384                          * look like selection timeout since that is
2385                          * the most common reason for this to occur,
2386                          * and it's severe enough.
2387                          */
2388
2389                         cmd->result = DID_NO_CONNECT << 16;
2390                 }
2391                 break;
2392
2393         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2394                 break;
2395         case CMD_DATA_OVERRUN:
2396                 dev_warn(&h->pdev->dev,
2397                         "CDB %16phN data overrun\n", cp->Request.CDB);
2398                 break;
2399         case CMD_INVALID: {
2400                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2401                 print_cmd(cp); */
2402                 /* We get CMD_INVALID if you address a non-existent device
2403                  * instead of a selection timeout (no response).  You will
2404                  * see this if you yank out a drive, then try to access it.
2405                  * This is kind of a shame because it means that any other
2406                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2407                  * missing target. */
2408                 cmd->result = DID_NO_CONNECT << 16;
2409         }
2410                 break;
2411         case CMD_PROTOCOL_ERR:
2412                 cmd->result = DID_ERROR << 16;
2413                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2414                                 cp->Request.CDB);
2415                 break;
2416         case CMD_HARDWARE_ERR:
2417                 cmd->result = DID_ERROR << 16;
2418                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2419                         cp->Request.CDB);
2420                 break;
2421         case CMD_CONNECTION_LOST:
2422                 cmd->result = DID_ERROR << 16;
2423                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2424                         cp->Request.CDB);
2425                 break;
2426         case CMD_ABORTED:
2427                 /* Return now to avoid calling scsi_done(). */
2428                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2429         case CMD_ABORT_FAILED:
2430                 cmd->result = DID_ERROR << 16;
2431                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2432                         cp->Request.CDB);
2433                 break;
2434         case CMD_UNSOLICITED_ABORT:
2435                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2436                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2437                         cp->Request.CDB);
2438                 break;
2439         case CMD_TIMEOUT:
2440                 cmd->result = DID_TIME_OUT << 16;
2441                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2442                         cp->Request.CDB);
2443                 break;
2444         case CMD_UNABORTABLE:
2445                 cmd->result = DID_ERROR << 16;
2446                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2447                 break;
2448         case CMD_TMF_STATUS:
2449                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2450                         cmd->result = DID_ERROR << 16;
2451                 break;
2452         case CMD_IOACCEL_DISABLED:
2453                 /* This only handles the direct pass-through case since RAID
2454                  * offload is handled above.  Just attempt a retry.
2455                  */
2456                 cmd->result = DID_SOFT_ERROR << 16;
2457                 dev_warn(&h->pdev->dev,
2458                                 "cp %p had HP SSD Smart Path error\n", cp);
2459                 break;
2460         default:
2461                 cmd->result = DID_ERROR << 16;
2462                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2463                                 cp, ei->CommandStatus);
2464         }
2465
2466         return hpsa_cmd_free_and_done(h, cp, cmd);
2467 }
2468
2469 static void hpsa_pci_unmap(struct pci_dev *pdev,
2470         struct CommandList *c, int sg_used, int data_direction)
2471 {
2472         int i;
2473
2474         for (i = 0; i < sg_used; i++)
2475                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2476                                 le32_to_cpu(c->SG[i].Len),
2477                                 data_direction);
2478 }
2479
2480 static int hpsa_map_one(struct pci_dev *pdev,
2481                 struct CommandList *cp,
2482                 unsigned char *buf,
2483                 size_t buflen,
2484                 int data_direction)
2485 {
2486         u64 addr64;
2487
2488         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2489                 cp->Header.SGList = 0;
2490                 cp->Header.SGTotal = cpu_to_le16(0);
2491                 return 0;
2492         }
2493
2494         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2495         if (dma_mapping_error(&pdev->dev, addr64)) {
2496                 /* Prevent subsequent unmap of something never mapped */
2497                 cp->Header.SGList = 0;
2498                 cp->Header.SGTotal = cpu_to_le16(0);
2499                 return -1;
2500         }
2501         cp->SG[0].Addr = cpu_to_le64(addr64);
2502         cp->SG[0].Len = cpu_to_le32(buflen);
2503         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2504         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2505         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2506         return 0;
2507 }
2508
2509 #define NO_TIMEOUT ((unsigned long) -1)
2510 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2511 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2512         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2513 {
2514         DECLARE_COMPLETION_ONSTACK(wait);
2515
2516         c->waiting = &wait;
2517         __enqueue_cmd_and_start_io(h, c, reply_queue);
2518         if (timeout_msecs == NO_TIMEOUT) {
2519                 /* TODO: get rid of this no-timeout thing */
2520                 wait_for_completion_io(&wait);
2521                 return IO_OK;
2522         }
2523         if (!wait_for_completion_io_timeout(&wait,
2524                                         msecs_to_jiffies(timeout_msecs))) {
2525                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2526                 return -ETIMEDOUT;
2527         }
2528         return IO_OK;
2529 }
2530
2531 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2532                                    int reply_queue, unsigned long timeout_msecs)
2533 {
2534         if (unlikely(lockup_detected(h))) {
2535                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2536                 return IO_OK;
2537         }
2538         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2539 }
2540
2541 static u32 lockup_detected(struct ctlr_info *h)
2542 {
2543         int cpu;
2544         u32 rc, *lockup_detected;
2545
2546         cpu = get_cpu();
2547         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2548         rc = *lockup_detected;
2549         put_cpu();
2550         return rc;
2551 }
2552
2553 #define MAX_DRIVER_CMD_RETRIES 25
2554 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2555         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2556 {
2557         int backoff_time = 10, retry_count = 0;
2558         int rc;
2559
2560         do {
2561                 memset(c->err_info, 0, sizeof(*c->err_info));
2562                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2563                                                   timeout_msecs);
2564                 if (rc)
2565                         break;
2566                 retry_count++;
2567                 if (retry_count > 3) {
2568                         msleep(backoff_time);
2569                         if (backoff_time < 1000)
2570                                 backoff_time *= 2;
2571                 }
2572         } while ((check_for_unit_attention(h, c) ||
2573                         check_for_busy(h, c)) &&
2574                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2575         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2576         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2577                 rc = -EIO;
2578         return rc;
2579 }
2580
2581 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2582                                 struct CommandList *c)
2583 {
2584         const u8 *cdb = c->Request.CDB;
2585         const u8 *lun = c->Header.LUN.LunAddrBytes;
2586
2587         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2588         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2589                 txt, lun[0], lun[1], lun[2], lun[3],
2590                 lun[4], lun[5], lun[6], lun[7],
2591                 cdb[0], cdb[1], cdb[2], cdb[3],
2592                 cdb[4], cdb[5], cdb[6], cdb[7],
2593                 cdb[8], cdb[9], cdb[10], cdb[11],
2594                 cdb[12], cdb[13], cdb[14], cdb[15]);
2595 }
2596
2597 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2598                         struct CommandList *cp)
2599 {
2600         const struct ErrorInfo *ei = cp->err_info;
2601         struct device *d = &cp->h->pdev->dev;
2602         u8 sense_key, asc, ascq;
2603         int sense_len;
2604
2605         switch (ei->CommandStatus) {
2606         case CMD_TARGET_STATUS:
2607                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2608                         sense_len = sizeof(ei->SenseInfo);
2609                 else
2610                         sense_len = ei->SenseLen;
2611                 decode_sense_data(ei->SenseInfo, sense_len,
2612                                         &sense_key, &asc, &ascq);
2613                 hpsa_print_cmd(h, "SCSI status", cp);
2614                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2615                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2616                                 sense_key, asc, ascq);
2617                 else
2618                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2619                 if (ei->ScsiStatus == 0)
2620                         dev_warn(d, "SCSI status is abnormally zero.  "
2621                         "(probably indicates selection timeout "
2622                         "reported incorrectly due to a known "
2623                         "firmware bug, circa July, 2001.)\n");
2624                 break;
2625         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2626                 break;
2627         case CMD_DATA_OVERRUN:
2628                 hpsa_print_cmd(h, "overrun condition", cp);
2629                 break;
2630         case CMD_INVALID: {
2631                 /* controller unfortunately reports SCSI passthru's
2632                  * to non-existent targets as invalid commands.
2633                  */
2634                 hpsa_print_cmd(h, "invalid command", cp);
2635                 dev_warn(d, "probably means device no longer present\n");
2636                 }
2637                 break;
2638         case CMD_PROTOCOL_ERR:
2639                 hpsa_print_cmd(h, "protocol error", cp);
2640                 break;
2641         case CMD_HARDWARE_ERR:
2642                 hpsa_print_cmd(h, "hardware error", cp);
2643                 break;
2644         case CMD_CONNECTION_LOST:
2645                 hpsa_print_cmd(h, "connection lost", cp);
2646                 break;
2647         case CMD_ABORTED:
2648                 hpsa_print_cmd(h, "aborted", cp);
2649                 break;
2650         case CMD_ABORT_FAILED:
2651                 hpsa_print_cmd(h, "abort failed", cp);
2652                 break;
2653         case CMD_UNSOLICITED_ABORT:
2654                 hpsa_print_cmd(h, "unsolicited abort", cp);
2655                 break;
2656         case CMD_TIMEOUT:
2657                 hpsa_print_cmd(h, "timed out", cp);
2658                 break;
2659         case CMD_UNABORTABLE:
2660                 hpsa_print_cmd(h, "unabortable", cp);
2661                 break;
2662         case CMD_CTLR_LOCKUP:
2663                 hpsa_print_cmd(h, "controller lockup detected", cp);
2664                 break;
2665         default:
2666                 hpsa_print_cmd(h, "unknown status", cp);
2667                 dev_warn(d, "Unknown command status %x\n",
2668                                 ei->CommandStatus);
2669         }
2670 }
2671
2672 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2673                         u16 page, unsigned char *buf,
2674                         unsigned char bufsize)
2675 {
2676         int rc = IO_OK;
2677         struct CommandList *c;
2678         struct ErrorInfo *ei;
2679
2680         c = cmd_alloc(h);
2681
2682         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2683                         page, scsi3addr, TYPE_CMD)) {
2684                 rc = -1;
2685                 goto out;
2686         }
2687         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2688                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2689         if (rc)
2690                 goto out;
2691         ei = c->err_info;
2692         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2693                 hpsa_scsi_interpret_error(h, c);
2694                 rc = -1;
2695         }
2696 out:
2697         cmd_free(h, c);
2698         return rc;
2699 }
2700
2701 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2702         u8 reset_type, int reply_queue)
2703 {
2704         int rc = IO_OK;
2705         struct CommandList *c;
2706         struct ErrorInfo *ei;
2707
2708         c = cmd_alloc(h);
2709
2710
2711         /* fill_cmd can't fail here, no data buffer to map. */
2712         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2713                         scsi3addr, TYPE_MSG);
2714         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2715         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2716         if (rc) {
2717                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2718                 goto out;
2719         }
2720         /* no unmap needed here because no data xfer. */
2721
2722         ei = c->err_info;
2723         if (ei->CommandStatus != 0) {
2724                 hpsa_scsi_interpret_error(h, c);
2725                 rc = -1;
2726         }
2727 out:
2728         cmd_free(h, c);
2729         return rc;
2730 }
2731
2732 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2733                                struct hpsa_scsi_dev_t *dev,
2734                                unsigned char *scsi3addr)
2735 {
2736         int i;
2737         bool match = false;
2738         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2739         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2740
2741         if (hpsa_is_cmd_idle(c))
2742                 return false;
2743
2744         switch (c->cmd_type) {
2745         case CMD_SCSI:
2746         case CMD_IOCTL_PEND:
2747                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2748                                 sizeof(c->Header.LUN.LunAddrBytes));
2749                 break;
2750
2751         case CMD_IOACCEL1:
2752         case CMD_IOACCEL2:
2753                 if (c->phys_disk == dev) {
2754                         /* HBA mode match */
2755                         match = true;
2756                 } else {
2757                         /* Possible RAID mode -- check each phys dev. */
2758                         /* FIXME:  Do we need to take out a lock here?  If
2759                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2760                          * instead. */
2761                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2762                                 /* FIXME: an alternate test might be
2763                                  *
2764                                  * match = dev->phys_disk[i]->ioaccel_handle
2765                                  *              == c2->scsi_nexus;      */
2766                                 match = dev->phys_disk[i] == c->phys_disk;
2767                         }
2768                 }
2769                 break;
2770
2771         case IOACCEL2_TMF:
2772                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2773                         match = dev->phys_disk[i]->ioaccel_handle ==
2774                                         le32_to_cpu(ac->it_nexus);
2775                 }
2776                 break;
2777
2778         case 0:         /* The command is in the middle of being initialized. */
2779                 match = false;
2780                 break;
2781
2782         default:
2783                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2784                         c->cmd_type);
2785                 BUG();
2786         }
2787
2788         return match;
2789 }
2790
2791 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2792         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2793 {
2794         int i;
2795         int rc = 0;
2796
2797         /* We can really only handle one reset at a time */
2798         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2799                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2800                 return -EINTR;
2801         }
2802
2803         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2804
2805         for (i = 0; i < h->nr_cmds; i++) {
2806                 struct CommandList *c = h->cmd_pool + i;
2807                 int refcount = atomic_inc_return(&c->refcount);
2808
2809                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2810                         unsigned long flags;
2811
2812                         /*
2813                          * Mark the target command as having a reset pending,
2814                          * then lock a lock so that the command cannot complete
2815                          * while we're considering it.  If the command is not
2816                          * idle then count it; otherwise revoke the event.
2817                          */
2818                         c->reset_pending = dev;
2819                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2820                         if (!hpsa_is_cmd_idle(c))
2821                                 atomic_inc(&dev->reset_cmds_out);
2822                         else
2823                                 c->reset_pending = NULL;
2824                         spin_unlock_irqrestore(&h->lock, flags);
2825                 }
2826
2827                 cmd_free(h, c);
2828         }
2829
2830         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2831         if (!rc)
2832                 wait_event(h->event_sync_wait_queue,
2833                         atomic_read(&dev->reset_cmds_out) == 0 ||
2834                         lockup_detected(h));
2835
2836         if (unlikely(lockup_detected(h))) {
2837                 dev_warn(&h->pdev->dev,
2838                          "Controller lockup detected during reset wait\n");
2839                 rc = -ENODEV;
2840         }
2841
2842         if (unlikely(rc))
2843                 atomic_set(&dev->reset_cmds_out, 0);
2844
2845         mutex_unlock(&h->reset_mutex);
2846         return rc;
2847 }
2848
2849 static void hpsa_get_raid_level(struct ctlr_info *h,
2850         unsigned char *scsi3addr, unsigned char *raid_level)
2851 {
2852         int rc;
2853         unsigned char *buf;
2854
2855         *raid_level = RAID_UNKNOWN;
2856         buf = kzalloc(64, GFP_KERNEL);
2857         if (!buf)
2858                 return;
2859         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2860         if (rc == 0)
2861                 *raid_level = buf[8];
2862         if (*raid_level > RAID_UNKNOWN)
2863                 *raid_level = RAID_UNKNOWN;
2864         kfree(buf);
2865         return;
2866 }
2867
2868 #define HPSA_MAP_DEBUG
2869 #ifdef HPSA_MAP_DEBUG
2870 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2871                                 struct raid_map_data *map_buff)
2872 {
2873         struct raid_map_disk_data *dd = &map_buff->data[0];
2874         int map, row, col;
2875         u16 map_cnt, row_cnt, disks_per_row;
2876
2877         if (rc != 0)
2878                 return;
2879
2880         /* Show details only if debugging has been activated. */
2881         if (h->raid_offload_debug < 2)
2882                 return;
2883
2884         dev_info(&h->pdev->dev, "structure_size = %u\n",
2885                                 le32_to_cpu(map_buff->structure_size));
2886         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2887                         le32_to_cpu(map_buff->volume_blk_size));
2888         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2889                         le64_to_cpu(map_buff->volume_blk_cnt));
2890         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2891                         map_buff->phys_blk_shift);
2892         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2893                         map_buff->parity_rotation_shift);
2894         dev_info(&h->pdev->dev, "strip_size = %u\n",
2895                         le16_to_cpu(map_buff->strip_size));
2896         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2897                         le64_to_cpu(map_buff->disk_starting_blk));
2898         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2899                         le64_to_cpu(map_buff->disk_blk_cnt));
2900         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2901                         le16_to_cpu(map_buff->data_disks_per_row));
2902         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2903                         le16_to_cpu(map_buff->metadata_disks_per_row));
2904         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2905                         le16_to_cpu(map_buff->row_cnt));
2906         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2907                         le16_to_cpu(map_buff->layout_map_count));
2908         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2909                         le16_to_cpu(map_buff->flags));
2910         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2911                         le16_to_cpu(map_buff->flags) &
2912                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2913         dev_info(&h->pdev->dev, "dekindex = %u\n",
2914                         le16_to_cpu(map_buff->dekindex));
2915         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2916         for (map = 0; map < map_cnt; map++) {
2917                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2918                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2919                 for (row = 0; row < row_cnt; row++) {
2920                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2921                         disks_per_row =
2922                                 le16_to_cpu(map_buff->data_disks_per_row);
2923                         for (col = 0; col < disks_per_row; col++, dd++)
2924                                 dev_info(&h->pdev->dev,
2925                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2926                                         col, dd->ioaccel_handle,
2927                                         dd->xor_mult[0], dd->xor_mult[1]);
2928                         disks_per_row =
2929                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2930                         for (col = 0; col < disks_per_row; col++, dd++)
2931                                 dev_info(&h->pdev->dev,
2932                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2933                                         col, dd->ioaccel_handle,
2934                                         dd->xor_mult[0], dd->xor_mult[1]);
2935                 }
2936         }
2937 }
2938 #else
2939 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2940                         __attribute__((unused)) int rc,
2941                         __attribute__((unused)) struct raid_map_data *map_buff)
2942 {
2943 }
2944 #endif
2945
2946 static int hpsa_get_raid_map(struct ctlr_info *h,
2947         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2948 {
2949         int rc = 0;
2950         struct CommandList *c;
2951         struct ErrorInfo *ei;
2952
2953         c = cmd_alloc(h);
2954
2955         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2956                         sizeof(this_device->raid_map), 0,
2957                         scsi3addr, TYPE_CMD)) {
2958                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2959                 cmd_free(h, c);
2960                 return -1;
2961         }
2962         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2963                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2964         if (rc)
2965                 goto out;
2966         ei = c->err_info;
2967         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2968                 hpsa_scsi_interpret_error(h, c);
2969                 rc = -1;
2970                 goto out;
2971         }
2972         cmd_free(h, c);
2973
2974         /* @todo in the future, dynamically allocate RAID map memory */
2975         if (le32_to_cpu(this_device->raid_map.structure_size) >
2976                                 sizeof(this_device->raid_map)) {
2977                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2978                 rc = -1;
2979         }
2980         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2981         return rc;
2982 out:
2983         cmd_free(h, c);
2984         return rc;
2985 }
2986
2987 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2988                 unsigned char scsi3addr[], u16 bmic_device_index,
2989                 struct bmic_identify_physical_device *buf, size_t bufsize)
2990 {
2991         int rc = IO_OK;
2992         struct CommandList *c;
2993         struct ErrorInfo *ei;
2994
2995         c = cmd_alloc(h);
2996         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2997                 0, RAID_CTLR_LUNID, TYPE_CMD);
2998         if (rc)
2999                 goto out;
3000
3001         c->Request.CDB[2] = bmic_device_index & 0xff;
3002         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3003
3004         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3005                                                 NO_TIMEOUT);
3006         ei = c->err_info;
3007         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3008                 hpsa_scsi_interpret_error(h, c);
3009                 rc = -1;
3010         }
3011 out:
3012         cmd_free(h, c);
3013         return rc;
3014 }
3015
3016 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3017         unsigned char scsi3addr[], u8 page)
3018 {
3019         int rc;
3020         int i;
3021         int pages;
3022         unsigned char *buf, bufsize;
3023
3024         buf = kzalloc(256, GFP_KERNEL);
3025         if (!buf)
3026                 return 0;
3027
3028         /* Get the size of the page list first */
3029         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3030                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3031                                 buf, HPSA_VPD_HEADER_SZ);
3032         if (rc != 0)
3033                 goto exit_unsupported;
3034         pages = buf[3];
3035         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3036                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3037         else
3038                 bufsize = 255;
3039
3040         /* Get the whole VPD page list */
3041         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3042                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3043                                 buf, bufsize);
3044         if (rc != 0)
3045                 goto exit_unsupported;
3046
3047         pages = buf[3];
3048         for (i = 1; i <= pages; i++)
3049                 if (buf[3 + i] == page)
3050                         goto exit_supported;
3051 exit_unsupported:
3052         kfree(buf);
3053         return 0;
3054 exit_supported:
3055         kfree(buf);
3056         return 1;
3057 }
3058
3059 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3060         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3061 {
3062         int rc;
3063         unsigned char *buf;
3064         u8 ioaccel_status;
3065
3066         this_device->offload_config = 0;
3067         this_device->offload_enabled = 0;
3068         this_device->offload_to_be_enabled = 0;
3069
3070         buf = kzalloc(64, GFP_KERNEL);
3071         if (!buf)
3072                 return;
3073         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3074                 goto out;
3075         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3076                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3077         if (rc != 0)
3078                 goto out;
3079
3080 #define IOACCEL_STATUS_BYTE 4
3081 #define OFFLOAD_CONFIGURED_BIT 0x01
3082 #define OFFLOAD_ENABLED_BIT 0x02
3083         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3084         this_device->offload_config =
3085                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3086         if (this_device->offload_config) {
3087                 this_device->offload_enabled =
3088                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3089                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3090                         this_device->offload_enabled = 0;
3091         }
3092         this_device->offload_to_be_enabled = this_device->offload_enabled;
3093 out:
3094         kfree(buf);
3095         return;
3096 }
3097
3098 /* Get the device id from inquiry page 0x83 */
3099 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3100         unsigned char *device_id, int buflen)
3101 {
3102         int rc;
3103         unsigned char *buf;
3104
3105         if (buflen > 16)
3106                 buflen = 16;
3107         buf = kzalloc(64, GFP_KERNEL);
3108         if (!buf)
3109                 return -ENOMEM;
3110         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3111         if (rc == 0)
3112                 memcpy(device_id, &buf[8], buflen);
3113         kfree(buf);
3114         return rc != 0;
3115 }
3116
3117 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3118                 void *buf, int bufsize,
3119                 int extended_response)
3120 {
3121         int rc = IO_OK;
3122         struct CommandList *c;
3123         unsigned char scsi3addr[8];
3124         struct ErrorInfo *ei;
3125
3126         c = cmd_alloc(h);
3127
3128         /* address the controller */
3129         memset(scsi3addr, 0, sizeof(scsi3addr));
3130         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3131                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3132                 rc = -1;
3133                 goto out;
3134         }
3135         if (extended_response)
3136                 c->Request.CDB[1] = extended_response;
3137         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3138                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3139         if (rc)
3140                 goto out;
3141         ei = c->err_info;
3142         if (ei->CommandStatus != 0 &&
3143             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3144                 hpsa_scsi_interpret_error(h, c);
3145                 rc = -1;
3146         } else {
3147                 struct ReportLUNdata *rld = buf;
3148
3149                 if (rld->extended_response_flag != extended_response) {
3150                         dev_err(&h->pdev->dev,
3151                                 "report luns requested format %u, got %u\n",
3152                                 extended_response,
3153                                 rld->extended_response_flag);
3154                         rc = -1;
3155                 }
3156         }
3157 out:
3158         cmd_free(h, c);
3159         return rc;
3160 }
3161
3162 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3163                 struct ReportExtendedLUNdata *buf, int bufsize)
3164 {
3165         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3166                                                 HPSA_REPORT_PHYS_EXTENDED);
3167 }
3168
3169 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3170                 struct ReportLUNdata *buf, int bufsize)
3171 {
3172         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3173 }
3174
3175 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3176         int bus, int target, int lun)
3177 {
3178         device->bus = bus;
3179         device->target = target;
3180         device->lun = lun;
3181 }
3182
3183 /* Use VPD inquiry to get details of volume status */
3184 static int hpsa_get_volume_status(struct ctlr_info *h,
3185                                         unsigned char scsi3addr[])
3186 {
3187         int rc;
3188         int status;
3189         int size;
3190         unsigned char *buf;
3191
3192         buf = kzalloc(64, GFP_KERNEL);
3193         if (!buf)
3194                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3195
3196         /* Does controller have VPD for logical volume status? */
3197         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3198                 goto exit_failed;
3199
3200         /* Get the size of the VPD return buffer */
3201         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3202                                         buf, HPSA_VPD_HEADER_SZ);
3203         if (rc != 0)
3204                 goto exit_failed;
3205         size = buf[3];
3206
3207         /* Now get the whole VPD buffer */
3208         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3209                                         buf, size + HPSA_VPD_HEADER_SZ);
3210         if (rc != 0)
3211                 goto exit_failed;
3212         status = buf[4]; /* status byte */
3213
3214         kfree(buf);
3215         return status;
3216 exit_failed:
3217         kfree(buf);
3218         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3219 }
3220
3221 /* Determine offline status of a volume.
3222  * Return either:
3223  *  0 (not offline)
3224  *  0xff (offline for unknown reasons)
3225  *  # (integer code indicating one of several NOT READY states
3226  *     describing why a volume is to be kept offline)
3227  */
3228 static int hpsa_volume_offline(struct ctlr_info *h,
3229                                         unsigned char scsi3addr[])
3230 {
3231         struct CommandList *c;
3232         unsigned char *sense;
3233         u8 sense_key, asc, ascq;
3234         int sense_len;
3235         int rc, ldstat = 0;
3236         u16 cmd_status;
3237         u8 scsi_status;
3238 #define ASC_LUN_NOT_READY 0x04
3239 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3240 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3241
3242         c = cmd_alloc(h);
3243
3244         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3245         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3246         if (rc) {
3247                 cmd_free(h, c);
3248                 return 0;
3249         }
3250         sense = c->err_info->SenseInfo;
3251         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3252                 sense_len = sizeof(c->err_info->SenseInfo);
3253         else
3254                 sense_len = c->err_info->SenseLen;
3255         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3256         cmd_status = c->err_info->CommandStatus;
3257         scsi_status = c->err_info->ScsiStatus;
3258         cmd_free(h, c);
3259         /* Is the volume 'not ready'? */
3260         if (cmd_status != CMD_TARGET_STATUS ||
3261                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3262                 sense_key != NOT_READY ||
3263                 asc != ASC_LUN_NOT_READY)  {
3264                 return 0;
3265         }
3266
3267         /* Determine the reason for not ready state */
3268         ldstat = hpsa_get_volume_status(h, scsi3addr);
3269
3270         /* Keep volume offline in certain cases: */
3271         switch (ldstat) {
3272         case HPSA_LV_UNDERGOING_ERASE:
3273         case HPSA_LV_NOT_AVAILABLE:
3274         case HPSA_LV_UNDERGOING_RPI:
3275         case HPSA_LV_PENDING_RPI:
3276         case HPSA_LV_ENCRYPTED_NO_KEY:
3277         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3278         case HPSA_LV_UNDERGOING_ENCRYPTION:
3279         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3280         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3281                 return ldstat;
3282         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3283                 /* If VPD status page isn't available,
3284                  * use ASC/ASCQ to determine state
3285                  */
3286                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3287                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3288                         return ldstat;
3289                 break;
3290         default:
3291                 break;
3292         }
3293         return 0;
3294 }
3295
3296 /*
3297  * Find out if a logical device supports aborts by simply trying one.
3298  * Smart Array may claim not to support aborts on logical drives, but
3299  * if a MSA2000 * is connected, the drives on that will be presented
3300  * by the Smart Array as logical drives, and aborts may be sent to
3301  * those devices successfully.  So the simplest way to find out is
3302  * to simply try an abort and see how the device responds.
3303  */
3304 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3305                                         unsigned char *scsi3addr)
3306 {
3307         struct CommandList *c;
3308         struct ErrorInfo *ei;
3309         int rc = 0;
3310
3311         u64 tag = (u64) -1; /* bogus tag */
3312
3313         /* Assume that physical devices support aborts */
3314         if (!is_logical_dev_addr_mode(scsi3addr))
3315                 return 1;
3316
3317         c = cmd_alloc(h);
3318
3319         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3320         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3321         /* no unmap needed here because no data xfer. */
3322         ei = c->err_info;
3323         switch (ei->CommandStatus) {
3324         case CMD_INVALID:
3325                 rc = 0;
3326                 break;
3327         case CMD_UNABORTABLE:
3328         case CMD_ABORT_FAILED:
3329                 rc = 1;
3330                 break;
3331         case CMD_TMF_STATUS:
3332                 rc = hpsa_evaluate_tmf_status(h, c);
3333                 break;
3334         default:
3335                 rc = 0;
3336                 break;
3337         }
3338         cmd_free(h, c);
3339         return rc;
3340 }
3341
3342 static int hpsa_update_device_info(struct ctlr_info *h,
3343         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3344         unsigned char *is_OBDR_device)
3345 {
3346
3347 #define OBDR_SIG_OFFSET 43
3348 #define OBDR_TAPE_SIG "$DR-10"
3349 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3350 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3351
3352         unsigned char *inq_buff;
3353         unsigned char *obdr_sig;
3354
3355         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3356         if (!inq_buff)
3357                 goto bail_out;
3358
3359         /* Do an inquiry to the device to see what it is. */
3360         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3361                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3362                 /* Inquiry failed (msg printed already) */
3363                 dev_err(&h->pdev->dev,
3364                         "hpsa_update_device_info: inquiry failed\n");
3365                 goto bail_out;
3366         }
3367
3368         this_device->devtype = (inq_buff[0] & 0x1f);
3369         memcpy(this_device->scsi3addr, scsi3addr, 8);
3370         memcpy(this_device->vendor, &inq_buff[8],
3371                 sizeof(this_device->vendor));
3372         memcpy(this_device->model, &inq_buff[16],
3373                 sizeof(this_device->model));
3374         memset(this_device->device_id, 0,
3375                 sizeof(this_device->device_id));
3376         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
3377                 sizeof(this_device->device_id));
3378
3379         if (this_device->devtype == TYPE_DISK &&
3380                 is_logical_dev_addr_mode(scsi3addr)) {
3381                 int volume_offline;
3382
3383                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3384                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3385                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3386                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3387                 if (volume_offline < 0 || volume_offline > 0xff)
3388                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3389                 this_device->volume_offline = volume_offline & 0xff;
3390         } else {
3391                 this_device->raid_level = RAID_UNKNOWN;
3392                 this_device->offload_config = 0;
3393                 this_device->offload_enabled = 0;
3394                 this_device->offload_to_be_enabled = 0;
3395                 this_device->hba_ioaccel_enabled = 0;
3396                 this_device->volume_offline = 0;
3397                 this_device->queue_depth = h->nr_cmds;
3398         }
3399
3400         if (is_OBDR_device) {
3401                 /* See if this is a One-Button-Disaster-Recovery device
3402                  * by looking for "$DR-10" at offset 43 in inquiry data.
3403                  */
3404                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3405                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3406                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3407                                                 OBDR_SIG_LEN) == 0);
3408         }
3409         kfree(inq_buff);
3410         return 0;
3411
3412 bail_out:
3413         kfree(inq_buff);
3414         return 1;
3415 }
3416
3417 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3418                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3419 {
3420         unsigned long flags;
3421         int rc, entry;
3422         /*
3423          * See if this device supports aborts.  If we already know
3424          * the device, we already know if it supports aborts, otherwise
3425          * we have to find out if it supports aborts by trying one.
3426          */
3427         spin_lock_irqsave(&h->devlock, flags);
3428         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3429         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3430                 entry >= 0 && entry < h->ndevices) {
3431                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3432                 spin_unlock_irqrestore(&h->devlock, flags);
3433         } else {
3434                 spin_unlock_irqrestore(&h->devlock, flags);
3435                 dev->supports_aborts =
3436                                 hpsa_device_supports_aborts(h, scsi3addr);
3437                 if (dev->supports_aborts < 0)
3438                         dev->supports_aborts = 0;
3439         }
3440 }
3441
3442 static unsigned char *ext_target_model[] = {
3443         "MSA2012",
3444         "MSA2024",
3445         "MSA2312",
3446         "MSA2324",
3447         "P2000 G3 SAS",
3448         "MSA 2040 SAS",
3449         NULL,
3450 };
3451
3452 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3453 {
3454         int i;
3455
3456         for (i = 0; ext_target_model[i]; i++)
3457                 if (strncmp(device->model, ext_target_model[i],
3458                         strlen(ext_target_model[i])) == 0)
3459                         return 1;
3460         return 0;
3461 }
3462
3463 /* Helper function to assign bus, target, lun mapping of devices.
3464  * Puts non-external target logical volumes on bus 0, external target logical
3465  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3466  * Logical drive target and lun are assigned at this time, but
3467  * physical device lun and target assignment are deferred (assigned
3468  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3469  */
3470 static void figure_bus_target_lun(struct ctlr_info *h,
3471         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3472 {
3473         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3474
3475         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3476                 /* physical device, target and lun filled in later */
3477                 if (is_hba_lunid(lunaddrbytes))
3478                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3479                 else
3480                         /* defer target, lun assignment for physical devices */
3481                         hpsa_set_bus_target_lun(device, 2, -1, -1);
3482                 return;
3483         }
3484         /* It's a logical device */
3485         if (is_ext_target(h, device)) {
3486                 /* external target way, put logicals on bus 1
3487                  * and match target/lun numbers box
3488                  * reports, other smart array, bus 0, target 0, match lunid
3489                  */
3490                 hpsa_set_bus_target_lun(device,
3491                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3492                 return;
3493         }
3494         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3495 }
3496
3497 /*
3498  * If there is no lun 0 on a target, linux won't find any devices.
3499  * For the external targets (arrays), we have to manually detect the enclosure
3500  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3501  * it for some reason.  *tmpdevice is the target we're adding,
3502  * this_device is a pointer into the current element of currentsd[]
3503  * that we're building up in update_scsi_devices(), below.
3504  * lunzerobits is a bitmap that tracks which targets already have a
3505  * lun 0 assigned.
3506  * Returns 1 if an enclosure was added, 0 if not.
3507  */
3508 static int add_ext_target_dev(struct ctlr_info *h,
3509         struct hpsa_scsi_dev_t *tmpdevice,
3510         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3511         unsigned long lunzerobits[], int *n_ext_target_devs)
3512 {
3513         unsigned char scsi3addr[8];
3514
3515         if (test_bit(tmpdevice->target, lunzerobits))
3516                 return 0; /* There is already a lun 0 on this target. */
3517
3518         if (!is_logical_dev_addr_mode(lunaddrbytes))
3519                 return 0; /* It's the logical targets that may lack lun 0. */
3520
3521         if (!is_ext_target(h, tmpdevice))
3522                 return 0; /* Only external target devices have this problem. */
3523
3524         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3525                 return 0;
3526
3527         memset(scsi3addr, 0, 8);
3528         scsi3addr[3] = tmpdevice->target;
3529         if (is_hba_lunid(scsi3addr))
3530                 return 0; /* Don't add the RAID controller here. */
3531
3532         if (is_scsi_rev_5(h))
3533                 return 0; /* p1210m doesn't need to do this. */
3534
3535         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3536                 dev_warn(&h->pdev->dev, "Maximum number of external "
3537                         "target devices exceeded.  Check your hardware "
3538                         "configuration.");
3539                 return 0;
3540         }
3541
3542         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3543                 return 0;
3544         (*n_ext_target_devs)++;
3545         hpsa_set_bus_target_lun(this_device,
3546                                 tmpdevice->bus, tmpdevice->target, 0);
3547         hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3548         set_bit(tmpdevice->target, lunzerobits);
3549         return 1;
3550 }
3551
3552 /*
3553  * Get address of physical disk used for an ioaccel2 mode command:
3554  *      1. Extract ioaccel2 handle from the command.
3555  *      2. Find a matching ioaccel2 handle from list of physical disks.
3556  *      3. Return:
3557  *              1 and set scsi3addr to address of matching physical
3558  *              0 if no matching physical disk was found.
3559  */
3560 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3561         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3562 {
3563         struct io_accel2_cmd *c2 =
3564                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3565         unsigned long flags;
3566         int i;
3567
3568         spin_lock_irqsave(&h->devlock, flags);
3569         for (i = 0; i < h->ndevices; i++)
3570                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3571                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3572                                 sizeof(h->dev[i]->scsi3addr));
3573                         spin_unlock_irqrestore(&h->devlock, flags);
3574                         return 1;
3575                 }
3576         spin_unlock_irqrestore(&h->devlock, flags);
3577         return 0;
3578 }
3579
3580 /*
3581  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3582  * logdev.  The number of luns in physdev and logdev are returned in
3583  * *nphysicals and *nlogicals, respectively.
3584  * Returns 0 on success, -1 otherwise.
3585  */
3586 static int hpsa_gather_lun_info(struct ctlr_info *h,
3587         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3588         struct ReportLUNdata *logdev, u32 *nlogicals)
3589 {
3590         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3591                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3592                 return -1;
3593         }
3594         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3595         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3596                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3597                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3598                 *nphysicals = HPSA_MAX_PHYS_LUN;
3599         }
3600         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3601                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3602                 return -1;
3603         }
3604         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3605         /* Reject Logicals in excess of our max capability. */
3606         if (*nlogicals > HPSA_MAX_LUN) {
3607                 dev_warn(&h->pdev->dev,
3608                         "maximum logical LUNs (%d) exceeded.  "
3609                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3610                         *nlogicals - HPSA_MAX_LUN);
3611                         *nlogicals = HPSA_MAX_LUN;
3612         }
3613         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3614                 dev_warn(&h->pdev->dev,
3615                         "maximum logical + physical LUNs (%d) exceeded. "
3616                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3617                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3618                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3619         }
3620         return 0;
3621 }
3622
3623 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3624         int i, int nphysicals, int nlogicals,
3625         struct ReportExtendedLUNdata *physdev_list,
3626         struct ReportLUNdata *logdev_list)
3627 {
3628         /* Helper function, figure out where the LUN ID info is coming from
3629          * given index i, lists of physical and logical devices, where in
3630          * the list the raid controller is supposed to appear (first or last)
3631          */
3632
3633         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3634         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3635
3636         if (i == raid_ctlr_position)
3637                 return RAID_CTLR_LUNID;
3638
3639         if (i < logicals_start)
3640                 return &physdev_list->LUN[i -
3641                                 (raid_ctlr_position == 0)].lunid[0];
3642
3643         if (i < last_device)
3644                 return &logdev_list->LUN[i - nphysicals -
3645                         (raid_ctlr_position == 0)][0];
3646         BUG();
3647         return NULL;
3648 }
3649
3650 /* get physical drive ioaccel handle and queue depth */
3651 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3652                 struct hpsa_scsi_dev_t *dev,
3653                 u8 *lunaddrbytes,
3654                 struct bmic_identify_physical_device *id_phys)
3655 {
3656         int rc;
3657         struct ext_report_lun_entry *rle =
3658                 (struct ext_report_lun_entry *) lunaddrbytes;
3659
3660         dev->ioaccel_handle = rle->ioaccel_handle;
3661         if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
3662                 dev->hba_ioaccel_enabled = 1;
3663         memset(id_phys, 0, sizeof(*id_phys));
3664         rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3665                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3666                         sizeof(*id_phys));
3667         if (!rc)
3668                 /* Reserve space for FW operations */
3669 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3670 #define DRIVE_QUEUE_DEPTH 7
3671                 dev->queue_depth =
3672                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3673                                 DRIVE_CMDS_RESERVED_FOR_FW;
3674         else
3675                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3676         atomic_set(&dev->ioaccel_cmds_out, 0);
3677         atomic_set(&dev->reset_cmds_out, 0);
3678 }
3679
3680 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3681         u8 *lunaddrbytes,
3682         struct bmic_identify_physical_device *id_phys)
3683 {
3684         if (PHYS_IOACCEL(lunaddrbytes)
3685                 && this_device->ioaccel_handle)
3686                 this_device->hba_ioaccel_enabled = 1;
3687
3688         memcpy(&this_device->active_path_index,
3689                 &id_phys->active_path_number,
3690                 sizeof(this_device->active_path_index));
3691         memcpy(&this_device->path_map,
3692                 &id_phys->redundant_path_present_map,
3693                 sizeof(this_device->path_map));
3694         memcpy(&this_device->box,
3695                 &id_phys->alternate_paths_phys_box_on_port,
3696                 sizeof(this_device->box));
3697         memcpy(&this_device->phys_connector,
3698                 &id_phys->alternate_paths_phys_connector,
3699                 sizeof(this_device->phys_connector));
3700         memcpy(&this_device->bay,
3701                 &id_phys->phys_bay_in_box,
3702                 sizeof(this_device->bay));
3703 }
3704
3705 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3706 {
3707         /* the idea here is we could get notified
3708          * that some devices have changed, so we do a report
3709          * physical luns and report logical luns cmd, and adjust
3710          * our list of devices accordingly.
3711          *
3712          * The scsi3addr's of devices won't change so long as the
3713          * adapter is not reset.  That means we can rescan and
3714          * tell which devices we already know about, vs. new
3715          * devices, vs.  disappearing devices.
3716          */
3717         struct ReportExtendedLUNdata *physdev_list = NULL;
3718         struct ReportLUNdata *logdev_list = NULL;
3719         struct bmic_identify_physical_device *id_phys = NULL;
3720         u32 nphysicals = 0;
3721         u32 nlogicals = 0;
3722         u32 ndev_allocated = 0;
3723         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3724         int ncurrent = 0;
3725         int i, n_ext_target_devs, ndevs_to_allocate;
3726         int raid_ctlr_position;
3727         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3728
3729         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3730         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3731         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3732         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3733         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3734
3735         if (!currentsd || !physdev_list || !logdev_list ||
3736                 !tmpdevice || !id_phys) {
3737                 dev_err(&h->pdev->dev, "out of memory\n");
3738                 goto out;
3739         }
3740         memset(lunzerobits, 0, sizeof(lunzerobits));
3741
3742         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3743                         logdev_list, &nlogicals))
3744                 goto out;
3745
3746         /* We might see up to the maximum number of logical and physical disks
3747          * plus external target devices, and a device for the local RAID
3748          * controller.
3749          */
3750         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3751
3752         /* Allocate the per device structures */
3753         for (i = 0; i < ndevs_to_allocate; i++) {
3754                 if (i >= HPSA_MAX_DEVICES) {
3755                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3756                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
3757                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
3758                         break;
3759                 }
3760
3761                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3762                 if (!currentsd[i]) {
3763                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3764                                 __FILE__, __LINE__);
3765                         goto out;
3766                 }
3767                 ndev_allocated++;
3768         }
3769
3770         if (is_scsi_rev_5(h))
3771                 raid_ctlr_position = 0;
3772         else
3773                 raid_ctlr_position = nphysicals + nlogicals;
3774
3775         /* adjust our table of devices */
3776         n_ext_target_devs = 0;
3777         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3778                 u8 *lunaddrbytes, is_OBDR = 0;
3779
3780                 /* Figure out where the LUN ID info is coming from */
3781                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3782                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3783
3784                 /* skip masked non-disk devices */
3785                 if (MASKED_DEVICE(lunaddrbytes))
3786                         if (i < nphysicals + (raid_ctlr_position == 0) &&
3787                                 NON_DISK_PHYS_DEV(lunaddrbytes))
3788                                 continue;
3789
3790                 /* Get device type, vendor, model, device id */
3791                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3792                                                         &is_OBDR))
3793                         continue; /* skip it if we can't talk to it. */
3794                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3795                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3796                 this_device = currentsd[ncurrent];
3797
3798                 /*
3799                  * For external target devices, we have to insert a LUN 0 which
3800                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3801                  * is nonetheless an enclosure device there.  We have to
3802                  * present that otherwise linux won't find anything if
3803                  * there is no lun 0.
3804                  */
3805                 if (add_ext_target_dev(h, tmpdevice, this_device,
3806                                 lunaddrbytes, lunzerobits,
3807                                 &n_ext_target_devs)) {
3808                         ncurrent++;
3809                         this_device = currentsd[ncurrent];
3810                 }
3811
3812                 *this_device = *tmpdevice;
3813
3814                 /* do not expose masked devices */
3815                 if (MASKED_DEVICE(lunaddrbytes) &&
3816                         i < nphysicals + (raid_ctlr_position == 0)) {
3817                         this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3818                 } else {
3819                         this_device->expose_state =
3820                                         HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3821                 }
3822
3823                 switch (this_device->devtype) {
3824                 case TYPE_ROM:
3825                         /* We don't *really* support actual CD-ROM devices,
3826                          * just "One Button Disaster Recovery" tape drive
3827                          * which temporarily pretends to be a CD-ROM drive.
3828                          * So we check that the device is really an OBDR tape
3829                          * device by checking for "$DR-10" in bytes 43-48 of
3830                          * the inquiry data.
3831                          */
3832                         if (is_OBDR)
3833                                 ncurrent++;
3834                         break;
3835                 case TYPE_DISK:
3836                         if (i < nphysicals + (raid_ctlr_position == 0)) {
3837                                 /* The disk is in HBA mode. */
3838                                 /* Never use RAID mapper in HBA mode. */
3839                                 this_device->offload_enabled = 0;
3840                                 hpsa_get_ioaccel_drive_info(h, this_device,
3841                                         lunaddrbytes, id_phys);
3842                                 hpsa_get_path_info(this_device, lunaddrbytes,
3843                                                         id_phys);
3844                         }
3845                         ncurrent++;
3846                         break;
3847                 case TYPE_TAPE:
3848                 case TYPE_MEDIUM_CHANGER:
3849                 case TYPE_ENCLOSURE:
3850                         ncurrent++;
3851                         break;
3852                 case TYPE_RAID:
3853                         /* Only present the Smartarray HBA as a RAID controller.
3854                          * If it's a RAID controller other than the HBA itself
3855                          * (an external RAID controller, MSA500 or similar)
3856                          * don't present it.
3857                          */
3858                         if (!is_hba_lunid(lunaddrbytes))
3859                                 break;
3860                         ncurrent++;
3861                         break;
3862                 default:
3863                         break;
3864                 }
3865                 if (ncurrent >= HPSA_MAX_DEVICES)
3866                         break;
3867         }
3868         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3869 out:
3870         kfree(tmpdevice);
3871         for (i = 0; i < ndev_allocated; i++)
3872                 kfree(currentsd[i]);
3873         kfree(currentsd);
3874         kfree(physdev_list);
3875         kfree(logdev_list);
3876         kfree(id_phys);
3877 }
3878
3879 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3880                                    struct scatterlist *sg)
3881 {
3882         u64 addr64 = (u64) sg_dma_address(sg);
3883         unsigned int len = sg_dma_len(sg);
3884
3885         desc->Addr = cpu_to_le64(addr64);
3886         desc->Len = cpu_to_le32(len);
3887         desc->Ext = 0;
3888 }
3889
3890 /*
3891  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3892  * dma mapping  and fills in the scatter gather entries of the
3893  * hpsa command, cp.
3894  */
3895 static int hpsa_scatter_gather(struct ctlr_info *h,
3896                 struct CommandList *cp,
3897                 struct scsi_cmnd *cmd)
3898 {
3899         struct scatterlist *sg;
3900         int use_sg, i, sg_limit, chained, last_sg;
3901         struct SGDescriptor *curr_sg;
3902
3903         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3904
3905         use_sg = scsi_dma_map(cmd);
3906         if (use_sg < 0)
3907                 return use_sg;
3908
3909         if (!use_sg)
3910                 goto sglist_finished;
3911
3912         /*
3913          * If the number of entries is greater than the max for a single list,
3914          * then we have a chained list; we will set up all but one entry in the
3915          * first list (the last entry is saved for link information);
3916          * otherwise, we don't have a chained list and we'll set up at each of
3917          * the entries in the one list.
3918          */
3919         curr_sg = cp->SG;
3920         chained = use_sg > h->max_cmd_sg_entries;
3921         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
3922         last_sg = scsi_sg_count(cmd) - 1;
3923         scsi_for_each_sg(cmd, sg, sg_limit, i) {
3924                 hpsa_set_sg_descriptor(curr_sg, sg);
3925                 curr_sg++;
3926         }
3927
3928         if (chained) {
3929                 /*
3930                  * Continue with the chained list.  Set curr_sg to the chained
3931                  * list.  Modify the limit to the total count less the entries
3932                  * we've already set up.  Resume the scan at the list entry
3933                  * where the previous loop left off.
3934                  */
3935                 curr_sg = h->cmd_sg_list[cp->cmdindex];
3936                 sg_limit = use_sg - sg_limit;
3937                 for_each_sg(sg, sg, sg_limit, i) {
3938                         hpsa_set_sg_descriptor(curr_sg, sg);
3939                         curr_sg++;
3940                 }
3941         }
3942
3943         /* Back the pointer up to the last entry and mark it as "last". */
3944         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3945
3946         if (use_sg + chained > h->maxSG)
3947                 h->maxSG = use_sg + chained;
3948
3949         if (chained) {
3950                 cp->Header.SGList = h->max_cmd_sg_entries;
3951                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3952                 if (hpsa_map_sg_chain_block(h, cp)) {
3953                         scsi_dma_unmap(cmd);
3954                         return -1;
3955                 }
3956                 return 0;
3957         }
3958
3959 sglist_finished:
3960
3961         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3962         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3963         return 0;
3964 }
3965
3966 #define IO_ACCEL_INELIGIBLE (1)
3967 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3968 {
3969         int is_write = 0;
3970         u32 block;
3971         u32 block_cnt;
3972
3973         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3974         switch (cdb[0]) {
3975         case WRITE_6:
3976         case WRITE_12:
3977                 is_write = 1;
3978         case READ_6:
3979         case READ_12:
3980                 if (*cdb_len == 6) {
3981                         block = (((u32) cdb[2]) << 8) | cdb[3];
3982                         block_cnt = cdb[4];
3983                 } else {
3984                         BUG_ON(*cdb_len != 12);
3985                         block = (((u32) cdb[2]) << 24) |
3986                                 (((u32) cdb[3]) << 16) |
3987                                 (((u32) cdb[4]) << 8) |
3988                                 cdb[5];
3989                         block_cnt =
3990                                 (((u32) cdb[6]) << 24) |
3991                                 (((u32) cdb[7]) << 16) |
3992                                 (((u32) cdb[8]) << 8) |
3993                                 cdb[9];
3994                 }
3995                 if (block_cnt > 0xffff)
3996                         return IO_ACCEL_INELIGIBLE;
3997
3998                 cdb[0] = is_write ? WRITE_10 : READ_10;
3999                 cdb[1] = 0;
4000                 cdb[2] = (u8) (block >> 24);
4001                 cdb[3] = (u8) (block >> 16);
4002                 cdb[4] = (u8) (block >> 8);
4003                 cdb[5] = (u8) (block);
4004                 cdb[6] = 0;
4005                 cdb[7] = (u8) (block_cnt >> 8);
4006                 cdb[8] = (u8) (block_cnt);
4007                 cdb[9] = 0;
4008                 *cdb_len = 10;
4009                 break;
4010         }
4011         return 0;
4012 }
4013
4014 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4015         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4016         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4017 {
4018         struct scsi_cmnd *cmd = c->scsi_cmd;
4019         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4020         unsigned int len;
4021         unsigned int total_len = 0;
4022         struct scatterlist *sg;
4023         u64 addr64;
4024         int use_sg, i;
4025         struct SGDescriptor *curr_sg;
4026         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4027
4028         /* TODO: implement chaining support */
4029         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4030                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4031                 return IO_ACCEL_INELIGIBLE;
4032         }
4033
4034         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4035
4036         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4037                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4038                 return IO_ACCEL_INELIGIBLE;
4039         }
4040
4041         c->cmd_type = CMD_IOACCEL1;
4042
4043         /* Adjust the DMA address to point to the accelerated command buffer */
4044         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4045                                 (c->cmdindex * sizeof(*cp));
4046         BUG_ON(c->busaddr & 0x0000007F);
4047
4048         use_sg = scsi_dma_map(cmd);
4049         if (use_sg < 0) {
4050                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4051                 return use_sg;
4052         }
4053
4054         if (use_sg) {
4055                 curr_sg = cp->SG;
4056                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4057                         addr64 = (u64) sg_dma_address(sg);
4058                         len  = sg_dma_len(sg);
4059                         total_len += len;
4060                         curr_sg->Addr = cpu_to_le64(addr64);
4061                         curr_sg->Len = cpu_to_le32(len);
4062                         curr_sg->Ext = cpu_to_le32(0);
4063                         curr_sg++;
4064                 }
4065                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4066
4067                 switch (cmd->sc_data_direction) {
4068                 case DMA_TO_DEVICE:
4069                         control |= IOACCEL1_CONTROL_DATA_OUT;
4070                         break;
4071                 case DMA_FROM_DEVICE:
4072                         control |= IOACCEL1_CONTROL_DATA_IN;
4073                         break;
4074                 case DMA_NONE:
4075                         control |= IOACCEL1_CONTROL_NODATAXFER;
4076                         break;
4077                 default:
4078                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4079                         cmd->sc_data_direction);
4080                         BUG();
4081                         break;
4082                 }
4083         } else {
4084                 control |= IOACCEL1_CONTROL_NODATAXFER;
4085         }
4086
4087         c->Header.SGList = use_sg;
4088         /* Fill out the command structure to submit */
4089         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4090         cp->transfer_len = cpu_to_le32(total_len);
4091         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4092                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4093         cp->control = cpu_to_le32(control);
4094         memcpy(cp->CDB, cdb, cdb_len);
4095         memcpy(cp->CISS_LUN, scsi3addr, 8);
4096         /* Tag was already set at init time. */
4097         enqueue_cmd_and_start_io(h, c);
4098         return 0;
4099 }
4100
4101 /*
4102  * Queue a command directly to a device behind the controller using the
4103  * I/O accelerator path.
4104  */
4105 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4106         struct CommandList *c)
4107 {
4108         struct scsi_cmnd *cmd = c->scsi_cmd;
4109         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4110
4111         c->phys_disk = dev;
4112
4113         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4114                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4115 }
4116
4117 /*
4118  * Set encryption parameters for the ioaccel2 request
4119  */
4120 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4121         struct CommandList *c, struct io_accel2_cmd *cp)
4122 {
4123         struct scsi_cmnd *cmd = c->scsi_cmd;
4124         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4125         struct raid_map_data *map = &dev->raid_map;
4126         u64 first_block;
4127
4128         /* Are we doing encryption on this device */
4129         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4130                 return;
4131         /* Set the data encryption key index. */
4132         cp->dekindex = map->dekindex;
4133
4134         /* Set the encryption enable flag, encoded into direction field. */
4135         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4136
4137         /* Set encryption tweak values based on logical block address
4138          * If block size is 512, tweak value is LBA.
4139          * For other block sizes, tweak is (LBA * block size)/ 512)
4140          */
4141         switch (cmd->cmnd[0]) {
4142         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4143         case WRITE_6:
4144         case READ_6:
4145                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4146                 break;
4147         case WRITE_10:
4148         case READ_10:
4149         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4150         case WRITE_12:
4151         case READ_12:
4152                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4153                 break;
4154         case WRITE_16:
4155         case READ_16:
4156                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4157                 break;
4158         default:
4159                 dev_err(&h->pdev->dev,
4160                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4161                         __func__, cmd->cmnd[0]);
4162                 BUG();
4163                 break;
4164         }
4165
4166         if (le32_to_cpu(map->volume_blk_size) != 512)
4167                 first_block = first_block *
4168                                 le32_to_cpu(map->volume_blk_size)/512;
4169
4170         cp->tweak_lower = cpu_to_le32(first_block);
4171         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4172 }
4173
4174 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4175         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4176         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4177 {
4178         struct scsi_cmnd *cmd = c->scsi_cmd;
4179         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4180         struct ioaccel2_sg_element *curr_sg;
4181         int use_sg, i;
4182         struct scatterlist *sg;
4183         u64 addr64;
4184         u32 len;
4185         u32 total_len = 0;
4186
4187         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4188
4189         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4190                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4191                 return IO_ACCEL_INELIGIBLE;
4192         }
4193
4194         c->cmd_type = CMD_IOACCEL2;
4195         /* Adjust the DMA address to point to the accelerated command buffer */
4196         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4197                                 (c->cmdindex * sizeof(*cp));
4198         BUG_ON(c->busaddr & 0x0000007F);
4199
4200         memset(cp, 0, sizeof(*cp));
4201         cp->IU_type = IOACCEL2_IU_TYPE;
4202
4203         use_sg = scsi_dma_map(cmd);
4204         if (use_sg < 0) {
4205                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4206                 return use_sg;
4207         }
4208
4209         if (use_sg) {
4210                 curr_sg = cp->sg;
4211                 if (use_sg > h->ioaccel_maxsg) {
4212                         addr64 = le64_to_cpu(
4213                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4214                         curr_sg->address = cpu_to_le64(addr64);
4215                         curr_sg->length = 0;
4216                         curr_sg->reserved[0] = 0;
4217                         curr_sg->reserved[1] = 0;
4218                         curr_sg->reserved[2] = 0;
4219                         curr_sg->chain_indicator = 0x80;
4220
4221                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4222                 }
4223                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4224                         addr64 = (u64) sg_dma_address(sg);
4225                         len  = sg_dma_len(sg);
4226                         total_len += len;
4227                         curr_sg->address = cpu_to_le64(addr64);
4228                         curr_sg->length = cpu_to_le32(len);
4229                         curr_sg->reserved[0] = 0;
4230                         curr_sg->reserved[1] = 0;
4231                         curr_sg->reserved[2] = 0;
4232                         curr_sg->chain_indicator = 0;
4233                         curr_sg++;
4234                 }
4235
4236                 switch (cmd->sc_data_direction) {
4237                 case DMA_TO_DEVICE:
4238                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4239                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4240                         break;
4241                 case DMA_FROM_DEVICE:
4242                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4243                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4244                         break;
4245                 case DMA_NONE:
4246                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4247                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4248                         break;
4249                 default:
4250                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4251                                 cmd->sc_data_direction);
4252                         BUG();
4253                         break;
4254                 }
4255         } else {
4256                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4257                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4258         }
4259
4260         /* Set encryption parameters, if necessary */
4261         set_encrypt_ioaccel2(h, c, cp);
4262
4263         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4264         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4265         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4266
4267         cp->data_len = cpu_to_le32(total_len);
4268         cp->err_ptr = cpu_to_le64(c->busaddr +
4269                         offsetof(struct io_accel2_cmd, error_data));
4270         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4271
4272         /* fill in sg elements */
4273         if (use_sg > h->ioaccel_maxsg) {
4274                 cp->sg_count = 1;
4275                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4276                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4277                         scsi_dma_unmap(cmd);
4278                         return -1;
4279                 }
4280         } else
4281                 cp->sg_count = (u8) use_sg;
4282
4283         enqueue_cmd_and_start_io(h, c);
4284         return 0;
4285 }
4286
4287 /*
4288  * Queue a command to the correct I/O accelerator path.
4289  */
4290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4291         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4292         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4293 {
4294         /* Try to honor the device's queue depth */
4295         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4296                                         phys_disk->queue_depth) {
4297                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4298                 return IO_ACCEL_INELIGIBLE;
4299         }
4300         if (h->transMethod & CFGTBL_Trans_io_accel1)
4301                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4302                                                 cdb, cdb_len, scsi3addr,
4303                                                 phys_disk);
4304         else
4305                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4306                                                 cdb, cdb_len, scsi3addr,
4307                                                 phys_disk);
4308 }
4309
4310 static void raid_map_helper(struct raid_map_data *map,
4311                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4312 {
4313         if (offload_to_mirror == 0)  {
4314                 /* use physical disk in the first mirrored group. */
4315                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4316                 return;
4317         }
4318         do {
4319                 /* determine mirror group that *map_index indicates */
4320                 *current_group = *map_index /
4321                         le16_to_cpu(map->data_disks_per_row);
4322                 if (offload_to_mirror == *current_group)
4323                         continue;
4324                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4325                         /* select map index from next group */
4326                         *map_index += le16_to_cpu(map->data_disks_per_row);
4327                         (*current_group)++;
4328                 } else {
4329                         /* select map index from first group */
4330                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4331                         *current_group = 0;
4332                 }
4333         } while (offload_to_mirror != *current_group);
4334 }
4335
4336 /*
4337  * Attempt to perform offload RAID mapping for a logical volume I/O.
4338  */
4339 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4340         struct CommandList *c)
4341 {
4342         struct scsi_cmnd *cmd = c->scsi_cmd;
4343         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4344         struct raid_map_data *map = &dev->raid_map;
4345         struct raid_map_disk_data *dd = &map->data[0];
4346         int is_write = 0;
4347         u32 map_index;
4348         u64 first_block, last_block;
4349         u32 block_cnt;
4350         u32 blocks_per_row;
4351         u64 first_row, last_row;
4352         u32 first_row_offset, last_row_offset;
4353         u32 first_column, last_column;
4354         u64 r0_first_row, r0_last_row;
4355         u32 r5or6_blocks_per_row;
4356         u64 r5or6_first_row, r5or6_last_row;
4357         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4358         u32 r5or6_first_column, r5or6_last_column;
4359         u32 total_disks_per_row;
4360         u32 stripesize;
4361         u32 first_group, last_group, current_group;
4362         u32 map_row;
4363         u32 disk_handle;
4364         u64 disk_block;
4365         u32 disk_block_cnt;
4366         u8 cdb[16];
4367         u8 cdb_len;
4368         u16 strip_size;
4369 #if BITS_PER_LONG == 32
4370         u64 tmpdiv;
4371 #endif
4372         int offload_to_mirror;
4373
4374         /* check for valid opcode, get LBA and block count */
4375         switch (cmd->cmnd[0]) {
4376         case WRITE_6:
4377                 is_write = 1;
4378         case READ_6:
4379                 first_block =
4380                         (((u64) cmd->cmnd[2]) << 8) |
4381                         cmd->cmnd[3];
4382                 block_cnt = cmd->cmnd[4];
4383                 if (block_cnt == 0)
4384                         block_cnt = 256;
4385                 break;
4386         case WRITE_10:
4387                 is_write = 1;
4388         case READ_10:
4389                 first_block =
4390                         (((u64) cmd->cmnd[2]) << 24) |
4391                         (((u64) cmd->cmnd[3]) << 16) |
4392                         (((u64) cmd->cmnd[4]) << 8) |
4393                         cmd->cmnd[5];
4394                 block_cnt =
4395                         (((u32) cmd->cmnd[7]) << 8) |
4396                         cmd->cmnd[8];
4397                 break;
4398         case WRITE_12:
4399                 is_write = 1;
4400         case READ_12:
4401                 first_block =
4402                         (((u64) cmd->cmnd[2]) << 24) |
4403                         (((u64) cmd->cmnd[3]) << 16) |
4404                         (((u64) cmd->cmnd[4]) << 8) |
4405                         cmd->cmnd[5];
4406                 block_cnt =
4407                         (((u32) cmd->cmnd[6]) << 24) |
4408                         (((u32) cmd->cmnd[7]) << 16) |
4409                         (((u32) cmd->cmnd[8]) << 8) |
4410                 cmd->cmnd[9];
4411                 break;
4412         case WRITE_16:
4413                 is_write = 1;
4414         case READ_16:
4415                 first_block =
4416                         (((u64) cmd->cmnd[2]) << 56) |
4417                         (((u64) cmd->cmnd[3]) << 48) |
4418                         (((u64) cmd->cmnd[4]) << 40) |
4419                         (((u64) cmd->cmnd[5]) << 32) |
4420                         (((u64) cmd->cmnd[6]) << 24) |
4421                         (((u64) cmd->cmnd[7]) << 16) |
4422                         (((u64) cmd->cmnd[8]) << 8) |
4423                         cmd->cmnd[9];
4424                 block_cnt =
4425                         (((u32) cmd->cmnd[10]) << 24) |
4426                         (((u32) cmd->cmnd[11]) << 16) |
4427                         (((u32) cmd->cmnd[12]) << 8) |
4428                         cmd->cmnd[13];
4429                 break;
4430         default:
4431                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4432         }
4433         last_block = first_block + block_cnt - 1;
4434
4435         /* check for write to non-RAID-0 */
4436         if (is_write && dev->raid_level != 0)
4437                 return IO_ACCEL_INELIGIBLE;
4438
4439         /* check for invalid block or wraparound */
4440         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4441                 last_block < first_block)
4442                 return IO_ACCEL_INELIGIBLE;
4443
4444         /* calculate stripe information for the request */
4445         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4446                                 le16_to_cpu(map->strip_size);
4447         strip_size = le16_to_cpu(map->strip_size);
4448 #if BITS_PER_LONG == 32
4449         tmpdiv = first_block;
4450         (void) do_div(tmpdiv, blocks_per_row);
4451         first_row = tmpdiv;
4452         tmpdiv = last_block;
4453         (void) do_div(tmpdiv, blocks_per_row);
4454         last_row = tmpdiv;
4455         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4456         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4457         tmpdiv = first_row_offset;
4458         (void) do_div(tmpdiv, strip_size);
4459         first_column = tmpdiv;
4460         tmpdiv = last_row_offset;
4461         (void) do_div(tmpdiv, strip_size);
4462         last_column = tmpdiv;
4463 #else
4464         first_row = first_block / blocks_per_row;
4465         last_row = last_block / blocks_per_row;
4466         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4467         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4468         first_column = first_row_offset / strip_size;
4469         last_column = last_row_offset / strip_size;
4470 #endif
4471
4472         /* if this isn't a single row/column then give to the controller */
4473         if ((first_row != last_row) || (first_column != last_column))
4474                 return IO_ACCEL_INELIGIBLE;
4475
4476         /* proceeding with driver mapping */
4477         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4478                                 le16_to_cpu(map->metadata_disks_per_row);
4479         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4480                                 le16_to_cpu(map->row_cnt);
4481         map_index = (map_row * total_disks_per_row) + first_column;
4482
4483         switch (dev->raid_level) {
4484         case HPSA_RAID_0:
4485                 break; /* nothing special to do */
4486         case HPSA_RAID_1:
4487                 /* Handles load balance across RAID 1 members.
4488                  * (2-drive R1 and R10 with even # of drives.)
4489                  * Appropriate for SSDs, not optimal for HDDs
4490                  */
4491                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4492                 if (dev->offload_to_mirror)
4493                         map_index += le16_to_cpu(map->data_disks_per_row);
4494                 dev->offload_to_mirror = !dev->offload_to_mirror;
4495                 break;
4496         case HPSA_RAID_ADM:
4497                 /* Handles N-way mirrors  (R1-ADM)
4498                  * and R10 with # of drives divisible by 3.)
4499                  */
4500                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4501
4502                 offload_to_mirror = dev->offload_to_mirror;
4503                 raid_map_helper(map, offload_to_mirror,
4504                                 &map_index, &current_group);
4505                 /* set mirror group to use next time */
4506                 offload_to_mirror =
4507                         (offload_to_mirror >=
4508                         le16_to_cpu(map->layout_map_count) - 1)
4509                         ? 0 : offload_to_mirror + 1;
4510                 dev->offload_to_mirror = offload_to_mirror;
4511                 /* Avoid direct use of dev->offload_to_mirror within this
4512                  * function since multiple threads might simultaneously
4513                  * increment it beyond the range of dev->layout_map_count -1.
4514                  */
4515                 break;
4516         case HPSA_RAID_5:
4517         case HPSA_RAID_6:
4518                 if (le16_to_cpu(map->layout_map_count) <= 1)
4519                         break;
4520
4521                 /* Verify first and last block are in same RAID group */
4522                 r5or6_blocks_per_row =
4523                         le16_to_cpu(map->strip_size) *
4524                         le16_to_cpu(map->data_disks_per_row);
4525                 BUG_ON(r5or6_blocks_per_row == 0);
4526                 stripesize = r5or6_blocks_per_row *
4527                         le16_to_cpu(map->layout_map_count);
4528 #if BITS_PER_LONG == 32
4529                 tmpdiv = first_block;
4530                 first_group = do_div(tmpdiv, stripesize);
4531                 tmpdiv = first_group;
4532                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4533                 first_group = tmpdiv;
4534                 tmpdiv = last_block;
4535                 last_group = do_div(tmpdiv, stripesize);
4536                 tmpdiv = last_group;
4537                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4538                 last_group = tmpdiv;
4539 #else
4540                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4541                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4542 #endif
4543                 if (first_group != last_group)
4544                         return IO_ACCEL_INELIGIBLE;
4545
4546                 /* Verify request is in a single row of RAID 5/6 */
4547 #if BITS_PER_LONG == 32
4548                 tmpdiv = first_block;
4549                 (void) do_div(tmpdiv, stripesize);
4550                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4551                 tmpdiv = last_block;
4552                 (void) do_div(tmpdiv, stripesize);
4553                 r5or6_last_row = r0_last_row = tmpdiv;
4554 #else
4555                 first_row = r5or6_first_row = r0_first_row =
4556                                                 first_block / stripesize;
4557                 r5or6_last_row = r0_last_row = last_block / stripesize;
4558 #endif
4559                 if (r5or6_first_row != r5or6_last_row)
4560                         return IO_ACCEL_INELIGIBLE;
4561
4562
4563                 /* Verify request is in a single column */
4564 #if BITS_PER_LONG == 32
4565                 tmpdiv = first_block;
4566                 first_row_offset = do_div(tmpdiv, stripesize);
4567                 tmpdiv = first_row_offset;
4568                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4569                 r5or6_first_row_offset = first_row_offset;
4570                 tmpdiv = last_block;
4571                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4572                 tmpdiv = r5or6_last_row_offset;
4573                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4574                 tmpdiv = r5or6_first_row_offset;
4575                 (void) do_div(tmpdiv, map->strip_size);
4576                 first_column = r5or6_first_column = tmpdiv;
4577                 tmpdiv = r5or6_last_row_offset;
4578                 (void) do_div(tmpdiv, map->strip_size);
4579                 r5or6_last_column = tmpdiv;
4580 #else
4581                 first_row_offset = r5or6_first_row_offset =
4582                         (u32)((first_block % stripesize) %
4583                                                 r5or6_blocks_per_row);
4584
4585                 r5or6_last_row_offset =
4586                         (u32)((last_block % stripesize) %
4587                                                 r5or6_blocks_per_row);
4588
4589                 first_column = r5or6_first_column =
4590                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4591                 r5or6_last_column =
4592                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4593 #endif
4594                 if (r5or6_first_column != r5or6_last_column)
4595                         return IO_ACCEL_INELIGIBLE;
4596
4597                 /* Request is eligible */
4598                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4599                         le16_to_cpu(map->row_cnt);
4600
4601                 map_index = (first_group *
4602                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4603                         (map_row * total_disks_per_row) + first_column;
4604                 break;
4605         default:
4606                 return IO_ACCEL_INELIGIBLE;
4607         }
4608
4609         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4610                 return IO_ACCEL_INELIGIBLE;
4611
4612         c->phys_disk = dev->phys_disk[map_index];
4613
4614         disk_handle = dd[map_index].ioaccel_handle;
4615         disk_block = le64_to_cpu(map->disk_starting_blk) +
4616                         first_row * le16_to_cpu(map->strip_size) +
4617                         (first_row_offset - first_column *
4618                         le16_to_cpu(map->strip_size));
4619         disk_block_cnt = block_cnt;
4620
4621         /* handle differing logical/physical block sizes */
4622         if (map->phys_blk_shift) {
4623                 disk_block <<= map->phys_blk_shift;
4624                 disk_block_cnt <<= map->phys_blk_shift;
4625         }
4626         BUG_ON(disk_block_cnt > 0xffff);
4627
4628         /* build the new CDB for the physical disk I/O */
4629         if (disk_block > 0xffffffff) {
4630                 cdb[0] = is_write ? WRITE_16 : READ_16;
4631                 cdb[1] = 0;
4632                 cdb[2] = (u8) (disk_block >> 56);
4633                 cdb[3] = (u8) (disk_block >> 48);
4634                 cdb[4] = (u8) (disk_block >> 40);
4635                 cdb[5] = (u8) (disk_block >> 32);
4636                 cdb[6] = (u8) (disk_block >> 24);
4637                 cdb[7] = (u8) (disk_block >> 16);
4638                 cdb[8] = (u8) (disk_block >> 8);
4639                 cdb[9] = (u8) (disk_block);
4640                 cdb[10] = (u8) (disk_block_cnt >> 24);
4641                 cdb[11] = (u8) (disk_block_cnt >> 16);
4642                 cdb[12] = (u8) (disk_block_cnt >> 8);
4643                 cdb[13] = (u8) (disk_block_cnt);
4644                 cdb[14] = 0;
4645                 cdb[15] = 0;
4646                 cdb_len = 16;
4647         } else {
4648                 cdb[0] = is_write ? WRITE_10 : READ_10;
4649                 cdb[1] = 0;
4650                 cdb[2] = (u8) (disk_block >> 24);
4651                 cdb[3] = (u8) (disk_block >> 16);
4652                 cdb[4] = (u8) (disk_block >> 8);
4653                 cdb[5] = (u8) (disk_block);
4654                 cdb[6] = 0;
4655                 cdb[7] = (u8) (disk_block_cnt >> 8);
4656                 cdb[8] = (u8) (disk_block_cnt);
4657                 cdb[9] = 0;
4658                 cdb_len = 10;
4659         }
4660         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4661                                                 dev->scsi3addr,
4662                                                 dev->phys_disk[map_index]);
4663 }
4664
4665 /*
4666  * Submit commands down the "normal" RAID stack path
4667  * All callers to hpsa_ciss_submit must check lockup_detected
4668  * beforehand, before (opt.) and after calling cmd_alloc
4669  */
4670 static int hpsa_ciss_submit(struct ctlr_info *h,
4671         struct CommandList *c, struct scsi_cmnd *cmd,
4672         unsigned char scsi3addr[])
4673 {
4674         cmd->host_scribble = (unsigned char *) c;
4675         c->cmd_type = CMD_SCSI;
4676         c->scsi_cmd = cmd;
4677         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4678         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4679         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4680
4681         /* Fill in the request block... */
4682
4683         c->Request.Timeout = 0;
4684         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4685         c->Request.CDBLen = cmd->cmd_len;
4686         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4687         switch (cmd->sc_data_direction) {
4688         case DMA_TO_DEVICE:
4689                 c->Request.type_attr_dir =
4690                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4691                 break;
4692         case DMA_FROM_DEVICE:
4693                 c->Request.type_attr_dir =
4694                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4695                 break;
4696         case DMA_NONE:
4697                 c->Request.type_attr_dir =
4698                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4699                 break;
4700         case DMA_BIDIRECTIONAL:
4701                 /* This can happen if a buggy application does a scsi passthru
4702                  * and sets both inlen and outlen to non-zero. ( see
4703                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4704                  */
4705
4706                 c->Request.type_attr_dir =
4707                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4708                 /* This is technically wrong, and hpsa controllers should
4709                  * reject it with CMD_INVALID, which is the most correct
4710                  * response, but non-fibre backends appear to let it
4711                  * slide by, and give the same results as if this field
4712                  * were set correctly.  Either way is acceptable for
4713                  * our purposes here.
4714                  */
4715
4716                 break;
4717
4718         default:
4719                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4720                         cmd->sc_data_direction);
4721                 BUG();
4722                 break;
4723         }
4724
4725         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4726                 hpsa_cmd_resolve_and_free(h, c);
4727                 return SCSI_MLQUEUE_HOST_BUSY;
4728         }
4729         enqueue_cmd_and_start_io(h, c);
4730         /* the cmd'll come back via intr handler in complete_scsi_command()  */
4731         return 0;
4732 }
4733
4734 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4735                                 struct CommandList *c)
4736 {
4737         dma_addr_t cmd_dma_handle, err_dma_handle;
4738
4739         /* Zero out all of commandlist except the last field, refcount */
4740         memset(c, 0, offsetof(struct CommandList, refcount));
4741         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4742         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4743         c->err_info = h->errinfo_pool + index;
4744         memset(c->err_info, 0, sizeof(*c->err_info));
4745         err_dma_handle = h->errinfo_pool_dhandle
4746             + index * sizeof(*c->err_info);
4747         c->cmdindex = index;
4748         c->busaddr = (u32) cmd_dma_handle;
4749         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4750         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4751         c->h = h;
4752         c->scsi_cmd = SCSI_CMD_IDLE;
4753 }
4754
4755 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4756 {
4757         int i;
4758
4759         for (i = 0; i < h->nr_cmds; i++) {
4760                 struct CommandList *c = h->cmd_pool + i;
4761
4762                 hpsa_cmd_init(h, i, c);
4763                 atomic_set(&c->refcount, 0);
4764         }
4765 }
4766
4767 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4768                                 struct CommandList *c)
4769 {
4770         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4771
4772         BUG_ON(c->cmdindex != index);
4773
4774         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4775         memset(c->err_info, 0, sizeof(*c->err_info));
4776         c->busaddr = (u32) cmd_dma_handle;
4777 }
4778
4779 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4780                 struct CommandList *c, struct scsi_cmnd *cmd,
4781                 unsigned char *scsi3addr)
4782 {
4783         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4784         int rc = IO_ACCEL_INELIGIBLE;
4785
4786         cmd->host_scribble = (unsigned char *) c;
4787
4788         if (dev->offload_enabled) {
4789                 hpsa_cmd_init(h, c->cmdindex, c);
4790                 c->cmd_type = CMD_SCSI;
4791                 c->scsi_cmd = cmd;
4792                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4793                 if (rc < 0)     /* scsi_dma_map failed. */
4794                         rc = SCSI_MLQUEUE_HOST_BUSY;
4795         } else if (dev->hba_ioaccel_enabled) {
4796                 hpsa_cmd_init(h, c->cmdindex, c);
4797                 c->cmd_type = CMD_SCSI;
4798                 c->scsi_cmd = cmd;
4799                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4800                 if (rc < 0)     /* scsi_dma_map failed. */
4801                         rc = SCSI_MLQUEUE_HOST_BUSY;
4802         }
4803         return rc;
4804 }
4805
4806 static void hpsa_command_resubmit_worker(struct work_struct *work)
4807 {
4808         struct scsi_cmnd *cmd;
4809         struct hpsa_scsi_dev_t *dev;
4810         struct CommandList *c = container_of(work, struct CommandList, work);
4811
4812         cmd = c->scsi_cmd;
4813         dev = cmd->device->hostdata;
4814         if (!dev) {
4815                 cmd->result = DID_NO_CONNECT << 16;
4816                 return hpsa_cmd_free_and_done(c->h, c, cmd);
4817         }
4818         if (c->reset_pending)
4819                 return hpsa_cmd_resolve_and_free(c->h, c);
4820         if (c->abort_pending)
4821                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
4822         if (c->cmd_type == CMD_IOACCEL2) {
4823                 struct ctlr_info *h = c->h;
4824                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4825                 int rc;
4826
4827                 if (c2->error_data.serv_response ==
4828                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4829                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4830                         if (rc == 0)
4831                                 return;
4832                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4833                                 /*
4834                                  * If we get here, it means dma mapping failed.
4835                                  * Try again via scsi mid layer, which will
4836                                  * then get SCSI_MLQUEUE_HOST_BUSY.
4837                                  */
4838                                 cmd->result = DID_IMM_RETRY << 16;
4839                                 return hpsa_cmd_free_and_done(h, c, cmd);
4840                         }
4841                         /* else, fall thru and resubmit down CISS path */
4842                 }
4843         }
4844         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4845         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4846                 /*
4847                  * If we get here, it means dma mapping failed. Try
4848                  * again via scsi mid layer, which will then get
4849                  * SCSI_MLQUEUE_HOST_BUSY.
4850                  *
4851                  * hpsa_ciss_submit will have already freed c
4852                  * if it encountered a dma mapping failure.
4853                  */
4854                 cmd->result = DID_IMM_RETRY << 16;
4855                 cmd->scsi_done(cmd);
4856         }
4857 }
4858
4859 /* Running in struct Scsi_Host->host_lock less mode */
4860 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4861 {
4862         struct ctlr_info *h;
4863         struct hpsa_scsi_dev_t *dev;
4864         unsigned char scsi3addr[8];
4865         struct CommandList *c;
4866         int rc = 0;
4867
4868         /* Get the ptr to our adapter structure out of cmd->host. */
4869         h = sdev_to_hba(cmd->device);
4870
4871         BUG_ON(cmd->request->tag < 0);
4872
4873         dev = cmd->device->hostdata;
4874         if (!dev) {
4875                 cmd->result = DID_NO_CONNECT << 16;
4876                 cmd->scsi_done(cmd);
4877                 return 0;
4878         }
4879
4880         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4881
4882         if (unlikely(lockup_detected(h))) {
4883                 cmd->result = DID_NO_CONNECT << 16;
4884                 cmd->scsi_done(cmd);
4885                 return 0;
4886         }
4887         c = cmd_tagged_alloc(h, cmd);
4888
4889         /*
4890          * Call alternate submit routine for I/O accelerated commands.
4891          * Retries always go down the normal I/O path.
4892          */
4893         if (likely(cmd->retries == 0 &&
4894                 cmd->request->cmd_type == REQ_TYPE_FS &&
4895                 h->acciopath_status)) {
4896                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4897                 if (rc == 0)
4898                         return 0;
4899                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4900                         hpsa_cmd_resolve_and_free(h, c);
4901                         return SCSI_MLQUEUE_HOST_BUSY;
4902                 }
4903         }
4904         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4905 }
4906
4907 static void hpsa_scan_complete(struct ctlr_info *h)
4908 {
4909         unsigned long flags;
4910
4911         spin_lock_irqsave(&h->scan_lock, flags);
4912         h->scan_finished = 1;
4913         wake_up_all(&h->scan_wait_queue);
4914         spin_unlock_irqrestore(&h->scan_lock, flags);
4915 }
4916
4917 static void hpsa_scan_start(struct Scsi_Host *sh)
4918 {
4919         struct ctlr_info *h = shost_to_hba(sh);
4920         unsigned long flags;
4921
4922         /*
4923          * Don't let rescans be initiated on a controller known to be locked
4924          * up.  If the controller locks up *during* a rescan, that thread is
4925          * probably hosed, but at least we can prevent new rescan threads from
4926          * piling up on a locked up controller.
4927          */
4928         if (unlikely(lockup_detected(h)))
4929                 return hpsa_scan_complete(h);
4930
4931         /* wait until any scan already in progress is finished. */
4932         while (1) {
4933                 spin_lock_irqsave(&h->scan_lock, flags);
4934                 if (h->scan_finished)
4935                         break;
4936                 spin_unlock_irqrestore(&h->scan_lock, flags);
4937                 wait_event(h->scan_wait_queue, h->scan_finished);
4938                 /* Note: We don't need to worry about a race between this
4939                  * thread and driver unload because the midlayer will
4940                  * have incremented the reference count, so unload won't
4941                  * happen if we're in here.
4942                  */
4943         }
4944         h->scan_finished = 0; /* mark scan as in progress */
4945         spin_unlock_irqrestore(&h->scan_lock, flags);
4946
4947         if (unlikely(lockup_detected(h)))
4948                 return hpsa_scan_complete(h);
4949
4950         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4951
4952         hpsa_scan_complete(h);
4953 }
4954
4955 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4956 {
4957         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4958
4959         if (!logical_drive)
4960                 return -ENODEV;
4961
4962         if (qdepth < 1)
4963                 qdepth = 1;
4964         else if (qdepth > logical_drive->queue_depth)
4965                 qdepth = logical_drive->queue_depth;
4966
4967         return scsi_change_queue_depth(sdev, qdepth);
4968 }
4969
4970 static int hpsa_scan_finished(struct Scsi_Host *sh,
4971         unsigned long elapsed_time)
4972 {
4973         struct ctlr_info *h = shost_to_hba(sh);
4974         unsigned long flags;
4975         int finished;
4976
4977         spin_lock_irqsave(&h->scan_lock, flags);
4978         finished = h->scan_finished;
4979         spin_unlock_irqrestore(&h->scan_lock, flags);
4980         return finished;
4981 }
4982
4983 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
4984 {
4985         struct Scsi_Host *sh;
4986         int error;
4987
4988         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4989         if (sh == NULL) {
4990                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
4991                 return -ENOMEM;
4992         }
4993
4994         sh->io_port = 0;
4995         sh->n_io_port = 0;
4996         sh->this_id = -1;
4997         sh->max_channel = 3;
4998         sh->max_cmd_len = MAX_COMMAND_SIZE;
4999         sh->max_lun = HPSA_MAX_LUN;
5000         sh->max_id = HPSA_MAX_LUN;
5001         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5002         sh->cmd_per_lun = sh->can_queue;
5003         sh->sg_tablesize = h->maxsgentries;
5004         sh->hostdata[0] = (unsigned long) h;
5005         sh->irq = h->intr[h->intr_mode];
5006         sh->unique_id = sh->irq;
5007         error = scsi_init_shared_tag_map(sh, sh->can_queue);
5008         if (error) {
5009                 dev_err(&h->pdev->dev,
5010                         "%s: scsi_init_shared_tag_map failed for controller %d\n",
5011                         __func__, h->ctlr);
5012                         scsi_host_put(sh);
5013                         return error;
5014         }
5015         h->scsi_host = sh;
5016         return 0;
5017 }
5018
5019 static int hpsa_scsi_add_host(struct ctlr_info *h)
5020 {
5021         int rv;
5022
5023         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5024         if (rv) {
5025                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5026                 return rv;
5027         }
5028         scsi_scan_host(h->scsi_host);
5029         return 0;
5030 }
5031
5032 /*
5033  * The block layer has already gone to the trouble of picking out a unique,
5034  * small-integer tag for this request.  We use an offset from that value as
5035  * an index to select our command block.  (The offset allows us to reserve the
5036  * low-numbered entries for our own uses.)
5037  */
5038 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5039 {
5040         int idx = scmd->request->tag;
5041
5042         if (idx < 0)
5043                 return idx;
5044
5045         /* Offset to leave space for internal cmds. */
5046         return idx += HPSA_NRESERVED_CMDS;
5047 }
5048
5049 /*
5050  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5051  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5052  */
5053 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5054                                 struct CommandList *c, unsigned char lunaddr[],
5055                                 int reply_queue)
5056 {
5057         int rc;
5058
5059         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5060         (void) fill_cmd(c, TEST_UNIT_READY, h,
5061                         NULL, 0, 0, lunaddr, TYPE_CMD);
5062         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5063         if (rc)
5064                 return rc;
5065         /* no unmap needed here because no data xfer. */
5066
5067         /* Check if the unit is already ready. */
5068         if (c->err_info->CommandStatus == CMD_SUCCESS)
5069                 return 0;
5070
5071         /*
5072          * The first command sent after reset will receive "unit attention" to
5073          * indicate that the LUN has been reset...this is actually what we're
5074          * looking for (but, success is good too).
5075          */
5076         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5077                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5078                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5079                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5080                 return 0;
5081
5082         return 1;
5083 }
5084
5085 /*
5086  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5087  * returns zero when the unit is ready, and non-zero when giving up.
5088  */
5089 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5090                                 struct CommandList *c,
5091                                 unsigned char lunaddr[], int reply_queue)
5092 {
5093         int rc;
5094         int count = 0;
5095         int waittime = 1; /* seconds */
5096
5097         /* Send test unit ready until device ready, or give up. */
5098         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5099
5100                 /*
5101                  * Wait for a bit.  do this first, because if we send
5102                  * the TUR right away, the reset will just abort it.
5103                  */
5104                 msleep(1000 * waittime);
5105
5106                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5107                 if (!rc)
5108                         break;
5109
5110                 /* Increase wait time with each try, up to a point. */
5111                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5112                         waittime *= 2;
5113
5114                 dev_warn(&h->pdev->dev,
5115                          "waiting %d secs for device to become ready.\n",
5116                          waittime);
5117         }
5118
5119         return rc;
5120 }
5121
5122 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5123                                            unsigned char lunaddr[],
5124                                            int reply_queue)
5125 {
5126         int first_queue;
5127         int last_queue;
5128         int rq;
5129         int rc = 0;
5130         struct CommandList *c;
5131
5132         c = cmd_alloc(h);
5133
5134         /*
5135          * If no specific reply queue was requested, then send the TUR
5136          * repeatedly, requesting a reply on each reply queue; otherwise execute
5137          * the loop exactly once using only the specified queue.
5138          */
5139         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5140                 first_queue = 0;
5141                 last_queue = h->nreply_queues - 1;
5142         } else {
5143                 first_queue = reply_queue;
5144                 last_queue = reply_queue;
5145         }
5146
5147         for (rq = first_queue; rq <= last_queue; rq++) {
5148                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5149                 if (rc)
5150                         break;
5151         }
5152
5153         if (rc)
5154                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5155         else
5156                 dev_warn(&h->pdev->dev, "device is ready.\n");
5157
5158         cmd_free(h, c);
5159         return rc;
5160 }
5161
5162 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5163  * complaining.  Doing a host- or bus-reset can't do anything good here.
5164  */
5165 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5166 {
5167         int rc;
5168         struct ctlr_info *h;
5169         struct hpsa_scsi_dev_t *dev;
5170         char msg[48];
5171
5172         /* find the controller to which the command to be aborted was sent */
5173         h = sdev_to_hba(scsicmd->device);
5174         if (h == NULL) /* paranoia */
5175                 return FAILED;
5176
5177         if (lockup_detected(h))
5178                 return FAILED;
5179
5180         dev = scsicmd->device->hostdata;
5181         if (!dev) {
5182                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5183                 return FAILED;
5184         }
5185
5186         /* if controller locked up, we can guarantee command won't complete */
5187         if (lockup_detected(h)) {
5188                 snprintf(msg, sizeof(msg),
5189                          "cmd %d RESET FAILED, lockup detected",
5190                          hpsa_get_cmd_index(scsicmd));
5191                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5192                 return FAILED;
5193         }
5194
5195         /* this reset request might be the result of a lockup; check */
5196         if (detect_controller_lockup(h)) {
5197                 snprintf(msg, sizeof(msg),
5198                          "cmd %d RESET FAILED, new lockup detected",
5199                          hpsa_get_cmd_index(scsicmd));
5200                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5201                 return FAILED;
5202         }
5203
5204         /* Do not attempt on controller */
5205         if (is_hba_lunid(dev->scsi3addr))
5206                 return SUCCESS;
5207
5208         hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
5209
5210         /* send a reset to the SCSI LUN which the command was sent to */
5211         rc = hpsa_do_reset(h, dev, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
5212                            DEFAULT_REPLY_QUEUE);
5213         snprintf(msg, sizeof(msg), "reset %s",
5214                  rc == 0 ? "completed successfully" : "failed");
5215         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5216         return rc == 0 ? SUCCESS : FAILED;
5217 }
5218
5219 static void swizzle_abort_tag(u8 *tag)
5220 {
5221         u8 original_tag[8];
5222
5223         memcpy(original_tag, tag, 8);
5224         tag[0] = original_tag[3];
5225         tag[1] = original_tag[2];
5226         tag[2] = original_tag[1];
5227         tag[3] = original_tag[0];
5228         tag[4] = original_tag[7];
5229         tag[5] = original_tag[6];
5230         tag[6] = original_tag[5];
5231         tag[7] = original_tag[4];
5232 }
5233
5234 static void hpsa_get_tag(struct ctlr_info *h,
5235         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5236 {
5237         u64 tag;
5238         if (c->cmd_type == CMD_IOACCEL1) {
5239                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5240                         &h->ioaccel_cmd_pool[c->cmdindex];
5241                 tag = le64_to_cpu(cm1->tag);
5242                 *tagupper = cpu_to_le32(tag >> 32);
5243                 *taglower = cpu_to_le32(tag);
5244                 return;
5245         }
5246         if (c->cmd_type == CMD_IOACCEL2) {
5247                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5248                         &h->ioaccel2_cmd_pool[c->cmdindex];
5249                 /* upper tag not used in ioaccel2 mode */
5250                 memset(tagupper, 0, sizeof(*tagupper));
5251                 *taglower = cm2->Tag;
5252                 return;
5253         }
5254         tag = le64_to_cpu(c->Header.tag);
5255         *tagupper = cpu_to_le32(tag >> 32);
5256         *taglower = cpu_to_le32(tag);
5257 }
5258
5259 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5260         struct CommandList *abort, int reply_queue)
5261 {
5262         int rc = IO_OK;
5263         struct CommandList *c;
5264         struct ErrorInfo *ei;
5265         __le32 tagupper, taglower;
5266
5267         c = cmd_alloc(h);
5268
5269         /* fill_cmd can't fail here, no buffer to map */
5270         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5271                 0, 0, scsi3addr, TYPE_MSG);
5272         if (h->needs_abort_tags_swizzled)
5273                 swizzle_abort_tag(&c->Request.CDB[4]);
5274         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5275         hpsa_get_tag(h, abort, &taglower, &tagupper);
5276         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5277                 __func__, tagupper, taglower);
5278         /* no unmap needed here because no data xfer. */
5279
5280         ei = c->err_info;
5281         switch (ei->CommandStatus) {
5282         case CMD_SUCCESS:
5283                 break;
5284         case CMD_TMF_STATUS:
5285                 rc = hpsa_evaluate_tmf_status(h, c);
5286                 break;
5287         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5288                 rc = -1;
5289                 break;
5290         default:
5291                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5292                         __func__, tagupper, taglower);
5293                 hpsa_scsi_interpret_error(h, c);
5294                 rc = -1;
5295                 break;
5296         }
5297         cmd_free(h, c);
5298         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5299                 __func__, tagupper, taglower);
5300         return rc;
5301 }
5302
5303 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5304         struct CommandList *command_to_abort, int reply_queue)
5305 {
5306         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5307         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5308         struct io_accel2_cmd *c2a =
5309                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5310         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5311         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5312
5313         /*
5314          * We're overlaying struct hpsa_tmf_struct on top of something which
5315          * was allocated as a struct io_accel2_cmd, so we better be sure it
5316          * actually fits, and doesn't overrun the error info space.
5317          */
5318         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5319                         sizeof(struct io_accel2_cmd));
5320         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5321                         offsetof(struct hpsa_tmf_struct, error_len) +
5322                                 sizeof(ac->error_len));
5323
5324         c->cmd_type = IOACCEL2_TMF;
5325         c->scsi_cmd = SCSI_CMD_BUSY;
5326
5327         /* Adjust the DMA address to point to the accelerated command buffer */
5328         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5329                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5330         BUG_ON(c->busaddr & 0x0000007F);
5331
5332         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5333         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5334         ac->reply_queue = reply_queue;
5335         ac->tmf = IOACCEL2_TMF_ABORT;
5336         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5337         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5338         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5339         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5340         ac->error_ptr = cpu_to_le64(c->busaddr +
5341                         offsetof(struct io_accel2_cmd, error_data));
5342         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5343 }
5344
5345 /* ioaccel2 path firmware cannot handle abort task requests.
5346  * Change abort requests to physical target reset, and send to the
5347  * address of the physical disk used for the ioaccel 2 command.
5348  * Return 0 on success (IO_OK)
5349  *       -1 on failure
5350  */
5351
5352 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5353         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5354 {
5355         int rc = IO_OK;
5356         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5357         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5358         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5359         unsigned char *psa = &phys_scsi3addr[0];
5360
5361         /* Get a pointer to the hpsa logical device. */
5362         scmd = abort->scsi_cmd;
5363         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5364         if (dev == NULL) {
5365                 dev_warn(&h->pdev->dev,
5366                         "Cannot abort: no device pointer for command.\n");
5367                         return -1; /* not abortable */
5368         }
5369
5370         if (h->raid_offload_debug > 0)
5371                 dev_info(&h->pdev->dev,
5372                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5373                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5374                         "Reset as abort",
5375                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5376                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5377
5378         if (!dev->offload_enabled) {
5379                 dev_warn(&h->pdev->dev,
5380                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5381                 return -1; /* not abortable */
5382         }
5383
5384         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5385         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5386                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5387                 return -1; /* not abortable */
5388         }
5389
5390         /* send the reset */
5391         if (h->raid_offload_debug > 0)
5392                 dev_info(&h->pdev->dev,
5393                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5394                         psa[0], psa[1], psa[2], psa[3],
5395                         psa[4], psa[5], psa[6], psa[7]);
5396         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5397         if (rc != 0) {
5398                 dev_warn(&h->pdev->dev,
5399                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5400                         psa[0], psa[1], psa[2], psa[3],
5401                         psa[4], psa[5], psa[6], psa[7]);
5402                 return rc; /* failed to reset */
5403         }
5404
5405         /* wait for device to recover */
5406         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5407                 dev_warn(&h->pdev->dev,
5408                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5409                         psa[0], psa[1], psa[2], psa[3],
5410                         psa[4], psa[5], psa[6], psa[7]);
5411                 return -1;  /* failed to recover */
5412         }
5413
5414         /* device recovered */
5415         dev_info(&h->pdev->dev,
5416                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5417                 psa[0], psa[1], psa[2], psa[3],
5418                 psa[4], psa[5], psa[6], psa[7]);
5419
5420         return rc; /* success */
5421 }
5422
5423 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5424         struct CommandList *abort, int reply_queue)
5425 {
5426         int rc = IO_OK;
5427         struct CommandList *c;
5428         __le32 taglower, tagupper;
5429         struct hpsa_scsi_dev_t *dev;
5430         struct io_accel2_cmd *c2;
5431
5432         dev = abort->scsi_cmd->device->hostdata;
5433         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5434                 return -1;
5435
5436         c = cmd_alloc(h);
5437         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5438         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5439         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5440         hpsa_get_tag(h, abort, &taglower, &tagupper);
5441         dev_dbg(&h->pdev->dev,
5442                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5443                 __func__, tagupper, taglower);
5444         /* no unmap needed here because no data xfer. */
5445
5446         dev_dbg(&h->pdev->dev,
5447                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5448                 __func__, tagupper, taglower, c2->error_data.serv_response);
5449         switch (c2->error_data.serv_response) {
5450         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5451         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5452                 rc = 0;
5453                 break;
5454         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5455         case IOACCEL2_SERV_RESPONSE_FAILURE:
5456         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5457                 rc = -1;
5458                 break;
5459         default:
5460                 dev_warn(&h->pdev->dev,
5461                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5462                         __func__, tagupper, taglower,
5463                         c2->error_data.serv_response);
5464                 rc = -1;
5465         }
5466         cmd_free(h, c);
5467         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5468                 tagupper, taglower);
5469         return rc;
5470 }
5471
5472 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5473         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5474 {
5475         /*
5476          * ioccelerator mode 2 commands should be aborted via the
5477          * accelerated path, since RAID path is unaware of these commands,
5478          * but not all underlying firmware can handle abort TMF.
5479          * Change abort to physical device reset when abort TMF is unsupported.
5480          */
5481         if (abort->cmd_type == CMD_IOACCEL2) {
5482                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5483                         return hpsa_send_abort_ioaccel2(h, abort,
5484                                                 reply_queue);
5485                 else
5486                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5487                                                         abort, reply_queue);
5488         }
5489         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5490 }
5491
5492 /* Find out which reply queue a command was meant to return on */
5493 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5494                                         struct CommandList *c)
5495 {
5496         if (c->cmd_type == CMD_IOACCEL2)
5497                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5498         return c->Header.ReplyQueue;
5499 }
5500
5501 /*
5502  * Limit concurrency of abort commands to prevent
5503  * over-subscription of commands
5504  */
5505 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5506 {
5507 #define ABORT_CMD_WAIT_MSECS 5000
5508         return !wait_event_timeout(h->abort_cmd_wait_queue,
5509                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5510                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5511 }
5512
5513 /* Send an abort for the specified command.
5514  *      If the device and controller support it,
5515  *              send a task abort request.
5516  */
5517 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5518 {
5519
5520         int rc;
5521         struct ctlr_info *h;
5522         struct hpsa_scsi_dev_t *dev;
5523         struct CommandList *abort; /* pointer to command to be aborted */
5524         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5525         char msg[256];          /* For debug messaging. */
5526         int ml = 0;
5527         __le32 tagupper, taglower;
5528         int refcount, reply_queue;
5529
5530         if (sc == NULL)
5531                 return FAILED;
5532
5533         if (sc->device == NULL)
5534                 return FAILED;
5535
5536         /* Find the controller of the command to be aborted */
5537         h = sdev_to_hba(sc->device);
5538         if (h == NULL)
5539                 return FAILED;
5540
5541         /* Find the device of the command to be aborted */
5542         dev = sc->device->hostdata;
5543         if (!dev) {
5544                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5545                                 msg);
5546                 return FAILED;
5547         }
5548
5549         /* If controller locked up, we can guarantee command won't complete */
5550         if (lockup_detected(h)) {
5551                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5552                                         "ABORT FAILED, lockup detected");
5553                 return FAILED;
5554         }
5555
5556         /* This is a good time to check if controller lockup has occurred */
5557         if (detect_controller_lockup(h)) {
5558                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5559                                         "ABORT FAILED, new lockup detected");
5560                 return FAILED;
5561         }
5562
5563         /* Check that controller supports some kind of task abort */
5564         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5565                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5566                 return FAILED;
5567
5568         memset(msg, 0, sizeof(msg));
5569         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5570                 h->scsi_host->host_no, sc->device->channel,
5571                 sc->device->id, sc->device->lun,
5572                 "Aborting command", sc);
5573
5574         /* Get SCSI command to be aborted */
5575         abort = (struct CommandList *) sc->host_scribble;
5576         if (abort == NULL) {
5577                 /* This can happen if the command already completed. */
5578                 return SUCCESS;
5579         }
5580         refcount = atomic_inc_return(&abort->refcount);
5581         if (refcount == 1) { /* Command is done already. */
5582                 cmd_free(h, abort);
5583                 return SUCCESS;
5584         }
5585
5586         /* Don't bother trying the abort if we know it won't work. */
5587         if (abort->cmd_type != CMD_IOACCEL2 &&
5588                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5589                 cmd_free(h, abort);
5590                 return FAILED;
5591         }
5592
5593         /*
5594          * Check that we're aborting the right command.
5595          * It's possible the CommandList already completed and got re-used.
5596          */
5597         if (abort->scsi_cmd != sc) {
5598                 cmd_free(h, abort);
5599                 return SUCCESS;
5600         }
5601
5602         abort->abort_pending = true;
5603         hpsa_get_tag(h, abort, &taglower, &tagupper);
5604         reply_queue = hpsa_extract_reply_queue(h, abort);
5605         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5606         as  = abort->scsi_cmd;
5607         if (as != NULL)
5608                 ml += sprintf(msg+ml,
5609                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5610                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5611                         as->serial_number);
5612         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5613         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5614
5615         /*
5616          * Command is in flight, or possibly already completed
5617          * by the firmware (but not to the scsi mid layer) but we can't
5618          * distinguish which.  Send the abort down.
5619          */
5620         if (wait_for_available_abort_cmd(h)) {
5621                 dev_warn(&h->pdev->dev,
5622                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5623                         msg);
5624                 cmd_free(h, abort);
5625                 return FAILED;
5626         }
5627         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5628         atomic_inc(&h->abort_cmds_available);
5629         wake_up_all(&h->abort_cmd_wait_queue);
5630         if (rc != 0) {
5631                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5632                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5633                                 "FAILED to abort command");
5634                 cmd_free(h, abort);
5635                 return FAILED;
5636         }
5637         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5638         wait_event(h->event_sync_wait_queue,
5639                    abort->scsi_cmd != sc || lockup_detected(h));
5640         cmd_free(h, abort);
5641         return !lockup_detected(h) ? SUCCESS : FAILED;
5642 }
5643
5644 /*
5645  * For operations with an associated SCSI command, a command block is allocated
5646  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5647  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5648  * the complement, although cmd_free() may be called instead.
5649  */
5650 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5651                                             struct scsi_cmnd *scmd)
5652 {
5653         int idx = hpsa_get_cmd_index(scmd);
5654         struct CommandList *c = h->cmd_pool + idx;
5655
5656         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5657                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5658                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5659                 /* The index value comes from the block layer, so if it's out of
5660                  * bounds, it's probably not our bug.
5661                  */
5662                 BUG();
5663         }
5664
5665         atomic_inc(&c->refcount);
5666         if (unlikely(!hpsa_is_cmd_idle(c))) {
5667                 /*
5668                  * We expect that the SCSI layer will hand us a unique tag
5669                  * value.  Thus, there should never be a collision here between
5670                  * two requests...because if the selected command isn't idle
5671                  * then someone is going to be very disappointed.
5672                  */
5673                 dev_err(&h->pdev->dev,
5674                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5675                         idx);
5676                 if (c->scsi_cmd != NULL)
5677                         scsi_print_command(c->scsi_cmd);
5678                 scsi_print_command(scmd);
5679         }
5680
5681         hpsa_cmd_partial_init(h, idx, c);
5682         return c;
5683 }
5684
5685 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5686 {
5687         /*
5688          * Release our reference to the block.  We don't need to do anything
5689          * else to free it, because it is accessed by index.  (There's no point
5690          * in checking the result of the decrement, since we cannot guarantee
5691          * that there isn't a concurrent abort which is also accessing it.)
5692          */
5693         (void)atomic_dec(&c->refcount);
5694 }
5695
5696 /*
5697  * For operations that cannot sleep, a command block is allocated at init,
5698  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5699  * which ones are free or in use.  Lock must be held when calling this.
5700  * cmd_free() is the complement.
5701  * This function never gives up and returns NULL.  If it hangs,
5702  * another thread must call cmd_free() to free some tags.
5703  */
5704
5705 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5706 {
5707         struct CommandList *c;
5708         int refcount, i;
5709         int offset = 0;
5710
5711         /*
5712          * There is some *extremely* small but non-zero chance that that
5713          * multiple threads could get in here, and one thread could
5714          * be scanning through the list of bits looking for a free
5715          * one, but the free ones are always behind him, and other
5716          * threads sneak in behind him and eat them before he can
5717          * get to them, so that while there is always a free one, a
5718          * very unlucky thread might be starved anyway, never able to
5719          * beat the other threads.  In reality, this happens so
5720          * infrequently as to be indistinguishable from never.
5721          *
5722          * Note that we start allocating commands before the SCSI host structure
5723          * is initialized.  Since the search starts at bit zero, this
5724          * all works, since we have at least one command structure available;
5725          * however, it means that the structures with the low indexes have to be
5726          * reserved for driver-initiated requests, while requests from the block
5727          * layer will use the higher indexes.
5728          */
5729
5730         for (;;) {
5731                 i = find_next_zero_bit(h->cmd_pool_bits,
5732                                         HPSA_NRESERVED_CMDS,
5733                                         offset);
5734                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5735                         offset = 0;
5736                         continue;
5737                 }
5738                 c = h->cmd_pool + i;
5739                 refcount = atomic_inc_return(&c->refcount);
5740                 if (unlikely(refcount > 1)) {
5741                         cmd_free(h, c); /* already in use */
5742                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
5743                         continue;
5744                 }
5745                 set_bit(i & (BITS_PER_LONG - 1),
5746                         h->cmd_pool_bits + (i / BITS_PER_LONG));
5747                 break; /* it's ours now. */
5748         }
5749         hpsa_cmd_partial_init(h, i, c);
5750         return c;
5751 }
5752
5753 /*
5754  * This is the complementary operation to cmd_alloc().  Note, however, in some
5755  * corner cases it may also be used to free blocks allocated by
5756  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5757  * the clear-bit is harmless.
5758  */
5759 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5760 {
5761         if (atomic_dec_and_test(&c->refcount)) {
5762                 int i;
5763
5764                 i = c - h->cmd_pool;
5765                 clear_bit(i & (BITS_PER_LONG - 1),
5766                           h->cmd_pool_bits + (i / BITS_PER_LONG));
5767         }
5768 }
5769
5770 #ifdef CONFIG_COMPAT
5771
5772 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5773         void __user *arg)
5774 {
5775         IOCTL32_Command_struct __user *arg32 =
5776             (IOCTL32_Command_struct __user *) arg;
5777         IOCTL_Command_struct arg64;
5778         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5779         int err;
5780         u32 cp;
5781
5782         memset(&arg64, 0, sizeof(arg64));
5783         err = 0;
5784         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5785                            sizeof(arg64.LUN_info));
5786         err |= copy_from_user(&arg64.Request, &arg32->Request,
5787                            sizeof(arg64.Request));
5788         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5789                            sizeof(arg64.error_info));
5790         err |= get_user(arg64.buf_size, &arg32->buf_size);
5791         err |= get_user(cp, &arg32->buf);
5792         arg64.buf = compat_ptr(cp);
5793         err |= copy_to_user(p, &arg64, sizeof(arg64));
5794
5795         if (err)
5796                 return -EFAULT;
5797
5798         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5799         if (err)
5800                 return err;
5801         err |= copy_in_user(&arg32->error_info, &p->error_info,
5802                          sizeof(arg32->error_info));
5803         if (err)
5804                 return -EFAULT;
5805         return err;
5806 }
5807
5808 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5809         int cmd, void __user *arg)
5810 {
5811         BIG_IOCTL32_Command_struct __user *arg32 =
5812             (BIG_IOCTL32_Command_struct __user *) arg;
5813         BIG_IOCTL_Command_struct arg64;
5814         BIG_IOCTL_Command_struct __user *p =
5815             compat_alloc_user_space(sizeof(arg64));
5816         int err;
5817         u32 cp;
5818
5819         memset(&arg64, 0, sizeof(arg64));
5820         err = 0;
5821         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5822                            sizeof(arg64.LUN_info));
5823         err |= copy_from_user(&arg64.Request, &arg32->Request,
5824                            sizeof(arg64.Request));
5825         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5826                            sizeof(arg64.error_info));
5827         err |= get_user(arg64.buf_size, &arg32->buf_size);
5828         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5829         err |= get_user(cp, &arg32->buf);
5830         arg64.buf = compat_ptr(cp);
5831         err |= copy_to_user(p, &arg64, sizeof(arg64));
5832
5833         if (err)
5834                 return -EFAULT;
5835
5836         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5837         if (err)
5838                 return err;
5839         err |= copy_in_user(&arg32->error_info, &p->error_info,
5840                          sizeof(arg32->error_info));
5841         if (err)
5842                 return -EFAULT;
5843         return err;
5844 }
5845
5846 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5847 {
5848         switch (cmd) {
5849         case CCISS_GETPCIINFO:
5850         case CCISS_GETINTINFO:
5851         case CCISS_SETINTINFO:
5852         case CCISS_GETNODENAME:
5853         case CCISS_SETNODENAME:
5854         case CCISS_GETHEARTBEAT:
5855         case CCISS_GETBUSTYPES:
5856         case CCISS_GETFIRMVER:
5857         case CCISS_GETDRIVVER:
5858         case CCISS_REVALIDVOLS:
5859         case CCISS_DEREGDISK:
5860         case CCISS_REGNEWDISK:
5861         case CCISS_REGNEWD:
5862         case CCISS_RESCANDISK:
5863         case CCISS_GETLUNINFO:
5864                 return hpsa_ioctl(dev, cmd, arg);
5865
5866         case CCISS_PASSTHRU32:
5867                 return hpsa_ioctl32_passthru(dev, cmd, arg);
5868         case CCISS_BIG_PASSTHRU32:
5869                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5870
5871         default:
5872                 return -ENOIOCTLCMD;
5873         }
5874 }
5875 #endif
5876
5877 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5878 {
5879         struct hpsa_pci_info pciinfo;
5880
5881         if (!argp)
5882                 return -EINVAL;
5883         pciinfo.domain = pci_domain_nr(h->pdev->bus);
5884         pciinfo.bus = h->pdev->bus->number;
5885         pciinfo.dev_fn = h->pdev->devfn;
5886         pciinfo.board_id = h->board_id;
5887         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5888                 return -EFAULT;
5889         return 0;
5890 }
5891
5892 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5893 {
5894         DriverVer_type DriverVer;
5895         unsigned char vmaj, vmin, vsubmin;
5896         int rc;
5897
5898         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5899                 &vmaj, &vmin, &vsubmin);
5900         if (rc != 3) {
5901                 dev_info(&h->pdev->dev, "driver version string '%s' "
5902                         "unrecognized.", HPSA_DRIVER_VERSION);
5903                 vmaj = 0;
5904                 vmin = 0;
5905                 vsubmin = 0;
5906         }
5907         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5908         if (!argp)
5909                 return -EINVAL;
5910         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5911                 return -EFAULT;
5912         return 0;
5913 }
5914
5915 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5916 {
5917         IOCTL_Command_struct iocommand;
5918         struct CommandList *c;
5919         char *buff = NULL;
5920         u64 temp64;
5921         int rc = 0;
5922
5923         if (!argp)
5924                 return -EINVAL;
5925         if (!capable(CAP_SYS_RAWIO))
5926                 return -EPERM;
5927         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5928                 return -EFAULT;
5929         if ((iocommand.buf_size < 1) &&
5930             (iocommand.Request.Type.Direction != XFER_NONE)) {
5931                 return -EINVAL;
5932         }
5933         if (iocommand.buf_size > 0) {
5934                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5935                 if (buff == NULL)
5936                         return -ENOMEM;
5937                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
5938                         /* Copy the data into the buffer we created */
5939                         if (copy_from_user(buff, iocommand.buf,
5940                                 iocommand.buf_size)) {
5941                                 rc = -EFAULT;
5942                                 goto out_kfree;
5943                         }
5944                 } else {
5945                         memset(buff, 0, iocommand.buf_size);
5946                 }
5947         }
5948         c = cmd_alloc(h);
5949
5950         /* Fill in the command type */
5951         c->cmd_type = CMD_IOCTL_PEND;
5952         c->scsi_cmd = SCSI_CMD_BUSY;
5953         /* Fill in Command Header */
5954         c->Header.ReplyQueue = 0; /* unused in simple mode */
5955         if (iocommand.buf_size > 0) {   /* buffer to fill */
5956                 c->Header.SGList = 1;
5957                 c->Header.SGTotal = cpu_to_le16(1);
5958         } else  { /* no buffers to fill */
5959                 c->Header.SGList = 0;
5960                 c->Header.SGTotal = cpu_to_le16(0);
5961         }
5962         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
5963
5964         /* Fill in Request block */
5965         memcpy(&c->Request, &iocommand.Request,
5966                 sizeof(c->Request));
5967
5968         /* Fill in the scatter gather information */
5969         if (iocommand.buf_size > 0) {
5970                 temp64 = pci_map_single(h->pdev, buff,
5971                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5972                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
5973                         c->SG[0].Addr = cpu_to_le64(0);
5974                         c->SG[0].Len = cpu_to_le32(0);
5975                         rc = -ENOMEM;
5976                         goto out;
5977                 }
5978                 c->SG[0].Addr = cpu_to_le64(temp64);
5979                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
5980                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5981         }
5982         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5983         if (iocommand.buf_size > 0)
5984                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5985         check_ioctl_unit_attention(h, c);
5986         if (rc) {
5987                 rc = -EIO;
5988                 goto out;
5989         }
5990
5991         /* Copy the error information out */
5992         memcpy(&iocommand.error_info, c->err_info,
5993                 sizeof(iocommand.error_info));
5994         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5995                 rc = -EFAULT;
5996                 goto out;
5997         }
5998         if ((iocommand.Request.Type.Direction & XFER_READ) &&
5999                 iocommand.buf_size > 0) {
6000                 /* Copy the data out of the buffer we created */
6001                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6002                         rc = -EFAULT;
6003                         goto out;
6004                 }
6005         }
6006 out:
6007         cmd_free(h, c);
6008 out_kfree:
6009         kfree(buff);
6010         return rc;
6011 }
6012
6013 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6014 {
6015         BIG_IOCTL_Command_struct *ioc;
6016         struct CommandList *c;
6017         unsigned char **buff = NULL;
6018         int *buff_size = NULL;
6019         u64 temp64;
6020         BYTE sg_used = 0;
6021         int status = 0;
6022         u32 left;
6023         u32 sz;
6024         BYTE __user *data_ptr;
6025
6026         if (!argp)
6027                 return -EINVAL;
6028         if (!capable(CAP_SYS_RAWIO))
6029                 return -EPERM;
6030         ioc = (BIG_IOCTL_Command_struct *)
6031             kmalloc(sizeof(*ioc), GFP_KERNEL);
6032         if (!ioc) {
6033                 status = -ENOMEM;
6034                 goto cleanup1;
6035         }
6036         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6037                 status = -EFAULT;
6038                 goto cleanup1;
6039         }
6040         if ((ioc->buf_size < 1) &&
6041             (ioc->Request.Type.Direction != XFER_NONE)) {
6042                 status = -EINVAL;
6043                 goto cleanup1;
6044         }
6045         /* Check kmalloc limits  using all SGs */
6046         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6047                 status = -EINVAL;
6048                 goto cleanup1;
6049         }
6050         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6051                 status = -EINVAL;
6052                 goto cleanup1;
6053         }
6054         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6055         if (!buff) {
6056                 status = -ENOMEM;
6057                 goto cleanup1;
6058         }
6059         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6060         if (!buff_size) {
6061                 status = -ENOMEM;
6062                 goto cleanup1;
6063         }
6064         left = ioc->buf_size;
6065         data_ptr = ioc->buf;
6066         while (left) {
6067                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6068                 buff_size[sg_used] = sz;
6069                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6070                 if (buff[sg_used] == NULL) {
6071                         status = -ENOMEM;
6072                         goto cleanup1;
6073                 }
6074                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6075                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6076                                 status = -EFAULT;
6077                                 goto cleanup1;
6078                         }
6079                 } else
6080                         memset(buff[sg_used], 0, sz);
6081                 left -= sz;
6082                 data_ptr += sz;
6083                 sg_used++;
6084         }
6085         c = cmd_alloc(h);
6086
6087         c->cmd_type = CMD_IOCTL_PEND;
6088         c->scsi_cmd = SCSI_CMD_BUSY;
6089         c->Header.ReplyQueue = 0;
6090         c->Header.SGList = (u8) sg_used;
6091         c->Header.SGTotal = cpu_to_le16(sg_used);
6092         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6093         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6094         if (ioc->buf_size > 0) {
6095                 int i;
6096                 for (i = 0; i < sg_used; i++) {
6097                         temp64 = pci_map_single(h->pdev, buff[i],
6098                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6099                         if (dma_mapping_error(&h->pdev->dev,
6100                                                         (dma_addr_t) temp64)) {
6101                                 c->SG[i].Addr = cpu_to_le64(0);
6102                                 c->SG[i].Len = cpu_to_le32(0);
6103                                 hpsa_pci_unmap(h->pdev, c, i,
6104                                         PCI_DMA_BIDIRECTIONAL);
6105                                 status = -ENOMEM;
6106                                 goto cleanup0;
6107                         }
6108                         c->SG[i].Addr = cpu_to_le64(temp64);
6109                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6110                         c->SG[i].Ext = cpu_to_le32(0);
6111                 }
6112                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6113         }
6114         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6115         if (sg_used)
6116                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6117         check_ioctl_unit_attention(h, c);
6118         if (status) {
6119                 status = -EIO;
6120                 goto cleanup0;
6121         }
6122
6123         /* Copy the error information out */
6124         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6125         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6126                 status = -EFAULT;
6127                 goto cleanup0;
6128         }
6129         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6130                 int i;
6131
6132                 /* Copy the data out of the buffer we created */
6133                 BYTE __user *ptr = ioc->buf;
6134                 for (i = 0; i < sg_used; i++) {
6135                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6136                                 status = -EFAULT;
6137                                 goto cleanup0;
6138                         }
6139                         ptr += buff_size[i];
6140                 }
6141         }
6142         status = 0;
6143 cleanup0:
6144         cmd_free(h, c);
6145 cleanup1:
6146         if (buff) {
6147                 int i;
6148
6149                 for (i = 0; i < sg_used; i++)
6150                         kfree(buff[i]);
6151                 kfree(buff);
6152         }
6153         kfree(buff_size);
6154         kfree(ioc);
6155         return status;
6156 }
6157
6158 static void check_ioctl_unit_attention(struct ctlr_info *h,
6159         struct CommandList *c)
6160 {
6161         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6162                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6163                 (void) check_for_unit_attention(h, c);
6164 }
6165
6166 /*
6167  * ioctl
6168  */
6169 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6170 {
6171         struct ctlr_info *h;
6172         void __user *argp = (void __user *)arg;
6173         int rc;
6174
6175         h = sdev_to_hba(dev);
6176
6177         switch (cmd) {
6178         case CCISS_DEREGDISK:
6179         case CCISS_REGNEWDISK:
6180         case CCISS_REGNEWD:
6181                 hpsa_scan_start(h->scsi_host);
6182                 return 0;
6183         case CCISS_GETPCIINFO:
6184                 return hpsa_getpciinfo_ioctl(h, argp);
6185         case CCISS_GETDRIVVER:
6186                 return hpsa_getdrivver_ioctl(h, argp);
6187         case CCISS_PASSTHRU:
6188                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6189                         return -EAGAIN;
6190                 rc = hpsa_passthru_ioctl(h, argp);
6191                 atomic_inc(&h->passthru_cmds_avail);
6192                 return rc;
6193         case CCISS_BIG_PASSTHRU:
6194                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6195                         return -EAGAIN;
6196                 rc = hpsa_big_passthru_ioctl(h, argp);
6197                 atomic_inc(&h->passthru_cmds_avail);
6198                 return rc;
6199         default:
6200                 return -ENOTTY;
6201         }
6202 }
6203
6204 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6205                                 u8 reset_type)
6206 {
6207         struct CommandList *c;
6208
6209         c = cmd_alloc(h);
6210
6211         /* fill_cmd can't fail here, no data buffer to map */
6212         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6213                 RAID_CTLR_LUNID, TYPE_MSG);
6214         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6215         c->waiting = NULL;
6216         enqueue_cmd_and_start_io(h, c);
6217         /* Don't wait for completion, the reset won't complete.  Don't free
6218          * the command either.  This is the last command we will send before
6219          * re-initializing everything, so it doesn't matter and won't leak.
6220          */
6221         return;
6222 }
6223
6224 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6225         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6226         int cmd_type)
6227 {
6228         int pci_dir = XFER_NONE;
6229         u64 tag; /* for commands to be aborted */
6230
6231         c->cmd_type = CMD_IOCTL_PEND;
6232         c->scsi_cmd = SCSI_CMD_BUSY;
6233         c->Header.ReplyQueue = 0;
6234         if (buff != NULL && size > 0) {
6235                 c->Header.SGList = 1;
6236                 c->Header.SGTotal = cpu_to_le16(1);
6237         } else {
6238                 c->Header.SGList = 0;
6239                 c->Header.SGTotal = cpu_to_le16(0);
6240         }
6241         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6242
6243         if (cmd_type == TYPE_CMD) {
6244                 switch (cmd) {
6245                 case HPSA_INQUIRY:
6246                         /* are we trying to read a vital product page */
6247                         if (page_code & VPD_PAGE) {
6248                                 c->Request.CDB[1] = 0x01;
6249                                 c->Request.CDB[2] = (page_code & 0xff);
6250                         }
6251                         c->Request.CDBLen = 6;
6252                         c->Request.type_attr_dir =
6253                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6254                         c->Request.Timeout = 0;
6255                         c->Request.CDB[0] = HPSA_INQUIRY;
6256                         c->Request.CDB[4] = size & 0xFF;
6257                         break;
6258                 case HPSA_REPORT_LOG:
6259                 case HPSA_REPORT_PHYS:
6260                         /* Talking to controller so It's a physical command
6261                            mode = 00 target = 0.  Nothing to write.
6262                          */
6263                         c->Request.CDBLen = 12;
6264                         c->Request.type_attr_dir =
6265                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6266                         c->Request.Timeout = 0;
6267                         c->Request.CDB[0] = cmd;
6268                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6269                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6270                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6271                         c->Request.CDB[9] = size & 0xFF;
6272                         break;
6273                 case HPSA_CACHE_FLUSH:
6274                         c->Request.CDBLen = 12;
6275                         c->Request.type_attr_dir =
6276                                         TYPE_ATTR_DIR(cmd_type,
6277                                                 ATTR_SIMPLE, XFER_WRITE);
6278                         c->Request.Timeout = 0;
6279                         c->Request.CDB[0] = BMIC_WRITE;
6280                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6281                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6282                         c->Request.CDB[8] = size & 0xFF;
6283                         break;
6284                 case TEST_UNIT_READY:
6285                         c->Request.CDBLen = 6;
6286                         c->Request.type_attr_dir =
6287                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6288                         c->Request.Timeout = 0;
6289                         break;
6290                 case HPSA_GET_RAID_MAP:
6291                         c->Request.CDBLen = 12;
6292                         c->Request.type_attr_dir =
6293                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6294                         c->Request.Timeout = 0;
6295                         c->Request.CDB[0] = HPSA_CISS_READ;
6296                         c->Request.CDB[1] = cmd;
6297                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6298                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6299                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6300                         c->Request.CDB[9] = size & 0xFF;
6301                         break;
6302                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6303                         c->Request.CDBLen = 10;
6304                         c->Request.type_attr_dir =
6305                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6306                         c->Request.Timeout = 0;
6307                         c->Request.CDB[0] = BMIC_READ;
6308                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6309                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6310                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6311                         break;
6312                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6313                         c->Request.CDBLen = 10;
6314                         c->Request.type_attr_dir =
6315                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6316                         c->Request.Timeout = 0;
6317                         c->Request.CDB[0] = BMIC_READ;
6318                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6319                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6320                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6321                         break;
6322                 default:
6323                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6324                         BUG();
6325                         return -1;
6326                 }
6327         } else if (cmd_type == TYPE_MSG) {
6328                 switch (cmd) {
6329
6330                 case  HPSA_DEVICE_RESET_MSG:
6331                         c->Request.CDBLen = 16;
6332                         c->Request.type_attr_dir =
6333                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6334                         c->Request.Timeout = 0; /* Don't time out */
6335                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6336                         c->Request.CDB[0] =  cmd;
6337                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6338                         /* If bytes 4-7 are zero, it means reset the */
6339                         /* LunID device */
6340                         c->Request.CDB[4] = 0x00;
6341                         c->Request.CDB[5] = 0x00;
6342                         c->Request.CDB[6] = 0x00;
6343                         c->Request.CDB[7] = 0x00;
6344                         break;
6345                 case  HPSA_ABORT_MSG:
6346                         memcpy(&tag, buff, sizeof(tag));
6347                         dev_dbg(&h->pdev->dev,
6348                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6349                                 tag, c->Header.tag);
6350                         c->Request.CDBLen = 16;
6351                         c->Request.type_attr_dir =
6352                                         TYPE_ATTR_DIR(cmd_type,
6353                                                 ATTR_SIMPLE, XFER_WRITE);
6354                         c->Request.Timeout = 0; /* Don't time out */
6355                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6356                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6357                         c->Request.CDB[2] = 0x00; /* reserved */
6358                         c->Request.CDB[3] = 0x00; /* reserved */
6359                         /* Tag to abort goes in CDB[4]-CDB[11] */
6360                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6361                         c->Request.CDB[12] = 0x00; /* reserved */
6362                         c->Request.CDB[13] = 0x00; /* reserved */
6363                         c->Request.CDB[14] = 0x00; /* reserved */
6364                         c->Request.CDB[15] = 0x00; /* reserved */
6365                 break;
6366                 default:
6367                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6368                                 cmd);
6369                         BUG();
6370                 }
6371         } else {
6372                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6373                 BUG();
6374         }
6375
6376         switch (GET_DIR(c->Request.type_attr_dir)) {
6377         case XFER_READ:
6378                 pci_dir = PCI_DMA_FROMDEVICE;
6379                 break;
6380         case XFER_WRITE:
6381                 pci_dir = PCI_DMA_TODEVICE;
6382                 break;
6383         case XFER_NONE:
6384                 pci_dir = PCI_DMA_NONE;
6385                 break;
6386         default:
6387                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6388         }
6389         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6390                 return -1;
6391         return 0;
6392 }
6393
6394 /*
6395  * Map (physical) PCI mem into (virtual) kernel space
6396  */
6397 static void __iomem *remap_pci_mem(ulong base, ulong size)
6398 {
6399         ulong page_base = ((ulong) base) & PAGE_MASK;
6400         ulong page_offs = ((ulong) base) - page_base;
6401         void __iomem *page_remapped = ioremap_nocache(page_base,
6402                 page_offs + size);
6403
6404         return page_remapped ? (page_remapped + page_offs) : NULL;
6405 }
6406
6407 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6408 {
6409         return h->access.command_completed(h, q);
6410 }
6411
6412 static inline bool interrupt_pending(struct ctlr_info *h)
6413 {
6414         return h->access.intr_pending(h);
6415 }
6416
6417 static inline long interrupt_not_for_us(struct ctlr_info *h)
6418 {
6419         return (h->access.intr_pending(h) == 0) ||
6420                 (h->interrupts_enabled == 0);
6421 }
6422
6423 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6424         u32 raw_tag)
6425 {
6426         if (unlikely(tag_index >= h->nr_cmds)) {
6427                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6428                 return 1;
6429         }
6430         return 0;
6431 }
6432
6433 static inline void finish_cmd(struct CommandList *c)
6434 {
6435         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6436         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6437                         || c->cmd_type == CMD_IOACCEL2))
6438                 complete_scsi_command(c);
6439         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6440                 complete(c->waiting);
6441 }
6442
6443
6444 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6445 {
6446 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
6447 #define HPSA_SIMPLE_ERROR_BITS 0x03
6448         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6449                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
6450         return tag & ~HPSA_PERF_ERROR_BITS;
6451 }
6452
6453 /* process completion of an indexed ("direct lookup") command */
6454 static inline void process_indexed_cmd(struct ctlr_info *h,
6455         u32 raw_tag)
6456 {
6457         u32 tag_index;
6458         struct CommandList *c;
6459
6460         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6461         if (!bad_tag(h, tag_index, raw_tag)) {
6462                 c = h->cmd_pool + tag_index;
6463                 finish_cmd(c);
6464         }
6465 }
6466
6467 /* Some controllers, like p400, will give us one interrupt
6468  * after a soft reset, even if we turned interrupts off.
6469  * Only need to check for this in the hpsa_xxx_discard_completions
6470  * functions.
6471  */
6472 static int ignore_bogus_interrupt(struct ctlr_info *h)
6473 {
6474         if (likely(!reset_devices))
6475                 return 0;
6476
6477         if (likely(h->interrupts_enabled))
6478                 return 0;
6479
6480         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6481                 "(known firmware bug.)  Ignoring.\n");
6482
6483         return 1;
6484 }
6485
6486 /*
6487  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6488  * Relies on (h-q[x] == x) being true for x such that
6489  * 0 <= x < MAX_REPLY_QUEUES.
6490  */
6491 static struct ctlr_info *queue_to_hba(u8 *queue)
6492 {
6493         return container_of((queue - *queue), struct ctlr_info, q[0]);
6494 }
6495
6496 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6497 {
6498         struct ctlr_info *h = queue_to_hba(queue);
6499         u8 q = *(u8 *) queue;
6500         u32 raw_tag;
6501
6502         if (ignore_bogus_interrupt(h))
6503                 return IRQ_NONE;
6504
6505         if (interrupt_not_for_us(h))
6506                 return IRQ_NONE;
6507         h->last_intr_timestamp = get_jiffies_64();
6508         while (interrupt_pending(h)) {
6509                 raw_tag = get_next_completion(h, q);
6510                 while (raw_tag != FIFO_EMPTY)
6511                         raw_tag = next_command(h, q);
6512         }
6513         return IRQ_HANDLED;
6514 }
6515
6516 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6517 {
6518         struct ctlr_info *h = queue_to_hba(queue);
6519         u32 raw_tag;
6520         u8 q = *(u8 *) queue;
6521
6522         if (ignore_bogus_interrupt(h))
6523                 return IRQ_NONE;
6524
6525         h->last_intr_timestamp = get_jiffies_64();
6526         raw_tag = get_next_completion(h, q);
6527         while (raw_tag != FIFO_EMPTY)
6528                 raw_tag = next_command(h, q);
6529         return IRQ_HANDLED;
6530 }
6531
6532 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6533 {
6534         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6535         u32 raw_tag;
6536         u8 q = *(u8 *) queue;
6537
6538         if (interrupt_not_for_us(h))
6539                 return IRQ_NONE;
6540         h->last_intr_timestamp = get_jiffies_64();
6541         while (interrupt_pending(h)) {
6542                 raw_tag = get_next_completion(h, q);
6543                 while (raw_tag != FIFO_EMPTY) {
6544                         process_indexed_cmd(h, raw_tag);
6545                         raw_tag = next_command(h, q);
6546                 }
6547         }
6548         return IRQ_HANDLED;
6549 }
6550
6551 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6552 {
6553         struct ctlr_info *h = queue_to_hba(queue);
6554         u32 raw_tag;
6555         u8 q = *(u8 *) queue;
6556
6557         h->last_intr_timestamp = get_jiffies_64();
6558         raw_tag = get_next_completion(h, q);
6559         while (raw_tag != FIFO_EMPTY) {
6560                 process_indexed_cmd(h, raw_tag);
6561                 raw_tag = next_command(h, q);
6562         }
6563         return IRQ_HANDLED;
6564 }
6565
6566 /* Send a message CDB to the firmware. Careful, this only works
6567  * in simple mode, not performant mode due to the tag lookup.
6568  * We only ever use this immediately after a controller reset.
6569  */
6570 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6571                         unsigned char type)
6572 {
6573         struct Command {
6574                 struct CommandListHeader CommandHeader;
6575                 struct RequestBlock Request;
6576                 struct ErrDescriptor ErrorDescriptor;
6577         };
6578         struct Command *cmd;
6579         static const size_t cmd_sz = sizeof(*cmd) +
6580                                         sizeof(cmd->ErrorDescriptor);
6581         dma_addr_t paddr64;
6582         __le32 paddr32;
6583         u32 tag;
6584         void __iomem *vaddr;
6585         int i, err;
6586
6587         vaddr = pci_ioremap_bar(pdev, 0);
6588         if (vaddr == NULL)
6589                 return -ENOMEM;
6590
6591         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6592          * CCISS commands, so they must be allocated from the lower 4GiB of
6593          * memory.
6594          */
6595         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6596         if (err) {
6597                 iounmap(vaddr);
6598                 return err;
6599         }
6600
6601         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6602         if (cmd == NULL) {
6603                 iounmap(vaddr);
6604                 return -ENOMEM;
6605         }
6606
6607         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6608          * although there's no guarantee, we assume that the address is at
6609          * least 4-byte aligned (most likely, it's page-aligned).
6610          */
6611         paddr32 = cpu_to_le32(paddr64);
6612
6613         cmd->CommandHeader.ReplyQueue = 0;
6614         cmd->CommandHeader.SGList = 0;
6615         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6616         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6617         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6618
6619         cmd->Request.CDBLen = 16;
6620         cmd->Request.type_attr_dir =
6621                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6622         cmd->Request.Timeout = 0; /* Don't time out */
6623         cmd->Request.CDB[0] = opcode;
6624         cmd->Request.CDB[1] = type;
6625         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6626         cmd->ErrorDescriptor.Addr =
6627                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6628         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6629
6630         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6631
6632         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6633                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6634                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6635                         break;
6636                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6637         }
6638
6639         iounmap(vaddr);
6640
6641         /* we leak the DMA buffer here ... no choice since the controller could
6642          *  still complete the command.
6643          */
6644         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6645                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6646                         opcode, type);
6647                 return -ETIMEDOUT;
6648         }
6649
6650         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6651
6652         if (tag & HPSA_ERROR_BIT) {
6653                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6654                         opcode, type);
6655                 return -EIO;
6656         }
6657
6658         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6659                 opcode, type);
6660         return 0;
6661 }
6662
6663 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6664
6665 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6666         void __iomem *vaddr, u32 use_doorbell)
6667 {
6668
6669         if (use_doorbell) {
6670                 /* For everything after the P600, the PCI power state method
6671                  * of resetting the controller doesn't work, so we have this
6672                  * other way using the doorbell register.
6673                  */
6674                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6675                 writel(use_doorbell, vaddr + SA5_DOORBELL);
6676
6677                 /* PMC hardware guys tell us we need a 10 second delay after
6678                  * doorbell reset and before any attempt to talk to the board
6679                  * at all to ensure that this actually works and doesn't fall
6680                  * over in some weird corner cases.
6681                  */
6682                 msleep(10000);
6683         } else { /* Try to do it the PCI power state way */
6684
6685                 /* Quoting from the Open CISS Specification: "The Power
6686                  * Management Control/Status Register (CSR) controls the power
6687                  * state of the device.  The normal operating state is D0,
6688                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6689                  * the controller, place the interface device in D3 then to D0,
6690                  * this causes a secondary PCI reset which will reset the
6691                  * controller." */
6692
6693                 int rc = 0;
6694
6695                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6696
6697                 /* enter the D3hot power management state */
6698                 rc = pci_set_power_state(pdev, PCI_D3hot);
6699                 if (rc)
6700                         return rc;
6701
6702                 msleep(500);
6703
6704                 /* enter the D0 power management state */
6705                 rc = pci_set_power_state(pdev, PCI_D0);
6706                 if (rc)
6707                         return rc;
6708
6709                 /*
6710                  * The P600 requires a small delay when changing states.
6711                  * Otherwise we may think the board did not reset and we bail.
6712                  * This for kdump only and is particular to the P600.
6713                  */
6714                 msleep(500);
6715         }
6716         return 0;
6717 }
6718
6719 static void init_driver_version(char *driver_version, int len)
6720 {
6721         memset(driver_version, 0, len);
6722         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6723 }
6724
6725 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6726 {
6727         char *driver_version;
6728         int i, size = sizeof(cfgtable->driver_version);
6729
6730         driver_version = kmalloc(size, GFP_KERNEL);
6731         if (!driver_version)
6732                 return -ENOMEM;
6733
6734         init_driver_version(driver_version, size);
6735         for (i = 0; i < size; i++)
6736                 writeb(driver_version[i], &cfgtable->driver_version[i]);
6737         kfree(driver_version);
6738         return 0;
6739 }
6740
6741 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6742                                           unsigned char *driver_ver)
6743 {
6744         int i;
6745
6746         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6747                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6748 }
6749
6750 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6751 {
6752
6753         char *driver_ver, *old_driver_ver;
6754         int rc, size = sizeof(cfgtable->driver_version);
6755
6756         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6757         if (!old_driver_ver)
6758                 return -ENOMEM;
6759         driver_ver = old_driver_ver + size;
6760
6761         /* After a reset, the 32 bytes of "driver version" in the cfgtable
6762          * should have been changed, otherwise we know the reset failed.
6763          */
6764         init_driver_version(old_driver_ver, size);
6765         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6766         rc = !memcmp(driver_ver, old_driver_ver, size);
6767         kfree(old_driver_ver);
6768         return rc;
6769 }
6770 /* This does a hard reset of the controller using PCI power management
6771  * states or the using the doorbell register.
6772  */
6773 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6774 {
6775         u64 cfg_offset;
6776         u32 cfg_base_addr;
6777         u64 cfg_base_addr_index;
6778         void __iomem *vaddr;
6779         unsigned long paddr;
6780         u32 misc_fw_support;
6781         int rc;
6782         struct CfgTable __iomem *cfgtable;
6783         u32 use_doorbell;
6784         u16 command_register;
6785
6786         /* For controllers as old as the P600, this is very nearly
6787          * the same thing as
6788          *
6789          * pci_save_state(pci_dev);
6790          * pci_set_power_state(pci_dev, PCI_D3hot);
6791          * pci_set_power_state(pci_dev, PCI_D0);
6792          * pci_restore_state(pci_dev);
6793          *
6794          * For controllers newer than the P600, the pci power state
6795          * method of resetting doesn't work so we have another way
6796          * using the doorbell register.
6797          */
6798
6799         if (!ctlr_is_resettable(board_id)) {
6800                 dev_warn(&pdev->dev, "Controller not resettable\n");
6801                 return -ENODEV;
6802         }
6803
6804         /* if controller is soft- but not hard resettable... */
6805         if (!ctlr_is_hard_resettable(board_id))
6806                 return -ENOTSUPP; /* try soft reset later. */
6807
6808         /* Save the PCI command register */
6809         pci_read_config_word(pdev, 4, &command_register);
6810         pci_save_state(pdev);
6811
6812         /* find the first memory BAR, so we can find the cfg table */
6813         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6814         if (rc)
6815                 return rc;
6816         vaddr = remap_pci_mem(paddr, 0x250);
6817         if (!vaddr)
6818                 return -ENOMEM;
6819
6820         /* find cfgtable in order to check if reset via doorbell is supported */
6821         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6822                                         &cfg_base_addr_index, &cfg_offset);
6823         if (rc)
6824                 goto unmap_vaddr;
6825         cfgtable = remap_pci_mem(pci_resource_start(pdev,
6826                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6827         if (!cfgtable) {
6828                 rc = -ENOMEM;
6829                 goto unmap_vaddr;
6830         }
6831         rc = write_driver_ver_to_cfgtable(cfgtable);
6832         if (rc)
6833                 goto unmap_cfgtable;
6834
6835         /* If reset via doorbell register is supported, use that.
6836          * There are two such methods.  Favor the newest method.
6837          */
6838         misc_fw_support = readl(&cfgtable->misc_fw_support);
6839         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6840         if (use_doorbell) {
6841                 use_doorbell = DOORBELL_CTLR_RESET2;
6842         } else {
6843                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6844                 if (use_doorbell) {
6845                         dev_warn(&pdev->dev,
6846                                 "Soft reset not supported. Firmware update is required.\n");
6847                         rc = -ENOTSUPP; /* try soft reset */
6848                         goto unmap_cfgtable;
6849                 }
6850         }
6851
6852         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6853         if (rc)
6854                 goto unmap_cfgtable;
6855
6856         pci_restore_state(pdev);
6857         pci_write_config_word(pdev, 4, command_register);
6858
6859         /* Some devices (notably the HP Smart Array 5i Controller)
6860            need a little pause here */
6861         msleep(HPSA_POST_RESET_PAUSE_MSECS);
6862
6863         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6864         if (rc) {
6865                 dev_warn(&pdev->dev,
6866                         "Failed waiting for board to become ready after hard reset\n");
6867                 goto unmap_cfgtable;
6868         }
6869
6870         rc = controller_reset_failed(vaddr);
6871         if (rc < 0)
6872                 goto unmap_cfgtable;
6873         if (rc) {
6874                 dev_warn(&pdev->dev, "Unable to successfully reset "
6875                         "controller. Will try soft reset.\n");
6876                 rc = -ENOTSUPP;
6877         } else {
6878                 dev_info(&pdev->dev, "board ready after hard reset.\n");
6879         }
6880
6881 unmap_cfgtable:
6882         iounmap(cfgtable);
6883
6884 unmap_vaddr:
6885         iounmap(vaddr);
6886         return rc;
6887 }
6888
6889 /*
6890  *  We cannot read the structure directly, for portability we must use
6891  *   the io functions.
6892  *   This is for debug only.
6893  */
6894 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6895 {
6896 #ifdef HPSA_DEBUG
6897         int i;
6898         char temp_name[17];
6899
6900         dev_info(dev, "Controller Configuration information\n");
6901         dev_info(dev, "------------------------------------\n");
6902         for (i = 0; i < 4; i++)
6903                 temp_name[i] = readb(&(tb->Signature[i]));
6904         temp_name[4] = '\0';
6905         dev_info(dev, "   Signature = %s\n", temp_name);
6906         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6907         dev_info(dev, "   Transport methods supported = 0x%x\n",
6908                readl(&(tb->TransportSupport)));
6909         dev_info(dev, "   Transport methods active = 0x%x\n",
6910                readl(&(tb->TransportActive)));
6911         dev_info(dev, "   Requested transport Method = 0x%x\n",
6912                readl(&(tb->HostWrite.TransportRequest)));
6913         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6914                readl(&(tb->HostWrite.CoalIntDelay)));
6915         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6916                readl(&(tb->HostWrite.CoalIntCount)));
6917         dev_info(dev, "   Max outstanding commands = %d\n",
6918                readl(&(tb->CmdsOutMax)));
6919         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6920         for (i = 0; i < 16; i++)
6921                 temp_name[i] = readb(&(tb->ServerName[i]));
6922         temp_name[16] = '\0';
6923         dev_info(dev, "   Server Name = %s\n", temp_name);
6924         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6925                 readl(&(tb->HeartBeat)));
6926 #endif                          /* HPSA_DEBUG */
6927 }
6928
6929 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6930 {
6931         int i, offset, mem_type, bar_type;
6932
6933         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6934                 return 0;
6935         offset = 0;
6936         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6937                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6938                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6939                         offset += 4;
6940                 else {
6941                         mem_type = pci_resource_flags(pdev, i) &
6942                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6943                         switch (mem_type) {
6944                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
6945                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6946                                 offset += 4;    /* 32 bit */
6947                                 break;
6948                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
6949                                 offset += 8;
6950                                 break;
6951                         default:        /* reserved in PCI 2.2 */
6952                                 dev_warn(&pdev->dev,
6953                                        "base address is invalid\n");
6954                                 return -1;
6955                                 break;
6956                         }
6957                 }
6958                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6959                         return i + 1;
6960         }
6961         return -1;
6962 }
6963
6964 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
6965 {
6966         if (h->msix_vector) {
6967                 if (h->pdev->msix_enabled)
6968                         pci_disable_msix(h->pdev);
6969                 h->msix_vector = 0;
6970         } else if (h->msi_vector) {
6971                 if (h->pdev->msi_enabled)
6972                         pci_disable_msi(h->pdev);
6973                 h->msi_vector = 0;
6974         }
6975 }
6976
6977 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6978  * controllers that are capable. If not, we use legacy INTx mode.
6979  */
6980 static void hpsa_interrupt_mode(struct ctlr_info *h)
6981 {
6982 #ifdef CONFIG_PCI_MSI
6983         int err, i;
6984         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6985
6986         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6987                 hpsa_msix_entries[i].vector = 0;
6988                 hpsa_msix_entries[i].entry = i;
6989         }
6990
6991         /* Some boards advertise MSI but don't really support it */
6992         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6993             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6994                 goto default_int_mode;
6995         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6996                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6997                 h->msix_vector = MAX_REPLY_QUEUES;
6998                 if (h->msix_vector > num_online_cpus())
6999                         h->msix_vector = num_online_cpus();
7000                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7001                                             1, h->msix_vector);
7002                 if (err < 0) {
7003                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7004                         h->msix_vector = 0;
7005                         goto single_msi_mode;
7006                 } else if (err < h->msix_vector) {
7007                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7008                                "available\n", err);
7009                 }
7010                 h->msix_vector = err;
7011                 for (i = 0; i < h->msix_vector; i++)
7012                         h->intr[i] = hpsa_msix_entries[i].vector;
7013                 return;
7014         }
7015 single_msi_mode:
7016         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7017                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7018                 if (!pci_enable_msi(h->pdev))
7019                         h->msi_vector = 1;
7020                 else
7021                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7022         }
7023 default_int_mode:
7024 #endif                          /* CONFIG_PCI_MSI */
7025         /* if we get here we're going to use the default interrupt mode */
7026         h->intr[h->intr_mode] = h->pdev->irq;
7027 }
7028
7029 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7030 {
7031         int i;
7032         u32 subsystem_vendor_id, subsystem_device_id;
7033
7034         subsystem_vendor_id = pdev->subsystem_vendor;
7035         subsystem_device_id = pdev->subsystem_device;
7036         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7037                     subsystem_vendor_id;
7038
7039         for (i = 0; i < ARRAY_SIZE(products); i++)
7040                 if (*board_id == products[i].board_id)
7041                         return i;
7042
7043         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7044                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7045                 !hpsa_allow_any) {
7046                 dev_warn(&pdev->dev, "unrecognized board ID: "
7047                         "0x%08x, ignoring.\n", *board_id);
7048                         return -ENODEV;
7049         }
7050         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7051 }
7052
7053 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7054                                     unsigned long *memory_bar)
7055 {
7056         int i;
7057
7058         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7059                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7060                         /* addressing mode bits already removed */
7061                         *memory_bar = pci_resource_start(pdev, i);
7062                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7063                                 *memory_bar);
7064                         return 0;
7065                 }
7066         dev_warn(&pdev->dev, "no memory BAR found\n");
7067         return -ENODEV;
7068 }
7069
7070 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7071                                      int wait_for_ready)
7072 {
7073         int i, iterations;
7074         u32 scratchpad;
7075         if (wait_for_ready)
7076                 iterations = HPSA_BOARD_READY_ITERATIONS;
7077         else
7078                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7079
7080         for (i = 0; i < iterations; i++) {
7081                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7082                 if (wait_for_ready) {
7083                         if (scratchpad == HPSA_FIRMWARE_READY)
7084                                 return 0;
7085                 } else {
7086                         if (scratchpad != HPSA_FIRMWARE_READY)
7087                                 return 0;
7088                 }
7089                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7090         }
7091         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7092         return -ENODEV;
7093 }
7094
7095 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7096                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7097                                u64 *cfg_offset)
7098 {
7099         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7100         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7101         *cfg_base_addr &= (u32) 0x0000ffff;
7102         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7103         if (*cfg_base_addr_index == -1) {
7104                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7105                 return -ENODEV;
7106         }
7107         return 0;
7108 }
7109
7110 static void hpsa_free_cfgtables(struct ctlr_info *h)
7111 {
7112         if (h->transtable) {
7113                 iounmap(h->transtable);
7114                 h->transtable = NULL;
7115         }
7116         if (h->cfgtable) {
7117                 iounmap(h->cfgtable);
7118                 h->cfgtable = NULL;
7119         }
7120 }
7121
7122 /* Find and map CISS config table and transfer table
7123 + * several items must be unmapped (freed) later
7124 + * */
7125 static int hpsa_find_cfgtables(struct ctlr_info *h)
7126 {
7127         u64 cfg_offset;
7128         u32 cfg_base_addr;
7129         u64 cfg_base_addr_index;
7130         u32 trans_offset;
7131         int rc;
7132
7133         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7134                 &cfg_base_addr_index, &cfg_offset);
7135         if (rc)
7136                 return rc;
7137         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7138                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7139         if (!h->cfgtable) {
7140                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7141                 return -ENOMEM;
7142         }
7143         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7144         if (rc)
7145                 return rc;
7146         /* Find performant mode table. */
7147         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7148         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7149                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7150                                 sizeof(*h->transtable));
7151         if (!h->transtable) {
7152                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7153                 hpsa_free_cfgtables(h);
7154                 return -ENOMEM;
7155         }
7156         return 0;
7157 }
7158
7159 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7160 {
7161 #define MIN_MAX_COMMANDS 16
7162         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7163
7164         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7165
7166         /* Limit commands in memory limited kdump scenario. */
7167         if (reset_devices && h->max_commands > 32)
7168                 h->max_commands = 32;
7169
7170         if (h->max_commands < MIN_MAX_COMMANDS) {
7171                 dev_warn(&h->pdev->dev,
7172                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7173                         h->max_commands,
7174                         MIN_MAX_COMMANDS);
7175                 h->max_commands = MIN_MAX_COMMANDS;
7176         }
7177 }
7178
7179 /* If the controller reports that the total max sg entries is greater than 512,
7180  * then we know that chained SG blocks work.  (Original smart arrays did not
7181  * support chained SG blocks and would return zero for max sg entries.)
7182  */
7183 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7184 {
7185         return h->maxsgentries > 512;
7186 }
7187
7188 /* Interrogate the hardware for some limits:
7189  * max commands, max SG elements without chaining, and with chaining,
7190  * SG chain block size, etc.
7191  */
7192 static void hpsa_find_board_params(struct ctlr_info *h)
7193 {
7194         hpsa_get_max_perf_mode_cmds(h);
7195         h->nr_cmds = h->max_commands;
7196         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7197         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7198         if (hpsa_supports_chained_sg_blocks(h)) {
7199                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7200                 h->max_cmd_sg_entries = 32;
7201                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7202                 h->maxsgentries--; /* save one for chain pointer */
7203         } else {
7204                 /*
7205                  * Original smart arrays supported at most 31 s/g entries
7206                  * embedded inline in the command (trying to use more
7207                  * would lock up the controller)
7208                  */
7209                 h->max_cmd_sg_entries = 31;
7210                 h->maxsgentries = 31; /* default to traditional values */
7211                 h->chainsize = 0;
7212         }
7213
7214         /* Find out what task management functions are supported and cache */
7215         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7216         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7217                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7218         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7219                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7220         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7221                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7222 }
7223
7224 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7225 {
7226         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7227                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7228                 return false;
7229         }
7230         return true;
7231 }
7232
7233 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7234 {
7235         u32 driver_support;
7236
7237         driver_support = readl(&(h->cfgtable->driver_support));
7238         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7239 #ifdef CONFIG_X86
7240         driver_support |= ENABLE_SCSI_PREFETCH;
7241 #endif
7242         driver_support |= ENABLE_UNIT_ATTN;
7243         writel(driver_support, &(h->cfgtable->driver_support));
7244 }
7245
7246 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7247  * in a prefetch beyond physical memory.
7248  */
7249 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7250 {
7251         u32 dma_prefetch;
7252
7253         if (h->board_id != 0x3225103C)
7254                 return;
7255         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7256         dma_prefetch |= 0x8000;
7257         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7258 }
7259
7260 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7261 {
7262         int i;
7263         u32 doorbell_value;
7264         unsigned long flags;
7265         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7266         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7267                 spin_lock_irqsave(&h->lock, flags);
7268                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7269                 spin_unlock_irqrestore(&h->lock, flags);
7270                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7271                         goto done;
7272                 /* delay and try again */
7273                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7274         }
7275         return -ENODEV;
7276 done:
7277         return 0;
7278 }
7279
7280 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7281 {
7282         int i;
7283         u32 doorbell_value;
7284         unsigned long flags;
7285
7286         /* under certain very rare conditions, this can take awhile.
7287          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7288          * as we enter this code.)
7289          */
7290         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7291                 if (h->remove_in_progress)
7292                         goto done;
7293                 spin_lock_irqsave(&h->lock, flags);
7294                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7295                 spin_unlock_irqrestore(&h->lock, flags);
7296                 if (!(doorbell_value & CFGTBL_ChangeReq))
7297                         goto done;
7298                 /* delay and try again */
7299                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7300         }
7301         return -ENODEV;
7302 done:
7303         return 0;
7304 }
7305
7306 /* return -ENODEV or other reason on error, 0 on success */
7307 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7308 {
7309         u32 trans_support;
7310
7311         trans_support = readl(&(h->cfgtable->TransportSupport));
7312         if (!(trans_support & SIMPLE_MODE))
7313                 return -ENOTSUPP;
7314
7315         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7316
7317         /* Update the field, and then ring the doorbell */
7318         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7319         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7320         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7321         if (hpsa_wait_for_mode_change_ack(h))
7322                 goto error;
7323         print_cfg_table(&h->pdev->dev, h->cfgtable);
7324         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7325                 goto error;
7326         h->transMethod = CFGTBL_Trans_Simple;
7327         return 0;
7328 error:
7329         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7330         return -ENODEV;
7331 }
7332
7333 /* free items allocated or mapped by hpsa_pci_init */
7334 static void hpsa_free_pci_init(struct ctlr_info *h)
7335 {
7336         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7337         iounmap(h->vaddr);                      /* pci_init 3 */
7338         h->vaddr = NULL;
7339         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7340         /*
7341          * call pci_disable_device before pci_release_regions per
7342          * Documentation/PCI/pci.txt
7343          */
7344         pci_disable_device(h->pdev);            /* pci_init 1 */
7345         pci_release_regions(h->pdev);           /* pci_init 2 */
7346 }
7347
7348 /* several items must be freed later */
7349 static int hpsa_pci_init(struct ctlr_info *h)
7350 {
7351         int prod_index, err;
7352
7353         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7354         if (prod_index < 0)
7355                 return prod_index;
7356         h->product_name = products[prod_index].product_name;
7357         h->access = *(products[prod_index].access);
7358
7359         h->needs_abort_tags_swizzled =
7360                 ctlr_needs_abort_tags_swizzled(h->board_id);
7361
7362         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7363                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7364
7365         err = pci_enable_device(h->pdev);
7366         if (err) {
7367                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7368                 pci_disable_device(h->pdev);
7369                 return err;
7370         }
7371
7372         err = pci_request_regions(h->pdev, HPSA);
7373         if (err) {
7374                 dev_err(&h->pdev->dev,
7375                         "failed to obtain PCI resources\n");
7376                 pci_disable_device(h->pdev);
7377                 return err;
7378         }
7379
7380         pci_set_master(h->pdev);
7381
7382         hpsa_interrupt_mode(h);
7383         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7384         if (err)
7385                 goto clean2;    /* intmode+region, pci */
7386         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7387         if (!h->vaddr) {
7388                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7389                 err = -ENOMEM;
7390                 goto clean2;    /* intmode+region, pci */
7391         }
7392         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7393         if (err)
7394                 goto clean3;    /* vaddr, intmode+region, pci */
7395         err = hpsa_find_cfgtables(h);
7396         if (err)
7397                 goto clean3;    /* vaddr, intmode+region, pci */
7398         hpsa_find_board_params(h);
7399
7400         if (!hpsa_CISS_signature_present(h)) {
7401                 err = -ENODEV;
7402                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7403         }
7404         hpsa_set_driver_support_bits(h);
7405         hpsa_p600_dma_prefetch_quirk(h);
7406         err = hpsa_enter_simple_mode(h);
7407         if (err)
7408                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7409         return 0;
7410
7411 clean4: /* cfgtables, vaddr, intmode+region, pci */
7412         hpsa_free_cfgtables(h);
7413 clean3: /* vaddr, intmode+region, pci */
7414         iounmap(h->vaddr);
7415         h->vaddr = NULL;
7416 clean2: /* intmode+region, pci */
7417         hpsa_disable_interrupt_mode(h);
7418         /*
7419          * call pci_disable_device before pci_release_regions per
7420          * Documentation/PCI/pci.txt
7421          */
7422         pci_disable_device(h->pdev);
7423         pci_release_regions(h->pdev);
7424         return err;
7425 }
7426
7427 static void hpsa_hba_inquiry(struct ctlr_info *h)
7428 {
7429         int rc;
7430
7431 #define HBA_INQUIRY_BYTE_COUNT 64
7432         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7433         if (!h->hba_inquiry_data)
7434                 return;
7435         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7436                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7437         if (rc != 0) {
7438                 kfree(h->hba_inquiry_data);
7439                 h->hba_inquiry_data = NULL;
7440         }
7441 }
7442
7443 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7444 {
7445         int rc, i;
7446         void __iomem *vaddr;
7447
7448         if (!reset_devices)
7449                 return 0;
7450
7451         /* kdump kernel is loading, we don't know in which state is
7452          * the pci interface. The dev->enable_cnt is equal zero
7453          * so we call enable+disable, wait a while and switch it on.
7454          */
7455         rc = pci_enable_device(pdev);
7456         if (rc) {
7457                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7458                 return -ENODEV;
7459         }
7460         pci_disable_device(pdev);
7461         msleep(260);                    /* a randomly chosen number */
7462         rc = pci_enable_device(pdev);
7463         if (rc) {
7464                 dev_warn(&pdev->dev, "failed to enable device.\n");
7465                 return -ENODEV;
7466         }
7467
7468         pci_set_master(pdev);
7469
7470         vaddr = pci_ioremap_bar(pdev, 0);
7471         if (vaddr == NULL) {
7472                 rc = -ENOMEM;
7473                 goto out_disable;
7474         }
7475         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7476         iounmap(vaddr);
7477
7478         /* Reset the controller with a PCI power-cycle or via doorbell */
7479         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7480
7481         /* -ENOTSUPP here means we cannot reset the controller
7482          * but it's already (and still) up and running in
7483          * "performant mode".  Or, it might be 640x, which can't reset
7484          * due to concerns about shared bbwc between 6402/6404 pair.
7485          */
7486         if (rc)
7487                 goto out_disable;
7488
7489         /* Now try to get the controller to respond to a no-op */
7490         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7491         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7492                 if (hpsa_noop(pdev) == 0)
7493                         break;
7494                 else
7495                         dev_warn(&pdev->dev, "no-op failed%s\n",
7496                                         (i < 11 ? "; re-trying" : ""));
7497         }
7498
7499 out_disable:
7500
7501         pci_disable_device(pdev);
7502         return rc;
7503 }
7504
7505 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7506 {
7507         kfree(h->cmd_pool_bits);
7508         h->cmd_pool_bits = NULL;
7509         if (h->cmd_pool) {
7510                 pci_free_consistent(h->pdev,
7511                                 h->nr_cmds * sizeof(struct CommandList),
7512                                 h->cmd_pool,
7513                                 h->cmd_pool_dhandle);
7514                 h->cmd_pool = NULL;
7515                 h->cmd_pool_dhandle = 0;
7516         }
7517         if (h->errinfo_pool) {
7518                 pci_free_consistent(h->pdev,
7519                                 h->nr_cmds * sizeof(struct ErrorInfo),
7520                                 h->errinfo_pool,
7521                                 h->errinfo_pool_dhandle);
7522                 h->errinfo_pool = NULL;
7523                 h->errinfo_pool_dhandle = 0;
7524         }
7525 }
7526
7527 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7528 {
7529         h->cmd_pool_bits = kzalloc(
7530                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7531                 sizeof(unsigned long), GFP_KERNEL);
7532         h->cmd_pool = pci_alloc_consistent(h->pdev,
7533                     h->nr_cmds * sizeof(*h->cmd_pool),
7534                     &(h->cmd_pool_dhandle));
7535         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7536                     h->nr_cmds * sizeof(*h->errinfo_pool),
7537                     &(h->errinfo_pool_dhandle));
7538         if ((h->cmd_pool_bits == NULL)
7539             || (h->cmd_pool == NULL)
7540             || (h->errinfo_pool == NULL)) {
7541                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7542                 goto clean_up;
7543         }
7544         hpsa_preinitialize_commands(h);
7545         return 0;
7546 clean_up:
7547         hpsa_free_cmd_pool(h);
7548         return -ENOMEM;
7549 }
7550
7551 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7552 {
7553         int i, cpu;
7554
7555         cpu = cpumask_first(cpu_online_mask);
7556         for (i = 0; i < h->msix_vector; i++) {
7557                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7558                 cpu = cpumask_next(cpu, cpu_online_mask);
7559         }
7560 }
7561
7562 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7563 static void hpsa_free_irqs(struct ctlr_info *h)
7564 {
7565         int i;
7566
7567         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7568                 /* Single reply queue, only one irq to free */
7569                 i = h->intr_mode;
7570                 irq_set_affinity_hint(h->intr[i], NULL);
7571                 free_irq(h->intr[i], &h->q[i]);
7572                 h->q[i] = 0;
7573                 return;
7574         }
7575
7576         for (i = 0; i < h->msix_vector; i++) {
7577                 irq_set_affinity_hint(h->intr[i], NULL);
7578                 free_irq(h->intr[i], &h->q[i]);
7579                 h->q[i] = 0;
7580         }
7581         for (; i < MAX_REPLY_QUEUES; i++)
7582                 h->q[i] = 0;
7583 }
7584
7585 /* returns 0 on success; cleans up and returns -Enn on error */
7586 static int hpsa_request_irqs(struct ctlr_info *h,
7587         irqreturn_t (*msixhandler)(int, void *),
7588         irqreturn_t (*intxhandler)(int, void *))
7589 {
7590         int rc, i;
7591
7592         /*
7593          * initialize h->q[x] = x so that interrupt handlers know which
7594          * queue to process.
7595          */
7596         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7597                 h->q[i] = (u8) i;
7598
7599         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7600                 /* If performant mode and MSI-X, use multiple reply queues */
7601                 for (i = 0; i < h->msix_vector; i++) {
7602                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7603                         rc = request_irq(h->intr[i], msixhandler,
7604                                         0, h->intrname[i],
7605                                         &h->q[i]);
7606                         if (rc) {
7607                                 int j;
7608
7609                                 dev_err(&h->pdev->dev,
7610                                         "failed to get irq %d for %s\n",
7611                                        h->intr[i], h->devname);
7612                                 for (j = 0; j < i; j++) {
7613                                         free_irq(h->intr[j], &h->q[j]);
7614                                         h->q[j] = 0;
7615                                 }
7616                                 for (; j < MAX_REPLY_QUEUES; j++)
7617                                         h->q[j] = 0;
7618                                 return rc;
7619                         }
7620                 }
7621                 hpsa_irq_affinity_hints(h);
7622         } else {
7623                 /* Use single reply pool */
7624                 if (h->msix_vector > 0 || h->msi_vector) {
7625                         if (h->msix_vector)
7626                                 sprintf(h->intrname[h->intr_mode],
7627                                         "%s-msix", h->devname);
7628                         else
7629                                 sprintf(h->intrname[h->intr_mode],
7630                                         "%s-msi", h->devname);
7631                         rc = request_irq(h->intr[h->intr_mode],
7632                                 msixhandler, 0,
7633                                 h->intrname[h->intr_mode],
7634                                 &h->q[h->intr_mode]);
7635                 } else {
7636                         sprintf(h->intrname[h->intr_mode],
7637                                 "%s-intx", h->devname);
7638                         rc = request_irq(h->intr[h->intr_mode],
7639                                 intxhandler, IRQF_SHARED,
7640                                 h->intrname[h->intr_mode],
7641                                 &h->q[h->intr_mode]);
7642                 }
7643                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7644         }
7645         if (rc) {
7646                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7647                        h->intr[h->intr_mode], h->devname);
7648                 hpsa_free_irqs(h);
7649                 return -ENODEV;
7650         }
7651         return 0;
7652 }
7653
7654 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7655 {
7656         int rc;
7657         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7658
7659         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7660         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7661         if (rc) {
7662                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7663                 return rc;
7664         }
7665
7666         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7667         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7668         if (rc) {
7669                 dev_warn(&h->pdev->dev, "Board failed to become ready "
7670                         "after soft reset.\n");
7671                 return rc;
7672         }
7673
7674         return 0;
7675 }
7676
7677 static void hpsa_free_reply_queues(struct ctlr_info *h)
7678 {
7679         int i;
7680
7681         for (i = 0; i < h->nreply_queues; i++) {
7682                 if (!h->reply_queue[i].head)
7683                         continue;
7684                 pci_free_consistent(h->pdev,
7685                                         h->reply_queue_size,
7686                                         h->reply_queue[i].head,
7687                                         h->reply_queue[i].busaddr);
7688                 h->reply_queue[i].head = NULL;
7689                 h->reply_queue[i].busaddr = 0;
7690         }
7691         h->reply_queue_size = 0;
7692 }
7693
7694 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7695 {
7696         hpsa_free_performant_mode(h);           /* init_one 7 */
7697         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
7698         hpsa_free_cmd_pool(h);                  /* init_one 5 */
7699         hpsa_free_irqs(h);                      /* init_one 4 */
7700         scsi_host_put(h->scsi_host);            /* init_one 3 */
7701         h->scsi_host = NULL;                    /* init_one 3 */
7702         hpsa_free_pci_init(h);                  /* init_one 2_5 */
7703         free_percpu(h->lockup_detected);        /* init_one 2 */
7704         h->lockup_detected = NULL;              /* init_one 2 */
7705         if (h->resubmit_wq) {
7706                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
7707                 h->resubmit_wq = NULL;
7708         }
7709         if (h->rescan_ctlr_wq) {
7710                 destroy_workqueue(h->rescan_ctlr_wq);
7711                 h->rescan_ctlr_wq = NULL;
7712         }
7713         kfree(h);                               /* init_one 1 */
7714 }
7715
7716 /* Called when controller lockup detected. */
7717 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7718 {
7719         int i, refcount;
7720         struct CommandList *c;
7721         int failcount = 0;
7722
7723         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7724         for (i = 0; i < h->nr_cmds; i++) {
7725                 c = h->cmd_pool + i;
7726                 refcount = atomic_inc_return(&c->refcount);
7727                 if (refcount > 1) {
7728                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7729                         finish_cmd(c);
7730                         atomic_dec(&h->commands_outstanding);
7731                         failcount++;
7732                 }
7733                 cmd_free(h, c);
7734         }
7735         dev_warn(&h->pdev->dev,
7736                 "failed %d commands in fail_all\n", failcount);
7737 }
7738
7739 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7740 {
7741         int cpu;
7742
7743         for_each_online_cpu(cpu) {
7744                 u32 *lockup_detected;
7745                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7746                 *lockup_detected = value;
7747         }
7748         wmb(); /* be sure the per-cpu variables are out to memory */
7749 }
7750
7751 static void controller_lockup_detected(struct ctlr_info *h)
7752 {
7753         unsigned long flags;
7754         u32 lockup_detected;
7755
7756         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7757         spin_lock_irqsave(&h->lock, flags);
7758         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7759         if (!lockup_detected) {
7760                 /* no heartbeat, but controller gave us a zero. */
7761                 dev_warn(&h->pdev->dev,
7762                         "lockup detected after %d but scratchpad register is zero\n",
7763                         h->heartbeat_sample_interval / HZ);
7764                 lockup_detected = 0xffffffff;
7765         }
7766         set_lockup_detected_for_all_cpus(h, lockup_detected);
7767         spin_unlock_irqrestore(&h->lock, flags);
7768         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7769                         lockup_detected, h->heartbeat_sample_interval / HZ);
7770         pci_disable_device(h->pdev);
7771         fail_all_outstanding_cmds(h);
7772 }
7773
7774 static int detect_controller_lockup(struct ctlr_info *h)
7775 {
7776         u64 now;
7777         u32 heartbeat;
7778         unsigned long flags;
7779
7780         now = get_jiffies_64();
7781         /* If we've received an interrupt recently, we're ok. */
7782         if (time_after64(h->last_intr_timestamp +
7783                                 (h->heartbeat_sample_interval), now))
7784                 return false;
7785
7786         /*
7787          * If we've already checked the heartbeat recently, we're ok.
7788          * This could happen if someone sends us a signal. We
7789          * otherwise don't care about signals in this thread.
7790          */
7791         if (time_after64(h->last_heartbeat_timestamp +
7792                                 (h->heartbeat_sample_interval), now))
7793                 return false;
7794
7795         /* If heartbeat has not changed since we last looked, we're not ok. */
7796         spin_lock_irqsave(&h->lock, flags);
7797         heartbeat = readl(&h->cfgtable->HeartBeat);
7798         spin_unlock_irqrestore(&h->lock, flags);
7799         if (h->last_heartbeat == heartbeat) {
7800                 controller_lockup_detected(h);
7801                 return true;
7802         }
7803
7804         /* We're ok. */
7805         h->last_heartbeat = heartbeat;
7806         h->last_heartbeat_timestamp = now;
7807         return false;
7808 }
7809
7810 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7811 {
7812         int i;
7813         char *event_type;
7814
7815         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7816                 return;
7817
7818         /* Ask the controller to clear the events we're handling. */
7819         if ((h->transMethod & (CFGTBL_Trans_io_accel1
7820                         | CFGTBL_Trans_io_accel2)) &&
7821                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7822                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7823
7824                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7825                         event_type = "state change";
7826                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7827                         event_type = "configuration change";
7828                 /* Stop sending new RAID offload reqs via the IO accelerator */
7829                 scsi_block_requests(h->scsi_host);
7830                 for (i = 0; i < h->ndevices; i++)
7831                         h->dev[i]->offload_enabled = 0;
7832                 hpsa_drain_accel_commands(h);
7833                 /* Set 'accelerator path config change' bit */
7834                 dev_warn(&h->pdev->dev,
7835                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7836                         h->events, event_type);
7837                 writel(h->events, &(h->cfgtable->clear_event_notify));
7838                 /* Set the "clear event notify field update" bit 6 */
7839                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7840                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7841                 hpsa_wait_for_clear_event_notify_ack(h);
7842                 scsi_unblock_requests(h->scsi_host);
7843         } else {
7844                 /* Acknowledge controller notification events. */
7845                 writel(h->events, &(h->cfgtable->clear_event_notify));
7846                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7847                 hpsa_wait_for_clear_event_notify_ack(h);
7848 #if 0
7849                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7850                 hpsa_wait_for_mode_change_ack(h);
7851 #endif
7852         }
7853         return;
7854 }
7855
7856 /* Check a register on the controller to see if there are configuration
7857  * changes (added/changed/removed logical drives, etc.) which mean that
7858  * we should rescan the controller for devices.
7859  * Also check flag for driver-initiated rescan.
7860  */
7861 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7862 {
7863         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7864                 return 0;
7865
7866         h->events = readl(&(h->cfgtable->event_notify));
7867         return h->events & RESCAN_REQUIRED_EVENT_BITS;
7868 }
7869
7870 /*
7871  * Check if any of the offline devices have become ready
7872  */
7873 static int hpsa_offline_devices_ready(struct ctlr_info *h)
7874 {
7875         unsigned long flags;
7876         struct offline_device_entry *d;
7877         struct list_head *this, *tmp;
7878
7879         spin_lock_irqsave(&h->offline_device_lock, flags);
7880         list_for_each_safe(this, tmp, &h->offline_device_list) {
7881                 d = list_entry(this, struct offline_device_entry,
7882                                 offline_list);
7883                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7884                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
7885                         spin_lock_irqsave(&h->offline_device_lock, flags);
7886                         list_del(&d->offline_list);
7887                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
7888                         return 1;
7889                 }
7890                 spin_lock_irqsave(&h->offline_device_lock, flags);
7891         }
7892         spin_unlock_irqrestore(&h->offline_device_lock, flags);
7893         return 0;
7894 }
7895
7896 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7897 {
7898         unsigned long flags;
7899         struct ctlr_info *h = container_of(to_delayed_work(work),
7900                                         struct ctlr_info, rescan_ctlr_work);
7901
7902
7903         if (h->remove_in_progress)
7904                 return;
7905
7906         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7907                 scsi_host_get(h->scsi_host);
7908                 hpsa_ack_ctlr_events(h);
7909                 hpsa_scan_start(h->scsi_host);
7910                 scsi_host_put(h->scsi_host);
7911         }
7912         spin_lock_irqsave(&h->lock, flags);
7913         if (!h->remove_in_progress)
7914                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7915                                 h->heartbeat_sample_interval);
7916         spin_unlock_irqrestore(&h->lock, flags);
7917 }
7918
7919 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
7920 {
7921         unsigned long flags;
7922         struct ctlr_info *h = container_of(to_delayed_work(work),
7923                                         struct ctlr_info, monitor_ctlr_work);
7924
7925         detect_controller_lockup(h);
7926         if (lockup_detected(h))
7927                 return;
7928
7929         spin_lock_irqsave(&h->lock, flags);
7930         if (!h->remove_in_progress)
7931                 schedule_delayed_work(&h->monitor_ctlr_work,
7932                                 h->heartbeat_sample_interval);
7933         spin_unlock_irqrestore(&h->lock, flags);
7934 }
7935
7936 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
7937                                                 char *name)
7938 {
7939         struct workqueue_struct *wq = NULL;
7940
7941         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7942         if (!wq)
7943                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
7944
7945         return wq;
7946 }
7947
7948 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7949 {
7950         int dac, rc;
7951         struct ctlr_info *h;
7952         int try_soft_reset = 0;
7953         unsigned long flags;
7954         u32 board_id;
7955
7956         if (number_of_controllers == 0)
7957                 printk(KERN_INFO DRIVER_NAME "\n");
7958
7959         rc = hpsa_lookup_board_id(pdev, &board_id);
7960         if (rc < 0) {
7961                 dev_warn(&pdev->dev, "Board ID not found\n");
7962                 return rc;
7963         }
7964
7965         rc = hpsa_init_reset_devices(pdev, board_id);
7966         if (rc) {
7967                 if (rc != -ENOTSUPP)
7968                         return rc;
7969                 /* If the reset fails in a particular way (it has no way to do
7970                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
7971                  * a soft reset once we get the controller configured up to the
7972                  * point that it can accept a command.
7973                  */
7974                 try_soft_reset = 1;
7975                 rc = 0;
7976         }
7977
7978 reinit_after_soft_reset:
7979
7980         /* Command structures must be aligned on a 32-byte boundary because
7981          * the 5 lower bits of the address are used by the hardware. and by
7982          * the driver.  See comments in hpsa.h for more info.
7983          */
7984         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7985         h = kzalloc(sizeof(*h), GFP_KERNEL);
7986         if (!h) {
7987                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
7988                 return -ENOMEM;
7989         }
7990
7991         h->pdev = pdev;
7992
7993         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7994         INIT_LIST_HEAD(&h->offline_device_list);
7995         spin_lock_init(&h->lock);
7996         spin_lock_init(&h->offline_device_lock);
7997         spin_lock_init(&h->scan_lock);
7998         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
7999         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8000
8001         /* Allocate and clear per-cpu variable lockup_detected */
8002         h->lockup_detected = alloc_percpu(u32);
8003         if (!h->lockup_detected) {
8004                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8005                 rc = -ENOMEM;
8006                 goto clean1;    /* aer/h */
8007         }
8008         set_lockup_detected_for_all_cpus(h, 0);
8009
8010         rc = hpsa_pci_init(h);
8011         if (rc)
8012                 goto clean2;    /* lu, aer/h */
8013
8014         /* relies on h-> settings made by hpsa_pci_init, including
8015          * interrupt_mode h->intr */
8016         rc = hpsa_scsi_host_alloc(h);
8017         if (rc)
8018                 goto clean2_5;  /* pci, lu, aer/h */
8019
8020         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8021         h->ctlr = number_of_controllers;
8022         number_of_controllers++;
8023
8024         /* configure PCI DMA stuff */
8025         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8026         if (rc == 0) {
8027                 dac = 1;
8028         } else {
8029                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8030                 if (rc == 0) {
8031                         dac = 0;
8032                 } else {
8033                         dev_err(&pdev->dev, "no suitable DMA available\n");
8034                         goto clean3;    /* shost, pci, lu, aer/h */
8035                 }
8036         }
8037
8038         /* make sure the board interrupts are off */
8039         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8040
8041         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8042         if (rc)
8043                 goto clean3;    /* shost, pci, lu, aer/h */
8044         rc = hpsa_alloc_cmd_pool(h);
8045         if (rc)
8046                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8047         rc = hpsa_alloc_sg_chain_blocks(h);
8048         if (rc)
8049                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8050         init_waitqueue_head(&h->scan_wait_queue);
8051         init_waitqueue_head(&h->abort_cmd_wait_queue);
8052         init_waitqueue_head(&h->event_sync_wait_queue);
8053         mutex_init(&h->reset_mutex);
8054         h->scan_finished = 1; /* no scan currently in progress */
8055
8056         pci_set_drvdata(pdev, h);
8057         h->ndevices = 0;
8058
8059         spin_lock_init(&h->devlock);
8060         rc = hpsa_put_ctlr_into_performant_mode(h);
8061         if (rc)
8062                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8063
8064         /* hook into SCSI subsystem */
8065         rc = hpsa_scsi_add_host(h);
8066         if (rc)
8067                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8068
8069         /* create the resubmit workqueue */
8070         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8071         if (!h->rescan_ctlr_wq) {
8072                 rc = -ENOMEM;
8073                 goto clean7;
8074         }
8075
8076         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8077         if (!h->resubmit_wq) {
8078                 rc = -ENOMEM;
8079                 goto clean7;    /* aer/h */
8080         }
8081
8082         /*
8083          * At this point, the controller is ready to take commands.
8084          * Now, if reset_devices and the hard reset didn't work, try
8085          * the soft reset and see if that works.
8086          */
8087         if (try_soft_reset) {
8088
8089                 /* This is kind of gross.  We may or may not get a completion
8090                  * from the soft reset command, and if we do, then the value
8091                  * from the fifo may or may not be valid.  So, we wait 10 secs
8092                  * after the reset throwing away any completions we get during
8093                  * that time.  Unregister the interrupt handler and register
8094                  * fake ones to scoop up any residual completions.
8095                  */
8096                 spin_lock_irqsave(&h->lock, flags);
8097                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8098                 spin_unlock_irqrestore(&h->lock, flags);
8099                 hpsa_free_irqs(h);
8100                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8101                                         hpsa_intx_discard_completions);
8102                 if (rc) {
8103                         dev_warn(&h->pdev->dev,
8104                                 "Failed to request_irq after soft reset.\n");
8105                         /*
8106                          * cannot goto clean7 or free_irqs will be called
8107                          * again. Instead, do its work
8108                          */
8109                         hpsa_free_performant_mode(h);   /* clean7 */
8110                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8111                         hpsa_free_cmd_pool(h);          /* clean5 */
8112                         /*
8113                          * skip hpsa_free_irqs(h) clean4 since that
8114                          * was just called before request_irqs failed
8115                          */
8116                         goto clean3;
8117                 }
8118
8119                 rc = hpsa_kdump_soft_reset(h);
8120                 if (rc)
8121                         /* Neither hard nor soft reset worked, we're hosed. */
8122                         goto clean7;
8123
8124                 dev_info(&h->pdev->dev, "Board READY.\n");
8125                 dev_info(&h->pdev->dev,
8126                         "Waiting for stale completions to drain.\n");
8127                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8128                 msleep(10000);
8129                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8130
8131                 rc = controller_reset_failed(h->cfgtable);
8132                 if (rc)
8133                         dev_info(&h->pdev->dev,
8134                                 "Soft reset appears to have failed.\n");
8135
8136                 /* since the controller's reset, we have to go back and re-init
8137                  * everything.  Easiest to just forget what we've done and do it
8138                  * all over again.
8139                  */
8140                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8141                 try_soft_reset = 0;
8142                 if (rc)
8143                         /* don't goto clean, we already unallocated */
8144                         return -ENODEV;
8145
8146                 goto reinit_after_soft_reset;
8147         }
8148
8149         /* Enable Accelerated IO path at driver layer */
8150         h->acciopath_status = 1;
8151
8152
8153         /* Turn the interrupts on so we can service requests */
8154         h->access.set_intr_mask(h, HPSA_INTR_ON);
8155
8156         hpsa_hba_inquiry(h);
8157
8158         /* Monitor the controller for firmware lockups */
8159         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8160         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8161         schedule_delayed_work(&h->monitor_ctlr_work,
8162                                 h->heartbeat_sample_interval);
8163         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8164         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8165                                 h->heartbeat_sample_interval);
8166         return 0;
8167
8168 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8169         hpsa_free_performant_mode(h);
8170         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8171 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8172         hpsa_free_sg_chain_blocks(h);
8173 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8174         hpsa_free_cmd_pool(h);
8175 clean4: /* irq, shost, pci, lu, aer/h */
8176         hpsa_free_irqs(h);
8177 clean3: /* shost, pci, lu, aer/h */
8178         scsi_host_put(h->scsi_host);
8179         h->scsi_host = NULL;
8180 clean2_5: /* pci, lu, aer/h */
8181         hpsa_free_pci_init(h);
8182 clean2: /* lu, aer/h */
8183         if (h->lockup_detected) {
8184                 free_percpu(h->lockup_detected);
8185                 h->lockup_detected = NULL;
8186         }
8187 clean1: /* wq/aer/h */
8188         if (h->resubmit_wq) {
8189                 destroy_workqueue(h->resubmit_wq);
8190                 h->resubmit_wq = NULL;
8191         }
8192         if (h->rescan_ctlr_wq) {
8193                 destroy_workqueue(h->rescan_ctlr_wq);
8194                 h->rescan_ctlr_wq = NULL;
8195         }
8196         kfree(h);
8197         return rc;
8198 }
8199
8200 static void hpsa_flush_cache(struct ctlr_info *h)
8201 {
8202         char *flush_buf;
8203         struct CommandList *c;
8204         int rc;
8205
8206         if (unlikely(lockup_detected(h)))
8207                 return;
8208         flush_buf = kzalloc(4, GFP_KERNEL);
8209         if (!flush_buf)
8210                 return;
8211
8212         c = cmd_alloc(h);
8213
8214         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8215                 RAID_CTLR_LUNID, TYPE_CMD)) {
8216                 goto out;
8217         }
8218         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8219                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8220         if (rc)
8221                 goto out;
8222         if (c->err_info->CommandStatus != 0)
8223 out:
8224                 dev_warn(&h->pdev->dev,
8225                         "error flushing cache on controller\n");
8226         cmd_free(h, c);
8227         kfree(flush_buf);
8228 }
8229
8230 static void hpsa_shutdown(struct pci_dev *pdev)
8231 {
8232         struct ctlr_info *h;
8233
8234         h = pci_get_drvdata(pdev);
8235         /* Turn board interrupts off  and send the flush cache command
8236          * sendcmd will turn off interrupt, and send the flush...
8237          * To write all data in the battery backed cache to disks
8238          */
8239         hpsa_flush_cache(h);
8240         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8241         hpsa_free_irqs(h);                      /* init_one 4 */
8242         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8243 }
8244
8245 static void hpsa_free_device_info(struct ctlr_info *h)
8246 {
8247         int i;
8248
8249         for (i = 0; i < h->ndevices; i++) {
8250                 kfree(h->dev[i]);
8251                 h->dev[i] = NULL;
8252         }
8253 }
8254
8255 static void hpsa_remove_one(struct pci_dev *pdev)
8256 {
8257         struct ctlr_info *h;
8258         unsigned long flags;
8259
8260         if (pci_get_drvdata(pdev) == NULL) {
8261                 dev_err(&pdev->dev, "unable to remove device\n");
8262                 return;
8263         }
8264         h = pci_get_drvdata(pdev);
8265
8266         /* Get rid of any controller monitoring work items */
8267         spin_lock_irqsave(&h->lock, flags);
8268         h->remove_in_progress = 1;
8269         spin_unlock_irqrestore(&h->lock, flags);
8270         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8271         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8272         destroy_workqueue(h->rescan_ctlr_wq);
8273         destroy_workqueue(h->resubmit_wq);
8274
8275         /*
8276          * Call before disabling interrupts.
8277          * scsi_remove_host can trigger I/O operations especially
8278          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8279          * operations which cannot complete and will hang the system.
8280          */
8281         if (h->scsi_host)
8282                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8283         /* includes hpsa_free_irqs - init_one 4 */
8284         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8285         hpsa_shutdown(pdev);
8286
8287         hpsa_free_device_info(h);               /* scan */
8288
8289         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8290         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8291         hpsa_free_ioaccel2_sg_chain_blocks(h);
8292         hpsa_free_performant_mode(h);                   /* init_one 7 */
8293         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8294         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8295
8296         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8297
8298         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8299         h->scsi_host = NULL;                            /* init_one 3 */
8300
8301         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8302         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8303
8304         free_percpu(h->lockup_detected);                /* init_one 2 */
8305         h->lockup_detected = NULL;                      /* init_one 2 */
8306         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8307         kfree(h);                                       /* init_one 1 */
8308 }
8309
8310 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8311         __attribute__((unused)) pm_message_t state)
8312 {
8313         return -ENOSYS;
8314 }
8315
8316 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8317 {
8318         return -ENOSYS;
8319 }
8320
8321 static struct pci_driver hpsa_pci_driver = {
8322         .name = HPSA,
8323         .probe = hpsa_init_one,
8324         .remove = hpsa_remove_one,
8325         .id_table = hpsa_pci_device_id, /* id_table */
8326         .shutdown = hpsa_shutdown,
8327         .suspend = hpsa_suspend,
8328         .resume = hpsa_resume,
8329 };
8330
8331 /* Fill in bucket_map[], given nsgs (the max number of
8332  * scatter gather elements supported) and bucket[],
8333  * which is an array of 8 integers.  The bucket[] array
8334  * contains 8 different DMA transfer sizes (in 16
8335  * byte increments) which the controller uses to fetch
8336  * commands.  This function fills in bucket_map[], which
8337  * maps a given number of scatter gather elements to one of
8338  * the 8 DMA transfer sizes.  The point of it is to allow the
8339  * controller to only do as much DMA as needed to fetch the
8340  * command, with the DMA transfer size encoded in the lower
8341  * bits of the command address.
8342  */
8343 static void  calc_bucket_map(int bucket[], int num_buckets,
8344         int nsgs, int min_blocks, u32 *bucket_map)
8345 {
8346         int i, j, b, size;
8347
8348         /* Note, bucket_map must have nsgs+1 entries. */
8349         for (i = 0; i <= nsgs; i++) {
8350                 /* Compute size of a command with i SG entries */
8351                 size = i + min_blocks;
8352                 b = num_buckets; /* Assume the biggest bucket */
8353                 /* Find the bucket that is just big enough */
8354                 for (j = 0; j < num_buckets; j++) {
8355                         if (bucket[j] >= size) {
8356                                 b = j;
8357                                 break;
8358                         }
8359                 }
8360                 /* for a command with i SG entries, use bucket b. */
8361                 bucket_map[i] = b;
8362         }
8363 }
8364
8365 /*
8366  * return -ENODEV on err, 0 on success (or no action)
8367  * allocates numerous items that must be freed later
8368  */
8369 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8370 {
8371         int i;
8372         unsigned long register_value;
8373         unsigned long transMethod = CFGTBL_Trans_Performant |
8374                         (trans_support & CFGTBL_Trans_use_short_tags) |
8375                                 CFGTBL_Trans_enable_directed_msix |
8376                         (trans_support & (CFGTBL_Trans_io_accel1 |
8377                                 CFGTBL_Trans_io_accel2));
8378         struct access_method access = SA5_performant_access;
8379
8380         /* This is a bit complicated.  There are 8 registers on
8381          * the controller which we write to to tell it 8 different
8382          * sizes of commands which there may be.  It's a way of
8383          * reducing the DMA done to fetch each command.  Encoded into
8384          * each command's tag are 3 bits which communicate to the controller
8385          * which of the eight sizes that command fits within.  The size of
8386          * each command depends on how many scatter gather entries there are.
8387          * Each SG entry requires 16 bytes.  The eight registers are programmed
8388          * with the number of 16-byte blocks a command of that size requires.
8389          * The smallest command possible requires 5 such 16 byte blocks.
8390          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8391          * blocks.  Note, this only extends to the SG entries contained
8392          * within the command block, and does not extend to chained blocks
8393          * of SG elements.   bft[] contains the eight values we write to
8394          * the registers.  They are not evenly distributed, but have more
8395          * sizes for small commands, and fewer sizes for larger commands.
8396          */
8397         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8398 #define MIN_IOACCEL2_BFT_ENTRY 5
8399 #define HPSA_IOACCEL2_HEADER_SZ 4
8400         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8401                         13, 14, 15, 16, 17, 18, 19,
8402                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8403         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8404         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8405         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8406                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8407         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8408         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8409         /*  5 = 1 s/g entry or 4k
8410          *  6 = 2 s/g entry or 8k
8411          *  8 = 4 s/g entry or 16k
8412          * 10 = 6 s/g entry or 24k
8413          */
8414
8415         /* If the controller supports either ioaccel method then
8416          * we can also use the RAID stack submit path that does not
8417          * perform the superfluous readl() after each command submission.
8418          */
8419         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8420                 access = SA5_performant_access_no_read;
8421
8422         /* Controller spec: zero out this buffer. */
8423         for (i = 0; i < h->nreply_queues; i++)
8424                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8425
8426         bft[7] = SG_ENTRIES_IN_CMD + 4;
8427         calc_bucket_map(bft, ARRAY_SIZE(bft),
8428                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8429         for (i = 0; i < 8; i++)
8430                 writel(bft[i], &h->transtable->BlockFetch[i]);
8431
8432         /* size of controller ring buffer */
8433         writel(h->max_commands, &h->transtable->RepQSize);
8434         writel(h->nreply_queues, &h->transtable->RepQCount);
8435         writel(0, &h->transtable->RepQCtrAddrLow32);
8436         writel(0, &h->transtable->RepQCtrAddrHigh32);
8437
8438         for (i = 0; i < h->nreply_queues; i++) {
8439                 writel(0, &h->transtable->RepQAddr[i].upper);
8440                 writel(h->reply_queue[i].busaddr,
8441                         &h->transtable->RepQAddr[i].lower);
8442         }
8443
8444         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8445         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8446         /*
8447          * enable outbound interrupt coalescing in accelerator mode;
8448          */
8449         if (trans_support & CFGTBL_Trans_io_accel1) {
8450                 access = SA5_ioaccel_mode1_access;
8451                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8452                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8453         } else {
8454                 if (trans_support & CFGTBL_Trans_io_accel2) {
8455                         access = SA5_ioaccel_mode2_access;
8456                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8457                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8458                 }
8459         }
8460         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8461         if (hpsa_wait_for_mode_change_ack(h)) {
8462                 dev_err(&h->pdev->dev,
8463                         "performant mode problem - doorbell timeout\n");
8464                 return -ENODEV;
8465         }
8466         register_value = readl(&(h->cfgtable->TransportActive));
8467         if (!(register_value & CFGTBL_Trans_Performant)) {
8468                 dev_err(&h->pdev->dev,
8469                         "performant mode problem - transport not active\n");
8470                 return -ENODEV;
8471         }
8472         /* Change the access methods to the performant access methods */
8473         h->access = access;
8474         h->transMethod = transMethod;
8475
8476         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8477                 (trans_support & CFGTBL_Trans_io_accel2)))
8478                 return 0;
8479
8480         if (trans_support & CFGTBL_Trans_io_accel1) {
8481                 /* Set up I/O accelerator mode */
8482                 for (i = 0; i < h->nreply_queues; i++) {
8483                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8484                         h->reply_queue[i].current_entry =
8485                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8486                 }
8487                 bft[7] = h->ioaccel_maxsg + 8;
8488                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8489                                 h->ioaccel1_blockFetchTable);
8490
8491                 /* initialize all reply queue entries to unused */
8492                 for (i = 0; i < h->nreply_queues; i++)
8493                         memset(h->reply_queue[i].head,
8494                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8495                                 h->reply_queue_size);
8496
8497                 /* set all the constant fields in the accelerator command
8498                  * frames once at init time to save CPU cycles later.
8499                  */
8500                 for (i = 0; i < h->nr_cmds; i++) {
8501                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8502
8503                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8504                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8505                                         (i * sizeof(struct ErrorInfo)));
8506                         cp->err_info_len = sizeof(struct ErrorInfo);
8507                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8508                         cp->host_context_flags =
8509                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8510                         cp->timeout_sec = 0;
8511                         cp->ReplyQueue = 0;
8512                         cp->tag =
8513                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8514                         cp->host_addr =
8515                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8516                                         (i * sizeof(struct io_accel1_cmd)));
8517                 }
8518         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8519                 u64 cfg_offset, cfg_base_addr_index;
8520                 u32 bft2_offset, cfg_base_addr;
8521                 int rc;
8522
8523                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8524                         &cfg_base_addr_index, &cfg_offset);
8525                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8526                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8527                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8528                                 4, h->ioaccel2_blockFetchTable);
8529                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8530                 BUILD_BUG_ON(offsetof(struct CfgTable,
8531                                 io_accel_request_size_offset) != 0xb8);
8532                 h->ioaccel2_bft2_regs =
8533                         remap_pci_mem(pci_resource_start(h->pdev,
8534                                         cfg_base_addr_index) +
8535                                         cfg_offset + bft2_offset,
8536                                         ARRAY_SIZE(bft2) *
8537                                         sizeof(*h->ioaccel2_bft2_regs));
8538                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8539                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8540         }
8541         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8542         if (hpsa_wait_for_mode_change_ack(h)) {
8543                 dev_err(&h->pdev->dev,
8544                         "performant mode problem - enabling ioaccel mode\n");
8545                 return -ENODEV;
8546         }
8547         return 0;
8548 }
8549
8550 /* Free ioaccel1 mode command blocks and block fetch table */
8551 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8552 {
8553         if (h->ioaccel_cmd_pool) {
8554                 pci_free_consistent(h->pdev,
8555                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8556                         h->ioaccel_cmd_pool,
8557                         h->ioaccel_cmd_pool_dhandle);
8558                 h->ioaccel_cmd_pool = NULL;
8559                 h->ioaccel_cmd_pool_dhandle = 0;
8560         }
8561         kfree(h->ioaccel1_blockFetchTable);
8562         h->ioaccel1_blockFetchTable = NULL;
8563 }
8564
8565 /* Allocate ioaccel1 mode command blocks and block fetch table */
8566 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8567 {
8568         h->ioaccel_maxsg =
8569                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8570         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8571                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8572
8573         /* Command structures must be aligned on a 128-byte boundary
8574          * because the 7 lower bits of the address are used by the
8575          * hardware.
8576          */
8577         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8578                         IOACCEL1_COMMANDLIST_ALIGNMENT);
8579         h->ioaccel_cmd_pool =
8580                 pci_alloc_consistent(h->pdev,
8581                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8582                         &(h->ioaccel_cmd_pool_dhandle));
8583
8584         h->ioaccel1_blockFetchTable =
8585                 kmalloc(((h->ioaccel_maxsg + 1) *
8586                                 sizeof(u32)), GFP_KERNEL);
8587
8588         if ((h->ioaccel_cmd_pool == NULL) ||
8589                 (h->ioaccel1_blockFetchTable == NULL))
8590                 goto clean_up;
8591
8592         memset(h->ioaccel_cmd_pool, 0,
8593                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8594         return 0;
8595
8596 clean_up:
8597         hpsa_free_ioaccel1_cmd_and_bft(h);
8598         return -ENOMEM;
8599 }
8600
8601 /* Free ioaccel2 mode command blocks and block fetch table */
8602 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8603 {
8604         hpsa_free_ioaccel2_sg_chain_blocks(h);
8605
8606         if (h->ioaccel2_cmd_pool) {
8607                 pci_free_consistent(h->pdev,
8608                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8609                         h->ioaccel2_cmd_pool,
8610                         h->ioaccel2_cmd_pool_dhandle);
8611                 h->ioaccel2_cmd_pool = NULL;
8612                 h->ioaccel2_cmd_pool_dhandle = 0;
8613         }
8614         kfree(h->ioaccel2_blockFetchTable);
8615         h->ioaccel2_blockFetchTable = NULL;
8616 }
8617
8618 /* Allocate ioaccel2 mode command blocks and block fetch table */
8619 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8620 {
8621         int rc;
8622
8623         /* Allocate ioaccel2 mode command blocks and block fetch table */
8624
8625         h->ioaccel_maxsg =
8626                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8627         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8628                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8629
8630         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8631                         IOACCEL2_COMMANDLIST_ALIGNMENT);
8632         h->ioaccel2_cmd_pool =
8633                 pci_alloc_consistent(h->pdev,
8634                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8635                         &(h->ioaccel2_cmd_pool_dhandle));
8636
8637         h->ioaccel2_blockFetchTable =
8638                 kmalloc(((h->ioaccel_maxsg + 1) *
8639                                 sizeof(u32)), GFP_KERNEL);
8640
8641         if ((h->ioaccel2_cmd_pool == NULL) ||
8642                 (h->ioaccel2_blockFetchTable == NULL)) {
8643                 rc = -ENOMEM;
8644                 goto clean_up;
8645         }
8646
8647         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8648         if (rc)
8649                 goto clean_up;
8650
8651         memset(h->ioaccel2_cmd_pool, 0,
8652                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8653         return 0;
8654
8655 clean_up:
8656         hpsa_free_ioaccel2_cmd_and_bft(h);
8657         return rc;
8658 }
8659
8660 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8661 static void hpsa_free_performant_mode(struct ctlr_info *h)
8662 {
8663         kfree(h->blockFetchTable);
8664         h->blockFetchTable = NULL;
8665         hpsa_free_reply_queues(h);
8666         hpsa_free_ioaccel1_cmd_and_bft(h);
8667         hpsa_free_ioaccel2_cmd_and_bft(h);
8668 }
8669
8670 /* return -ENODEV on error, 0 on success (or no action)
8671  * allocates numerous items that must be freed later
8672  */
8673 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8674 {
8675         u32 trans_support;
8676         unsigned long transMethod = CFGTBL_Trans_Performant |
8677                                         CFGTBL_Trans_use_short_tags;
8678         int i, rc;
8679
8680         if (hpsa_simple_mode)
8681                 return 0;
8682
8683         trans_support = readl(&(h->cfgtable->TransportSupport));
8684         if (!(trans_support & PERFORMANT_MODE))
8685                 return 0;
8686
8687         /* Check for I/O accelerator mode support */
8688         if (trans_support & CFGTBL_Trans_io_accel1) {
8689                 transMethod |= CFGTBL_Trans_io_accel1 |
8690                                 CFGTBL_Trans_enable_directed_msix;
8691                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8692                 if (rc)
8693                         return rc;
8694         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8695                 transMethod |= CFGTBL_Trans_io_accel2 |
8696                                 CFGTBL_Trans_enable_directed_msix;
8697                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8698                 if (rc)
8699                         return rc;
8700         }
8701
8702         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8703         hpsa_get_max_perf_mode_cmds(h);
8704         /* Performant mode ring buffer and supporting data structures */
8705         h->reply_queue_size = h->max_commands * sizeof(u64);
8706
8707         for (i = 0; i < h->nreply_queues; i++) {
8708                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8709                                                 h->reply_queue_size,
8710                                                 &(h->reply_queue[i].busaddr));
8711                 if (!h->reply_queue[i].head) {
8712                         rc = -ENOMEM;
8713                         goto clean1;    /* rq, ioaccel */
8714                 }
8715                 h->reply_queue[i].size = h->max_commands;
8716                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
8717                 h->reply_queue[i].current_entry = 0;
8718         }
8719
8720         /* Need a block fetch table for performant mode */
8721         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8722                                 sizeof(u32)), GFP_KERNEL);
8723         if (!h->blockFetchTable) {
8724                 rc = -ENOMEM;
8725                 goto clean1;    /* rq, ioaccel */
8726         }
8727
8728         rc = hpsa_enter_performant_mode(h, trans_support);
8729         if (rc)
8730                 goto clean2;    /* bft, rq, ioaccel */
8731         return 0;
8732
8733 clean2: /* bft, rq, ioaccel */
8734         kfree(h->blockFetchTable);
8735         h->blockFetchTable = NULL;
8736 clean1: /* rq, ioaccel */
8737         hpsa_free_reply_queues(h);
8738         hpsa_free_ioaccel1_cmd_and_bft(h);
8739         hpsa_free_ioaccel2_cmd_and_bft(h);
8740         return rc;
8741 }
8742
8743 static int is_accelerated_cmd(struct CommandList *c)
8744 {
8745         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8746 }
8747
8748 static void hpsa_drain_accel_commands(struct ctlr_info *h)
8749 {
8750         struct CommandList *c = NULL;
8751         int i, accel_cmds_out;
8752         int refcount;
8753
8754         do { /* wait for all outstanding ioaccel commands to drain out */
8755                 accel_cmds_out = 0;
8756                 for (i = 0; i < h->nr_cmds; i++) {
8757                         c = h->cmd_pool + i;
8758                         refcount = atomic_inc_return(&c->refcount);
8759                         if (refcount > 1) /* Command is allocated */
8760                                 accel_cmds_out += is_accelerated_cmd(c);
8761                         cmd_free(h, c);
8762                 }
8763                 if (accel_cmds_out <= 0)
8764                         break;
8765                 msleep(100);
8766         } while (1);
8767 }
8768
8769 /*
8770  *  This is it.  Register the PCI driver information for the cards we control
8771  *  the OS will call our registered routines when it finds one of our cards.
8772  */
8773 static int __init hpsa_init(void)
8774 {
8775         return pci_register_driver(&hpsa_pci_driver);
8776 }
8777
8778 static void __exit hpsa_cleanup(void)
8779 {
8780         pci_unregister_driver(&hpsa_pci_driver);
8781 }
8782
8783 static void __attribute__((unused)) verify_offsets(void)
8784 {
8785 #define VERIFY_OFFSET(member, offset) \
8786         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8787
8788         VERIFY_OFFSET(structure_size, 0);
8789         VERIFY_OFFSET(volume_blk_size, 4);
8790         VERIFY_OFFSET(volume_blk_cnt, 8);
8791         VERIFY_OFFSET(phys_blk_shift, 16);
8792         VERIFY_OFFSET(parity_rotation_shift, 17);
8793         VERIFY_OFFSET(strip_size, 18);
8794         VERIFY_OFFSET(disk_starting_blk, 20);
8795         VERIFY_OFFSET(disk_blk_cnt, 28);
8796         VERIFY_OFFSET(data_disks_per_row, 36);
8797         VERIFY_OFFSET(metadata_disks_per_row, 38);
8798         VERIFY_OFFSET(row_cnt, 40);
8799         VERIFY_OFFSET(layout_map_count, 42);
8800         VERIFY_OFFSET(flags, 44);
8801         VERIFY_OFFSET(dekindex, 46);
8802         /* VERIFY_OFFSET(reserved, 48 */
8803         VERIFY_OFFSET(data, 64);
8804
8805 #undef VERIFY_OFFSET
8806
8807 #define VERIFY_OFFSET(member, offset) \
8808         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8809
8810         VERIFY_OFFSET(IU_type, 0);
8811         VERIFY_OFFSET(direction, 1);
8812         VERIFY_OFFSET(reply_queue, 2);
8813         /* VERIFY_OFFSET(reserved1, 3);  */
8814         VERIFY_OFFSET(scsi_nexus, 4);
8815         VERIFY_OFFSET(Tag, 8);
8816         VERIFY_OFFSET(cdb, 16);
8817         VERIFY_OFFSET(cciss_lun, 32);
8818         VERIFY_OFFSET(data_len, 40);
8819         VERIFY_OFFSET(cmd_priority_task_attr, 44);
8820         VERIFY_OFFSET(sg_count, 45);
8821         /* VERIFY_OFFSET(reserved3 */
8822         VERIFY_OFFSET(err_ptr, 48);
8823         VERIFY_OFFSET(err_len, 56);
8824         /* VERIFY_OFFSET(reserved4  */
8825         VERIFY_OFFSET(sg, 64);
8826
8827 #undef VERIFY_OFFSET
8828
8829 #define VERIFY_OFFSET(member, offset) \
8830         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8831
8832         VERIFY_OFFSET(dev_handle, 0x00);
8833         VERIFY_OFFSET(reserved1, 0x02);
8834         VERIFY_OFFSET(function, 0x03);
8835         VERIFY_OFFSET(reserved2, 0x04);
8836         VERIFY_OFFSET(err_info, 0x0C);
8837         VERIFY_OFFSET(reserved3, 0x10);
8838         VERIFY_OFFSET(err_info_len, 0x12);
8839         VERIFY_OFFSET(reserved4, 0x13);
8840         VERIFY_OFFSET(sgl_offset, 0x14);
8841         VERIFY_OFFSET(reserved5, 0x15);
8842         VERIFY_OFFSET(transfer_len, 0x1C);
8843         VERIFY_OFFSET(reserved6, 0x20);
8844         VERIFY_OFFSET(io_flags, 0x24);
8845         VERIFY_OFFSET(reserved7, 0x26);
8846         VERIFY_OFFSET(LUN, 0x34);
8847         VERIFY_OFFSET(control, 0x3C);
8848         VERIFY_OFFSET(CDB, 0x40);
8849         VERIFY_OFFSET(reserved8, 0x50);
8850         VERIFY_OFFSET(host_context_flags, 0x60);
8851         VERIFY_OFFSET(timeout_sec, 0x62);
8852         VERIFY_OFFSET(ReplyQueue, 0x64);
8853         VERIFY_OFFSET(reserved9, 0x65);
8854         VERIFY_OFFSET(tag, 0x68);
8855         VERIFY_OFFSET(host_addr, 0x70);
8856         VERIFY_OFFSET(CISS_LUN, 0x78);
8857         VERIFY_OFFSET(SG, 0x78 + 8);
8858 #undef VERIFY_OFFSET
8859 }
8860
8861 module_init(hpsa_init);
8862 module_exit(hpsa_cleanup);