]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/scsi/mpt3sas/mpt3sas_base.c
mpt3sas: Remove redundancy code while freeing the controller resources.
[karo-tx-linux.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
62
63
64 #include "mpt3sas_base.h"
65
66 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
67
68
69 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70
71  /* maximum controller queue depth */
72 #define MAX_HBA_QUEUE_DEPTH     30000
73 #define MAX_CHAIN_DEPTH         100000
74 static int max_queue_depth = -1;
75 module_param(max_queue_depth, int, 0);
76 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77
78 static int max_sgl_entries = -1;
79 module_param(max_sgl_entries, int, 0);
80 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81
82 static int msix_disable = -1;
83 module_param(msix_disable, int, 0);
84 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85
86 static int max_msix_vectors = -1;
87 module_param(max_msix_vectors, int, 0);
88 MODULE_PARM_DESC(max_msix_vectors,
89         " max msix vectors");
90
91 static int mpt3sas_fwfault_debug;
92 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
93         " enable detection of firmware fault and halt firmware - (default=0)");
94
95 static int
96 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
97
98 /**
99  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
100  *
101  */
102 static int
103 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
104 {
105         int ret = param_set_int(val, kp);
106         struct MPT3SAS_ADAPTER *ioc;
107
108         if (ret)
109                 return ret;
110
111         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
112         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
113                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
114         return 0;
115 }
116 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
117         param_get_int, &mpt3sas_fwfault_debug, 0644);
118
119 /**
120  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
121  * @arg: input argument, used to derive ioc
122  *
123  * Return 0 if controller is removed from pci subsystem.
124  * Return -1 for other case.
125  */
126 static int mpt3sas_remove_dead_ioc_func(void *arg)
127 {
128         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
129         struct pci_dev *pdev;
130
131         if ((ioc == NULL))
132                 return -1;
133
134         pdev = ioc->pdev;
135         if ((pdev == NULL))
136                 return -1;
137         pci_stop_and_remove_bus_device_locked(pdev);
138         return 0;
139 }
140
141 /**
142  * _base_fault_reset_work - workq handling ioc fault conditions
143  * @work: input argument, used to derive ioc
144  * Context: sleep.
145  *
146  * Return nothing.
147  */
148 static void
149 _base_fault_reset_work(struct work_struct *work)
150 {
151         struct MPT3SAS_ADAPTER *ioc =
152             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
153         unsigned long    flags;
154         u32 doorbell;
155         int rc;
156         struct task_struct *p;
157
158
159         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
160         if (ioc->shost_recovery)
161                 goto rearm_timer;
162         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
163
164         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
165         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
166                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
167                     ioc->name);
168
169                 /*
170                  * Call _scsih_flush_pending_cmds callback so that we flush all
171                  * pending commands back to OS. This call is required to aovid
172                  * deadlock at block layer. Dead IOC will fail to do diag reset,
173                  * and this call is safe since dead ioc will never return any
174                  * command back from HW.
175                  */
176                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
177                 /*
178                  * Set remove_host flag early since kernel thread will
179                  * take some time to execute.
180                  */
181                 ioc->remove_host = 1;
182                 /*Remove the Dead Host */
183                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
184                     "mpt3sas_dead_ioc_%d", ioc->id);
185                 if (IS_ERR(p))
186                         pr_err(MPT3SAS_FMT
187                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
188                         ioc->name, __func__);
189                 else
190                         pr_err(MPT3SAS_FMT
191                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
192                         ioc->name, __func__);
193                 return; /* don't rearm timer */
194         }
195
196         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
197                 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
198                     FORCE_BIG_HAMMER);
199                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
200                     __func__, (rc == 0) ? "success" : "failed");
201                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
202                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
203                         mpt3sas_base_fault_info(ioc, doorbell &
204                             MPI2_DOORBELL_DATA_MASK);
205                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
206                     MPI2_IOC_STATE_OPERATIONAL)
207                         return; /* don't rearm timer */
208         }
209
210         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
211  rearm_timer:
212         if (ioc->fault_reset_work_q)
213                 queue_delayed_work(ioc->fault_reset_work_q,
214                     &ioc->fault_reset_work,
215                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
216         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
217 }
218
219 /**
220  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
221  * @ioc: per adapter object
222  * Context: sleep.
223  *
224  * Return nothing.
225  */
226 void
227 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
228 {
229         unsigned long    flags;
230
231         if (ioc->fault_reset_work_q)
232                 return;
233
234         /* initialize fault polling */
235
236         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
237         snprintf(ioc->fault_reset_work_q_name,
238             sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
239         ioc->fault_reset_work_q =
240                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
241         if (!ioc->fault_reset_work_q) {
242                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
243                     ioc->name, __func__, __LINE__);
244                         return;
245         }
246         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
247         if (ioc->fault_reset_work_q)
248                 queue_delayed_work(ioc->fault_reset_work_q,
249                     &ioc->fault_reset_work,
250                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
251         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
252 }
253
254 /**
255  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
256  * @ioc: per adapter object
257  * Context: sleep.
258  *
259  * Return nothing.
260  */
261 void
262 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
263 {
264         unsigned long flags;
265         struct workqueue_struct *wq;
266
267         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
268         wq = ioc->fault_reset_work_q;
269         ioc->fault_reset_work_q = NULL;
270         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
271         if (wq) {
272                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
273                         flush_workqueue(wq);
274                 destroy_workqueue(wq);
275         }
276 }
277
278 /**
279  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
280  * @ioc: per adapter object
281  * @fault_code: fault code
282  *
283  * Return nothing.
284  */
285 void
286 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
287 {
288         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
289             ioc->name, fault_code);
290 }
291
292 /**
293  * mpt3sas_halt_firmware - halt's mpt controller firmware
294  * @ioc: per adapter object
295  *
296  * For debugging timeout related issues.  Writing 0xCOFFEE00
297  * to the doorbell register will halt controller firmware. With
298  * the purpose to stop both driver and firmware, the enduser can
299  * obtain a ring buffer from controller UART.
300  */
301 void
302 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
303 {
304         u32 doorbell;
305
306         if (!ioc->fwfault_debug)
307                 return;
308
309         dump_stack();
310
311         doorbell = readl(&ioc->chip->Doorbell);
312         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
313                 mpt3sas_base_fault_info(ioc , doorbell);
314         else {
315                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
316                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
317                         ioc->name);
318         }
319
320         if (ioc->fwfault_debug == 2)
321                 for (;;)
322                         ;
323         else
324                 panic("panic in %s\n", __func__);
325 }
326
327 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
328 /**
329  * _base_sas_ioc_info - verbose translation of the ioc status
330  * @ioc: per adapter object
331  * @mpi_reply: reply mf payload returned from firmware
332  * @request_hdr: request mf
333  *
334  * Return nothing.
335  */
336 static void
337 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
338         MPI2RequestHeader_t *request_hdr)
339 {
340         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
341             MPI2_IOCSTATUS_MASK;
342         char *desc = NULL;
343         u16 frame_sz;
344         char *func_str = NULL;
345
346         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
347         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
348             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
349             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
350                 return;
351
352         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
353                 return;
354
355         switch (ioc_status) {
356
357 /****************************************************************************
358 *  Common IOCStatus values for all replies
359 ****************************************************************************/
360
361         case MPI2_IOCSTATUS_INVALID_FUNCTION:
362                 desc = "invalid function";
363                 break;
364         case MPI2_IOCSTATUS_BUSY:
365                 desc = "busy";
366                 break;
367         case MPI2_IOCSTATUS_INVALID_SGL:
368                 desc = "invalid sgl";
369                 break;
370         case MPI2_IOCSTATUS_INTERNAL_ERROR:
371                 desc = "internal error";
372                 break;
373         case MPI2_IOCSTATUS_INVALID_VPID:
374                 desc = "invalid vpid";
375                 break;
376         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
377                 desc = "insufficient resources";
378                 break;
379         case MPI2_IOCSTATUS_INVALID_FIELD:
380                 desc = "invalid field";
381                 break;
382         case MPI2_IOCSTATUS_INVALID_STATE:
383                 desc = "invalid state";
384                 break;
385         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
386                 desc = "op state not supported";
387                 break;
388
389 /****************************************************************************
390 *  Config IOCStatus values
391 ****************************************************************************/
392
393         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
394                 desc = "config invalid action";
395                 break;
396         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
397                 desc = "config invalid type";
398                 break;
399         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
400                 desc = "config invalid page";
401                 break;
402         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
403                 desc = "config invalid data";
404                 break;
405         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
406                 desc = "config no defaults";
407                 break;
408         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
409                 desc = "config cant commit";
410                 break;
411
412 /****************************************************************************
413 *  SCSI IO Reply
414 ****************************************************************************/
415
416         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
417         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
418         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
419         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
420         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
421         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
422         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
423         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
424         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
425         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
426         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
427         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
428                 break;
429
430 /****************************************************************************
431 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
432 ****************************************************************************/
433
434         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
435                 desc = "eedp guard error";
436                 break;
437         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
438                 desc = "eedp ref tag error";
439                 break;
440         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
441                 desc = "eedp app tag error";
442                 break;
443
444 /****************************************************************************
445 *  SCSI Target values
446 ****************************************************************************/
447
448         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
449                 desc = "target invalid io index";
450                 break;
451         case MPI2_IOCSTATUS_TARGET_ABORTED:
452                 desc = "target aborted";
453                 break;
454         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
455                 desc = "target no conn retryable";
456                 break;
457         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
458                 desc = "target no connection";
459                 break;
460         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
461                 desc = "target xfer count mismatch";
462                 break;
463         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
464                 desc = "target data offset error";
465                 break;
466         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
467                 desc = "target too much write data";
468                 break;
469         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
470                 desc = "target iu too short";
471                 break;
472         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
473                 desc = "target ack nak timeout";
474                 break;
475         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
476                 desc = "target nak received";
477                 break;
478
479 /****************************************************************************
480 *  Serial Attached SCSI values
481 ****************************************************************************/
482
483         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
484                 desc = "smp request failed";
485                 break;
486         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
487                 desc = "smp data overrun";
488                 break;
489
490 /****************************************************************************
491 *  Diagnostic Buffer Post / Diagnostic Release values
492 ****************************************************************************/
493
494         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
495                 desc = "diagnostic released";
496                 break;
497         default:
498                 break;
499         }
500
501         if (!desc)
502                 return;
503
504         switch (request_hdr->Function) {
505         case MPI2_FUNCTION_CONFIG:
506                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
507                 func_str = "config_page";
508                 break;
509         case MPI2_FUNCTION_SCSI_TASK_MGMT:
510                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
511                 func_str = "task_mgmt";
512                 break;
513         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
514                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
515                 func_str = "sas_iounit_ctl";
516                 break;
517         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
518                 frame_sz = sizeof(Mpi2SepRequest_t);
519                 func_str = "enclosure";
520                 break;
521         case MPI2_FUNCTION_IOC_INIT:
522                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
523                 func_str = "ioc_init";
524                 break;
525         case MPI2_FUNCTION_PORT_ENABLE:
526                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
527                 func_str = "port_enable";
528                 break;
529         case MPI2_FUNCTION_SMP_PASSTHROUGH:
530                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
531                 func_str = "smp_passthru";
532                 break;
533         default:
534                 frame_sz = 32;
535                 func_str = "unknown";
536                 break;
537         }
538
539         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
540                 ioc->name, desc, ioc_status, request_hdr, func_str);
541
542         _debug_dump_mf(request_hdr, frame_sz/4);
543 }
544
545 /**
546  * _base_display_event_data - verbose translation of firmware asyn events
547  * @ioc: per adapter object
548  * @mpi_reply: reply mf payload returned from firmware
549  *
550  * Return nothing.
551  */
552 static void
553 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
554         Mpi2EventNotificationReply_t *mpi_reply)
555 {
556         char *desc = NULL;
557         u16 event;
558
559         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
560                 return;
561
562         event = le16_to_cpu(mpi_reply->Event);
563
564         switch (event) {
565         case MPI2_EVENT_LOG_DATA:
566                 desc = "Log Data";
567                 break;
568         case MPI2_EVENT_STATE_CHANGE:
569                 desc = "Status Change";
570                 break;
571         case MPI2_EVENT_HARD_RESET_RECEIVED:
572                 desc = "Hard Reset Received";
573                 break;
574         case MPI2_EVENT_EVENT_CHANGE:
575                 desc = "Event Change";
576                 break;
577         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
578                 desc = "Device Status Change";
579                 break;
580         case MPI2_EVENT_IR_OPERATION_STATUS:
581                 desc = "IR Operation Status";
582                 break;
583         case MPI2_EVENT_SAS_DISCOVERY:
584         {
585                 Mpi2EventDataSasDiscovery_t *event_data =
586                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
587                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
588                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
589                     "start" : "stop");
590                 if (event_data->DiscoveryStatus)
591                         pr_info("discovery_status(0x%08x)",
592                             le32_to_cpu(event_data->DiscoveryStatus));
593                         pr_info("\n");
594                 return;
595         }
596         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
597                 desc = "SAS Broadcast Primitive";
598                 break;
599         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
600                 desc = "SAS Init Device Status Change";
601                 break;
602         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
603                 desc = "SAS Init Table Overflow";
604                 break;
605         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
606                 desc = "SAS Topology Change List";
607                 break;
608         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
609                 desc = "SAS Enclosure Device Status Change";
610                 break;
611         case MPI2_EVENT_IR_VOLUME:
612                 desc = "IR Volume";
613                 break;
614         case MPI2_EVENT_IR_PHYSICAL_DISK:
615                 desc = "IR Physical Disk";
616                 break;
617         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
618                 desc = "IR Configuration Change List";
619                 break;
620         case MPI2_EVENT_LOG_ENTRY_ADDED:
621                 desc = "Log Entry Added";
622                 break;
623         case MPI2_EVENT_TEMP_THRESHOLD:
624                 desc = "Temperature Threshold";
625                 break;
626         }
627
628         if (!desc)
629                 return;
630
631         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
632 }
633 #endif
634
635 /**
636  * _base_sas_log_info - verbose translation of firmware log info
637  * @ioc: per adapter object
638  * @log_info: log info
639  *
640  * Return nothing.
641  */
642 static void
643 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
644 {
645         union loginfo_type {
646                 u32     loginfo;
647                 struct {
648                         u32     subcode:16;
649                         u32     code:8;
650                         u32     originator:4;
651                         u32     bus_type:4;
652                 } dw;
653         };
654         union loginfo_type sas_loginfo;
655         char *originator_str = NULL;
656
657         sas_loginfo.loginfo = log_info;
658         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
659                 return;
660
661         /* each nexus loss loginfo */
662         if (log_info == 0x31170000)
663                 return;
664
665         /* eat the loginfos associated with task aborts */
666         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
667             0x31140000 || log_info == 0x31130000))
668                 return;
669
670         switch (sas_loginfo.dw.originator) {
671         case 0:
672                 originator_str = "IOP";
673                 break;
674         case 1:
675                 originator_str = "PL";
676                 break;
677         case 2:
678                 originator_str = "IR";
679                 break;
680         }
681
682         pr_warn(MPT3SAS_FMT
683                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
684                 ioc->name, log_info,
685              originator_str, sas_loginfo.dw.code,
686              sas_loginfo.dw.subcode);
687 }
688
689 /**
690  * _base_display_reply_info -
691  * @ioc: per adapter object
692  * @smid: system request message index
693  * @msix_index: MSIX table index supplied by the OS
694  * @reply: reply message frame(lower 32bit addr)
695  *
696  * Return nothing.
697  */
698 static void
699 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
700         u32 reply)
701 {
702         MPI2DefaultReply_t *mpi_reply;
703         u16 ioc_status;
704         u32 loginfo = 0;
705
706         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
707         if (unlikely(!mpi_reply)) {
708                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
709                     ioc->name, __FILE__, __LINE__, __func__);
710                 return;
711         }
712         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
713 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
714         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
715             (ioc->logging_level & MPT_DEBUG_REPLY)) {
716                 _base_sas_ioc_info(ioc , mpi_reply,
717                    mpt3sas_base_get_msg_frame(ioc, smid));
718         }
719 #endif
720         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
721                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
722                 _base_sas_log_info(ioc, loginfo);
723         }
724
725         if (ioc_status || loginfo) {
726                 ioc_status &= MPI2_IOCSTATUS_MASK;
727                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
728         }
729 }
730
731 /**
732  * mpt3sas_base_done - base internal command completion routine
733  * @ioc: per adapter object
734  * @smid: system request message index
735  * @msix_index: MSIX table index supplied by the OS
736  * @reply: reply message frame(lower 32bit addr)
737  *
738  * Return 1 meaning mf should be freed from _base_interrupt
739  *        0 means the mf is freed from this function.
740  */
741 u8
742 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
743         u32 reply)
744 {
745         MPI2DefaultReply_t *mpi_reply;
746
747         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
748         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
749                 return 1;
750
751         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
752                 return 1;
753
754         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
755         if (mpi_reply) {
756                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
757                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
758         }
759         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
760
761         complete(&ioc->base_cmds.done);
762         return 1;
763 }
764
765 /**
766  * _base_async_event - main callback handler for firmware asyn events
767  * @ioc: per adapter object
768  * @msix_index: MSIX table index supplied by the OS
769  * @reply: reply message frame(lower 32bit addr)
770  *
771  * Return 1 meaning mf should be freed from _base_interrupt
772  *        0 means the mf is freed from this function.
773  */
774 static u8
775 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
776 {
777         Mpi2EventNotificationReply_t *mpi_reply;
778         Mpi2EventAckRequest_t *ack_request;
779         u16 smid;
780
781         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
782         if (!mpi_reply)
783                 return 1;
784         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
785                 return 1;
786 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
787         _base_display_event_data(ioc, mpi_reply);
788 #endif
789         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
790                 goto out;
791         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
792         if (!smid) {
793                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
794                     ioc->name, __func__);
795                 goto out;
796         }
797
798         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
799         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
800         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
801         ack_request->Event = mpi_reply->Event;
802         ack_request->EventContext = mpi_reply->EventContext;
803         ack_request->VF_ID = 0;  /* TODO */
804         ack_request->VP_ID = 0;
805         mpt3sas_base_put_smid_default(ioc, smid);
806
807  out:
808
809         /* scsih callback handler */
810         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
811
812         /* ctl callback handler */
813         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
814
815         return 1;
816 }
817
818 /**
819  * _base_get_cb_idx - obtain the callback index
820  * @ioc: per adapter object
821  * @smid: system request message index
822  *
823  * Return callback index.
824  */
825 static u8
826 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
827 {
828         int i;
829         u8 cb_idx;
830
831         if (smid < ioc->hi_priority_smid) {
832                 i = smid - 1;
833                 cb_idx = ioc->scsi_lookup[i].cb_idx;
834         } else if (smid < ioc->internal_smid) {
835                 i = smid - ioc->hi_priority_smid;
836                 cb_idx = ioc->hpr_lookup[i].cb_idx;
837         } else if (smid <= ioc->hba_queue_depth) {
838                 i = smid - ioc->internal_smid;
839                 cb_idx = ioc->internal_lookup[i].cb_idx;
840         } else
841                 cb_idx = 0xFF;
842         return cb_idx;
843 }
844
845 /**
846  * _base_mask_interrupts - disable interrupts
847  * @ioc: per adapter object
848  *
849  * Disabling ResetIRQ, Reply and Doorbell Interrupts
850  *
851  * Return nothing.
852  */
853 static void
854 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
855 {
856         u32 him_register;
857
858         ioc->mask_interrupts = 1;
859         him_register = readl(&ioc->chip->HostInterruptMask);
860         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
861         writel(him_register, &ioc->chip->HostInterruptMask);
862         readl(&ioc->chip->HostInterruptMask);
863 }
864
865 /**
866  * _base_unmask_interrupts - enable interrupts
867  * @ioc: per adapter object
868  *
869  * Enabling only Reply Interrupts
870  *
871  * Return nothing.
872  */
873 static void
874 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
875 {
876         u32 him_register;
877
878         him_register = readl(&ioc->chip->HostInterruptMask);
879         him_register &= ~MPI2_HIM_RIM;
880         writel(him_register, &ioc->chip->HostInterruptMask);
881         ioc->mask_interrupts = 0;
882 }
883
884 union reply_descriptor {
885         u64 word;
886         struct {
887                 u32 low;
888                 u32 high;
889         } u;
890 };
891
892 /**
893  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
894  * @irq: irq number (not used)
895  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
896  * @r: pt_regs pointer (not used)
897  *
898  * Return IRQ_HANDLE if processed, else IRQ_NONE.
899  */
900 static irqreturn_t
901 _base_interrupt(int irq, void *bus_id)
902 {
903         struct adapter_reply_queue *reply_q = bus_id;
904         union reply_descriptor rd;
905         u32 completed_cmds;
906         u8 request_desript_type;
907         u16 smid;
908         u8 cb_idx;
909         u32 reply;
910         u8 msix_index = reply_q->msix_index;
911         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
912         Mpi2ReplyDescriptorsUnion_t *rpf;
913         u8 rc;
914
915         if (ioc->mask_interrupts)
916                 return IRQ_NONE;
917
918         if (!atomic_add_unless(&reply_q->busy, 1, 1))
919                 return IRQ_NONE;
920
921         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
922         request_desript_type = rpf->Default.ReplyFlags
923              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
924         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
925                 atomic_dec(&reply_q->busy);
926                 return IRQ_NONE;
927         }
928
929         completed_cmds = 0;
930         cb_idx = 0xFF;
931         do {
932                 rd.word = le64_to_cpu(rpf->Words);
933                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
934                         goto out;
935                 reply = 0;
936                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
937                 if (request_desript_type ==
938                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
939                     request_desript_type ==
940                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
941                         cb_idx = _base_get_cb_idx(ioc, smid);
942                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
943                             (likely(mpt_callbacks[cb_idx] != NULL))) {
944                                 rc = mpt_callbacks[cb_idx](ioc, smid,
945                                     msix_index, 0);
946                                 if (rc)
947                                         mpt3sas_base_free_smid(ioc, smid);
948                         }
949                 } else if (request_desript_type ==
950                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
951                         reply = le32_to_cpu(
952                             rpf->AddressReply.ReplyFrameAddress);
953                         if (reply > ioc->reply_dma_max_address ||
954                             reply < ioc->reply_dma_min_address)
955                                 reply = 0;
956                         if (smid) {
957                                 cb_idx = _base_get_cb_idx(ioc, smid);
958                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
959                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
960                                         rc = mpt_callbacks[cb_idx](ioc, smid,
961                                             msix_index, reply);
962                                         if (reply)
963                                                 _base_display_reply_info(ioc,
964                                                     smid, msix_index, reply);
965                                         if (rc)
966                                                 mpt3sas_base_free_smid(ioc,
967                                                     smid);
968                                 }
969                         } else {
970                                 _base_async_event(ioc, msix_index, reply);
971                         }
972
973                         /* reply free queue handling */
974                         if (reply) {
975                                 ioc->reply_free_host_index =
976                                     (ioc->reply_free_host_index ==
977                                     (ioc->reply_free_queue_depth - 1)) ?
978                                     0 : ioc->reply_free_host_index + 1;
979                                 ioc->reply_free[ioc->reply_free_host_index] =
980                                     cpu_to_le32(reply);
981                                 wmb();
982                                 writel(ioc->reply_free_host_index,
983                                     &ioc->chip->ReplyFreeHostIndex);
984                         }
985                 }
986
987                 rpf->Words = cpu_to_le64(ULLONG_MAX);
988                 reply_q->reply_post_host_index =
989                     (reply_q->reply_post_host_index ==
990                     (ioc->reply_post_queue_depth - 1)) ? 0 :
991                     reply_q->reply_post_host_index + 1;
992                 request_desript_type =
993                     reply_q->reply_post_free[reply_q->reply_post_host_index].
994                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
995                 completed_cmds++;
996                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
997                         goto out;
998                 if (!reply_q->reply_post_host_index)
999                         rpf = reply_q->reply_post_free;
1000                 else
1001                         rpf++;
1002         } while (1);
1003
1004  out:
1005
1006         if (!completed_cmds) {
1007                 atomic_dec(&reply_q->busy);
1008                 return IRQ_NONE;
1009         }
1010
1011         wmb();
1012
1013         /* Update Reply Post Host Index.
1014          * For those HBA's which support combined reply queue feature
1015          * 1. Get the correct Supplemental Reply Post Host Index Register.
1016          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1017          *    Index Register address bank i.e replyPostRegisterIndex[],
1018          * 2. Then update this register with new reply host index value
1019          *    in ReplyPostIndex field and the MSIxIndex field with
1020          *    msix_index value reduced to a value between 0 and 7,
1021          *    using a modulo 8 operation. Since each Supplemental Reply Post
1022          *    Host Index Register supports 8 MSI-X vectors.
1023          *
1024          * For other HBA's just update the Reply Post Host Index register with
1025          * new reply host index value in ReplyPostIndex Field and msix_index
1026          * value in MSIxIndex field.
1027          */
1028         if (ioc->msix96_vector)
1029                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1030                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1031                         ioc->replyPostRegisterIndex[msix_index/8]);
1032         else
1033                 writel(reply_q->reply_post_host_index | (msix_index <<
1034                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1035                         &ioc->chip->ReplyPostHostIndex);
1036         atomic_dec(&reply_q->busy);
1037         return IRQ_HANDLED;
1038 }
1039
1040 /**
1041  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1042  * @ioc: per adapter object
1043  *
1044  */
1045 static inline int
1046 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1047 {
1048         return (ioc->facts.IOCCapabilities &
1049             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1050 }
1051
1052 /**
1053  * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1054  * @ioc: per adapter object
1055  * Context: ISR conext
1056  *
1057  * Called when a Task Management request has completed. We want
1058  * to flush the other reply queues so all the outstanding IO has been
1059  * completed back to OS before we process the TM completetion.
1060  *
1061  * Return nothing.
1062  */
1063 void
1064 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1065 {
1066         struct adapter_reply_queue *reply_q;
1067
1068         /* If MSIX capability is turned off
1069          * then multi-queues are not enabled
1070          */
1071         if (!_base_is_controller_msix_enabled(ioc))
1072                 return;
1073
1074         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1075                 if (ioc->shost_recovery)
1076                         return;
1077                 /* TMs are on msix_index == 0 */
1078                 if (reply_q->msix_index == 0)
1079                         continue;
1080                 _base_interrupt(reply_q->vector, (void *)reply_q);
1081         }
1082 }
1083
1084 /**
1085  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1086  * @cb_idx: callback index
1087  *
1088  * Return nothing.
1089  */
1090 void
1091 mpt3sas_base_release_callback_handler(u8 cb_idx)
1092 {
1093         mpt_callbacks[cb_idx] = NULL;
1094 }
1095
1096 /**
1097  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1098  * @cb_func: callback function
1099  *
1100  * Returns cb_func.
1101  */
1102 u8
1103 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1104 {
1105         u8 cb_idx;
1106
1107         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1108                 if (mpt_callbacks[cb_idx] == NULL)
1109                         break;
1110
1111         mpt_callbacks[cb_idx] = cb_func;
1112         return cb_idx;
1113 }
1114
1115 /**
1116  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1117  *
1118  * Return nothing.
1119  */
1120 void
1121 mpt3sas_base_initialize_callback_handler(void)
1122 {
1123         u8 cb_idx;
1124
1125         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1126                 mpt3sas_base_release_callback_handler(cb_idx);
1127 }
1128
1129
1130 /**
1131  * _base_build_zero_len_sge - build zero length sg entry
1132  * @ioc: per adapter object
1133  * @paddr: virtual address for SGE
1134  *
1135  * Create a zero length scatter gather entry to insure the IOCs hardware has
1136  * something to use if the target device goes brain dead and tries
1137  * to send data even when none is asked for.
1138  *
1139  * Return nothing.
1140  */
1141 static void
1142 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1143 {
1144         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1145             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1146             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1147             MPI2_SGE_FLAGS_SHIFT);
1148         ioc->base_add_sg_single(paddr, flags_length, -1);
1149 }
1150
1151 /**
1152  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1153  * @paddr: virtual address for SGE
1154  * @flags_length: SGE flags and data transfer length
1155  * @dma_addr: Physical address
1156  *
1157  * Return nothing.
1158  */
1159 static void
1160 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1161 {
1162         Mpi2SGESimple32_t *sgel = paddr;
1163
1164         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1165             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1166         sgel->FlagsLength = cpu_to_le32(flags_length);
1167         sgel->Address = cpu_to_le32(dma_addr);
1168 }
1169
1170
1171 /**
1172  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1173  * @paddr: virtual address for SGE
1174  * @flags_length: SGE flags and data transfer length
1175  * @dma_addr: Physical address
1176  *
1177  * Return nothing.
1178  */
1179 static void
1180 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1181 {
1182         Mpi2SGESimple64_t *sgel = paddr;
1183
1184         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1185             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1186         sgel->FlagsLength = cpu_to_le32(flags_length);
1187         sgel->Address = cpu_to_le64(dma_addr);
1188 }
1189
1190 /**
1191  * _base_get_chain_buffer_tracker - obtain chain tracker
1192  * @ioc: per adapter object
1193  * @smid: smid associated to an IO request
1194  *
1195  * Returns chain tracker(from ioc->free_chain_list)
1196  */
1197 static struct chain_tracker *
1198 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1199 {
1200         struct chain_tracker *chain_req;
1201         unsigned long flags;
1202
1203         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1204         if (list_empty(&ioc->free_chain_list)) {
1205                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1206                 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1207                         "chain buffers not available\n", ioc->name));
1208                 return NULL;
1209         }
1210         chain_req = list_entry(ioc->free_chain_list.next,
1211             struct chain_tracker, tracker_list);
1212         list_del_init(&chain_req->tracker_list);
1213         list_add_tail(&chain_req->tracker_list,
1214             &ioc->scsi_lookup[smid - 1].chain_list);
1215         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1216         return chain_req;
1217 }
1218
1219
1220 /**
1221  * _base_build_sg - build generic sg
1222  * @ioc: per adapter object
1223  * @psge: virtual address for SGE
1224  * @data_out_dma: physical address for WRITES
1225  * @data_out_sz: data xfer size for WRITES
1226  * @data_in_dma: physical address for READS
1227  * @data_in_sz: data xfer size for READS
1228  *
1229  * Return nothing.
1230  */
1231 static void
1232 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1233         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1234         size_t data_in_sz)
1235 {
1236         u32 sgl_flags;
1237
1238         if (!data_out_sz && !data_in_sz) {
1239                 _base_build_zero_len_sge(ioc, psge);
1240                 return;
1241         }
1242
1243         if (data_out_sz && data_in_sz) {
1244                 /* WRITE sgel first */
1245                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1246                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1247                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1248                 ioc->base_add_sg_single(psge, sgl_flags |
1249                     data_out_sz, data_out_dma);
1250
1251                 /* incr sgel */
1252                 psge += ioc->sge_size;
1253
1254                 /* READ sgel last */
1255                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1256                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1257                     MPI2_SGE_FLAGS_END_OF_LIST);
1258                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1259                 ioc->base_add_sg_single(psge, sgl_flags |
1260                     data_in_sz, data_in_dma);
1261         } else if (data_out_sz) /* WRITE */ {
1262                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1263                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1264                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1265                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1266                 ioc->base_add_sg_single(psge, sgl_flags |
1267                     data_out_sz, data_out_dma);
1268         } else if (data_in_sz) /* READ */ {
1269                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1270                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1271                     MPI2_SGE_FLAGS_END_OF_LIST);
1272                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1273                 ioc->base_add_sg_single(psge, sgl_flags |
1274                     data_in_sz, data_in_dma);
1275         }
1276 }
1277
1278 /* IEEE format sgls */
1279
1280 /**
1281  * _base_add_sg_single_ieee - add sg element for IEEE format
1282  * @paddr: virtual address for SGE
1283  * @flags: SGE flags
1284  * @chain_offset: number of 128 byte elements from start of segment
1285  * @length: data transfer length
1286  * @dma_addr: Physical address
1287  *
1288  * Return nothing.
1289  */
1290 static void
1291 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1292         dma_addr_t dma_addr)
1293 {
1294         Mpi25IeeeSgeChain64_t *sgel = paddr;
1295
1296         sgel->Flags = flags;
1297         sgel->NextChainOffset = chain_offset;
1298         sgel->Length = cpu_to_le32(length);
1299         sgel->Address = cpu_to_le64(dma_addr);
1300 }
1301
1302 /**
1303  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1304  * @ioc: per adapter object
1305  * @paddr: virtual address for SGE
1306  *
1307  * Create a zero length scatter gather entry to insure the IOCs hardware has
1308  * something to use if the target device goes brain dead and tries
1309  * to send data even when none is asked for.
1310  *
1311  * Return nothing.
1312  */
1313 static void
1314 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1315 {
1316         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1317                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1318                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1319         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1320 }
1321
1322 /**
1323  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1324  * @ioc: per adapter object
1325  * @scmd: scsi command
1326  * @smid: system request message index
1327  * Context: none.
1328  *
1329  * The main routine that builds scatter gather table from a given
1330  * scsi request sent via the .queuecommand main handler.
1331  *
1332  * Returns 0 success, anything else error
1333  */
1334 static int
1335 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1336         struct scsi_cmnd *scmd, u16 smid)
1337 {
1338         Mpi2SCSIIORequest_t *mpi_request;
1339         dma_addr_t chain_dma;
1340         struct scatterlist *sg_scmd;
1341         void *sg_local, *chain;
1342         u32 chain_offset;
1343         u32 chain_length;
1344         int sges_left;
1345         u32 sges_in_segment;
1346         u8 simple_sgl_flags;
1347         u8 simple_sgl_flags_last;
1348         u8 chain_sgl_flags;
1349         struct chain_tracker *chain_req;
1350
1351         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1352
1353         /* init scatter gather flags */
1354         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1355             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1356         simple_sgl_flags_last = simple_sgl_flags |
1357             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1358         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1359             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1360
1361         sg_scmd = scsi_sglist(scmd);
1362         sges_left = scsi_dma_map(scmd);
1363         if (!sges_left) {
1364                 sdev_printk(KERN_ERR, scmd->device,
1365                         "pci_map_sg failed: request for %d bytes!\n",
1366                         scsi_bufflen(scmd));
1367                 return -ENOMEM;
1368         }
1369
1370         sg_local = &mpi_request->SGL;
1371         sges_in_segment = (ioc->request_sz -
1372             offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1373         if (sges_left <= sges_in_segment)
1374                 goto fill_in_last_segment;
1375
1376         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1377             (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1378
1379         /* fill in main message segment when there is a chain following */
1380         while (sges_in_segment > 1) {
1381                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1382                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1383                 sg_scmd = sg_next(sg_scmd);
1384                 sg_local += ioc->sge_size_ieee;
1385                 sges_left--;
1386                 sges_in_segment--;
1387         }
1388
1389         /* initializing the pointers */
1390         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1391         if (!chain_req)
1392                 return -1;
1393         chain = chain_req->chain_buffer;
1394         chain_dma = chain_req->chain_buffer_dma;
1395         do {
1396                 sges_in_segment = (sges_left <=
1397                     ioc->max_sges_in_chain_message) ? sges_left :
1398                     ioc->max_sges_in_chain_message;
1399                 chain_offset = (sges_left == sges_in_segment) ?
1400                     0 : sges_in_segment;
1401                 chain_length = sges_in_segment * ioc->sge_size_ieee;
1402                 if (chain_offset)
1403                         chain_length += ioc->sge_size_ieee;
1404                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1405                     chain_offset, chain_length, chain_dma);
1406
1407                 sg_local = chain;
1408                 if (!chain_offset)
1409                         goto fill_in_last_segment;
1410
1411                 /* fill in chain segments */
1412                 while (sges_in_segment) {
1413                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1414                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1415                         sg_scmd = sg_next(sg_scmd);
1416                         sg_local += ioc->sge_size_ieee;
1417                         sges_left--;
1418                         sges_in_segment--;
1419                 }
1420
1421                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1422                 if (!chain_req)
1423                         return -1;
1424                 chain = chain_req->chain_buffer;
1425                 chain_dma = chain_req->chain_buffer_dma;
1426         } while (1);
1427
1428
1429  fill_in_last_segment:
1430
1431         /* fill the last segment */
1432         while (sges_left) {
1433                 if (sges_left == 1)
1434                         _base_add_sg_single_ieee(sg_local,
1435                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1436                             sg_dma_address(sg_scmd));
1437                 else
1438                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1439                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1440                 sg_scmd = sg_next(sg_scmd);
1441                 sg_local += ioc->sge_size_ieee;
1442                 sges_left--;
1443         }
1444
1445         return 0;
1446 }
1447
1448 /**
1449  * _base_build_sg_ieee - build generic sg for IEEE format
1450  * @ioc: per adapter object
1451  * @psge: virtual address for SGE
1452  * @data_out_dma: physical address for WRITES
1453  * @data_out_sz: data xfer size for WRITES
1454  * @data_in_dma: physical address for READS
1455  * @data_in_sz: data xfer size for READS
1456  *
1457  * Return nothing.
1458  */
1459 static void
1460 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1461         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1462         size_t data_in_sz)
1463 {
1464         u8 sgl_flags;
1465
1466         if (!data_out_sz && !data_in_sz) {
1467                 _base_build_zero_len_sge_ieee(ioc, psge);
1468                 return;
1469         }
1470
1471         if (data_out_sz && data_in_sz) {
1472                 /* WRITE sgel first */
1473                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1474                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1475                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1476                     data_out_dma);
1477
1478                 /* incr sgel */
1479                 psge += ioc->sge_size_ieee;
1480
1481                 /* READ sgel last */
1482                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1483                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1484                     data_in_dma);
1485         } else if (data_out_sz) /* WRITE */ {
1486                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1487                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1488                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1489                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1490                     data_out_dma);
1491         } else if (data_in_sz) /* READ */ {
1492                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1493                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1494                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1495                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1496                     data_in_dma);
1497         }
1498 }
1499
1500 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1501
1502 /**
1503  * _base_config_dma_addressing - set dma addressing
1504  * @ioc: per adapter object
1505  * @pdev: PCI device struct
1506  *
1507  * Returns 0 for success, non-zero for failure.
1508  */
1509 static int
1510 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1511 {
1512         struct sysinfo s;
1513         u64 consistent_dma_mask;
1514
1515         if (ioc->dma_mask)
1516                 consistent_dma_mask = DMA_BIT_MASK(64);
1517         else
1518                 consistent_dma_mask = DMA_BIT_MASK(32);
1519
1520         if (sizeof(dma_addr_t) > 4) {
1521                 const uint64_t required_mask =
1522                     dma_get_required_mask(&pdev->dev);
1523                 if ((required_mask > DMA_BIT_MASK(32)) &&
1524                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1525                     !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1526                         ioc->base_add_sg_single = &_base_add_sg_single_64;
1527                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1528                         ioc->dma_mask = 64;
1529                         goto out;
1530                 }
1531         }
1532
1533         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1534             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1535                 ioc->base_add_sg_single = &_base_add_sg_single_32;
1536                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1537                 ioc->dma_mask = 32;
1538         } else
1539                 return -ENODEV;
1540
1541  out:
1542         si_meminfo(&s);
1543         pr_info(MPT3SAS_FMT
1544                 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1545                 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1546
1547         return 0;
1548 }
1549
1550 static int
1551 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1552                                       struct pci_dev *pdev)
1553 {
1554         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1555                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1556                         return -ENODEV;
1557         }
1558         return 0;
1559 }
1560
1561 /**
1562  * _base_check_enable_msix - checks MSIX capabable.
1563  * @ioc: per adapter object
1564  *
1565  * Check to see if card is capable of MSIX, and set number
1566  * of available msix vectors
1567  */
1568 static int
1569 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1570 {
1571         int base;
1572         u16 message_control;
1573
1574         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1575         if (!base) {
1576                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1577                         ioc->name));
1578                 return -EINVAL;
1579         }
1580
1581         /* get msix vector count */
1582
1583         pci_read_config_word(ioc->pdev, base + 2, &message_control);
1584         ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1585         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1586                 "msix is supported, vector_count(%d)\n",
1587                 ioc->name, ioc->msix_vector_count));
1588         return 0;
1589 }
1590
1591 /**
1592  * _base_free_irq - free irq
1593  * @ioc: per adapter object
1594  *
1595  * Freeing respective reply_queue from the list.
1596  */
1597 static void
1598 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1599 {
1600         struct adapter_reply_queue *reply_q, *next;
1601
1602         if (list_empty(&ioc->reply_queue_list))
1603                 return;
1604
1605         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1606                 list_del(&reply_q->list);
1607                 irq_set_affinity_hint(reply_q->vector, NULL);
1608                 free_cpumask_var(reply_q->affinity_hint);
1609                 synchronize_irq(reply_q->vector);
1610                 free_irq(reply_q->vector, reply_q);
1611                 kfree(reply_q);
1612         }
1613 }
1614
1615 /**
1616  * _base_request_irq - request irq
1617  * @ioc: per adapter object
1618  * @index: msix index into vector table
1619  * @vector: irq vector
1620  *
1621  * Inserting respective reply_queue into the list.
1622  */
1623 static int
1624 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1625 {
1626         struct adapter_reply_queue *reply_q;
1627         int r;
1628
1629         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1630         if (!reply_q) {
1631                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1632                     ioc->name, (int)sizeof(struct adapter_reply_queue));
1633                 return -ENOMEM;
1634         }
1635         reply_q->ioc = ioc;
1636         reply_q->msix_index = index;
1637         reply_q->vector = vector;
1638
1639         if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL))
1640                 return -ENOMEM;
1641         cpumask_clear(reply_q->affinity_hint);
1642
1643         atomic_set(&reply_q->busy, 0);
1644         if (ioc->msix_enable)
1645                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1646                     MPT3SAS_DRIVER_NAME, ioc->id, index);
1647         else
1648                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1649                     MPT3SAS_DRIVER_NAME, ioc->id);
1650         r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1651             reply_q);
1652         if (r) {
1653                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1654                     reply_q->name, vector);
1655                 kfree(reply_q);
1656                 return -EBUSY;
1657         }
1658
1659         INIT_LIST_HEAD(&reply_q->list);
1660         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1661         return 0;
1662 }
1663
1664 /**
1665  * _base_assign_reply_queues - assigning msix index for each cpu
1666  * @ioc: per adapter object
1667  *
1668  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1669  *
1670  * It would nice if we could call irq_set_affinity, however it is not
1671  * an exported symbol
1672  */
1673 static void
1674 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1675 {
1676         unsigned int cpu, nr_cpus, nr_msix, index = 0;
1677         struct adapter_reply_queue *reply_q;
1678
1679         if (!_base_is_controller_msix_enabled(ioc))
1680                 return;
1681
1682         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1683
1684         nr_cpus = num_online_cpus();
1685         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1686                                                ioc->facts.MaxMSIxVectors);
1687         if (!nr_msix)
1688                 return;
1689
1690         cpu = cpumask_first(cpu_online_mask);
1691
1692         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1693
1694                 unsigned int i, group = nr_cpus / nr_msix;
1695
1696                 if (cpu >= nr_cpus)
1697                         break;
1698
1699                 if (index < nr_cpus % nr_msix)
1700                         group++;
1701
1702                 for (i = 0 ; i < group ; i++) {
1703                         ioc->cpu_msix_table[cpu] = index;
1704                         cpumask_or(reply_q->affinity_hint,
1705                                    reply_q->affinity_hint, get_cpu_mask(cpu));
1706                         cpu = cpumask_next(cpu, cpu_online_mask);
1707                 }
1708
1709                 if (irq_set_affinity_hint(reply_q->vector,
1710                                            reply_q->affinity_hint))
1711                         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1712                             "error setting affinity hint for irq vector %d\n",
1713                             ioc->name, reply_q->vector));
1714                 index++;
1715         }
1716 }
1717
1718 /**
1719  * _base_disable_msix - disables msix
1720  * @ioc: per adapter object
1721  *
1722  */
1723 static void
1724 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1725 {
1726         if (!ioc->msix_enable)
1727                 return;
1728         pci_disable_msix(ioc->pdev);
1729         ioc->msix_enable = 0;
1730 }
1731
1732 /**
1733  * _base_enable_msix - enables msix, failback to io_apic
1734  * @ioc: per adapter object
1735  *
1736  */
1737 static int
1738 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1739 {
1740         struct msix_entry *entries, *a;
1741         int r;
1742         int i;
1743         u8 try_msix = 0;
1744
1745         if (msix_disable == -1 || msix_disable == 0)
1746                 try_msix = 1;
1747
1748         if (!try_msix)
1749                 goto try_ioapic;
1750
1751         if (_base_check_enable_msix(ioc) != 0)
1752                 goto try_ioapic;
1753
1754         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1755             ioc->msix_vector_count);
1756
1757         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1758           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1759           ioc->cpu_count, max_msix_vectors);
1760
1761         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1762                 max_msix_vectors = 8;
1763
1764         if (max_msix_vectors > 0) {
1765                 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1766                         ioc->reply_queue_count);
1767                 ioc->msix_vector_count = ioc->reply_queue_count;
1768         } else if (max_msix_vectors == 0)
1769                 goto try_ioapic;
1770
1771         entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1772             GFP_KERNEL);
1773         if (!entries) {
1774                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1775                         "kcalloc failed @ at %s:%d/%s() !!!\n",
1776                         ioc->name, __FILE__, __LINE__, __func__));
1777                 goto try_ioapic;
1778         }
1779
1780         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1781                 a->entry = i;
1782
1783         r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
1784         if (r) {
1785                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1786                         "pci_enable_msix_exact failed (r=%d) !!!\n",
1787                         ioc->name, r));
1788                 kfree(entries);
1789                 goto try_ioapic;
1790         }
1791
1792         ioc->msix_enable = 1;
1793         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1794                 r = _base_request_irq(ioc, i, a->vector);
1795                 if (r) {
1796                         _base_free_irq(ioc);
1797                         _base_disable_msix(ioc);
1798                         kfree(entries);
1799                         goto try_ioapic;
1800                 }
1801         }
1802
1803         kfree(entries);
1804         return 0;
1805
1806 /* failback to io_apic interrupt routing */
1807  try_ioapic:
1808
1809         ioc->reply_queue_count = 1;
1810         r = _base_request_irq(ioc, 0, ioc->pdev->irq);
1811
1812         return r;
1813 }
1814
1815 /**
1816  * mpt3sas_base_unmap_resources - free controller resources
1817  * @ioc: per adapter object
1818  */
1819 void
1820 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
1821 {
1822         struct pci_dev *pdev = ioc->pdev;
1823
1824         dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
1825                 ioc->name, __func__));
1826
1827         _base_free_irq(ioc);
1828         _base_disable_msix(ioc);
1829
1830         if (ioc->msix96_vector)
1831                 kfree(ioc->replyPostRegisterIndex);
1832
1833         if (ioc->chip_phys) {
1834                 iounmap(ioc->chip);
1835                 ioc->chip_phys = 0;
1836         }
1837
1838         if (pci_is_enabled(pdev)) {
1839                 pci_release_selected_regions(ioc->pdev, ioc->bars);
1840                 pci_disable_pcie_error_reporting(pdev);
1841                 pci_disable_device(pdev);
1842         }
1843 }
1844
1845 /**
1846  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
1847  * @ioc: per adapter object
1848  *
1849  * Returns 0 for success, non-zero for failure.
1850  */
1851 int
1852 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
1853 {
1854         struct pci_dev *pdev = ioc->pdev;
1855         u32 memap_sz;
1856         u32 pio_sz;
1857         int i, r = 0;
1858         u64 pio_chip = 0;
1859         u64 chip_phys = 0;
1860         struct adapter_reply_queue *reply_q;
1861
1862         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
1863             ioc->name, __func__));
1864
1865         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
1866         if (pci_enable_device_mem(pdev)) {
1867                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
1868                         ioc->name);
1869                 ioc->bars = 0;
1870                 return -ENODEV;
1871         }
1872
1873
1874         if (pci_request_selected_regions(pdev, ioc->bars,
1875             MPT3SAS_DRIVER_NAME)) {
1876                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
1877                         ioc->name);
1878                 ioc->bars = 0;
1879                 r = -ENODEV;
1880                 goto out_fail;
1881         }
1882
1883 /* AER (Advanced Error Reporting) hooks */
1884         pci_enable_pcie_error_reporting(pdev);
1885
1886         pci_set_master(pdev);
1887
1888
1889         if (_base_config_dma_addressing(ioc, pdev) != 0) {
1890                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
1891                     ioc->name, pci_name(pdev));
1892                 r = -ENODEV;
1893                 goto out_fail;
1894         }
1895
1896         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
1897              (!memap_sz || !pio_sz); i++) {
1898                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1899                         if (pio_sz)
1900                                 continue;
1901                         pio_chip = (u64)pci_resource_start(pdev, i);
1902                         pio_sz = pci_resource_len(pdev, i);
1903                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
1904                         if (memap_sz)
1905                                 continue;
1906                         ioc->chip_phys = pci_resource_start(pdev, i);
1907                         chip_phys = (u64)ioc->chip_phys;
1908                         memap_sz = pci_resource_len(pdev, i);
1909                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
1910                 }
1911         }
1912
1913         if (ioc->chip == NULL) {
1914                 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
1915                         " or resource not found\n", ioc->name);
1916                 r = -EINVAL;
1917                 goto out_fail;
1918         }
1919
1920         _base_mask_interrupts(ioc);
1921
1922         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
1923         if (r)
1924                 goto out_fail;
1925
1926         if (!ioc->rdpq_array_enable_assigned) {
1927                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
1928                 ioc->rdpq_array_enable_assigned = 1;
1929         }
1930
1931         r = _base_enable_msix(ioc);
1932         if (r)
1933                 goto out_fail;
1934
1935         /* Use the Combined reply queue feature only for SAS3 C0 & higher
1936          * revision HBAs and also only when reply queue count is greater than 8
1937          */
1938         if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
1939                 /* Determine the Supplemental Reply Post Host Index Registers
1940                  * Addresse. Supplemental Reply Post Host Index Registers
1941                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
1942                  * each register is at offset bytes of
1943                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
1944                  */
1945                 ioc->replyPostRegisterIndex = kcalloc(
1946                      MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
1947                      sizeof(resource_size_t *), GFP_KERNEL);
1948                 if (!ioc->replyPostRegisterIndex) {
1949                         dfailprintk(ioc, printk(MPT3SAS_FMT
1950                         "allocation for reply Post Register Index failed!!!\n",
1951                                                                    ioc->name));
1952                         r = -ENOMEM;
1953                         goto out_fail;
1954                 }
1955
1956                 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
1957                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
1958                              ((u8 *)&ioc->chip->Doorbell +
1959                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
1960                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
1961                 }
1962         } else
1963                 ioc->msix96_vector = 0;
1964
1965         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
1966                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
1967                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
1968                     "IO-APIC enabled"), reply_q->vector);
1969
1970         pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1971             ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
1972         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
1973             ioc->name, (unsigned long long)pio_chip, pio_sz);
1974
1975         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
1976         pci_save_state(pdev);
1977         return 0;
1978
1979  out_fail:
1980         mpt3sas_base_unmap_resources(ioc);
1981         return r;
1982 }
1983
1984 /**
1985  * mpt3sas_base_get_msg_frame - obtain request mf pointer
1986  * @ioc: per adapter object
1987  * @smid: system request message index(smid zero is invalid)
1988  *
1989  * Returns virt pointer to message frame.
1990  */
1991 void *
1992 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1993 {
1994         return (void *)(ioc->request + (smid * ioc->request_sz));
1995 }
1996
1997 /**
1998  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
1999  * @ioc: per adapter object
2000  * @smid: system request message index
2001  *
2002  * Returns virt pointer to sense buffer.
2003  */
2004 void *
2005 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2006 {
2007         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2008 }
2009
2010 /**
2011  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2012  * @ioc: per adapter object
2013  * @smid: system request message index
2014  *
2015  * Returns phys pointer to the low 32bit address of the sense buffer.
2016  */
2017 __le32
2018 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2019 {
2020         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2021             SCSI_SENSE_BUFFERSIZE));
2022 }
2023
2024 /**
2025  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2026  * @ioc: per adapter object
2027  * @phys_addr: lower 32 physical addr of the reply
2028  *
2029  * Converts 32bit lower physical addr into a virt address.
2030  */
2031 void *
2032 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2033 {
2034         if (!phys_addr)
2035                 return NULL;
2036         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2037 }
2038
2039 /**
2040  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2041  * @ioc: per adapter object
2042  * @cb_idx: callback index
2043  *
2044  * Returns smid (zero is invalid)
2045  */
2046 u16
2047 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2048 {
2049         unsigned long flags;
2050         struct request_tracker *request;
2051         u16 smid;
2052
2053         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2054         if (list_empty(&ioc->internal_free_list)) {
2055                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2056                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2057                     ioc->name, __func__);
2058                 return 0;
2059         }
2060
2061         request = list_entry(ioc->internal_free_list.next,
2062             struct request_tracker, tracker_list);
2063         request->cb_idx = cb_idx;
2064         smid = request->smid;
2065         list_del(&request->tracker_list);
2066         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2067         return smid;
2068 }
2069
2070 /**
2071  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2072  * @ioc: per adapter object
2073  * @cb_idx: callback index
2074  * @scmd: pointer to scsi command object
2075  *
2076  * Returns smid (zero is invalid)
2077  */
2078 u16
2079 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2080         struct scsi_cmnd *scmd)
2081 {
2082         unsigned long flags;
2083         struct scsiio_tracker *request;
2084         u16 smid;
2085
2086         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2087         if (list_empty(&ioc->free_list)) {
2088                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2089                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2090                     ioc->name, __func__);
2091                 return 0;
2092         }
2093
2094         request = list_entry(ioc->free_list.next,
2095             struct scsiio_tracker, tracker_list);
2096         request->scmd = scmd;
2097         request->cb_idx = cb_idx;
2098         smid = request->smid;
2099         list_del(&request->tracker_list);
2100         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2101         return smid;
2102 }
2103
2104 /**
2105  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2106  * @ioc: per adapter object
2107  * @cb_idx: callback index
2108  *
2109  * Returns smid (zero is invalid)
2110  */
2111 u16
2112 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2113 {
2114         unsigned long flags;
2115         struct request_tracker *request;
2116         u16 smid;
2117
2118         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2119         if (list_empty(&ioc->hpr_free_list)) {
2120                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2121                 return 0;
2122         }
2123
2124         request = list_entry(ioc->hpr_free_list.next,
2125             struct request_tracker, tracker_list);
2126         request->cb_idx = cb_idx;
2127         smid = request->smid;
2128         list_del(&request->tracker_list);
2129         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2130         return smid;
2131 }
2132
2133 /**
2134  * mpt3sas_base_free_smid - put smid back on free_list
2135  * @ioc: per adapter object
2136  * @smid: system request message index
2137  *
2138  * Return nothing.
2139  */
2140 void
2141 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2142 {
2143         unsigned long flags;
2144         int i;
2145         struct chain_tracker *chain_req, *next;
2146
2147         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2148         if (smid < ioc->hi_priority_smid) {
2149                 /* scsiio queue */
2150                 i = smid - 1;
2151                 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2152                         list_for_each_entry_safe(chain_req, next,
2153                             &ioc->scsi_lookup[i].chain_list, tracker_list) {
2154                                 list_del_init(&chain_req->tracker_list);
2155                                 list_add(&chain_req->tracker_list,
2156                                     &ioc->free_chain_list);
2157                         }
2158                 }
2159                 ioc->scsi_lookup[i].cb_idx = 0xFF;
2160                 ioc->scsi_lookup[i].scmd = NULL;
2161                 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2162                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2163
2164                 /*
2165                  * See _wait_for_commands_to_complete() call with regards
2166                  * to this code.
2167                  */
2168                 if (ioc->shost_recovery && ioc->pending_io_count) {
2169                         if (ioc->pending_io_count == 1)
2170                                 wake_up(&ioc->reset_wq);
2171                         ioc->pending_io_count--;
2172                 }
2173                 return;
2174         } else if (smid < ioc->internal_smid) {
2175                 /* hi-priority */
2176                 i = smid - ioc->hi_priority_smid;
2177                 ioc->hpr_lookup[i].cb_idx = 0xFF;
2178                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2179         } else if (smid <= ioc->hba_queue_depth) {
2180                 /* internal queue */
2181                 i = smid - ioc->internal_smid;
2182                 ioc->internal_lookup[i].cb_idx = 0xFF;
2183                 list_add(&ioc->internal_lookup[i].tracker_list,
2184                     &ioc->internal_free_list);
2185         }
2186         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2187 }
2188
2189 /**
2190  * _base_writeq - 64 bit write to MMIO
2191  * @ioc: per adapter object
2192  * @b: data payload
2193  * @addr: address in MMIO space
2194  * @writeq_lock: spin lock
2195  *
2196  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2197  * care of 32 bit environment where its not quarenteed to send the entire word
2198  * in one transfer.
2199  */
2200 #if defined(writeq) && defined(CONFIG_64BIT)
2201 static inline void
2202 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2203 {
2204         writeq(cpu_to_le64(b), addr);
2205 }
2206 #else
2207 static inline void
2208 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2209 {
2210         unsigned long flags;
2211         __u64 data_out = cpu_to_le64(b);
2212
2213         spin_lock_irqsave(writeq_lock, flags);
2214         writel((u32)(data_out), addr);
2215         writel((u32)(data_out >> 32), (addr + 4));
2216         spin_unlock_irqrestore(writeq_lock, flags);
2217 }
2218 #endif
2219
2220 static inline u8
2221 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2222 {
2223         return ioc->cpu_msix_table[raw_smp_processor_id()];
2224 }
2225
2226 /**
2227  * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2228  * @ioc: per adapter object
2229  * @smid: system request message index
2230  * @handle: device handle
2231  *
2232  * Return nothing.
2233  */
2234 void
2235 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2236 {
2237         Mpi2RequestDescriptorUnion_t descriptor;
2238         u64 *request = (u64 *)&descriptor;
2239
2240
2241         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2242         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2243         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2244         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2245         descriptor.SCSIIO.LMID = 0;
2246         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2247             &ioc->scsi_lookup_lock);
2248 }
2249
2250 /**
2251  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2252  * @ioc: per adapter object
2253  * @smid: system request message index
2254  * @handle: device handle
2255  *
2256  * Return nothing.
2257  */
2258 void
2259 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2260         u16 handle)
2261 {
2262         Mpi2RequestDescriptorUnion_t descriptor;
2263         u64 *request = (u64 *)&descriptor;
2264
2265         descriptor.SCSIIO.RequestFlags =
2266             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2267         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2268         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2269         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2270         descriptor.SCSIIO.LMID = 0;
2271         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2272             &ioc->scsi_lookup_lock);
2273 }
2274
2275 /**
2276  * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2277  * @ioc: per adapter object
2278  * @smid: system request message index
2279  *
2280  * Return nothing.
2281  */
2282 void
2283 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2284 {
2285         Mpi2RequestDescriptorUnion_t descriptor;
2286         u64 *request = (u64 *)&descriptor;
2287
2288         descriptor.HighPriority.RequestFlags =
2289             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2290         descriptor.HighPriority.MSIxIndex =  0;
2291         descriptor.HighPriority.SMID = cpu_to_le16(smid);
2292         descriptor.HighPriority.LMID = 0;
2293         descriptor.HighPriority.Reserved1 = 0;
2294         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2295             &ioc->scsi_lookup_lock);
2296 }
2297
2298 /**
2299  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2300  * @ioc: per adapter object
2301  * @smid: system request message index
2302  *
2303  * Return nothing.
2304  */
2305 void
2306 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2307 {
2308         Mpi2RequestDescriptorUnion_t descriptor;
2309         u64 *request = (u64 *)&descriptor;
2310
2311         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2312         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2313         descriptor.Default.SMID = cpu_to_le16(smid);
2314         descriptor.Default.LMID = 0;
2315         descriptor.Default.DescriptorTypeDependent = 0;
2316         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2317             &ioc->scsi_lookup_lock);
2318 }
2319
2320 /**
2321  * _base_display_intel_branding - Display branding string
2322  * @ioc: per adapter object
2323  *
2324  * Return nothing.
2325  */
2326 static void
2327 _base_display_intel_branding(struct MPT3SAS_ADAPTER *ioc)
2328 {
2329         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2330                 return;
2331
2332         switch (ioc->pdev->device) {
2333         case MPI25_MFGPAGE_DEVID_SAS3008:
2334                 switch (ioc->pdev->subsystem_device) {
2335                 case MPT3SAS_INTEL_RMS3JC080_SSDID:
2336                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2337                                 MPT3SAS_INTEL_RMS3JC080_BRANDING);
2338                         break;
2339
2340                 case MPT3SAS_INTEL_RS3GC008_SSDID:
2341                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2342                                 MPT3SAS_INTEL_RS3GC008_BRANDING);
2343                         break;
2344                 case MPT3SAS_INTEL_RS3FC044_SSDID:
2345                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2346                                 MPT3SAS_INTEL_RS3FC044_BRANDING);
2347                         break;
2348                 case MPT3SAS_INTEL_RS3UC080_SSDID:
2349                         pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2350                                 MPT3SAS_INTEL_RS3UC080_BRANDING);
2351                         break;
2352                 default:
2353                         pr_info(MPT3SAS_FMT
2354                                 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2355                                 ioc->name, ioc->pdev->subsystem_device);
2356                         break;
2357                 }
2358                 break;
2359         default:
2360                 pr_info(MPT3SAS_FMT
2361                         "Intel(R) Controller: Subsystem ID: 0x%X\n",
2362                         ioc->name, ioc->pdev->subsystem_device);
2363                 break;
2364         }
2365 }
2366
2367
2368
2369 /**
2370  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2371  * @ioc: per adapter object
2372  *
2373  * Return nothing.
2374  */
2375 static void
2376 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2377 {
2378         int i = 0;
2379         char desc[16];
2380         u32 iounit_pg1_flags;
2381         u32 bios_version;
2382
2383         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2384         strncpy(desc, ioc->manu_pg0.ChipName, 16);
2385         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2386            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2387             ioc->name, desc,
2388            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2389            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2390            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2391            ioc->facts.FWVersion.Word & 0x000000FF,
2392            ioc->pdev->revision,
2393            (bios_version & 0xFF000000) >> 24,
2394            (bios_version & 0x00FF0000) >> 16,
2395            (bios_version & 0x0000FF00) >> 8,
2396             bios_version & 0x000000FF);
2397
2398         _base_display_intel_branding(ioc);
2399
2400         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2401
2402         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2403                 pr_info("Initiator");
2404                 i++;
2405         }
2406
2407         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2408                 pr_info("%sTarget", i ? "," : "");
2409                 i++;
2410         }
2411
2412         i = 0;
2413         pr_info("), ");
2414         pr_info("Capabilities=(");
2415
2416         if (ioc->facts.IOCCapabilities &
2417                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2418                         pr_info("Raid");
2419                         i++;
2420         }
2421
2422         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2423                 pr_info("%sTLR", i ? "," : "");
2424                 i++;
2425         }
2426
2427         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2428                 pr_info("%sMulticast", i ? "," : "");
2429                 i++;
2430         }
2431
2432         if (ioc->facts.IOCCapabilities &
2433             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2434                 pr_info("%sBIDI Target", i ? "," : "");
2435                 i++;
2436         }
2437
2438         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2439                 pr_info("%sEEDP", i ? "," : "");
2440                 i++;
2441         }
2442
2443         if (ioc->facts.IOCCapabilities &
2444             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2445                 pr_info("%sSnapshot Buffer", i ? "," : "");
2446                 i++;
2447         }
2448
2449         if (ioc->facts.IOCCapabilities &
2450             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2451                 pr_info("%sDiag Trace Buffer", i ? "," : "");
2452                 i++;
2453         }
2454
2455         if (ioc->facts.IOCCapabilities &
2456             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2457                 pr_info("%sDiag Extended Buffer", i ? "," : "");
2458                 i++;
2459         }
2460
2461         if (ioc->facts.IOCCapabilities &
2462             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2463                 pr_info("%sTask Set Full", i ? "," : "");
2464                 i++;
2465         }
2466
2467         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2468         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2469                 pr_info("%sNCQ", i ? "," : "");
2470                 i++;
2471         }
2472
2473         pr_info(")\n");
2474 }
2475
2476 /**
2477  * mpt3sas_base_update_missing_delay - change the missing delay timers
2478  * @ioc: per adapter object
2479  * @device_missing_delay: amount of time till device is reported missing
2480  * @io_missing_delay: interval IO is returned when there is a missing device
2481  *
2482  * Return nothing.
2483  *
2484  * Passed on the command line, this function will modify the device missing
2485  * delay, as well as the io missing delay. This should be called at driver
2486  * load time.
2487  */
2488 void
2489 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2490         u16 device_missing_delay, u8 io_missing_delay)
2491 {
2492         u16 dmd, dmd_new, dmd_orignal;
2493         u8 io_missing_delay_original;
2494         u16 sz;
2495         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2496         Mpi2ConfigReply_t mpi_reply;
2497         u8 num_phys = 0;
2498         u16 ioc_status;
2499
2500         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2501         if (!num_phys)
2502                 return;
2503
2504         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2505             sizeof(Mpi2SasIOUnit1PhyData_t));
2506         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2507         if (!sas_iounit_pg1) {
2508                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2509                     ioc->name, __FILE__, __LINE__, __func__);
2510                 goto out;
2511         }
2512         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2513             sas_iounit_pg1, sz))) {
2514                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2515                     ioc->name, __FILE__, __LINE__, __func__);
2516                 goto out;
2517         }
2518         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2519             MPI2_IOCSTATUS_MASK;
2520         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2521                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2522                     ioc->name, __FILE__, __LINE__, __func__);
2523                 goto out;
2524         }
2525
2526         /* device missing delay */
2527         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2528         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2529                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2530         else
2531                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2532         dmd_orignal = dmd;
2533         if (device_missing_delay > 0x7F) {
2534                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2535                     device_missing_delay;
2536                 dmd = dmd / 16;
2537                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2538         } else
2539                 dmd = device_missing_delay;
2540         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2541
2542         /* io missing delay */
2543         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2544         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2545
2546         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2547             sz)) {
2548                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2549                         dmd_new = (dmd &
2550                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2551                 else
2552                         dmd_new =
2553                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2554                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2555                         ioc->name, dmd_orignal, dmd_new);
2556                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2557                         ioc->name, io_missing_delay_original,
2558                     io_missing_delay);
2559                 ioc->device_missing_delay = dmd_new;
2560                 ioc->io_missing_delay = io_missing_delay;
2561         }
2562
2563 out:
2564         kfree(sas_iounit_pg1);
2565 }
2566 /**
2567  * _base_static_config_pages - static start of day config pages
2568  * @ioc: per adapter object
2569  *
2570  * Return nothing.
2571  */
2572 static void
2573 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2574 {
2575         Mpi2ConfigReply_t mpi_reply;
2576         u32 iounit_pg1_flags;
2577
2578         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2579         if (ioc->ir_firmware)
2580                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2581                     &ioc->manu_pg10);
2582
2583         /*
2584          * Ensure correct T10 PI operation if vendor left EEDPTagMode
2585          * flag unset in NVDATA.
2586          */
2587         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2588         if (ioc->manu_pg11.EEDPTagMode == 0) {
2589                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2590                     ioc->name);
2591                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
2592                 ioc->manu_pg11.EEDPTagMode |= 0x1;
2593                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
2594                     &ioc->manu_pg11);
2595         }
2596
2597         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
2598         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
2599         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
2600         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
2601         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2602         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
2603         _base_display_ioc_capabilities(ioc);
2604
2605         /*
2606          * Enable task_set_full handling in iounit_pg1 when the
2607          * facts capabilities indicate that its supported.
2608          */
2609         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2610         if ((ioc->facts.IOCCapabilities &
2611             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
2612                 iounit_pg1_flags &=
2613                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2614         else
2615                 iounit_pg1_flags |=
2616                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2617         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
2618         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2619
2620         if (ioc->iounit_pg8.NumSensors)
2621                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
2622 }
2623
2624 /**
2625  * _base_release_memory_pools - release memory
2626  * @ioc: per adapter object
2627  *
2628  * Free memory allocated from _base_allocate_memory_pools.
2629  *
2630  * Return nothing.
2631  */
2632 static void
2633 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
2634 {
2635         int i = 0;
2636         struct reply_post_struct *rps;
2637
2638         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2639             __func__));
2640
2641         if (ioc->request) {
2642                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
2643                     ioc->request,  ioc->request_dma);
2644                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2645                         "request_pool(0x%p): free\n",
2646                         ioc->name, ioc->request));
2647                 ioc->request = NULL;
2648         }
2649
2650         if (ioc->sense) {
2651                 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
2652                 if (ioc->sense_dma_pool)
2653                         pci_pool_destroy(ioc->sense_dma_pool);
2654                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2655                         "sense_pool(0x%p): free\n",
2656                         ioc->name, ioc->sense));
2657                 ioc->sense = NULL;
2658         }
2659
2660         if (ioc->reply) {
2661                 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
2662                 if (ioc->reply_dma_pool)
2663                         pci_pool_destroy(ioc->reply_dma_pool);
2664                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2665                         "reply_pool(0x%p): free\n",
2666                         ioc->name, ioc->reply));
2667                 ioc->reply = NULL;
2668         }
2669
2670         if (ioc->reply_free) {
2671                 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
2672                     ioc->reply_free_dma);
2673                 if (ioc->reply_free_dma_pool)
2674                         pci_pool_destroy(ioc->reply_free_dma_pool);
2675                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2676                         "reply_free_pool(0x%p): free\n",
2677                         ioc->name, ioc->reply_free));
2678                 ioc->reply_free = NULL;
2679         }
2680
2681         if (ioc->reply_post) {
2682                 do {
2683                         rps = &ioc->reply_post[i];
2684                         if (rps->reply_post_free) {
2685                                 pci_pool_free(
2686                                     ioc->reply_post_free_dma_pool,
2687                                     rps->reply_post_free,
2688                                     rps->reply_post_free_dma);
2689                                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2690                                     "reply_post_free_pool(0x%p): free\n",
2691                                     ioc->name, rps->reply_post_free));
2692                                 rps->reply_post_free = NULL;
2693                         }
2694                 } while (ioc->rdpq_array_enable &&
2695                            (++i < ioc->reply_queue_count));
2696
2697                 if (ioc->reply_post_free_dma_pool)
2698                         pci_pool_destroy(ioc->reply_post_free_dma_pool);
2699                 kfree(ioc->reply_post);
2700         }
2701
2702         if (ioc->config_page) {
2703                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2704                     "config_page(0x%p): free\n", ioc->name,
2705                     ioc->config_page));
2706                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
2707                     ioc->config_page, ioc->config_page_dma);
2708         }
2709
2710         if (ioc->scsi_lookup) {
2711                 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
2712                 ioc->scsi_lookup = NULL;
2713         }
2714         kfree(ioc->hpr_lookup);
2715         kfree(ioc->internal_lookup);
2716         if (ioc->chain_lookup) {
2717                 for (i = 0; i < ioc->chain_depth; i++) {
2718                         if (ioc->chain_lookup[i].chain_buffer)
2719                                 pci_pool_free(ioc->chain_dma_pool,
2720                                     ioc->chain_lookup[i].chain_buffer,
2721                                     ioc->chain_lookup[i].chain_buffer_dma);
2722                 }
2723                 if (ioc->chain_dma_pool)
2724                         pci_pool_destroy(ioc->chain_dma_pool);
2725                 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
2726                 ioc->chain_lookup = NULL;
2727         }
2728 }
2729
2730 /**
2731  * _base_allocate_memory_pools - allocate start of day memory pools
2732  * @ioc: per adapter object
2733  * @sleep_flag: CAN_SLEEP or NO_SLEEP
2734  *
2735  * Returns 0 success, anything else error
2736  */
2737 static int
2738 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc,  int sleep_flag)
2739 {
2740         struct mpt3sas_facts *facts;
2741         u16 max_sge_elements;
2742         u16 chains_needed_per_io;
2743         u32 sz, total_sz, reply_post_free_sz;
2744         u32 retry_sz;
2745         u16 max_request_credit;
2746         unsigned short sg_tablesize;
2747         u16 sge_size;
2748         int i;
2749
2750         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2751             __func__));
2752
2753
2754         retry_sz = 0;
2755         facts = &ioc->facts;
2756
2757         /* command line tunables for max sgl entries */
2758         if (max_sgl_entries != -1)
2759                 sg_tablesize = max_sgl_entries;
2760         else
2761                 sg_tablesize = MPT3SAS_SG_DEPTH;
2762
2763         if (sg_tablesize < MPT3SAS_MIN_PHYS_SEGMENTS)
2764                 sg_tablesize = MPT3SAS_MIN_PHYS_SEGMENTS;
2765         else if (sg_tablesize > MPT3SAS_MAX_PHYS_SEGMENTS) {
2766                 sg_tablesize = min_t(unsigned short, sg_tablesize,
2767                                       SCSI_MAX_SG_CHAIN_SEGMENTS);
2768                 pr_warn(MPT3SAS_FMT
2769                  "sg_tablesize(%u) is bigger than kernel"
2770                  " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
2771                  sg_tablesize, MPT3SAS_MAX_PHYS_SEGMENTS);
2772         }
2773         ioc->shost->sg_tablesize = sg_tablesize;
2774
2775         ioc->hi_priority_depth = facts->HighPriorityCredit;
2776         ioc->internal_depth = ioc->hi_priority_depth + (5);
2777         /* command line tunables  for max controller queue depth */
2778         if (max_queue_depth != -1 && max_queue_depth != 0) {
2779                 max_request_credit = min_t(u16, max_queue_depth +
2780                     ioc->hi_priority_depth + ioc->internal_depth,
2781                     facts->RequestCredit);
2782                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
2783                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
2784         } else
2785                 max_request_credit = min_t(u16, facts->RequestCredit,
2786                     MAX_HBA_QUEUE_DEPTH);
2787
2788         ioc->hba_queue_depth = max_request_credit;
2789
2790         /* request frame size */
2791         ioc->request_sz = facts->IOCRequestFrameSize * 4;
2792
2793         /* reply frame size */
2794         ioc->reply_sz = facts->ReplyFrameSize * 4;
2795
2796         /* calculate the max scatter element size */
2797         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
2798
2799  retry_allocation:
2800         total_sz = 0;
2801         /* calculate number of sg elements left over in the 1st frame */
2802         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
2803             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
2804         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
2805
2806         /* now do the same for a chain buffer */
2807         max_sge_elements = ioc->request_sz - sge_size;
2808         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
2809
2810         /*
2811          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2812          */
2813         chains_needed_per_io = ((ioc->shost->sg_tablesize -
2814            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
2815             + 1;
2816         if (chains_needed_per_io > facts->MaxChainDepth) {
2817                 chains_needed_per_io = facts->MaxChainDepth;
2818                 ioc->shost->sg_tablesize = min_t(u16,
2819                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
2820                 * chains_needed_per_io), ioc->shost->sg_tablesize);
2821         }
2822         ioc->chains_needed_per_io = chains_needed_per_io;
2823
2824         /* reply free queue sizing - taking into account for 64 FW events */
2825         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2826
2827         /* calculate reply descriptor post queue depth */
2828         ioc->reply_post_queue_depth = ioc->hba_queue_depth +
2829                                 ioc->reply_free_queue_depth +  1 ;
2830         /* align the reply post queue on the next 16 count boundary */
2831         if (ioc->reply_post_queue_depth % 16)
2832                 ioc->reply_post_queue_depth += 16 -
2833                 (ioc->reply_post_queue_depth % 16);
2834
2835
2836         if (ioc->reply_post_queue_depth >
2837             facts->MaxReplyDescriptorPostQueueDepth) {
2838                 ioc->reply_post_queue_depth =
2839                                 facts->MaxReplyDescriptorPostQueueDepth -
2840                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
2841                 ioc->hba_queue_depth =
2842                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
2843                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2844         }
2845
2846         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
2847             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2848             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
2849             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
2850             ioc->chains_needed_per_io));
2851
2852         /* reply post queue, 16 byte align */
2853         reply_post_free_sz = ioc->reply_post_queue_depth *
2854             sizeof(Mpi2DefaultReplyDescriptor_t);
2855
2856         sz = reply_post_free_sz;
2857         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
2858                 sz *= ioc->reply_queue_count;
2859
2860         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
2861             (ioc->reply_queue_count):1,
2862             sizeof(struct reply_post_struct), GFP_KERNEL);
2863
2864         if (!ioc->reply_post) {
2865                 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
2866                         ioc->name);
2867                 goto out;
2868         }
2869         ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
2870             ioc->pdev, sz, 16, 0);
2871         if (!ioc->reply_post_free_dma_pool) {
2872                 pr_err(MPT3SAS_FMT
2873                  "reply_post_free pool: pci_pool_create failed\n",
2874                  ioc->name);
2875                 goto out;
2876         }
2877         i = 0;
2878         do {
2879                 ioc->reply_post[i].reply_post_free =
2880                     pci_pool_alloc(ioc->reply_post_free_dma_pool,
2881                     GFP_KERNEL,
2882                     &ioc->reply_post[i].reply_post_free_dma);
2883                 if (!ioc->reply_post[i].reply_post_free) {
2884                         pr_err(MPT3SAS_FMT
2885                         "reply_post_free pool: pci_pool_alloc failed\n",
2886                         ioc->name);
2887                         goto out;
2888                 }
2889                 memset(ioc->reply_post[i].reply_post_free, 0, sz);
2890                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2891                     "reply post free pool (0x%p): depth(%d),"
2892                     "element_size(%d), pool_size(%d kB)\n", ioc->name,
2893                     ioc->reply_post[i].reply_post_free,
2894                     ioc->reply_post_queue_depth, 8, sz/1024));
2895                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2896                     "reply_post_free_dma = (0x%llx)\n", ioc->name,
2897                     (unsigned long long)
2898                     ioc->reply_post[i].reply_post_free_dma));
2899                 total_sz += sz;
2900         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
2901
2902         if (ioc->dma_mask == 64) {
2903                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
2904                         pr_warn(MPT3SAS_FMT
2905                             "no suitable consistent DMA mask for %s\n",
2906                             ioc->name, pci_name(ioc->pdev));
2907                         goto out;
2908                 }
2909         }
2910
2911         ioc->scsiio_depth = ioc->hba_queue_depth -
2912             ioc->hi_priority_depth - ioc->internal_depth;
2913
2914         /* set the scsi host can_queue depth
2915          * with some internal commands that could be outstanding
2916          */
2917         ioc->shost->can_queue = ioc->scsiio_depth;
2918         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2919                 "scsi host: can_queue depth (%d)\n",
2920                 ioc->name, ioc->shost->can_queue));
2921
2922
2923         /* contiguous pool for request and chains, 16 byte align, one extra "
2924          * "frame for smid=0
2925          */
2926         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
2927         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
2928
2929         /* hi-priority queue */
2930         sz += (ioc->hi_priority_depth * ioc->request_sz);
2931
2932         /* internal queue */
2933         sz += (ioc->internal_depth * ioc->request_sz);
2934
2935         ioc->request_dma_sz = sz;
2936         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
2937         if (!ioc->request) {
2938                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2939                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2940                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
2941                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2942                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
2943                         goto out;
2944                 retry_sz += 64;
2945                 ioc->hba_queue_depth = max_request_credit - retry_sz;
2946                 goto retry_allocation;
2947         }
2948
2949         if (retry_sz)
2950                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2951                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2952                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
2953                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2954
2955         /* hi-priority queue */
2956         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
2957             ioc->request_sz);
2958         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
2959             ioc->request_sz);
2960
2961         /* internal queue */
2962         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
2963             ioc->request_sz);
2964         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
2965             ioc->request_sz);
2966
2967         dinitprintk(ioc, pr_info(MPT3SAS_FMT
2968                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
2969                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
2970             (ioc->hba_queue_depth * ioc->request_sz)/1024));
2971
2972         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
2973             ioc->name, (unsigned long long) ioc->request_dma));
2974         total_sz += sz;
2975
2976         sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
2977         ioc->scsi_lookup_pages = get_order(sz);
2978         ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
2979             GFP_KERNEL, ioc->scsi_lookup_pages);
2980         if (!ioc->scsi_lookup) {
2981                 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
2982                         ioc->name, (int)sz);
2983                 goto out;
2984         }
2985
2986         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
2987                 ioc->name, ioc->request, ioc->scsiio_depth));
2988
2989         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
2990         sz = ioc->chain_depth * sizeof(struct chain_tracker);
2991         ioc->chain_pages = get_order(sz);
2992         ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
2993             GFP_KERNEL, ioc->chain_pages);
2994         if (!ioc->chain_lookup) {
2995                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
2996                         ioc->name);
2997                 goto out;
2998         }
2999         ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3000             ioc->request_sz, 16, 0);
3001         if (!ioc->chain_dma_pool) {
3002                 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3003                         ioc->name);
3004                 goto out;
3005         }
3006         for (i = 0; i < ioc->chain_depth; i++) {
3007                 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3008                     ioc->chain_dma_pool , GFP_KERNEL,
3009                     &ioc->chain_lookup[i].chain_buffer_dma);
3010                 if (!ioc->chain_lookup[i].chain_buffer) {
3011                         ioc->chain_depth = i;
3012                         goto chain_done;
3013                 }
3014                 total_sz += ioc->request_sz;
3015         }
3016  chain_done:
3017         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3018                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3019                 ioc->name, ioc->chain_depth, ioc->request_sz,
3020                 ((ioc->chain_depth *  ioc->request_sz))/1024));
3021
3022         /* initialize hi-priority queue smid's */
3023         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3024             sizeof(struct request_tracker), GFP_KERNEL);
3025         if (!ioc->hpr_lookup) {
3026                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3027                     ioc->name);
3028                 goto out;
3029         }
3030         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3031         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3032                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3033                 ioc->name, ioc->hi_priority,
3034             ioc->hi_priority_depth, ioc->hi_priority_smid));
3035
3036         /* initialize internal queue smid's */
3037         ioc->internal_lookup = kcalloc(ioc->internal_depth,
3038             sizeof(struct request_tracker), GFP_KERNEL);
3039         if (!ioc->internal_lookup) {
3040                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3041                     ioc->name);
3042                 goto out;
3043         }
3044         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3045         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3046                 "internal(0x%p): depth(%d), start smid(%d)\n",
3047                 ioc->name, ioc->internal,
3048             ioc->internal_depth, ioc->internal_smid));
3049
3050         /* sense buffers, 4 byte align */
3051         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3052         ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3053             0);
3054         if (!ioc->sense_dma_pool) {
3055                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3056                     ioc->name);
3057                 goto out;
3058         }
3059         ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3060             &ioc->sense_dma);
3061         if (!ioc->sense) {
3062                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3063                     ioc->name);
3064                 goto out;
3065         }
3066         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3067             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3068             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3069             SCSI_SENSE_BUFFERSIZE, sz/1024));
3070         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3071             ioc->name, (unsigned long long)ioc->sense_dma));
3072         total_sz += sz;
3073
3074         /* reply pool, 4 byte align */
3075         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3076         ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3077             0);
3078         if (!ioc->reply_dma_pool) {
3079                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3080                     ioc->name);
3081                 goto out;
3082         }
3083         ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3084             &ioc->reply_dma);
3085         if (!ioc->reply) {
3086                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3087                     ioc->name);
3088                 goto out;
3089         }
3090         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3091         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3092         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3093                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3094                 ioc->name, ioc->reply,
3095             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3096         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3097             ioc->name, (unsigned long long)ioc->reply_dma));
3098         total_sz += sz;
3099
3100         /* reply free queue, 16 byte align */
3101         sz = ioc->reply_free_queue_depth * 4;
3102         ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3103             ioc->pdev, sz, 16, 0);
3104         if (!ioc->reply_free_dma_pool) {
3105                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3106                         ioc->name);
3107                 goto out;
3108         }
3109         ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3110             &ioc->reply_free_dma);
3111         if (!ioc->reply_free) {
3112                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3113                         ioc->name);
3114                 goto out;
3115         }
3116         memset(ioc->reply_free, 0, sz);
3117         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3118             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3119             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3120         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3121                 "reply_free_dma (0x%llx)\n",
3122                 ioc->name, (unsigned long long)ioc->reply_free_dma));
3123         total_sz += sz;
3124
3125         ioc->config_page_sz = 512;
3126         ioc->config_page = pci_alloc_consistent(ioc->pdev,
3127             ioc->config_page_sz, &ioc->config_page_dma);
3128         if (!ioc->config_page) {
3129                 pr_err(MPT3SAS_FMT
3130                         "config page: pci_pool_alloc failed\n",
3131                         ioc->name);
3132                 goto out;
3133         }
3134         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3135                 "config page(0x%p): size(%d)\n",
3136                 ioc->name, ioc->config_page, ioc->config_page_sz));
3137         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3138                 ioc->name, (unsigned long long)ioc->config_page_dma));
3139         total_sz += ioc->config_page_sz;
3140
3141         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3142             ioc->name, total_sz/1024);
3143         pr_info(MPT3SAS_FMT
3144                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3145             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3146         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3147             ioc->name, ioc->shost->sg_tablesize);
3148         return 0;
3149
3150  out:
3151         return -ENOMEM;
3152 }
3153
3154 /**
3155  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3156  * @ioc: Pointer to MPT_ADAPTER structure
3157  * @cooked: Request raw or cooked IOC state
3158  *
3159  * Returns all IOC Doorbell register bits if cooked==0, else just the
3160  * Doorbell bits in MPI_IOC_STATE_MASK.
3161  */
3162 u32
3163 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3164 {
3165         u32 s, sc;
3166
3167         s = readl(&ioc->chip->Doorbell);
3168         sc = s & MPI2_IOC_STATE_MASK;
3169         return cooked ? sc : s;
3170 }
3171
3172 /**
3173  * _base_wait_on_iocstate - waiting on a particular ioc state
3174  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3175  * @timeout: timeout in second
3176  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3177  *
3178  * Returns 0 for success, non-zero for failure.
3179  */
3180 static int
3181 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3182         int sleep_flag)
3183 {
3184         u32 count, cntdn;
3185         u32 current_state;
3186
3187         count = 0;
3188         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3189         do {
3190                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3191                 if (current_state == ioc_state)
3192                         return 0;
3193                 if (count && current_state == MPI2_IOC_STATE_FAULT)
3194                         break;
3195                 if (sleep_flag == CAN_SLEEP)
3196                         usleep_range(1000, 1500);
3197                 else
3198                         udelay(500);
3199                 count++;
3200         } while (--cntdn);
3201
3202         return current_state;
3203 }
3204
3205 /**
3206  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3207  * a write to the doorbell)
3208  * @ioc: per adapter object
3209  * @timeout: timeout in second
3210  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3211  *
3212  * Returns 0 for success, non-zero for failure.
3213  *
3214  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3215  */
3216 static int
3217 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3218
3219 static int
3220 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3221         int sleep_flag)
3222 {
3223         u32 cntdn, count;
3224         u32 int_status;
3225
3226         count = 0;
3227         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3228         do {
3229                 int_status = readl(&ioc->chip->HostInterruptStatus);
3230                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3231                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3232                                 "%s: successful count(%d), timeout(%d)\n",
3233                                 ioc->name, __func__, count, timeout));
3234                         return 0;
3235                 }
3236                 if (sleep_flag == CAN_SLEEP)
3237                         usleep_range(1000, 1500);
3238                 else
3239                         udelay(500);
3240                 count++;
3241         } while (--cntdn);
3242
3243         pr_err(MPT3SAS_FMT
3244                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3245                 ioc->name, __func__, count, int_status);
3246         return -EFAULT;
3247 }
3248
3249 /**
3250  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3251  * @ioc: per adapter object
3252  * @timeout: timeout in second
3253  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3254  *
3255  * Returns 0 for success, non-zero for failure.
3256  *
3257  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3258  * doorbell.
3259  */
3260 static int
3261 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3262         int sleep_flag)
3263 {
3264         u32 cntdn, count;
3265         u32 int_status;
3266         u32 doorbell;
3267
3268         count = 0;
3269         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3270         do {
3271                 int_status = readl(&ioc->chip->HostInterruptStatus);
3272                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3273                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3274                                 "%s: successful count(%d), timeout(%d)\n",
3275                                 ioc->name, __func__, count, timeout));
3276                         return 0;
3277                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3278                         doorbell = readl(&ioc->chip->Doorbell);
3279                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
3280                             MPI2_IOC_STATE_FAULT) {
3281                                 mpt3sas_base_fault_info(ioc , doorbell);
3282                                 return -EFAULT;
3283                         }
3284                 } else if (int_status == 0xFFFFFFFF)
3285                         goto out;
3286
3287                 if (sleep_flag == CAN_SLEEP)
3288                         usleep_range(1000, 1500);
3289                 else
3290                         udelay(500);
3291                 count++;
3292         } while (--cntdn);
3293
3294  out:
3295         pr_err(MPT3SAS_FMT
3296          "%s: failed due to timeout count(%d), int_status(%x)!\n",
3297          ioc->name, __func__, count, int_status);
3298         return -EFAULT;
3299 }
3300
3301 /**
3302  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3303  * @ioc: per adapter object
3304  * @timeout: timeout in second
3305  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3306  *
3307  * Returns 0 for success, non-zero for failure.
3308  *
3309  */
3310 static int
3311 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3312         int sleep_flag)
3313 {
3314         u32 cntdn, count;
3315         u32 doorbell_reg;
3316
3317         count = 0;
3318         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3319         do {
3320                 doorbell_reg = readl(&ioc->chip->Doorbell);
3321                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3322                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3323                                 "%s: successful count(%d), timeout(%d)\n",
3324                                 ioc->name, __func__, count, timeout));
3325                         return 0;
3326                 }
3327                 if (sleep_flag == CAN_SLEEP)
3328                         usleep_range(1000, 1500);
3329                 else
3330                         udelay(500);
3331                 count++;
3332         } while (--cntdn);
3333
3334         pr_err(MPT3SAS_FMT
3335                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3336                 ioc->name, __func__, count, doorbell_reg);
3337         return -EFAULT;
3338 }
3339
3340 /**
3341  * _base_send_ioc_reset - send doorbell reset
3342  * @ioc: per adapter object
3343  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3344  * @timeout: timeout in second
3345  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3346  *
3347  * Returns 0 for success, non-zero for failure.
3348  */
3349 static int
3350 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3351         int sleep_flag)
3352 {
3353         u32 ioc_state;
3354         int r = 0;
3355
3356         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3357                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3358                     ioc->name, __func__);
3359                 return -EFAULT;
3360         }
3361
3362         if (!(ioc->facts.IOCCapabilities &
3363            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3364                 return -EFAULT;
3365
3366         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3367
3368         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3369             &ioc->chip->Doorbell);
3370         if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3371                 r = -EFAULT;
3372                 goto out;
3373         }
3374         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3375             timeout, sleep_flag);
3376         if (ioc_state) {
3377                 pr_err(MPT3SAS_FMT
3378                         "%s: failed going to ready state (ioc_state=0x%x)\n",
3379                         ioc->name, __func__, ioc_state);
3380                 r = -EFAULT;
3381                 goto out;
3382         }
3383  out:
3384         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3385             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3386         return r;
3387 }
3388
3389 /**
3390  * _base_handshake_req_reply_wait - send request thru doorbell interface
3391  * @ioc: per adapter object
3392  * @request_bytes: request length
3393  * @request: pointer having request payload
3394  * @reply_bytes: reply length
3395  * @reply: pointer to reply payload
3396  * @timeout: timeout in second
3397  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3398  *
3399  * Returns 0 for success, non-zero for failure.
3400  */
3401 static int
3402 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3403         u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3404 {
3405         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3406         int i;
3407         u8 failed;
3408         u16 dummy;
3409         __le32 *mfp;
3410
3411         /* make sure doorbell is not in use */
3412         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3413                 pr_err(MPT3SAS_FMT
3414                         "doorbell is in use (line=%d)\n",
3415                         ioc->name, __LINE__);
3416                 return -EFAULT;
3417         }
3418
3419         /* clear pending doorbell interrupts from previous state changes */
3420         if (readl(&ioc->chip->HostInterruptStatus) &
3421             MPI2_HIS_IOC2SYS_DB_STATUS)
3422                 writel(0, &ioc->chip->HostInterruptStatus);
3423
3424         /* send message to ioc */
3425         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3426             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3427             &ioc->chip->Doorbell);
3428
3429         if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3430                 pr_err(MPT3SAS_FMT
3431                         "doorbell handshake int failed (line=%d)\n",
3432                         ioc->name, __LINE__);
3433                 return -EFAULT;
3434         }
3435         writel(0, &ioc->chip->HostInterruptStatus);
3436
3437         if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3438                 pr_err(MPT3SAS_FMT
3439                         "doorbell handshake ack failed (line=%d)\n",
3440                         ioc->name, __LINE__);
3441                 return -EFAULT;
3442         }
3443
3444         /* send message 32-bits at a time */
3445         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3446                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3447                 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3448                         failed = 1;
3449         }
3450
3451         if (failed) {
3452                 pr_err(MPT3SAS_FMT
3453                         "doorbell handshake sending request failed (line=%d)\n",
3454                         ioc->name, __LINE__);
3455                 return -EFAULT;
3456         }
3457
3458         /* now wait for the reply */
3459         if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3460                 pr_err(MPT3SAS_FMT
3461                         "doorbell handshake int failed (line=%d)\n",
3462                         ioc->name, __LINE__);
3463                 return -EFAULT;
3464         }
3465
3466         /* read the first two 16-bits, it gives the total length of the reply */
3467         reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3468             & MPI2_DOORBELL_DATA_MASK);
3469         writel(0, &ioc->chip->HostInterruptStatus);
3470         if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3471                 pr_err(MPT3SAS_FMT
3472                         "doorbell handshake int failed (line=%d)\n",
3473                         ioc->name, __LINE__);
3474                 return -EFAULT;
3475         }
3476         reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3477             & MPI2_DOORBELL_DATA_MASK);
3478         writel(0, &ioc->chip->HostInterruptStatus);
3479
3480         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3481                 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3482                         pr_err(MPT3SAS_FMT
3483                                 "doorbell handshake int failed (line=%d)\n",
3484                                 ioc->name, __LINE__);
3485                         return -EFAULT;
3486                 }
3487                 if (i >=  reply_bytes/2) /* overflow case */
3488                         dummy = readl(&ioc->chip->Doorbell);
3489                 else
3490                         reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3491                             & MPI2_DOORBELL_DATA_MASK);
3492                 writel(0, &ioc->chip->HostInterruptStatus);
3493         }
3494
3495         _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3496         if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3497                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3498                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3499         }
3500         writel(0, &ioc->chip->HostInterruptStatus);
3501
3502         if (ioc->logging_level & MPT_DEBUG_INIT) {
3503                 mfp = (__le32 *)reply;
3504                 pr_info("\toffset:data\n");
3505                 for (i = 0; i < reply_bytes/4; i++)
3506                         pr_info("\t[0x%02x]:%08x\n", i*4,
3507                             le32_to_cpu(mfp[i]));
3508         }
3509         return 0;
3510 }
3511
3512 /**
3513  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3514  * @ioc: per adapter object
3515  * @mpi_reply: the reply payload from FW
3516  * @mpi_request: the request payload sent to FW
3517  *
3518  * The SAS IO Unit Control Request message allows the host to perform low-level
3519  * operations, such as resets on the PHYs of the IO Unit, also allows the host
3520  * to obtain the IOC assigned device handles for a device if it has other
3521  * identifying information about the device, in addition allows the host to
3522  * remove IOC resources associated with the device.
3523  *
3524  * Returns 0 for success, non-zero for failure.
3525  */
3526 int
3527 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3528         Mpi2SasIoUnitControlReply_t *mpi_reply,
3529         Mpi2SasIoUnitControlRequest_t *mpi_request)
3530 {
3531         u16 smid;
3532         u32 ioc_state;
3533         unsigned long timeleft;
3534         bool issue_reset = false;
3535         int rc;
3536         void *request;
3537         u16 wait_state_count;
3538
3539         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3540             __func__));
3541
3542         mutex_lock(&ioc->base_cmds.mutex);
3543
3544         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3545                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3546                     ioc->name, __func__);
3547                 rc = -EAGAIN;
3548                 goto out;
3549         }
3550
3551         wait_state_count = 0;
3552         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3553         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3554                 if (wait_state_count++ == 10) {
3555                         pr_err(MPT3SAS_FMT
3556                             "%s: failed due to ioc not operational\n",
3557                             ioc->name, __func__);
3558                         rc = -EFAULT;
3559                         goto out;
3560                 }
3561                 ssleep(1);
3562                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3563                 pr_info(MPT3SAS_FMT
3564                         "%s: waiting for operational state(count=%d)\n",
3565                         ioc->name, __func__, wait_state_count);
3566         }
3567
3568         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3569         if (!smid) {
3570                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3571                     ioc->name, __func__);
3572                 rc = -EAGAIN;
3573                 goto out;
3574         }
3575
3576         rc = 0;
3577         ioc->base_cmds.status = MPT3_CMD_PENDING;
3578         request = mpt3sas_base_get_msg_frame(ioc, smid);
3579         ioc->base_cmds.smid = smid;
3580         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3581         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3582             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3583                 ioc->ioc_link_reset_in_progress = 1;
3584         init_completion(&ioc->base_cmds.done);
3585         mpt3sas_base_put_smid_default(ioc, smid);
3586         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3587             msecs_to_jiffies(10000));
3588         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3589             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
3590             ioc->ioc_link_reset_in_progress)
3591                 ioc->ioc_link_reset_in_progress = 0;
3592         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3593                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3594                     ioc->name, __func__);
3595                 _debug_dump_mf(mpi_request,
3596                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
3597                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3598                         issue_reset = true;
3599                 goto issue_host_reset;
3600         }
3601         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3602                 memcpy(mpi_reply, ioc->base_cmds.reply,
3603                     sizeof(Mpi2SasIoUnitControlReply_t));
3604         else
3605                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
3606         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3607         goto out;
3608
3609  issue_host_reset:
3610         if (issue_reset)
3611                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3612                     FORCE_BIG_HAMMER);
3613         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3614         rc = -EFAULT;
3615  out:
3616         mutex_unlock(&ioc->base_cmds.mutex);
3617         return rc;
3618 }
3619
3620 /**
3621  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
3622  * @ioc: per adapter object
3623  * @mpi_reply: the reply payload from FW
3624  * @mpi_request: the request payload sent to FW
3625  *
3626  * The SCSI Enclosure Processor request message causes the IOC to
3627  * communicate with SES devices to control LED status signals.
3628  *
3629  * Returns 0 for success, non-zero for failure.
3630  */
3631 int
3632 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
3633         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
3634 {
3635         u16 smid;
3636         u32 ioc_state;
3637         unsigned long timeleft;
3638         bool issue_reset = false;
3639         int rc;
3640         void *request;
3641         u16 wait_state_count;
3642
3643         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3644             __func__));
3645
3646         mutex_lock(&ioc->base_cmds.mutex);
3647
3648         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3649                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3650                     ioc->name, __func__);
3651                 rc = -EAGAIN;
3652                 goto out;
3653         }
3654
3655         wait_state_count = 0;
3656         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3657         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3658                 if (wait_state_count++ == 10) {
3659                         pr_err(MPT3SAS_FMT
3660                             "%s: failed due to ioc not operational\n",
3661                             ioc->name, __func__);
3662                         rc = -EFAULT;
3663                         goto out;
3664                 }
3665                 ssleep(1);
3666                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3667                 pr_info(MPT3SAS_FMT
3668                         "%s: waiting for operational state(count=%d)\n",
3669                         ioc->name,
3670                     __func__, wait_state_count);
3671         }
3672
3673         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3674         if (!smid) {
3675                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3676                     ioc->name, __func__);
3677                 rc = -EAGAIN;
3678                 goto out;
3679         }
3680
3681         rc = 0;
3682         ioc->base_cmds.status = MPT3_CMD_PENDING;
3683         request = mpt3sas_base_get_msg_frame(ioc, smid);
3684         ioc->base_cmds.smid = smid;
3685         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
3686         init_completion(&ioc->base_cmds.done);
3687         mpt3sas_base_put_smid_default(ioc, smid);
3688         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3689             msecs_to_jiffies(10000));
3690         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3691                 pr_err(MPT3SAS_FMT "%s: timeout\n",
3692                     ioc->name, __func__);
3693                 _debug_dump_mf(mpi_request,
3694                     sizeof(Mpi2SepRequest_t)/4);
3695                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3696                         issue_reset = false;
3697                 goto issue_host_reset;
3698         }
3699         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3700                 memcpy(mpi_reply, ioc->base_cmds.reply,
3701                     sizeof(Mpi2SepReply_t));
3702         else
3703                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
3704         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3705         goto out;
3706
3707  issue_host_reset:
3708         if (issue_reset)
3709                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3710                     FORCE_BIG_HAMMER);
3711         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3712         rc = -EFAULT;
3713  out:
3714         mutex_unlock(&ioc->base_cmds.mutex);
3715         return rc;
3716 }
3717
3718 /**
3719  * _base_get_port_facts - obtain port facts reply and save in ioc
3720  * @ioc: per adapter object
3721  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3722  *
3723  * Returns 0 for success, non-zero for failure.
3724  */
3725 static int
3726 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
3727 {
3728         Mpi2PortFactsRequest_t mpi_request;
3729         Mpi2PortFactsReply_t mpi_reply;
3730         struct mpt3sas_port_facts *pfacts;
3731         int mpi_reply_sz, mpi_request_sz, r;
3732
3733         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3734             __func__));
3735
3736         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
3737         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
3738         memset(&mpi_request, 0, mpi_request_sz);
3739         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
3740         mpi_request.PortNumber = port;
3741         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3742             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3743
3744         if (r != 0) {
3745                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3746                     ioc->name, __func__, r);
3747                 return r;
3748         }
3749
3750         pfacts = &ioc->pfacts[port];
3751         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
3752         pfacts->PortNumber = mpi_reply.PortNumber;
3753         pfacts->VP_ID = mpi_reply.VP_ID;
3754         pfacts->VF_ID = mpi_reply.VF_ID;
3755         pfacts->MaxPostedCmdBuffers =
3756             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
3757
3758         return 0;
3759 }
3760
3761 /**
3762  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
3763  * @ioc: per adapter object
3764  * @timeout:
3765  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3766  *
3767  * Returns 0 for success, non-zero for failure.
3768  */
3769 static int
3770 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
3771         int sleep_flag)
3772 {
3773         u32 ioc_state;
3774         int rc;
3775
3776         dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
3777             __func__));
3778
3779         if (ioc->pci_error_recovery) {
3780                 dfailprintk(ioc, printk(MPT3SAS_FMT
3781                     "%s: host in pci error recovery\n", ioc->name, __func__));
3782                 return -EFAULT;
3783         }
3784
3785         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3786         dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
3787             ioc->name, __func__, ioc_state));
3788
3789         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
3790             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
3791                 return 0;
3792
3793         if (ioc_state & MPI2_DOORBELL_USED) {
3794                 dhsprintk(ioc, printk(MPT3SAS_FMT
3795                     "unexpected doorbell active!\n", ioc->name));
3796                 goto issue_diag_reset;
3797         }
3798
3799         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3800                 mpt3sas_base_fault_info(ioc, ioc_state &
3801                     MPI2_DOORBELL_DATA_MASK);
3802                 goto issue_diag_reset;
3803         }
3804
3805         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3806             timeout, sleep_flag);
3807         if (ioc_state) {
3808                 dfailprintk(ioc, printk(MPT3SAS_FMT
3809                     "%s: failed going to ready state (ioc_state=0x%x)\n",
3810                     ioc->name, __func__, ioc_state));
3811                 return -EFAULT;
3812         }
3813
3814  issue_diag_reset:
3815         rc = _base_diag_reset(ioc, sleep_flag);
3816         return rc;
3817 }
3818
3819 /**
3820  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
3821  * @ioc: per adapter object
3822  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3823  *
3824  * Returns 0 for success, non-zero for failure.
3825  */
3826 static int
3827 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3828 {
3829         Mpi2IOCFactsRequest_t mpi_request;
3830         Mpi2IOCFactsReply_t mpi_reply;
3831         struct mpt3sas_facts *facts;
3832         int mpi_reply_sz, mpi_request_sz, r;
3833
3834         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3835             __func__));
3836
3837         r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
3838         if (r) {
3839                 dfailprintk(ioc, printk(MPT3SAS_FMT
3840                     "%s: failed getting to correct state\n",
3841                     ioc->name, __func__));
3842                 return r;
3843         }
3844         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
3845         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
3846         memset(&mpi_request, 0, mpi_request_sz);
3847         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
3848         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3849             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3850
3851         if (r != 0) {
3852                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3853                     ioc->name, __func__, r);
3854                 return r;
3855         }
3856
3857         facts = &ioc->facts;
3858         memset(facts, 0, sizeof(struct mpt3sas_facts));
3859         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
3860         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
3861         facts->VP_ID = mpi_reply.VP_ID;
3862         facts->VF_ID = mpi_reply.VF_ID;
3863         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
3864         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
3865         facts->WhoInit = mpi_reply.WhoInit;
3866         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
3867         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
3868         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
3869         facts->MaxReplyDescriptorPostQueueDepth =
3870             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
3871         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
3872         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
3873         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
3874                 ioc->ir_firmware = 1;
3875         if ((facts->IOCCapabilities &
3876               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
3877                 ioc->rdpq_array_capable = 1;
3878         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
3879         facts->IOCRequestFrameSize =
3880             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
3881         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
3882         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
3883         ioc->shost->max_id = -1;
3884         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
3885         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
3886         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
3887         facts->HighPriorityCredit =
3888             le16_to_cpu(mpi_reply.HighPriorityCredit);
3889         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
3890         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
3891
3892         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3893                 "hba queue depth(%d), max chains per io(%d)\n",
3894                 ioc->name, facts->RequestCredit,
3895             facts->MaxChainDepth));
3896         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3897                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
3898             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
3899         return 0;
3900 }
3901
3902 /**
3903  * _base_send_ioc_init - send ioc_init to firmware
3904  * @ioc: per adapter object
3905  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3906  *
3907  * Returns 0 for success, non-zero for failure.
3908  */
3909 static int
3910 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3911 {
3912         Mpi2IOCInitRequest_t mpi_request;
3913         Mpi2IOCInitReply_t mpi_reply;
3914         int i, r = 0;
3915         struct timeval current_time;
3916         u16 ioc_status;
3917         u32 reply_post_free_array_sz = 0;
3918         Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
3919         dma_addr_t reply_post_free_array_dma;
3920
3921         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3922             __func__));
3923
3924         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
3925         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
3926         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3927         mpi_request.VF_ID = 0; /* TODO */
3928         mpi_request.VP_ID = 0;
3929         mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION);
3930         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
3931
3932         if (_base_is_controller_msix_enabled(ioc))
3933                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
3934         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
3935         mpi_request.ReplyDescriptorPostQueueDepth =
3936             cpu_to_le16(ioc->reply_post_queue_depth);
3937         mpi_request.ReplyFreeQueueDepth =
3938             cpu_to_le16(ioc->reply_free_queue_depth);
3939
3940         mpi_request.SenseBufferAddressHigh =
3941             cpu_to_le32((u64)ioc->sense_dma >> 32);
3942         mpi_request.SystemReplyAddressHigh =
3943             cpu_to_le32((u64)ioc->reply_dma >> 32);
3944         mpi_request.SystemRequestFrameBaseAddress =
3945             cpu_to_le64((u64)ioc->request_dma);
3946         mpi_request.ReplyFreeQueueAddress =
3947             cpu_to_le64((u64)ioc->reply_free_dma);
3948
3949         if (ioc->rdpq_array_enable) {
3950                 reply_post_free_array_sz = ioc->reply_queue_count *
3951                     sizeof(Mpi2IOCInitRDPQArrayEntry);
3952                 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
3953                         reply_post_free_array_sz, &reply_post_free_array_dma);
3954                 if (!reply_post_free_array) {
3955                         pr_err(MPT3SAS_FMT
3956                         "reply_post_free_array: pci_alloc_consistent failed\n",
3957                         ioc->name);
3958                         r = -ENOMEM;
3959                         goto out;
3960                 }
3961                 memset(reply_post_free_array, 0, reply_post_free_array_sz);
3962                 for (i = 0; i < ioc->reply_queue_count; i++)
3963                         reply_post_free_array[i].RDPQBaseAddress =
3964                             cpu_to_le64(
3965                                 (u64)ioc->reply_post[i].reply_post_free_dma);
3966                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
3967                 mpi_request.ReplyDescriptorPostQueueAddress =
3968                     cpu_to_le64((u64)reply_post_free_array_dma);
3969         } else {
3970                 mpi_request.ReplyDescriptorPostQueueAddress =
3971                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
3972         }
3973
3974         /* This time stamp specifies number of milliseconds
3975          * since epoch ~ midnight January 1, 1970.
3976          */
3977         do_gettimeofday(&current_time);
3978         mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
3979             (current_time.tv_usec / 1000));
3980
3981         if (ioc->logging_level & MPT_DEBUG_INIT) {
3982                 __le32 *mfp;
3983                 int i;
3984
3985                 mfp = (__le32 *)&mpi_request;
3986                 pr_info("\toffset:data\n");
3987                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
3988                         pr_info("\t[0x%02x]:%08x\n", i*4,
3989                             le32_to_cpu(mfp[i]));
3990         }
3991
3992         r = _base_handshake_req_reply_wait(ioc,
3993             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
3994             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
3995             sleep_flag);
3996
3997         if (r != 0) {
3998                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3999                     ioc->name, __func__, r);
4000                 goto out;
4001         }
4002
4003         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4004         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4005             mpi_reply.IOCLogInfo) {
4006                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4007                 r = -EIO;
4008         }
4009
4010 out:
4011         if (reply_post_free_array)
4012                 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4013                                     reply_post_free_array,
4014                                     reply_post_free_array_dma);
4015         return r;
4016 }
4017
4018 /**
4019  * mpt3sas_port_enable_done - command completion routine for port enable
4020  * @ioc: per adapter object
4021  * @smid: system request message index
4022  * @msix_index: MSIX table index supplied by the OS
4023  * @reply: reply message frame(lower 32bit addr)
4024  *
4025  * Return 1 meaning mf should be freed from _base_interrupt
4026  *        0 means the mf is freed from this function.
4027  */
4028 u8
4029 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4030         u32 reply)
4031 {
4032         MPI2DefaultReply_t *mpi_reply;
4033         u16 ioc_status;
4034
4035         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4036                 return 1;
4037
4038         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4039         if (!mpi_reply)
4040                 return 1;
4041
4042         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4043                 return 1;
4044
4045         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4046         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4047         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4048         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4049         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4050         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4051                 ioc->port_enable_failed = 1;
4052
4053         if (ioc->is_driver_loading) {
4054                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4055                         mpt3sas_port_enable_complete(ioc);
4056                         return 1;
4057                 } else {
4058                         ioc->start_scan_failed = ioc_status;
4059                         ioc->start_scan = 0;
4060                         return 1;
4061                 }
4062         }
4063         complete(&ioc->port_enable_cmds.done);
4064         return 1;
4065 }
4066
4067 /**
4068  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4069  * @ioc: per adapter object
4070  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4071  *
4072  * Returns 0 for success, non-zero for failure.
4073  */
4074 static int
4075 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4076 {
4077         Mpi2PortEnableRequest_t *mpi_request;
4078         Mpi2PortEnableReply_t *mpi_reply;
4079         unsigned long timeleft;
4080         int r = 0;
4081         u16 smid;
4082         u16 ioc_status;
4083
4084         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4085
4086         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4087                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4088                     ioc->name, __func__);
4089                 return -EAGAIN;
4090         }
4091
4092         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4093         if (!smid) {
4094                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4095                     ioc->name, __func__);
4096                 return -EAGAIN;
4097         }
4098
4099         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4100         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4101         ioc->port_enable_cmds.smid = smid;
4102         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4103         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4104
4105         init_completion(&ioc->port_enable_cmds.done);
4106         mpt3sas_base_put_smid_default(ioc, smid);
4107         timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4108             300*HZ);
4109         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4110                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4111                     ioc->name, __func__);
4112                 _debug_dump_mf(mpi_request,
4113                     sizeof(Mpi2PortEnableRequest_t)/4);
4114                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4115                         r = -EFAULT;
4116                 else
4117                         r = -ETIME;
4118                 goto out;
4119         }
4120
4121         mpi_reply = ioc->port_enable_cmds.reply;
4122         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4123         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4124                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4125                     ioc->name, __func__, ioc_status);
4126                 r = -EFAULT;
4127                 goto out;
4128         }
4129
4130  out:
4131         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4132         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4133             "SUCCESS" : "FAILED"));
4134         return r;
4135 }
4136
4137 /**
4138  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4139  * @ioc: per adapter object
4140  *
4141  * Returns 0 for success, non-zero for failure.
4142  */
4143 int
4144 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4145 {
4146         Mpi2PortEnableRequest_t *mpi_request;
4147         u16 smid;
4148
4149         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4150
4151         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4152                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4153                     ioc->name, __func__);
4154                 return -EAGAIN;
4155         }
4156
4157         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4158         if (!smid) {
4159                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4160                     ioc->name, __func__);
4161                 return -EAGAIN;
4162         }
4163
4164         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4165         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4166         ioc->port_enable_cmds.smid = smid;
4167         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4168         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4169
4170         mpt3sas_base_put_smid_default(ioc, smid);
4171         return 0;
4172 }
4173
4174 /**
4175  * _base_determine_wait_on_discovery - desposition
4176  * @ioc: per adapter object
4177  *
4178  * Decide whether to wait on discovery to complete. Used to either
4179  * locate boot device, or report volumes ahead of physical devices.
4180  *
4181  * Returns 1 for wait, 0 for don't wait
4182  */
4183 static int
4184 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4185 {
4186         /* We wait for discovery to complete if IR firmware is loaded.
4187          * The sas topology events arrive before PD events, so we need time to
4188          * turn on the bit in ioc->pd_handles to indicate PD
4189          * Also, it maybe required to report Volumes ahead of physical
4190          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4191          */
4192         if (ioc->ir_firmware)
4193                 return 1;
4194
4195         /* if no Bios, then we don't need to wait */
4196         if (!ioc->bios_pg3.BiosVersion)
4197                 return 0;
4198
4199         /* Bios is present, then we drop down here.
4200          *
4201          * If there any entries in the Bios Page 2, then we wait
4202          * for discovery to complete.
4203          */
4204
4205         /* Current Boot Device */
4206         if ((ioc->bios_pg2.CurrentBootDeviceForm &
4207             MPI2_BIOSPAGE2_FORM_MASK) ==
4208             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4209         /* Request Boot Device */
4210            (ioc->bios_pg2.ReqBootDeviceForm &
4211             MPI2_BIOSPAGE2_FORM_MASK) ==
4212             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4213         /* Alternate Request Boot Device */
4214            (ioc->bios_pg2.ReqAltBootDeviceForm &
4215             MPI2_BIOSPAGE2_FORM_MASK) ==
4216             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4217                 return 0;
4218
4219         return 1;
4220 }
4221
4222 /**
4223  * _base_unmask_events - turn on notification for this event
4224  * @ioc: per adapter object
4225  * @event: firmware event
4226  *
4227  * The mask is stored in ioc->event_masks.
4228  */
4229 static void
4230 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4231 {
4232         u32 desired_event;
4233
4234         if (event >= 128)
4235                 return;
4236
4237         desired_event = (1 << (event % 32));
4238
4239         if (event < 32)
4240                 ioc->event_masks[0] &= ~desired_event;
4241         else if (event < 64)
4242                 ioc->event_masks[1] &= ~desired_event;
4243         else if (event < 96)
4244                 ioc->event_masks[2] &= ~desired_event;
4245         else if (event < 128)
4246                 ioc->event_masks[3] &= ~desired_event;
4247 }
4248
4249 /**
4250  * _base_event_notification - send event notification
4251  * @ioc: per adapter object
4252  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4253  *
4254  * Returns 0 for success, non-zero for failure.
4255  */
4256 static int
4257 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4258 {
4259         Mpi2EventNotificationRequest_t *mpi_request;
4260         unsigned long timeleft;
4261         u16 smid;
4262         int r = 0;
4263         int i;
4264
4265         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4266             __func__));
4267
4268         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4269                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4270                     ioc->name, __func__);
4271                 return -EAGAIN;
4272         }
4273
4274         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4275         if (!smid) {
4276                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4277                     ioc->name, __func__);
4278                 return -EAGAIN;
4279         }
4280         ioc->base_cmds.status = MPT3_CMD_PENDING;
4281         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4282         ioc->base_cmds.smid = smid;
4283         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4284         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4285         mpi_request->VF_ID = 0; /* TODO */
4286         mpi_request->VP_ID = 0;
4287         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4288                 mpi_request->EventMasks[i] =
4289                     cpu_to_le32(ioc->event_masks[i]);
4290         init_completion(&ioc->base_cmds.done);
4291         mpt3sas_base_put_smid_default(ioc, smid);
4292         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4293         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4294                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4295                     ioc->name, __func__);
4296                 _debug_dump_mf(mpi_request,
4297                     sizeof(Mpi2EventNotificationRequest_t)/4);
4298                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4299                         r = -EFAULT;
4300                 else
4301                         r = -ETIME;
4302         } else
4303                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4304                     ioc->name, __func__));
4305         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4306         return r;
4307 }
4308
4309 /**
4310  * mpt3sas_base_validate_event_type - validating event types
4311  * @ioc: per adapter object
4312  * @event: firmware event
4313  *
4314  * This will turn on firmware event notification when application
4315  * ask for that event. We don't mask events that are already enabled.
4316  */
4317 void
4318 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4319 {
4320         int i, j;
4321         u32 event_mask, desired_event;
4322         u8 send_update_to_fw;
4323
4324         for (i = 0, send_update_to_fw = 0; i <
4325             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4326                 event_mask = ~event_type[i];
4327                 desired_event = 1;
4328                 for (j = 0; j < 32; j++) {
4329                         if (!(event_mask & desired_event) &&
4330                             (ioc->event_masks[i] & desired_event)) {
4331                                 ioc->event_masks[i] &= ~desired_event;
4332                                 send_update_to_fw = 1;
4333                         }
4334                         desired_event = (desired_event << 1);
4335                 }
4336         }
4337
4338         if (!send_update_to_fw)
4339                 return;
4340
4341         mutex_lock(&ioc->base_cmds.mutex);
4342         _base_event_notification(ioc, CAN_SLEEP);
4343         mutex_unlock(&ioc->base_cmds.mutex);
4344 }
4345
4346 /**
4347  * _base_diag_reset - the "big hammer" start of day reset
4348  * @ioc: per adapter object
4349  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4350  *
4351  * Returns 0 for success, non-zero for failure.
4352  */
4353 static int
4354 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4355 {
4356         u32 host_diagnostic;
4357         u32 ioc_state;
4358         u32 count;
4359         u32 hcb_size;
4360
4361         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4362
4363         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4364             ioc->name));
4365
4366         count = 0;
4367         do {
4368                 /* Write magic sequence to WriteSequence register
4369                  * Loop until in diagnostic mode
4370                  */
4371                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4372                         "write magic sequence\n", ioc->name));
4373                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4374                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4375                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4376                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4377                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4378                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4379                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4380
4381                 /* wait 100 msec */
4382                 if (sleep_flag == CAN_SLEEP)
4383                         msleep(100);
4384                 else
4385                         mdelay(100);
4386
4387                 if (count++ > 20)
4388                         goto out;
4389
4390                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4391                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4392                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4393                     ioc->name, count, host_diagnostic));
4394
4395         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4396
4397         hcb_size = readl(&ioc->chip->HCBSize);
4398
4399         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4400             ioc->name));
4401         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4402              &ioc->chip->HostDiagnostic);
4403
4404         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4405         if (sleep_flag == CAN_SLEEP)
4406                 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4407         else
4408                 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4409
4410         /* Approximately 300 second max wait */
4411         for (count = 0; count < (300000000 /
4412                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4413
4414                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4415
4416                 if (host_diagnostic == 0xFFFFFFFF)
4417                         goto out;
4418                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4419                         break;
4420
4421                 /* Wait to pass the second read delay window */
4422                 if (sleep_flag == CAN_SLEEP)
4423                         msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4424                                                                 / 1000);
4425                 else
4426                         mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4427                                                                 / 1000);
4428         }
4429
4430         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4431
4432                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4433                 "restart the adapter assuming the HCB Address points to good F/W\n",
4434                     ioc->name));
4435                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4436                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4437                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4438
4439                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4440                     "re-enable the HCDW\n", ioc->name));
4441                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4442                     &ioc->chip->HCBSize);
4443         }
4444
4445         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4446             ioc->name));
4447         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4448             &ioc->chip->HostDiagnostic);
4449
4450         drsprintk(ioc, pr_info(MPT3SAS_FMT
4451                 "disable writes to the diagnostic register\n", ioc->name));
4452         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4453
4454         drsprintk(ioc, pr_info(MPT3SAS_FMT
4455                 "Wait for FW to go to the READY state\n", ioc->name));
4456         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4457             sleep_flag);
4458         if (ioc_state) {
4459                 pr_err(MPT3SAS_FMT
4460                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4461                         ioc->name, __func__, ioc_state);
4462                 goto out;
4463         }
4464
4465         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4466         return 0;
4467
4468  out:
4469         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4470         return -EFAULT;
4471 }
4472
4473 /**
4474  * _base_make_ioc_ready - put controller in READY state
4475  * @ioc: per adapter object
4476  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4477  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4478  *
4479  * Returns 0 for success, non-zero for failure.
4480  */
4481 static int
4482 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4483         enum reset_type type)
4484 {
4485         u32 ioc_state;
4486         int rc;
4487         int count;
4488
4489         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4490             __func__));
4491
4492         if (ioc->pci_error_recovery)
4493                 return 0;
4494
4495         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4496         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4497             ioc->name, __func__, ioc_state));
4498
4499         /* if in RESET state, it should move to READY state shortly */
4500         count = 0;
4501         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4502                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4503                     MPI2_IOC_STATE_READY) {
4504                         if (count++ == 10) {
4505                                 pr_err(MPT3SAS_FMT
4506                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4507                                     ioc->name, __func__, ioc_state);
4508                                 return -EFAULT;
4509                         }
4510                         if (sleep_flag == CAN_SLEEP)
4511                                 ssleep(1);
4512                         else
4513                                 mdelay(1000);
4514                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4515                 }
4516         }
4517
4518         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4519                 return 0;
4520
4521         if (ioc_state & MPI2_DOORBELL_USED) {
4522                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4523                         "unexpected doorbell active!\n",
4524                         ioc->name));
4525                 goto issue_diag_reset;
4526         }
4527
4528         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4529                 mpt3sas_base_fault_info(ioc, ioc_state &
4530                     MPI2_DOORBELL_DATA_MASK);
4531                 goto issue_diag_reset;
4532         }
4533
4534         if (type == FORCE_BIG_HAMMER)
4535                 goto issue_diag_reset;
4536
4537         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4538                 if (!(_base_send_ioc_reset(ioc,
4539                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4540                         return 0;
4541         }
4542
4543  issue_diag_reset:
4544         rc = _base_diag_reset(ioc, CAN_SLEEP);
4545         return rc;
4546 }
4547
4548 /**
4549  * _base_make_ioc_operational - put controller in OPERATIONAL state
4550  * @ioc: per adapter object
4551  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4552  *
4553  * Returns 0 for success, non-zero for failure.
4554  */
4555 static int
4556 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4557 {
4558         int r, i;
4559         unsigned long   flags;
4560         u32 reply_address;
4561         u16 smid;
4562         struct _tr_list *delayed_tr, *delayed_tr_next;
4563         struct adapter_reply_queue *reply_q;
4564         long reply_post_free;
4565         u32 reply_post_free_sz, index = 0;
4566
4567         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4568             __func__));
4569
4570         /* clean the delayed target reset list */
4571         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4572             &ioc->delayed_tr_list, list) {
4573                 list_del(&delayed_tr->list);
4574                 kfree(delayed_tr);
4575         }
4576
4577
4578         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4579             &ioc->delayed_tr_volume_list, list) {
4580                 list_del(&delayed_tr->list);
4581                 kfree(delayed_tr);
4582         }
4583
4584         /* initialize the scsi lookup free list */
4585         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4586         INIT_LIST_HEAD(&ioc->free_list);
4587         smid = 1;
4588         for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
4589                 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
4590                 ioc->scsi_lookup[i].cb_idx = 0xFF;
4591                 ioc->scsi_lookup[i].smid = smid;
4592                 ioc->scsi_lookup[i].scmd = NULL;
4593                 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
4594                     &ioc->free_list);
4595         }
4596
4597         /* hi-priority queue */
4598         INIT_LIST_HEAD(&ioc->hpr_free_list);
4599         smid = ioc->hi_priority_smid;
4600         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
4601                 ioc->hpr_lookup[i].cb_idx = 0xFF;
4602                 ioc->hpr_lookup[i].smid = smid;
4603                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
4604                     &ioc->hpr_free_list);
4605         }
4606
4607         /* internal queue */
4608         INIT_LIST_HEAD(&ioc->internal_free_list);
4609         smid = ioc->internal_smid;
4610         for (i = 0; i < ioc->internal_depth; i++, smid++) {
4611                 ioc->internal_lookup[i].cb_idx = 0xFF;
4612                 ioc->internal_lookup[i].smid = smid;
4613                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
4614                     &ioc->internal_free_list);
4615         }
4616
4617         /* chain pool */
4618         INIT_LIST_HEAD(&ioc->free_chain_list);
4619         for (i = 0; i < ioc->chain_depth; i++)
4620                 list_add_tail(&ioc->chain_lookup[i].tracker_list,
4621                     &ioc->free_chain_list);
4622
4623         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4624
4625         /* initialize Reply Free Queue */
4626         for (i = 0, reply_address = (u32)ioc->reply_dma ;
4627             i < ioc->reply_free_queue_depth ; i++, reply_address +=
4628             ioc->reply_sz)
4629                 ioc->reply_free[i] = cpu_to_le32(reply_address);
4630
4631         /* initialize reply queues */
4632         if (ioc->is_driver_loading)
4633                 _base_assign_reply_queues(ioc);
4634
4635         /* initialize Reply Post Free Queue */
4636         reply_post_free_sz = ioc->reply_post_queue_depth *
4637             sizeof(Mpi2DefaultReplyDescriptor_t);
4638         reply_post_free = (long)ioc->reply_post[index].reply_post_free;
4639         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4640                 reply_q->reply_post_host_index = 0;
4641                 reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
4642                     reply_post_free;
4643                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
4644                         reply_q->reply_post_free[i].Words =
4645                             cpu_to_le64(ULLONG_MAX);
4646                 if (!_base_is_controller_msix_enabled(ioc))
4647                         goto skip_init_reply_post_free_queue;
4648                 /*
4649                  * If RDPQ is enabled, switch to the next allocation.
4650                  * Otherwise advance within the contiguous region.
4651                  */
4652                 if (ioc->rdpq_array_enable)
4653                         reply_post_free = (long)
4654                             ioc->reply_post[++index].reply_post_free;
4655                 else
4656                         reply_post_free += reply_post_free_sz;
4657         }
4658  skip_init_reply_post_free_queue:
4659
4660         r = _base_send_ioc_init(ioc, sleep_flag);
4661         if (r)
4662                 return r;
4663
4664         /* initialize reply free host index */
4665         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
4666         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
4667
4668         /* initialize reply post host index */
4669         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4670                 if (ioc->msix96_vector)
4671                         writel((reply_q->msix_index & 7)<<
4672                            MPI2_RPHI_MSIX_INDEX_SHIFT,
4673                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
4674                 else
4675                         writel(reply_q->msix_index <<
4676                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
4677                                 &ioc->chip->ReplyPostHostIndex);
4678
4679                 if (!_base_is_controller_msix_enabled(ioc))
4680                         goto skip_init_reply_post_host_index;
4681         }
4682
4683  skip_init_reply_post_host_index:
4684
4685         _base_unmask_interrupts(ioc);
4686         r = _base_event_notification(ioc, sleep_flag);
4687         if (r)
4688                 return r;
4689
4690         if (sleep_flag == CAN_SLEEP)
4691                 _base_static_config_pages(ioc);
4692
4693
4694         if (ioc->is_driver_loading) {
4695                 ioc->wait_for_discovery_to_complete =
4696                     _base_determine_wait_on_discovery(ioc);
4697
4698                 return r; /* scan_start and scan_finished support */
4699         }
4700
4701         r = _base_send_port_enable(ioc, sleep_flag);
4702         if (r)
4703                 return r;
4704
4705         return r;
4706 }
4707
4708 /**
4709  * mpt3sas_base_free_resources - free resources controller resources
4710  * @ioc: per adapter object
4711  *
4712  * Return nothing.
4713  */
4714 void
4715 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
4716 {
4717         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4718             __func__));
4719
4720         if (ioc->chip_phys && ioc->chip) {
4721                 _base_mask_interrupts(ioc);
4722                 ioc->shost_recovery = 1;
4723                 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4724                 ioc->shost_recovery = 0;
4725         }
4726
4727         mpt3sas_base_unmap_resources(ioc);
4728         return;
4729 }
4730
4731 /**
4732  * mpt3sas_base_attach - attach controller instance
4733  * @ioc: per adapter object
4734  *
4735  * Returns 0 for success, non-zero for failure.
4736  */
4737 int
4738 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
4739 {
4740         int r, i;
4741         int cpu_id, last_cpu_id = 0;
4742         u8 revision;
4743
4744         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4745             __func__));
4746
4747         /* setup cpu_msix_table */
4748         ioc->cpu_count = num_online_cpus();
4749         for_each_online_cpu(cpu_id)
4750                 last_cpu_id = cpu_id;
4751         ioc->cpu_msix_table_sz = last_cpu_id + 1;
4752         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
4753         ioc->reply_queue_count = 1;
4754         if (!ioc->cpu_msix_table) {
4755                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
4756                         "allocation for cpu_msix_table failed!!!\n",
4757                         ioc->name));
4758                 r = -ENOMEM;
4759                 goto out_free_resources;
4760         }
4761
4762         /* Check whether the controller revision is C0 or above.
4763          * only C0 and above revision controllers support 96 MSI-X vectors.
4764          */
4765         revision = ioc->pdev->revision;
4766
4767         if ((ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3004 ||
4768              ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3008 ||
4769              ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3108_1 ||
4770              ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3108_2 ||
4771              ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3108_5 ||
4772              ioc->pdev->device == MPI25_MFGPAGE_DEVID_SAS3108_6) &&
4773              (revision >= 0x02))
4774                 ioc->msix96_vector = 1;
4775
4776         ioc->rdpq_array_enable_assigned = 0;
4777         ioc->dma_mask = 0;
4778         r = mpt3sas_base_map_resources(ioc);
4779         if (r)
4780                 goto out_free_resources;
4781
4782
4783         pci_set_drvdata(ioc->pdev, ioc->shost);
4784         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4785         if (r)
4786                 goto out_free_resources;
4787
4788         /*
4789          * In SAS3.0,
4790          * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
4791          * Target Status - all require the IEEE formated scatter gather
4792          * elements.
4793          */
4794
4795         ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
4796         ioc->build_sg = &_base_build_sg_ieee;
4797         ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
4798         ioc->mpi25 = 1;
4799         ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
4800
4801         /*
4802          * These function pointers for other requests that don't
4803          * the require IEEE scatter gather elements.
4804          *
4805          * For example Configuration Pages and SAS IOUNIT Control don't.
4806          */
4807         ioc->build_sg_mpi = &_base_build_sg;
4808         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
4809
4810         r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4811         if (r)
4812                 goto out_free_resources;
4813
4814         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
4815             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
4816         if (!ioc->pfacts) {
4817                 r = -ENOMEM;
4818                 goto out_free_resources;
4819         }
4820
4821         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
4822                 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
4823                 if (r)
4824                         goto out_free_resources;
4825         }
4826
4827         r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
4828         if (r)
4829                 goto out_free_resources;
4830
4831         init_waitqueue_head(&ioc->reset_wq);
4832
4833         /* allocate memory pd handle bitmask list */
4834         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
4835         if (ioc->facts.MaxDevHandle % 8)
4836                 ioc->pd_handles_sz++;
4837         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
4838             GFP_KERNEL);
4839         if (!ioc->pd_handles) {
4840                 r = -ENOMEM;
4841                 goto out_free_resources;
4842         }
4843         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
4844             GFP_KERNEL);
4845         if (!ioc->blocking_handles) {
4846                 r = -ENOMEM;
4847                 goto out_free_resources;
4848         }
4849
4850         ioc->fwfault_debug = mpt3sas_fwfault_debug;
4851
4852         /* base internal command bits */
4853         mutex_init(&ioc->base_cmds.mutex);
4854         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4855         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4856
4857         /* port_enable command bits */
4858         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4859         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4860
4861         /* transport internal command bits */
4862         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4863         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
4864         mutex_init(&ioc->transport_cmds.mutex);
4865
4866         /* scsih internal command bits */
4867         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4868         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
4869         mutex_init(&ioc->scsih_cmds.mutex);
4870
4871         /* task management internal command bits */
4872         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4873         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
4874         mutex_init(&ioc->tm_cmds.mutex);
4875
4876         /* config page internal command bits */
4877         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4878         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
4879         mutex_init(&ioc->config_cmds.mutex);
4880
4881         /* ctl module internal command bits */
4882         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4883         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
4884         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
4885         mutex_init(&ioc->ctl_cmds.mutex);
4886
4887         if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4888             !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4889             !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
4890             !ioc->ctl_cmds.sense) {
4891                 r = -ENOMEM;
4892                 goto out_free_resources;
4893         }
4894
4895         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4896                 ioc->event_masks[i] = -1;
4897
4898         /* here we enable the events we care about */
4899         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
4900         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
4901         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
4902         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
4903         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
4904         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
4905         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
4906         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
4907         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
4908         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
4909         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
4910
4911         r = _base_make_ioc_operational(ioc, CAN_SLEEP);
4912         if (r)
4913                 goto out_free_resources;
4914
4915         return 0;
4916
4917  out_free_resources:
4918
4919         ioc->remove_host = 1;
4920
4921         mpt3sas_base_free_resources(ioc);
4922         _base_release_memory_pools(ioc);
4923         pci_set_drvdata(ioc->pdev, NULL);
4924         kfree(ioc->cpu_msix_table);
4925         kfree(ioc->pd_handles);
4926         kfree(ioc->blocking_handles);
4927         kfree(ioc->tm_cmds.reply);
4928         kfree(ioc->transport_cmds.reply);
4929         kfree(ioc->scsih_cmds.reply);
4930         kfree(ioc->config_cmds.reply);
4931         kfree(ioc->base_cmds.reply);
4932         kfree(ioc->port_enable_cmds.reply);
4933         kfree(ioc->ctl_cmds.reply);
4934         kfree(ioc->ctl_cmds.sense);
4935         kfree(ioc->pfacts);
4936         ioc->ctl_cmds.reply = NULL;
4937         ioc->base_cmds.reply = NULL;
4938         ioc->tm_cmds.reply = NULL;
4939         ioc->scsih_cmds.reply = NULL;
4940         ioc->transport_cmds.reply = NULL;
4941         ioc->config_cmds.reply = NULL;
4942         ioc->pfacts = NULL;
4943         return r;
4944 }
4945
4946
4947 /**
4948  * mpt3sas_base_detach - remove controller instance
4949  * @ioc: per adapter object
4950  *
4951  * Return nothing.
4952  */
4953 void
4954 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
4955 {
4956         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4957             __func__));
4958
4959         mpt3sas_base_stop_watchdog(ioc);
4960         mpt3sas_base_free_resources(ioc);
4961         _base_release_memory_pools(ioc);
4962         pci_set_drvdata(ioc->pdev, NULL);
4963         kfree(ioc->cpu_msix_table);
4964         kfree(ioc->pd_handles);
4965         kfree(ioc->blocking_handles);
4966         kfree(ioc->pfacts);
4967         kfree(ioc->ctl_cmds.reply);
4968         kfree(ioc->ctl_cmds.sense);
4969         kfree(ioc->base_cmds.reply);
4970         kfree(ioc->port_enable_cmds.reply);
4971         kfree(ioc->tm_cmds.reply);
4972         kfree(ioc->transport_cmds.reply);
4973         kfree(ioc->scsih_cmds.reply);
4974         kfree(ioc->config_cmds.reply);
4975 }
4976
4977 /**
4978  * _base_reset_handler - reset callback handler (for base)
4979  * @ioc: per adapter object
4980  * @reset_phase: phase
4981  *
4982  * The handler for doing any required cleanup or initialization.
4983  *
4984  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
4985  * MPT3_IOC_DONE_RESET
4986  *
4987  * Return nothing.
4988  */
4989 static void
4990 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
4991 {
4992         mpt3sas_scsih_reset_handler(ioc, reset_phase);
4993         mpt3sas_ctl_reset_handler(ioc, reset_phase);
4994         switch (reset_phase) {
4995         case MPT3_IOC_PRE_RESET:
4996                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4997                 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
4998                 break;
4999         case MPT3_IOC_AFTER_RESET:
5000                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5001                 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5002                 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5003                         ioc->transport_cmds.status |= MPT3_CMD_RESET;
5004                         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5005                         complete(&ioc->transport_cmds.done);
5006                 }
5007                 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5008                         ioc->base_cmds.status |= MPT3_CMD_RESET;
5009                         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5010                         complete(&ioc->base_cmds.done);
5011                 }
5012                 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5013                         ioc->port_enable_failed = 1;
5014                         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5015                         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5016                         if (ioc->is_driver_loading) {
5017                                 ioc->start_scan_failed =
5018                                     MPI2_IOCSTATUS_INTERNAL_ERROR;
5019                                 ioc->start_scan = 0;
5020                                 ioc->port_enable_cmds.status =
5021                                     MPT3_CMD_NOT_USED;
5022                         } else
5023                                 complete(&ioc->port_enable_cmds.done);
5024                 }
5025                 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5026                         ioc->config_cmds.status |= MPT3_CMD_RESET;
5027                         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5028                         ioc->config_cmds.smid = USHRT_MAX;
5029                         complete(&ioc->config_cmds.done);
5030                 }
5031                 break;
5032         case MPT3_IOC_DONE_RESET:
5033                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5034                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5035                 break;
5036         }
5037 }
5038
5039 /**
5040  * _wait_for_commands_to_complete - reset controller
5041  * @ioc: Pointer to MPT_ADAPTER structure
5042  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5043  *
5044  * This function waiting(3s) for all pending commands to complete
5045  * prior to putting controller in reset.
5046  */
5047 static void
5048 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5049 {
5050         u32 ioc_state;
5051         unsigned long flags;
5052         u16 i;
5053
5054         ioc->pending_io_count = 0;
5055         if (sleep_flag != CAN_SLEEP)
5056                 return;
5057
5058         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5059         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5060                 return;
5061
5062         /* pending command count */
5063         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5064         for (i = 0; i < ioc->scsiio_depth; i++)
5065                 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5066                         ioc->pending_io_count++;
5067         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5068
5069         if (!ioc->pending_io_count)
5070                 return;
5071
5072         /* wait for pending commands to complete */
5073         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5074 }
5075
5076 /**
5077  * mpt3sas_base_hard_reset_handler - reset controller
5078  * @ioc: Pointer to MPT_ADAPTER structure
5079  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5080  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5081  *
5082  * Returns 0 for success, non-zero for failure.
5083  */
5084 int
5085 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5086         enum reset_type type)
5087 {
5088         int r;
5089         unsigned long flags;
5090         u32 ioc_state;
5091         u8 is_fault = 0, is_trigger = 0;
5092
5093         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5094             __func__));
5095
5096         if (ioc->pci_error_recovery) {
5097                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5098                     ioc->name, __func__);
5099                 r = 0;
5100                 goto out_unlocked;
5101         }
5102
5103         if (mpt3sas_fwfault_debug)
5104                 mpt3sas_halt_firmware(ioc);
5105
5106         /* TODO - What we really should be doing is pulling
5107          * out all the code associated with NO_SLEEP; its never used.
5108          * That is legacy code from mpt fusion driver, ported over.
5109          * I will leave this BUG_ON here for now till its been resolved.
5110          */
5111         BUG_ON(sleep_flag == NO_SLEEP);
5112
5113         /* wait for an active reset in progress to complete */
5114         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5115                 do {
5116                         ssleep(1);
5117                 } while (ioc->shost_recovery == 1);
5118                 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5119                     __func__));
5120                 return ioc->ioc_reset_in_progress_status;
5121         }
5122
5123         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5124         ioc->shost_recovery = 1;
5125         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5126
5127         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5128             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5129             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5130             MPT3_DIAG_BUFFER_IS_RELEASED))) {
5131                 is_trigger = 1;
5132                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5133                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5134                         is_fault = 1;
5135         }
5136         _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5137         _wait_for_commands_to_complete(ioc, sleep_flag);
5138         _base_mask_interrupts(ioc);
5139         r = _base_make_ioc_ready(ioc, sleep_flag, type);
5140         if (r)
5141                 goto out;
5142         _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5143
5144         /* If this hard reset is called while port enable is active, then
5145          * there is no reason to call make_ioc_operational
5146          */
5147         if (ioc->is_driver_loading && ioc->port_enable_failed) {
5148                 ioc->remove_host = 1;
5149                 r = -EFAULT;
5150                 goto out;
5151         }
5152         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5153         if (r)
5154                 goto out;
5155
5156         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5157                 panic("%s: Issue occurred with flashing controller firmware."
5158                       "Please reboot the system and ensure that the correct"
5159                       " firmware version is running\n", ioc->name);
5160
5161         r = _base_make_ioc_operational(ioc, sleep_flag);
5162         if (!r)
5163                 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5164
5165  out:
5166         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5167             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5168
5169         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5170         ioc->ioc_reset_in_progress_status = r;
5171         ioc->shost_recovery = 0;
5172         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5173         ioc->ioc_reset_count++;
5174         mutex_unlock(&ioc->reset_in_progress_mutex);
5175
5176  out_unlocked:
5177         if ((r == 0) && is_trigger) {
5178                 if (is_fault)
5179                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5180                 else
5181                         mpt3sas_trigger_master(ioc,
5182                             MASTER_TRIGGER_ADAPTER_RESET);
5183         }
5184         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5185             __func__));
5186         return r;
5187 }