]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/scsi/scsi_lib.c
Merge branch 'fix/rt5645' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[karo-tx-linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34
35 #include <trace/events/scsi.h>
36
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39
40
41 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
42 #define SG_MEMPOOL_SIZE         2
43
44 struct scsi_host_sg_pool {
45         size_t          size;
46         char            *name;
47         struct kmem_cache       *slab;
48         mempool_t       *pool;
49 };
50
51 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
52 #if (SCSI_MAX_SG_SEGMENTS < 32)
53 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
54 #endif
55 static struct scsi_host_sg_pool scsi_sg_pools[] = {
56         SP(8),
57         SP(16),
58 #if (SCSI_MAX_SG_SEGMENTS > 32)
59         SP(32),
60 #if (SCSI_MAX_SG_SEGMENTS > 64)
61         SP(64),
62 #if (SCSI_MAX_SG_SEGMENTS > 128)
63         SP(128),
64 #if (SCSI_MAX_SG_SEGMENTS > 256)
65 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
66 #endif
67 #endif
68 #endif
69 #endif
70         SP(SCSI_MAX_SG_SEGMENTS)
71 };
72 #undef SP
73
74 struct kmem_cache *scsi_sdb_cache;
75
76 /*
77  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
78  * not change behaviour from the previous unplug mechanism, experimentation
79  * may prove this needs changing.
80  */
81 #define SCSI_QUEUE_DELAY        3
82
83 static void
84 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
85 {
86         struct Scsi_Host *host = cmd->device->host;
87         struct scsi_device *device = cmd->device;
88         struct scsi_target *starget = scsi_target(device);
89
90         /*
91          * Set the appropriate busy bit for the device/host.
92          *
93          * If the host/device isn't busy, assume that something actually
94          * completed, and that we should be able to queue a command now.
95          *
96          * Note that the prior mid-layer assumption that any host could
97          * always queue at least one command is now broken.  The mid-layer
98          * will implement a user specifiable stall (see
99          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
100          * if a command is requeued with no other commands outstanding
101          * either for the device or for the host.
102          */
103         switch (reason) {
104         case SCSI_MLQUEUE_HOST_BUSY:
105                 atomic_set(&host->host_blocked, host->max_host_blocked);
106                 break;
107         case SCSI_MLQUEUE_DEVICE_BUSY:
108         case SCSI_MLQUEUE_EH_RETRY:
109                 atomic_set(&device->device_blocked,
110                            device->max_device_blocked);
111                 break;
112         case SCSI_MLQUEUE_TARGET_BUSY:
113                 atomic_set(&starget->target_blocked,
114                            starget->max_target_blocked);
115                 break;
116         }
117 }
118
119 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
120 {
121         struct scsi_device *sdev = cmd->device;
122         struct request_queue *q = cmd->request->q;
123
124         blk_mq_requeue_request(cmd->request);
125         blk_mq_kick_requeue_list(q);
126         put_device(&sdev->sdev_gendev);
127 }
128
129 /**
130  * __scsi_queue_insert - private queue insertion
131  * @cmd: The SCSI command being requeued
132  * @reason:  The reason for the requeue
133  * @unbusy: Whether the queue should be unbusied
134  *
135  * This is a private queue insertion.  The public interface
136  * scsi_queue_insert() always assumes the queue should be unbusied
137  * because it's always called before the completion.  This function is
138  * for a requeue after completion, which should only occur in this
139  * file.
140  */
141 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
142 {
143         struct scsi_device *device = cmd->device;
144         struct request_queue *q = device->request_queue;
145         unsigned long flags;
146
147         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148                 "Inserting command %p into mlqueue\n", cmd));
149
150         scsi_set_blocked(cmd, reason);
151
152         /*
153          * Decrement the counters, since these commands are no longer
154          * active on the host/device.
155          */
156         if (unbusy)
157                 scsi_device_unbusy(device);
158
159         /*
160          * Requeue this command.  It will go before all other commands
161          * that are already in the queue. Schedule requeue work under
162          * lock such that the kblockd_schedule_work() call happens
163          * before blk_cleanup_queue() finishes.
164          */
165         cmd->result = 0;
166         if (q->mq_ops) {
167                 scsi_mq_requeue_cmd(cmd);
168                 return;
169         }
170         spin_lock_irqsave(q->queue_lock, flags);
171         blk_requeue_request(q, cmd->request);
172         kblockd_schedule_work(&device->requeue_work);
173         spin_unlock_irqrestore(q->queue_lock, flags);
174 }
175
176 /*
177  * Function:    scsi_queue_insert()
178  *
179  * Purpose:     Insert a command in the midlevel queue.
180  *
181  * Arguments:   cmd    - command that we are adding to queue.
182  *              reason - why we are inserting command to queue.
183  *
184  * Lock status: Assumed that lock is not held upon entry.
185  *
186  * Returns:     Nothing.
187  *
188  * Notes:       We do this for one of two cases.  Either the host is busy
189  *              and it cannot accept any more commands for the time being,
190  *              or the device returned QUEUE_FULL and can accept no more
191  *              commands.
192  * Notes:       This could be called either from an interrupt context or a
193  *              normal process context.
194  */
195 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
196 {
197         __scsi_queue_insert(cmd, reason, 1);
198 }
199 /**
200  * scsi_execute - insert request and wait for the result
201  * @sdev:       scsi device
202  * @cmd:        scsi command
203  * @data_direction: data direction
204  * @buffer:     data buffer
205  * @bufflen:    len of buffer
206  * @sense:      optional sense buffer
207  * @timeout:    request timeout in seconds
208  * @retries:    number of times to retry request
209  * @flags:      or into request flags;
210  * @resid:      optional residual length
211  *
212  * returns the req->errors value which is the scsi_cmnd result
213  * field.
214  */
215 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
216                  int data_direction, void *buffer, unsigned bufflen,
217                  unsigned char *sense, int timeout, int retries, u64 flags,
218                  int *resid)
219 {
220         struct request *req;
221         int write = (data_direction == DMA_TO_DEVICE);
222         int ret = DRIVER_ERROR << 24;
223
224         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
225         if (IS_ERR(req))
226                 return ret;
227         blk_rq_set_block_pc(req);
228
229         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
230                                         buffer, bufflen, __GFP_WAIT))
231                 goto out;
232
233         req->cmd_len = COMMAND_SIZE(cmd[0]);
234         memcpy(req->cmd, cmd, req->cmd_len);
235         req->sense = sense;
236         req->sense_len = 0;
237         req->retries = retries;
238         req->timeout = timeout;
239         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
240
241         /*
242          * head injection *required* here otherwise quiesce won't work
243          */
244         blk_execute_rq(req->q, NULL, req, 1);
245
246         /*
247          * Some devices (USB mass-storage in particular) may transfer
248          * garbage data together with a residue indicating that the data
249          * is invalid.  Prevent the garbage from being misinterpreted
250          * and prevent security leaks by zeroing out the excess data.
251          */
252         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
253                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
254
255         if (resid)
256                 *resid = req->resid_len;
257         ret = req->errors;
258  out:
259         blk_put_request(req);
260
261         return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute);
264
265 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
266                      int data_direction, void *buffer, unsigned bufflen,
267                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
268                      int *resid, u64 flags)
269 {
270         char *sense = NULL;
271         int result;
272         
273         if (sshdr) {
274                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
275                 if (!sense)
276                         return DRIVER_ERROR << 24;
277         }
278         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
279                               sense, timeout, retries, flags, resid);
280         if (sshdr)
281                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
282
283         kfree(sense);
284         return result;
285 }
286 EXPORT_SYMBOL(scsi_execute_req_flags);
287
288 /*
289  * Function:    scsi_init_cmd_errh()
290  *
291  * Purpose:     Initialize cmd fields related to error handling.
292  *
293  * Arguments:   cmd     - command that is ready to be queued.
294  *
295  * Notes:       This function has the job of initializing a number of
296  *              fields related to error handling.   Typically this will
297  *              be called once for each command, as required.
298  */
299 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
300 {
301         cmd->serial_number = 0;
302         scsi_set_resid(cmd, 0);
303         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
304         if (cmd->cmd_len == 0)
305                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
306 }
307
308 void scsi_device_unbusy(struct scsi_device *sdev)
309 {
310         struct Scsi_Host *shost = sdev->host;
311         struct scsi_target *starget = scsi_target(sdev);
312         unsigned long flags;
313
314         atomic_dec(&shost->host_busy);
315         if (starget->can_queue > 0)
316                 atomic_dec(&starget->target_busy);
317
318         if (unlikely(scsi_host_in_recovery(shost) &&
319                      (shost->host_failed || shost->host_eh_scheduled))) {
320                 spin_lock_irqsave(shost->host_lock, flags);
321                 scsi_eh_wakeup(shost);
322                 spin_unlock_irqrestore(shost->host_lock, flags);
323         }
324
325         atomic_dec(&sdev->device_busy);
326 }
327
328 static void scsi_kick_queue(struct request_queue *q)
329 {
330         if (q->mq_ops)
331                 blk_mq_start_hw_queues(q);
332         else
333                 blk_run_queue(q);
334 }
335
336 /*
337  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338  * and call blk_run_queue for all the scsi_devices on the target -
339  * including current_sdev first.
340  *
341  * Called with *no* scsi locks held.
342  */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345         struct Scsi_Host *shost = current_sdev->host;
346         struct scsi_device *sdev, *tmp;
347         struct scsi_target *starget = scsi_target(current_sdev);
348         unsigned long flags;
349
350         spin_lock_irqsave(shost->host_lock, flags);
351         starget->starget_sdev_user = NULL;
352         spin_unlock_irqrestore(shost->host_lock, flags);
353
354         /*
355          * Call blk_run_queue for all LUNs on the target, starting with
356          * current_sdev. We race with others (to set starget_sdev_user),
357          * but in most cases, we will be first. Ideally, each LU on the
358          * target would get some limited time or requests on the target.
359          */
360         scsi_kick_queue(current_sdev->request_queue);
361
362         spin_lock_irqsave(shost->host_lock, flags);
363         if (starget->starget_sdev_user)
364                 goto out;
365         list_for_each_entry_safe(sdev, tmp, &starget->devices,
366                         same_target_siblings) {
367                 if (sdev == current_sdev)
368                         continue;
369                 if (scsi_device_get(sdev))
370                         continue;
371
372                 spin_unlock_irqrestore(shost->host_lock, flags);
373                 scsi_kick_queue(sdev->request_queue);
374                 spin_lock_irqsave(shost->host_lock, flags);
375         
376                 scsi_device_put(sdev);
377         }
378  out:
379         spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381
382 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
383 {
384         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
385                 return true;
386         if (atomic_read(&sdev->device_blocked) > 0)
387                 return true;
388         return false;
389 }
390
391 static inline bool scsi_target_is_busy(struct scsi_target *starget)
392 {
393         if (starget->can_queue > 0) {
394                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
395                         return true;
396                 if (atomic_read(&starget->target_blocked) > 0)
397                         return true;
398         }
399         return false;
400 }
401
402 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
403 {
404         if (shost->can_queue > 0 &&
405             atomic_read(&shost->host_busy) >= shost->can_queue)
406                 return true;
407         if (atomic_read(&shost->host_blocked) > 0)
408                 return true;
409         if (shost->host_self_blocked)
410                 return true;
411         return false;
412 }
413
414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416         LIST_HEAD(starved_list);
417         struct scsi_device *sdev;
418         unsigned long flags;
419
420         spin_lock_irqsave(shost->host_lock, flags);
421         list_splice_init(&shost->starved_list, &starved_list);
422
423         while (!list_empty(&starved_list)) {
424                 struct request_queue *slq;
425
426                 /*
427                  * As long as shost is accepting commands and we have
428                  * starved queues, call blk_run_queue. scsi_request_fn
429                  * drops the queue_lock and can add us back to the
430                  * starved_list.
431                  *
432                  * host_lock protects the starved_list and starved_entry.
433                  * scsi_request_fn must get the host_lock before checking
434                  * or modifying starved_list or starved_entry.
435                  */
436                 if (scsi_host_is_busy(shost))
437                         break;
438
439                 sdev = list_entry(starved_list.next,
440                                   struct scsi_device, starved_entry);
441                 list_del_init(&sdev->starved_entry);
442                 if (scsi_target_is_busy(scsi_target(sdev))) {
443                         list_move_tail(&sdev->starved_entry,
444                                        &shost->starved_list);
445                         continue;
446                 }
447
448                 /*
449                  * Once we drop the host lock, a racing scsi_remove_device()
450                  * call may remove the sdev from the starved list and destroy
451                  * it and the queue.  Mitigate by taking a reference to the
452                  * queue and never touching the sdev again after we drop the
453                  * host lock.  Note: if __scsi_remove_device() invokes
454                  * blk_cleanup_queue() before the queue is run from this
455                  * function then blk_run_queue() will return immediately since
456                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457                  */
458                 slq = sdev->request_queue;
459                 if (!blk_get_queue(slq))
460                         continue;
461                 spin_unlock_irqrestore(shost->host_lock, flags);
462
463                 scsi_kick_queue(slq);
464                 blk_put_queue(slq);
465
466                 spin_lock_irqsave(shost->host_lock, flags);
467         }
468         /* put any unprocessed entries back */
469         list_splice(&starved_list, &shost->starved_list);
470         spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472
473 /*
474  * Function:   scsi_run_queue()
475  *
476  * Purpose:    Select a proper request queue to serve next
477  *
478  * Arguments:  q       - last request's queue
479  *
480  * Returns:     Nothing
481  *
482  * Notes:      The previous command was completely finished, start
483  *             a new one if possible.
484  */
485 static void scsi_run_queue(struct request_queue *q)
486 {
487         struct scsi_device *sdev = q->queuedata;
488
489         if (scsi_target(sdev)->single_lun)
490                 scsi_single_lun_run(sdev);
491         if (!list_empty(&sdev->host->starved_list))
492                 scsi_starved_list_run(sdev->host);
493
494         if (q->mq_ops)
495                 blk_mq_start_stopped_hw_queues(q, false);
496         else
497                 blk_run_queue(q);
498 }
499
500 void scsi_requeue_run_queue(struct work_struct *work)
501 {
502         struct scsi_device *sdev;
503         struct request_queue *q;
504
505         sdev = container_of(work, struct scsi_device, requeue_work);
506         q = sdev->request_queue;
507         scsi_run_queue(q);
508 }
509
510 /*
511  * Function:    scsi_requeue_command()
512  *
513  * Purpose:     Handle post-processing of completed commands.
514  *
515  * Arguments:   q       - queue to operate on
516  *              cmd     - command that may need to be requeued.
517  *
518  * Returns:     Nothing
519  *
520  * Notes:       After command completion, there may be blocks left
521  *              over which weren't finished by the previous command
522  *              this can be for a number of reasons - the main one is
523  *              I/O errors in the middle of the request, in which case
524  *              we need to request the blocks that come after the bad
525  *              sector.
526  * Notes:       Upon return, cmd is a stale pointer.
527  */
528 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
529 {
530         struct scsi_device *sdev = cmd->device;
531         struct request *req = cmd->request;
532         unsigned long flags;
533
534         spin_lock_irqsave(q->queue_lock, flags);
535         blk_unprep_request(req);
536         req->special = NULL;
537         scsi_put_command(cmd);
538         blk_requeue_request(q, req);
539         spin_unlock_irqrestore(q->queue_lock, flags);
540
541         scsi_run_queue(q);
542
543         put_device(&sdev->sdev_gendev);
544 }
545
546 void scsi_run_host_queues(struct Scsi_Host *shost)
547 {
548         struct scsi_device *sdev;
549
550         shost_for_each_device(sdev, shost)
551                 scsi_run_queue(sdev->request_queue);
552 }
553
554 static inline unsigned int scsi_sgtable_index(unsigned short nents)
555 {
556         unsigned int index;
557
558         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
559
560         if (nents <= 8)
561                 index = 0;
562         else
563                 index = get_count_order(nents) - 3;
564
565         return index;
566 }
567
568 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
569 {
570         struct scsi_host_sg_pool *sgp;
571
572         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
573         mempool_free(sgl, sgp->pool);
574 }
575
576 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
577 {
578         struct scsi_host_sg_pool *sgp;
579
580         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
581         return mempool_alloc(sgp->pool, gfp_mask);
582 }
583
584 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
585 {
586         if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
587                 return;
588         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
589 }
590
591 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
592 {
593         struct scatterlist *first_chunk = NULL;
594         int ret;
595
596         BUG_ON(!nents);
597
598         if (mq) {
599                 if (nents <= SCSI_MAX_SG_SEGMENTS) {
600                         sdb->table.nents = sdb->table.orig_nents = nents;
601                         sg_init_table(sdb->table.sgl, nents);
602                         return 0;
603                 }
604                 first_chunk = sdb->table.sgl;
605         }
606
607         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
608                                first_chunk, GFP_ATOMIC, scsi_sg_alloc);
609         if (unlikely(ret))
610                 scsi_free_sgtable(sdb, mq);
611         return ret;
612 }
613
614 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
615 {
616         if (cmd->request->cmd_type == REQ_TYPE_FS) {
617                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
618
619                 if (drv->uninit_command)
620                         drv->uninit_command(cmd);
621         }
622 }
623
624 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
625 {
626         if (cmd->sdb.table.nents)
627                 scsi_free_sgtable(&cmd->sdb, true);
628         if (cmd->request->next_rq && cmd->request->next_rq->special)
629                 scsi_free_sgtable(cmd->request->next_rq->special, true);
630         if (scsi_prot_sg_count(cmd))
631                 scsi_free_sgtable(cmd->prot_sdb, true);
632 }
633
634 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
635 {
636         struct scsi_device *sdev = cmd->device;
637         struct Scsi_Host *shost = sdev->host;
638         unsigned long flags;
639
640         scsi_mq_free_sgtables(cmd);
641         scsi_uninit_cmd(cmd);
642
643         if (shost->use_cmd_list) {
644                 BUG_ON(list_empty(&cmd->list));
645                 spin_lock_irqsave(&sdev->list_lock, flags);
646                 list_del_init(&cmd->list);
647                 spin_unlock_irqrestore(&sdev->list_lock, flags);
648         }
649 }
650
651 /*
652  * Function:    scsi_release_buffers()
653  *
654  * Purpose:     Free resources allocate for a scsi_command.
655  *
656  * Arguments:   cmd     - command that we are bailing.
657  *
658  * Lock status: Assumed that no lock is held upon entry.
659  *
660  * Returns:     Nothing
661  *
662  * Notes:       In the event that an upper level driver rejects a
663  *              command, we must release resources allocated during
664  *              the __init_io() function.  Primarily this would involve
665  *              the scatter-gather table.
666  */
667 static void scsi_release_buffers(struct scsi_cmnd *cmd)
668 {
669         if (cmd->sdb.table.nents)
670                 scsi_free_sgtable(&cmd->sdb, false);
671
672         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
673
674         if (scsi_prot_sg_count(cmd))
675                 scsi_free_sgtable(cmd->prot_sdb, false);
676 }
677
678 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
679 {
680         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
681
682         scsi_free_sgtable(bidi_sdb, false);
683         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
684         cmd->request->next_rq->special = NULL;
685 }
686
687 static bool scsi_end_request(struct request *req, int error,
688                 unsigned int bytes, unsigned int bidi_bytes)
689 {
690         struct scsi_cmnd *cmd = req->special;
691         struct scsi_device *sdev = cmd->device;
692         struct request_queue *q = sdev->request_queue;
693
694         if (blk_update_request(req, error, bytes))
695                 return true;
696
697         /* Bidi request must be completed as a whole */
698         if (unlikely(bidi_bytes) &&
699             blk_update_request(req->next_rq, error, bidi_bytes))
700                 return true;
701
702         if (blk_queue_add_random(q))
703                 add_disk_randomness(req->rq_disk);
704
705         if (req->mq_ctx) {
706                 /*
707                  * In the MQ case the command gets freed by __blk_mq_end_request,
708                  * so we have to do all cleanup that depends on it earlier.
709                  *
710                  * We also can't kick the queues from irq context, so we
711                  * will have to defer it to a workqueue.
712                  */
713                 scsi_mq_uninit_cmd(cmd);
714
715                 __blk_mq_end_request(req, error);
716
717                 if (scsi_target(sdev)->single_lun ||
718                     !list_empty(&sdev->host->starved_list))
719                         kblockd_schedule_work(&sdev->requeue_work);
720                 else
721                         blk_mq_start_stopped_hw_queues(q, true);
722         } else {
723                 unsigned long flags;
724
725                 if (bidi_bytes)
726                         scsi_release_bidi_buffers(cmd);
727
728                 spin_lock_irqsave(q->queue_lock, flags);
729                 blk_finish_request(req, error);
730                 spin_unlock_irqrestore(q->queue_lock, flags);
731
732                 scsi_release_buffers(cmd);
733
734                 scsi_put_command(cmd);
735                 scsi_run_queue(q);
736         }
737
738         put_device(&sdev->sdev_gendev);
739         return false;
740 }
741
742 /**
743  * __scsi_error_from_host_byte - translate SCSI error code into errno
744  * @cmd:        SCSI command (unused)
745  * @result:     scsi error code
746  *
747  * Translate SCSI error code into standard UNIX errno.
748  * Return values:
749  * -ENOLINK     temporary transport failure
750  * -EREMOTEIO   permanent target failure, do not retry
751  * -EBADE       permanent nexus failure, retry on other path
752  * -ENOSPC      No write space available
753  * -ENODATA     Medium error
754  * -EIO         unspecified I/O error
755  */
756 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
757 {
758         int error = 0;
759
760         switch(host_byte(result)) {
761         case DID_TRANSPORT_FAILFAST:
762                 error = -ENOLINK;
763                 break;
764         case DID_TARGET_FAILURE:
765                 set_host_byte(cmd, DID_OK);
766                 error = -EREMOTEIO;
767                 break;
768         case DID_NEXUS_FAILURE:
769                 set_host_byte(cmd, DID_OK);
770                 error = -EBADE;
771                 break;
772         case DID_ALLOC_FAILURE:
773                 set_host_byte(cmd, DID_OK);
774                 error = -ENOSPC;
775                 break;
776         case DID_MEDIUM_ERROR:
777                 set_host_byte(cmd, DID_OK);
778                 error = -ENODATA;
779                 break;
780         default:
781                 error = -EIO;
782                 break;
783         }
784
785         return error;
786 }
787
788 /*
789  * Function:    scsi_io_completion()
790  *
791  * Purpose:     Completion processing for block device I/O requests.
792  *
793  * Arguments:   cmd   - command that is finished.
794  *
795  * Lock status: Assumed that no lock is held upon entry.
796  *
797  * Returns:     Nothing
798  *
799  * Notes:       We will finish off the specified number of sectors.  If we
800  *              are done, the command block will be released and the queue
801  *              function will be goosed.  If we are not done then we have to
802  *              figure out what to do next:
803  *
804  *              a) We can call scsi_requeue_command().  The request
805  *                 will be unprepared and put back on the queue.  Then
806  *                 a new command will be created for it.  This should
807  *                 be used if we made forward progress, or if we want
808  *                 to switch from READ(10) to READ(6) for example.
809  *
810  *              b) We can call __scsi_queue_insert().  The request will
811  *                 be put back on the queue and retried using the same
812  *                 command as before, possibly after a delay.
813  *
814  *              c) We can call scsi_end_request() with -EIO to fail
815  *                 the remainder of the request.
816  */
817 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
818 {
819         int result = cmd->result;
820         struct request_queue *q = cmd->device->request_queue;
821         struct request *req = cmd->request;
822         int error = 0;
823         struct scsi_sense_hdr sshdr;
824         bool sense_valid = false;
825         int sense_deferred = 0, level = 0;
826         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
827               ACTION_DELAYED_RETRY} action;
828         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
829
830         if (result) {
831                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
832                 if (sense_valid)
833                         sense_deferred = scsi_sense_is_deferred(&sshdr);
834         }
835
836         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
837                 if (result) {
838                         if (sense_valid && req->sense) {
839                                 /*
840                                  * SG_IO wants current and deferred errors
841                                  */
842                                 int len = 8 + cmd->sense_buffer[7];
843
844                                 if (len > SCSI_SENSE_BUFFERSIZE)
845                                         len = SCSI_SENSE_BUFFERSIZE;
846                                 memcpy(req->sense, cmd->sense_buffer,  len);
847                                 req->sense_len = len;
848                         }
849                         if (!sense_deferred)
850                                 error = __scsi_error_from_host_byte(cmd, result);
851                 }
852                 /*
853                  * __scsi_error_from_host_byte may have reset the host_byte
854                  */
855                 req->errors = cmd->result;
856
857                 req->resid_len = scsi_get_resid(cmd);
858
859                 if (scsi_bidi_cmnd(cmd)) {
860                         /*
861                          * Bidi commands Must be complete as a whole,
862                          * both sides at once.
863                          */
864                         req->next_rq->resid_len = scsi_in(cmd)->resid;
865                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
866                                         blk_rq_bytes(req->next_rq)))
867                                 BUG();
868                         return;
869                 }
870         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
871                 /*
872                  * Certain non BLOCK_PC requests are commands that don't
873                  * actually transfer anything (FLUSH), so cannot use
874                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
875                  * This sets the error explicitly for the problem case.
876                  */
877                 error = __scsi_error_from_host_byte(cmd, result);
878         }
879
880         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
881         BUG_ON(blk_bidi_rq(req));
882
883         /*
884          * Next deal with any sectors which we were able to correctly
885          * handle.
886          */
887         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
888                 "%u sectors total, %d bytes done.\n",
889                 blk_rq_sectors(req), good_bytes));
890
891         /*
892          * Recovered errors need reporting, but they're always treated
893          * as success, so fiddle the result code here.  For BLOCK_PC
894          * we already took a copy of the original into rq->errors which
895          * is what gets returned to the user
896          */
897         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
898                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
899                  * print since caller wants ATA registers. Only occurs on
900                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
901                  */
902                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
903                         ;
904                 else if (!(req->cmd_flags & REQ_QUIET))
905                         scsi_print_sense(cmd);
906                 result = 0;
907                 /* BLOCK_PC may have set error */
908                 error = 0;
909         }
910
911         /*
912          * If we finished all bytes in the request we are done now.
913          */
914         if (!scsi_end_request(req, error, good_bytes, 0))
915                 return;
916
917         /*
918          * Kill remainder if no retrys.
919          */
920         if (error && scsi_noretry_cmd(cmd)) {
921                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
922                         BUG();
923                 return;
924         }
925
926         /*
927          * If there had been no error, but we have leftover bytes in the
928          * requeues just queue the command up again.
929          */
930         if (result == 0)
931                 goto requeue;
932
933         error = __scsi_error_from_host_byte(cmd, result);
934
935         if (host_byte(result) == DID_RESET) {
936                 /* Third party bus reset or reset for error recovery
937                  * reasons.  Just retry the command and see what
938                  * happens.
939                  */
940                 action = ACTION_RETRY;
941         } else if (sense_valid && !sense_deferred) {
942                 switch (sshdr.sense_key) {
943                 case UNIT_ATTENTION:
944                         if (cmd->device->removable) {
945                                 /* Detected disc change.  Set a bit
946                                  * and quietly refuse further access.
947                                  */
948                                 cmd->device->changed = 1;
949                                 action = ACTION_FAIL;
950                         } else {
951                                 /* Must have been a power glitch, or a
952                                  * bus reset.  Could not have been a
953                                  * media change, so we just retry the
954                                  * command and see what happens.
955                                  */
956                                 action = ACTION_RETRY;
957                         }
958                         break;
959                 case ILLEGAL_REQUEST:
960                         /* If we had an ILLEGAL REQUEST returned, then
961                          * we may have performed an unsupported
962                          * command.  The only thing this should be
963                          * would be a ten byte read where only a six
964                          * byte read was supported.  Also, on a system
965                          * where READ CAPACITY failed, we may have
966                          * read past the end of the disk.
967                          */
968                         if ((cmd->device->use_10_for_rw &&
969                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
970                             (cmd->cmnd[0] == READ_10 ||
971                              cmd->cmnd[0] == WRITE_10)) {
972                                 /* This will issue a new 6-byte command. */
973                                 cmd->device->use_10_for_rw = 0;
974                                 action = ACTION_REPREP;
975                         } else if (sshdr.asc == 0x10) /* DIX */ {
976                                 action = ACTION_FAIL;
977                                 error = -EILSEQ;
978                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
979                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
980                                 action = ACTION_FAIL;
981                                 error = -EREMOTEIO;
982                         } else
983                                 action = ACTION_FAIL;
984                         break;
985                 case ABORTED_COMMAND:
986                         action = ACTION_FAIL;
987                         if (sshdr.asc == 0x10) /* DIF */
988                                 error = -EILSEQ;
989                         break;
990                 case NOT_READY:
991                         /* If the device is in the process of becoming
992                          * ready, or has a temporary blockage, retry.
993                          */
994                         if (sshdr.asc == 0x04) {
995                                 switch (sshdr.ascq) {
996                                 case 0x01: /* becoming ready */
997                                 case 0x04: /* format in progress */
998                                 case 0x05: /* rebuild in progress */
999                                 case 0x06: /* recalculation in progress */
1000                                 case 0x07: /* operation in progress */
1001                                 case 0x08: /* Long write in progress */
1002                                 case 0x09: /* self test in progress */
1003                                 case 0x14: /* space allocation in progress */
1004                                         action = ACTION_DELAYED_RETRY;
1005                                         break;
1006                                 default:
1007                                         action = ACTION_FAIL;
1008                                         break;
1009                                 }
1010                         } else
1011                                 action = ACTION_FAIL;
1012                         break;
1013                 case VOLUME_OVERFLOW:
1014                         /* See SSC3rXX or current. */
1015                         action = ACTION_FAIL;
1016                         break;
1017                 default:
1018                         action = ACTION_FAIL;
1019                         break;
1020                 }
1021         } else
1022                 action = ACTION_FAIL;
1023
1024         if (action != ACTION_FAIL &&
1025             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1026                 action = ACTION_FAIL;
1027
1028         switch (action) {
1029         case ACTION_FAIL:
1030                 /* Give up and fail the remainder of the request */
1031                 if (!(req->cmd_flags & REQ_QUIET)) {
1032                         static DEFINE_RATELIMIT_STATE(_rs,
1033                                         DEFAULT_RATELIMIT_INTERVAL,
1034                                         DEFAULT_RATELIMIT_BURST);
1035
1036                         if (unlikely(scsi_logging_level))
1037                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1038                                                        SCSI_LOG_MLCOMPLETE_BITS);
1039
1040                         /*
1041                          * if logging is enabled the failure will be printed
1042                          * in scsi_log_completion(), so avoid duplicate messages
1043                          */
1044                         if (!level && __ratelimit(&_rs)) {
1045                                 scsi_print_result(cmd, NULL, FAILED);
1046                                 if (driver_byte(result) & DRIVER_SENSE)
1047                                         scsi_print_sense(cmd);
1048                                 scsi_print_command(cmd);
1049                         }
1050                 }
1051                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1052                         return;
1053                 /*FALLTHRU*/
1054         case ACTION_REPREP:
1055         requeue:
1056                 /* Unprep the request and put it back at the head of the queue.
1057                  * A new command will be prepared and issued.
1058                  */
1059                 if (q->mq_ops) {
1060                         cmd->request->cmd_flags &= ~REQ_DONTPREP;
1061                         scsi_mq_uninit_cmd(cmd);
1062                         scsi_mq_requeue_cmd(cmd);
1063                 } else {
1064                         scsi_release_buffers(cmd);
1065                         scsi_requeue_command(q, cmd);
1066                 }
1067                 break;
1068         case ACTION_RETRY:
1069                 /* Retry the same command immediately */
1070                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1071                 break;
1072         case ACTION_DELAYED_RETRY:
1073                 /* Retry the same command after a delay */
1074                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1075                 break;
1076         }
1077 }
1078
1079 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1080 {
1081         int count;
1082
1083         /*
1084          * If sg table allocation fails, requeue request later.
1085          */
1086         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1087                                         req->mq_ctx != NULL)))
1088                 return BLKPREP_DEFER;
1089
1090         /* 
1091          * Next, walk the list, and fill in the addresses and sizes of
1092          * each segment.
1093          */
1094         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1095         BUG_ON(count > sdb->table.nents);
1096         sdb->table.nents = count;
1097         sdb->length = blk_rq_bytes(req);
1098         return BLKPREP_OK;
1099 }
1100
1101 /*
1102  * Function:    scsi_init_io()
1103  *
1104  * Purpose:     SCSI I/O initialize function.
1105  *
1106  * Arguments:   cmd   - Command descriptor we wish to initialize
1107  *
1108  * Returns:     0 on success
1109  *              BLKPREP_DEFER if the failure is retryable
1110  *              BLKPREP_KILL if the failure is fatal
1111  */
1112 int scsi_init_io(struct scsi_cmnd *cmd)
1113 {
1114         struct scsi_device *sdev = cmd->device;
1115         struct request *rq = cmd->request;
1116         bool is_mq = (rq->mq_ctx != NULL);
1117         int error;
1118
1119         BUG_ON(!rq->nr_phys_segments);
1120
1121         error = scsi_init_sgtable(rq, &cmd->sdb);
1122         if (error)
1123                 goto err_exit;
1124
1125         if (blk_bidi_rq(rq)) {
1126                 if (!rq->q->mq_ops) {
1127                         struct scsi_data_buffer *bidi_sdb =
1128                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1129                         if (!bidi_sdb) {
1130                                 error = BLKPREP_DEFER;
1131                                 goto err_exit;
1132                         }
1133
1134                         rq->next_rq->special = bidi_sdb;
1135                 }
1136
1137                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1138                 if (error)
1139                         goto err_exit;
1140         }
1141
1142         if (blk_integrity_rq(rq)) {
1143                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1144                 int ivecs, count;
1145
1146                 if (prot_sdb == NULL) {
1147                         /*
1148                          * This can happen if someone (e.g. multipath)
1149                          * queues a command to a device on an adapter
1150                          * that does not support DIX.
1151                          */
1152                         WARN_ON_ONCE(1);
1153                         error = BLKPREP_KILL;
1154                         goto err_exit;
1155                 }
1156
1157                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1158
1159                 if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1160                         error = BLKPREP_DEFER;
1161                         goto err_exit;
1162                 }
1163
1164                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1165                                                 prot_sdb->table.sgl);
1166                 BUG_ON(unlikely(count > ivecs));
1167                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1168
1169                 cmd->prot_sdb = prot_sdb;
1170                 cmd->prot_sdb->table.nents = count;
1171         }
1172
1173         return BLKPREP_OK;
1174 err_exit:
1175         if (is_mq) {
1176                 scsi_mq_free_sgtables(cmd);
1177         } else {
1178                 scsi_release_buffers(cmd);
1179                 cmd->request->special = NULL;
1180                 scsi_put_command(cmd);
1181                 put_device(&sdev->sdev_gendev);
1182         }
1183         return error;
1184 }
1185 EXPORT_SYMBOL(scsi_init_io);
1186
1187 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1188                 struct request *req)
1189 {
1190         struct scsi_cmnd *cmd;
1191
1192         if (!req->special) {
1193                 /* Bail if we can't get a reference to the device */
1194                 if (!get_device(&sdev->sdev_gendev))
1195                         return NULL;
1196
1197                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1198                 if (unlikely(!cmd)) {
1199                         put_device(&sdev->sdev_gendev);
1200                         return NULL;
1201                 }
1202                 req->special = cmd;
1203         } else {
1204                 cmd = req->special;
1205         }
1206
1207         /* pull a tag out of the request if we have one */
1208         cmd->tag = req->tag;
1209         cmd->request = req;
1210
1211         cmd->cmnd = req->cmd;
1212         cmd->prot_op = SCSI_PROT_NORMAL;
1213
1214         return cmd;
1215 }
1216
1217 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1218 {
1219         struct scsi_cmnd *cmd = req->special;
1220
1221         /*
1222          * BLOCK_PC requests may transfer data, in which case they must
1223          * a bio attached to them.  Or they might contain a SCSI command
1224          * that does not transfer data, in which case they may optionally
1225          * submit a request without an attached bio.
1226          */
1227         if (req->bio) {
1228                 int ret = scsi_init_io(cmd);
1229                 if (unlikely(ret))
1230                         return ret;
1231         } else {
1232                 BUG_ON(blk_rq_bytes(req));
1233
1234                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1235         }
1236
1237         cmd->cmd_len = req->cmd_len;
1238         cmd->transfersize = blk_rq_bytes(req);
1239         cmd->allowed = req->retries;
1240         return BLKPREP_OK;
1241 }
1242
1243 /*
1244  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1245  * that still need to be translated to SCSI CDBs from the ULD.
1246  */
1247 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1248 {
1249         struct scsi_cmnd *cmd = req->special;
1250
1251         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1252                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1253                 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1254                 if (ret != BLKPREP_OK)
1255                         return ret;
1256         }
1257
1258         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1259         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1260 }
1261
1262 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1263 {
1264         struct scsi_cmnd *cmd = req->special;
1265
1266         if (!blk_rq_bytes(req))
1267                 cmd->sc_data_direction = DMA_NONE;
1268         else if (rq_data_dir(req) == WRITE)
1269                 cmd->sc_data_direction = DMA_TO_DEVICE;
1270         else
1271                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1272
1273         switch (req->cmd_type) {
1274         case REQ_TYPE_FS:
1275                 return scsi_setup_fs_cmnd(sdev, req);
1276         case REQ_TYPE_BLOCK_PC:
1277                 return scsi_setup_blk_pc_cmnd(sdev, req);
1278         default:
1279                 return BLKPREP_KILL;
1280         }
1281 }
1282
1283 static int
1284 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1285 {
1286         int ret = BLKPREP_OK;
1287
1288         /*
1289          * If the device is not in running state we will reject some
1290          * or all commands.
1291          */
1292         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1293                 switch (sdev->sdev_state) {
1294                 case SDEV_OFFLINE:
1295                 case SDEV_TRANSPORT_OFFLINE:
1296                         /*
1297                          * If the device is offline we refuse to process any
1298                          * commands.  The device must be brought online
1299                          * before trying any recovery commands.
1300                          */
1301                         sdev_printk(KERN_ERR, sdev,
1302                                     "rejecting I/O to offline device\n");
1303                         ret = BLKPREP_KILL;
1304                         break;
1305                 case SDEV_DEL:
1306                         /*
1307                          * If the device is fully deleted, we refuse to
1308                          * process any commands as well.
1309                          */
1310                         sdev_printk(KERN_ERR, sdev,
1311                                     "rejecting I/O to dead device\n");
1312                         ret = BLKPREP_KILL;
1313                         break;
1314                 case SDEV_BLOCK:
1315                 case SDEV_CREATED_BLOCK:
1316                         ret = BLKPREP_DEFER;
1317                         break;
1318                 case SDEV_QUIESCE:
1319                         /*
1320                          * If the devices is blocked we defer normal commands.
1321                          */
1322                         if (!(req->cmd_flags & REQ_PREEMPT))
1323                                 ret = BLKPREP_DEFER;
1324                         break;
1325                 default:
1326                         /*
1327                          * For any other not fully online state we only allow
1328                          * special commands.  In particular any user initiated
1329                          * command is not allowed.
1330                          */
1331                         if (!(req->cmd_flags & REQ_PREEMPT))
1332                                 ret = BLKPREP_KILL;
1333                         break;
1334                 }
1335         }
1336         return ret;
1337 }
1338
1339 static int
1340 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1341 {
1342         struct scsi_device *sdev = q->queuedata;
1343
1344         switch (ret) {
1345         case BLKPREP_KILL:
1346                 req->errors = DID_NO_CONNECT << 16;
1347                 /* release the command and kill it */
1348                 if (req->special) {
1349                         struct scsi_cmnd *cmd = req->special;
1350                         scsi_release_buffers(cmd);
1351                         scsi_put_command(cmd);
1352                         put_device(&sdev->sdev_gendev);
1353                         req->special = NULL;
1354                 }
1355                 break;
1356         case BLKPREP_DEFER:
1357                 /*
1358                  * If we defer, the blk_peek_request() returns NULL, but the
1359                  * queue must be restarted, so we schedule a callback to happen
1360                  * shortly.
1361                  */
1362                 if (atomic_read(&sdev->device_busy) == 0)
1363                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1364                 break;
1365         default:
1366                 req->cmd_flags |= REQ_DONTPREP;
1367         }
1368
1369         return ret;
1370 }
1371
1372 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1373 {
1374         struct scsi_device *sdev = q->queuedata;
1375         struct scsi_cmnd *cmd;
1376         int ret;
1377
1378         ret = scsi_prep_state_check(sdev, req);
1379         if (ret != BLKPREP_OK)
1380                 goto out;
1381
1382         cmd = scsi_get_cmd_from_req(sdev, req);
1383         if (unlikely(!cmd)) {
1384                 ret = BLKPREP_DEFER;
1385                 goto out;
1386         }
1387
1388         ret = scsi_setup_cmnd(sdev, req);
1389 out:
1390         return scsi_prep_return(q, req, ret);
1391 }
1392
1393 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1394 {
1395         scsi_uninit_cmd(req->special);
1396 }
1397
1398 /*
1399  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1400  * return 0.
1401  *
1402  * Called with the queue_lock held.
1403  */
1404 static inline int scsi_dev_queue_ready(struct request_queue *q,
1405                                   struct scsi_device *sdev)
1406 {
1407         unsigned int busy;
1408
1409         busy = atomic_inc_return(&sdev->device_busy) - 1;
1410         if (atomic_read(&sdev->device_blocked)) {
1411                 if (busy)
1412                         goto out_dec;
1413
1414                 /*
1415                  * unblock after device_blocked iterates to zero
1416                  */
1417                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1418                         /*
1419                          * For the MQ case we take care of this in the caller.
1420                          */
1421                         if (!q->mq_ops)
1422                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1423                         goto out_dec;
1424                 }
1425                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1426                                    "unblocking device at zero depth\n"));
1427         }
1428
1429         if (busy >= sdev->queue_depth)
1430                 goto out_dec;
1431
1432         return 1;
1433 out_dec:
1434         atomic_dec(&sdev->device_busy);
1435         return 0;
1436 }
1437
1438 /*
1439  * scsi_target_queue_ready: checks if there we can send commands to target
1440  * @sdev: scsi device on starget to check.
1441  */
1442 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1443                                            struct scsi_device *sdev)
1444 {
1445         struct scsi_target *starget = scsi_target(sdev);
1446         unsigned int busy;
1447
1448         if (starget->single_lun) {
1449                 spin_lock_irq(shost->host_lock);
1450                 if (starget->starget_sdev_user &&
1451                     starget->starget_sdev_user != sdev) {
1452                         spin_unlock_irq(shost->host_lock);
1453                         return 0;
1454                 }
1455                 starget->starget_sdev_user = sdev;
1456                 spin_unlock_irq(shost->host_lock);
1457         }
1458
1459         if (starget->can_queue <= 0)
1460                 return 1;
1461
1462         busy = atomic_inc_return(&starget->target_busy) - 1;
1463         if (atomic_read(&starget->target_blocked) > 0) {
1464                 if (busy)
1465                         goto starved;
1466
1467                 /*
1468                  * unblock after target_blocked iterates to zero
1469                  */
1470                 if (atomic_dec_return(&starget->target_blocked) > 0)
1471                         goto out_dec;
1472
1473                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1474                                  "unblocking target at zero depth\n"));
1475         }
1476
1477         if (busy >= starget->can_queue)
1478                 goto starved;
1479
1480         return 1;
1481
1482 starved:
1483         spin_lock_irq(shost->host_lock);
1484         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1485         spin_unlock_irq(shost->host_lock);
1486 out_dec:
1487         if (starget->can_queue > 0)
1488                 atomic_dec(&starget->target_busy);
1489         return 0;
1490 }
1491
1492 /*
1493  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1494  * return 0. We must end up running the queue again whenever 0 is
1495  * returned, else IO can hang.
1496  */
1497 static inline int scsi_host_queue_ready(struct request_queue *q,
1498                                    struct Scsi_Host *shost,
1499                                    struct scsi_device *sdev)
1500 {
1501         unsigned int busy;
1502
1503         if (scsi_host_in_recovery(shost))
1504                 return 0;
1505
1506         busy = atomic_inc_return(&shost->host_busy) - 1;
1507         if (atomic_read(&shost->host_blocked) > 0) {
1508                 if (busy)
1509                         goto starved;
1510
1511                 /*
1512                  * unblock after host_blocked iterates to zero
1513                  */
1514                 if (atomic_dec_return(&shost->host_blocked) > 0)
1515                         goto out_dec;
1516
1517                 SCSI_LOG_MLQUEUE(3,
1518                         shost_printk(KERN_INFO, shost,
1519                                      "unblocking host at zero depth\n"));
1520         }
1521
1522         if (shost->can_queue > 0 && busy >= shost->can_queue)
1523                 goto starved;
1524         if (shost->host_self_blocked)
1525                 goto starved;
1526
1527         /* We're OK to process the command, so we can't be starved */
1528         if (!list_empty(&sdev->starved_entry)) {
1529                 spin_lock_irq(shost->host_lock);
1530                 if (!list_empty(&sdev->starved_entry))
1531                         list_del_init(&sdev->starved_entry);
1532                 spin_unlock_irq(shost->host_lock);
1533         }
1534
1535         return 1;
1536
1537 starved:
1538         spin_lock_irq(shost->host_lock);
1539         if (list_empty(&sdev->starved_entry))
1540                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1541         spin_unlock_irq(shost->host_lock);
1542 out_dec:
1543         atomic_dec(&shost->host_busy);
1544         return 0;
1545 }
1546
1547 /*
1548  * Busy state exporting function for request stacking drivers.
1549  *
1550  * For efficiency, no lock is taken to check the busy state of
1551  * shost/starget/sdev, since the returned value is not guaranteed and
1552  * may be changed after request stacking drivers call the function,
1553  * regardless of taking lock or not.
1554  *
1555  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1556  * needs to return 'not busy'. Otherwise, request stacking drivers
1557  * may hold requests forever.
1558  */
1559 static int scsi_lld_busy(struct request_queue *q)
1560 {
1561         struct scsi_device *sdev = q->queuedata;
1562         struct Scsi_Host *shost;
1563
1564         if (blk_queue_dying(q))
1565                 return 0;
1566
1567         shost = sdev->host;
1568
1569         /*
1570          * Ignore host/starget busy state.
1571          * Since block layer does not have a concept of fairness across
1572          * multiple queues, congestion of host/starget needs to be handled
1573          * in SCSI layer.
1574          */
1575         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1576                 return 1;
1577
1578         return 0;
1579 }
1580
1581 /*
1582  * Kill a request for a dead device
1583  */
1584 static void scsi_kill_request(struct request *req, struct request_queue *q)
1585 {
1586         struct scsi_cmnd *cmd = req->special;
1587         struct scsi_device *sdev;
1588         struct scsi_target *starget;
1589         struct Scsi_Host *shost;
1590
1591         blk_start_request(req);
1592
1593         scmd_printk(KERN_INFO, cmd, "killing request\n");
1594
1595         sdev = cmd->device;
1596         starget = scsi_target(sdev);
1597         shost = sdev->host;
1598         scsi_init_cmd_errh(cmd);
1599         cmd->result = DID_NO_CONNECT << 16;
1600         atomic_inc(&cmd->device->iorequest_cnt);
1601
1602         /*
1603          * SCSI request completion path will do scsi_device_unbusy(),
1604          * bump busy counts.  To bump the counters, we need to dance
1605          * with the locks as normal issue path does.
1606          */
1607         atomic_inc(&sdev->device_busy);
1608         atomic_inc(&shost->host_busy);
1609         if (starget->can_queue > 0)
1610                 atomic_inc(&starget->target_busy);
1611
1612         blk_complete_request(req);
1613 }
1614
1615 static void scsi_softirq_done(struct request *rq)
1616 {
1617         struct scsi_cmnd *cmd = rq->special;
1618         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1619         int disposition;
1620
1621         INIT_LIST_HEAD(&cmd->eh_entry);
1622
1623         atomic_inc(&cmd->device->iodone_cnt);
1624         if (cmd->result)
1625                 atomic_inc(&cmd->device->ioerr_cnt);
1626
1627         disposition = scsi_decide_disposition(cmd);
1628         if (disposition != SUCCESS &&
1629             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1630                 sdev_printk(KERN_ERR, cmd->device,
1631                             "timing out command, waited %lus\n",
1632                             wait_for/HZ);
1633                 disposition = SUCCESS;
1634         }
1635
1636         scsi_log_completion(cmd, disposition);
1637
1638         switch (disposition) {
1639                 case SUCCESS:
1640                         scsi_finish_command(cmd);
1641                         break;
1642                 case NEEDS_RETRY:
1643                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1644                         break;
1645                 case ADD_TO_MLQUEUE:
1646                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1647                         break;
1648                 default:
1649                         if (!scsi_eh_scmd_add(cmd, 0))
1650                                 scsi_finish_command(cmd);
1651         }
1652 }
1653
1654 /**
1655  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1656  * @cmd: command block we are dispatching.
1657  *
1658  * Return: nonzero return request was rejected and device's queue needs to be
1659  * plugged.
1660  */
1661 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1662 {
1663         struct Scsi_Host *host = cmd->device->host;
1664         int rtn = 0;
1665
1666         atomic_inc(&cmd->device->iorequest_cnt);
1667
1668         /* check if the device is still usable */
1669         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1670                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1671                  * returns an immediate error upwards, and signals
1672                  * that the device is no longer present */
1673                 cmd->result = DID_NO_CONNECT << 16;
1674                 goto done;
1675         }
1676
1677         /* Check to see if the scsi lld made this device blocked. */
1678         if (unlikely(scsi_device_blocked(cmd->device))) {
1679                 /*
1680                  * in blocked state, the command is just put back on
1681                  * the device queue.  The suspend state has already
1682                  * blocked the queue so future requests should not
1683                  * occur until the device transitions out of the
1684                  * suspend state.
1685                  */
1686                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1687                         "queuecommand : device blocked\n"));
1688                 return SCSI_MLQUEUE_DEVICE_BUSY;
1689         }
1690
1691         /* Store the LUN value in cmnd, if needed. */
1692         if (cmd->device->lun_in_cdb)
1693                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1694                                (cmd->device->lun << 5 & 0xe0);
1695
1696         scsi_log_send(cmd);
1697
1698         /*
1699          * Before we queue this command, check if the command
1700          * length exceeds what the host adapter can handle.
1701          */
1702         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1703                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1704                                "queuecommand : command too long. "
1705                                "cdb_size=%d host->max_cmd_len=%d\n",
1706                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1707                 cmd->result = (DID_ABORT << 16);
1708                 goto done;
1709         }
1710
1711         if (unlikely(host->shost_state == SHOST_DEL)) {
1712                 cmd->result = (DID_NO_CONNECT << 16);
1713                 goto done;
1714
1715         }
1716
1717         trace_scsi_dispatch_cmd_start(cmd);
1718         rtn = host->hostt->queuecommand(host, cmd);
1719         if (rtn) {
1720                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1721                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1722                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1723                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1724
1725                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1726                         "queuecommand : request rejected\n"));
1727         }
1728
1729         return rtn;
1730  done:
1731         cmd->scsi_done(cmd);
1732         return 0;
1733 }
1734
1735 /**
1736  * scsi_done - Invoke completion on finished SCSI command.
1737  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1738  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1739  *
1740  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1741  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1742  * calls blk_complete_request() for further processing.
1743  *
1744  * This function is interrupt context safe.
1745  */
1746 static void scsi_done(struct scsi_cmnd *cmd)
1747 {
1748         trace_scsi_dispatch_cmd_done(cmd);
1749         blk_complete_request(cmd->request);
1750 }
1751
1752 /*
1753  * Function:    scsi_request_fn()
1754  *
1755  * Purpose:     Main strategy routine for SCSI.
1756  *
1757  * Arguments:   q       - Pointer to actual queue.
1758  *
1759  * Returns:     Nothing
1760  *
1761  * Lock status: IO request lock assumed to be held when called.
1762  */
1763 static void scsi_request_fn(struct request_queue *q)
1764         __releases(q->queue_lock)
1765         __acquires(q->queue_lock)
1766 {
1767         struct scsi_device *sdev = q->queuedata;
1768         struct Scsi_Host *shost;
1769         struct scsi_cmnd *cmd;
1770         struct request *req;
1771
1772         /*
1773          * To start with, we keep looping until the queue is empty, or until
1774          * the host is no longer able to accept any more requests.
1775          */
1776         shost = sdev->host;
1777         for (;;) {
1778                 int rtn;
1779                 /*
1780                  * get next queueable request.  We do this early to make sure
1781                  * that the request is fully prepared even if we cannot
1782                  * accept it.
1783                  */
1784                 req = blk_peek_request(q);
1785                 if (!req)
1786                         break;
1787
1788                 if (unlikely(!scsi_device_online(sdev))) {
1789                         sdev_printk(KERN_ERR, sdev,
1790                                     "rejecting I/O to offline device\n");
1791                         scsi_kill_request(req, q);
1792                         continue;
1793                 }
1794
1795                 if (!scsi_dev_queue_ready(q, sdev))
1796                         break;
1797
1798                 /*
1799                  * Remove the request from the request list.
1800                  */
1801                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1802                         blk_start_request(req);
1803
1804                 spin_unlock_irq(q->queue_lock);
1805                 cmd = req->special;
1806                 if (unlikely(cmd == NULL)) {
1807                         printk(KERN_CRIT "impossible request in %s.\n"
1808                                          "please mail a stack trace to "
1809                                          "linux-scsi@vger.kernel.org\n",
1810                                          __func__);
1811                         blk_dump_rq_flags(req, "foo");
1812                         BUG();
1813                 }
1814
1815                 /*
1816                  * We hit this when the driver is using a host wide
1817                  * tag map. For device level tag maps the queue_depth check
1818                  * in the device ready fn would prevent us from trying
1819                  * to allocate a tag. Since the map is a shared host resource
1820                  * we add the dev to the starved list so it eventually gets
1821                  * a run when a tag is freed.
1822                  */
1823                 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1824                         spin_lock_irq(shost->host_lock);
1825                         if (list_empty(&sdev->starved_entry))
1826                                 list_add_tail(&sdev->starved_entry,
1827                                               &shost->starved_list);
1828                         spin_unlock_irq(shost->host_lock);
1829                         goto not_ready;
1830                 }
1831
1832                 if (!scsi_target_queue_ready(shost, sdev))
1833                         goto not_ready;
1834
1835                 if (!scsi_host_queue_ready(q, shost, sdev))
1836                         goto host_not_ready;
1837         
1838                 if (sdev->simple_tags)
1839                         cmd->flags |= SCMD_TAGGED;
1840                 else
1841                         cmd->flags &= ~SCMD_TAGGED;
1842
1843                 /*
1844                  * Finally, initialize any error handling parameters, and set up
1845                  * the timers for timeouts.
1846                  */
1847                 scsi_init_cmd_errh(cmd);
1848
1849                 /*
1850                  * Dispatch the command to the low-level driver.
1851                  */
1852                 cmd->scsi_done = scsi_done;
1853                 rtn = scsi_dispatch_cmd(cmd);
1854                 if (rtn) {
1855                         scsi_queue_insert(cmd, rtn);
1856                         spin_lock_irq(q->queue_lock);
1857                         goto out_delay;
1858                 }
1859                 spin_lock_irq(q->queue_lock);
1860         }
1861
1862         return;
1863
1864  host_not_ready:
1865         if (scsi_target(sdev)->can_queue > 0)
1866                 atomic_dec(&scsi_target(sdev)->target_busy);
1867  not_ready:
1868         /*
1869          * lock q, handle tag, requeue req, and decrement device_busy. We
1870          * must return with queue_lock held.
1871          *
1872          * Decrementing device_busy without checking it is OK, as all such
1873          * cases (host limits or settings) should run the queue at some
1874          * later time.
1875          */
1876         spin_lock_irq(q->queue_lock);
1877         blk_requeue_request(q, req);
1878         atomic_dec(&sdev->device_busy);
1879 out_delay:
1880         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1881                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1882 }
1883
1884 static inline int prep_to_mq(int ret)
1885 {
1886         switch (ret) {
1887         case BLKPREP_OK:
1888                 return 0;
1889         case BLKPREP_DEFER:
1890                 return BLK_MQ_RQ_QUEUE_BUSY;
1891         default:
1892                 return BLK_MQ_RQ_QUEUE_ERROR;
1893         }
1894 }
1895
1896 static int scsi_mq_prep_fn(struct request *req)
1897 {
1898         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1899         struct scsi_device *sdev = req->q->queuedata;
1900         struct Scsi_Host *shost = sdev->host;
1901         unsigned char *sense_buf = cmd->sense_buffer;
1902         struct scatterlist *sg;
1903
1904         memset(cmd, 0, sizeof(struct scsi_cmnd));
1905
1906         req->special = cmd;
1907
1908         cmd->request = req;
1909         cmd->device = sdev;
1910         cmd->sense_buffer = sense_buf;
1911
1912         cmd->tag = req->tag;
1913
1914         cmd->cmnd = req->cmd;
1915         cmd->prot_op = SCSI_PROT_NORMAL;
1916
1917         INIT_LIST_HEAD(&cmd->list);
1918         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1919         cmd->jiffies_at_alloc = jiffies;
1920
1921         if (shost->use_cmd_list) {
1922                 spin_lock_irq(&sdev->list_lock);
1923                 list_add_tail(&cmd->list, &sdev->cmd_list);
1924                 spin_unlock_irq(&sdev->list_lock);
1925         }
1926
1927         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1928         cmd->sdb.table.sgl = sg;
1929
1930         if (scsi_host_get_prot(shost)) {
1931                 cmd->prot_sdb = (void *)sg +
1932                         min_t(unsigned int,
1933                               shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1934                         sizeof(struct scatterlist);
1935                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1936
1937                 cmd->prot_sdb->table.sgl =
1938                         (struct scatterlist *)(cmd->prot_sdb + 1);
1939         }
1940
1941         if (blk_bidi_rq(req)) {
1942                 struct request *next_rq = req->next_rq;
1943                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1944
1945                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1946                 bidi_sdb->table.sgl =
1947                         (struct scatterlist *)(bidi_sdb + 1);
1948
1949                 next_rq->special = bidi_sdb;
1950         }
1951
1952         blk_mq_start_request(req);
1953
1954         return scsi_setup_cmnd(sdev, req);
1955 }
1956
1957 static void scsi_mq_done(struct scsi_cmnd *cmd)
1958 {
1959         trace_scsi_dispatch_cmd_done(cmd);
1960         blk_mq_complete_request(cmd->request);
1961 }
1962
1963 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1964                          const struct blk_mq_queue_data *bd)
1965 {
1966         struct request *req = bd->rq;
1967         struct request_queue *q = req->q;
1968         struct scsi_device *sdev = q->queuedata;
1969         struct Scsi_Host *shost = sdev->host;
1970         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1971         int ret;
1972         int reason;
1973
1974         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1975         if (ret)
1976                 goto out;
1977
1978         ret = BLK_MQ_RQ_QUEUE_BUSY;
1979         if (!get_device(&sdev->sdev_gendev))
1980                 goto out;
1981
1982         if (!scsi_dev_queue_ready(q, sdev))
1983                 goto out_put_device;
1984         if (!scsi_target_queue_ready(shost, sdev))
1985                 goto out_dec_device_busy;
1986         if (!scsi_host_queue_ready(q, shost, sdev))
1987                 goto out_dec_target_busy;
1988
1989
1990         if (!(req->cmd_flags & REQ_DONTPREP)) {
1991                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1992                 if (ret)
1993                         goto out_dec_host_busy;
1994                 req->cmd_flags |= REQ_DONTPREP;
1995         } else {
1996                 blk_mq_start_request(req);
1997         }
1998
1999         if (sdev->simple_tags)
2000                 cmd->flags |= SCMD_TAGGED;
2001         else
2002                 cmd->flags &= ~SCMD_TAGGED;
2003
2004         scsi_init_cmd_errh(cmd);
2005         cmd->scsi_done = scsi_mq_done;
2006
2007         reason = scsi_dispatch_cmd(cmd);
2008         if (reason) {
2009                 scsi_set_blocked(cmd, reason);
2010                 ret = BLK_MQ_RQ_QUEUE_BUSY;
2011                 goto out_dec_host_busy;
2012         }
2013
2014         return BLK_MQ_RQ_QUEUE_OK;
2015
2016 out_dec_host_busy:
2017         atomic_dec(&shost->host_busy);
2018 out_dec_target_busy:
2019         if (scsi_target(sdev)->can_queue > 0)
2020                 atomic_dec(&scsi_target(sdev)->target_busy);
2021 out_dec_device_busy:
2022         atomic_dec(&sdev->device_busy);
2023 out_put_device:
2024         put_device(&sdev->sdev_gendev);
2025 out:
2026         switch (ret) {
2027         case BLK_MQ_RQ_QUEUE_BUSY:
2028                 blk_mq_stop_hw_queue(hctx);
2029                 if (atomic_read(&sdev->device_busy) == 0 &&
2030                     !scsi_device_blocked(sdev))
2031                         blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2032                 break;
2033         case BLK_MQ_RQ_QUEUE_ERROR:
2034                 /*
2035                  * Make sure to release all allocated ressources when
2036                  * we hit an error, as we will never see this command
2037                  * again.
2038                  */
2039                 if (req->cmd_flags & REQ_DONTPREP)
2040                         scsi_mq_uninit_cmd(cmd);
2041                 break;
2042         default:
2043                 break;
2044         }
2045         return ret;
2046 }
2047
2048 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2049                 bool reserved)
2050 {
2051         if (reserved)
2052                 return BLK_EH_RESET_TIMER;
2053         return scsi_times_out(req);
2054 }
2055
2056 static int scsi_init_request(void *data, struct request *rq,
2057                 unsigned int hctx_idx, unsigned int request_idx,
2058                 unsigned int numa_node)
2059 {
2060         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2061
2062         cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2063                         numa_node);
2064         if (!cmd->sense_buffer)
2065                 return -ENOMEM;
2066         return 0;
2067 }
2068
2069 static void scsi_exit_request(void *data, struct request *rq,
2070                 unsigned int hctx_idx, unsigned int request_idx)
2071 {
2072         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2073
2074         kfree(cmd->sense_buffer);
2075 }
2076
2077 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2078 {
2079         struct device *host_dev;
2080         u64 bounce_limit = 0xffffffff;
2081
2082         if (shost->unchecked_isa_dma)
2083                 return BLK_BOUNCE_ISA;
2084         /*
2085          * Platforms with virtual-DMA translation
2086          * hardware have no practical limit.
2087          */
2088         if (!PCI_DMA_BUS_IS_PHYS)
2089                 return BLK_BOUNCE_ANY;
2090
2091         host_dev = scsi_get_device(shost);
2092         if (host_dev && host_dev->dma_mask)
2093                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2094
2095         return bounce_limit;
2096 }
2097
2098 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2099 {
2100         struct device *dev = shost->dma_dev;
2101
2102         /*
2103          * this limit is imposed by hardware restrictions
2104          */
2105         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2106                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
2107
2108         if (scsi_host_prot_dma(shost)) {
2109                 shost->sg_prot_tablesize =
2110                         min_not_zero(shost->sg_prot_tablesize,
2111                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2112                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2113                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2114         }
2115
2116         blk_queue_max_hw_sectors(q, shost->max_sectors);
2117         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2118         blk_queue_segment_boundary(q, shost->dma_boundary);
2119         dma_set_seg_boundary(dev, shost->dma_boundary);
2120
2121         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2122
2123         if (!shost->use_clustering)
2124                 q->limits.cluster = 0;
2125
2126         /*
2127          * set a reasonable default alignment on word boundaries: the
2128          * host and device may alter it using
2129          * blk_queue_update_dma_alignment() later.
2130          */
2131         blk_queue_dma_alignment(q, 0x03);
2132 }
2133
2134 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2135                                          request_fn_proc *request_fn)
2136 {
2137         struct request_queue *q;
2138
2139         q = blk_init_queue(request_fn, NULL);
2140         if (!q)
2141                 return NULL;
2142         __scsi_init_queue(shost, q);
2143         return q;
2144 }
2145 EXPORT_SYMBOL(__scsi_alloc_queue);
2146
2147 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2148 {
2149         struct request_queue *q;
2150
2151         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2152         if (!q)
2153                 return NULL;
2154
2155         blk_queue_prep_rq(q, scsi_prep_fn);
2156         blk_queue_unprep_rq(q, scsi_unprep_fn);
2157         blk_queue_softirq_done(q, scsi_softirq_done);
2158         blk_queue_rq_timed_out(q, scsi_times_out);
2159         blk_queue_lld_busy(q, scsi_lld_busy);
2160         return q;
2161 }
2162
2163 static struct blk_mq_ops scsi_mq_ops = {
2164         .map_queue      = blk_mq_map_queue,
2165         .queue_rq       = scsi_queue_rq,
2166         .complete       = scsi_softirq_done,
2167         .timeout        = scsi_timeout,
2168         .init_request   = scsi_init_request,
2169         .exit_request   = scsi_exit_request,
2170 };
2171
2172 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2173 {
2174         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2175         if (IS_ERR(sdev->request_queue))
2176                 return NULL;
2177
2178         sdev->request_queue->queuedata = sdev;
2179         __scsi_init_queue(sdev->host, sdev->request_queue);
2180         return sdev->request_queue;
2181 }
2182
2183 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2184 {
2185         unsigned int cmd_size, sgl_size, tbl_size;
2186
2187         tbl_size = shost->sg_tablesize;
2188         if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2189                 tbl_size = SCSI_MAX_SG_SEGMENTS;
2190         sgl_size = tbl_size * sizeof(struct scatterlist);
2191         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2192         if (scsi_host_get_prot(shost))
2193                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2194
2195         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2196         shost->tag_set.ops = &scsi_mq_ops;
2197         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2198         shost->tag_set.queue_depth = shost->can_queue;
2199         shost->tag_set.cmd_size = cmd_size;
2200         shost->tag_set.numa_node = NUMA_NO_NODE;
2201         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2202         shost->tag_set.flags |=
2203                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2204         shost->tag_set.driver_data = shost;
2205
2206         return blk_mq_alloc_tag_set(&shost->tag_set);
2207 }
2208
2209 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2210 {
2211         blk_mq_free_tag_set(&shost->tag_set);
2212 }
2213
2214 /*
2215  * Function:    scsi_block_requests()
2216  *
2217  * Purpose:     Utility function used by low-level drivers to prevent further
2218  *              commands from being queued to the device.
2219  *
2220  * Arguments:   shost       - Host in question
2221  *
2222  * Returns:     Nothing
2223  *
2224  * Lock status: No locks are assumed held.
2225  *
2226  * Notes:       There is no timer nor any other means by which the requests
2227  *              get unblocked other than the low-level driver calling
2228  *              scsi_unblock_requests().
2229  */
2230 void scsi_block_requests(struct Scsi_Host *shost)
2231 {
2232         shost->host_self_blocked = 1;
2233 }
2234 EXPORT_SYMBOL(scsi_block_requests);
2235
2236 /*
2237  * Function:    scsi_unblock_requests()
2238  *
2239  * Purpose:     Utility function used by low-level drivers to allow further
2240  *              commands from being queued to the device.
2241  *
2242  * Arguments:   shost       - Host in question
2243  *
2244  * Returns:     Nothing
2245  *
2246  * Lock status: No locks are assumed held.
2247  *
2248  * Notes:       There is no timer nor any other means by which the requests
2249  *              get unblocked other than the low-level driver calling
2250  *              scsi_unblock_requests().
2251  *
2252  *              This is done as an API function so that changes to the
2253  *              internals of the scsi mid-layer won't require wholesale
2254  *              changes to drivers that use this feature.
2255  */
2256 void scsi_unblock_requests(struct Scsi_Host *shost)
2257 {
2258         shost->host_self_blocked = 0;
2259         scsi_run_host_queues(shost);
2260 }
2261 EXPORT_SYMBOL(scsi_unblock_requests);
2262
2263 int __init scsi_init_queue(void)
2264 {
2265         int i;
2266
2267         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2268                                            sizeof(struct scsi_data_buffer),
2269                                            0, 0, NULL);
2270         if (!scsi_sdb_cache) {
2271                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2272                 return -ENOMEM;
2273         }
2274
2275         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2276                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2277                 int size = sgp->size * sizeof(struct scatterlist);
2278
2279                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2280                                 SLAB_HWCACHE_ALIGN, NULL);
2281                 if (!sgp->slab) {
2282                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2283                                         sgp->name);
2284                         goto cleanup_sdb;
2285                 }
2286
2287                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2288                                                      sgp->slab);
2289                 if (!sgp->pool) {
2290                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2291                                         sgp->name);
2292                         goto cleanup_sdb;
2293                 }
2294         }
2295
2296         return 0;
2297
2298 cleanup_sdb:
2299         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2300                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2301                 if (sgp->pool)
2302                         mempool_destroy(sgp->pool);
2303                 if (sgp->slab)
2304                         kmem_cache_destroy(sgp->slab);
2305         }
2306         kmem_cache_destroy(scsi_sdb_cache);
2307
2308         return -ENOMEM;
2309 }
2310
2311 void scsi_exit_queue(void)
2312 {
2313         int i;
2314
2315         kmem_cache_destroy(scsi_sdb_cache);
2316
2317         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2318                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2319                 mempool_destroy(sgp->pool);
2320                 kmem_cache_destroy(sgp->slab);
2321         }
2322 }
2323
2324 /**
2325  *      scsi_mode_select - issue a mode select
2326  *      @sdev:  SCSI device to be queried
2327  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2328  *      @sp:    Save page bit (0 == don't save, 1 == save)
2329  *      @modepage: mode page being requested
2330  *      @buffer: request buffer (may not be smaller than eight bytes)
2331  *      @len:   length of request buffer.
2332  *      @timeout: command timeout
2333  *      @retries: number of retries before failing
2334  *      @data: returns a structure abstracting the mode header data
2335  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2336  *              must be SCSI_SENSE_BUFFERSIZE big.
2337  *
2338  *      Returns zero if successful; negative error number or scsi
2339  *      status on error
2340  *
2341  */
2342 int
2343 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2344                  unsigned char *buffer, int len, int timeout, int retries,
2345                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2346 {
2347         unsigned char cmd[10];
2348         unsigned char *real_buffer;
2349         int ret;
2350
2351         memset(cmd, 0, sizeof(cmd));
2352         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2353
2354         if (sdev->use_10_for_ms) {
2355                 if (len > 65535)
2356                         return -EINVAL;
2357                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2358                 if (!real_buffer)
2359                         return -ENOMEM;
2360                 memcpy(real_buffer + 8, buffer, len);
2361                 len += 8;
2362                 real_buffer[0] = 0;
2363                 real_buffer[1] = 0;
2364                 real_buffer[2] = data->medium_type;
2365                 real_buffer[3] = data->device_specific;
2366                 real_buffer[4] = data->longlba ? 0x01 : 0;
2367                 real_buffer[5] = 0;
2368                 real_buffer[6] = data->block_descriptor_length >> 8;
2369                 real_buffer[7] = data->block_descriptor_length;
2370
2371                 cmd[0] = MODE_SELECT_10;
2372                 cmd[7] = len >> 8;
2373                 cmd[8] = len;
2374         } else {
2375                 if (len > 255 || data->block_descriptor_length > 255 ||
2376                     data->longlba)
2377                         return -EINVAL;
2378
2379                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2380                 if (!real_buffer)
2381                         return -ENOMEM;
2382                 memcpy(real_buffer + 4, buffer, len);
2383                 len += 4;
2384                 real_buffer[0] = 0;
2385                 real_buffer[1] = data->medium_type;
2386                 real_buffer[2] = data->device_specific;
2387                 real_buffer[3] = data->block_descriptor_length;
2388                 
2389
2390                 cmd[0] = MODE_SELECT;
2391                 cmd[4] = len;
2392         }
2393
2394         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2395                                sshdr, timeout, retries, NULL);
2396         kfree(real_buffer);
2397         return ret;
2398 }
2399 EXPORT_SYMBOL_GPL(scsi_mode_select);
2400
2401 /**
2402  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2403  *      @sdev:  SCSI device to be queried
2404  *      @dbd:   set if mode sense will allow block descriptors to be returned
2405  *      @modepage: mode page being requested
2406  *      @buffer: request buffer (may not be smaller than eight bytes)
2407  *      @len:   length of request buffer.
2408  *      @timeout: command timeout
2409  *      @retries: number of retries before failing
2410  *      @data: returns a structure abstracting the mode header data
2411  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2412  *              must be SCSI_SENSE_BUFFERSIZE big.
2413  *
2414  *      Returns zero if unsuccessful, or the header offset (either 4
2415  *      or 8 depending on whether a six or ten byte command was
2416  *      issued) if successful.
2417  */
2418 int
2419 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2420                   unsigned char *buffer, int len, int timeout, int retries,
2421                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2422 {
2423         unsigned char cmd[12];
2424         int use_10_for_ms;
2425         int header_length;
2426         int result;
2427         struct scsi_sense_hdr my_sshdr;
2428
2429         memset(data, 0, sizeof(*data));
2430         memset(&cmd[0], 0, 12);
2431         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2432         cmd[2] = modepage;
2433
2434         /* caller might not be interested in sense, but we need it */
2435         if (!sshdr)
2436                 sshdr = &my_sshdr;
2437
2438  retry:
2439         use_10_for_ms = sdev->use_10_for_ms;
2440
2441         if (use_10_for_ms) {
2442                 if (len < 8)
2443                         len = 8;
2444
2445                 cmd[0] = MODE_SENSE_10;
2446                 cmd[8] = len;
2447                 header_length = 8;
2448         } else {
2449                 if (len < 4)
2450                         len = 4;
2451
2452                 cmd[0] = MODE_SENSE;
2453                 cmd[4] = len;
2454                 header_length = 4;
2455         }
2456
2457         memset(buffer, 0, len);
2458
2459         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2460                                   sshdr, timeout, retries, NULL);
2461
2462         /* This code looks awful: what it's doing is making sure an
2463          * ILLEGAL REQUEST sense return identifies the actual command
2464          * byte as the problem.  MODE_SENSE commands can return
2465          * ILLEGAL REQUEST if the code page isn't supported */
2466
2467         if (use_10_for_ms && !scsi_status_is_good(result) &&
2468             (driver_byte(result) & DRIVER_SENSE)) {
2469                 if (scsi_sense_valid(sshdr)) {
2470                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2471                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2472                                 /* 
2473                                  * Invalid command operation code
2474                                  */
2475                                 sdev->use_10_for_ms = 0;
2476                                 goto retry;
2477                         }
2478                 }
2479         }
2480
2481         if(scsi_status_is_good(result)) {
2482                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2483                              (modepage == 6 || modepage == 8))) {
2484                         /* Initio breakage? */
2485                         header_length = 0;
2486                         data->length = 13;
2487                         data->medium_type = 0;
2488                         data->device_specific = 0;
2489                         data->longlba = 0;
2490                         data->block_descriptor_length = 0;
2491                 } else if(use_10_for_ms) {
2492                         data->length = buffer[0]*256 + buffer[1] + 2;
2493                         data->medium_type = buffer[2];
2494                         data->device_specific = buffer[3];
2495                         data->longlba = buffer[4] & 0x01;
2496                         data->block_descriptor_length = buffer[6]*256
2497                                 + buffer[7];
2498                 } else {
2499                         data->length = buffer[0] + 1;
2500                         data->medium_type = buffer[1];
2501                         data->device_specific = buffer[2];
2502                         data->block_descriptor_length = buffer[3];
2503                 }
2504                 data->header_length = header_length;
2505         }
2506
2507         return result;
2508 }
2509 EXPORT_SYMBOL(scsi_mode_sense);
2510
2511 /**
2512  *      scsi_test_unit_ready - test if unit is ready
2513  *      @sdev:  scsi device to change the state of.
2514  *      @timeout: command timeout
2515  *      @retries: number of retries before failing
2516  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2517  *              returning sense. Make sure that this is cleared before passing
2518  *              in.
2519  *
2520  *      Returns zero if unsuccessful or an error if TUR failed.  For
2521  *      removable media, UNIT_ATTENTION sets ->changed flag.
2522  **/
2523 int
2524 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2525                      struct scsi_sense_hdr *sshdr_external)
2526 {
2527         char cmd[] = {
2528                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2529         };
2530         struct scsi_sense_hdr *sshdr;
2531         int result;
2532
2533         if (!sshdr_external)
2534                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2535         else
2536                 sshdr = sshdr_external;
2537
2538         /* try to eat the UNIT_ATTENTION if there are enough retries */
2539         do {
2540                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2541                                           timeout, retries, NULL);
2542                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2543                     sshdr->sense_key == UNIT_ATTENTION)
2544                         sdev->changed = 1;
2545         } while (scsi_sense_valid(sshdr) &&
2546                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2547
2548         if (!sshdr_external)
2549                 kfree(sshdr);
2550         return result;
2551 }
2552 EXPORT_SYMBOL(scsi_test_unit_ready);
2553
2554 /**
2555  *      scsi_device_set_state - Take the given device through the device state model.
2556  *      @sdev:  scsi device to change the state of.
2557  *      @state: state to change to.
2558  *
2559  *      Returns zero if unsuccessful or an error if the requested 
2560  *      transition is illegal.
2561  */
2562 int
2563 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2564 {
2565         enum scsi_device_state oldstate = sdev->sdev_state;
2566
2567         if (state == oldstate)
2568                 return 0;
2569
2570         switch (state) {
2571         case SDEV_CREATED:
2572                 switch (oldstate) {
2573                 case SDEV_CREATED_BLOCK:
2574                         break;
2575                 default:
2576                         goto illegal;
2577                 }
2578                 break;
2579                         
2580         case SDEV_RUNNING:
2581                 switch (oldstate) {
2582                 case SDEV_CREATED:
2583                 case SDEV_OFFLINE:
2584                 case SDEV_TRANSPORT_OFFLINE:
2585                 case SDEV_QUIESCE:
2586                 case SDEV_BLOCK:
2587                         break;
2588                 default:
2589                         goto illegal;
2590                 }
2591                 break;
2592
2593         case SDEV_QUIESCE:
2594                 switch (oldstate) {
2595                 case SDEV_RUNNING:
2596                 case SDEV_OFFLINE:
2597                 case SDEV_TRANSPORT_OFFLINE:
2598                         break;
2599                 default:
2600                         goto illegal;
2601                 }
2602                 break;
2603
2604         case SDEV_OFFLINE:
2605         case SDEV_TRANSPORT_OFFLINE:
2606                 switch (oldstate) {
2607                 case SDEV_CREATED:
2608                 case SDEV_RUNNING:
2609                 case SDEV_QUIESCE:
2610                 case SDEV_BLOCK:
2611                         break;
2612                 default:
2613                         goto illegal;
2614                 }
2615                 break;
2616
2617         case SDEV_BLOCK:
2618                 switch (oldstate) {
2619                 case SDEV_RUNNING:
2620                 case SDEV_CREATED_BLOCK:
2621                         break;
2622                 default:
2623                         goto illegal;
2624                 }
2625                 break;
2626
2627         case SDEV_CREATED_BLOCK:
2628                 switch (oldstate) {
2629                 case SDEV_CREATED:
2630                         break;
2631                 default:
2632                         goto illegal;
2633                 }
2634                 break;
2635
2636         case SDEV_CANCEL:
2637                 switch (oldstate) {
2638                 case SDEV_CREATED:
2639                 case SDEV_RUNNING:
2640                 case SDEV_QUIESCE:
2641                 case SDEV_OFFLINE:
2642                 case SDEV_TRANSPORT_OFFLINE:
2643                 case SDEV_BLOCK:
2644                         break;
2645                 default:
2646                         goto illegal;
2647                 }
2648                 break;
2649
2650         case SDEV_DEL:
2651                 switch (oldstate) {
2652                 case SDEV_CREATED:
2653                 case SDEV_RUNNING:
2654                 case SDEV_OFFLINE:
2655                 case SDEV_TRANSPORT_OFFLINE:
2656                 case SDEV_CANCEL:
2657                 case SDEV_CREATED_BLOCK:
2658                         break;
2659                 default:
2660                         goto illegal;
2661                 }
2662                 break;
2663
2664         }
2665         sdev->sdev_state = state;
2666         return 0;
2667
2668  illegal:
2669         SCSI_LOG_ERROR_RECOVERY(1,
2670                                 sdev_printk(KERN_ERR, sdev,
2671                                             "Illegal state transition %s->%s",
2672                                             scsi_device_state_name(oldstate),
2673                                             scsi_device_state_name(state))
2674                                 );
2675         return -EINVAL;
2676 }
2677 EXPORT_SYMBOL(scsi_device_set_state);
2678
2679 /**
2680  *      sdev_evt_emit - emit a single SCSI device uevent
2681  *      @sdev: associated SCSI device
2682  *      @evt: event to emit
2683  *
2684  *      Send a single uevent (scsi_event) to the associated scsi_device.
2685  */
2686 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2687 {
2688         int idx = 0;
2689         char *envp[3];
2690
2691         switch (evt->evt_type) {
2692         case SDEV_EVT_MEDIA_CHANGE:
2693                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2694                 break;
2695         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2696                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2697                 break;
2698         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2699                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2700                 break;
2701         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2702                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2703                 break;
2704         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2705                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2706                 break;
2707         case SDEV_EVT_LUN_CHANGE_REPORTED:
2708                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2709                 break;
2710         default:
2711                 /* do nothing */
2712                 break;
2713         }
2714
2715         envp[idx++] = NULL;
2716
2717         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2718 }
2719
2720 /**
2721  *      sdev_evt_thread - send a uevent for each scsi event
2722  *      @work: work struct for scsi_device
2723  *
2724  *      Dispatch queued events to their associated scsi_device kobjects
2725  *      as uevents.
2726  */
2727 void scsi_evt_thread(struct work_struct *work)
2728 {
2729         struct scsi_device *sdev;
2730         enum scsi_device_event evt_type;
2731         LIST_HEAD(event_list);
2732
2733         sdev = container_of(work, struct scsi_device, event_work);
2734
2735         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2736                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2737                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2738
2739         while (1) {
2740                 struct scsi_event *evt;
2741                 struct list_head *this, *tmp;
2742                 unsigned long flags;
2743
2744                 spin_lock_irqsave(&sdev->list_lock, flags);
2745                 list_splice_init(&sdev->event_list, &event_list);
2746                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2747
2748                 if (list_empty(&event_list))
2749                         break;
2750
2751                 list_for_each_safe(this, tmp, &event_list) {
2752                         evt = list_entry(this, struct scsi_event, node);
2753                         list_del(&evt->node);
2754                         scsi_evt_emit(sdev, evt);
2755                         kfree(evt);
2756                 }
2757         }
2758 }
2759
2760 /**
2761  *      sdev_evt_send - send asserted event to uevent thread
2762  *      @sdev: scsi_device event occurred on
2763  *      @evt: event to send
2764  *
2765  *      Assert scsi device event asynchronously.
2766  */
2767 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2768 {
2769         unsigned long flags;
2770
2771 #if 0
2772         /* FIXME: currently this check eliminates all media change events
2773          * for polled devices.  Need to update to discriminate between AN
2774          * and polled events */
2775         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2776                 kfree(evt);
2777                 return;
2778         }
2779 #endif
2780
2781         spin_lock_irqsave(&sdev->list_lock, flags);
2782         list_add_tail(&evt->node, &sdev->event_list);
2783         schedule_work(&sdev->event_work);
2784         spin_unlock_irqrestore(&sdev->list_lock, flags);
2785 }
2786 EXPORT_SYMBOL_GPL(sdev_evt_send);
2787
2788 /**
2789  *      sdev_evt_alloc - allocate a new scsi event
2790  *      @evt_type: type of event to allocate
2791  *      @gfpflags: GFP flags for allocation
2792  *
2793  *      Allocates and returns a new scsi_event.
2794  */
2795 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2796                                   gfp_t gfpflags)
2797 {
2798         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2799         if (!evt)
2800                 return NULL;
2801
2802         evt->evt_type = evt_type;
2803         INIT_LIST_HEAD(&evt->node);
2804
2805         /* evt_type-specific initialization, if any */
2806         switch (evt_type) {
2807         case SDEV_EVT_MEDIA_CHANGE:
2808         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2809         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2810         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2811         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2812         case SDEV_EVT_LUN_CHANGE_REPORTED:
2813         default:
2814                 /* do nothing */
2815                 break;
2816         }
2817
2818         return evt;
2819 }
2820 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2821
2822 /**
2823  *      sdev_evt_send_simple - send asserted event to uevent thread
2824  *      @sdev: scsi_device event occurred on
2825  *      @evt_type: type of event to send
2826  *      @gfpflags: GFP flags for allocation
2827  *
2828  *      Assert scsi device event asynchronously, given an event type.
2829  */
2830 void sdev_evt_send_simple(struct scsi_device *sdev,
2831                           enum scsi_device_event evt_type, gfp_t gfpflags)
2832 {
2833         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2834         if (!evt) {
2835                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2836                             evt_type);
2837                 return;
2838         }
2839
2840         sdev_evt_send(sdev, evt);
2841 }
2842 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2843
2844 /**
2845  *      scsi_device_quiesce - Block user issued commands.
2846  *      @sdev:  scsi device to quiesce.
2847  *
2848  *      This works by trying to transition to the SDEV_QUIESCE state
2849  *      (which must be a legal transition).  When the device is in this
2850  *      state, only special requests will be accepted, all others will
2851  *      be deferred.  Since special requests may also be requeued requests,
2852  *      a successful return doesn't guarantee the device will be 
2853  *      totally quiescent.
2854  *
2855  *      Must be called with user context, may sleep.
2856  *
2857  *      Returns zero if unsuccessful or an error if not.
2858  */
2859 int
2860 scsi_device_quiesce(struct scsi_device *sdev)
2861 {
2862         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2863         if (err)
2864                 return err;
2865
2866         scsi_run_queue(sdev->request_queue);
2867         while (atomic_read(&sdev->device_busy)) {
2868                 msleep_interruptible(200);
2869                 scsi_run_queue(sdev->request_queue);
2870         }
2871         return 0;
2872 }
2873 EXPORT_SYMBOL(scsi_device_quiesce);
2874
2875 /**
2876  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2877  *      @sdev:  scsi device to resume.
2878  *
2879  *      Moves the device from quiesced back to running and restarts the
2880  *      queues.
2881  *
2882  *      Must be called with user context, may sleep.
2883  */
2884 void scsi_device_resume(struct scsi_device *sdev)
2885 {
2886         /* check if the device state was mutated prior to resume, and if
2887          * so assume the state is being managed elsewhere (for example
2888          * device deleted during suspend)
2889          */
2890         if (sdev->sdev_state != SDEV_QUIESCE ||
2891             scsi_device_set_state(sdev, SDEV_RUNNING))
2892                 return;
2893         scsi_run_queue(sdev->request_queue);
2894 }
2895 EXPORT_SYMBOL(scsi_device_resume);
2896
2897 static void
2898 device_quiesce_fn(struct scsi_device *sdev, void *data)
2899 {
2900         scsi_device_quiesce(sdev);
2901 }
2902
2903 void
2904 scsi_target_quiesce(struct scsi_target *starget)
2905 {
2906         starget_for_each_device(starget, NULL, device_quiesce_fn);
2907 }
2908 EXPORT_SYMBOL(scsi_target_quiesce);
2909
2910 static void
2911 device_resume_fn(struct scsi_device *sdev, void *data)
2912 {
2913         scsi_device_resume(sdev);
2914 }
2915
2916 void
2917 scsi_target_resume(struct scsi_target *starget)
2918 {
2919         starget_for_each_device(starget, NULL, device_resume_fn);
2920 }
2921 EXPORT_SYMBOL(scsi_target_resume);
2922
2923 /**
2924  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2925  * @sdev:       device to block
2926  *
2927  * Block request made by scsi lld's to temporarily stop all
2928  * scsi commands on the specified device.  Called from interrupt
2929  * or normal process context.
2930  *
2931  * Returns zero if successful or error if not
2932  *
2933  * Notes:       
2934  *      This routine transitions the device to the SDEV_BLOCK state
2935  *      (which must be a legal transition).  When the device is in this
2936  *      state, all commands are deferred until the scsi lld reenables
2937  *      the device with scsi_device_unblock or device_block_tmo fires.
2938  */
2939 int
2940 scsi_internal_device_block(struct scsi_device *sdev)
2941 {
2942         struct request_queue *q = sdev->request_queue;
2943         unsigned long flags;
2944         int err = 0;
2945
2946         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2947         if (err) {
2948                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2949
2950                 if (err)
2951                         return err;
2952         }
2953
2954         /* 
2955          * The device has transitioned to SDEV_BLOCK.  Stop the
2956          * block layer from calling the midlayer with this device's
2957          * request queue. 
2958          */
2959         if (q->mq_ops) {
2960                 blk_mq_stop_hw_queues(q);
2961         } else {
2962                 spin_lock_irqsave(q->queue_lock, flags);
2963                 blk_stop_queue(q);
2964                 spin_unlock_irqrestore(q->queue_lock, flags);
2965         }
2966
2967         return 0;
2968 }
2969 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2970  
2971 /**
2972  * scsi_internal_device_unblock - resume a device after a block request
2973  * @sdev:       device to resume
2974  * @new_state:  state to set devices to after unblocking
2975  *
2976  * Called by scsi lld's or the midlayer to restart the device queue
2977  * for the previously suspended scsi device.  Called from interrupt or
2978  * normal process context.
2979  *
2980  * Returns zero if successful or error if not.
2981  *
2982  * Notes:       
2983  *      This routine transitions the device to the SDEV_RUNNING state
2984  *      or to one of the offline states (which must be a legal transition)
2985  *      allowing the midlayer to goose the queue for this device.
2986  */
2987 int
2988 scsi_internal_device_unblock(struct scsi_device *sdev,
2989                              enum scsi_device_state new_state)
2990 {
2991         struct request_queue *q = sdev->request_queue; 
2992         unsigned long flags;
2993
2994         /*
2995          * Try to transition the scsi device to SDEV_RUNNING or one of the
2996          * offlined states and goose the device queue if successful.
2997          */
2998         if ((sdev->sdev_state == SDEV_BLOCK) ||
2999             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3000                 sdev->sdev_state = new_state;
3001         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3002                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3003                     new_state == SDEV_OFFLINE)
3004                         sdev->sdev_state = new_state;
3005                 else
3006                         sdev->sdev_state = SDEV_CREATED;
3007         } else if (sdev->sdev_state != SDEV_CANCEL &&
3008                  sdev->sdev_state != SDEV_OFFLINE)
3009                 return -EINVAL;
3010
3011         if (q->mq_ops) {
3012                 blk_mq_start_stopped_hw_queues(q, false);
3013         } else {
3014                 spin_lock_irqsave(q->queue_lock, flags);
3015                 blk_start_queue(q);
3016                 spin_unlock_irqrestore(q->queue_lock, flags);
3017         }
3018
3019         return 0;
3020 }
3021 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3022
3023 static void
3024 device_block(struct scsi_device *sdev, void *data)
3025 {
3026         scsi_internal_device_block(sdev);
3027 }
3028
3029 static int
3030 target_block(struct device *dev, void *data)
3031 {
3032         if (scsi_is_target_device(dev))
3033                 starget_for_each_device(to_scsi_target(dev), NULL,
3034                                         device_block);
3035         return 0;
3036 }
3037
3038 void
3039 scsi_target_block(struct device *dev)
3040 {
3041         if (scsi_is_target_device(dev))
3042                 starget_for_each_device(to_scsi_target(dev), NULL,
3043                                         device_block);
3044         else
3045                 device_for_each_child(dev, NULL, target_block);
3046 }
3047 EXPORT_SYMBOL_GPL(scsi_target_block);
3048
3049 static void
3050 device_unblock(struct scsi_device *sdev, void *data)
3051 {
3052         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3053 }
3054
3055 static int
3056 target_unblock(struct device *dev, void *data)
3057 {
3058         if (scsi_is_target_device(dev))
3059                 starget_for_each_device(to_scsi_target(dev), data,
3060                                         device_unblock);
3061         return 0;
3062 }
3063
3064 void
3065 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3066 {
3067         if (scsi_is_target_device(dev))
3068                 starget_for_each_device(to_scsi_target(dev), &new_state,
3069                                         device_unblock);
3070         else
3071                 device_for_each_child(dev, &new_state, target_unblock);
3072 }
3073 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3074
3075 /**
3076  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3077  * @sgl:        scatter-gather list
3078  * @sg_count:   number of segments in sg
3079  * @offset:     offset in bytes into sg, on return offset into the mapped area
3080  * @len:        bytes to map, on return number of bytes mapped
3081  *
3082  * Returns virtual address of the start of the mapped page
3083  */
3084 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3085                           size_t *offset, size_t *len)
3086 {
3087         int i;
3088         size_t sg_len = 0, len_complete = 0;
3089         struct scatterlist *sg;
3090         struct page *page;
3091
3092         WARN_ON(!irqs_disabled());
3093
3094         for_each_sg(sgl, sg, sg_count, i) {
3095                 len_complete = sg_len; /* Complete sg-entries */
3096                 sg_len += sg->length;
3097                 if (sg_len > *offset)
3098                         break;
3099         }
3100
3101         if (unlikely(i == sg_count)) {
3102                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3103                         "elements %d\n",
3104                        __func__, sg_len, *offset, sg_count);
3105                 WARN_ON(1);
3106                 return NULL;
3107         }
3108
3109         /* Offset starting from the beginning of first page in this sg-entry */
3110         *offset = *offset - len_complete + sg->offset;
3111
3112         /* Assumption: contiguous pages can be accessed as "page + i" */
3113         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3114         *offset &= ~PAGE_MASK;
3115
3116         /* Bytes in this sg-entry from *offset to the end of the page */
3117         sg_len = PAGE_SIZE - *offset;
3118         if (*len > sg_len)
3119                 *len = sg_len;
3120
3121         return kmap_atomic(page);
3122 }
3123 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3124
3125 /**
3126  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3127  * @virt:       virtual address to be unmapped
3128  */
3129 void scsi_kunmap_atomic_sg(void *virt)
3130 {
3131         kunmap_atomic(virt);
3132 }
3133 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3134
3135 void sdev_disable_disk_events(struct scsi_device *sdev)
3136 {
3137         atomic_inc(&sdev->disk_events_disable_depth);
3138 }
3139 EXPORT_SYMBOL(sdev_disable_disk_events);
3140
3141 void sdev_enable_disk_events(struct scsi_device *sdev)
3142 {
3143         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3144                 return;
3145         atomic_dec(&sdev->disk_events_disable_depth);
3146 }
3147 EXPORT_SYMBOL(sdev_enable_disk_events);