]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/staging/rdma/hfi1/sdma.c
Merge remote-tracking branches 'regmap/topic/rbtree' and 'regmap/topic/update-offload...
[karo-tx-linux.git] / drivers / staging / rdma / hfi1 / sdma.c
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50
51 #include <linux/spinlock.h>
52 #include <linux/seqlock.h>
53 #include <linux/netdevice.h>
54 #include <linux/moduleparam.h>
55 #include <linux/bitops.h>
56 #include <linux/timer.h>
57 #include <linux/vmalloc.h>
58
59 #include "hfi.h"
60 #include "common.h"
61 #include "qp.h"
62 #include "sdma.h"
63 #include "iowait.h"
64 #include "trace.h"
65
66 /* must be a power of 2 >= 64 <= 32768 */
67 #define SDMA_DESCQ_CNT 1024
68 #define INVALID_TAIL 0xffff
69
70 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
71 module_param(sdma_descq_cnt, uint, S_IRUGO);
72 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
73
74 static uint sdma_idle_cnt = 250;
75 module_param(sdma_idle_cnt, uint, S_IRUGO);
76 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
77
78 uint mod_num_sdma;
79 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
80 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
81
82 #define SDMA_WAIT_BATCH_SIZE 20
83 /* max wait time for a SDMA engine to indicate it has halted */
84 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
85 /* all SDMA engine errors that cause a halt */
86
87 #define SD(name) SEND_DMA_##name
88 #define ALL_SDMA_ENG_HALT_ERRS \
89         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
90         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
91         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
92         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
93         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
94         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
95         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
107
108 /* sdma_sendctrl operations */
109 #define SDMA_SENDCTRL_OP_ENABLE    (1U << 0)
110 #define SDMA_SENDCTRL_OP_INTENABLE (1U << 1)
111 #define SDMA_SENDCTRL_OP_HALT      (1U << 2)
112 #define SDMA_SENDCTRL_OP_CLEANUP   (1U << 3)
113
114 /* handle long defines */
115 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
116 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
117 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
118 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
119
120 static const char * const sdma_state_names[] = {
121         [sdma_state_s00_hw_down]                = "s00_HwDown",
122         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
123         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
124         [sdma_state_s20_idle]                   = "s20_Idle",
125         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
126         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
127         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
128         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
129         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
130         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
131         [sdma_state_s99_running]                = "s99_Running",
132 };
133
134 static const char * const sdma_event_names[] = {
135         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
136         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
137         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
138         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
139         [sdma_event_e30_go_running]   = "e30_GoRunning",
140         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
141         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
142         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
143         [sdma_event_e70_go_idle]      = "e70_GoIdle",
144         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
145         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
146         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
147         [sdma_event_e85_link_down]    = "e85_LinkDown",
148         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
149 };
150
151 static const struct sdma_set_state_action sdma_action_table[] = {
152         [sdma_state_s00_hw_down] = {
153                 .go_s99_running_tofalse = 1,
154                 .op_enable = 0,
155                 .op_intenable = 0,
156                 .op_halt = 0,
157                 .op_cleanup = 0,
158         },
159         [sdma_state_s10_hw_start_up_halt_wait] = {
160                 .op_enable = 0,
161                 .op_intenable = 0,
162                 .op_halt = 1,
163                 .op_cleanup = 0,
164         },
165         [sdma_state_s15_hw_start_up_clean_wait] = {
166                 .op_enable = 0,
167                 .op_intenable = 1,
168                 .op_halt = 0,
169                 .op_cleanup = 1,
170         },
171         [sdma_state_s20_idle] = {
172                 .op_enable = 0,
173                 .op_intenable = 1,
174                 .op_halt = 0,
175                 .op_cleanup = 0,
176         },
177         [sdma_state_s30_sw_clean_up_wait] = {
178                 .op_enable = 0,
179                 .op_intenable = 0,
180                 .op_halt = 0,
181                 .op_cleanup = 0,
182         },
183         [sdma_state_s40_hw_clean_up_wait] = {
184                 .op_enable = 0,
185                 .op_intenable = 0,
186                 .op_halt = 0,
187                 .op_cleanup = 1,
188         },
189         [sdma_state_s50_hw_halt_wait] = {
190                 .op_enable = 0,
191                 .op_intenable = 0,
192                 .op_halt = 0,
193                 .op_cleanup = 0,
194         },
195         [sdma_state_s60_idle_halt_wait] = {
196                 .go_s99_running_tofalse = 1,
197                 .op_enable = 0,
198                 .op_intenable = 0,
199                 .op_halt = 1,
200                 .op_cleanup = 0,
201         },
202         [sdma_state_s80_hw_freeze] = {
203                 .op_enable = 0,
204                 .op_intenable = 0,
205                 .op_halt = 0,
206                 .op_cleanup = 0,
207         },
208         [sdma_state_s82_freeze_sw_clean] = {
209                 .op_enable = 0,
210                 .op_intenable = 0,
211                 .op_halt = 0,
212                 .op_cleanup = 0,
213         },
214         [sdma_state_s99_running] = {
215                 .op_enable = 1,
216                 .op_intenable = 1,
217                 .op_halt = 0,
218                 .op_cleanup = 0,
219                 .go_s99_running_totrue = 1,
220         },
221 };
222
223 #define SDMA_TAIL_UPDATE_THRESH 0x1F
224
225 /* declare all statics here rather than keep sorting */
226 static void sdma_complete(struct kref *);
227 static void sdma_finalput(struct sdma_state *);
228 static void sdma_get(struct sdma_state *);
229 static void sdma_hw_clean_up_task(unsigned long);
230 static void sdma_put(struct sdma_state *);
231 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
232 static void sdma_start_hw_clean_up(struct sdma_engine *);
233 static void sdma_start_sw_clean_up(struct sdma_engine *);
234 static void sdma_sw_clean_up_task(unsigned long);
235 static void sdma_sendctrl(struct sdma_engine *, unsigned);
236 static void init_sdma_regs(struct sdma_engine *, u32, uint);
237 static void sdma_process_event(
238         struct sdma_engine *sde,
239         enum sdma_events event);
240 static void __sdma_process_event(
241         struct sdma_engine *sde,
242         enum sdma_events event);
243 static void dump_sdma_state(struct sdma_engine *sde);
244 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
245 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
246 static void sdma_flush_descq(struct sdma_engine *sde);
247
248 /**
249  * sdma_state_name() - return state string from enum
250  * @state: state
251  */
252 static const char *sdma_state_name(enum sdma_states state)
253 {
254         return sdma_state_names[state];
255 }
256
257 static void sdma_get(struct sdma_state *ss)
258 {
259         kref_get(&ss->kref);
260 }
261
262 static void sdma_complete(struct kref *kref)
263 {
264         struct sdma_state *ss =
265                 container_of(kref, struct sdma_state, kref);
266
267         complete(&ss->comp);
268 }
269
270 static void sdma_put(struct sdma_state *ss)
271 {
272         kref_put(&ss->kref, sdma_complete);
273 }
274
275 static void sdma_finalput(struct sdma_state *ss)
276 {
277         sdma_put(ss);
278         wait_for_completion(&ss->comp);
279 }
280
281 static inline void write_sde_csr(
282         struct sdma_engine *sde,
283         u32 offset0,
284         u64 value)
285 {
286         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
287 }
288
289 static inline u64 read_sde_csr(
290         struct sdma_engine *sde,
291         u32 offset0)
292 {
293         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
294 }
295
296 /*
297  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
298  * sdma engine 'sde' to drop to 0.
299  */
300 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
301                                         int pause)
302 {
303         u64 off = 8 * sde->this_idx;
304         struct hfi1_devdata *dd = sde->dd;
305         int lcnt = 0;
306
307         while (1) {
308                 u64 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
309
310                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
311                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
312                 if (reg == 0)
313                         break;
314                 if (lcnt++ > 100) {
315                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u\n",
316                                   __func__, sde->this_idx, (u32)reg);
317                         break;
318                 }
319                 udelay(1);
320         }
321 }
322
323 /*
324  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
325  * and pause for credit return.
326  */
327 void sdma_wait(struct hfi1_devdata *dd)
328 {
329         int i;
330
331         for (i = 0; i < dd->num_sdma; i++) {
332                 struct sdma_engine *sde = &dd->per_sdma[i];
333
334                 sdma_wait_for_packet_egress(sde, 0);
335         }
336 }
337
338 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
339 {
340         u64 reg;
341
342         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
343                 return;
344         reg = cnt;
345         reg &= SD(DESC_CNT_CNT_MASK);
346         reg <<= SD(DESC_CNT_CNT_SHIFT);
347         write_sde_csr(sde, SD(DESC_CNT), reg);
348 }
349
350 /*
351  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
352  *
353  * Depending on timing there can be txreqs in two places:
354  * - in the descq ring
355  * - in the flush list
356  *
357  * To avoid ordering issues the descq ring needs to be flushed
358  * first followed by the flush list.
359  *
360  * This routine is called from two places
361  * - From a work queue item
362  * - Directly from the state machine just before setting the
363  *   state to running
364  *
365  * Must be called with head_lock held
366  *
367  */
368 static void sdma_flush(struct sdma_engine *sde)
369 {
370         struct sdma_txreq *txp, *txp_next;
371         LIST_HEAD(flushlist);
372
373         /* flush from head to tail */
374         sdma_flush_descq(sde);
375         spin_lock(&sde->flushlist_lock);
376         /* copy flush list */
377         list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
378                 list_del_init(&txp->list);
379                 list_add_tail(&txp->list, &flushlist);
380         }
381         spin_unlock(&sde->flushlist_lock);
382         /* flush from flush list */
383         list_for_each_entry_safe(txp, txp_next, &flushlist, list) {
384                 int drained = 0;
385                 /* protect against complete modifying */
386                 struct iowait *wait = txp->wait;
387
388                 list_del_init(&txp->list);
389 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
390                 trace_hfi1_sdma_out_sn(sde, txp->sn);
391                 if (WARN_ON_ONCE(sde->head_sn != txp->sn))
392                         dd_dev_err(sde->dd, "expected %llu got %llu\n",
393                                 sde->head_sn, txp->sn);
394                 sde->head_sn++;
395 #endif
396                 sdma_txclean(sde->dd, txp);
397                 if (wait)
398                         drained = atomic_dec_and_test(&wait->sdma_busy);
399                 if (txp->complete)
400                         (*txp->complete)(txp, SDMA_TXREQ_S_ABORTED, drained);
401                 if (wait && drained)
402                         iowait_drain_wakeup(wait);
403         }
404 }
405
406 /*
407  * Fields a work request for flushing the descq ring
408  * and the flush list
409  *
410  * If the engine has been brought to running during
411  * the scheduling delay, the flush is ignored, assuming
412  * that the process of bringing the engine to running
413  * would have done this flush prior to going to running.
414  *
415  */
416 static void sdma_field_flush(struct work_struct *work)
417 {
418         unsigned long flags;
419         struct sdma_engine *sde =
420                 container_of(work, struct sdma_engine, flush_worker);
421
422         write_seqlock_irqsave(&sde->head_lock, flags);
423         if (!__sdma_running(sde))
424                 sdma_flush(sde);
425         write_sequnlock_irqrestore(&sde->head_lock, flags);
426 }
427
428 static void sdma_err_halt_wait(struct work_struct *work)
429 {
430         struct sdma_engine *sde = container_of(work, struct sdma_engine,
431                                                 err_halt_worker);
432         u64 statuscsr;
433         unsigned long timeout;
434
435         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
436         while (1) {
437                 statuscsr = read_sde_csr(sde, SD(STATUS));
438                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
439                 if (statuscsr)
440                         break;
441                 if (time_after(jiffies, timeout)) {
442                         dd_dev_err(sde->dd,
443                                 "SDMA engine %d - timeout waiting for engine to halt\n",
444                                 sde->this_idx);
445                         /*
446                          * Continue anyway.  This could happen if there was
447                          * an uncorrectable error in the wrong spot.
448                          */
449                         break;
450                 }
451                 usleep_range(80, 120);
452         }
453
454         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
455 }
456
457 static void sdma_start_err_halt_wait(struct sdma_engine *sde)
458 {
459         schedule_work(&sde->err_halt_worker);
460 }
461
462
463 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
464 {
465         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
466
467                 unsigned index;
468                 struct hfi1_devdata *dd = sde->dd;
469
470                 for (index = 0; index < dd->num_sdma; index++) {
471                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
472
473                         if (curr_sdma != sde)
474                                 curr_sdma->progress_check_head =
475                                                         curr_sdma->descq_head;
476                 }
477                 dd_dev_err(sde->dd,
478                            "SDMA engine %d - check scheduled\n",
479                                 sde->this_idx);
480                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
481         }
482 }
483
484 static void sdma_err_progress_check(unsigned long data)
485 {
486         unsigned index;
487         struct sdma_engine *sde = (struct sdma_engine *)data;
488
489         dd_dev_err(sde->dd, "SDE progress check event\n");
490         for (index = 0; index < sde->dd->num_sdma; index++) {
491                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
492                 unsigned long flags;
493
494                 /* check progress on each engine except the current one */
495                 if (curr_sde == sde)
496                         continue;
497                 /*
498                  * We must lock interrupts when acquiring sde->lock,
499                  * to avoid a deadlock if interrupt triggers and spins on
500                  * the same lock on same CPU
501                  */
502                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
503                 write_seqlock(&curr_sde->head_lock);
504
505                 /* skip non-running queues */
506                 if (curr_sde->state.current_state != sdma_state_s99_running) {
507                         write_sequnlock(&curr_sde->head_lock);
508                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
509                         continue;
510                 }
511
512                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
513                     (curr_sde->descq_head ==
514                                 curr_sde->progress_check_head))
515                         __sdma_process_event(curr_sde,
516                                              sdma_event_e90_sw_halted);
517                 write_sequnlock(&curr_sde->head_lock);
518                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519         }
520         schedule_work(&sde->err_halt_worker);
521 }
522
523 static void sdma_hw_clean_up_task(unsigned long opaque)
524 {
525         struct sdma_engine *sde = (struct sdma_engine *) opaque;
526         u64 statuscsr;
527
528         while (1) {
529 #ifdef CONFIG_SDMA_VERBOSITY
530                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
531                            sde->this_idx, slashstrip(__FILE__), __LINE__,
532                         __func__);
533 #endif
534                 statuscsr = read_sde_csr(sde, SD(STATUS));
535                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
536                 if (statuscsr)
537                         break;
538                 udelay(10);
539         }
540
541         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
542 }
543
544 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
545 {
546         smp_read_barrier_depends(); /* see sdma_update_tail() */
547         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
548 }
549
550 /*
551  * flush ring for recovery
552  */
553 static void sdma_flush_descq(struct sdma_engine *sde)
554 {
555         u16 head, tail;
556         int progress = 0;
557         struct sdma_txreq *txp = get_txhead(sde);
558
559         /* The reason for some of the complexity of this code is that
560          * not all descriptors have corresponding txps.  So, we have to
561          * be able to skip over descs until we wander into the range of
562          * the next txp on the list.
563          */
564         head = sde->descq_head & sde->sdma_mask;
565         tail = sde->descq_tail & sde->sdma_mask;
566         while (head != tail) {
567                 /* advance head, wrap if needed */
568                 head = ++sde->descq_head & sde->sdma_mask;
569                 /* if now past this txp's descs, do the callback */
570                 if (txp && txp->next_descq_idx == head) {
571                         int drained = 0;
572                         /* protect against complete modifying */
573                         struct iowait *wait = txp->wait;
574
575                         /* remove from list */
576                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
577                         if (wait)
578                                 drained = atomic_dec_and_test(&wait->sdma_busy);
579 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
580                         trace_hfi1_sdma_out_sn(sde, txp->sn);
581                         if (WARN_ON_ONCE(sde->head_sn != txp->sn))
582                                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
583                                         sde->head_sn, txp->sn);
584                         sde->head_sn++;
585 #endif
586                         sdma_txclean(sde->dd, txp);
587                         trace_hfi1_sdma_progress(sde, head, tail, txp);
588                         if (txp->complete)
589                                 (*txp->complete)(
590                                         txp,
591                                         SDMA_TXREQ_S_ABORTED,
592                                         drained);
593                         if (wait && drained)
594                                 iowait_drain_wakeup(wait);
595                         /* see if there is another txp */
596                         txp = get_txhead(sde);
597                 }
598                 progress++;
599         }
600         if (progress)
601                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
602 }
603
604 static void sdma_sw_clean_up_task(unsigned long opaque)
605 {
606         struct sdma_engine *sde = (struct sdma_engine *) opaque;
607         unsigned long flags;
608
609         spin_lock_irqsave(&sde->tail_lock, flags);
610         write_seqlock(&sde->head_lock);
611
612         /*
613          * At this point, the following should always be true:
614          * - We are halted, so no more descriptors are getting retired.
615          * - We are not running, so no one is submitting new work.
616          * - Only we can send the e40_sw_cleaned, so we can't start
617          *   running again until we say so.  So, the active list and
618          *   descq are ours to play with.
619          */
620
621
622         /*
623          * In the error clean up sequence, software clean must be called
624          * before the hardware clean so we can use the hardware head in
625          * the progress routine.  A hardware clean or SPC unfreeze will
626          * reset the hardware head.
627          *
628          * Process all retired requests. The progress routine will use the
629          * latest physical hardware head - we are not running so speed does
630          * not matter.
631          */
632         sdma_make_progress(sde, 0);
633
634         sdma_flush(sde);
635
636         /*
637          * Reset our notion of head and tail.
638          * Note that the HW registers have been reset via an earlier
639          * clean up.
640          */
641         sde->descq_tail = 0;
642         sde->descq_head = 0;
643         sde->desc_avail = sdma_descq_freecnt(sde);
644         *sde->head_dma = 0;
645
646         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
647
648         write_sequnlock(&sde->head_lock);
649         spin_unlock_irqrestore(&sde->tail_lock, flags);
650 }
651
652 static void sdma_sw_tear_down(struct sdma_engine *sde)
653 {
654         struct sdma_state *ss = &sde->state;
655
656         /* Releasing this reference means the state machine has stopped. */
657         sdma_put(ss);
658
659         /* stop waiting for all unfreeze events to complete */
660         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
661         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
662 }
663
664 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
665 {
666         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
667 }
668
669 static void sdma_start_sw_clean_up(struct sdma_engine *sde)
670 {
671         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
672 }
673
674 static void sdma_set_state(struct sdma_engine *sde,
675         enum sdma_states next_state)
676 {
677         struct sdma_state *ss = &sde->state;
678         const struct sdma_set_state_action *action = sdma_action_table;
679         unsigned op = 0;
680
681         trace_hfi1_sdma_state(
682                 sde,
683                 sdma_state_names[ss->current_state],
684                 sdma_state_names[next_state]);
685
686         /* debugging bookkeeping */
687         ss->previous_state = ss->current_state;
688         ss->previous_op = ss->current_op;
689         ss->current_state = next_state;
690
691         if (ss->previous_state != sdma_state_s99_running
692                 && next_state == sdma_state_s99_running)
693                 sdma_flush(sde);
694
695         if (action[next_state].op_enable)
696                 op |= SDMA_SENDCTRL_OP_ENABLE;
697
698         if (action[next_state].op_intenable)
699                 op |= SDMA_SENDCTRL_OP_INTENABLE;
700
701         if (action[next_state].op_halt)
702                 op |= SDMA_SENDCTRL_OP_HALT;
703
704         if (action[next_state].op_cleanup)
705                 op |= SDMA_SENDCTRL_OP_CLEANUP;
706
707         if (action[next_state].go_s99_running_tofalse)
708                 ss->go_s99_running = 0;
709
710         if (action[next_state].go_s99_running_totrue)
711                 ss->go_s99_running = 1;
712
713         ss->current_op = op;
714         sdma_sendctrl(sde, ss->current_op);
715 }
716
717 /**
718  * sdma_get_descq_cnt() - called when device probed
719  *
720  * Return a validated descq count.
721  *
722  * This is currently only used in the verbs initialization to build the tx
723  * list.
724  *
725  * This will probably be deleted in favor of a more scalable approach to
726  * alloc tx's.
727  *
728  */
729 u16 sdma_get_descq_cnt(void)
730 {
731         u16 count = sdma_descq_cnt;
732
733         if (!count)
734                 return SDMA_DESCQ_CNT;
735         /* count must be a power of 2 greater than 64 and less than
736          * 32768.   Otherwise return default.
737          */
738         if (!is_power_of_2(count))
739                 return SDMA_DESCQ_CNT;
740         if (count < 64 || count > 32768)
741                 return SDMA_DESCQ_CNT;
742         return count;
743 }
744 /**
745  * sdma_select_engine_vl() - select sdma engine
746  * @dd: devdata
747  * @selector: a spreading factor
748  * @vl: this vl
749  *
750  *
751  * This function returns an engine based on the selector and a vl.  The
752  * mapping fields are protected by RCU.
753  */
754 struct sdma_engine *sdma_select_engine_vl(
755         struct hfi1_devdata *dd,
756         u32 selector,
757         u8 vl)
758 {
759         struct sdma_vl_map *m;
760         struct sdma_map_elem *e;
761         struct sdma_engine *rval;
762
763         if (WARN_ON(vl > 8))
764                 return NULL;
765
766         rcu_read_lock();
767         m = rcu_dereference(dd->sdma_map);
768         if (unlikely(!m)) {
769                 rcu_read_unlock();
770                 return NULL;
771         }
772         e = m->map[vl & m->mask];
773         rval = e->sde[selector & e->mask];
774         rcu_read_unlock();
775
776         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
777         return rval;
778 }
779
780 /**
781  * sdma_select_engine_sc() - select sdma engine
782  * @dd: devdata
783  * @selector: a spreading factor
784  * @sc5: the 5 bit sc
785  *
786  *
787  * This function returns an engine based on the selector and an sc.
788  */
789 struct sdma_engine *sdma_select_engine_sc(
790         struct hfi1_devdata *dd,
791         u32 selector,
792         u8 sc5)
793 {
794         u8 vl = sc_to_vlt(dd, sc5);
795
796         return sdma_select_engine_vl(dd, selector, vl);
797 }
798
799 /*
800  * Free the indicated map struct
801  */
802 static void sdma_map_free(struct sdma_vl_map *m)
803 {
804         int i;
805
806         for (i = 0; m && i < m->actual_vls; i++)
807                 kfree(m->map[i]);
808         kfree(m);
809 }
810
811 /*
812  * Handle RCU callback
813  */
814 static void sdma_map_rcu_callback(struct rcu_head *list)
815 {
816         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
817
818         sdma_map_free(m);
819 }
820
821 /**
822  * sdma_map_init - called when # vls change
823  * @dd: hfi1_devdata
824  * @port: port number
825  * @num_vls: number of vls
826  * @vl_engines: per vl engine mapping (optional)
827  *
828  * This routine changes the mapping based on the number of vls.
829  *
830  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
831  * implies auto computing the loading and giving each VLs a uniform
832  * distribution of engines per VL.
833  *
834  * The auto algorithm computes the sde_per_vl and the number of extra
835  * engines.  Any extra engines are added from the last VL on down.
836  *
837  * rcu locking is used here to control access to the mapping fields.
838  *
839  * If either the num_vls or num_sdma are non-power of 2, the array sizes
840  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
841  * up to the next highest power of 2 and the first entry is reused
842  * in a round robin fashion.
843  *
844  * If an error occurs the map change is not done and the mapping is
845  * not changed.
846  *
847  */
848 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
849 {
850         int i, j;
851         int extra, sde_per_vl;
852         int engine = 0;
853         u8 lvl_engines[OPA_MAX_VLS];
854         struct sdma_vl_map *oldmap, *newmap;
855
856         if (!(dd->flags & HFI1_HAS_SEND_DMA))
857                 return 0;
858
859         if (!vl_engines) {
860                 /* truncate divide */
861                 sde_per_vl = dd->num_sdma / num_vls;
862                 /* extras */
863                 extra = dd->num_sdma % num_vls;
864                 vl_engines = lvl_engines;
865                 /* add extras from last vl down */
866                 for (i = num_vls - 1; i >= 0; i--, extra--)
867                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
868         }
869         /* build new map */
870         newmap = kzalloc(
871                 sizeof(struct sdma_vl_map) +
872                         roundup_pow_of_two(num_vls) *
873                         sizeof(struct sdma_map_elem *),
874                 GFP_KERNEL);
875         if (!newmap)
876                 goto bail;
877         newmap->actual_vls = num_vls;
878         newmap->vls = roundup_pow_of_two(num_vls);
879         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
880         for (i = 0; i < newmap->vls; i++) {
881                 /* save for wrap around */
882                 int first_engine = engine;
883
884                 if (i < newmap->actual_vls) {
885                         int sz = roundup_pow_of_two(vl_engines[i]);
886
887                         /* only allocate once */
888                         newmap->map[i] = kzalloc(
889                                 sizeof(struct sdma_map_elem) +
890                                         sz * sizeof(struct sdma_engine *),
891                                 GFP_KERNEL);
892                         if (!newmap->map[i])
893                                 goto bail;
894                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
895                         /* assign engines */
896                         for (j = 0; j < sz; j++) {
897                                 newmap->map[i]->sde[j] =
898                                         &dd->per_sdma[engine];
899                                 if (++engine >= first_engine + vl_engines[i])
900                                         /* wrap back to first engine */
901                                         engine = first_engine;
902                         }
903                 } else {
904                         /* just re-use entry without allocating */
905                         newmap->map[i] = newmap->map[i % num_vls];
906                 }
907                 engine = first_engine + vl_engines[i];
908         }
909         /* newmap in hand, save old map */
910         spin_lock_irq(&dd->sde_map_lock);
911         oldmap = rcu_dereference_protected(dd->sdma_map,
912                         lockdep_is_held(&dd->sde_map_lock));
913
914         /* publish newmap */
915         rcu_assign_pointer(dd->sdma_map, newmap);
916
917         spin_unlock_irq(&dd->sde_map_lock);
918         /* success, free any old map after grace period */
919         if (oldmap)
920                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
921         return 0;
922 bail:
923         /* free any partial allocation */
924         sdma_map_free(newmap);
925         return -ENOMEM;
926 }
927
928 /*
929  * Clean up allocated memory.
930  *
931  * This routine is can be called regardless of the success of sdma_init()
932  *
933  */
934 static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
935 {
936         size_t i;
937         struct sdma_engine *sde;
938
939         if (dd->sdma_pad_dma) {
940                 dma_free_coherent(&dd->pcidev->dev, 4,
941                                   (void *)dd->sdma_pad_dma,
942                                   dd->sdma_pad_phys);
943                 dd->sdma_pad_dma = NULL;
944                 dd->sdma_pad_phys = 0;
945         }
946         if (dd->sdma_heads_dma) {
947                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
948                                   (void *)dd->sdma_heads_dma,
949                                   dd->sdma_heads_phys);
950                 dd->sdma_heads_dma = NULL;
951                 dd->sdma_heads_phys = 0;
952         }
953         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
954                 sde = &dd->per_sdma[i];
955
956                 sde->head_dma = NULL;
957                 sde->head_phys = 0;
958
959                 if (sde->descq) {
960                         dma_free_coherent(
961                                 &dd->pcidev->dev,
962                                 sde->descq_cnt * sizeof(u64[2]),
963                                 sde->descq,
964                                 sde->descq_phys
965                         );
966                         sde->descq = NULL;
967                         sde->descq_phys = 0;
968                 }
969                 if (is_vmalloc_addr(sde->tx_ring))
970                         vfree(sde->tx_ring);
971                 else
972                         kfree(sde->tx_ring);
973                 sde->tx_ring = NULL;
974         }
975         spin_lock_irq(&dd->sde_map_lock);
976         kfree(rcu_access_pointer(dd->sdma_map));
977         RCU_INIT_POINTER(dd->sdma_map, NULL);
978         spin_unlock_irq(&dd->sde_map_lock);
979         synchronize_rcu();
980         kfree(dd->per_sdma);
981         dd->per_sdma = NULL;
982 }
983
984 /**
985  * sdma_init() - called when device probed
986  * @dd: hfi1_devdata
987  * @port: port number (currently only zero)
988  *
989  * sdma_init initializes the specified number of engines.
990  *
991  * The code initializes each sde, its csrs.  Interrupts
992  * are not required to be enabled.
993  *
994  * Returns:
995  * 0 - success, -errno on failure
996  */
997 int sdma_init(struct hfi1_devdata *dd, u8 port)
998 {
999         unsigned this_idx;
1000         struct sdma_engine *sde;
1001         u16 descq_cnt;
1002         void *curr_head;
1003         struct hfi1_pportdata *ppd = dd->pport + port;
1004         u32 per_sdma_credits;
1005         uint idle_cnt = sdma_idle_cnt;
1006         size_t num_engines = dd->chip_sdma_engines;
1007
1008         if (!HFI1_CAP_IS_KSET(SDMA)) {
1009                 HFI1_CAP_CLEAR(SDMA_AHG);
1010                 return 0;
1011         }
1012         if (mod_num_sdma &&
1013                 /* can't exceed chip support */
1014                 mod_num_sdma <= dd->chip_sdma_engines &&
1015                 /* count must be >= vls */
1016                 mod_num_sdma >= num_vls)
1017                 num_engines = mod_num_sdma;
1018
1019         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1020         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1021         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1022                 dd->chip_sdma_mem_size);
1023
1024         per_sdma_credits =
1025                 dd->chip_sdma_mem_size/(num_engines * SDMA_BLOCK_SIZE);
1026
1027         /* set up freeze waitqueue */
1028         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1029         atomic_set(&dd->sdma_unfreeze_count, 0);
1030
1031         descq_cnt = sdma_get_descq_cnt();
1032         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1033                 num_engines, descq_cnt);
1034
1035         /* alloc memory for array of send engines */
1036         dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1037         if (!dd->per_sdma)
1038                 return -ENOMEM;
1039
1040         idle_cnt = ns_to_cclock(dd, idle_cnt);
1041         /* Allocate memory for SendDMA descriptor FIFOs */
1042         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1043                 sde = &dd->per_sdma[this_idx];
1044                 sde->dd = dd;
1045                 sde->ppd = ppd;
1046                 sde->this_idx = this_idx;
1047                 sde->descq_cnt = descq_cnt;
1048                 sde->desc_avail = sdma_descq_freecnt(sde);
1049                 sde->sdma_shift = ilog2(descq_cnt);
1050                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1051                 sde->descq_full_count = 0;
1052
1053                 /* Create a mask for all 3 chip interrupt sources */
1054                 sde->imask = (u64)1 << (0*TXE_NUM_SDMA_ENGINES + this_idx)
1055                         | (u64)1 << (1*TXE_NUM_SDMA_ENGINES + this_idx)
1056                         | (u64)1 << (2*TXE_NUM_SDMA_ENGINES + this_idx);
1057                 /* Create a mask specifically for sdma_idle */
1058                 sde->idle_mask =
1059                         (u64)1 << (2*TXE_NUM_SDMA_ENGINES + this_idx);
1060                 /* Create a mask specifically for sdma_progress */
1061                 sde->progress_mask =
1062                         (u64)1 << (TXE_NUM_SDMA_ENGINES + this_idx);
1063                 spin_lock_init(&sde->tail_lock);
1064                 seqlock_init(&sde->head_lock);
1065                 spin_lock_init(&sde->senddmactrl_lock);
1066                 spin_lock_init(&sde->flushlist_lock);
1067                 /* insure there is always a zero bit */
1068                 sde->ahg_bits = 0xfffffffe00000000ULL;
1069
1070                 sdma_set_state(sde, sdma_state_s00_hw_down);
1071
1072                 /* set up reference counting */
1073                 kref_init(&sde->state.kref);
1074                 init_completion(&sde->state.comp);
1075
1076                 INIT_LIST_HEAD(&sde->flushlist);
1077                 INIT_LIST_HEAD(&sde->dmawait);
1078
1079                 sde->tail_csr =
1080                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1081
1082                 if (idle_cnt)
1083                         dd->default_desc1 =
1084                                 SDMA_DESC1_HEAD_TO_HOST_FLAG;
1085                 else
1086                         dd->default_desc1 =
1087                                 SDMA_DESC1_INT_REQ_FLAG;
1088
1089                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1090                         (unsigned long)sde);
1091
1092                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1093                         (unsigned long)sde);
1094                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1095                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1096
1097                 sde->progress_check_head = 0;
1098
1099                 init_timer(&sde->err_progress_check_timer);
1100                 sde->err_progress_check_timer.function =
1101                                                 sdma_err_progress_check;
1102                 sde->err_progress_check_timer.data = (unsigned long)sde;
1103
1104                 sde->descq = dma_zalloc_coherent(
1105                         &dd->pcidev->dev,
1106                         descq_cnt * sizeof(u64[2]),
1107                         &sde->descq_phys,
1108                         GFP_KERNEL
1109                 );
1110                 if (!sde->descq)
1111                         goto bail;
1112                 sde->tx_ring =
1113                         kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1114                                 GFP_KERNEL);
1115                 if (!sde->tx_ring)
1116                         sde->tx_ring =
1117                                 vzalloc(
1118                                         sizeof(struct sdma_txreq *) *
1119                                         descq_cnt);
1120                 if (!sde->tx_ring)
1121                         goto bail;
1122         }
1123
1124         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1125         /* Allocate memory for DMA of head registers to memory */
1126         dd->sdma_heads_dma = dma_zalloc_coherent(
1127                 &dd->pcidev->dev,
1128                 dd->sdma_heads_size,
1129                 &dd->sdma_heads_phys,
1130                 GFP_KERNEL
1131         );
1132         if (!dd->sdma_heads_dma) {
1133                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1134                 goto bail;
1135         }
1136
1137         /* Allocate memory for pad */
1138         dd->sdma_pad_dma = dma_zalloc_coherent(
1139                 &dd->pcidev->dev,
1140                 sizeof(u32),
1141                 &dd->sdma_pad_phys,
1142                 GFP_KERNEL
1143         );
1144         if (!dd->sdma_pad_dma) {
1145                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1146                 goto bail;
1147         }
1148
1149         /* assign each engine to different cacheline and init registers */
1150         curr_head = (void *)dd->sdma_heads_dma;
1151         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1152                 unsigned long phys_offset;
1153
1154                 sde = &dd->per_sdma[this_idx];
1155
1156                 sde->head_dma = curr_head;
1157                 curr_head += L1_CACHE_BYTES;
1158                 phys_offset = (unsigned long)sde->head_dma -
1159                               (unsigned long)dd->sdma_heads_dma;
1160                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1161                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1162         }
1163         dd->flags |= HFI1_HAS_SEND_DMA;
1164         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1165         dd->num_sdma = num_engines;
1166         if (sdma_map_init(dd, port, ppd->vls_operational, NULL))
1167                 goto bail;
1168         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1169         return 0;
1170
1171 bail:
1172         sdma_clean(dd, num_engines);
1173         return -ENOMEM;
1174 }
1175
1176 /**
1177  * sdma_all_running() - called when the link goes up
1178  * @dd: hfi1_devdata
1179  *
1180  * This routine moves all engines to the running state.
1181  */
1182 void sdma_all_running(struct hfi1_devdata *dd)
1183 {
1184         struct sdma_engine *sde;
1185         unsigned int i;
1186
1187         /* move all engines to running */
1188         for (i = 0; i < dd->num_sdma; ++i) {
1189                 sde = &dd->per_sdma[i];
1190                 sdma_process_event(sde, sdma_event_e30_go_running);
1191         }
1192 }
1193
1194 /**
1195  * sdma_all_idle() - called when the link goes down
1196  * @dd: hfi1_devdata
1197  *
1198  * This routine moves all engines to the idle state.
1199  */
1200 void sdma_all_idle(struct hfi1_devdata *dd)
1201 {
1202         struct sdma_engine *sde;
1203         unsigned int i;
1204
1205         /* idle all engines */
1206         for (i = 0; i < dd->num_sdma; ++i) {
1207                 sde = &dd->per_sdma[i];
1208                 sdma_process_event(sde, sdma_event_e70_go_idle);
1209         }
1210 }
1211
1212 /**
1213  * sdma_start() - called to kick off state processing for all engines
1214  * @dd: hfi1_devdata
1215  *
1216  * This routine is for kicking off the state processing for all required
1217  * sdma engines.  Interrupts need to be working at this point.
1218  *
1219  */
1220 void sdma_start(struct hfi1_devdata *dd)
1221 {
1222         unsigned i;
1223         struct sdma_engine *sde;
1224
1225         /* kick off the engines state processing */
1226         for (i = 0; i < dd->num_sdma; ++i) {
1227                 sde = &dd->per_sdma[i];
1228                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1229         }
1230 }
1231
1232 /**
1233  * sdma_exit() - used when module is removed
1234  * @dd: hfi1_devdata
1235  */
1236 void sdma_exit(struct hfi1_devdata *dd)
1237 {
1238         unsigned this_idx;
1239         struct sdma_engine *sde;
1240
1241         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1242                         ++this_idx) {
1243
1244                 sde = &dd->per_sdma[this_idx];
1245                 if (!list_empty(&sde->dmawait))
1246                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1247                                 sde->this_idx);
1248                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1249
1250                 del_timer_sync(&sde->err_progress_check_timer);
1251
1252                 /*
1253                  * This waits for the state machine to exit so it is not
1254                  * necessary to kill the sdma_sw_clean_up_task to make sure
1255                  * it is not running.
1256                  */
1257                 sdma_finalput(&sde->state);
1258         }
1259         sdma_clean(dd, dd->num_sdma);
1260 }
1261
1262 /*
1263  * unmap the indicated descriptor
1264  */
1265 static inline void sdma_unmap_desc(
1266         struct hfi1_devdata *dd,
1267         struct sdma_desc *descp)
1268 {
1269         switch (sdma_mapping_type(descp)) {
1270         case SDMA_MAP_SINGLE:
1271                 dma_unmap_single(
1272                         &dd->pcidev->dev,
1273                         sdma_mapping_addr(descp),
1274                         sdma_mapping_len(descp),
1275                         DMA_TO_DEVICE);
1276                 break;
1277         case SDMA_MAP_PAGE:
1278                 dma_unmap_page(
1279                         &dd->pcidev->dev,
1280                         sdma_mapping_addr(descp),
1281                         sdma_mapping_len(descp),
1282                         DMA_TO_DEVICE);
1283                 break;
1284         }
1285 }
1286
1287 /*
1288  * return the mode as indicated by the first
1289  * descriptor in the tx.
1290  */
1291 static inline u8 ahg_mode(struct sdma_txreq *tx)
1292 {
1293         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1294                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1295 }
1296
1297 /**
1298  * sdma_txclean() - clean tx of mappings, descp *kmalloc's
1299  * @dd: hfi1_devdata for unmapping
1300  * @tx: tx request to clean
1301  *
1302  * This is used in the progress routine to clean the tx or
1303  * by the ULP to toss an in-process tx build.
1304  *
1305  * The code can be called multiple times without issue.
1306  *
1307  */
1308 void sdma_txclean(
1309         struct hfi1_devdata *dd,
1310         struct sdma_txreq *tx)
1311 {
1312         u16 i;
1313
1314         if (tx->num_desc) {
1315                 u8 skip = 0, mode = ahg_mode(tx);
1316
1317                 /* unmap first */
1318                 sdma_unmap_desc(dd, &tx->descp[0]);
1319                 /* determine number of AHG descriptors to skip */
1320                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1321                         skip = mode >> 1;
1322                 for (i = 1 + skip; i < tx->num_desc; i++)
1323                         sdma_unmap_desc(dd, &tx->descp[i]);
1324                 tx->num_desc = 0;
1325         }
1326         kfree(tx->coalesce_buf);
1327         tx->coalesce_buf = NULL;
1328         /* kmalloc'ed descp */
1329         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1330                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1331                 kfree(tx->descp);
1332         }
1333 }
1334
1335 static inline u16 sdma_gethead(struct sdma_engine *sde)
1336 {
1337         struct hfi1_devdata *dd = sde->dd;
1338         int use_dmahead;
1339         u16 hwhead;
1340
1341 #ifdef CONFIG_SDMA_VERBOSITY
1342         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1343                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1344 #endif
1345
1346 retry:
1347         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1348                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1349         hwhead = use_dmahead ?
1350                 (u16) le64_to_cpu(*sde->head_dma) :
1351                 (u16) read_sde_csr(sde, SD(HEAD));
1352
1353         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1354                 u16 cnt;
1355                 u16 swtail;
1356                 u16 swhead;
1357                 int sane;
1358
1359                 swhead = sde->descq_head & sde->sdma_mask;
1360                 /* this code is really bad for cache line trading */
1361                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1362                 cnt = sde->descq_cnt;
1363
1364                 if (swhead < swtail)
1365                         /* not wrapped */
1366                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1367                 else if (swhead > swtail)
1368                         /* wrapped around */
1369                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1370                                 (hwhead <= swtail);
1371                 else
1372                         /* empty */
1373                         sane = (hwhead == swhead);
1374
1375                 if (unlikely(!sane)) {
1376                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1377                                 sde->this_idx,
1378                                 use_dmahead ? "dma" : "kreg",
1379                                 hwhead, swhead, swtail, cnt);
1380                         if (use_dmahead) {
1381                                 /* try one more time, using csr */
1382                                 use_dmahead = 0;
1383                                 goto retry;
1384                         }
1385                         /* proceed as if no progress */
1386                         hwhead = swhead;
1387                 }
1388         }
1389         return hwhead;
1390 }
1391
1392 /*
1393  * This is called when there are send DMA descriptors that might be
1394  * available.
1395  *
1396  * This is called with head_lock held.
1397  */
1398 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
1399 {
1400         struct iowait *wait, *nw;
1401         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1402         unsigned i, n = 0, seq;
1403         struct sdma_txreq *stx;
1404         struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1405
1406 #ifdef CONFIG_SDMA_VERBOSITY
1407         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1408                    slashstrip(__FILE__), __LINE__, __func__);
1409         dd_dev_err(sde->dd, "avail: %u\n", avail);
1410 #endif
1411
1412         do {
1413                 seq = read_seqbegin(&dev->iowait_lock);
1414                 if (!list_empty(&sde->dmawait)) {
1415                         /* at least one item */
1416                         write_seqlock(&dev->iowait_lock);
1417                         /* Harvest waiters wanting DMA descriptors */
1418                         list_for_each_entry_safe(
1419                                         wait,
1420                                         nw,
1421                                         &sde->dmawait,
1422                                         list) {
1423                                 u16 num_desc = 0;
1424
1425                                 if (!wait->wakeup)
1426                                         continue;
1427                                 if (n == ARRAY_SIZE(waits))
1428                                         break;
1429                                 if (!list_empty(&wait->tx_head)) {
1430                                         stx = list_first_entry(
1431                                                 &wait->tx_head,
1432                                                 struct sdma_txreq,
1433                                                 list);
1434                                         num_desc = stx->num_desc;
1435                                 }
1436                                 if (num_desc > avail)
1437                                         break;
1438                                 avail -= num_desc;
1439                                 list_del_init(&wait->list);
1440                                 waits[n++] = wait;
1441                         }
1442                         write_sequnlock(&dev->iowait_lock);
1443                         break;
1444                 }
1445         } while (read_seqretry(&dev->iowait_lock, seq));
1446
1447         for (i = 0; i < n; i++)
1448                 waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1449 }
1450
1451 /* head_lock must be held */
1452 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1453 {
1454         struct sdma_txreq *txp = NULL;
1455         int progress = 0;
1456         u16 hwhead, swhead, swtail;
1457         int idle_check_done = 0;
1458
1459         hwhead = sdma_gethead(sde);
1460
1461         /* The reason for some of the complexity of this code is that
1462          * not all descriptors have corresponding txps.  So, we have to
1463          * be able to skip over descs until we wander into the range of
1464          * the next txp on the list.
1465          */
1466
1467 retry:
1468         txp = get_txhead(sde);
1469         swhead = sde->descq_head & sde->sdma_mask;
1470         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1471         while (swhead != hwhead) {
1472                 /* advance head, wrap if needed */
1473                 swhead = ++sde->descq_head & sde->sdma_mask;
1474
1475                 /* if now past this txp's descs, do the callback */
1476                 if (txp && txp->next_descq_idx == swhead) {
1477                         int drained = 0;
1478                         /* protect against complete modifying */
1479                         struct iowait *wait = txp->wait;
1480
1481                         /* remove from list */
1482                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1483                         if (wait)
1484                                 drained = atomic_dec_and_test(&wait->sdma_busy);
1485 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
1486                         trace_hfi1_sdma_out_sn(sde, txp->sn);
1487                         if (WARN_ON_ONCE(sde->head_sn != txp->sn))
1488                                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
1489                                         sde->head_sn, txp->sn);
1490                         sde->head_sn++;
1491 #endif
1492                         sdma_txclean(sde->dd, txp);
1493                         if (txp->complete)
1494                                 (*txp->complete)(
1495                                         txp,
1496                                         SDMA_TXREQ_S_OK,
1497                                         drained);
1498                         if (wait && drained)
1499                                 iowait_drain_wakeup(wait);
1500                         /* see if there is another txp */
1501                         txp = get_txhead(sde);
1502                 }
1503                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1504                 progress++;
1505         }
1506
1507         /*
1508          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1509          * to updates to the the dma_head location in host memory. The head
1510          * value read might not be fully up to date. If there are pending
1511          * descriptors and the SDMA idle interrupt fired then read from the
1512          * CSR SDMA head instead to get the latest value from the hardware.
1513          * The hardware SDMA head should be read at most once in this invocation
1514          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1515          */
1516         if ((status & sde->idle_mask) && !idle_check_done) {
1517                 swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1518                 if (swtail != hwhead) {
1519                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1520                         idle_check_done = 1;
1521                         goto retry;
1522                 }
1523         }
1524
1525         sde->last_status = status;
1526         if (progress)
1527                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1528 }
1529
1530 /*
1531  * sdma_engine_interrupt() - interrupt handler for engine
1532  * @sde: sdma engine
1533  * @status: sdma interrupt reason
1534  *
1535  * Status is a mask of the 3 possible interrupts for this engine.  It will
1536  * contain bits _only_ for this SDMA engine.  It will contain at least one
1537  * bit, it may contain more.
1538  */
1539 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1540 {
1541         trace_hfi1_sdma_engine_interrupt(sde, status);
1542         write_seqlock(&sde->head_lock);
1543         sdma_set_desc_cnt(sde, sde->descq_cnt / 2);
1544         sdma_make_progress(sde, status);
1545         write_sequnlock(&sde->head_lock);
1546 }
1547
1548 /**
1549  * sdma_engine_error() - error handler for engine
1550  * @sde: sdma engine
1551  * @status: sdma interrupt reason
1552  */
1553 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1554 {
1555         unsigned long flags;
1556
1557 #ifdef CONFIG_SDMA_VERBOSITY
1558         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1559                    sde->this_idx,
1560                    (unsigned long long)status,
1561                    sdma_state_names[sde->state.current_state]);
1562 #endif
1563         spin_lock_irqsave(&sde->tail_lock, flags);
1564         write_seqlock(&sde->head_lock);
1565         if (status & ALL_SDMA_ENG_HALT_ERRS)
1566                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1567         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1568                 dd_dev_err(sde->dd,
1569                         "SDMA (%u) engine error: 0x%llx state %s\n",
1570                         sde->this_idx,
1571                         (unsigned long long)status,
1572                         sdma_state_names[sde->state.current_state]);
1573                 dump_sdma_state(sde);
1574         }
1575         write_sequnlock(&sde->head_lock);
1576         spin_unlock_irqrestore(&sde->tail_lock, flags);
1577 }
1578
1579 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1580 {
1581         u64 set_senddmactrl = 0;
1582         u64 clr_senddmactrl = 0;
1583         unsigned long flags;
1584
1585 #ifdef CONFIG_SDMA_VERBOSITY
1586         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1587                    sde->this_idx,
1588                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1589                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1590                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1591                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1592 #endif
1593
1594         if (op & SDMA_SENDCTRL_OP_ENABLE)
1595                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1596         else
1597                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1598
1599         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1600                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1601         else
1602                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1603
1604         if (op & SDMA_SENDCTRL_OP_HALT)
1605                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1606         else
1607                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1608
1609         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1610
1611         sde->p_senddmactrl |= set_senddmactrl;
1612         sde->p_senddmactrl &= ~clr_senddmactrl;
1613
1614         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1615                 write_sde_csr(sde, SD(CTRL),
1616                         sde->p_senddmactrl |
1617                         SD(CTRL_SDMA_CLEANUP_SMASK));
1618         else
1619                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1620
1621         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1622
1623 #ifdef CONFIG_SDMA_VERBOSITY
1624         sdma_dumpstate(sde);
1625 #endif
1626 }
1627
1628 static void sdma_setlengen(struct sdma_engine *sde)
1629 {
1630 #ifdef CONFIG_SDMA_VERBOSITY
1631         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1632                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1633 #endif
1634
1635         /*
1636          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1637          * count to enable generation checking and load the internal
1638          * generation counter.
1639          */
1640         write_sde_csr(sde, SD(LEN_GEN),
1641                 (sde->descq_cnt/64) << SD(LEN_GEN_LENGTH_SHIFT)
1642         );
1643         write_sde_csr(sde, SD(LEN_GEN),
1644                 ((sde->descq_cnt/64) << SD(LEN_GEN_LENGTH_SHIFT))
1645                 | (4ULL << SD(LEN_GEN_GENERATION_SHIFT))
1646         );
1647 }
1648
1649 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1650 {
1651         /* Commit writes to memory and advance the tail on the chip */
1652         smp_wmb(); /* see get_txhead() */
1653         writeq(tail, sde->tail_csr);
1654 }
1655
1656 /*
1657  * This is called when changing to state s10_hw_start_up_halt_wait as
1658  * a result of send buffer errors or send DMA descriptor errors.
1659  */
1660 static void sdma_hw_start_up(struct sdma_engine *sde)
1661 {
1662         u64 reg;
1663
1664 #ifdef CONFIG_SDMA_VERBOSITY
1665         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1666                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1667 #endif
1668
1669         sdma_setlengen(sde);
1670         sdma_update_tail(sde, 0); /* Set SendDmaTail */
1671         *sde->head_dma = 0;
1672
1673         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1674               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1675         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1676 }
1677
1678 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
1679 (r &= ~SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1680
1681 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
1682 (r |= SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1683 /*
1684  * set_sdma_integrity
1685  *
1686  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
1687  */
1688 static void set_sdma_integrity(struct sdma_engine *sde)
1689 {
1690         struct hfi1_devdata *dd = sde->dd;
1691         u64 reg;
1692
1693         if (unlikely(HFI1_CAP_IS_KSET(NO_INTEGRITY)))
1694                 return;
1695
1696         reg = hfi1_pkt_base_sdma_integrity(dd);
1697
1698         if (HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
1699                 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
1700         else
1701                 SET_STATIC_RATE_CONTROL_SMASK(reg);
1702
1703         write_sde_csr(sde, SD(CHECK_ENABLE), reg);
1704 }
1705
1706
1707 static void init_sdma_regs(
1708         struct sdma_engine *sde,
1709         u32 credits,
1710         uint idle_cnt)
1711 {
1712         u8 opval, opmask;
1713 #ifdef CONFIG_SDMA_VERBOSITY
1714         struct hfi1_devdata *dd = sde->dd;
1715
1716         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1717                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1718 #endif
1719
1720         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
1721         sdma_setlengen(sde);
1722         sdma_update_tail(sde, 0); /* Set SendDmaTail */
1723         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
1724         write_sde_csr(sde, SD(DESC_CNT), 0);
1725         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
1726         write_sde_csr(sde, SD(MEMORY),
1727                 ((u64)credits <<
1728                         SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
1729                 ((u64)(credits * sde->this_idx) <<
1730                         SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
1731         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
1732         set_sdma_integrity(sde);
1733         opmask = OPCODE_CHECK_MASK_DISABLED;
1734         opval = OPCODE_CHECK_VAL_DISABLED;
1735         write_sde_csr(sde, SD(CHECK_OPCODE),
1736                 (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
1737                 (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
1738 }
1739
1740 #ifdef CONFIG_SDMA_VERBOSITY
1741
1742 #define sdma_dumpstate_helper0(reg) do { \
1743                 csr = read_csr(sde->dd, reg); \
1744                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
1745         } while (0)
1746
1747 #define sdma_dumpstate_helper(reg) do { \
1748                 csr = read_sde_csr(sde, reg); \
1749                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
1750                         #reg, sde->this_idx, csr); \
1751         } while (0)
1752
1753 #define sdma_dumpstate_helper2(reg) do { \
1754                 csr = read_csr(sde->dd, reg + (8 * i)); \
1755                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
1756                                 #reg, i, csr); \
1757         } while (0)
1758
1759 void sdma_dumpstate(struct sdma_engine *sde)
1760 {
1761         u64 csr;
1762         unsigned i;
1763
1764         sdma_dumpstate_helper(SD(CTRL));
1765         sdma_dumpstate_helper(SD(STATUS));
1766         sdma_dumpstate_helper0(SD(ERR_STATUS));
1767         sdma_dumpstate_helper0(SD(ERR_MASK));
1768         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
1769         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
1770
1771         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
1772                 sdma_dumpstate_helper2(CCE_INT_STATUS);
1773                 sdma_dumpstate_helper2(CCE_INT_MASK);
1774                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
1775         }
1776
1777         sdma_dumpstate_helper(SD(TAIL));
1778         sdma_dumpstate_helper(SD(HEAD));
1779         sdma_dumpstate_helper(SD(PRIORITY_THLD));
1780         sdma_dumpstate_helper(SD(IDLE_CNT));
1781         sdma_dumpstate_helper(SD(RELOAD_CNT));
1782         sdma_dumpstate_helper(SD(DESC_CNT));
1783         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
1784         sdma_dumpstate_helper(SD(MEMORY));
1785         sdma_dumpstate_helper0(SD(ENGINES));
1786         sdma_dumpstate_helper0(SD(MEM_SIZE));
1787         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
1788         sdma_dumpstate_helper(SD(BASE_ADDR));
1789         sdma_dumpstate_helper(SD(LEN_GEN));
1790         sdma_dumpstate_helper(SD(HEAD_ADDR));
1791         sdma_dumpstate_helper(SD(CHECK_ENABLE));
1792         sdma_dumpstate_helper(SD(CHECK_VL));
1793         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
1794         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
1795         sdma_dumpstate_helper(SD(CHECK_SLID));
1796         sdma_dumpstate_helper(SD(CHECK_OPCODE));
1797 }
1798 #endif
1799
1800 static void dump_sdma_state(struct sdma_engine *sde)
1801 {
1802         struct hw_sdma_desc *descq;
1803         struct hw_sdma_desc *descqp;
1804         u64 desc[2];
1805         u64 addr;
1806         u8 gen;
1807         u16 len;
1808         u16 head, tail, cnt;
1809
1810         head = sde->descq_head & sde->sdma_mask;
1811         tail = sde->descq_tail & sde->sdma_mask;
1812         cnt = sdma_descq_freecnt(sde);
1813         descq = sde->descq;
1814
1815         dd_dev_err(sde->dd,
1816                 "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
1817                 sde->this_idx,
1818                 head,
1819                 tail,
1820                 cnt,
1821                 !list_empty(&sde->flushlist));
1822
1823         /* print info for each entry in the descriptor queue */
1824         while (head != tail) {
1825                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1826
1827                 descqp = &sde->descq[head];
1828                 desc[0] = le64_to_cpu(descqp->qw[0]);
1829                 desc[1] = le64_to_cpu(descqp->qw[1]);
1830                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1831                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1832                                 'H' : '-';
1833                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1834                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1835                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1836                         & SDMA_DESC0_PHY_ADDR_MASK;
1837                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1838                         & SDMA_DESC1_GENERATION_MASK;
1839                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1840                         & SDMA_DESC0_BYTE_COUNT_MASK;
1841                 dd_dev_err(sde->dd,
1842                         "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1843                          head, flags, addr, gen, len);
1844                 dd_dev_err(sde->dd,
1845                         "\tdesc0:0x%016llx desc1 0x%016llx\n",
1846                          desc[0], desc[1]);
1847                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1848                         dd_dev_err(sde->dd,
1849                                 "\taidx: %u amode: %u alen: %u\n",
1850                                 (u8)((desc[1] & SDMA_DESC1_HEADER_INDEX_SMASK)
1851                                         >> SDMA_DESC1_HEADER_INDEX_SHIFT),
1852                                 (u8)((desc[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1853                                         >> SDMA_DESC1_HEADER_MODE_SHIFT),
1854                                 (u8)((desc[1] & SDMA_DESC1_HEADER_DWS_SMASK)
1855                                         >> SDMA_DESC1_HEADER_DWS_SHIFT));
1856                 head++;
1857                 head &= sde->sdma_mask;
1858         }
1859 }
1860
1861 #define SDE_FMT \
1862         "SDE %u STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
1863 /**
1864  * sdma_seqfile_dump_sde() - debugfs dump of sde
1865  * @s: seq file
1866  * @sde: send dma engine to dump
1867  *
1868  * This routine dumps the sde to the indicated seq file.
1869  */
1870 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
1871 {
1872         u16 head, tail;
1873         struct hw_sdma_desc *descqp;
1874         u64 desc[2];
1875         u64 addr;
1876         u8 gen;
1877         u16 len;
1878
1879         head = sde->descq_head & sde->sdma_mask;
1880         tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1881         seq_printf(s, SDE_FMT, sde->this_idx,
1882                 sdma_state_name(sde->state.current_state),
1883                 (unsigned long long)read_sde_csr(sde, SD(CTRL)),
1884                 (unsigned long long)read_sde_csr(sde, SD(STATUS)),
1885                 (unsigned long long)read_sde_csr(sde,
1886                         SD(ENG_ERR_STATUS)),
1887                 (unsigned long long)read_sde_csr(sde, SD(TAIL)),
1888                 tail,
1889                 (unsigned long long)read_sde_csr(sde, SD(HEAD)),
1890                 head,
1891                 (unsigned long long)le64_to_cpu(*sde->head_dma),
1892                 (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
1893                 (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
1894                 (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
1895                 (unsigned long long)sde->last_status,
1896                 (unsigned long long)sde->ahg_bits,
1897                 sde->tx_tail,
1898                 sde->tx_head,
1899                 sde->descq_tail,
1900                 sde->descq_head,
1901                    !list_empty(&sde->flushlist),
1902                 sde->descq_full_count,
1903                 (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
1904
1905         /* print info for each entry in the descriptor queue */
1906         while (head != tail) {
1907                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1908
1909                 descqp = &sde->descq[head];
1910                 desc[0] = le64_to_cpu(descqp->qw[0]);
1911                 desc[1] = le64_to_cpu(descqp->qw[1]);
1912                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1913                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1914                                 'H' : '-';
1915                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1916                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1917                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1918                         & SDMA_DESC0_PHY_ADDR_MASK;
1919                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1920                         & SDMA_DESC1_GENERATION_MASK;
1921                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1922                         & SDMA_DESC0_BYTE_COUNT_MASK;
1923                 seq_printf(s,
1924                         "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1925                         head, flags, addr, gen, len);
1926                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1927                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
1928                                 (u8)((desc[1] & SDMA_DESC1_HEADER_INDEX_SMASK)
1929                                         >> SDMA_DESC1_HEADER_INDEX_SHIFT),
1930                                 (u8)((desc[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1931                                         >> SDMA_DESC1_HEADER_MODE_SHIFT));
1932                 head = (head + 1) & sde->sdma_mask;
1933         }
1934 }
1935
1936 /*
1937  * add the generation number into
1938  * the qw1 and return
1939  */
1940 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
1941 {
1942         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
1943
1944         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
1945         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
1946                         << SDMA_DESC1_GENERATION_SHIFT;
1947         return qw1;
1948 }
1949
1950 /*
1951  * This routine submits the indicated tx
1952  *
1953  * Space has already been guaranteed and
1954  * tail side of ring is locked.
1955  *
1956  * The hardware tail update is done
1957  * in the caller and that is facilitated
1958  * by returning the new tail.
1959  *
1960  * There is special case logic for ahg
1961  * to not add the generation number for
1962  * up to 2 descriptors that follow the
1963  * first descriptor.
1964  *
1965  */
1966 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
1967 {
1968         int i;
1969         u16 tail;
1970         struct sdma_desc *descp = tx->descp;
1971         u8 skip = 0, mode = ahg_mode(tx);
1972
1973         tail = sde->descq_tail & sde->sdma_mask;
1974         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1975         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
1976         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
1977                                    tail, &sde->descq[tail]);
1978         tail = ++sde->descq_tail & sde->sdma_mask;
1979         descp++;
1980         if (mode > SDMA_AHG_APPLY_UPDATE1)
1981                 skip = mode >> 1;
1982         for (i = 1; i < tx->num_desc; i++, descp++) {
1983                 u64 qw1;
1984
1985                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1986                 if (skip) {
1987                         /* edits don't have generation */
1988                         qw1 = descp->qw[1];
1989                         skip--;
1990                 } else {
1991                         /* replace generation with real one for non-edits */
1992                         qw1 = add_gen(sde, descp->qw[1]);
1993                 }
1994                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
1995                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
1996                                            tail, &sde->descq[tail]);
1997                 tail = ++sde->descq_tail & sde->sdma_mask;
1998         }
1999         tx->next_descq_idx = tail;
2000 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2001         tx->sn = sde->tail_sn++;
2002         trace_hfi1_sdma_in_sn(sde, tx->sn);
2003         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2004 #endif
2005         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2006         sde->desc_avail -= tx->num_desc;
2007         return tail;
2008 }
2009
2010 /*
2011  * Check for progress
2012  */
2013 static int sdma_check_progress(
2014         struct sdma_engine *sde,
2015         struct iowait *wait,
2016         struct sdma_txreq *tx)
2017 {
2018         int ret;
2019
2020         sde->desc_avail = sdma_descq_freecnt(sde);
2021         if (tx->num_desc <= sde->desc_avail)
2022                 return -EAGAIN;
2023         /* pulse the head_lock */
2024         if (wait && wait->sleep) {
2025                 unsigned seq;
2026
2027                 seq = raw_seqcount_begin(
2028                         (const seqcount_t *)&sde->head_lock.seqcount);
2029                 ret = wait->sleep(sde, wait, tx, seq);
2030                 if (ret == -EAGAIN)
2031                         sde->desc_avail = sdma_descq_freecnt(sde);
2032         } else
2033                 ret = -EBUSY;
2034         return ret;
2035 }
2036
2037 /**
2038  * sdma_send_txreq() - submit a tx req to ring
2039  * @sde: sdma engine to use
2040  * @wait: wait structure to use when full (may be NULL)
2041  * @tx: sdma_txreq to submit
2042  *
2043  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2044  * the packet will be queued to the list in wait.
2045  *
2046  * Return:
2047  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2048  * ring (wait == NULL)
2049  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2050  */
2051 int sdma_send_txreq(struct sdma_engine *sde,
2052                     struct iowait *wait,
2053                     struct sdma_txreq *tx)
2054 {
2055         int ret = 0;
2056         u16 tail;
2057         unsigned long flags;
2058
2059         /* user should have supplied entire packet */
2060         if (unlikely(tx->tlen))
2061                 return -EINVAL;
2062         tx->wait = wait;
2063         spin_lock_irqsave(&sde->tail_lock, flags);
2064 retry:
2065         if (unlikely(!__sdma_running(sde)))
2066                 goto unlock_noconn;
2067         if (unlikely(tx->num_desc > sde->desc_avail))
2068                 goto nodesc;
2069         tail = submit_tx(sde, tx);
2070         if (wait)
2071                 atomic_inc(&wait->sdma_busy);
2072         sdma_update_tail(sde, tail);
2073 unlock:
2074         spin_unlock_irqrestore(&sde->tail_lock, flags);
2075         return ret;
2076 unlock_noconn:
2077         if (wait)
2078                 atomic_inc(&wait->sdma_busy);
2079         tx->next_descq_idx = 0;
2080 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2081         tx->sn = sde->tail_sn++;
2082         trace_hfi1_sdma_in_sn(sde, tx->sn);
2083 #endif
2084         spin_lock(&sde->flushlist_lock);
2085         list_add_tail(&tx->list, &sde->flushlist);
2086         spin_unlock(&sde->flushlist_lock);
2087         if (wait) {
2088                 wait->tx_count++;
2089                 wait->count += tx->num_desc;
2090         }
2091         schedule_work(&sde->flush_worker);
2092         ret = -ECOMM;
2093         goto unlock;
2094 nodesc:
2095         ret = sdma_check_progress(sde, wait, tx);
2096         if (ret == -EAGAIN) {
2097                 ret = 0;
2098                 goto retry;
2099         }
2100         sde->descq_full_count++;
2101         goto unlock;
2102 }
2103
2104 /**
2105  * sdma_send_txlist() - submit a list of tx req to ring
2106  * @sde: sdma engine to use
2107  * @wait: wait structure to use when full (may be NULL)
2108  * @tx_list: list of sdma_txreqs to submit
2109  *
2110  * The call submits the list into the ring.
2111  *
2112  * If the iowait structure is non-NULL and not equal to the iowait list
2113  * the unprocessed part of the list  will be appended to the list in wait.
2114  *
2115  * In all cases, the tx_list will be updated so the head of the tx_list is
2116  * the list of descriptors that have yet to be transmitted.
2117  *
2118  * The intent of this call is to provide a more efficient
2119  * way of submitting multiple packets to SDMA while holding the tail
2120  * side locking.
2121  *
2122  * Return:
2123  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring
2124  * (wait == NULL)
2125  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2126  */
2127 int sdma_send_txlist(struct sdma_engine *sde,
2128                     struct iowait *wait,
2129                     struct list_head *tx_list)
2130 {
2131         struct sdma_txreq *tx, *tx_next;
2132         int ret = 0;
2133         unsigned long flags;
2134         u16 tail = INVALID_TAIL;
2135         int count = 0;
2136
2137         spin_lock_irqsave(&sde->tail_lock, flags);
2138 retry:
2139         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2140                 tx->wait = wait;
2141                 if (unlikely(!__sdma_running(sde)))
2142                         goto unlock_noconn;
2143                 if (unlikely(tx->num_desc > sde->desc_avail))
2144                         goto nodesc;
2145                 if (unlikely(tx->tlen)) {
2146                         ret = -EINVAL;
2147                         goto update_tail;
2148                 }
2149                 list_del_init(&tx->list);
2150                 tail = submit_tx(sde, tx);
2151                 count++;
2152                 if (tail != INVALID_TAIL &&
2153                     (count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2154                         sdma_update_tail(sde, tail);
2155                         tail = INVALID_TAIL;
2156                 }
2157         }
2158 update_tail:
2159         if (wait)
2160                 atomic_add(count, &wait->sdma_busy);
2161         if (tail != INVALID_TAIL)
2162                 sdma_update_tail(sde, tail);
2163         spin_unlock_irqrestore(&sde->tail_lock, flags);
2164         return ret;
2165 unlock_noconn:
2166         spin_lock(&sde->flushlist_lock);
2167         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2168                 tx->wait = wait;
2169                 list_del_init(&tx->list);
2170                 if (wait)
2171                         atomic_inc(&wait->sdma_busy);
2172                 tx->next_descq_idx = 0;
2173 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2174                 tx->sn = sde->tail_sn++;
2175                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2176 #endif
2177                 list_add_tail(&tx->list, &sde->flushlist);
2178                 if (wait) {
2179                         wait->tx_count++;
2180                         wait->count += tx->num_desc;
2181                 }
2182         }
2183         spin_unlock(&sde->flushlist_lock);
2184         schedule_work(&sde->flush_worker);
2185         ret = -ECOMM;
2186         goto update_tail;
2187 nodesc:
2188         ret = sdma_check_progress(sde, wait, tx);
2189         if (ret == -EAGAIN) {
2190                 ret = 0;
2191                 goto retry;
2192         }
2193         sde->descq_full_count++;
2194         goto update_tail;
2195 }
2196
2197 static void sdma_process_event(struct sdma_engine *sde,
2198         enum sdma_events event)
2199 {
2200         unsigned long flags;
2201
2202         spin_lock_irqsave(&sde->tail_lock, flags);
2203         write_seqlock(&sde->head_lock);
2204
2205         __sdma_process_event(sde, event);
2206
2207         if (sde->state.current_state == sdma_state_s99_running)
2208                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2209
2210         write_sequnlock(&sde->head_lock);
2211         spin_unlock_irqrestore(&sde->tail_lock, flags);
2212 }
2213
2214 static void __sdma_process_event(struct sdma_engine *sde,
2215         enum sdma_events event)
2216 {
2217         struct sdma_state *ss = &sde->state;
2218         int need_progress = 0;
2219
2220         /* CONFIG SDMA temporary */
2221 #ifdef CONFIG_SDMA_VERBOSITY
2222         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2223                    sdma_state_names[ss->current_state],
2224                    sdma_event_names[event]);
2225 #endif
2226
2227         switch (ss->current_state) {
2228         case sdma_state_s00_hw_down:
2229                 switch (event) {
2230                 case sdma_event_e00_go_hw_down:
2231                         break;
2232                 case sdma_event_e30_go_running:
2233                         /*
2234                          * If down, but running requested (usually result
2235                          * of link up, then we need to start up.
2236                          * This can happen when hw down is requested while
2237                          * bringing the link up with traffic active on
2238                          * 7220, e.g. */
2239                         ss->go_s99_running = 1;
2240                         /* fall through and start dma engine */
2241                 case sdma_event_e10_go_hw_start:
2242                         /* This reference means the state machine is started */
2243                         sdma_get(&sde->state);
2244                         sdma_set_state(sde,
2245                                 sdma_state_s10_hw_start_up_halt_wait);
2246                         break;
2247                 case sdma_event_e15_hw_halt_done:
2248                         break;
2249                 case sdma_event_e25_hw_clean_up_done:
2250                         break;
2251                 case sdma_event_e40_sw_cleaned:
2252                         sdma_sw_tear_down(sde);
2253                         break;
2254                 case sdma_event_e50_hw_cleaned:
2255                         break;
2256                 case sdma_event_e60_hw_halted:
2257                         break;
2258                 case sdma_event_e70_go_idle:
2259                         break;
2260                 case sdma_event_e80_hw_freeze:
2261                         break;
2262                 case sdma_event_e81_hw_frozen:
2263                         break;
2264                 case sdma_event_e82_hw_unfreeze:
2265                         break;
2266                 case sdma_event_e85_link_down:
2267                         break;
2268                 case sdma_event_e90_sw_halted:
2269                         break;
2270                 }
2271                 break;
2272
2273         case sdma_state_s10_hw_start_up_halt_wait:
2274                 switch (event) {
2275                 case sdma_event_e00_go_hw_down:
2276                         sdma_set_state(sde, sdma_state_s00_hw_down);
2277                         sdma_sw_tear_down(sde);
2278                         break;
2279                 case sdma_event_e10_go_hw_start:
2280                         break;
2281                 case sdma_event_e15_hw_halt_done:
2282                         sdma_set_state(sde,
2283                                 sdma_state_s15_hw_start_up_clean_wait);
2284                         sdma_start_hw_clean_up(sde);
2285                         break;
2286                 case sdma_event_e25_hw_clean_up_done:
2287                         break;
2288                 case sdma_event_e30_go_running:
2289                         ss->go_s99_running = 1;
2290                         break;
2291                 case sdma_event_e40_sw_cleaned:
2292                         break;
2293                 case sdma_event_e50_hw_cleaned:
2294                         break;
2295                 case sdma_event_e60_hw_halted:
2296                         sdma_start_err_halt_wait(sde);
2297                         break;
2298                 case sdma_event_e70_go_idle:
2299                         ss->go_s99_running = 0;
2300                         break;
2301                 case sdma_event_e80_hw_freeze:
2302                         break;
2303                 case sdma_event_e81_hw_frozen:
2304                         break;
2305                 case sdma_event_e82_hw_unfreeze:
2306                         break;
2307                 case sdma_event_e85_link_down:
2308                         break;
2309                 case sdma_event_e90_sw_halted:
2310                         break;
2311                 }
2312                 break;
2313
2314         case sdma_state_s15_hw_start_up_clean_wait:
2315                 switch (event) {
2316                 case sdma_event_e00_go_hw_down:
2317                         sdma_set_state(sde, sdma_state_s00_hw_down);
2318                         sdma_sw_tear_down(sde);
2319                         break;
2320                 case sdma_event_e10_go_hw_start:
2321                         break;
2322                 case sdma_event_e15_hw_halt_done:
2323                         break;
2324                 case sdma_event_e25_hw_clean_up_done:
2325                         sdma_hw_start_up(sde);
2326                         sdma_set_state(sde, ss->go_s99_running ?
2327                                        sdma_state_s99_running :
2328                                        sdma_state_s20_idle);
2329                         break;
2330                 case sdma_event_e30_go_running:
2331                         ss->go_s99_running = 1;
2332                         break;
2333                 case sdma_event_e40_sw_cleaned:
2334                         break;
2335                 case sdma_event_e50_hw_cleaned:
2336                         break;
2337                 case sdma_event_e60_hw_halted:
2338                         break;
2339                 case sdma_event_e70_go_idle:
2340                         ss->go_s99_running = 0;
2341                         break;
2342                 case sdma_event_e80_hw_freeze:
2343                         break;
2344                 case sdma_event_e81_hw_frozen:
2345                         break;
2346                 case sdma_event_e82_hw_unfreeze:
2347                         break;
2348                 case sdma_event_e85_link_down:
2349                         break;
2350                 case sdma_event_e90_sw_halted:
2351                         break;
2352                 }
2353                 break;
2354
2355         case sdma_state_s20_idle:
2356                 switch (event) {
2357                 case sdma_event_e00_go_hw_down:
2358                         sdma_set_state(sde, sdma_state_s00_hw_down);
2359                         sdma_sw_tear_down(sde);
2360                         break;
2361                 case sdma_event_e10_go_hw_start:
2362                         break;
2363                 case sdma_event_e15_hw_halt_done:
2364                         break;
2365                 case sdma_event_e25_hw_clean_up_done:
2366                         break;
2367                 case sdma_event_e30_go_running:
2368                         sdma_set_state(sde, sdma_state_s99_running);
2369                         ss->go_s99_running = 1;
2370                         break;
2371                 case sdma_event_e40_sw_cleaned:
2372                         break;
2373                 case sdma_event_e50_hw_cleaned:
2374                         break;
2375                 case sdma_event_e60_hw_halted:
2376                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2377                         sdma_start_err_halt_wait(sde);
2378                         break;
2379                 case sdma_event_e70_go_idle:
2380                         break;
2381                 case sdma_event_e85_link_down:
2382                         /* fall through */
2383                 case sdma_event_e80_hw_freeze:
2384                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2385                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2386                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2387                         break;
2388                 case sdma_event_e81_hw_frozen:
2389                         break;
2390                 case sdma_event_e82_hw_unfreeze:
2391                         break;
2392                 case sdma_event_e90_sw_halted:
2393                         break;
2394                 }
2395                 break;
2396
2397         case sdma_state_s30_sw_clean_up_wait:
2398                 switch (event) {
2399                 case sdma_event_e00_go_hw_down:
2400                         sdma_set_state(sde, sdma_state_s00_hw_down);
2401                         break;
2402                 case sdma_event_e10_go_hw_start:
2403                         break;
2404                 case sdma_event_e15_hw_halt_done:
2405                         break;
2406                 case sdma_event_e25_hw_clean_up_done:
2407                         break;
2408                 case sdma_event_e30_go_running:
2409                         ss->go_s99_running = 1;
2410                         break;
2411                 case sdma_event_e40_sw_cleaned:
2412                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2413                         sdma_start_hw_clean_up(sde);
2414                         break;
2415                 case sdma_event_e50_hw_cleaned:
2416                         break;
2417                 case sdma_event_e60_hw_halted:
2418                         break;
2419                 case sdma_event_e70_go_idle:
2420                         ss->go_s99_running = 0;
2421                         break;
2422                 case sdma_event_e80_hw_freeze:
2423                         break;
2424                 case sdma_event_e81_hw_frozen:
2425                         break;
2426                 case sdma_event_e82_hw_unfreeze:
2427                         break;
2428                 case sdma_event_e85_link_down:
2429                         ss->go_s99_running = 0;
2430                         break;
2431                 case sdma_event_e90_sw_halted:
2432                         break;
2433                 }
2434                 break;
2435
2436         case sdma_state_s40_hw_clean_up_wait:
2437                 switch (event) {
2438                 case sdma_event_e00_go_hw_down:
2439                         sdma_set_state(sde, sdma_state_s00_hw_down);
2440                         sdma_start_sw_clean_up(sde);
2441                         break;
2442                 case sdma_event_e10_go_hw_start:
2443                         break;
2444                 case sdma_event_e15_hw_halt_done:
2445                         break;
2446                 case sdma_event_e25_hw_clean_up_done:
2447                         sdma_hw_start_up(sde);
2448                         sdma_set_state(sde, ss->go_s99_running ?
2449                                        sdma_state_s99_running :
2450                                        sdma_state_s20_idle);
2451                         break;
2452                 case sdma_event_e30_go_running:
2453                         ss->go_s99_running = 1;
2454                         break;
2455                 case sdma_event_e40_sw_cleaned:
2456                         break;
2457                 case sdma_event_e50_hw_cleaned:
2458                         break;
2459                 case sdma_event_e60_hw_halted:
2460                         break;
2461                 case sdma_event_e70_go_idle:
2462                         ss->go_s99_running = 0;
2463                         break;
2464                 case sdma_event_e80_hw_freeze:
2465                         break;
2466                 case sdma_event_e81_hw_frozen:
2467                         break;
2468                 case sdma_event_e82_hw_unfreeze:
2469                         break;
2470                 case sdma_event_e85_link_down:
2471                         ss->go_s99_running = 0;
2472                         break;
2473                 case sdma_event_e90_sw_halted:
2474                         break;
2475                 }
2476                 break;
2477
2478         case sdma_state_s50_hw_halt_wait:
2479                 switch (event) {
2480                 case sdma_event_e00_go_hw_down:
2481                         sdma_set_state(sde, sdma_state_s00_hw_down);
2482                         sdma_start_sw_clean_up(sde);
2483                         break;
2484                 case sdma_event_e10_go_hw_start:
2485                         break;
2486                 case sdma_event_e15_hw_halt_done:
2487                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2488                         sdma_start_sw_clean_up(sde);
2489                         break;
2490                 case sdma_event_e25_hw_clean_up_done:
2491                         break;
2492                 case sdma_event_e30_go_running:
2493                         ss->go_s99_running = 1;
2494                         break;
2495                 case sdma_event_e40_sw_cleaned:
2496                         break;
2497                 case sdma_event_e50_hw_cleaned:
2498                         break;
2499                 case sdma_event_e60_hw_halted:
2500                         sdma_start_err_halt_wait(sde);
2501                         break;
2502                 case sdma_event_e70_go_idle:
2503                         ss->go_s99_running = 0;
2504                         break;
2505                 case sdma_event_e80_hw_freeze:
2506                         break;
2507                 case sdma_event_e81_hw_frozen:
2508                         break;
2509                 case sdma_event_e82_hw_unfreeze:
2510                         break;
2511                 case sdma_event_e85_link_down:
2512                         ss->go_s99_running = 0;
2513                         break;
2514                 case sdma_event_e90_sw_halted:
2515                         break;
2516                 }
2517                 break;
2518
2519         case sdma_state_s60_idle_halt_wait:
2520                 switch (event) {
2521                 case sdma_event_e00_go_hw_down:
2522                         sdma_set_state(sde, sdma_state_s00_hw_down);
2523                         sdma_start_sw_clean_up(sde);
2524                         break;
2525                 case sdma_event_e10_go_hw_start:
2526                         break;
2527                 case sdma_event_e15_hw_halt_done:
2528                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2529                         sdma_start_sw_clean_up(sde);
2530                         break;
2531                 case sdma_event_e25_hw_clean_up_done:
2532                         break;
2533                 case sdma_event_e30_go_running:
2534                         ss->go_s99_running = 1;
2535                         break;
2536                 case sdma_event_e40_sw_cleaned:
2537                         break;
2538                 case sdma_event_e50_hw_cleaned:
2539                         break;
2540                 case sdma_event_e60_hw_halted:
2541                         sdma_start_err_halt_wait(sde);
2542                         break;
2543                 case sdma_event_e70_go_idle:
2544                         ss->go_s99_running = 0;
2545                         break;
2546                 case sdma_event_e80_hw_freeze:
2547                         break;
2548                 case sdma_event_e81_hw_frozen:
2549                         break;
2550                 case sdma_event_e82_hw_unfreeze:
2551                         break;
2552                 case sdma_event_e85_link_down:
2553                         break;
2554                 case sdma_event_e90_sw_halted:
2555                         break;
2556                 }
2557                 break;
2558
2559         case sdma_state_s80_hw_freeze:
2560                 switch (event) {
2561                 case sdma_event_e00_go_hw_down:
2562                         sdma_set_state(sde, sdma_state_s00_hw_down);
2563                         sdma_start_sw_clean_up(sde);
2564                         break;
2565                 case sdma_event_e10_go_hw_start:
2566                         break;
2567                 case sdma_event_e15_hw_halt_done:
2568                         break;
2569                 case sdma_event_e25_hw_clean_up_done:
2570                         break;
2571                 case sdma_event_e30_go_running:
2572                         ss->go_s99_running = 1;
2573                         break;
2574                 case sdma_event_e40_sw_cleaned:
2575                         break;
2576                 case sdma_event_e50_hw_cleaned:
2577                         break;
2578                 case sdma_event_e60_hw_halted:
2579                         break;
2580                 case sdma_event_e70_go_idle:
2581                         ss->go_s99_running = 0;
2582                         break;
2583                 case sdma_event_e80_hw_freeze:
2584                         break;
2585                 case sdma_event_e81_hw_frozen:
2586                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2587                         sdma_start_sw_clean_up(sde);
2588                         break;
2589                 case sdma_event_e82_hw_unfreeze:
2590                         break;
2591                 case sdma_event_e85_link_down:
2592                         break;
2593                 case sdma_event_e90_sw_halted:
2594                         break;
2595                 }
2596                 break;
2597
2598         case sdma_state_s82_freeze_sw_clean:
2599                 switch (event) {
2600                 case sdma_event_e00_go_hw_down:
2601                         sdma_set_state(sde, sdma_state_s00_hw_down);
2602                         sdma_start_sw_clean_up(sde);
2603                         break;
2604                 case sdma_event_e10_go_hw_start:
2605                         break;
2606                 case sdma_event_e15_hw_halt_done:
2607                         break;
2608                 case sdma_event_e25_hw_clean_up_done:
2609                         break;
2610                 case sdma_event_e30_go_running:
2611                         ss->go_s99_running = 1;
2612                         break;
2613                 case sdma_event_e40_sw_cleaned:
2614                         /* notify caller this engine is done cleaning */
2615                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2616                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2617                         break;
2618                 case sdma_event_e50_hw_cleaned:
2619                         break;
2620                 case sdma_event_e60_hw_halted:
2621                         break;
2622                 case sdma_event_e70_go_idle:
2623                         ss->go_s99_running = 0;
2624                         break;
2625                 case sdma_event_e80_hw_freeze:
2626                         break;
2627                 case sdma_event_e81_hw_frozen:
2628                         break;
2629                 case sdma_event_e82_hw_unfreeze:
2630                         sdma_hw_start_up(sde);
2631                         sdma_set_state(sde, ss->go_s99_running ?
2632                                        sdma_state_s99_running :
2633                                        sdma_state_s20_idle);
2634                         break;
2635                 case sdma_event_e85_link_down:
2636                         break;
2637                 case sdma_event_e90_sw_halted:
2638                         break;
2639                 }
2640                 break;
2641
2642         case sdma_state_s99_running:
2643                 switch (event) {
2644                 case sdma_event_e00_go_hw_down:
2645                         sdma_set_state(sde, sdma_state_s00_hw_down);
2646                         sdma_start_sw_clean_up(sde);
2647                         break;
2648                 case sdma_event_e10_go_hw_start:
2649                         break;
2650                 case sdma_event_e15_hw_halt_done:
2651                         break;
2652                 case sdma_event_e25_hw_clean_up_done:
2653                         break;
2654                 case sdma_event_e30_go_running:
2655                         break;
2656                 case sdma_event_e40_sw_cleaned:
2657                         break;
2658                 case sdma_event_e50_hw_cleaned:
2659                         break;
2660                 case sdma_event_e60_hw_halted:
2661                         need_progress = 1;
2662                         sdma_err_progress_check_schedule(sde);
2663                 case sdma_event_e90_sw_halted:
2664                         /*
2665                         * SW initiated halt does not perform engines
2666                         * progress check
2667                         */
2668                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2669                         sdma_start_err_halt_wait(sde);
2670                         break;
2671                 case sdma_event_e70_go_idle:
2672                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2673                         break;
2674                 case sdma_event_e85_link_down:
2675                         ss->go_s99_running = 0;
2676                         /* fall through */
2677                 case sdma_event_e80_hw_freeze:
2678                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2679                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2680                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2681                         break;
2682                 case sdma_event_e81_hw_frozen:
2683                         break;
2684                 case sdma_event_e82_hw_unfreeze:
2685                         break;
2686                 }
2687                 break;
2688         }
2689
2690         ss->last_event = event;
2691         if (need_progress)
2692                 sdma_make_progress(sde, 0);
2693 }
2694
2695 /*
2696  * _extend_sdma_tx_descs() - helper to extend txreq
2697  *
2698  * This is called once the initial nominal allocation
2699  * of descriptors in the sdma_txreq is exhausted.
2700  *
2701  * The code will bump the allocation up to the max
2702  * of MAX_DESC (64) descriptors.  There doesn't seem
2703  * much point in an interim step.
2704  *
2705  */
2706 int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2707 {
2708         int i;
2709
2710         tx->descp = kmalloc_array(
2711                         MAX_DESC,
2712                         sizeof(struct sdma_desc),
2713                         GFP_ATOMIC);
2714         if (!tx->descp)
2715                 return -ENOMEM;
2716         tx->desc_limit = MAX_DESC;
2717         /* copy ones already built */
2718         for (i = 0; i < tx->num_desc; i++)
2719                 tx->descp[i] = tx->descs[i];
2720         return 0;
2721 }
2722
2723 /* Update sdes when the lmc changes */
2724 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
2725 {
2726         struct sdma_engine *sde;
2727         int i;
2728         u64 sreg;
2729
2730         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
2731                 SD(CHECK_SLID_MASK_SHIFT)) |
2732                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
2733                 SD(CHECK_SLID_VALUE_SHIFT));
2734
2735         for (i = 0; i < dd->num_sdma; i++) {
2736                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
2737                           i, (u32)sreg);
2738                 sde = &dd->per_sdma[i];
2739                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
2740         }
2741 }
2742
2743 /* tx not dword sized - pad */
2744 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2745 {
2746         int rval = 0;
2747
2748         if ((unlikely(tx->num_desc == tx->desc_limit))) {
2749                 rval = _extend_sdma_tx_descs(dd, tx);
2750                 if (rval)
2751                         return rval;
2752         }
2753         /* finish the one just added  */
2754         tx->num_desc++;
2755         make_tx_sdma_desc(
2756                 tx,
2757                 SDMA_MAP_NONE,
2758                 dd->sdma_pad_phys,
2759                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
2760         _sdma_close_tx(dd, tx);
2761         return rval;
2762 }
2763
2764 /*
2765  * Add ahg to the sdma_txreq
2766  *
2767  * The logic will consume up to 3
2768  * descriptors at the beginning of
2769  * sdma_txreq.
2770  */
2771 void _sdma_txreq_ahgadd(
2772         struct sdma_txreq *tx,
2773         u8 num_ahg,
2774         u8 ahg_entry,
2775         u32 *ahg,
2776         u8 ahg_hlen)
2777 {
2778         u32 i, shift = 0, desc = 0;
2779         u8 mode;
2780
2781         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
2782         /* compute mode */
2783         if (num_ahg == 1)
2784                 mode = SDMA_AHG_APPLY_UPDATE1;
2785         else if (num_ahg <= 5)
2786                 mode = SDMA_AHG_APPLY_UPDATE2;
2787         else
2788                 mode = SDMA_AHG_APPLY_UPDATE3;
2789         tx->num_desc++;
2790         /* initialize to consumed descriptors to zero */
2791         switch (mode) {
2792         case SDMA_AHG_APPLY_UPDATE3:
2793                 tx->num_desc++;
2794                 tx->descs[2].qw[0] = 0;
2795                 tx->descs[2].qw[1] = 0;
2796                 /* FALLTHROUGH */
2797         case SDMA_AHG_APPLY_UPDATE2:
2798                 tx->num_desc++;
2799                 tx->descs[1].qw[0] = 0;
2800                 tx->descs[1].qw[1] = 0;
2801                 break;
2802         }
2803         ahg_hlen >>= 2;
2804         tx->descs[0].qw[1] |=
2805                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
2806                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
2807                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
2808                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
2809                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
2810                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
2811                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
2812                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
2813         for (i = 0; i < (num_ahg - 1); i++) {
2814                 if (!shift && !(i & 2))
2815                         desc++;
2816                 tx->descs[desc].qw[!!(i & 2)] |=
2817                         (((u64)ahg[i + 1])
2818                                 << shift);
2819                 shift = (shift + 32) & 63;
2820         }
2821 }
2822
2823 /**
2824  * sdma_ahg_alloc - allocate an AHG entry
2825  * @sde: engine to allocate from
2826  *
2827  * Return:
2828  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
2829  * -ENOSPC if an entry is not available
2830  */
2831 int sdma_ahg_alloc(struct sdma_engine *sde)
2832 {
2833         int nr;
2834         int oldbit;
2835
2836         if (!sde) {
2837                 trace_hfi1_ahg_allocate(sde, -EINVAL);
2838                 return -EINVAL;
2839         }
2840         while (1) {
2841                 nr = ffz(ACCESS_ONCE(sde->ahg_bits));
2842                 if (nr > 31) {
2843                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
2844                         return -ENOSPC;
2845                 }
2846                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
2847                 if (!oldbit)
2848                         break;
2849                 cpu_relax();
2850         }
2851         trace_hfi1_ahg_allocate(sde, nr);
2852         return nr;
2853 }
2854
2855 /**
2856  * sdma_ahg_free - free an AHG entry
2857  * @sde: engine to return AHG entry
2858  * @ahg_index: index to free
2859  *
2860  * This routine frees the indicate AHG entry.
2861  */
2862 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
2863 {
2864         if (!sde)
2865                 return;
2866         trace_hfi1_ahg_deallocate(sde, ahg_index);
2867         if (ahg_index < 0 || ahg_index > 31)
2868                 return;
2869         clear_bit(ahg_index, &sde->ahg_bits);
2870 }
2871
2872 /*
2873  * SPC freeze handling for SDMA engines.  Called when the driver knows
2874  * the SPC is going into a freeze but before the freeze is fully
2875  * settled.  Generally an error interrupt.
2876  *
2877  * This event will pull the engine out of running so no more entries can be
2878  * added to the engine's queue.
2879  */
2880 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
2881 {
2882         int i;
2883         enum sdma_events event = link_down ? sdma_event_e85_link_down :
2884                                              sdma_event_e80_hw_freeze;
2885
2886         /* set up the wait but do not wait here */
2887         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
2888
2889         /* tell all engines to stop running and wait */
2890         for (i = 0; i < dd->num_sdma; i++)
2891                 sdma_process_event(&dd->per_sdma[i], event);
2892
2893         /* sdma_freeze() will wait for all engines to have stopped */
2894 }
2895
2896 /*
2897  * SPC freeze handling for SDMA engines.  Called when the driver knows
2898  * the SPC is fully frozen.
2899  */
2900 void sdma_freeze(struct hfi1_devdata *dd)
2901 {
2902         int i;
2903         int ret;
2904
2905         /*
2906          * Make sure all engines have moved out of the running state before
2907          * continuing.
2908          */
2909         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
2910                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
2911         /* interrupted or count is negative, then unloading - just exit */
2912         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
2913                 return;
2914
2915         /* set up the count for the next wait */
2916         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
2917
2918         /* tell all engines that the SPC is frozen, they can start cleaning */
2919         for (i = 0; i < dd->num_sdma; i++)
2920                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
2921
2922         /*
2923          * Wait for everyone to finish software clean before exiting.  The
2924          * software clean will read engine CSRs, so must be completed before
2925          * the next step, which will clear the engine CSRs.
2926          */
2927         (void) wait_event_interruptible(dd->sdma_unfreeze_wq,
2928                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
2929         /* no need to check results - done no matter what */
2930 }
2931
2932 /*
2933  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
2934  *
2935  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
2936  * that is left is a software clean.  We could do it after the SPC is fully
2937  * frozen, but then we'd have to add another state to wait for the unfreeze.
2938  * Instead, just defer the software clean until the unfreeze step.
2939  */
2940 void sdma_unfreeze(struct hfi1_devdata *dd)
2941 {
2942         int i;
2943
2944         /* tell all engines start freeze clean up */
2945         for (i = 0; i < dd->num_sdma; i++)
2946                 sdma_process_event(&dd->per_sdma[i],
2947                                         sdma_event_e82_hw_unfreeze);
2948 }
2949
2950 /**
2951  * _sdma_engine_progress_schedule() - schedule progress on engine
2952  * @sde: sdma_engine to schedule progress
2953  *
2954  */
2955 void _sdma_engine_progress_schedule(
2956         struct sdma_engine *sde)
2957 {
2958         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
2959         /* assume we have selected a good cpu */
2960         write_csr(sde->dd,
2961                   CCE_INT_FORCE + (8*(IS_SDMA_START/64)), sde->progress_mask);
2962 }