]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/staging/rdma/hfi1/verbs.c
53ac21431542732a4cd3f2bc8a37a4110fcdeee9
[karo-tx-linux.git] / drivers / staging / rdma / hfi1 / verbs.c
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50
51 #include <rdma/ib_mad.h>
52 #include <rdma/ib_user_verbs.h>
53 #include <linux/io.h>
54 #include <linux/module.h>
55 #include <linux/utsname.h>
56 #include <linux/rculist.h>
57 #include <linux/mm.h>
58 #include <linux/random.h>
59 #include <linux/vmalloc.h>
60
61 #include "hfi.h"
62 #include "common.h"
63 #include "device.h"
64 #include "trace.h"
65 #include "qp.h"
66 #include "sdma.h"
67
68 unsigned int hfi1_lkey_table_size = 16;
69 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
70                    S_IRUGO);
71 MODULE_PARM_DESC(lkey_table_size,
72                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
73
74 static unsigned int hfi1_max_pds = 0xFFFF;
75 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
76 MODULE_PARM_DESC(max_pds,
77                  "Maximum number of protection domains to support");
78
79 static unsigned int hfi1_max_ahs = 0xFFFF;
80 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
82
83 unsigned int hfi1_max_cqes = 0x2FFFF;
84 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
85 MODULE_PARM_DESC(max_cqes,
86                  "Maximum number of completion queue entries to support");
87
88 unsigned int hfi1_max_cqs = 0x1FFFF;
89 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
91
92 unsigned int hfi1_max_qp_wrs = 0x3FFF;
93 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
95
96 unsigned int hfi1_max_qps = 16384;
97 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
99
100 unsigned int hfi1_max_sges = 0x60;
101 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
103
104 unsigned int hfi1_max_mcast_grps = 16384;
105 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
106 MODULE_PARM_DESC(max_mcast_grps,
107                  "Maximum number of multicast groups to support");
108
109 unsigned int hfi1_max_mcast_qp_attached = 16;
110 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
111                    uint, S_IRUGO);
112 MODULE_PARM_DESC(max_mcast_qp_attached,
113                  "Maximum number of attached QPs to support");
114
115 unsigned int hfi1_max_srqs = 1024;
116 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
118
119 unsigned int hfi1_max_srq_sges = 128;
120 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
122
123 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
124 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
125 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
126
127 static void verbs_sdma_complete(
128         struct sdma_txreq *cookie,
129         int status,
130         int drained);
131
132 /*
133  * Note that it is OK to post send work requests in the SQE and ERR
134  * states; hfi1_do_send() will process them and generate error
135  * completions as per IB 1.2 C10-96.
136  */
137 const int ib_hfi1_state_ops[IB_QPS_ERR + 1] = {
138         [IB_QPS_RESET] = 0,
139         [IB_QPS_INIT] = HFI1_POST_RECV_OK,
140         [IB_QPS_RTR] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK,
141         [IB_QPS_RTS] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
142             HFI1_POST_SEND_OK | HFI1_PROCESS_SEND_OK |
143             HFI1_PROCESS_NEXT_SEND_OK,
144         [IB_QPS_SQD] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
145             HFI1_POST_SEND_OK | HFI1_PROCESS_SEND_OK,
146         [IB_QPS_SQE] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
147             HFI1_POST_SEND_OK | HFI1_FLUSH_SEND,
148         [IB_QPS_ERR] = HFI1_POST_RECV_OK | HFI1_FLUSH_RECV |
149             HFI1_POST_SEND_OK | HFI1_FLUSH_SEND,
150 };
151
152 struct hfi1_ucontext {
153         struct ib_ucontext ibucontext;
154 };
155
156 static inline struct hfi1_ucontext *to_iucontext(struct ib_ucontext
157                                                   *ibucontext)
158 {
159         return container_of(ibucontext, struct hfi1_ucontext, ibucontext);
160 }
161
162 /*
163  * Translate ib_wr_opcode into ib_wc_opcode.
164  */
165 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
166         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
167         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
168         [IB_WR_SEND] = IB_WC_SEND,
169         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
170         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
171         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
172         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
173 };
174
175 /*
176  * Length of header by opcode, 0 --> not supported
177  */
178 const u8 hdr_len_by_opcode[256] = {
179         /* RC */
180         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
181         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
182         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
183         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
184         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
185         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
186         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
187         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
188         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
189         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
190         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
191         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
192         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
193         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
194         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
195         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
196         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
197         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
198         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4,
199         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
200         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
201         /* UC */
202         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
203         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
204         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
205         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
206         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
207         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
208         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
209         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
210         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
211         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
212         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
213         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
214         /* UD */
215         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
216         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
217 };
218
219 static const opcode_handler opcode_handler_tbl[256] = {
220         /* RC */
221         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
222         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
223         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
224         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
225         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
226         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
227         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
228         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
229         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
230         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
231         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
232         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
233         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
234         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
235         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
236         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
237         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
238         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
239         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
240         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
241         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
242         /* UC */
243         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
244         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
245         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
246         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
247         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
248         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
249         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
250         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
251         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
252         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
253         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
254         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
255         /* UD */
256         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
257         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
258         /* CNP */
259         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
260 };
261
262 /*
263  * System image GUID.
264  */
265 __be64 ib_hfi1_sys_image_guid;
266
267 /**
268  * hfi1_copy_sge - copy data to SGE memory
269  * @ss: the SGE state
270  * @data: the data to copy
271  * @length: the length of the data
272  */
273 void hfi1_copy_sge(
274         struct hfi1_sge_state *ss,
275         void *data, u32 length,
276         int release)
277 {
278         struct hfi1_sge *sge = &ss->sge;
279
280         while (length) {
281                 u32 len = sge->length;
282
283                 if (len > length)
284                         len = length;
285                 if (len > sge->sge_length)
286                         len = sge->sge_length;
287                 WARN_ON_ONCE(len == 0);
288                 memcpy(sge->vaddr, data, len);
289                 sge->vaddr += len;
290                 sge->length -= len;
291                 sge->sge_length -= len;
292                 if (sge->sge_length == 0) {
293                         if (release)
294                                 hfi1_put_mr(sge->mr);
295                         if (--ss->num_sge)
296                                 *sge = *ss->sg_list++;
297                 } else if (sge->length == 0 && sge->mr->lkey) {
298                         if (++sge->n >= HFI1_SEGSZ) {
299                                 if (++sge->m >= sge->mr->mapsz)
300                                         break;
301                                 sge->n = 0;
302                         }
303                         sge->vaddr =
304                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
305                         sge->length =
306                                 sge->mr->map[sge->m]->segs[sge->n].length;
307                 }
308                 data += len;
309                 length -= len;
310         }
311 }
312
313 /**
314  * hfi1_skip_sge - skip over SGE memory
315  * @ss: the SGE state
316  * @length: the number of bytes to skip
317  */
318 void hfi1_skip_sge(struct hfi1_sge_state *ss, u32 length, int release)
319 {
320         struct hfi1_sge *sge = &ss->sge;
321
322         while (length) {
323                 u32 len = sge->length;
324
325                 if (len > length)
326                         len = length;
327                 if (len > sge->sge_length)
328                         len = sge->sge_length;
329                 WARN_ON_ONCE(len == 0);
330                 sge->vaddr += len;
331                 sge->length -= len;
332                 sge->sge_length -= len;
333                 if (sge->sge_length == 0) {
334                         if (release)
335                                 hfi1_put_mr(sge->mr);
336                         if (--ss->num_sge)
337                                 *sge = *ss->sg_list++;
338                 } else if (sge->length == 0 && sge->mr->lkey) {
339                         if (++sge->n >= HFI1_SEGSZ) {
340                                 if (++sge->m >= sge->mr->mapsz)
341                                         break;
342                                 sge->n = 0;
343                         }
344                         sge->vaddr =
345                                 sge->mr->map[sge->m]->segs[sge->n].vaddr;
346                         sge->length =
347                                 sge->mr->map[sge->m]->segs[sge->n].length;
348                 }
349                 length -= len;
350         }
351 }
352
353 /**
354  * post_one_send - post one RC, UC, or UD send work request
355  * @qp: the QP to post on
356  * @wr: the work request to send
357  */
358 static int post_one_send(struct hfi1_qp *qp, struct ib_send_wr *wr)
359 {
360         struct hfi1_swqe *wqe;
361         u32 next;
362         int i;
363         int j;
364         int acc;
365         struct hfi1_lkey_table *rkt;
366         struct hfi1_pd *pd;
367         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
368         struct hfi1_pportdata *ppd;
369         struct hfi1_ibport *ibp;
370
371         /* IB spec says that num_sge == 0 is OK. */
372         if (unlikely(wr->num_sge > qp->s_max_sge))
373                 return -EINVAL;
374
375         ppd = &dd->pport[qp->port_num - 1];
376         ibp = &ppd->ibport_data;
377
378         /*
379          * Don't allow RDMA reads or atomic operations on UC or
380          * undefined operations.
381          * Make sure buffer is large enough to hold the result for atomics.
382          */
383         if (wr->opcode == IB_WR_FAST_REG_MR) {
384                 return -EINVAL;
385         } else if (qp->ibqp.qp_type == IB_QPT_UC) {
386                 if ((unsigned) wr->opcode >= IB_WR_RDMA_READ)
387                         return -EINVAL;
388         } else if (qp->ibqp.qp_type != IB_QPT_RC) {
389                 /* Check IB_QPT_SMI, IB_QPT_GSI, IB_QPT_UD opcode */
390                 if (wr->opcode != IB_WR_SEND &&
391                     wr->opcode != IB_WR_SEND_WITH_IMM)
392                         return -EINVAL;
393                 /* Check UD destination address PD */
394                 if (qp->ibqp.pd != wr->wr.ud.ah->pd)
395                         return -EINVAL;
396         } else if ((unsigned) wr->opcode > IB_WR_ATOMIC_FETCH_AND_ADD)
397                 return -EINVAL;
398         else if (wr->opcode >= IB_WR_ATOMIC_CMP_AND_SWP &&
399                    (wr->num_sge == 0 ||
400                     wr->sg_list[0].length < sizeof(u64) ||
401                     wr->sg_list[0].addr & (sizeof(u64) - 1)))
402                 return -EINVAL;
403         else if (wr->opcode >= IB_WR_RDMA_READ && !qp->s_max_rd_atomic)
404                 return -EINVAL;
405
406         next = qp->s_head + 1;
407         if (next >= qp->s_size)
408                 next = 0;
409         if (next == qp->s_last)
410                 return -ENOMEM;
411
412         rkt = &to_idev(qp->ibqp.device)->lk_table;
413         pd = to_ipd(qp->ibqp.pd);
414         wqe = get_swqe_ptr(qp, qp->s_head);
415         wqe->wr = *wr;
416         wqe->length = 0;
417         j = 0;
418         if (wr->num_sge) {
419                 acc = wr->opcode >= IB_WR_RDMA_READ ?
420                         IB_ACCESS_LOCAL_WRITE : 0;
421                 for (i = 0; i < wr->num_sge; i++) {
422                         u32 length = wr->sg_list[i].length;
423                         int ok;
424
425                         if (length == 0)
426                                 continue;
427                         ok = hfi1_lkey_ok(rkt, pd, &wqe->sg_list[j],
428                                           &wr->sg_list[i], acc);
429                         if (!ok)
430                                 goto bail_inval_free;
431                         wqe->length += length;
432                         j++;
433                 }
434                 wqe->wr.num_sge = j;
435         }
436         if (qp->ibqp.qp_type == IB_QPT_UC ||
437             qp->ibqp.qp_type == IB_QPT_RC) {
438                 if (wqe->length > 0x80000000U)
439                         goto bail_inval_free;
440         } else {
441                 struct hfi1_ah *ah = to_iah(wr->wr.ud.ah);
442
443                 atomic_inc(&ah->refcount);
444         }
445         wqe->ssn = qp->s_ssn++;
446         qp->s_head = next;
447
448         return 0;
449
450 bail_inval_free:
451         /* release mr holds */
452         while (j) {
453                 struct hfi1_sge *sge = &wqe->sg_list[--j];
454
455                 hfi1_put_mr(sge->mr);
456         }
457         return -EINVAL;
458 }
459
460 /**
461  * post_send - post a send on a QP
462  * @ibqp: the QP to post the send on
463  * @wr: the list of work requests to post
464  * @bad_wr: the first bad WR is put here
465  *
466  * This may be called from interrupt context.
467  */
468 static int post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
469                      struct ib_send_wr **bad_wr)
470 {
471         struct hfi1_qp *qp = to_iqp(ibqp);
472         int err = 0;
473         int call_send;
474         unsigned long flags;
475         unsigned nreq = 0;
476
477         spin_lock_irqsave(&qp->s_lock, flags);
478
479         /* Check that state is OK to post send. */
480         if (unlikely(!(ib_hfi1_state_ops[qp->state] & HFI1_POST_SEND_OK))) {
481                 spin_unlock_irqrestore(&qp->s_lock, flags);
482                 return -EINVAL;
483         }
484
485         /* sq empty and not list -> call send */
486         call_send = qp->s_head == qp->s_last && !wr->next;
487
488         for (; wr; wr = wr->next) {
489                 err = post_one_send(qp, wr);
490                 if (unlikely(err)) {
491                         *bad_wr = wr;
492                         goto bail;
493                 }
494                 nreq++;
495         }
496 bail:
497         if (nreq && !call_send)
498                 hfi1_schedule_send(qp);
499         spin_unlock_irqrestore(&qp->s_lock, flags);
500         if (nreq && call_send)
501                 hfi1_do_send(&qp->s_iowait.iowork);
502         return err;
503 }
504
505 /**
506  * post_receive - post a receive on a QP
507  * @ibqp: the QP to post the receive on
508  * @wr: the WR to post
509  * @bad_wr: the first bad WR is put here
510  *
511  * This may be called from interrupt context.
512  */
513 static int post_receive(struct ib_qp *ibqp, struct ib_recv_wr *wr,
514                         struct ib_recv_wr **bad_wr)
515 {
516         struct hfi1_qp *qp = to_iqp(ibqp);
517         struct hfi1_rwq *wq = qp->r_rq.wq;
518         unsigned long flags;
519         int ret;
520
521         /* Check that state is OK to post receive. */
522         if (!(ib_hfi1_state_ops[qp->state] & HFI1_POST_RECV_OK) || !wq) {
523                 *bad_wr = wr;
524                 ret = -EINVAL;
525                 goto bail;
526         }
527
528         for (; wr; wr = wr->next) {
529                 struct hfi1_rwqe *wqe;
530                 u32 next;
531                 int i;
532
533                 if ((unsigned) wr->num_sge > qp->r_rq.max_sge) {
534                         *bad_wr = wr;
535                         ret = -EINVAL;
536                         goto bail;
537                 }
538
539                 spin_lock_irqsave(&qp->r_rq.lock, flags);
540                 next = wq->head + 1;
541                 if (next >= qp->r_rq.size)
542                         next = 0;
543                 if (next == wq->tail) {
544                         spin_unlock_irqrestore(&qp->r_rq.lock, flags);
545                         *bad_wr = wr;
546                         ret = -ENOMEM;
547                         goto bail;
548                 }
549
550                 wqe = get_rwqe_ptr(&qp->r_rq, wq->head);
551                 wqe->wr_id = wr->wr_id;
552                 wqe->num_sge = wr->num_sge;
553                 for (i = 0; i < wr->num_sge; i++)
554                         wqe->sg_list[i] = wr->sg_list[i];
555                 /* Make sure queue entry is written before the head index. */
556                 smp_wmb();
557                 wq->head = next;
558                 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
559         }
560         ret = 0;
561
562 bail:
563         return ret;
564 }
565
566 /*
567  * Make sure the QP is ready and able to accept the given opcode.
568  */
569 static inline int qp_ok(int opcode, struct hfi1_packet *packet)
570 {
571         struct hfi1_ibport *ibp;
572
573         if (!(ib_hfi1_state_ops[packet->qp->state] & HFI1_PROCESS_RECV_OK))
574                 goto dropit;
575         if (((opcode & OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
576             (opcode == IB_OPCODE_CNP))
577                 return 1;
578 dropit:
579         ibp = &packet->rcd->ppd->ibport_data;
580         ibp->n_pkt_drops++;
581         return 0;
582 }
583
584
585 /**
586  * hfi1_ib_rcv - process an incoming packet
587  * @packet: data packet information
588  *
589  * This is called to process an incoming packet at interrupt level.
590  *
591  * Tlen is the length of the header + data + CRC in bytes.
592  */
593 void hfi1_ib_rcv(struct hfi1_packet *packet)
594 {
595         struct hfi1_ctxtdata *rcd = packet->rcd;
596         struct hfi1_ib_header *hdr = packet->hdr;
597         u32 tlen = packet->tlen;
598         struct hfi1_pportdata *ppd = rcd->ppd;
599         struct hfi1_ibport *ibp = &ppd->ibport_data;
600         u32 qp_num;
601         int lnh;
602         u8 opcode;
603         u16 lid;
604
605         /* Check for GRH */
606         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
607         if (lnh == HFI1_LRH_BTH)
608                 packet->ohdr = &hdr->u.oth;
609         else if (lnh == HFI1_LRH_GRH) {
610                 u32 vtf;
611
612                 packet->ohdr = &hdr->u.l.oth;
613                 if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
614                         goto drop;
615                 vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
616                 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
617                         goto drop;
618                 packet->rcv_flags |= HFI1_HAS_GRH;
619         } else
620                 goto drop;
621
622         trace_input_ibhdr(rcd->dd, hdr);
623
624         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
625         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
626
627         /* Get the destination QP number. */
628         qp_num = be32_to_cpu(packet->ohdr->bth[1]) & HFI1_QPN_MASK;
629         lid = be16_to_cpu(hdr->lrh[1]);
630         if (unlikely((lid >= HFI1_MULTICAST_LID_BASE) &&
631             (lid != HFI1_PERMISSIVE_LID))) {
632                 struct hfi1_mcast *mcast;
633                 struct hfi1_mcast_qp *p;
634
635                 if (lnh != HFI1_LRH_GRH)
636                         goto drop;
637                 mcast = hfi1_mcast_find(ibp, &hdr->u.l.grh.dgid);
638                 if (mcast == NULL)
639                         goto drop;
640                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
641                         packet->qp = p->qp;
642                         spin_lock(&packet->qp->r_lock);
643                         if (likely((qp_ok(opcode, packet))))
644                                 opcode_handler_tbl[opcode](packet);
645                         spin_unlock(&packet->qp->r_lock);
646                 }
647                 /*
648                  * Notify hfi1_multicast_detach() if it is waiting for us
649                  * to finish.
650                  */
651                 if (atomic_dec_return(&mcast->refcount) <= 1)
652                         wake_up(&mcast->wait);
653         } else {
654                 rcu_read_lock();
655                 packet->qp = hfi1_lookup_qpn(ibp, qp_num);
656                 if (!packet->qp) {
657                         rcu_read_unlock();
658                         goto drop;
659                 }
660                 spin_lock(&packet->qp->r_lock);
661                 if (likely((qp_ok(opcode, packet))))
662                         opcode_handler_tbl[opcode](packet);
663                 spin_unlock(&packet->qp->r_lock);
664                 rcu_read_unlock();
665         }
666         return;
667
668 drop:
669         ibp->n_pkt_drops++;
670 }
671
672 /*
673  * This is called from a timer to check for QPs
674  * which need kernel memory in order to send a packet.
675  */
676 static void mem_timer(unsigned long data)
677 {
678         struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
679         struct list_head *list = &dev->memwait;
680         struct hfi1_qp *qp = NULL;
681         struct iowait *wait;
682         unsigned long flags;
683
684         write_seqlock_irqsave(&dev->iowait_lock, flags);
685         if (!list_empty(list)) {
686                 wait = list_first_entry(list, struct iowait, list);
687                 qp = container_of(wait, struct hfi1_qp, s_iowait);
688                 list_del_init(&qp->s_iowait.list);
689                 /* refcount held until actual wake up */
690                 if (!list_empty(list))
691                         mod_timer(&dev->mem_timer, jiffies + 1);
692         }
693         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
694
695         if (qp)
696                 hfi1_qp_wakeup(qp, HFI1_S_WAIT_KMEM);
697 }
698
699 void update_sge(struct hfi1_sge_state *ss, u32 length)
700 {
701         struct hfi1_sge *sge = &ss->sge;
702
703         sge->vaddr += length;
704         sge->length -= length;
705         sge->sge_length -= length;
706         if (sge->sge_length == 0) {
707                 if (--ss->num_sge)
708                         *sge = *ss->sg_list++;
709         } else if (sge->length == 0 && sge->mr->lkey) {
710                 if (++sge->n >= HFI1_SEGSZ) {
711                         if (++sge->m >= sge->mr->mapsz)
712                                 return;
713                         sge->n = 0;
714                 }
715                 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
716                 sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
717         }
718 }
719
720 static noinline struct verbs_txreq *__get_txreq(struct hfi1_ibdev *dev,
721                                                 struct hfi1_qp *qp)
722 {
723         struct verbs_txreq *tx;
724         unsigned long flags;
725
726         tx = kmem_cache_alloc(dev->verbs_txreq_cache, GFP_ATOMIC);
727         if (!tx) {
728                 spin_lock_irqsave(&qp->s_lock, flags);
729                 write_seqlock(&dev->iowait_lock);
730                 if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK &&
731                     list_empty(&qp->s_iowait.list)) {
732                         dev->n_txwait++;
733                         qp->s_flags |= HFI1_S_WAIT_TX;
734                         list_add_tail(&qp->s_iowait.list, &dev->txwait);
735                         trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TX);
736                         atomic_inc(&qp->refcount);
737                 }
738                 qp->s_flags &= ~HFI1_S_BUSY;
739                 write_sequnlock(&dev->iowait_lock);
740                 spin_unlock_irqrestore(&qp->s_lock, flags);
741                 tx = ERR_PTR(-EBUSY);
742         }
743         return tx;
744 }
745
746 static inline struct verbs_txreq *get_txreq(struct hfi1_ibdev *dev,
747                                             struct hfi1_qp *qp)
748 {
749         struct verbs_txreq *tx;
750
751         tx = kmem_cache_alloc(dev->verbs_txreq_cache, GFP_ATOMIC);
752         if (!tx)
753                 /* call slow path to get the lock */
754                 tx =  __get_txreq(dev, qp);
755         if (tx)
756                 tx->qp = qp;
757         return tx;
758 }
759
760 void hfi1_put_txreq(struct verbs_txreq *tx)
761 {
762         struct hfi1_ibdev *dev;
763         struct hfi1_qp *qp;
764         unsigned long flags;
765         unsigned int seq;
766
767         qp = tx->qp;
768         dev = to_idev(qp->ibqp.device);
769
770         if (tx->mr) {
771                 hfi1_put_mr(tx->mr);
772                 tx->mr = NULL;
773         }
774         sdma_txclean(dd_from_dev(dev), &tx->txreq);
775
776         /* Free verbs_txreq and return to slab cache */
777         kmem_cache_free(dev->verbs_txreq_cache, tx);
778
779         do {
780                 seq = read_seqbegin(&dev->iowait_lock);
781                 if (!list_empty(&dev->txwait)) {
782                         struct iowait *wait;
783
784                         write_seqlock_irqsave(&dev->iowait_lock, flags);
785                         /* Wake up first QP wanting a free struct */
786                         wait = list_first_entry(&dev->txwait, struct iowait,
787                                                 list);
788                         qp = container_of(wait, struct hfi1_qp, s_iowait);
789                         list_del_init(&qp->s_iowait.list);
790                         /* refcount held until actual wake up */
791                         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
792                         hfi1_qp_wakeup(qp, HFI1_S_WAIT_TX);
793                         break;
794                 }
795         } while (read_seqretry(&dev->iowait_lock, seq));
796 }
797
798 /*
799  * This is called with progress side lock held.
800  */
801 /* New API */
802 static void verbs_sdma_complete(
803         struct sdma_txreq *cookie,
804         int status,
805         int drained)
806 {
807         struct verbs_txreq *tx =
808                 container_of(cookie, struct verbs_txreq, txreq);
809         struct hfi1_qp *qp = tx->qp;
810
811         spin_lock(&qp->s_lock);
812         if (tx->wqe)
813                 hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
814         else if (qp->ibqp.qp_type == IB_QPT_RC) {
815                 struct hfi1_ib_header *hdr;
816
817                 hdr = &tx->phdr.hdr;
818                 hfi1_rc_send_complete(qp, hdr);
819         }
820         if (drained) {
821                 /*
822                  * This happens when the send engine notes
823                  * a QP in the error state and cannot
824                  * do the flush work until that QP's
825                  * sdma work has finished.
826                  */
827                 if (qp->s_flags & HFI1_S_WAIT_DMA) {
828                         qp->s_flags &= ~HFI1_S_WAIT_DMA;
829                         hfi1_schedule_send(qp);
830                 }
831         }
832         spin_unlock(&qp->s_lock);
833
834         hfi1_put_txreq(tx);
835 }
836
837 static int wait_kmem(struct hfi1_ibdev *dev, struct hfi1_qp *qp)
838 {
839         unsigned long flags;
840         int ret = 0;
841
842         spin_lock_irqsave(&qp->s_lock, flags);
843         if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) {
844                 write_seqlock(&dev->iowait_lock);
845                 if (list_empty(&qp->s_iowait.list)) {
846                         if (list_empty(&dev->memwait))
847                                 mod_timer(&dev->mem_timer, jiffies + 1);
848                         qp->s_flags |= HFI1_S_WAIT_KMEM;
849                         list_add_tail(&qp->s_iowait.list, &dev->memwait);
850                         trace_hfi1_qpsleep(qp, HFI1_S_WAIT_KMEM);
851                         atomic_inc(&qp->refcount);
852                 }
853                 write_sequnlock(&dev->iowait_lock);
854                 qp->s_flags &= ~HFI1_S_BUSY;
855                 ret = -EBUSY;
856         }
857         spin_unlock_irqrestore(&qp->s_lock, flags);
858
859         return ret;
860 }
861
862 /*
863  * This routine calls txadds for each sg entry.
864  *
865  * Add failures will revert the sge cursor
866  */
867 static int build_verbs_ulp_payload(
868         struct sdma_engine *sde,
869         struct hfi1_sge_state *ss,
870         u32 length,
871         struct verbs_txreq *tx)
872 {
873         struct hfi1_sge *sg_list = ss->sg_list;
874         struct hfi1_sge sge = ss->sge;
875         u8 num_sge = ss->num_sge;
876         u32 len;
877         int ret = 0;
878
879         while (length) {
880                 len = ss->sge.length;
881                 if (len > length)
882                         len = length;
883                 if (len > ss->sge.sge_length)
884                         len = ss->sge.sge_length;
885                 WARN_ON_ONCE(len == 0);
886                 ret = sdma_txadd_kvaddr(
887                         sde->dd,
888                         &tx->txreq,
889                         ss->sge.vaddr,
890                         len);
891                 if (ret)
892                         goto bail_txadd;
893                 update_sge(ss, len);
894                 length -= len;
895         }
896         return ret;
897 bail_txadd:
898         /* unwind cursor */
899         ss->sge = sge;
900         ss->num_sge = num_sge;
901         ss->sg_list = sg_list;
902         return ret;
903 }
904
905 /*
906  * Build the number of DMA descriptors needed to send length bytes of data.
907  *
908  * NOTE: DMA mapping is held in the tx until completed in the ring or
909  *       the tx desc is freed without having been submitted to the ring
910  *
911  * This routine insures the following all the helper routine
912  * calls succeed.
913  */
914 /* New API */
915 static int build_verbs_tx_desc(
916         struct sdma_engine *sde,
917         struct hfi1_sge_state *ss,
918         u32 length,
919         struct verbs_txreq *tx,
920         struct ahg_ib_header *ahdr,
921         u64 pbc)
922 {
923         int ret = 0;
924         struct hfi1_pio_header *phdr;
925         u16 hdrbytes = tx->hdr_dwords << 2;
926
927         phdr = &tx->phdr;
928         if (!ahdr->ahgcount) {
929                 ret = sdma_txinit_ahg(
930                         &tx->txreq,
931                         ahdr->tx_flags,
932                         hdrbytes + length,
933                         ahdr->ahgidx,
934                         0,
935                         NULL,
936                         0,
937                         verbs_sdma_complete);
938                 if (ret)
939                         goto bail_txadd;
940                 phdr->pbc = cpu_to_le64(pbc);
941                 memcpy(&phdr->hdr, &ahdr->ibh, hdrbytes - sizeof(phdr->pbc));
942                 /* add the header */
943                 ret = sdma_txadd_kvaddr(
944                         sde->dd,
945                         &tx->txreq,
946                         &tx->phdr,
947                         tx->hdr_dwords << 2);
948                 if (ret)
949                         goto bail_txadd;
950         } else {
951                 struct hfi1_other_headers *sohdr = &ahdr->ibh.u.oth;
952                 struct hfi1_other_headers *dohdr = &phdr->hdr.u.oth;
953
954                 /* needed in rc_send_complete() */
955                 phdr->hdr.lrh[0] = ahdr->ibh.lrh[0];
956                 if ((be16_to_cpu(phdr->hdr.lrh[0]) & 3) == HFI1_LRH_GRH) {
957                         sohdr = &ahdr->ibh.u.l.oth;
958                         dohdr = &phdr->hdr.u.l.oth;
959                 }
960                 /* opcode */
961                 dohdr->bth[0] = sohdr->bth[0];
962                 /* PSN/ACK  */
963                 dohdr->bth[2] = sohdr->bth[2];
964                 ret = sdma_txinit_ahg(
965                         &tx->txreq,
966                         ahdr->tx_flags,
967                         length,
968                         ahdr->ahgidx,
969                         ahdr->ahgcount,
970                         ahdr->ahgdesc,
971                         hdrbytes,
972                         verbs_sdma_complete);
973                 if (ret)
974                         goto bail_txadd;
975         }
976
977         /* add the ulp payload - if any.  ss can be NULL for acks */
978         if (ss)
979                 ret = build_verbs_ulp_payload(sde, ss, length, tx);
980 bail_txadd:
981         return ret;
982 }
983
984 int hfi1_verbs_send_dma(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
985                         u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
986                         u32 plen, u32 dwords, u64 pbc)
987 {
988         struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
989         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
990         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
991         struct verbs_txreq *tx;
992         struct sdma_txreq *stx;
993         u64 pbc_flags = 0;
994         struct sdma_engine *sde;
995         u8 sc5 = qp->s_sc;
996         int ret;
997
998         if (!list_empty(&qp->s_iowait.tx_head)) {
999                 stx = list_first_entry(
1000                         &qp->s_iowait.tx_head,
1001                         struct sdma_txreq,
1002                         list);
1003                 list_del_init(&stx->list);
1004                 tx = container_of(stx, struct verbs_txreq, txreq);
1005                 ret = sdma_send_txreq(tx->sde, &qp->s_iowait, stx);
1006                 if (unlikely(ret == -ECOMM))
1007                         goto bail_ecomm;
1008                 return ret;
1009         }
1010
1011         tx = get_txreq(dev, qp);
1012         if (IS_ERR(tx))
1013                 goto bail_tx;
1014
1015         if (!qp->s_hdr->sde) {
1016                 tx->sde = sde = qp_to_sdma_engine(qp, sc5);
1017                 if (!sde)
1018                         goto bail_no_sde;
1019         } else
1020                 tx->sde = sde = qp->s_hdr->sde;
1021
1022         if (likely(pbc == 0)) {
1023                 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1024                 /* No vl15 here */
1025                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1026                 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1027
1028                 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1029         }
1030         tx->wqe = qp->s_wqe;
1031         tx->mr = qp->s_rdma_mr;
1032         if (qp->s_rdma_mr)
1033                 qp->s_rdma_mr = NULL;
1034         tx->hdr_dwords = hdrwords + 2;
1035         ret = build_verbs_tx_desc(sde, ss, len, tx, ahdr, pbc);
1036         if (unlikely(ret))
1037                 goto bail_build;
1038         trace_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ahdr->ibh);
1039         ret =  sdma_send_txreq(sde, &qp->s_iowait, &tx->txreq);
1040         if (unlikely(ret == -ECOMM))
1041                 goto bail_ecomm;
1042         return ret;
1043
1044 bail_no_sde:
1045         hfi1_put_txreq(tx);
1046 bail_ecomm:
1047         /* The current one got "sent" */
1048         return 0;
1049 bail_build:
1050         /* kmalloc or mapping fail */
1051         hfi1_put_txreq(tx);
1052         return wait_kmem(dev, qp);
1053 bail_tx:
1054         return PTR_ERR(tx);
1055 }
1056
1057 /*
1058  * If we are now in the error state, return zero to flush the
1059  * send work request.
1060  */
1061 static int no_bufs_available(struct hfi1_qp *qp, struct send_context *sc)
1062 {
1063         struct hfi1_devdata *dd = sc->dd;
1064         struct hfi1_ibdev *dev = &dd->verbs_dev;
1065         unsigned long flags;
1066         int ret = 0;
1067
1068         /*
1069          * Note that as soon as want_buffer() is called and
1070          * possibly before it returns, sc_piobufavail()
1071          * could be called. Therefore, put QP on the I/O wait list before
1072          * enabling the PIO avail interrupt.
1073          */
1074         spin_lock_irqsave(&qp->s_lock, flags);
1075         if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) {
1076                 write_seqlock(&dev->iowait_lock);
1077                 if (list_empty(&qp->s_iowait.list)) {
1078                         struct hfi1_ibdev *dev = &dd->verbs_dev;
1079                         int was_empty;
1080
1081                         dev->n_piowait++;
1082                         qp->s_flags |= HFI1_S_WAIT_PIO;
1083                         was_empty = list_empty(&sc->piowait);
1084                         list_add_tail(&qp->s_iowait.list, &sc->piowait);
1085                         trace_hfi1_qpsleep(qp, HFI1_S_WAIT_PIO);
1086                         atomic_inc(&qp->refcount);
1087                         /* counting: only call wantpiobuf_intr if first user */
1088                         if (was_empty)
1089                                 hfi1_sc_wantpiobuf_intr(sc, 1);
1090                 }
1091                 write_sequnlock(&dev->iowait_lock);
1092                 qp->s_flags &= ~HFI1_S_BUSY;
1093                 ret = -EBUSY;
1094         }
1095         spin_unlock_irqrestore(&qp->s_lock, flags);
1096         return ret;
1097 }
1098
1099 struct send_context *qp_to_send_context(struct hfi1_qp *qp, u8 sc5)
1100 {
1101         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1102         struct hfi1_pportdata *ppd = dd->pport + (qp->port_num - 1);
1103         u8 vl;
1104
1105         vl = sc_to_vlt(dd, sc5);
1106         if (vl >= ppd->vls_supported && vl != 15)
1107                 return NULL;
1108         return dd->vld[vl].sc;
1109 }
1110
1111 int hfi1_verbs_send_pio(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
1112                         u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
1113                         u32 plen, u32 dwords, u64 pbc)
1114 {
1115         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1116         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1117         u32 *hdr = (u32 *)&ahdr->ibh;
1118         u64 pbc_flags = 0;
1119         u32 sc5;
1120         unsigned long flags = 0;
1121         struct send_context *sc;
1122         struct pio_buf *pbuf;
1123         int wc_status = IB_WC_SUCCESS;
1124
1125         /* vl15 special case taken care of in ud.c */
1126         sc5 = qp->s_sc;
1127         sc = qp_to_send_context(qp, sc5);
1128
1129         if (!sc)
1130                 return -EINVAL;
1131         if (likely(pbc == 0)) {
1132                 u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1133                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1134                 pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1135                 pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1136         }
1137         pbuf = sc_buffer_alloc(sc, plen, NULL, NULL);
1138         if (unlikely(pbuf == NULL)) {
1139                 if (ppd->host_link_state != HLS_UP_ACTIVE) {
1140                         /*
1141                          * If we have filled the PIO buffers to capacity and are
1142                          * not in an active state this request is not going to
1143                          * go out to so just complete it with an error or else a
1144                          * ULP or the core may be stuck waiting.
1145                          */
1146                         hfi1_cdbg(
1147                                 PIO,
1148                                 "alloc failed. state not active, completing");
1149                         wc_status = IB_WC_GENERAL_ERR;
1150                         goto pio_bail;
1151                 } else {
1152                         /*
1153                          * This is a normal occurrence. The PIO buffs are full
1154                          * up but we are still happily sending, well we could be
1155                          * so lets continue to queue the request.
1156                          */
1157                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1158                         return no_bufs_available(qp, sc);
1159                 }
1160         }
1161
1162         if (len == 0) {
1163                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1164         } else {
1165                 if (ss) {
1166                         seg_pio_copy_start(pbuf, pbc, hdr, hdrwords*4);
1167                         while (len) {
1168                                 void *addr = ss->sge.vaddr;
1169                                 u32 slen = ss->sge.length;
1170
1171                                 if (slen > len)
1172                                         slen = len;
1173                                 update_sge(ss, slen);
1174                                 seg_pio_copy_mid(pbuf, addr, slen);
1175                                 len -= slen;
1176                         }
1177                         seg_pio_copy_end(pbuf);
1178                 }
1179         }
1180
1181         trace_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ahdr->ibh);
1182
1183         if (qp->s_rdma_mr) {
1184                 hfi1_put_mr(qp->s_rdma_mr);
1185                 qp->s_rdma_mr = NULL;
1186         }
1187
1188 pio_bail:
1189         if (qp->s_wqe) {
1190                 spin_lock_irqsave(&qp->s_lock, flags);
1191                 hfi1_send_complete(qp, qp->s_wqe, wc_status);
1192                 spin_unlock_irqrestore(&qp->s_lock, flags);
1193         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1194                 spin_lock_irqsave(&qp->s_lock, flags);
1195                 hfi1_rc_send_complete(qp, &ahdr->ibh);
1196                 spin_unlock_irqrestore(&qp->s_lock, flags);
1197         }
1198         return 0;
1199 }
1200 /*
1201  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1202  * being an entry from the ingress partition key table), return 0
1203  * otherwise. Use the matching criteria for egress partition keys
1204  * specified in the OPAv1 spec., section 9.1l.7.
1205  */
1206 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1207 {
1208         u16 mkey = pkey & PKEY_LOW_15_MASK;
1209         u16 ment = ent & PKEY_LOW_15_MASK;
1210
1211         if (mkey == ment) {
1212                 /*
1213                  * If pkey[15] is set (full partition member),
1214                  * is bit 15 in the corresponding table element
1215                  * clear (limited member)?
1216                  */
1217                 if (pkey & PKEY_MEMBER_MASK)
1218                         return !!(ent & PKEY_MEMBER_MASK);
1219                 return 1;
1220         }
1221         return 0;
1222 }
1223
1224 /*
1225  * egress_pkey_check - return 0 if hdr's pkey matches according to the
1226  * criteria in the OPAv1 spec., section 9.11.7.
1227  */
1228 static inline int egress_pkey_check(struct hfi1_pportdata *ppd,
1229                                     struct hfi1_ib_header *hdr,
1230                                     struct hfi1_qp *qp)
1231 {
1232         struct hfi1_other_headers *ohdr;
1233         struct hfi1_devdata *dd;
1234         int i = 0;
1235         u16 pkey;
1236         u8 lnh, sc5 = qp->s_sc;
1237
1238         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1239                 return 0;
1240
1241         /* locate the pkey within the headers */
1242         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1243         if (lnh == HFI1_LRH_GRH)
1244                 ohdr = &hdr->u.l.oth;
1245         else
1246                 ohdr = &hdr->u.oth;
1247
1248         pkey = (u16)be32_to_cpu(ohdr->bth[0]);
1249
1250         /* If SC15, pkey[0:14] must be 0x7fff */
1251         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1252                 goto bad;
1253
1254
1255         /* Is the pkey = 0x0, or 0x8000? */
1256         if ((pkey & PKEY_LOW_15_MASK) == 0)
1257                 goto bad;
1258
1259         /* The most likely matching pkey has index qp->s_pkey_index */
1260         if (unlikely(!egress_pkey_matches_entry(pkey,
1261                                         ppd->pkeys[qp->s_pkey_index]))) {
1262                 /* no match - try the entire table */
1263                 for (; i < MAX_PKEY_VALUES; i++) {
1264                         if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1265                                 break;
1266                 }
1267         }
1268
1269         if (i < MAX_PKEY_VALUES)
1270                 return 0;
1271 bad:
1272         incr_cntr64(&ppd->port_xmit_constraint_errors);
1273         dd = ppd->dd;
1274         if (!(dd->err_info_xmit_constraint.status & OPA_EI_STATUS_SMASK)) {
1275                 u16 slid = be16_to_cpu(hdr->lrh[3]);
1276
1277                 dd->err_info_xmit_constraint.status |= OPA_EI_STATUS_SMASK;
1278                 dd->err_info_xmit_constraint.slid = slid;
1279                 dd->err_info_xmit_constraint.pkey = pkey;
1280         }
1281         return 1;
1282 }
1283
1284 /**
1285  * hfi1_verbs_send - send a packet
1286  * @qp: the QP to send on
1287  * @ahdr: the packet header
1288  * @hdrwords: the number of 32-bit words in the header
1289  * @ss: the SGE to send
1290  * @len: the length of the packet in bytes
1291  *
1292  * Return zero if packet is sent or queued OK.
1293  * Return non-zero and clear qp->s_flags HFI1_S_BUSY otherwise.
1294  */
1295 int hfi1_verbs_send(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
1296                     u32 hdrwords, struct hfi1_sge_state *ss, u32 len)
1297 {
1298         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1299         u32 plen;
1300         int ret;
1301         int pio = 0;
1302         unsigned long flags = 0;
1303         u32 dwords = (len + 3) >> 2;
1304
1305         /*
1306          * VL15 packets (IB_QPT_SMI) will always use PIO, so we
1307          * can defer SDMA restart until link goes ACTIVE without
1308          * worrying about just how we got there.
1309          */
1310         if ((qp->ibqp.qp_type == IB_QPT_SMI) ||
1311             !(dd->flags & HFI1_HAS_SEND_DMA))
1312                 pio = 1;
1313
1314         ret = egress_pkey_check(dd->pport, &ahdr->ibh, qp);
1315         if (unlikely(ret)) {
1316                 /*
1317                  * The value we are returning here does not get propagated to
1318                  * the verbs caller. Thus we need to complete the request with
1319                  * error otherwise the caller could be sitting waiting on the
1320                  * completion event. Only do this for PIO. SDMA has its own
1321                  * mechanism for handling the errors. So for SDMA we can just
1322                  * return.
1323                  */
1324                 if (pio) {
1325                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1326                                   __func__);
1327                         spin_lock_irqsave(&qp->s_lock, flags);
1328                         hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1329                         spin_unlock_irqrestore(&qp->s_lock, flags);
1330                 }
1331                 return -EINVAL;
1332         }
1333
1334         /*
1335          * Calculate the send buffer trigger address.
1336          * The +2 counts for the pbc control qword
1337          */
1338         plen = hdrwords + dwords + 2;
1339
1340         if (pio) {
1341                 ret = dd->process_pio_send(
1342                         qp, ahdr, hdrwords, ss, len, plen, dwords, 0);
1343         } else {
1344 #ifdef CONFIG_SDMA_VERBOSITY
1345                 dd_dev_err(dd, "CONFIG SDMA %s:%d %s()\n",
1346                            slashstrip(__FILE__), __LINE__, __func__);
1347                 dd_dev_err(dd, "SDMA hdrwords = %u, len = %u\n", hdrwords, len);
1348 #endif
1349                 ret = dd->process_dma_send(
1350                         qp, ahdr, hdrwords, ss, len, plen, dwords, 0);
1351         }
1352
1353         return ret;
1354 }
1355
1356 static int query_device(struct ib_device *ibdev,
1357                         struct ib_device_attr *props,
1358                         struct ib_udata *uhw)
1359 {
1360         struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1361         struct hfi1_ibdev *dev = to_idev(ibdev);
1362
1363         if (uhw->inlen || uhw->outlen)
1364                 return -EINVAL;
1365         memset(props, 0, sizeof(*props));
1366
1367         props->device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1368                 IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1369                 IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1370                 IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
1371
1372         props->page_size_cap = PAGE_SIZE;
1373         props->vendor_id =
1374                 dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1375         props->vendor_part_id = dd->pcidev->device;
1376         props->hw_ver = dd->minrev;
1377         props->sys_image_guid = ib_hfi1_sys_image_guid;
1378         props->max_mr_size = ~0ULL;
1379         props->max_qp = hfi1_max_qps;
1380         props->max_qp_wr = hfi1_max_qp_wrs;
1381         props->max_sge = hfi1_max_sges;
1382         props->max_sge_rd = hfi1_max_sges;
1383         props->max_cq = hfi1_max_cqs;
1384         props->max_ah = hfi1_max_ahs;
1385         props->max_cqe = hfi1_max_cqes;
1386         props->max_mr = dev->lk_table.max;
1387         props->max_fmr = dev->lk_table.max;
1388         props->max_map_per_fmr = 32767;
1389         props->max_pd = hfi1_max_pds;
1390         props->max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1391         props->max_qp_init_rd_atom = 255;
1392         /* props->max_res_rd_atom */
1393         props->max_srq = hfi1_max_srqs;
1394         props->max_srq_wr = hfi1_max_srq_wrs;
1395         props->max_srq_sge = hfi1_max_srq_sges;
1396         /* props->local_ca_ack_delay */
1397         props->atomic_cap = IB_ATOMIC_GLOB;
1398         props->max_pkeys = hfi1_get_npkeys(dd);
1399         props->max_mcast_grp = hfi1_max_mcast_grps;
1400         props->max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1401         props->max_total_mcast_qp_attach = props->max_mcast_qp_attach *
1402                 props->max_mcast_grp;
1403
1404         return 0;
1405 }
1406
1407 static inline u16 opa_speed_to_ib(u16 in)
1408 {
1409         u16 out = 0;
1410
1411         if (in & OPA_LINK_SPEED_25G)
1412                 out |= IB_SPEED_EDR;
1413         if (in & OPA_LINK_SPEED_12_5G)
1414                 out |= IB_SPEED_FDR;
1415
1416         return out;
1417 }
1418
1419 /*
1420  * Convert a single OPA link width (no multiple flags) to an IB value.
1421  * A zero OPA link width means link down, which means the IB width value
1422  * is a don't care.
1423  */
1424 static inline u16 opa_width_to_ib(u16 in)
1425 {
1426         switch (in) {
1427         case OPA_LINK_WIDTH_1X:
1428         /* map 2x and 3x to 1x as they don't exist in IB */
1429         case OPA_LINK_WIDTH_2X:
1430         case OPA_LINK_WIDTH_3X:
1431                 return IB_WIDTH_1X;
1432         default: /* link down or unknown, return our largest width */
1433         case OPA_LINK_WIDTH_4X:
1434                 return IB_WIDTH_4X;
1435         }
1436 }
1437
1438 static int query_port(struct ib_device *ibdev, u8 port,
1439                       struct ib_port_attr *props)
1440 {
1441         struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1442         struct hfi1_ibport *ibp = to_iport(ibdev, port);
1443         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1444         u16 lid = ppd->lid;
1445
1446         memset(props, 0, sizeof(*props));
1447         props->lid = lid ? lid : 0;
1448         props->lmc = ppd->lmc;
1449         props->sm_lid = ibp->sm_lid;
1450         props->sm_sl = ibp->sm_sl;
1451         /* OPA logical states match IB logical states */
1452         props->state = driver_lstate(ppd);
1453         props->phys_state = hfi1_ibphys_portstate(ppd);
1454         props->port_cap_flags = ibp->port_cap_flags;
1455         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1456         props->max_msg_sz = 0x80000000;
1457         props->pkey_tbl_len = hfi1_get_npkeys(dd);
1458         props->bad_pkey_cntr = ibp->pkey_violations;
1459         props->qkey_viol_cntr = ibp->qkey_violations;
1460         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1461         /* see rate_show() in ib core/sysfs.c */
1462         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1463         props->max_vl_num = ppd->vls_supported;
1464         props->init_type_reply = 0;
1465
1466         /* Once we are a "first class" citizen and have added the OPA MTUs to
1467          * the core we can advertise the larger MTU enum to the ULPs, for now
1468          * advertise only 4K.
1469          *
1470          * Those applications which are either OPA aware or pass the MTU enum
1471          * from the Path Records to us will get the new 8k MTU.  Those that
1472          * attempt to process the MTU enum may fail in various ways.
1473          */
1474         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1475                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1476         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1477                 mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1478         props->subnet_timeout = ibp->subnet_timeout;
1479
1480         return 0;
1481 }
1482
1483 static int port_immutable(struct ib_device *ibdev, u8 port_num,
1484                           struct ib_port_immutable *immutable)
1485 {
1486         struct ib_port_attr attr;
1487         int err;
1488
1489         err = query_port(ibdev, port_num, &attr);
1490         if (err)
1491                 return err;
1492
1493         memset(immutable, 0, sizeof(*immutable));
1494
1495         immutable->pkey_tbl_len = attr.pkey_tbl_len;
1496         immutable->gid_tbl_len = attr.gid_tbl_len;
1497         immutable->core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1498         immutable->max_mad_size = OPA_MGMT_MAD_SIZE;
1499
1500         return 0;
1501 }
1502
1503 static int modify_device(struct ib_device *device,
1504                          int device_modify_mask,
1505                          struct ib_device_modify *device_modify)
1506 {
1507         struct hfi1_devdata *dd = dd_from_ibdev(device);
1508         unsigned i;
1509         int ret;
1510
1511         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1512                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1513                 ret = -EOPNOTSUPP;
1514                 goto bail;
1515         }
1516
1517         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1518                 memcpy(device->node_desc, device_modify->node_desc, 64);
1519                 for (i = 0; i < dd->num_pports; i++) {
1520                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1521
1522                         hfi1_node_desc_chg(ibp);
1523                 }
1524         }
1525
1526         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1527                 ib_hfi1_sys_image_guid =
1528                         cpu_to_be64(device_modify->sys_image_guid);
1529                 for (i = 0; i < dd->num_pports; i++) {
1530                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1531
1532                         hfi1_sys_guid_chg(ibp);
1533                 }
1534         }
1535
1536         ret = 0;
1537
1538 bail:
1539         return ret;
1540 }
1541
1542 static int modify_port(struct ib_device *ibdev, u8 port,
1543                        int port_modify_mask, struct ib_port_modify *props)
1544 {
1545         struct hfi1_ibport *ibp = to_iport(ibdev, port);
1546         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1547         int ret = 0;
1548
1549         ibp->port_cap_flags |= props->set_port_cap_mask;
1550         ibp->port_cap_flags &= ~props->clr_port_cap_mask;
1551         if (props->set_port_cap_mask || props->clr_port_cap_mask)
1552                 hfi1_cap_mask_chg(ibp);
1553         if (port_modify_mask & IB_PORT_SHUTDOWN) {
1554                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1555                   OPA_LINKDOWN_REASON_UNKNOWN);
1556                 ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1557         }
1558         if (port_modify_mask & IB_PORT_RESET_QKEY_CNTR)
1559                 ibp->qkey_violations = 0;
1560         return ret;
1561 }
1562
1563 static int query_gid(struct ib_device *ibdev, u8 port,
1564                      int index, union ib_gid *gid)
1565 {
1566         struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1567         int ret = 0;
1568
1569         if (!port || port > dd->num_pports)
1570                 ret = -EINVAL;
1571         else {
1572                 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1573                 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1574
1575                 gid->global.subnet_prefix = ibp->gid_prefix;
1576                 if (index == 0)
1577                         gid->global.interface_id = cpu_to_be64(ppd->guid);
1578                 else if (index < HFI1_GUIDS_PER_PORT)
1579                         gid->global.interface_id = ibp->guids[index - 1];
1580                 else
1581                         ret = -EINVAL;
1582         }
1583
1584         return ret;
1585 }
1586
1587 static struct ib_pd *alloc_pd(struct ib_device *ibdev,
1588                               struct ib_ucontext *context,
1589                               struct ib_udata *udata)
1590 {
1591         struct hfi1_ibdev *dev = to_idev(ibdev);
1592         struct hfi1_pd *pd;
1593         struct ib_pd *ret;
1594
1595         /*
1596          * This is actually totally arbitrary.  Some correctness tests
1597          * assume there's a maximum number of PDs that can be allocated.
1598          * We don't actually have this limit, but we fail the test if
1599          * we allow allocations of more than we report for this value.
1600          */
1601
1602         pd = kmalloc(sizeof(*pd), GFP_KERNEL);
1603         if (!pd) {
1604                 ret = ERR_PTR(-ENOMEM);
1605                 goto bail;
1606         }
1607
1608         spin_lock(&dev->n_pds_lock);
1609         if (dev->n_pds_allocated == hfi1_max_pds) {
1610                 spin_unlock(&dev->n_pds_lock);
1611                 kfree(pd);
1612                 ret = ERR_PTR(-ENOMEM);
1613                 goto bail;
1614         }
1615
1616         dev->n_pds_allocated++;
1617         spin_unlock(&dev->n_pds_lock);
1618
1619         /* ib_alloc_pd() will initialize pd->ibpd. */
1620         pd->user = udata != NULL;
1621
1622         ret = &pd->ibpd;
1623
1624 bail:
1625         return ret;
1626 }
1627
1628 static int dealloc_pd(struct ib_pd *ibpd)
1629 {
1630         struct hfi1_pd *pd = to_ipd(ibpd);
1631         struct hfi1_ibdev *dev = to_idev(ibpd->device);
1632
1633         spin_lock(&dev->n_pds_lock);
1634         dev->n_pds_allocated--;
1635         spin_unlock(&dev->n_pds_lock);
1636
1637         kfree(pd);
1638
1639         return 0;
1640 }
1641
1642 /*
1643  * convert ah port,sl to sc
1644  */
1645 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1646 {
1647         struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1648
1649         return ibp->sl_to_sc[ah->sl];
1650 }
1651
1652 int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1653 {
1654         struct hfi1_ibport *ibp;
1655         struct hfi1_pportdata *ppd;
1656         struct hfi1_devdata *dd;
1657         u8 sc5;
1658
1659         /* A multicast address requires a GRH (see ch. 8.4.1). */
1660         if (ah_attr->dlid >= HFI1_MULTICAST_LID_BASE &&
1661             ah_attr->dlid != HFI1_PERMISSIVE_LID &&
1662             !(ah_attr->ah_flags & IB_AH_GRH))
1663                 goto bail;
1664         if ((ah_attr->ah_flags & IB_AH_GRH) &&
1665             ah_attr->grh.sgid_index >= HFI1_GUIDS_PER_PORT)
1666                 goto bail;
1667         if (ah_attr->dlid == 0)
1668                 goto bail;
1669         if (ah_attr->port_num < 1 ||
1670             ah_attr->port_num > ibdev->phys_port_cnt)
1671                 goto bail;
1672         if (ah_attr->static_rate != IB_RATE_PORT_CURRENT &&
1673             ib_rate_to_mbps(ah_attr->static_rate) < 0)
1674                 goto bail;
1675         if (ah_attr->sl >= OPA_MAX_SLS)
1676                 goto bail;
1677         /* test the mapping for validity */
1678         ibp = to_iport(ibdev, ah_attr->port_num);
1679         ppd = ppd_from_ibp(ibp);
1680         sc5 = ibp->sl_to_sc[ah_attr->sl];
1681         dd = dd_from_ppd(ppd);
1682         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1683                 goto bail;
1684         return 0;
1685 bail:
1686         return -EINVAL;
1687 }
1688
1689 /**
1690  * create_ah - create an address handle
1691  * @pd: the protection domain
1692  * @ah_attr: the attributes of the AH
1693  *
1694  * This may be called from interrupt context.
1695  */
1696 static struct ib_ah *create_ah(struct ib_pd *pd,
1697                                struct ib_ah_attr *ah_attr)
1698 {
1699         struct hfi1_ah *ah;
1700         struct ib_ah *ret;
1701         struct hfi1_ibdev *dev = to_idev(pd->device);
1702         unsigned long flags;
1703
1704         if (hfi1_check_ah(pd->device, ah_attr)) {
1705                 ret = ERR_PTR(-EINVAL);
1706                 goto bail;
1707         }
1708
1709         ah = kmalloc(sizeof(*ah), GFP_ATOMIC);
1710         if (!ah) {
1711                 ret = ERR_PTR(-ENOMEM);
1712                 goto bail;
1713         }
1714
1715         spin_lock_irqsave(&dev->n_ahs_lock, flags);
1716         if (dev->n_ahs_allocated == hfi1_max_ahs) {
1717                 spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
1718                 kfree(ah);
1719                 ret = ERR_PTR(-ENOMEM);
1720                 goto bail;
1721         }
1722
1723         dev->n_ahs_allocated++;
1724         spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
1725
1726         /* ib_create_ah() will initialize ah->ibah. */
1727         ah->attr = *ah_attr;
1728         atomic_set(&ah->refcount, 0);
1729
1730         ret = &ah->ibah;
1731
1732 bail:
1733         return ret;
1734 }
1735
1736 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1737 {
1738         struct ib_ah_attr attr;
1739         struct ib_ah *ah = ERR_PTR(-EINVAL);
1740         struct hfi1_qp *qp0;
1741
1742         memset(&attr, 0, sizeof(attr));
1743         attr.dlid = dlid;
1744         attr.port_num = ppd_from_ibp(ibp)->port;
1745         rcu_read_lock();
1746         qp0 = rcu_dereference(ibp->qp[0]);
1747         if (qp0)
1748                 ah = ib_create_ah(qp0->ibqp.pd, &attr);
1749         rcu_read_unlock();
1750         return ah;
1751 }
1752
1753 /**
1754  * destroy_ah - destroy an address handle
1755  * @ibah: the AH to destroy
1756  *
1757  * This may be called from interrupt context.
1758  */
1759 static int destroy_ah(struct ib_ah *ibah)
1760 {
1761         struct hfi1_ibdev *dev = to_idev(ibah->device);
1762         struct hfi1_ah *ah = to_iah(ibah);
1763         unsigned long flags;
1764
1765         if (atomic_read(&ah->refcount) != 0)
1766                 return -EBUSY;
1767
1768         spin_lock_irqsave(&dev->n_ahs_lock, flags);
1769         dev->n_ahs_allocated--;
1770         spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
1771
1772         kfree(ah);
1773
1774         return 0;
1775 }
1776
1777 static int modify_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
1778 {
1779         struct hfi1_ah *ah = to_iah(ibah);
1780
1781         if (hfi1_check_ah(ibah->device, ah_attr))
1782                 return -EINVAL;
1783
1784         ah->attr = *ah_attr;
1785
1786         return 0;
1787 }
1788
1789 static int query_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
1790 {
1791         struct hfi1_ah *ah = to_iah(ibah);
1792
1793         *ah_attr = ah->attr;
1794
1795         return 0;
1796 }
1797
1798 /**
1799  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1800  * @dd: the hfi1_ib device
1801  */
1802 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1803 {
1804         return ARRAY_SIZE(dd->pport[0].pkeys);
1805 }
1806
1807 static int query_pkey(struct ib_device *ibdev, u8 port, u16 index,
1808                       u16 *pkey)
1809 {
1810         struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1811         int ret;
1812
1813         if (index >= hfi1_get_npkeys(dd)) {
1814                 ret = -EINVAL;
1815                 goto bail;
1816         }
1817
1818         *pkey = hfi1_get_pkey(to_iport(ibdev, port), index);
1819         ret = 0;
1820
1821 bail:
1822         return ret;
1823 }
1824
1825 /**
1826  * alloc_ucontext - allocate a ucontest
1827  * @ibdev: the infiniband device
1828  * @udata: not used by the driver
1829  */
1830
1831 static struct ib_ucontext *alloc_ucontext(struct ib_device *ibdev,
1832                                           struct ib_udata *udata)
1833 {
1834         struct hfi1_ucontext *context;
1835         struct ib_ucontext *ret;
1836
1837         context = kmalloc(sizeof(*context), GFP_KERNEL);
1838         if (!context) {
1839                 ret = ERR_PTR(-ENOMEM);
1840                 goto bail;
1841         }
1842
1843         ret = &context->ibucontext;
1844
1845 bail:
1846         return ret;
1847 }
1848
1849 static int dealloc_ucontext(struct ib_ucontext *context)
1850 {
1851         kfree(to_iucontext(context));
1852         return 0;
1853 }
1854
1855 static void init_ibport(struct hfi1_pportdata *ppd)
1856 {
1857         struct hfi1_ibport *ibp = &ppd->ibport_data;
1858         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1859         int i;
1860
1861         for (i = 0; i < sz; i++) {
1862                 ibp->sl_to_sc[i] = i;
1863                 ibp->sc_to_sl[i] = i;
1864         }
1865
1866         spin_lock_init(&ibp->lock);
1867         /* Set the prefix to the default value (see ch. 4.1.1) */
1868         ibp->gid_prefix = IB_DEFAULT_GID_PREFIX;
1869         ibp->sm_lid = 0;
1870         /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1871         ibp->port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1872                 IB_PORT_CAP_MASK_NOTICE_SUP;
1873         ibp->pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1874         ibp->pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1875         ibp->pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1876         ibp->pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1877         ibp->pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1878
1879         RCU_INIT_POINTER(ibp->qp[0], NULL);
1880         RCU_INIT_POINTER(ibp->qp[1], NULL);
1881 }
1882
1883 static void verbs_txreq_kmem_cache_ctor(void *obj)
1884 {
1885         struct verbs_txreq *tx = (struct verbs_txreq *)obj;
1886
1887         memset(tx, 0, sizeof(*tx));
1888 }
1889
1890 /**
1891  * hfi1_register_ib_device - register our device with the infiniband core
1892  * @dd: the device data structure
1893  * Return 0 if successful, errno if unsuccessful.
1894  */
1895 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1896 {
1897         struct hfi1_ibdev *dev = &dd->verbs_dev;
1898         struct ib_device *ibdev = &dev->ibdev;
1899         struct hfi1_pportdata *ppd = dd->pport;
1900         unsigned i, lk_tab_size;
1901         int ret;
1902         size_t lcpysz = IB_DEVICE_NAME_MAX;
1903         u16 descq_cnt;
1904
1905         ret = hfi1_qp_init(dev);
1906         if (ret)
1907                 goto err_qp_init;
1908
1909
1910         for (i = 0; i < dd->num_pports; i++)
1911                 init_ibport(ppd + i);
1912
1913         /* Only need to initialize non-zero fields. */
1914         spin_lock_init(&dev->n_pds_lock);
1915         spin_lock_init(&dev->n_ahs_lock);
1916         spin_lock_init(&dev->n_cqs_lock);
1917         spin_lock_init(&dev->n_qps_lock);
1918         spin_lock_init(&dev->n_srqs_lock);
1919         spin_lock_init(&dev->n_mcast_grps_lock);
1920         init_timer(&dev->mem_timer);
1921         dev->mem_timer.function = mem_timer;
1922         dev->mem_timer.data = (unsigned long) dev;
1923
1924         /*
1925          * The top hfi1_lkey_table_size bits are used to index the
1926          * table.  The lower 8 bits can be owned by the user (copied from
1927          * the LKEY).  The remaining bits act as a generation number or tag.
1928          */
1929         spin_lock_init(&dev->lk_table.lock);
1930         dev->lk_table.max = 1 << hfi1_lkey_table_size;
1931         /* ensure generation is at least 4 bits (keys.c) */
1932         if (hfi1_lkey_table_size > MAX_LKEY_TABLE_BITS) {
1933                 dd_dev_warn(dd, "lkey bits %u too large, reduced to %u\n",
1934                               hfi1_lkey_table_size, MAX_LKEY_TABLE_BITS);
1935                 hfi1_lkey_table_size = MAX_LKEY_TABLE_BITS;
1936         }
1937         lk_tab_size = dev->lk_table.max * sizeof(*dev->lk_table.table);
1938         dev->lk_table.table = (struct hfi1_mregion __rcu **)
1939                 vmalloc(lk_tab_size);
1940         if (dev->lk_table.table == NULL) {
1941                 ret = -ENOMEM;
1942                 goto err_lk;
1943         }
1944         RCU_INIT_POINTER(dev->dma_mr, NULL);
1945         for (i = 0; i < dev->lk_table.max; i++)
1946                 RCU_INIT_POINTER(dev->lk_table.table[i], NULL);
1947         INIT_LIST_HEAD(&dev->pending_mmaps);
1948         spin_lock_init(&dev->pending_lock);
1949         seqlock_init(&dev->iowait_lock);
1950         dev->mmap_offset = PAGE_SIZE;
1951         spin_lock_init(&dev->mmap_offset_lock);
1952         INIT_LIST_HEAD(&dev->txwait);
1953         INIT_LIST_HEAD(&dev->memwait);
1954
1955         descq_cnt = sdma_get_descq_cnt();
1956
1957         /* SLAB_HWCACHE_ALIGN for AHG */
1958         dev->verbs_txreq_cache = kmem_cache_create("hfi1_vtxreq_cache",
1959                                                    sizeof(struct verbs_txreq),
1960                                                    0, SLAB_HWCACHE_ALIGN,
1961                                                    verbs_txreq_kmem_cache_ctor);
1962         if (!dev->verbs_txreq_cache) {
1963                 ret = -ENOMEM;
1964                 goto err_verbs_txreq;
1965         }
1966
1967         /*
1968          * The system image GUID is supposed to be the same for all
1969          * HFIs in a single system but since there can be other
1970          * device types in the system, we can't be sure this is unique.
1971          */
1972         if (!ib_hfi1_sys_image_guid)
1973                 ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1974         lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1975         strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1976         ibdev->owner = THIS_MODULE;
1977         ibdev->node_guid = cpu_to_be64(ppd->guid);
1978         ibdev->uverbs_abi_ver = HFI1_UVERBS_ABI_VERSION;
1979         ibdev->uverbs_cmd_mask =
1980                 (1ull << IB_USER_VERBS_CMD_GET_CONTEXT)         |
1981                 (1ull << IB_USER_VERBS_CMD_QUERY_DEVICE)        |
1982                 (1ull << IB_USER_VERBS_CMD_QUERY_PORT)          |
1983                 (1ull << IB_USER_VERBS_CMD_ALLOC_PD)            |
1984                 (1ull << IB_USER_VERBS_CMD_DEALLOC_PD)          |
1985                 (1ull << IB_USER_VERBS_CMD_CREATE_AH)           |
1986                 (1ull << IB_USER_VERBS_CMD_MODIFY_AH)           |
1987                 (1ull << IB_USER_VERBS_CMD_QUERY_AH)            |
1988                 (1ull << IB_USER_VERBS_CMD_DESTROY_AH)          |
1989                 (1ull << IB_USER_VERBS_CMD_REG_MR)              |
1990                 (1ull << IB_USER_VERBS_CMD_DEREG_MR)            |
1991                 (1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
1992                 (1ull << IB_USER_VERBS_CMD_CREATE_CQ)           |
1993                 (1ull << IB_USER_VERBS_CMD_RESIZE_CQ)           |
1994                 (1ull << IB_USER_VERBS_CMD_DESTROY_CQ)          |
1995                 (1ull << IB_USER_VERBS_CMD_POLL_CQ)             |
1996                 (1ull << IB_USER_VERBS_CMD_REQ_NOTIFY_CQ)       |
1997                 (1ull << IB_USER_VERBS_CMD_CREATE_QP)           |
1998                 (1ull << IB_USER_VERBS_CMD_QUERY_QP)            |
1999                 (1ull << IB_USER_VERBS_CMD_MODIFY_QP)           |
2000                 (1ull << IB_USER_VERBS_CMD_DESTROY_QP)          |
2001                 (1ull << IB_USER_VERBS_CMD_POST_SEND)           |
2002                 (1ull << IB_USER_VERBS_CMD_POST_RECV)           |
2003                 (1ull << IB_USER_VERBS_CMD_ATTACH_MCAST)        |
2004                 (1ull << IB_USER_VERBS_CMD_DETACH_MCAST)        |
2005                 (1ull << IB_USER_VERBS_CMD_CREATE_SRQ)          |
2006                 (1ull << IB_USER_VERBS_CMD_MODIFY_SRQ)          |
2007                 (1ull << IB_USER_VERBS_CMD_QUERY_SRQ)           |
2008                 (1ull << IB_USER_VERBS_CMD_DESTROY_SRQ)         |
2009                 (1ull << IB_USER_VERBS_CMD_POST_SRQ_RECV);
2010         ibdev->node_type = RDMA_NODE_IB_CA;
2011         ibdev->phys_port_cnt = dd->num_pports;
2012         ibdev->num_comp_vectors = 1;
2013         ibdev->dma_device = &dd->pcidev->dev;
2014         ibdev->query_device = query_device;
2015         ibdev->modify_device = modify_device;
2016         ibdev->query_port = query_port;
2017         ibdev->modify_port = modify_port;
2018         ibdev->query_pkey = query_pkey;
2019         ibdev->query_gid = query_gid;
2020         ibdev->alloc_ucontext = alloc_ucontext;
2021         ibdev->dealloc_ucontext = dealloc_ucontext;
2022         ibdev->alloc_pd = alloc_pd;
2023         ibdev->dealloc_pd = dealloc_pd;
2024         ibdev->create_ah = create_ah;
2025         ibdev->destroy_ah = destroy_ah;
2026         ibdev->modify_ah = modify_ah;
2027         ibdev->query_ah = query_ah;
2028         ibdev->create_srq = hfi1_create_srq;
2029         ibdev->modify_srq = hfi1_modify_srq;
2030         ibdev->query_srq = hfi1_query_srq;
2031         ibdev->destroy_srq = hfi1_destroy_srq;
2032         ibdev->create_qp = hfi1_create_qp;
2033         ibdev->modify_qp = hfi1_modify_qp;
2034         ibdev->query_qp = hfi1_query_qp;
2035         ibdev->destroy_qp = hfi1_destroy_qp;
2036         ibdev->post_send = post_send;
2037         ibdev->post_recv = post_receive;
2038         ibdev->post_srq_recv = hfi1_post_srq_receive;
2039         ibdev->create_cq = hfi1_create_cq;
2040         ibdev->destroy_cq = hfi1_destroy_cq;
2041         ibdev->resize_cq = hfi1_resize_cq;
2042         ibdev->poll_cq = hfi1_poll_cq;
2043         ibdev->req_notify_cq = hfi1_req_notify_cq;
2044         ibdev->get_dma_mr = hfi1_get_dma_mr;
2045         ibdev->reg_phys_mr = hfi1_reg_phys_mr;
2046         ibdev->reg_user_mr = hfi1_reg_user_mr;
2047         ibdev->dereg_mr = hfi1_dereg_mr;
2048         ibdev->alloc_mr = hfi1_alloc_mr;
2049         ibdev->alloc_fast_reg_page_list = hfi1_alloc_fast_reg_page_list;
2050         ibdev->free_fast_reg_page_list = hfi1_free_fast_reg_page_list;
2051         ibdev->alloc_fmr = hfi1_alloc_fmr;
2052         ibdev->map_phys_fmr = hfi1_map_phys_fmr;
2053         ibdev->unmap_fmr = hfi1_unmap_fmr;
2054         ibdev->dealloc_fmr = hfi1_dealloc_fmr;
2055         ibdev->attach_mcast = hfi1_multicast_attach;
2056         ibdev->detach_mcast = hfi1_multicast_detach;
2057         ibdev->process_mad = hfi1_process_mad;
2058         ibdev->mmap = hfi1_mmap;
2059         ibdev->dma_ops = &hfi1_dma_mapping_ops;
2060         ibdev->get_port_immutable = port_immutable;
2061
2062         strncpy(ibdev->node_desc, init_utsname()->nodename,
2063                 sizeof(ibdev->node_desc));
2064
2065         ret = ib_register_device(ibdev, hfi1_create_port_files);
2066         if (ret)
2067                 goto err_reg;
2068
2069         ret = hfi1_create_agents(dev);
2070         if (ret)
2071                 goto err_agents;
2072
2073         ret = hfi1_verbs_register_sysfs(dd);
2074         if (ret)
2075                 goto err_class;
2076
2077         goto bail;
2078
2079 err_class:
2080         hfi1_free_agents(dev);
2081 err_agents:
2082         ib_unregister_device(ibdev);
2083 err_reg:
2084 err_verbs_txreq:
2085         kmem_cache_destroy(dev->verbs_txreq_cache);
2086         vfree(dev->lk_table.table);
2087 err_lk:
2088         hfi1_qp_exit(dev);
2089 err_qp_init:
2090         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
2091 bail:
2092         return ret;
2093 }
2094
2095 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
2096 {
2097         struct hfi1_ibdev *dev = &dd->verbs_dev;
2098         struct ib_device *ibdev = &dev->ibdev;
2099
2100         hfi1_verbs_unregister_sysfs(dd);
2101
2102         hfi1_free_agents(dev);
2103
2104         ib_unregister_device(ibdev);
2105
2106         if (!list_empty(&dev->txwait))
2107                 dd_dev_err(dd, "txwait list not empty!\n");
2108         if (!list_empty(&dev->memwait))
2109                 dd_dev_err(dd, "memwait list not empty!\n");
2110         if (dev->dma_mr)
2111                 dd_dev_err(dd, "DMA MR not NULL!\n");
2112
2113         hfi1_qp_exit(dev);
2114         del_timer_sync(&dev->mem_timer);
2115         kmem_cache_destroy(dev->verbs_txreq_cache);
2116         vfree(dev->lk_table.table);
2117 }
2118
2119 /*
2120  * This must be called with s_lock held.
2121  */
2122 void hfi1_schedule_send(struct hfi1_qp *qp)
2123 {
2124         if (hfi1_send_ok(qp)) {
2125                 struct hfi1_ibport *ibp =
2126                         to_iport(qp->ibqp.device, qp->port_num);
2127                 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2128
2129                 iowait_schedule(&qp->s_iowait, ppd->hfi1_wq);
2130         }
2131 }
2132
2133 void hfi1_cnp_rcv(struct hfi1_packet *packet)
2134 {
2135         struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
2136
2137         if (packet->qp->ibqp.qp_type == IB_QPT_UC)
2138                 hfi1_uc_rcv(packet);
2139         else if (packet->qp->ibqp.qp_type == IB_QPT_UD)
2140                 hfi1_ud_rcv(packet);
2141         else
2142                 ibp->n_pkt_drops++;
2143 }