]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/target/target_core_transport.c
staging: board: disable as it breaks the build
[karo-tx-linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
67
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70                 struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73
74 int init_se_kmem_caches(void)
75 {
76         se_sess_cache = kmem_cache_create("se_sess_cache",
77                         sizeof(struct se_session), __alignof__(struct se_session),
78                         0, NULL);
79         if (!se_sess_cache) {
80                 pr_err("kmem_cache_create() for struct se_session"
81                                 " failed\n");
82                 goto out;
83         }
84         se_ua_cache = kmem_cache_create("se_ua_cache",
85                         sizeof(struct se_ua), __alignof__(struct se_ua),
86                         0, NULL);
87         if (!se_ua_cache) {
88                 pr_err("kmem_cache_create() for struct se_ua failed\n");
89                 goto out_free_sess_cache;
90         }
91         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92                         sizeof(struct t10_pr_registration),
93                         __alignof__(struct t10_pr_registration), 0, NULL);
94         if (!t10_pr_reg_cache) {
95                 pr_err("kmem_cache_create() for struct t10_pr_registration"
96                                 " failed\n");
97                 goto out_free_ua_cache;
98         }
99         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101                         0, NULL);
102         if (!t10_alua_lu_gp_cache) {
103                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104                                 " failed\n");
105                 goto out_free_pr_reg_cache;
106         }
107         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108                         sizeof(struct t10_alua_lu_gp_member),
109                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110         if (!t10_alua_lu_gp_mem_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112                                 "cache failed\n");
113                 goto out_free_lu_gp_cache;
114         }
115         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116                         sizeof(struct t10_alua_tg_pt_gp),
117                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118         if (!t10_alua_tg_pt_gp_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_mem_cache;
122         }
123         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124                         "t10_alua_tg_pt_gp_mem_cache",
125                         sizeof(struct t10_alua_tg_pt_gp_member),
126                         __alignof__(struct t10_alua_tg_pt_gp_member),
127                         0, NULL);
128         if (!t10_alua_tg_pt_gp_mem_cache) {
129                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130                                 "mem_t failed\n");
131                 goto out_free_tg_pt_gp_cache;
132         }
133         t10_alua_lba_map_cache = kmem_cache_create(
134                         "t10_alua_lba_map_cache",
135                         sizeof(struct t10_alua_lba_map),
136                         __alignof__(struct t10_alua_lba_map), 0, NULL);
137         if (!t10_alua_lba_map_cache) {
138                 pr_err("kmem_cache_create() for t10_alua_lba_map_"
139                                 "cache failed\n");
140                 goto out_free_tg_pt_gp_mem_cache;
141         }
142         t10_alua_lba_map_mem_cache = kmem_cache_create(
143                         "t10_alua_lba_map_mem_cache",
144                         sizeof(struct t10_alua_lba_map_member),
145                         __alignof__(struct t10_alua_lba_map_member), 0, NULL);
146         if (!t10_alua_lba_map_mem_cache) {
147                 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148                                 "cache failed\n");
149                 goto out_free_lba_map_cache;
150         }
151
152         target_completion_wq = alloc_workqueue("target_completion",
153                                                WQ_MEM_RECLAIM, 0);
154         if (!target_completion_wq)
155                 goto out_free_lba_map_mem_cache;
156
157         return 0;
158
159 out_free_lba_map_mem_cache:
160         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162         kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170         kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172         kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174         kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176         kmem_cache_destroy(se_sess_cache);
177 out:
178         return -ENOMEM;
179 }
180
181 void release_se_kmem_caches(void)
182 {
183         destroy_workqueue(target_completion_wq);
184         kmem_cache_destroy(se_sess_cache);
185         kmem_cache_destroy(se_ua_cache);
186         kmem_cache_destroy(t10_pr_reg_cache);
187         kmem_cache_destroy(t10_alua_lu_gp_cache);
188         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191         kmem_cache_destroy(t10_alua_lba_map_cache);
192         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
193 }
194
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198
199 /*
200  * Allocate a new row index for the entry type specified
201  */
202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204         u32 new_index;
205
206         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207
208         spin_lock(&scsi_mib_index_lock);
209         new_index = ++scsi_mib_index[type];
210         spin_unlock(&scsi_mib_index_lock);
211
212         return new_index;
213 }
214
215 void transport_subsystem_check_init(void)
216 {
217         int ret;
218         static int sub_api_initialized;
219
220         if (sub_api_initialized)
221                 return;
222
223         ret = request_module("target_core_iblock");
224         if (ret != 0)
225                 pr_err("Unable to load target_core_iblock\n");
226
227         ret = request_module("target_core_file");
228         if (ret != 0)
229                 pr_err("Unable to load target_core_file\n");
230
231         ret = request_module("target_core_pscsi");
232         if (ret != 0)
233                 pr_err("Unable to load target_core_pscsi\n");
234
235         sub_api_initialized = 1;
236 }
237
238 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
239 {
240         struct se_session *se_sess;
241
242         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
243         if (!se_sess) {
244                 pr_err("Unable to allocate struct se_session from"
245                                 " se_sess_cache\n");
246                 return ERR_PTR(-ENOMEM);
247         }
248         INIT_LIST_HEAD(&se_sess->sess_list);
249         INIT_LIST_HEAD(&se_sess->sess_acl_list);
250         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
251         INIT_LIST_HEAD(&se_sess->sess_wait_list);
252         spin_lock_init(&se_sess->sess_cmd_lock);
253         kref_init(&se_sess->sess_kref);
254         se_sess->sup_prot_ops = sup_prot_ops;
255
256         return se_sess;
257 }
258 EXPORT_SYMBOL(transport_init_session);
259
260 int transport_alloc_session_tags(struct se_session *se_sess,
261                                  unsigned int tag_num, unsigned int tag_size)
262 {
263         int rc;
264
265         se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
266                                         GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
267         if (!se_sess->sess_cmd_map) {
268                 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
269                 if (!se_sess->sess_cmd_map) {
270                         pr_err("Unable to allocate se_sess->sess_cmd_map\n");
271                         return -ENOMEM;
272                 }
273         }
274
275         rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
276         if (rc < 0) {
277                 pr_err("Unable to init se_sess->sess_tag_pool,"
278                         " tag_num: %u\n", tag_num);
279                 if (is_vmalloc_addr(se_sess->sess_cmd_map))
280                         vfree(se_sess->sess_cmd_map);
281                 else
282                         kfree(se_sess->sess_cmd_map);
283                 se_sess->sess_cmd_map = NULL;
284                 return -ENOMEM;
285         }
286
287         return 0;
288 }
289 EXPORT_SYMBOL(transport_alloc_session_tags);
290
291 struct se_session *transport_init_session_tags(unsigned int tag_num,
292                                                unsigned int tag_size,
293                                                enum target_prot_op sup_prot_ops)
294 {
295         struct se_session *se_sess;
296         int rc;
297
298         se_sess = transport_init_session(sup_prot_ops);
299         if (IS_ERR(se_sess))
300                 return se_sess;
301
302         rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
303         if (rc < 0) {
304                 transport_free_session(se_sess);
305                 return ERR_PTR(-ENOMEM);
306         }
307
308         return se_sess;
309 }
310 EXPORT_SYMBOL(transport_init_session_tags);
311
312 /*
313  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
314  */
315 void __transport_register_session(
316         struct se_portal_group *se_tpg,
317         struct se_node_acl *se_nacl,
318         struct se_session *se_sess,
319         void *fabric_sess_ptr)
320 {
321         unsigned char buf[PR_REG_ISID_LEN];
322
323         se_sess->se_tpg = se_tpg;
324         se_sess->fabric_sess_ptr = fabric_sess_ptr;
325         /*
326          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
327          *
328          * Only set for struct se_session's that will actually be moving I/O.
329          * eg: *NOT* discovery sessions.
330          */
331         if (se_nacl) {
332                 /*
333                  * If the fabric module supports an ISID based TransportID,
334                  * save this value in binary from the fabric I_T Nexus now.
335                  */
336                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
337                         memset(&buf[0], 0, PR_REG_ISID_LEN);
338                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
339                                         &buf[0], PR_REG_ISID_LEN);
340                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
341                 }
342                 kref_get(&se_nacl->acl_kref);
343
344                 spin_lock_irq(&se_nacl->nacl_sess_lock);
345                 /*
346                  * The se_nacl->nacl_sess pointer will be set to the
347                  * last active I_T Nexus for each struct se_node_acl.
348                  */
349                 se_nacl->nacl_sess = se_sess;
350
351                 list_add_tail(&se_sess->sess_acl_list,
352                               &se_nacl->acl_sess_list);
353                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
354         }
355         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
356
357         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
358                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
359 }
360 EXPORT_SYMBOL(__transport_register_session);
361
362 void transport_register_session(
363         struct se_portal_group *se_tpg,
364         struct se_node_acl *se_nacl,
365         struct se_session *se_sess,
366         void *fabric_sess_ptr)
367 {
368         unsigned long flags;
369
370         spin_lock_irqsave(&se_tpg->session_lock, flags);
371         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
372         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
373 }
374 EXPORT_SYMBOL(transport_register_session);
375
376 static void target_release_session(struct kref *kref)
377 {
378         struct se_session *se_sess = container_of(kref,
379                         struct se_session, sess_kref);
380         struct se_portal_group *se_tpg = se_sess->se_tpg;
381
382         se_tpg->se_tpg_tfo->close_session(se_sess);
383 }
384
385 void target_get_session(struct se_session *se_sess)
386 {
387         kref_get(&se_sess->sess_kref);
388 }
389 EXPORT_SYMBOL(target_get_session);
390
391 void target_put_session(struct se_session *se_sess)
392 {
393         struct se_portal_group *tpg = se_sess->se_tpg;
394
395         if (tpg->se_tpg_tfo->put_session != NULL) {
396                 tpg->se_tpg_tfo->put_session(se_sess);
397                 return;
398         }
399         kref_put(&se_sess->sess_kref, target_release_session);
400 }
401 EXPORT_SYMBOL(target_put_session);
402
403 static void target_complete_nacl(struct kref *kref)
404 {
405         struct se_node_acl *nacl = container_of(kref,
406                                 struct se_node_acl, acl_kref);
407
408         complete(&nacl->acl_free_comp);
409 }
410
411 void target_put_nacl(struct se_node_acl *nacl)
412 {
413         kref_put(&nacl->acl_kref, target_complete_nacl);
414 }
415
416 void transport_deregister_session_configfs(struct se_session *se_sess)
417 {
418         struct se_node_acl *se_nacl;
419         unsigned long flags;
420         /*
421          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
422          */
423         se_nacl = se_sess->se_node_acl;
424         if (se_nacl) {
425                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
426                 if (se_nacl->acl_stop == 0)
427                         list_del(&se_sess->sess_acl_list);
428                 /*
429                  * If the session list is empty, then clear the pointer.
430                  * Otherwise, set the struct se_session pointer from the tail
431                  * element of the per struct se_node_acl active session list.
432                  */
433                 if (list_empty(&se_nacl->acl_sess_list))
434                         se_nacl->nacl_sess = NULL;
435                 else {
436                         se_nacl->nacl_sess = container_of(
437                                         se_nacl->acl_sess_list.prev,
438                                         struct se_session, sess_acl_list);
439                 }
440                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
441         }
442 }
443 EXPORT_SYMBOL(transport_deregister_session_configfs);
444
445 void transport_free_session(struct se_session *se_sess)
446 {
447         if (se_sess->sess_cmd_map) {
448                 percpu_ida_destroy(&se_sess->sess_tag_pool);
449                 if (is_vmalloc_addr(se_sess->sess_cmd_map))
450                         vfree(se_sess->sess_cmd_map);
451                 else
452                         kfree(se_sess->sess_cmd_map);
453         }
454         kmem_cache_free(se_sess_cache, se_sess);
455 }
456 EXPORT_SYMBOL(transport_free_session);
457
458 void transport_deregister_session(struct se_session *se_sess)
459 {
460         struct se_portal_group *se_tpg = se_sess->se_tpg;
461         struct target_core_fabric_ops *se_tfo;
462         struct se_node_acl *se_nacl;
463         unsigned long flags;
464         bool comp_nacl = true;
465
466         if (!se_tpg) {
467                 transport_free_session(se_sess);
468                 return;
469         }
470         se_tfo = se_tpg->se_tpg_tfo;
471
472         spin_lock_irqsave(&se_tpg->session_lock, flags);
473         list_del(&se_sess->sess_list);
474         se_sess->se_tpg = NULL;
475         se_sess->fabric_sess_ptr = NULL;
476         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
477
478         /*
479          * Determine if we need to do extra work for this initiator node's
480          * struct se_node_acl if it had been previously dynamically generated.
481          */
482         se_nacl = se_sess->se_node_acl;
483
484         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
485         if (se_nacl && se_nacl->dynamic_node_acl) {
486                 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
487                         list_del(&se_nacl->acl_list);
488                         se_tpg->num_node_acls--;
489                         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
490                         core_tpg_wait_for_nacl_pr_ref(se_nacl);
491                         core_free_device_list_for_node(se_nacl, se_tpg);
492                         se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
493
494                         comp_nacl = false;
495                         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
496                 }
497         }
498         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
499
500         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
501                 se_tpg->se_tpg_tfo->get_fabric_name());
502         /*
503          * If last kref is dropping now for an explicit NodeACL, awake sleeping
504          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
505          * removal context.
506          */
507         if (se_nacl && comp_nacl)
508                 target_put_nacl(se_nacl);
509
510         transport_free_session(se_sess);
511 }
512 EXPORT_SYMBOL(transport_deregister_session);
513
514 /*
515  * Called with cmd->t_state_lock held.
516  */
517 static void target_remove_from_state_list(struct se_cmd *cmd)
518 {
519         struct se_device *dev = cmd->se_dev;
520         unsigned long flags;
521
522         if (!dev)
523                 return;
524
525         if (cmd->transport_state & CMD_T_BUSY)
526                 return;
527
528         spin_lock_irqsave(&dev->execute_task_lock, flags);
529         if (cmd->state_active) {
530                 list_del(&cmd->state_list);
531                 cmd->state_active = false;
532         }
533         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
534 }
535
536 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
537                                     bool write_pending)
538 {
539         unsigned long flags;
540
541         spin_lock_irqsave(&cmd->t_state_lock, flags);
542         if (write_pending)
543                 cmd->t_state = TRANSPORT_WRITE_PENDING;
544
545         if (remove_from_lists) {
546                 target_remove_from_state_list(cmd);
547
548                 /*
549                  * Clear struct se_cmd->se_lun before the handoff to FE.
550                  */
551                 cmd->se_lun = NULL;
552         }
553
554         /*
555          * Determine if frontend context caller is requesting the stopping of
556          * this command for frontend exceptions.
557          */
558         if (cmd->transport_state & CMD_T_STOP) {
559                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
560                         __func__, __LINE__,
561                         cmd->se_tfo->get_task_tag(cmd));
562
563                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
564
565                 complete_all(&cmd->t_transport_stop_comp);
566                 return 1;
567         }
568
569         cmd->transport_state &= ~CMD_T_ACTIVE;
570         if (remove_from_lists) {
571                 /*
572                  * Some fabric modules like tcm_loop can release
573                  * their internally allocated I/O reference now and
574                  * struct se_cmd now.
575                  *
576                  * Fabric modules are expected to return '1' here if the
577                  * se_cmd being passed is released at this point,
578                  * or zero if not being released.
579                  */
580                 if (cmd->se_tfo->check_stop_free != NULL) {
581                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
582                         return cmd->se_tfo->check_stop_free(cmd);
583                 }
584         }
585
586         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
587         return 0;
588 }
589
590 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
591 {
592         return transport_cmd_check_stop(cmd, true, false);
593 }
594
595 static void transport_lun_remove_cmd(struct se_cmd *cmd)
596 {
597         struct se_lun *lun = cmd->se_lun;
598
599         if (!lun)
600                 return;
601
602         if (cmpxchg(&cmd->lun_ref_active, true, false))
603                 percpu_ref_put(&lun->lun_ref);
604 }
605
606 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
607 {
608         if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
609                 transport_lun_remove_cmd(cmd);
610         /*
611          * Allow the fabric driver to unmap any resources before
612          * releasing the descriptor via TFO->release_cmd()
613          */
614         if (remove)
615                 cmd->se_tfo->aborted_task(cmd);
616
617         if (transport_cmd_check_stop_to_fabric(cmd))
618                 return;
619         if (remove)
620                 transport_put_cmd(cmd);
621 }
622
623 static void target_complete_failure_work(struct work_struct *work)
624 {
625         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
626
627         transport_generic_request_failure(cmd,
628                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
629 }
630
631 /*
632  * Used when asking transport to copy Sense Data from the underlying
633  * Linux/SCSI struct scsi_cmnd
634  */
635 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
636 {
637         struct se_device *dev = cmd->se_dev;
638
639         WARN_ON(!cmd->se_lun);
640
641         if (!dev)
642                 return NULL;
643
644         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
645                 return NULL;
646
647         cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
648
649         pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
650                 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
651         return cmd->sense_buffer;
652 }
653
654 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
655 {
656         struct se_device *dev = cmd->se_dev;
657         int success = scsi_status == GOOD;
658         unsigned long flags;
659
660         cmd->scsi_status = scsi_status;
661
662
663         spin_lock_irqsave(&cmd->t_state_lock, flags);
664         cmd->transport_state &= ~CMD_T_BUSY;
665
666         if (dev && dev->transport->transport_complete) {
667                 dev->transport->transport_complete(cmd,
668                                 cmd->t_data_sg,
669                                 transport_get_sense_buffer(cmd));
670                 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
671                         success = 1;
672         }
673
674         /*
675          * See if we are waiting to complete for an exception condition.
676          */
677         if (cmd->transport_state & CMD_T_REQUEST_STOP) {
678                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
679                 complete(&cmd->task_stop_comp);
680                 return;
681         }
682
683         /*
684          * Check for case where an explicit ABORT_TASK has been received
685          * and transport_wait_for_tasks() will be waiting for completion..
686          */
687         if (cmd->transport_state & CMD_T_ABORTED &&
688             cmd->transport_state & CMD_T_STOP) {
689                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
690                 complete_all(&cmd->t_transport_stop_comp);
691                 return;
692         } else if (!success) {
693                 INIT_WORK(&cmd->work, target_complete_failure_work);
694         } else {
695                 INIT_WORK(&cmd->work, target_complete_ok_work);
696         }
697
698         cmd->t_state = TRANSPORT_COMPLETE;
699         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
700         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
701
702         queue_work(target_completion_wq, &cmd->work);
703 }
704 EXPORT_SYMBOL(target_complete_cmd);
705
706 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
707 {
708         if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
709                 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
710                         cmd->residual_count += cmd->data_length - length;
711                 } else {
712                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
713                         cmd->residual_count = cmd->data_length - length;
714                 }
715
716                 cmd->data_length = length;
717         }
718
719         target_complete_cmd(cmd, scsi_status);
720 }
721 EXPORT_SYMBOL(target_complete_cmd_with_length);
722
723 static void target_add_to_state_list(struct se_cmd *cmd)
724 {
725         struct se_device *dev = cmd->se_dev;
726         unsigned long flags;
727
728         spin_lock_irqsave(&dev->execute_task_lock, flags);
729         if (!cmd->state_active) {
730                 list_add_tail(&cmd->state_list, &dev->state_list);
731                 cmd->state_active = true;
732         }
733         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
734 }
735
736 /*
737  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
738  */
739 static void transport_write_pending_qf(struct se_cmd *cmd);
740 static void transport_complete_qf(struct se_cmd *cmd);
741
742 void target_qf_do_work(struct work_struct *work)
743 {
744         struct se_device *dev = container_of(work, struct se_device,
745                                         qf_work_queue);
746         LIST_HEAD(qf_cmd_list);
747         struct se_cmd *cmd, *cmd_tmp;
748
749         spin_lock_irq(&dev->qf_cmd_lock);
750         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
751         spin_unlock_irq(&dev->qf_cmd_lock);
752
753         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
754                 list_del(&cmd->se_qf_node);
755                 atomic_dec(&dev->dev_qf_count);
756                 smp_mb__after_atomic();
757
758                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
759                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
760                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
761                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
762                         : "UNKNOWN");
763
764                 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
765                         transport_write_pending_qf(cmd);
766                 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
767                         transport_complete_qf(cmd);
768         }
769 }
770
771 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
772 {
773         switch (cmd->data_direction) {
774         case DMA_NONE:
775                 return "NONE";
776         case DMA_FROM_DEVICE:
777                 return "READ";
778         case DMA_TO_DEVICE:
779                 return "WRITE";
780         case DMA_BIDIRECTIONAL:
781                 return "BIDI";
782         default:
783                 break;
784         }
785
786         return "UNKNOWN";
787 }
788
789 void transport_dump_dev_state(
790         struct se_device *dev,
791         char *b,
792         int *bl)
793 {
794         *bl += sprintf(b + *bl, "Status: ");
795         if (dev->export_count)
796                 *bl += sprintf(b + *bl, "ACTIVATED");
797         else
798                 *bl += sprintf(b + *bl, "DEACTIVATED");
799
800         *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
801         *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
802                 dev->dev_attrib.block_size,
803                 dev->dev_attrib.hw_max_sectors);
804         *bl += sprintf(b + *bl, "        ");
805 }
806
807 void transport_dump_vpd_proto_id(
808         struct t10_vpd *vpd,
809         unsigned char *p_buf,
810         int p_buf_len)
811 {
812         unsigned char buf[VPD_TMP_BUF_SIZE];
813         int len;
814
815         memset(buf, 0, VPD_TMP_BUF_SIZE);
816         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
817
818         switch (vpd->protocol_identifier) {
819         case 0x00:
820                 sprintf(buf+len, "Fibre Channel\n");
821                 break;
822         case 0x10:
823                 sprintf(buf+len, "Parallel SCSI\n");
824                 break;
825         case 0x20:
826                 sprintf(buf+len, "SSA\n");
827                 break;
828         case 0x30:
829                 sprintf(buf+len, "IEEE 1394\n");
830                 break;
831         case 0x40:
832                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
833                                 " Protocol\n");
834                 break;
835         case 0x50:
836                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
837                 break;
838         case 0x60:
839                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
840                 break;
841         case 0x70:
842                 sprintf(buf+len, "Automation/Drive Interface Transport"
843                                 " Protocol\n");
844                 break;
845         case 0x80:
846                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
847                 break;
848         default:
849                 sprintf(buf+len, "Unknown 0x%02x\n",
850                                 vpd->protocol_identifier);
851                 break;
852         }
853
854         if (p_buf)
855                 strncpy(p_buf, buf, p_buf_len);
856         else
857                 pr_debug("%s", buf);
858 }
859
860 void
861 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
862 {
863         /*
864          * Check if the Protocol Identifier Valid (PIV) bit is set..
865          *
866          * from spc3r23.pdf section 7.5.1
867          */
868          if (page_83[1] & 0x80) {
869                 vpd->protocol_identifier = (page_83[0] & 0xf0);
870                 vpd->protocol_identifier_set = 1;
871                 transport_dump_vpd_proto_id(vpd, NULL, 0);
872         }
873 }
874 EXPORT_SYMBOL(transport_set_vpd_proto_id);
875
876 int transport_dump_vpd_assoc(
877         struct t10_vpd *vpd,
878         unsigned char *p_buf,
879         int p_buf_len)
880 {
881         unsigned char buf[VPD_TMP_BUF_SIZE];
882         int ret = 0;
883         int len;
884
885         memset(buf, 0, VPD_TMP_BUF_SIZE);
886         len = sprintf(buf, "T10 VPD Identifier Association: ");
887
888         switch (vpd->association) {
889         case 0x00:
890                 sprintf(buf+len, "addressed logical unit\n");
891                 break;
892         case 0x10:
893                 sprintf(buf+len, "target port\n");
894                 break;
895         case 0x20:
896                 sprintf(buf+len, "SCSI target device\n");
897                 break;
898         default:
899                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
900                 ret = -EINVAL;
901                 break;
902         }
903
904         if (p_buf)
905                 strncpy(p_buf, buf, p_buf_len);
906         else
907                 pr_debug("%s", buf);
908
909         return ret;
910 }
911
912 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
913 {
914         /*
915          * The VPD identification association..
916          *
917          * from spc3r23.pdf Section 7.6.3.1 Table 297
918          */
919         vpd->association = (page_83[1] & 0x30);
920         return transport_dump_vpd_assoc(vpd, NULL, 0);
921 }
922 EXPORT_SYMBOL(transport_set_vpd_assoc);
923
924 int transport_dump_vpd_ident_type(
925         struct t10_vpd *vpd,
926         unsigned char *p_buf,
927         int p_buf_len)
928 {
929         unsigned char buf[VPD_TMP_BUF_SIZE];
930         int ret = 0;
931         int len;
932
933         memset(buf, 0, VPD_TMP_BUF_SIZE);
934         len = sprintf(buf, "T10 VPD Identifier Type: ");
935
936         switch (vpd->device_identifier_type) {
937         case 0x00:
938                 sprintf(buf+len, "Vendor specific\n");
939                 break;
940         case 0x01:
941                 sprintf(buf+len, "T10 Vendor ID based\n");
942                 break;
943         case 0x02:
944                 sprintf(buf+len, "EUI-64 based\n");
945                 break;
946         case 0x03:
947                 sprintf(buf+len, "NAA\n");
948                 break;
949         case 0x04:
950                 sprintf(buf+len, "Relative target port identifier\n");
951                 break;
952         case 0x08:
953                 sprintf(buf+len, "SCSI name string\n");
954                 break;
955         default:
956                 sprintf(buf+len, "Unsupported: 0x%02x\n",
957                                 vpd->device_identifier_type);
958                 ret = -EINVAL;
959                 break;
960         }
961
962         if (p_buf) {
963                 if (p_buf_len < strlen(buf)+1)
964                         return -EINVAL;
965                 strncpy(p_buf, buf, p_buf_len);
966         } else {
967                 pr_debug("%s", buf);
968         }
969
970         return ret;
971 }
972
973 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
974 {
975         /*
976          * The VPD identifier type..
977          *
978          * from spc3r23.pdf Section 7.6.3.1 Table 298
979          */
980         vpd->device_identifier_type = (page_83[1] & 0x0f);
981         return transport_dump_vpd_ident_type(vpd, NULL, 0);
982 }
983 EXPORT_SYMBOL(transport_set_vpd_ident_type);
984
985 int transport_dump_vpd_ident(
986         struct t10_vpd *vpd,
987         unsigned char *p_buf,
988         int p_buf_len)
989 {
990         unsigned char buf[VPD_TMP_BUF_SIZE];
991         int ret = 0;
992
993         memset(buf, 0, VPD_TMP_BUF_SIZE);
994
995         switch (vpd->device_identifier_code_set) {
996         case 0x01: /* Binary */
997                 snprintf(buf, sizeof(buf),
998                         "T10 VPD Binary Device Identifier: %s\n",
999                         &vpd->device_identifier[0]);
1000                 break;
1001         case 0x02: /* ASCII */
1002                 snprintf(buf, sizeof(buf),
1003                         "T10 VPD ASCII Device Identifier: %s\n",
1004                         &vpd->device_identifier[0]);
1005                 break;
1006         case 0x03: /* UTF-8 */
1007                 snprintf(buf, sizeof(buf),
1008                         "T10 VPD UTF-8 Device Identifier: %s\n",
1009                         &vpd->device_identifier[0]);
1010                 break;
1011         default:
1012                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1013                         " 0x%02x", vpd->device_identifier_code_set);
1014                 ret = -EINVAL;
1015                 break;
1016         }
1017
1018         if (p_buf)
1019                 strncpy(p_buf, buf, p_buf_len);
1020         else
1021                 pr_debug("%s", buf);
1022
1023         return ret;
1024 }
1025
1026 int
1027 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1028 {
1029         static const char hex_str[] = "0123456789abcdef";
1030         int j = 0, i = 4; /* offset to start of the identifier */
1031
1032         /*
1033          * The VPD Code Set (encoding)
1034          *
1035          * from spc3r23.pdf Section 7.6.3.1 Table 296
1036          */
1037         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1038         switch (vpd->device_identifier_code_set) {
1039         case 0x01: /* Binary */
1040                 vpd->device_identifier[j++] =
1041                                 hex_str[vpd->device_identifier_type];
1042                 while (i < (4 + page_83[3])) {
1043                         vpd->device_identifier[j++] =
1044                                 hex_str[(page_83[i] & 0xf0) >> 4];
1045                         vpd->device_identifier[j++] =
1046                                 hex_str[page_83[i] & 0x0f];
1047                         i++;
1048                 }
1049                 break;
1050         case 0x02: /* ASCII */
1051         case 0x03: /* UTF-8 */
1052                 while (i < (4 + page_83[3]))
1053                         vpd->device_identifier[j++] = page_83[i++];
1054                 break;
1055         default:
1056                 break;
1057         }
1058
1059         return transport_dump_vpd_ident(vpd, NULL, 0);
1060 }
1061 EXPORT_SYMBOL(transport_set_vpd_ident);
1062
1063 sense_reason_t
1064 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1065 {
1066         struct se_device *dev = cmd->se_dev;
1067
1068         if (cmd->unknown_data_length) {
1069                 cmd->data_length = size;
1070         } else if (size != cmd->data_length) {
1071                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1072                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1073                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1074                                 cmd->data_length, size, cmd->t_task_cdb[0]);
1075
1076                 if (cmd->data_direction == DMA_TO_DEVICE) {
1077                         pr_err("Rejecting underflow/overflow"
1078                                         " WRITE data\n");
1079                         return TCM_INVALID_CDB_FIELD;
1080                 }
1081                 /*
1082                  * Reject READ_* or WRITE_* with overflow/underflow for
1083                  * type SCF_SCSI_DATA_CDB.
1084                  */
1085                 if (dev->dev_attrib.block_size != 512)  {
1086                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1087                                 " CDB on non 512-byte sector setup subsystem"
1088                                 " plugin: %s\n", dev->transport->name);
1089                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1090                         return TCM_INVALID_CDB_FIELD;
1091                 }
1092                 /*
1093                  * For the overflow case keep the existing fabric provided
1094                  * ->data_length.  Otherwise for the underflow case, reset
1095                  * ->data_length to the smaller SCSI expected data transfer
1096                  * length.
1097                  */
1098                 if (size > cmd->data_length) {
1099                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1100                         cmd->residual_count = (size - cmd->data_length);
1101                 } else {
1102                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1103                         cmd->residual_count = (cmd->data_length - size);
1104                         cmd->data_length = size;
1105                 }
1106         }
1107
1108         return 0;
1109
1110 }
1111
1112 /*
1113  * Used by fabric modules containing a local struct se_cmd within their
1114  * fabric dependent per I/O descriptor.
1115  */
1116 void transport_init_se_cmd(
1117         struct se_cmd *cmd,
1118         struct target_core_fabric_ops *tfo,
1119         struct se_session *se_sess,
1120         u32 data_length,
1121         int data_direction,
1122         int task_attr,
1123         unsigned char *sense_buffer)
1124 {
1125         INIT_LIST_HEAD(&cmd->se_delayed_node);
1126         INIT_LIST_HEAD(&cmd->se_qf_node);
1127         INIT_LIST_HEAD(&cmd->se_cmd_list);
1128         INIT_LIST_HEAD(&cmd->state_list);
1129         init_completion(&cmd->t_transport_stop_comp);
1130         init_completion(&cmd->cmd_wait_comp);
1131         init_completion(&cmd->task_stop_comp);
1132         spin_lock_init(&cmd->t_state_lock);
1133         kref_init(&cmd->cmd_kref);
1134         cmd->transport_state = CMD_T_DEV_ACTIVE;
1135
1136         cmd->se_tfo = tfo;
1137         cmd->se_sess = se_sess;
1138         cmd->data_length = data_length;
1139         cmd->data_direction = data_direction;
1140         cmd->sam_task_attr = task_attr;
1141         cmd->sense_buffer = sense_buffer;
1142
1143         cmd->state_active = false;
1144 }
1145 EXPORT_SYMBOL(transport_init_se_cmd);
1146
1147 static sense_reason_t
1148 transport_check_alloc_task_attr(struct se_cmd *cmd)
1149 {
1150         struct se_device *dev = cmd->se_dev;
1151
1152         /*
1153          * Check if SAM Task Attribute emulation is enabled for this
1154          * struct se_device storage object
1155          */
1156         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1157                 return 0;
1158
1159         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1160                 pr_debug("SAM Task Attribute ACA"
1161                         " emulation is not supported\n");
1162                 return TCM_INVALID_CDB_FIELD;
1163         }
1164         /*
1165          * Used to determine when ORDERED commands should go from
1166          * Dormant to Active status.
1167          */
1168         cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1169         smp_mb__after_atomic();
1170         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1171                         cmd->se_ordered_id, cmd->sam_task_attr,
1172                         dev->transport->name);
1173         return 0;
1174 }
1175
1176 sense_reason_t
1177 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1178 {
1179         struct se_device *dev = cmd->se_dev;
1180         sense_reason_t ret;
1181
1182         /*
1183          * Ensure that the received CDB is less than the max (252 + 8) bytes
1184          * for VARIABLE_LENGTH_CMD
1185          */
1186         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1187                 pr_err("Received SCSI CDB with command_size: %d that"
1188                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1189                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1190                 return TCM_INVALID_CDB_FIELD;
1191         }
1192         /*
1193          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1194          * allocate the additional extended CDB buffer now..  Otherwise
1195          * setup the pointer from __t_task_cdb to t_task_cdb.
1196          */
1197         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1198                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1199                                                 GFP_KERNEL);
1200                 if (!cmd->t_task_cdb) {
1201                         pr_err("Unable to allocate cmd->t_task_cdb"
1202                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1203                                 scsi_command_size(cdb),
1204                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1205                         return TCM_OUT_OF_RESOURCES;
1206                 }
1207         } else
1208                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1209         /*
1210          * Copy the original CDB into cmd->
1211          */
1212         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1213
1214         trace_target_sequencer_start(cmd);
1215
1216         /*
1217          * Check for an existing UNIT ATTENTION condition
1218          */
1219         ret = target_scsi3_ua_check(cmd);
1220         if (ret)
1221                 return ret;
1222
1223         ret = target_alua_state_check(cmd);
1224         if (ret)
1225                 return ret;
1226
1227         ret = target_check_reservation(cmd);
1228         if (ret) {
1229                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1230                 return ret;
1231         }
1232
1233         ret = dev->transport->parse_cdb(cmd);
1234         if (ret)
1235                 return ret;
1236
1237         ret = transport_check_alloc_task_attr(cmd);
1238         if (ret)
1239                 return ret;
1240
1241         cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1242
1243         spin_lock(&cmd->se_lun->lun_sep_lock);
1244         if (cmd->se_lun->lun_sep)
1245                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1246         spin_unlock(&cmd->se_lun->lun_sep_lock);
1247         return 0;
1248 }
1249 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1250
1251 /*
1252  * Used by fabric module frontends to queue tasks directly.
1253  * Many only be used from process context only
1254  */
1255 int transport_handle_cdb_direct(
1256         struct se_cmd *cmd)
1257 {
1258         sense_reason_t ret;
1259
1260         if (!cmd->se_lun) {
1261                 dump_stack();
1262                 pr_err("cmd->se_lun is NULL\n");
1263                 return -EINVAL;
1264         }
1265         if (in_interrupt()) {
1266                 dump_stack();
1267                 pr_err("transport_generic_handle_cdb cannot be called"
1268                                 " from interrupt context\n");
1269                 return -EINVAL;
1270         }
1271         /*
1272          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1273          * outstanding descriptors are handled correctly during shutdown via
1274          * transport_wait_for_tasks()
1275          *
1276          * Also, we don't take cmd->t_state_lock here as we only expect
1277          * this to be called for initial descriptor submission.
1278          */
1279         cmd->t_state = TRANSPORT_NEW_CMD;
1280         cmd->transport_state |= CMD_T_ACTIVE;
1281
1282         /*
1283          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1284          * so follow TRANSPORT_NEW_CMD processing thread context usage
1285          * and call transport_generic_request_failure() if necessary..
1286          */
1287         ret = transport_generic_new_cmd(cmd);
1288         if (ret)
1289                 transport_generic_request_failure(cmd, ret);
1290         return 0;
1291 }
1292 EXPORT_SYMBOL(transport_handle_cdb_direct);
1293
1294 sense_reason_t
1295 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1296                 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1297 {
1298         if (!sgl || !sgl_count)
1299                 return 0;
1300
1301         /*
1302          * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1303          * scatterlists already have been set to follow what the fabric
1304          * passes for the original expected data transfer length.
1305          */
1306         if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1307                 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1308                         " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1309                 return TCM_INVALID_CDB_FIELD;
1310         }
1311
1312         cmd->t_data_sg = sgl;
1313         cmd->t_data_nents = sgl_count;
1314
1315         if (sgl_bidi && sgl_bidi_count) {
1316                 cmd->t_bidi_data_sg = sgl_bidi;
1317                 cmd->t_bidi_data_nents = sgl_bidi_count;
1318         }
1319         cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1320         return 0;
1321 }
1322
1323 /*
1324  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1325  *                       se_cmd + use pre-allocated SGL memory.
1326  *
1327  * @se_cmd: command descriptor to submit
1328  * @se_sess: associated se_sess for endpoint
1329  * @cdb: pointer to SCSI CDB
1330  * @sense: pointer to SCSI sense buffer
1331  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1332  * @data_length: fabric expected data transfer length
1333  * @task_addr: SAM task attribute
1334  * @data_dir: DMA data direction
1335  * @flags: flags for command submission from target_sc_flags_tables
1336  * @sgl: struct scatterlist memory for unidirectional mapping
1337  * @sgl_count: scatterlist count for unidirectional mapping
1338  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1339  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1340  * @sgl_prot: struct scatterlist memory protection information
1341  * @sgl_prot_count: scatterlist count for protection information
1342  *
1343  * Returns non zero to signal active I/O shutdown failure.  All other
1344  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1345  * but still return zero here.
1346  *
1347  * This may only be called from process context, and also currently
1348  * assumes internal allocation of fabric payload buffer by target-core.
1349  */
1350 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1351                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1352                 u32 data_length, int task_attr, int data_dir, int flags,
1353                 struct scatterlist *sgl, u32 sgl_count,
1354                 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1355                 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1356 {
1357         struct se_portal_group *se_tpg;
1358         sense_reason_t rc;
1359         int ret;
1360
1361         se_tpg = se_sess->se_tpg;
1362         BUG_ON(!se_tpg);
1363         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1364         BUG_ON(in_interrupt());
1365         /*
1366          * Initialize se_cmd for target operation.  From this point
1367          * exceptions are handled by sending exception status via
1368          * target_core_fabric_ops->queue_status() callback
1369          */
1370         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1371                                 data_length, data_dir, task_attr, sense);
1372         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1373                 se_cmd->unknown_data_length = 1;
1374         /*
1375          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1376          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1377          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1378          * kref_put() to happen during fabric packet acknowledgement.
1379          */
1380         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1381         if (ret)
1382                 return ret;
1383         /*
1384          * Signal bidirectional data payloads to target-core
1385          */
1386         if (flags & TARGET_SCF_BIDI_OP)
1387                 se_cmd->se_cmd_flags |= SCF_BIDI;
1388         /*
1389          * Locate se_lun pointer and attach it to struct se_cmd
1390          */
1391         rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1392         if (rc) {
1393                 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1394                 target_put_sess_cmd(se_sess, se_cmd);
1395                 return 0;
1396         }
1397
1398         rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1399         if (rc != 0) {
1400                 transport_generic_request_failure(se_cmd, rc);
1401                 return 0;
1402         }
1403
1404         /*
1405          * Save pointers for SGLs containing protection information,
1406          * if present.
1407          */
1408         if (sgl_prot_count) {
1409                 se_cmd->t_prot_sg = sgl_prot;
1410                 se_cmd->t_prot_nents = sgl_prot_count;
1411         }
1412
1413         /*
1414          * When a non zero sgl_count has been passed perform SGL passthrough
1415          * mapping for pre-allocated fabric memory instead of having target
1416          * core perform an internal SGL allocation..
1417          */
1418         if (sgl_count != 0) {
1419                 BUG_ON(!sgl);
1420
1421                 /*
1422                  * A work-around for tcm_loop as some userspace code via
1423                  * scsi-generic do not memset their associated read buffers,
1424                  * so go ahead and do that here for type non-data CDBs.  Also
1425                  * note that this is currently guaranteed to be a single SGL
1426                  * for this case by target core in target_setup_cmd_from_cdb()
1427                  * -> transport_generic_cmd_sequencer().
1428                  */
1429                 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1430                      se_cmd->data_direction == DMA_FROM_DEVICE) {
1431                         unsigned char *buf = NULL;
1432
1433                         if (sgl)
1434                                 buf = kmap(sg_page(sgl)) + sgl->offset;
1435
1436                         if (buf) {
1437                                 memset(buf, 0, sgl->length);
1438                                 kunmap(sg_page(sgl));
1439                         }
1440                 }
1441
1442                 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1443                                 sgl_bidi, sgl_bidi_count);
1444                 if (rc != 0) {
1445                         transport_generic_request_failure(se_cmd, rc);
1446                         return 0;
1447                 }
1448         }
1449
1450         /*
1451          * Check if we need to delay processing because of ALUA
1452          * Active/NonOptimized primary access state..
1453          */
1454         core_alua_check_nonop_delay(se_cmd);
1455
1456         transport_handle_cdb_direct(se_cmd);
1457         return 0;
1458 }
1459 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1460
1461 /*
1462  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1463  *
1464  * @se_cmd: command descriptor to submit
1465  * @se_sess: associated se_sess for endpoint
1466  * @cdb: pointer to SCSI CDB
1467  * @sense: pointer to SCSI sense buffer
1468  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1469  * @data_length: fabric expected data transfer length
1470  * @task_addr: SAM task attribute
1471  * @data_dir: DMA data direction
1472  * @flags: flags for command submission from target_sc_flags_tables
1473  *
1474  * Returns non zero to signal active I/O shutdown failure.  All other
1475  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1476  * but still return zero here.
1477  *
1478  * This may only be called from process context, and also currently
1479  * assumes internal allocation of fabric payload buffer by target-core.
1480  *
1481  * It also assumes interal target core SGL memory allocation.
1482  */
1483 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1484                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1485                 u32 data_length, int task_attr, int data_dir, int flags)
1486 {
1487         return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1488                         unpacked_lun, data_length, task_attr, data_dir,
1489                         flags, NULL, 0, NULL, 0, NULL, 0);
1490 }
1491 EXPORT_SYMBOL(target_submit_cmd);
1492
1493 static void target_complete_tmr_failure(struct work_struct *work)
1494 {
1495         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1496
1497         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1498         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1499
1500         transport_cmd_check_stop_to_fabric(se_cmd);
1501 }
1502
1503 /**
1504  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1505  *                     for TMR CDBs
1506  *
1507  * @se_cmd: command descriptor to submit
1508  * @se_sess: associated se_sess for endpoint
1509  * @sense: pointer to SCSI sense buffer
1510  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1511  * @fabric_context: fabric context for TMR req
1512  * @tm_type: Type of TM request
1513  * @gfp: gfp type for caller
1514  * @tag: referenced task tag for TMR_ABORT_TASK
1515  * @flags: submit cmd flags
1516  *
1517  * Callable from all contexts.
1518  **/
1519
1520 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1521                 unsigned char *sense, u32 unpacked_lun,
1522                 void *fabric_tmr_ptr, unsigned char tm_type,
1523                 gfp_t gfp, unsigned int tag, int flags)
1524 {
1525         struct se_portal_group *se_tpg;
1526         int ret;
1527
1528         se_tpg = se_sess->se_tpg;
1529         BUG_ON(!se_tpg);
1530
1531         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1532                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1533         /*
1534          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1535          * allocation failure.
1536          */
1537         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1538         if (ret < 0)
1539                 return -ENOMEM;
1540
1541         if (tm_type == TMR_ABORT_TASK)
1542                 se_cmd->se_tmr_req->ref_task_tag = tag;
1543
1544         /* See target_submit_cmd for commentary */
1545         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1546         if (ret) {
1547                 core_tmr_release_req(se_cmd->se_tmr_req);
1548                 return ret;
1549         }
1550
1551         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1552         if (ret) {
1553                 /*
1554                  * For callback during failure handling, push this work off
1555                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1556                  */
1557                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1558                 schedule_work(&se_cmd->work);
1559                 return 0;
1560         }
1561         transport_generic_handle_tmr(se_cmd);
1562         return 0;
1563 }
1564 EXPORT_SYMBOL(target_submit_tmr);
1565
1566 /*
1567  * If the cmd is active, request it to be stopped and sleep until it
1568  * has completed.
1569  */
1570 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1571 {
1572         bool was_active = false;
1573
1574         if (cmd->transport_state & CMD_T_BUSY) {
1575                 cmd->transport_state |= CMD_T_REQUEST_STOP;
1576                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1577
1578                 pr_debug("cmd %p waiting to complete\n", cmd);
1579                 wait_for_completion(&cmd->task_stop_comp);
1580                 pr_debug("cmd %p stopped successfully\n", cmd);
1581
1582                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1583                 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1584                 cmd->transport_state &= ~CMD_T_BUSY;
1585                 was_active = true;
1586         }
1587
1588         return was_active;
1589 }
1590
1591 /*
1592  * Handle SAM-esque emulation for generic transport request failures.
1593  */
1594 void transport_generic_request_failure(struct se_cmd *cmd,
1595                 sense_reason_t sense_reason)
1596 {
1597         int ret = 0;
1598
1599         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1600                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1601                 cmd->t_task_cdb[0]);
1602         pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1603                 cmd->se_tfo->get_cmd_state(cmd),
1604                 cmd->t_state, sense_reason);
1605         pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1606                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1607                 (cmd->transport_state & CMD_T_STOP) != 0,
1608                 (cmd->transport_state & CMD_T_SENT) != 0);
1609
1610         /*
1611          * For SAM Task Attribute emulation for failed struct se_cmd
1612          */
1613         transport_complete_task_attr(cmd);
1614         /*
1615          * Handle special case for COMPARE_AND_WRITE failure, where the
1616          * callback is expected to drop the per device ->caw_mutex.
1617          */
1618         if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1619              cmd->transport_complete_callback)
1620                 cmd->transport_complete_callback(cmd);
1621
1622         switch (sense_reason) {
1623         case TCM_NON_EXISTENT_LUN:
1624         case TCM_UNSUPPORTED_SCSI_OPCODE:
1625         case TCM_INVALID_CDB_FIELD:
1626         case TCM_INVALID_PARAMETER_LIST:
1627         case TCM_PARAMETER_LIST_LENGTH_ERROR:
1628         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1629         case TCM_UNKNOWN_MODE_PAGE:
1630         case TCM_WRITE_PROTECTED:
1631         case TCM_ADDRESS_OUT_OF_RANGE:
1632         case TCM_CHECK_CONDITION_ABORT_CMD:
1633         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1634         case TCM_CHECK_CONDITION_NOT_READY:
1635         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1636         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1637         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1638                 break;
1639         case TCM_OUT_OF_RESOURCES:
1640                 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1641                 break;
1642         case TCM_RESERVATION_CONFLICT:
1643                 /*
1644                  * No SENSE Data payload for this case, set SCSI Status
1645                  * and queue the response to $FABRIC_MOD.
1646                  *
1647                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1648                  */
1649                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1650                 /*
1651                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1652                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1653                  * CONFLICT STATUS.
1654                  *
1655                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1656                  */
1657                 if (cmd->se_sess &&
1658                     cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1659                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1660                                 cmd->orig_fe_lun, 0x2C,
1661                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1662
1663                 trace_target_cmd_complete(cmd);
1664                 ret = cmd->se_tfo-> queue_status(cmd);
1665                 if (ret == -EAGAIN || ret == -ENOMEM)
1666                         goto queue_full;
1667                 goto check_stop;
1668         default:
1669                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1670                         cmd->t_task_cdb[0], sense_reason);
1671                 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1672                 break;
1673         }
1674
1675         ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1676         if (ret == -EAGAIN || ret == -ENOMEM)
1677                 goto queue_full;
1678
1679 check_stop:
1680         transport_lun_remove_cmd(cmd);
1681         if (!transport_cmd_check_stop_to_fabric(cmd))
1682                 ;
1683         return;
1684
1685 queue_full:
1686         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1687         transport_handle_queue_full(cmd, cmd->se_dev);
1688 }
1689 EXPORT_SYMBOL(transport_generic_request_failure);
1690
1691 void __target_execute_cmd(struct se_cmd *cmd)
1692 {
1693         sense_reason_t ret;
1694
1695         if (cmd->execute_cmd) {
1696                 ret = cmd->execute_cmd(cmd);
1697                 if (ret) {
1698                         spin_lock_irq(&cmd->t_state_lock);
1699                         cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1700                         spin_unlock_irq(&cmd->t_state_lock);
1701
1702                         transport_generic_request_failure(cmd, ret);
1703                 }
1704         }
1705 }
1706
1707 static bool target_handle_task_attr(struct se_cmd *cmd)
1708 {
1709         struct se_device *dev = cmd->se_dev;
1710
1711         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1712                 return false;
1713
1714         /*
1715          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1716          * to allow the passed struct se_cmd list of tasks to the front of the list.
1717          */
1718         switch (cmd->sam_task_attr) {
1719         case MSG_HEAD_TAG:
1720                 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1721                          "se_ordered_id: %u\n",
1722                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1723                 return false;
1724         case MSG_ORDERED_TAG:
1725                 atomic_inc(&dev->dev_ordered_sync);
1726                 smp_mb__after_atomic();
1727
1728                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1729                          " se_ordered_id: %u\n",
1730                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1731
1732                 /*
1733                  * Execute an ORDERED command if no other older commands
1734                  * exist that need to be completed first.
1735                  */
1736                 if (!atomic_read(&dev->simple_cmds))
1737                         return false;
1738                 break;
1739         default:
1740                 /*
1741                  * For SIMPLE and UNTAGGED Task Attribute commands
1742                  */
1743                 atomic_inc(&dev->simple_cmds);
1744                 smp_mb__after_atomic();
1745                 break;
1746         }
1747
1748         if (atomic_read(&dev->dev_ordered_sync) == 0)
1749                 return false;
1750
1751         spin_lock(&dev->delayed_cmd_lock);
1752         list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1753         spin_unlock(&dev->delayed_cmd_lock);
1754
1755         pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1756                 " delayed CMD list, se_ordered_id: %u\n",
1757                 cmd->t_task_cdb[0], cmd->sam_task_attr,
1758                 cmd->se_ordered_id);
1759         return true;
1760 }
1761
1762 void target_execute_cmd(struct se_cmd *cmd)
1763 {
1764         /*
1765          * If the received CDB has aleady been aborted stop processing it here.
1766          */
1767         if (transport_check_aborted_status(cmd, 1))
1768                 return;
1769
1770         /*
1771          * Determine if frontend context caller is requesting the stopping of
1772          * this command for frontend exceptions.
1773          */
1774         spin_lock_irq(&cmd->t_state_lock);
1775         if (cmd->transport_state & CMD_T_STOP) {
1776                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1777                         __func__, __LINE__,
1778                         cmd->se_tfo->get_task_tag(cmd));
1779
1780                 spin_unlock_irq(&cmd->t_state_lock);
1781                 complete_all(&cmd->t_transport_stop_comp);
1782                 return;
1783         }
1784
1785         cmd->t_state = TRANSPORT_PROCESSING;
1786         cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1787         spin_unlock_irq(&cmd->t_state_lock);
1788         /*
1789          * Perform WRITE_INSERT of PI using software emulation when backend
1790          * device has PI enabled, if the transport has not already generated
1791          * PI using hardware WRITE_INSERT offload.
1792          */
1793         if (cmd->prot_op == TARGET_PROT_DOUT_INSERT) {
1794                 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1795                         sbc_dif_generate(cmd);
1796         }
1797
1798         if (target_handle_task_attr(cmd)) {
1799                 spin_lock_irq(&cmd->t_state_lock);
1800                 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1801                 spin_unlock_irq(&cmd->t_state_lock);
1802                 return;
1803         }
1804
1805         __target_execute_cmd(cmd);
1806 }
1807 EXPORT_SYMBOL(target_execute_cmd);
1808
1809 /*
1810  * Process all commands up to the last received ORDERED task attribute which
1811  * requires another blocking boundary
1812  */
1813 static void target_restart_delayed_cmds(struct se_device *dev)
1814 {
1815         for (;;) {
1816                 struct se_cmd *cmd;
1817
1818                 spin_lock(&dev->delayed_cmd_lock);
1819                 if (list_empty(&dev->delayed_cmd_list)) {
1820                         spin_unlock(&dev->delayed_cmd_lock);
1821                         break;
1822                 }
1823
1824                 cmd = list_entry(dev->delayed_cmd_list.next,
1825                                  struct se_cmd, se_delayed_node);
1826                 list_del(&cmd->se_delayed_node);
1827                 spin_unlock(&dev->delayed_cmd_lock);
1828
1829                 __target_execute_cmd(cmd);
1830
1831                 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1832                         break;
1833         }
1834 }
1835
1836 /*
1837  * Called from I/O completion to determine which dormant/delayed
1838  * and ordered cmds need to have their tasks added to the execution queue.
1839  */
1840 static void transport_complete_task_attr(struct se_cmd *cmd)
1841 {
1842         struct se_device *dev = cmd->se_dev;
1843
1844         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1845                 return;
1846
1847         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1848                 atomic_dec(&dev->simple_cmds);
1849                 smp_mb__after_atomic();
1850                 dev->dev_cur_ordered_id++;
1851                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1852                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1853                         cmd->se_ordered_id);
1854         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1855                 dev->dev_cur_ordered_id++;
1856                 pr_debug("Incremented dev_cur_ordered_id: %u for"
1857                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1858                         cmd->se_ordered_id);
1859         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1860                 atomic_dec(&dev->dev_ordered_sync);
1861                 smp_mb__after_atomic();
1862
1863                 dev->dev_cur_ordered_id++;
1864                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1865                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1866         }
1867
1868         target_restart_delayed_cmds(dev);
1869 }
1870
1871 static void transport_complete_qf(struct se_cmd *cmd)
1872 {
1873         int ret = 0;
1874
1875         transport_complete_task_attr(cmd);
1876
1877         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1878                 trace_target_cmd_complete(cmd);
1879                 ret = cmd->se_tfo->queue_status(cmd);
1880                 if (ret)
1881                         goto out;
1882         }
1883
1884         switch (cmd->data_direction) {
1885         case DMA_FROM_DEVICE:
1886                 trace_target_cmd_complete(cmd);
1887                 ret = cmd->se_tfo->queue_data_in(cmd);
1888                 break;
1889         case DMA_TO_DEVICE:
1890                 if (cmd->se_cmd_flags & SCF_BIDI) {
1891                         ret = cmd->se_tfo->queue_data_in(cmd);
1892                         if (ret < 0)
1893                                 break;
1894                 }
1895                 /* Fall through for DMA_TO_DEVICE */
1896         case DMA_NONE:
1897                 trace_target_cmd_complete(cmd);
1898                 ret = cmd->se_tfo->queue_status(cmd);
1899                 break;
1900         default:
1901                 break;
1902         }
1903
1904 out:
1905         if (ret < 0) {
1906                 transport_handle_queue_full(cmd, cmd->se_dev);
1907                 return;
1908         }
1909         transport_lun_remove_cmd(cmd);
1910         transport_cmd_check_stop_to_fabric(cmd);
1911 }
1912
1913 static void transport_handle_queue_full(
1914         struct se_cmd *cmd,
1915         struct se_device *dev)
1916 {
1917         spin_lock_irq(&dev->qf_cmd_lock);
1918         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1919         atomic_inc(&dev->dev_qf_count);
1920         smp_mb__after_atomic();
1921         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1922
1923         schedule_work(&cmd->se_dev->qf_work_queue);
1924 }
1925
1926 static bool target_check_read_strip(struct se_cmd *cmd)
1927 {
1928         sense_reason_t rc;
1929
1930         if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
1931                 rc = sbc_dif_read_strip(cmd);
1932                 if (rc) {
1933                         cmd->pi_err = rc;
1934                         return true;
1935                 }
1936         }
1937
1938         return false;
1939 }
1940
1941 static void target_complete_ok_work(struct work_struct *work)
1942 {
1943         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1944         int ret;
1945
1946         /*
1947          * Check if we need to move delayed/dormant tasks from cmds on the
1948          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1949          * Attribute.
1950          */
1951         transport_complete_task_attr(cmd);
1952
1953         /*
1954          * Check to schedule QUEUE_FULL work, or execute an existing
1955          * cmd->transport_qf_callback()
1956          */
1957         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1958                 schedule_work(&cmd->se_dev->qf_work_queue);
1959
1960         /*
1961          * Check if we need to send a sense buffer from
1962          * the struct se_cmd in question.
1963          */
1964         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1965                 WARN_ON(!cmd->scsi_status);
1966                 ret = transport_send_check_condition_and_sense(
1967                                         cmd, 0, 1);
1968                 if (ret == -EAGAIN || ret == -ENOMEM)
1969                         goto queue_full;
1970
1971                 transport_lun_remove_cmd(cmd);
1972                 transport_cmd_check_stop_to_fabric(cmd);
1973                 return;
1974         }
1975         /*
1976          * Check for a callback, used by amongst other things
1977          * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1978          */
1979         if (cmd->transport_complete_callback) {
1980                 sense_reason_t rc;
1981
1982                 rc = cmd->transport_complete_callback(cmd);
1983                 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1984                         return;
1985                 } else if (rc) {
1986                         ret = transport_send_check_condition_and_sense(cmd,
1987                                                 rc, 0);
1988                         if (ret == -EAGAIN || ret == -ENOMEM)
1989                                 goto queue_full;
1990
1991                         transport_lun_remove_cmd(cmd);
1992                         transport_cmd_check_stop_to_fabric(cmd);
1993                         return;
1994                 }
1995         }
1996
1997         switch (cmd->data_direction) {
1998         case DMA_FROM_DEVICE:
1999                 spin_lock(&cmd->se_lun->lun_sep_lock);
2000                 if (cmd->se_lun->lun_sep) {
2001                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2002                                         cmd->data_length;
2003                 }
2004                 spin_unlock(&cmd->se_lun->lun_sep_lock);
2005                 /*
2006                  * Perform READ_STRIP of PI using software emulation when
2007                  * backend had PI enabled, if the transport will not be
2008                  * performing hardware READ_STRIP offload.
2009                  */
2010                 if (cmd->prot_op == TARGET_PROT_DIN_STRIP &&
2011                     target_check_read_strip(cmd)) {
2012                         ret = transport_send_check_condition_and_sense(cmd,
2013                                                 cmd->pi_err, 0);
2014                         if (ret == -EAGAIN || ret == -ENOMEM)
2015                                 goto queue_full;
2016
2017                         transport_lun_remove_cmd(cmd);
2018                         transport_cmd_check_stop_to_fabric(cmd);
2019                         return;
2020                 }
2021
2022                 trace_target_cmd_complete(cmd);
2023                 ret = cmd->se_tfo->queue_data_in(cmd);
2024                 if (ret == -EAGAIN || ret == -ENOMEM)
2025                         goto queue_full;
2026                 break;
2027         case DMA_TO_DEVICE:
2028                 spin_lock(&cmd->se_lun->lun_sep_lock);
2029                 if (cmd->se_lun->lun_sep) {
2030                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2031                                 cmd->data_length;
2032                 }
2033                 spin_unlock(&cmd->se_lun->lun_sep_lock);
2034                 /*
2035                  * Check if we need to send READ payload for BIDI-COMMAND
2036                  */
2037                 if (cmd->se_cmd_flags & SCF_BIDI) {
2038                         spin_lock(&cmd->se_lun->lun_sep_lock);
2039                         if (cmd->se_lun->lun_sep) {
2040                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2041                                         cmd->data_length;
2042                         }
2043                         spin_unlock(&cmd->se_lun->lun_sep_lock);
2044                         ret = cmd->se_tfo->queue_data_in(cmd);
2045                         if (ret == -EAGAIN || ret == -ENOMEM)
2046                                 goto queue_full;
2047                         break;
2048                 }
2049                 /* Fall through for DMA_TO_DEVICE */
2050         case DMA_NONE:
2051                 trace_target_cmd_complete(cmd);
2052                 ret = cmd->se_tfo->queue_status(cmd);
2053                 if (ret == -EAGAIN || ret == -ENOMEM)
2054                         goto queue_full;
2055                 break;
2056         default:
2057                 break;
2058         }
2059
2060         transport_lun_remove_cmd(cmd);
2061         transport_cmd_check_stop_to_fabric(cmd);
2062         return;
2063
2064 queue_full:
2065         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2066                 " data_direction: %d\n", cmd, cmd->data_direction);
2067         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2068         transport_handle_queue_full(cmd, cmd->se_dev);
2069 }
2070
2071 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2072 {
2073         struct scatterlist *sg;
2074         int count;
2075
2076         for_each_sg(sgl, sg, nents, count)
2077                 __free_page(sg_page(sg));
2078
2079         kfree(sgl);
2080 }
2081
2082 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2083 {
2084         /*
2085          * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2086          * emulation, and free + reset pointers if necessary..
2087          */
2088         if (!cmd->t_data_sg_orig)
2089                 return;
2090
2091         kfree(cmd->t_data_sg);
2092         cmd->t_data_sg = cmd->t_data_sg_orig;
2093         cmd->t_data_sg_orig = NULL;
2094         cmd->t_data_nents = cmd->t_data_nents_orig;
2095         cmd->t_data_nents_orig = 0;
2096 }
2097
2098 static inline void transport_free_pages(struct se_cmd *cmd)
2099 {
2100         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2101                 transport_reset_sgl_orig(cmd);
2102                 return;
2103         }
2104         transport_reset_sgl_orig(cmd);
2105
2106         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2107         cmd->t_data_sg = NULL;
2108         cmd->t_data_nents = 0;
2109
2110         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2111         cmd->t_bidi_data_sg = NULL;
2112         cmd->t_bidi_data_nents = 0;
2113
2114         transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2115         cmd->t_prot_sg = NULL;
2116         cmd->t_prot_nents = 0;
2117 }
2118
2119 /**
2120  * transport_release_cmd - free a command
2121  * @cmd:       command to free
2122  *
2123  * This routine unconditionally frees a command, and reference counting
2124  * or list removal must be done in the caller.
2125  */
2126 static int transport_release_cmd(struct se_cmd *cmd)
2127 {
2128         BUG_ON(!cmd->se_tfo);
2129
2130         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2131                 core_tmr_release_req(cmd->se_tmr_req);
2132         if (cmd->t_task_cdb != cmd->__t_task_cdb)
2133                 kfree(cmd->t_task_cdb);
2134         /*
2135          * If this cmd has been setup with target_get_sess_cmd(), drop
2136          * the kref and call ->release_cmd() in kref callback.
2137          */
2138         return target_put_sess_cmd(cmd->se_sess, cmd);
2139 }
2140
2141 /**
2142  * transport_put_cmd - release a reference to a command
2143  * @cmd:       command to release
2144  *
2145  * This routine releases our reference to the command and frees it if possible.
2146  */
2147 static int transport_put_cmd(struct se_cmd *cmd)
2148 {
2149         transport_free_pages(cmd);
2150         return transport_release_cmd(cmd);
2151 }
2152
2153 void *transport_kmap_data_sg(struct se_cmd *cmd)
2154 {
2155         struct scatterlist *sg = cmd->t_data_sg;
2156         struct page **pages;
2157         int i;
2158
2159         /*
2160          * We need to take into account a possible offset here for fabrics like
2161          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2162          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2163          */
2164         if (!cmd->t_data_nents)
2165                 return NULL;
2166
2167         BUG_ON(!sg);
2168         if (cmd->t_data_nents == 1)
2169                 return kmap(sg_page(sg)) + sg->offset;
2170
2171         /* >1 page. use vmap */
2172         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2173         if (!pages)
2174                 return NULL;
2175
2176         /* convert sg[] to pages[] */
2177         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2178                 pages[i] = sg_page(sg);
2179         }
2180
2181         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2182         kfree(pages);
2183         if (!cmd->t_data_vmap)
2184                 return NULL;
2185
2186         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2187 }
2188 EXPORT_SYMBOL(transport_kmap_data_sg);
2189
2190 void transport_kunmap_data_sg(struct se_cmd *cmd)
2191 {
2192         if (!cmd->t_data_nents) {
2193                 return;
2194         } else if (cmd->t_data_nents == 1) {
2195                 kunmap(sg_page(cmd->t_data_sg));
2196                 return;
2197         }
2198
2199         vunmap(cmd->t_data_vmap);
2200         cmd->t_data_vmap = NULL;
2201 }
2202 EXPORT_SYMBOL(transport_kunmap_data_sg);
2203
2204 int
2205 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2206                  bool zero_page)
2207 {
2208         struct scatterlist *sg;
2209         struct page *page;
2210         gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2211         unsigned int nent;
2212         int i = 0;
2213
2214         nent = DIV_ROUND_UP(length, PAGE_SIZE);
2215         sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2216         if (!sg)
2217                 return -ENOMEM;
2218
2219         sg_init_table(sg, nent);
2220
2221         while (length) {
2222                 u32 page_len = min_t(u32, length, PAGE_SIZE);
2223                 page = alloc_page(GFP_KERNEL | zero_flag);
2224                 if (!page)
2225                         goto out;
2226
2227                 sg_set_page(&sg[i], page, page_len, 0);
2228                 length -= page_len;
2229                 i++;
2230         }
2231         *sgl = sg;
2232         *nents = nent;
2233         return 0;
2234
2235 out:
2236         while (i > 0) {
2237                 i--;
2238                 __free_page(sg_page(&sg[i]));
2239         }
2240         kfree(sg);
2241         return -ENOMEM;
2242 }
2243
2244 /*
2245  * Allocate any required resources to execute the command.  For writes we
2246  * might not have the payload yet, so notify the fabric via a call to
2247  * ->write_pending instead. Otherwise place it on the execution queue.
2248  */
2249 sense_reason_t
2250 transport_generic_new_cmd(struct se_cmd *cmd)
2251 {
2252         int ret = 0;
2253
2254         /*
2255          * Determine is the TCM fabric module has already allocated physical
2256          * memory, and is directly calling transport_generic_map_mem_to_cmd()
2257          * beforehand.
2258          */
2259         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2260             cmd->data_length) {
2261                 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2262
2263                 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2264                     (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2265                         u32 bidi_length;
2266
2267                         if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2268                                 bidi_length = cmd->t_task_nolb *
2269                                               cmd->se_dev->dev_attrib.block_size;
2270                         else
2271                                 bidi_length = cmd->data_length;
2272
2273                         ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2274                                                &cmd->t_bidi_data_nents,
2275                                                bidi_length, zero_flag);
2276                         if (ret < 0)
2277                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2278                 }
2279
2280                 if (cmd->prot_op != TARGET_PROT_NORMAL) {
2281                         ret = target_alloc_sgl(&cmd->t_prot_sg,
2282                                                &cmd->t_prot_nents,
2283                                                cmd->prot_length, true);
2284                         if (ret < 0)
2285                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2286                 }
2287
2288                 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2289                                        cmd->data_length, zero_flag);
2290                 if (ret < 0)
2291                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2292         }
2293         /*
2294          * If this command is not a write we can execute it right here,
2295          * for write buffers we need to notify the fabric driver first
2296          * and let it call back once the write buffers are ready.
2297          */
2298         target_add_to_state_list(cmd);
2299         if (cmd->data_direction != DMA_TO_DEVICE) {
2300                 target_execute_cmd(cmd);
2301                 return 0;
2302         }
2303         transport_cmd_check_stop(cmd, false, true);
2304
2305         ret = cmd->se_tfo->write_pending(cmd);
2306         if (ret == -EAGAIN || ret == -ENOMEM)
2307                 goto queue_full;
2308
2309         /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2310         WARN_ON(ret);
2311
2312         return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2313
2314 queue_full:
2315         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2316         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2317         transport_handle_queue_full(cmd, cmd->se_dev);
2318         return 0;
2319 }
2320 EXPORT_SYMBOL(transport_generic_new_cmd);
2321
2322 static void transport_write_pending_qf(struct se_cmd *cmd)
2323 {
2324         int ret;
2325
2326         ret = cmd->se_tfo->write_pending(cmd);
2327         if (ret == -EAGAIN || ret == -ENOMEM) {
2328                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2329                          cmd);
2330                 transport_handle_queue_full(cmd, cmd->se_dev);
2331         }
2332 }
2333
2334 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2335 {
2336         unsigned long flags;
2337         int ret = 0;
2338
2339         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2340                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2341                          transport_wait_for_tasks(cmd);
2342
2343                 ret = transport_release_cmd(cmd);
2344         } else {
2345                 if (wait_for_tasks)
2346                         transport_wait_for_tasks(cmd);
2347                 /*
2348                  * Handle WRITE failure case where transport_generic_new_cmd()
2349                  * has already added se_cmd to state_list, but fabric has
2350                  * failed command before I/O submission.
2351                  */
2352                 if (cmd->state_active) {
2353                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2354                         target_remove_from_state_list(cmd);
2355                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2356                 }
2357
2358                 if (cmd->se_lun)
2359                         transport_lun_remove_cmd(cmd);
2360
2361                 ret = transport_put_cmd(cmd);
2362         }
2363         return ret;
2364 }
2365 EXPORT_SYMBOL(transport_generic_free_cmd);
2366
2367 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2368  * @se_sess:    session to reference
2369  * @se_cmd:     command descriptor to add
2370  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2371  */
2372 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2373                                bool ack_kref)
2374 {
2375         unsigned long flags;
2376         int ret = 0;
2377
2378         /*
2379          * Add a second kref if the fabric caller is expecting to handle
2380          * fabric acknowledgement that requires two target_put_sess_cmd()
2381          * invocations before se_cmd descriptor release.
2382          */
2383         if (ack_kref) {
2384                 kref_get(&se_cmd->cmd_kref);
2385                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2386         }
2387
2388         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2389         if (se_sess->sess_tearing_down) {
2390                 ret = -ESHUTDOWN;
2391                 goto out;
2392         }
2393         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2394 out:
2395         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2396         return ret;
2397 }
2398 EXPORT_SYMBOL(target_get_sess_cmd);
2399
2400 static void target_release_cmd_kref(struct kref *kref)
2401 {
2402         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2403         struct se_session *se_sess = se_cmd->se_sess;
2404
2405         if (list_empty(&se_cmd->se_cmd_list)) {
2406                 spin_unlock(&se_sess->sess_cmd_lock);
2407                 se_cmd->se_tfo->release_cmd(se_cmd);
2408                 return;
2409         }
2410         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2411                 spin_unlock(&se_sess->sess_cmd_lock);
2412                 complete(&se_cmd->cmd_wait_comp);
2413                 return;
2414         }
2415         list_del(&se_cmd->se_cmd_list);
2416         spin_unlock(&se_sess->sess_cmd_lock);
2417
2418         se_cmd->se_tfo->release_cmd(se_cmd);
2419 }
2420
2421 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2422  * @se_sess:    session to reference
2423  * @se_cmd:     command descriptor to drop
2424  */
2425 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2426 {
2427         if (!se_sess) {
2428                 se_cmd->se_tfo->release_cmd(se_cmd);
2429                 return 1;
2430         }
2431         return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2432                         &se_sess->sess_cmd_lock);
2433 }
2434 EXPORT_SYMBOL(target_put_sess_cmd);
2435
2436 /* target_sess_cmd_list_set_waiting - Flag all commands in
2437  *         sess_cmd_list to complete cmd_wait_comp.  Set
2438  *         sess_tearing_down so no more commands are queued.
2439  * @se_sess:    session to flag
2440  */
2441 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2442 {
2443         struct se_cmd *se_cmd;
2444         unsigned long flags;
2445
2446         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2447         if (se_sess->sess_tearing_down) {
2448                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2449                 return;
2450         }
2451         se_sess->sess_tearing_down = 1;
2452         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2453
2454         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2455                 se_cmd->cmd_wait_set = 1;
2456
2457         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2458 }
2459 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2460
2461 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2462  * @se_sess:    session to wait for active I/O
2463  */
2464 void target_wait_for_sess_cmds(struct se_session *se_sess)
2465 {
2466         struct se_cmd *se_cmd, *tmp_cmd;
2467         unsigned long flags;
2468
2469         list_for_each_entry_safe(se_cmd, tmp_cmd,
2470                                 &se_sess->sess_wait_list, se_cmd_list) {
2471                 list_del(&se_cmd->se_cmd_list);
2472
2473                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2474                         " %d\n", se_cmd, se_cmd->t_state,
2475                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2476
2477                 wait_for_completion(&se_cmd->cmd_wait_comp);
2478                 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2479                         " fabric state: %d\n", se_cmd, se_cmd->t_state,
2480                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2481
2482                 se_cmd->se_tfo->release_cmd(se_cmd);
2483         }
2484
2485         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2486         WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2487         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2488
2489 }
2490 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2491
2492 static int transport_clear_lun_ref_thread(void *p)
2493 {
2494         struct se_lun *lun = p;
2495
2496         percpu_ref_kill(&lun->lun_ref);
2497
2498         wait_for_completion(&lun->lun_ref_comp);
2499         complete(&lun->lun_shutdown_comp);
2500
2501         return 0;
2502 }
2503
2504 int transport_clear_lun_ref(struct se_lun *lun)
2505 {
2506         struct task_struct *kt;
2507
2508         kt = kthread_run(transport_clear_lun_ref_thread, lun,
2509                         "tcm_cl_%u", lun->unpacked_lun);
2510         if (IS_ERR(kt)) {
2511                 pr_err("Unable to start clear_lun thread\n");
2512                 return PTR_ERR(kt);
2513         }
2514         wait_for_completion(&lun->lun_shutdown_comp);
2515
2516         return 0;
2517 }
2518
2519 /**
2520  * transport_wait_for_tasks - wait for completion to occur
2521  * @cmd:        command to wait
2522  *
2523  * Called from frontend fabric context to wait for storage engine
2524  * to pause and/or release frontend generated struct se_cmd.
2525  */
2526 bool transport_wait_for_tasks(struct se_cmd *cmd)
2527 {
2528         unsigned long flags;
2529
2530         spin_lock_irqsave(&cmd->t_state_lock, flags);
2531         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2532             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2533                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2534                 return false;
2535         }
2536
2537         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2538             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2539                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2540                 return false;
2541         }
2542
2543         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2544                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2545                 return false;
2546         }
2547
2548         cmd->transport_state |= CMD_T_STOP;
2549
2550         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2551                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2552                 cmd, cmd->se_tfo->get_task_tag(cmd),
2553                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2554
2555         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2556
2557         wait_for_completion(&cmd->t_transport_stop_comp);
2558
2559         spin_lock_irqsave(&cmd->t_state_lock, flags);
2560         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2561
2562         pr_debug("wait_for_tasks: Stopped wait_for_completion("
2563                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2564                 cmd->se_tfo->get_task_tag(cmd));
2565
2566         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2567
2568         return true;
2569 }
2570 EXPORT_SYMBOL(transport_wait_for_tasks);
2571
2572 static int transport_get_sense_codes(
2573         struct se_cmd *cmd,
2574         u8 *asc,
2575         u8 *ascq)
2576 {
2577         *asc = cmd->scsi_asc;
2578         *ascq = cmd->scsi_ascq;
2579
2580         return 0;
2581 }
2582
2583 static
2584 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2585 {
2586         /* Place failed LBA in sense data information descriptor 0. */
2587         buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2588         buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2589         buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2590         buffer[SPC_VALIDITY_OFFSET] = 0x80;
2591
2592         /* Descriptor Information: failing sector */
2593         put_unaligned_be64(bad_sector, &buffer[12]);
2594 }
2595
2596 int
2597 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2598                 sense_reason_t reason, int from_transport)
2599 {
2600         unsigned char *buffer = cmd->sense_buffer;
2601         unsigned long flags;
2602         u8 asc = 0, ascq = 0;
2603
2604         spin_lock_irqsave(&cmd->t_state_lock, flags);
2605         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2606                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2607                 return 0;
2608         }
2609         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2610         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2611
2612         if (!reason && from_transport)
2613                 goto after_reason;
2614
2615         if (!from_transport)
2616                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2617
2618         /*
2619          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
2620          * SENSE KEY values from include/scsi/scsi.h
2621          */
2622         switch (reason) {
2623         case TCM_NO_SENSE:
2624                 /* CURRENT ERROR */
2625                 buffer[0] = 0x70;
2626                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2627                 /* Not Ready */
2628                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2629                 /* NO ADDITIONAL SENSE INFORMATION */
2630                 buffer[SPC_ASC_KEY_OFFSET] = 0;
2631                 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2632                 break;
2633         case TCM_NON_EXISTENT_LUN:
2634                 /* CURRENT ERROR */
2635                 buffer[0] = 0x70;
2636                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2637                 /* ILLEGAL REQUEST */
2638                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2639                 /* LOGICAL UNIT NOT SUPPORTED */
2640                 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2641                 break;
2642         case TCM_UNSUPPORTED_SCSI_OPCODE:
2643         case TCM_SECTOR_COUNT_TOO_MANY:
2644                 /* CURRENT ERROR */
2645                 buffer[0] = 0x70;
2646                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2647                 /* ILLEGAL REQUEST */
2648                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2649                 /* INVALID COMMAND OPERATION CODE */
2650                 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2651                 break;
2652         case TCM_UNKNOWN_MODE_PAGE:
2653                 /* CURRENT ERROR */
2654                 buffer[0] = 0x70;
2655                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2656                 /* ILLEGAL REQUEST */
2657                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2658                 /* INVALID FIELD IN CDB */
2659                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2660                 break;
2661         case TCM_CHECK_CONDITION_ABORT_CMD:
2662                 /* CURRENT ERROR */
2663                 buffer[0] = 0x70;
2664                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2665                 /* ABORTED COMMAND */
2666                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2667                 /* BUS DEVICE RESET FUNCTION OCCURRED */
2668                 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2669                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2670                 break;
2671         case TCM_INCORRECT_AMOUNT_OF_DATA:
2672                 /* CURRENT ERROR */
2673                 buffer[0] = 0x70;
2674                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2675                 /* ABORTED COMMAND */
2676                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2677                 /* WRITE ERROR */
2678                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2679                 /* NOT ENOUGH UNSOLICITED DATA */
2680                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2681                 break;
2682         case TCM_INVALID_CDB_FIELD:
2683                 /* CURRENT ERROR */
2684                 buffer[0] = 0x70;
2685                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2686                 /* ILLEGAL REQUEST */
2687                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2688                 /* INVALID FIELD IN CDB */
2689                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2690                 break;
2691         case TCM_INVALID_PARAMETER_LIST:
2692                 /* CURRENT ERROR */
2693                 buffer[0] = 0x70;
2694                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2695                 /* ILLEGAL REQUEST */
2696                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2697                 /* INVALID FIELD IN PARAMETER LIST */
2698                 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2699                 break;
2700         case TCM_PARAMETER_LIST_LENGTH_ERROR:
2701                 /* CURRENT ERROR */
2702                 buffer[0] = 0x70;
2703                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2704                 /* ILLEGAL REQUEST */
2705                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2706                 /* PARAMETER LIST LENGTH ERROR */
2707                 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2708                 break;
2709         case TCM_UNEXPECTED_UNSOLICITED_DATA:
2710                 /* CURRENT ERROR */
2711                 buffer[0] = 0x70;
2712                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2713                 /* ABORTED COMMAND */
2714                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2715                 /* WRITE ERROR */
2716                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2717                 /* UNEXPECTED_UNSOLICITED_DATA */
2718                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2719                 break;
2720         case TCM_SERVICE_CRC_ERROR:
2721                 /* CURRENT ERROR */
2722                 buffer[0] = 0x70;
2723                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2724                 /* ABORTED COMMAND */
2725                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2726                 /* PROTOCOL SERVICE CRC ERROR */
2727                 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2728                 /* N/A */
2729                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2730                 break;
2731         case TCM_SNACK_REJECTED:
2732                 /* CURRENT ERROR */
2733                 buffer[0] = 0x70;
2734                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2735                 /* ABORTED COMMAND */
2736                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2737                 /* READ ERROR */
2738                 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2739                 /* FAILED RETRANSMISSION REQUEST */
2740                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2741                 break;
2742         case TCM_WRITE_PROTECTED:
2743                 /* CURRENT ERROR */
2744                 buffer[0] = 0x70;
2745                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2746                 /* DATA PROTECT */
2747                 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2748                 /* WRITE PROTECTED */
2749                 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2750                 break;
2751         case TCM_ADDRESS_OUT_OF_RANGE:
2752                 /* CURRENT ERROR */
2753                 buffer[0] = 0x70;
2754                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2755                 /* ILLEGAL REQUEST */
2756                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2757                 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2758                 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2759                 break;
2760         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2761                 /* CURRENT ERROR */
2762                 buffer[0] = 0x70;
2763                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2764                 /* UNIT ATTENTION */
2765                 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2766                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2767                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2768                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2769                 break;
2770         case TCM_CHECK_CONDITION_NOT_READY:
2771                 /* CURRENT ERROR */
2772                 buffer[0] = 0x70;
2773                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2774                 /* Not Ready */
2775                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2776                 transport_get_sense_codes(cmd, &asc, &ascq);
2777                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2778                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2779                 break;
2780         case TCM_MISCOMPARE_VERIFY:
2781                 /* CURRENT ERROR */
2782                 buffer[0] = 0x70;
2783                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2784                 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2785                 /* MISCOMPARE DURING VERIFY OPERATION */
2786                 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2787                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2788                 break;
2789         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2790                 /* CURRENT ERROR */
2791                 buffer[0] = 0x70;
2792                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2793                 /* ILLEGAL REQUEST */
2794                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2795                 /* LOGICAL BLOCK GUARD CHECK FAILED */
2796                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2797                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2798                 transport_err_sector_info(buffer, cmd->bad_sector);
2799                 break;
2800         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2801                 /* CURRENT ERROR */
2802                 buffer[0] = 0x70;
2803                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2804                 /* ILLEGAL REQUEST */
2805                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2806                 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2807                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2808                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2809                 transport_err_sector_info(buffer, cmd->bad_sector);
2810                 break;
2811         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2812                 /* CURRENT ERROR */
2813                 buffer[0] = 0x70;
2814                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2815                 /* ILLEGAL REQUEST */
2816                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2817                 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2818                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2819                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2820                 transport_err_sector_info(buffer, cmd->bad_sector);
2821                 break;
2822         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2823         default:
2824                 /* CURRENT ERROR */
2825                 buffer[0] = 0x70;
2826                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2827                 /*
2828                  * Returning ILLEGAL REQUEST would cause immediate IO errors on
2829                  * Solaris initiators.  Returning NOT READY instead means the
2830                  * operations will be retried a finite number of times and we
2831                  * can survive intermittent errors.
2832                  */
2833                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2834                 /* LOGICAL UNIT COMMUNICATION FAILURE */
2835                 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2836                 break;
2837         }
2838         /*
2839          * This code uses linux/include/scsi/scsi.h SAM status codes!
2840          */
2841         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2842         /*
2843          * Automatically padded, this value is encoded in the fabric's
2844          * data_length response PDU containing the SCSI defined sense data.
2845          */
2846         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2847
2848 after_reason:
2849         trace_target_cmd_complete(cmd);
2850         return cmd->se_tfo->queue_status(cmd);
2851 }
2852 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2853
2854 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2855 {
2856         if (!(cmd->transport_state & CMD_T_ABORTED))
2857                 return 0;
2858
2859         /*
2860          * If cmd has been aborted but either no status is to be sent or it has
2861          * already been sent, just return
2862          */
2863         if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2864                 return 1;
2865
2866         pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2867                  cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2868
2869         cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2870         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2871         trace_target_cmd_complete(cmd);
2872         cmd->se_tfo->queue_status(cmd);
2873
2874         return 1;
2875 }
2876 EXPORT_SYMBOL(transport_check_aborted_status);
2877
2878 void transport_send_task_abort(struct se_cmd *cmd)
2879 {
2880         unsigned long flags;
2881
2882         spin_lock_irqsave(&cmd->t_state_lock, flags);
2883         if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2884                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2885                 return;
2886         }
2887         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2888
2889         /*
2890          * If there are still expected incoming fabric WRITEs, we wait
2891          * until until they have completed before sending a TASK_ABORTED
2892          * response.  This response with TASK_ABORTED status will be
2893          * queued back to fabric module by transport_check_aborted_status().
2894          */
2895         if (cmd->data_direction == DMA_TO_DEVICE) {
2896                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2897                         cmd->transport_state |= CMD_T_ABORTED;
2898                         cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2899                         smp_mb__after_atomic();
2900                         return;
2901                 }
2902         }
2903         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2904
2905         transport_lun_remove_cmd(cmd);
2906
2907         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2908                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2909                 cmd->se_tfo->get_task_tag(cmd));
2910
2911         trace_target_cmd_complete(cmd);
2912         cmd->se_tfo->queue_status(cmd);
2913 }
2914
2915 static void target_tmr_work(struct work_struct *work)
2916 {
2917         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2918         struct se_device *dev = cmd->se_dev;
2919         struct se_tmr_req *tmr = cmd->se_tmr_req;
2920         int ret;
2921
2922         switch (tmr->function) {
2923         case TMR_ABORT_TASK:
2924                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2925                 break;
2926         case TMR_ABORT_TASK_SET:
2927         case TMR_CLEAR_ACA:
2928         case TMR_CLEAR_TASK_SET:
2929                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2930                 break;
2931         case TMR_LUN_RESET:
2932                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2933                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2934                                          TMR_FUNCTION_REJECTED;
2935                 break;
2936         case TMR_TARGET_WARM_RESET:
2937                 tmr->response = TMR_FUNCTION_REJECTED;
2938                 break;
2939         case TMR_TARGET_COLD_RESET:
2940                 tmr->response = TMR_FUNCTION_REJECTED;
2941                 break;
2942         default:
2943                 pr_err("Uknown TMR function: 0x%02x.\n",
2944                                 tmr->function);
2945                 tmr->response = TMR_FUNCTION_REJECTED;
2946                 break;
2947         }
2948
2949         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2950         cmd->se_tfo->queue_tm_rsp(cmd);
2951
2952         transport_cmd_check_stop_to_fabric(cmd);
2953 }
2954
2955 int transport_generic_handle_tmr(
2956         struct se_cmd *cmd)
2957 {
2958         unsigned long flags;
2959
2960         spin_lock_irqsave(&cmd->t_state_lock, flags);
2961         cmd->transport_state |= CMD_T_ACTIVE;
2962         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2963
2964         INIT_WORK(&cmd->work, target_tmr_work);
2965         queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2966         return 0;
2967 }
2968 EXPORT_SYMBOL(transport_generic_handle_tmr);