]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/thermal/power_allocator.c
scsi_dh: don't try to load a device handler during async probing
[karo-tx-linux.git] / drivers / thermal / power_allocator.c
1 /*
2  * A power allocator to manage temperature
3  *
4  * Copyright (C) 2014 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  */
15
16 #define pr_fmt(fmt) "Power allocator: " fmt
17
18 #include <linux/rculist.h>
19 #include <linux/slab.h>
20 #include <linux/thermal.h>
21
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/thermal_power_allocator.h>
24
25 #include "thermal_core.h"
26
27 #define FRAC_BITS 10
28 #define int_to_frac(x) ((x) << FRAC_BITS)
29 #define frac_to_int(x) ((x) >> FRAC_BITS)
30
31 /**
32  * mul_frac() - multiply two fixed-point numbers
33  * @x:  first multiplicand
34  * @y:  second multiplicand
35  *
36  * Return: the result of multiplying two fixed-point numbers.  The
37  * result is also a fixed-point number.
38  */
39 static inline s64 mul_frac(s64 x, s64 y)
40 {
41         return (x * y) >> FRAC_BITS;
42 }
43
44 /**
45  * div_frac() - divide two fixed-point numbers
46  * @x:  the dividend
47  * @y:  the divisor
48  *
49  * Return: the result of dividing two fixed-point numbers.  The
50  * result is also a fixed-point number.
51  */
52 static inline s64 div_frac(s64 x, s64 y)
53 {
54         return div_s64(x << FRAC_BITS, y);
55 }
56
57 /**
58  * struct power_allocator_params - parameters for the power allocator governor
59  * @err_integral:       accumulated error in the PID controller.
60  * @prev_err:   error in the previous iteration of the PID controller.
61  *              Used to calculate the derivative term.
62  * @trip_switch_on:     first passive trip point of the thermal zone.  The
63  *                      governor switches on when this trip point is crossed.
64  * @trip_max_desired_temperature:       last passive trip point of the thermal
65  *                                      zone.  The temperature we are
66  *                                      controlling for.
67  */
68 struct power_allocator_params {
69         s64 err_integral;
70         s32 prev_err;
71         int trip_switch_on;
72         int trip_max_desired_temperature;
73 };
74
75 /**
76  * pid_controller() - PID controller
77  * @tz: thermal zone we are operating in
78  * @current_temp:       the current temperature in millicelsius
79  * @control_temp:       the target temperature in millicelsius
80  * @max_allocatable_power:      maximum allocatable power for this thermal zone
81  *
82  * This PID controller increases the available power budget so that the
83  * temperature of the thermal zone gets as close as possible to
84  * @control_temp and limits the power if it exceeds it.  k_po is the
85  * proportional term when we are overshooting, k_pu is the
86  * proportional term when we are undershooting.  integral_cutoff is a
87  * threshold below which we stop accumulating the error.  The
88  * accumulated error is only valid if the requested power will make
89  * the system warmer.  If the system is mostly idle, there's no point
90  * in accumulating positive error.
91  *
92  * Return: The power budget for the next period.
93  */
94 static u32 pid_controller(struct thermal_zone_device *tz,
95                           int current_temp,
96                           int control_temp,
97                           u32 max_allocatable_power)
98 {
99         s64 p, i, d, power_range;
100         s32 err, max_power_frac;
101         struct power_allocator_params *params = tz->governor_data;
102
103         max_power_frac = int_to_frac(max_allocatable_power);
104
105         err = control_temp - current_temp;
106         err = int_to_frac(err);
107
108         /* Calculate the proportional term */
109         p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
110
111         /*
112          * Calculate the integral term
113          *
114          * if the error is less than cut off allow integration (but
115          * the integral is limited to max power)
116          */
117         i = mul_frac(tz->tzp->k_i, params->err_integral);
118
119         if (err < int_to_frac(tz->tzp->integral_cutoff)) {
120                 s64 i_next = i + mul_frac(tz->tzp->k_i, err);
121
122                 if (abs64(i_next) < max_power_frac) {
123                         i = i_next;
124                         params->err_integral += err;
125                 }
126         }
127
128         /*
129          * Calculate the derivative term
130          *
131          * We do err - prev_err, so with a positive k_d, a decreasing
132          * error (i.e. driving closer to the line) results in less
133          * power being applied, slowing down the controller)
134          */
135         d = mul_frac(tz->tzp->k_d, err - params->prev_err);
136         d = div_frac(d, tz->passive_delay);
137         params->prev_err = err;
138
139         power_range = p + i + d;
140
141         /* feed-forward the known sustainable dissipatable power */
142         power_range = tz->tzp->sustainable_power + frac_to_int(power_range);
143
144         power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
145
146         trace_thermal_power_allocator_pid(tz, frac_to_int(err),
147                                           frac_to_int(params->err_integral),
148                                           frac_to_int(p), frac_to_int(i),
149                                           frac_to_int(d), power_range);
150
151         return power_range;
152 }
153
154 /**
155  * divvy_up_power() - divvy the allocated power between the actors
156  * @req_power:  each actor's requested power
157  * @max_power:  each actor's maximum available power
158  * @num_actors: size of the @req_power, @max_power and @granted_power's array
159  * @total_req_power: sum of @req_power
160  * @power_range:        total allocated power
161  * @granted_power:      output array: each actor's granted power
162  * @extra_actor_power:  an appropriately sized array to be used in the
163  *                      function as temporary storage of the extra power given
164  *                      to the actors
165  *
166  * This function divides the total allocated power (@power_range)
167  * fairly between the actors.  It first tries to give each actor a
168  * share of the @power_range according to how much power it requested
169  * compared to the rest of the actors.  For example, if only one actor
170  * requests power, then it receives all the @power_range.  If
171  * three actors each requests 1mW, each receives a third of the
172  * @power_range.
173  *
174  * If any actor received more than their maximum power, then that
175  * surplus is re-divvied among the actors based on how far they are
176  * from their respective maximums.
177  *
178  * Granted power for each actor is written to @granted_power, which
179  * should've been allocated by the calling function.
180  */
181 static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
182                            u32 total_req_power, u32 power_range,
183                            u32 *granted_power, u32 *extra_actor_power)
184 {
185         u32 extra_power, capped_extra_power;
186         int i;
187
188         /*
189          * Prevent division by 0 if none of the actors request power.
190          */
191         if (!total_req_power)
192                 total_req_power = 1;
193
194         capped_extra_power = 0;
195         extra_power = 0;
196         for (i = 0; i < num_actors; i++) {
197                 u64 req_range = req_power[i] * power_range;
198
199                 granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
200                                                          total_req_power);
201
202                 if (granted_power[i] > max_power[i]) {
203                         extra_power += granted_power[i] - max_power[i];
204                         granted_power[i] = max_power[i];
205                 }
206
207                 extra_actor_power[i] = max_power[i] - granted_power[i];
208                 capped_extra_power += extra_actor_power[i];
209         }
210
211         if (!extra_power)
212                 return;
213
214         /*
215          * Re-divvy the reclaimed extra among actors based on
216          * how far they are from the max
217          */
218         extra_power = min(extra_power, capped_extra_power);
219         if (capped_extra_power > 0)
220                 for (i = 0; i < num_actors; i++)
221                         granted_power[i] += (extra_actor_power[i] *
222                                         extra_power) / capped_extra_power;
223 }
224
225 static int allocate_power(struct thermal_zone_device *tz,
226                           int current_temp,
227                           int control_temp)
228 {
229         struct thermal_instance *instance;
230         struct power_allocator_params *params = tz->governor_data;
231         u32 *req_power, *max_power, *granted_power, *extra_actor_power;
232         u32 *weighted_req_power;
233         u32 total_req_power, max_allocatable_power, total_weighted_req_power;
234         u32 total_granted_power, power_range;
235         int i, num_actors, total_weight, ret = 0;
236         int trip_max_desired_temperature = params->trip_max_desired_temperature;
237
238         mutex_lock(&tz->lock);
239
240         num_actors = 0;
241         total_weight = 0;
242         list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
243                 if ((instance->trip == trip_max_desired_temperature) &&
244                     cdev_is_power_actor(instance->cdev)) {
245                         num_actors++;
246                         total_weight += instance->weight;
247                 }
248         }
249
250         /*
251          * We need to allocate five arrays of the same size:
252          * req_power, max_power, granted_power, extra_actor_power and
253          * weighted_req_power.  They are going to be needed until this
254          * function returns.  Allocate them all in one go to simplify
255          * the allocation and deallocation logic.
256          */
257         BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
258         BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
259         BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
260         BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
261         req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
262         if (!req_power) {
263                 ret = -ENOMEM;
264                 goto unlock;
265         }
266
267         max_power = &req_power[num_actors];
268         granted_power = &req_power[2 * num_actors];
269         extra_actor_power = &req_power[3 * num_actors];
270         weighted_req_power = &req_power[4 * num_actors];
271
272         i = 0;
273         total_weighted_req_power = 0;
274         total_req_power = 0;
275         max_allocatable_power = 0;
276
277         list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
278                 int weight;
279                 struct thermal_cooling_device *cdev = instance->cdev;
280
281                 if (instance->trip != trip_max_desired_temperature)
282                         continue;
283
284                 if (!cdev_is_power_actor(cdev))
285                         continue;
286
287                 if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
288                         continue;
289
290                 if (!total_weight)
291                         weight = 1 << FRAC_BITS;
292                 else
293                         weight = instance->weight;
294
295                 weighted_req_power[i] = frac_to_int(weight * req_power[i]);
296
297                 if (power_actor_get_max_power(cdev, tz, &max_power[i]))
298                         continue;
299
300                 total_req_power += req_power[i];
301                 max_allocatable_power += max_power[i];
302                 total_weighted_req_power += weighted_req_power[i];
303
304                 i++;
305         }
306
307         power_range = pid_controller(tz, current_temp, control_temp,
308                                      max_allocatable_power);
309
310         divvy_up_power(weighted_req_power, max_power, num_actors,
311                        total_weighted_req_power, power_range, granted_power,
312                        extra_actor_power);
313
314         total_granted_power = 0;
315         i = 0;
316         list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
317                 if (instance->trip != trip_max_desired_temperature)
318                         continue;
319
320                 if (!cdev_is_power_actor(instance->cdev))
321                         continue;
322
323                 power_actor_set_power(instance->cdev, instance,
324                                       granted_power[i]);
325                 total_granted_power += granted_power[i];
326
327                 i++;
328         }
329
330         trace_thermal_power_allocator(tz, req_power, total_req_power,
331                                       granted_power, total_granted_power,
332                                       num_actors, power_range,
333                                       max_allocatable_power, current_temp,
334                                       control_temp - current_temp);
335
336         kfree(req_power);
337 unlock:
338         mutex_unlock(&tz->lock);
339
340         return ret;
341 }
342
343 static int get_governor_trips(struct thermal_zone_device *tz,
344                               struct power_allocator_params *params)
345 {
346         int i, ret, last_passive;
347         bool found_first_passive;
348
349         found_first_passive = false;
350         last_passive = -1;
351         ret = -EINVAL;
352
353         for (i = 0; i < tz->trips; i++) {
354                 enum thermal_trip_type type;
355
356                 ret = tz->ops->get_trip_type(tz, i, &type);
357                 if (ret)
358                         return ret;
359
360                 if (!found_first_passive) {
361                         if (type == THERMAL_TRIP_PASSIVE) {
362                                 params->trip_switch_on = i;
363                                 found_first_passive = true;
364                         }
365                 } else if (type == THERMAL_TRIP_PASSIVE) {
366                         last_passive = i;
367                 } else {
368                         break;
369                 }
370         }
371
372         if (last_passive != -1) {
373                 params->trip_max_desired_temperature = last_passive;
374                 ret = 0;
375         } else {
376                 ret = -EINVAL;
377         }
378
379         return ret;
380 }
381
382 static void reset_pid_controller(struct power_allocator_params *params)
383 {
384         params->err_integral = 0;
385         params->prev_err = 0;
386 }
387
388 static void allow_maximum_power(struct thermal_zone_device *tz)
389 {
390         struct thermal_instance *instance;
391         struct power_allocator_params *params = tz->governor_data;
392
393         list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
394                 if ((instance->trip != params->trip_max_desired_temperature) ||
395                     (!cdev_is_power_actor(instance->cdev)))
396                         continue;
397
398                 instance->target = 0;
399                 instance->cdev->updated = false;
400                 thermal_cdev_update(instance->cdev);
401         }
402 }
403
404 /**
405  * power_allocator_bind() - bind the power_allocator governor to a thermal zone
406  * @tz: thermal zone to bind it to
407  *
408  * Check that the thermal zone is valid for this governor, that is, it
409  * has two thermal trips.  If so, initialize the PID controller
410  * parameters and bind it to the thermal zone.
411  *
412  * Return: 0 on success, -EINVAL if the trips were invalid or -ENOMEM
413  * if we ran out of memory.
414  */
415 static int power_allocator_bind(struct thermal_zone_device *tz)
416 {
417         int ret;
418         struct power_allocator_params *params;
419         int switch_on_temp, control_temp;
420         u32 temperature_threshold;
421
422         if (!tz->tzp || !tz->tzp->sustainable_power) {
423                 dev_err(&tz->device,
424                         "power_allocator: missing sustainable_power\n");
425                 return -EINVAL;
426         }
427
428         params = kzalloc(sizeof(*params), GFP_KERNEL);
429         if (!params)
430                 return -ENOMEM;
431
432         ret = get_governor_trips(tz, params);
433         if (ret) {
434                 dev_err(&tz->device,
435                         "thermal zone %s has wrong trip setup for power allocator\n",
436                         tz->type);
437                 goto free;
438         }
439
440         ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
441                                      &switch_on_temp);
442         if (ret)
443                 goto free;
444
445         ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
446                                      &control_temp);
447         if (ret)
448                 goto free;
449
450         temperature_threshold = control_temp - switch_on_temp;
451
452         tz->tzp->k_po = tz->tzp->k_po ?:
453                 int_to_frac(tz->tzp->sustainable_power) / temperature_threshold;
454         tz->tzp->k_pu = tz->tzp->k_pu ?:
455                 int_to_frac(2 * tz->tzp->sustainable_power) /
456                 temperature_threshold;
457         tz->tzp->k_i = tz->tzp->k_i ?: int_to_frac(10) / 1000;
458         /*
459          * The default for k_d and integral_cutoff is 0, so we can
460          * leave them as they are.
461          */
462
463         reset_pid_controller(params);
464
465         tz->governor_data = params;
466
467         return 0;
468
469 free:
470         kfree(params);
471         return ret;
472 }
473
474 static void power_allocator_unbind(struct thermal_zone_device *tz)
475 {
476         dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
477         kfree(tz->governor_data);
478         tz->governor_data = NULL;
479 }
480
481 static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
482 {
483         int ret;
484         int switch_on_temp, control_temp, current_temp;
485         struct power_allocator_params *params = tz->governor_data;
486
487         /*
488          * We get called for every trip point but we only need to do
489          * our calculations once
490          */
491         if (trip != params->trip_max_desired_temperature)
492                 return 0;
493
494         ret = thermal_zone_get_temp(tz, &current_temp);
495         if (ret) {
496                 dev_warn(&tz->device, "Failed to get temperature: %d\n", ret);
497                 return ret;
498         }
499
500         ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
501                                      &switch_on_temp);
502         if (ret) {
503                 dev_warn(&tz->device,
504                          "Failed to get switch on temperature: %d\n", ret);
505                 return ret;
506         }
507
508         if (current_temp < switch_on_temp) {
509                 tz->passive = 0;
510                 reset_pid_controller(params);
511                 allow_maximum_power(tz);
512                 return 0;
513         }
514
515         tz->passive = 1;
516
517         ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
518                                 &control_temp);
519         if (ret) {
520                 dev_warn(&tz->device,
521                          "Failed to get the maximum desired temperature: %d\n",
522                          ret);
523                 return ret;
524         }
525
526         return allocate_power(tz, current_temp, control_temp);
527 }
528
529 static struct thermal_governor thermal_gov_power_allocator = {
530         .name           = "power_allocator",
531         .bind_to_tz     = power_allocator_bind,
532         .unbind_from_tz = power_allocator_unbind,
533         .throttle       = power_allocator_throttle,
534 };
535
536 int thermal_gov_power_allocator_register(void)
537 {
538         return thermal_register_governor(&thermal_gov_power_allocator);
539 }
540
541 void thermal_gov_power_allocator_unregister(void)
542 {
543         thermal_unregister_governor(&thermal_gov_power_allocator);
544 }