]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/tty/tty_io.c
Merge remote-tracking branches 'regulator/fix/as3722', 'regulator/fix/ltc3589' and...
[karo-tx-linux.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      tty_signal_session_leader       - sends SIGHUP to session leader
537  *      @tty            controlling tty
538  *      @exit_session   if non-zero, signal all foreground group processes
539  *
540  *      Send SIGHUP and SIGCONT to the session leader and its process group.
541  *      Optionally, signal all processes in the foreground process group.
542  *
543  *      Returns the number of processes in the session with this tty
544  *      as their controlling terminal. This value is used to drop
545  *      tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549         struct task_struct *p;
550         int refs = 0;
551         struct pid *tty_pgrp = NULL;
552
553         read_lock(&tasklist_lock);
554         if (tty->session) {
555                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556                         spin_lock_irq(&p->sighand->siglock);
557                         if (p->signal->tty == tty) {
558                                 p->signal->tty = NULL;
559                                 /* We defer the dereferences outside fo
560                                    the tasklist lock */
561                                 refs++;
562                         }
563                         if (!p->signal->leader) {
564                                 spin_unlock_irq(&p->sighand->siglock);
565                                 continue;
566                         }
567                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
570                         spin_lock(&tty->ctrl_lock);
571                         tty_pgrp = get_pid(tty->pgrp);
572                         if (tty->pgrp)
573                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574                         spin_unlock(&tty->ctrl_lock);
575                         spin_unlock_irq(&p->sighand->siglock);
576                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577         }
578         read_unlock(&tasklist_lock);
579
580         if (tty_pgrp) {
581                 if (exit_session)
582                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583                 put_pid(tty_pgrp);
584         }
585
586         return refs;
587 }
588
589 /**
590  *      __tty_hangup            -       actual handler for hangup events
591  *      @work: tty device
592  *
593  *      This can be called by a "kworker" kernel thread.  That is process
594  *      synchronous but doesn't hold any locks, so we need to make sure we
595  *      have the appropriate locks for what we're doing.
596  *
597  *      The hangup event clears any pending redirections onto the hung up
598  *      device. It ensures future writes will error and it does the needed
599  *      line discipline hangup and signal delivery. The tty object itself
600  *      remains intact.
601  *
602  *      Locking:
603  *              BTM
604  *                redirect lock for undoing redirection
605  *                file list lock for manipulating list of ttys
606  *                tty_ldiscs_lock from called functions
607  *                termios_rwsem resetting termios data
608  *                tasklist_lock to walk task list for hangup event
609  *                  ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613         struct file *cons_filp = NULL;
614         struct file *filp, *f = NULL;
615         struct tty_file_private *priv;
616         int    closecount = 0, n;
617         int refs;
618
619         if (!tty)
620                 return;
621
622
623         spin_lock(&redirect_lock);
624         if (redirect && file_tty(redirect) == tty) {
625                 f = redirect;
626                 redirect = NULL;
627         }
628         spin_unlock(&redirect_lock);
629
630         tty_lock(tty);
631
632         if (test_bit(TTY_HUPPED, &tty->flags)) {
633                 tty_unlock(tty);
634                 return;
635         }
636
637         /* some functions below drop BTM, so we need this bit */
638         set_bit(TTY_HUPPING, &tty->flags);
639
640         /* inuse_filps is protected by the single tty lock,
641            this really needs to change if we want to flush the
642            workqueue with the lock held */
643         check_tty_count(tty, "tty_hangup");
644
645         spin_lock(&tty_files_lock);
646         /* This breaks for file handles being sent over AF_UNIX sockets ? */
647         list_for_each_entry(priv, &tty->tty_files, list) {
648                 filp = priv->file;
649                 if (filp->f_op->write == redirected_tty_write)
650                         cons_filp = filp;
651                 if (filp->f_op->write != tty_write)
652                         continue;
653                 closecount++;
654                 __tty_fasync(-1, filp, 0);      /* can't block */
655                 filp->f_op = &hung_up_tty_fops;
656         }
657         spin_unlock(&tty_files_lock);
658
659         refs = tty_signal_session_leader(tty, exit_session);
660         /* Account for the p->signal references we killed */
661         while (refs--)
662                 tty_kref_put(tty);
663
664         /*
665          * it drops BTM and thus races with reopen
666          * we protect the race by TTY_HUPPING
667          */
668         tty_ldisc_hangup(tty);
669
670         spin_lock_irq(&tty->ctrl_lock);
671         clear_bit(TTY_THROTTLED, &tty->flags);
672         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
673         put_pid(tty->session);
674         put_pid(tty->pgrp);
675         tty->session = NULL;
676         tty->pgrp = NULL;
677         tty->ctrl_status = 0;
678         spin_unlock_irq(&tty->ctrl_lock);
679
680         /*
681          * If one of the devices matches a console pointer, we
682          * cannot just call hangup() because that will cause
683          * tty->count and state->count to go out of sync.
684          * So we just call close() the right number of times.
685          */
686         if (cons_filp) {
687                 if (tty->ops->close)
688                         for (n = 0; n < closecount; n++)
689                                 tty->ops->close(tty, cons_filp);
690         } else if (tty->ops->hangup)
691                 (tty->ops->hangup)(tty);
692         /*
693          * We don't want to have driver/ldisc interactions beyond
694          * the ones we did here. The driver layer expects no
695          * calls after ->hangup() from the ldisc side. However we
696          * can't yet guarantee all that.
697          */
698         set_bit(TTY_HUPPED, &tty->flags);
699         clear_bit(TTY_HUPPING, &tty->flags);
700
701         tty_unlock(tty);
702
703         if (f)
704                 fput(f);
705 }
706
707 static void do_tty_hangup(struct work_struct *work)
708 {
709         struct tty_struct *tty =
710                 container_of(work, struct tty_struct, hangup_work);
711
712         __tty_hangup(tty, 0);
713 }
714
715 /**
716  *      tty_hangup              -       trigger a hangup event
717  *      @tty: tty to hangup
718  *
719  *      A carrier loss (virtual or otherwise) has occurred on this like
720  *      schedule a hangup sequence to run after this event.
721  */
722
723 void tty_hangup(struct tty_struct *tty)
724 {
725 #ifdef TTY_DEBUG_HANGUP
726         char    buf[64];
727         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
728 #endif
729         schedule_work(&tty->hangup_work);
730 }
731
732 EXPORT_SYMBOL(tty_hangup);
733
734 /**
735  *      tty_vhangup             -       process vhangup
736  *      @tty: tty to hangup
737  *
738  *      The user has asked via system call for the terminal to be hung up.
739  *      We do this synchronously so that when the syscall returns the process
740  *      is complete. That guarantee is necessary for security reasons.
741  */
742
743 void tty_vhangup(struct tty_struct *tty)
744 {
745 #ifdef TTY_DEBUG_HANGUP
746         char    buf[64];
747
748         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
749 #endif
750         __tty_hangup(tty, 0);
751 }
752
753 EXPORT_SYMBOL(tty_vhangup);
754
755
756 /**
757  *      tty_vhangup_self        -       process vhangup for own ctty
758  *
759  *      Perform a vhangup on the current controlling tty
760  */
761
762 void tty_vhangup_self(void)
763 {
764         struct tty_struct *tty;
765
766         tty = get_current_tty();
767         if (tty) {
768                 tty_vhangup(tty);
769                 tty_kref_put(tty);
770         }
771 }
772
773 /**
774  *      tty_vhangup_session             -       hangup session leader exit
775  *      @tty: tty to hangup
776  *
777  *      The session leader is exiting and hanging up its controlling terminal.
778  *      Every process in the foreground process group is signalled SIGHUP.
779  *
780  *      We do this synchronously so that when the syscall returns the process
781  *      is complete. That guarantee is necessary for security reasons.
782  */
783
784 static void tty_vhangup_session(struct tty_struct *tty)
785 {
786 #ifdef TTY_DEBUG_HANGUP
787         char    buf[64];
788
789         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
790 #endif
791         __tty_hangup(tty, 1);
792 }
793
794 /**
795  *      tty_hung_up_p           -       was tty hung up
796  *      @filp: file pointer of tty
797  *
798  *      Return true if the tty has been subject to a vhangup or a carrier
799  *      loss
800  */
801
802 int tty_hung_up_p(struct file *filp)
803 {
804         return (filp->f_op == &hung_up_tty_fops);
805 }
806
807 EXPORT_SYMBOL(tty_hung_up_p);
808
809 static void session_clear_tty(struct pid *session)
810 {
811         struct task_struct *p;
812         do_each_pid_task(session, PIDTYPE_SID, p) {
813                 proc_clear_tty(p);
814         } while_each_pid_task(session, PIDTYPE_SID, p);
815 }
816
817 /**
818  *      disassociate_ctty       -       disconnect controlling tty
819  *      @on_exit: true if exiting so need to "hang up" the session
820  *
821  *      This function is typically called only by the session leader, when
822  *      it wants to disassociate itself from its controlling tty.
823  *
824  *      It performs the following functions:
825  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
826  *      (2)  Clears the tty from being controlling the session
827  *      (3)  Clears the controlling tty for all processes in the
828  *              session group.
829  *
830  *      The argument on_exit is set to 1 if called when a process is
831  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
832  *
833  *      Locking:
834  *              BTM is taken for hysterical raisins, and held when
835  *                called from no_tty().
836  *                tty_mutex is taken to protect tty
837  *                ->siglock is taken to protect ->signal/->sighand
838  *                tasklist_lock is taken to walk process list for sessions
839  *                  ->siglock is taken to protect ->signal/->sighand
840  */
841
842 void disassociate_ctty(int on_exit)
843 {
844         struct tty_struct *tty;
845
846         if (!current->signal->leader)
847                 return;
848
849         tty = get_current_tty();
850         if (tty) {
851                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
852                         tty_vhangup_session(tty);
853                 } else {
854                         struct pid *tty_pgrp = tty_get_pgrp(tty);
855                         if (tty_pgrp) {
856                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
857                                 if (!on_exit)
858                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
859                                 put_pid(tty_pgrp);
860                         }
861                 }
862                 tty_kref_put(tty);
863
864         } else if (on_exit) {
865                 struct pid *old_pgrp;
866                 spin_lock_irq(&current->sighand->siglock);
867                 old_pgrp = current->signal->tty_old_pgrp;
868                 current->signal->tty_old_pgrp = NULL;
869                 spin_unlock_irq(&current->sighand->siglock);
870                 if (old_pgrp) {
871                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
872                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
873                         put_pid(old_pgrp);
874                 }
875                 return;
876         }
877
878         spin_lock_irq(&current->sighand->siglock);
879         put_pid(current->signal->tty_old_pgrp);
880         current->signal->tty_old_pgrp = NULL;
881
882         tty = tty_kref_get(current->signal->tty);
883         if (tty) {
884                 unsigned long flags;
885                 spin_lock_irqsave(&tty->ctrl_lock, flags);
886                 put_pid(tty->session);
887                 put_pid(tty->pgrp);
888                 tty->session = NULL;
889                 tty->pgrp = NULL;
890                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891                 tty_kref_put(tty);
892         } else {
893 #ifdef TTY_DEBUG_HANGUP
894                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
895                        " = NULL", tty);
896 #endif
897         }
898
899         spin_unlock_irq(&current->sighand->siglock);
900         /* Now clear signal->tty under the lock */
901         read_lock(&tasklist_lock);
902         session_clear_tty(task_session(current));
903         read_unlock(&tasklist_lock);
904 }
905
906 /**
907  *
908  *      no_tty  - Ensure the current process does not have a controlling tty
909  */
910 void no_tty(void)
911 {
912         /* FIXME: Review locking here. The tty_lock never covered any race
913            between a new association and proc_clear_tty but possible we need
914            to protect against this anyway */
915         struct task_struct *tsk = current;
916         disassociate_ctty(0);
917         proc_clear_tty(tsk);
918 }
919
920
921 /**
922  *      stop_tty        -       propagate flow control
923  *      @tty: tty to stop
924  *
925  *      Perform flow control to the driver. For PTY/TTY pairs we
926  *      must also propagate the TIOCKPKT status. May be called
927  *      on an already stopped device and will not re-call the driver
928  *      method.
929  *
930  *      This functionality is used by both the line disciplines for
931  *      halting incoming flow and by the driver. It may therefore be
932  *      called from any context, may be under the tty atomic_write_lock
933  *      but not always.
934  *
935  *      Locking:
936  *              Uses the tty control lock internally
937  */
938
939 void stop_tty(struct tty_struct *tty)
940 {
941         unsigned long flags;
942         spin_lock_irqsave(&tty->ctrl_lock, flags);
943         if (tty->stopped) {
944                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
945                 return;
946         }
947         tty->stopped = 1;
948         if (tty->link && tty->link->packet) {
949                 tty->ctrl_status &= ~TIOCPKT_START;
950                 tty->ctrl_status |= TIOCPKT_STOP;
951                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
952         }
953         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
954         if (tty->ops->stop)
955                 (tty->ops->stop)(tty);
956 }
957
958 EXPORT_SYMBOL(stop_tty);
959
960 /**
961  *      start_tty       -       propagate flow control
962  *      @tty: tty to start
963  *
964  *      Start a tty that has been stopped if at all possible. Perform
965  *      any necessary wakeups and propagate the TIOCPKT status. If this
966  *      is the tty was previous stopped and is being started then the
967  *      driver start method is invoked and the line discipline woken.
968  *
969  *      Locking:
970  *              ctrl_lock
971  */
972
973 void start_tty(struct tty_struct *tty)
974 {
975         unsigned long flags;
976         spin_lock_irqsave(&tty->ctrl_lock, flags);
977         if (!tty->stopped || tty->flow_stopped) {
978                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
979                 return;
980         }
981         tty->stopped = 0;
982         if (tty->link && tty->link->packet) {
983                 tty->ctrl_status &= ~TIOCPKT_STOP;
984                 tty->ctrl_status |= TIOCPKT_START;
985                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
986         }
987         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
988         if (tty->ops->start)
989                 (tty->ops->start)(tty);
990         /* If we have a running line discipline it may need kicking */
991         tty_wakeup(tty);
992 }
993
994 EXPORT_SYMBOL(start_tty);
995
996 /* We limit tty time update visibility to every 8 seconds or so. */
997 static void tty_update_time(struct timespec *time)
998 {
999         unsigned long sec = get_seconds() & ~7;
1000         if ((long)(sec - time->tv_sec) > 0)
1001                 time->tv_sec = sec;
1002 }
1003
1004 /**
1005  *      tty_read        -       read method for tty device files
1006  *      @file: pointer to tty file
1007  *      @buf: user buffer
1008  *      @count: size of user buffer
1009  *      @ppos: unused
1010  *
1011  *      Perform the read system call function on this terminal device. Checks
1012  *      for hung up devices before calling the line discipline method.
1013  *
1014  *      Locking:
1015  *              Locks the line discipline internally while needed. Multiple
1016  *      read calls may be outstanding in parallel.
1017  */
1018
1019 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020                         loff_t *ppos)
1021 {
1022         int i;
1023         struct inode *inode = file_inode(file);
1024         struct tty_struct *tty = file_tty(file);
1025         struct tty_ldisc *ld;
1026
1027         if (tty_paranoia_check(tty, inode, "tty_read"))
1028                 return -EIO;
1029         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030                 return -EIO;
1031
1032         /* We want to wait for the line discipline to sort out in this
1033            situation */
1034         ld = tty_ldisc_ref_wait(tty);
1035         if (ld->ops->read)
1036                 i = (ld->ops->read)(tty, file, buf, count);
1037         else
1038                 i = -EIO;
1039         tty_ldisc_deref(ld);
1040
1041         if (i > 0)
1042                 tty_update_time(&inode->i_atime);
1043
1044         return i;
1045 }
1046
1047 void tty_write_unlock(struct tty_struct *tty)
1048         __releases(&tty->atomic_write_lock)
1049 {
1050         mutex_unlock(&tty->atomic_write_lock);
1051         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1052 }
1053
1054 int tty_write_lock(struct tty_struct *tty, int ndelay)
1055         __acquires(&tty->atomic_write_lock)
1056 {
1057         if (!mutex_trylock(&tty->atomic_write_lock)) {
1058                 if (ndelay)
1059                         return -EAGAIN;
1060                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061                         return -ERESTARTSYS;
1062         }
1063         return 0;
1064 }
1065
1066 /*
1067  * Split writes up in sane blocksizes to avoid
1068  * denial-of-service type attacks
1069  */
1070 static inline ssize_t do_tty_write(
1071         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072         struct tty_struct *tty,
1073         struct file *file,
1074         const char __user *buf,
1075         size_t count)
1076 {
1077         ssize_t ret, written = 0;
1078         unsigned int chunk;
1079
1080         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081         if (ret < 0)
1082                 return ret;
1083
1084         /*
1085          * We chunk up writes into a temporary buffer. This
1086          * simplifies low-level drivers immensely, since they
1087          * don't have locking issues and user mode accesses.
1088          *
1089          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090          * big chunk-size..
1091          *
1092          * The default chunk-size is 2kB, because the NTTY
1093          * layer has problems with bigger chunks. It will
1094          * claim to be able to handle more characters than
1095          * it actually does.
1096          *
1097          * FIXME: This can probably go away now except that 64K chunks
1098          * are too likely to fail unless switched to vmalloc...
1099          */
1100         chunk = 2048;
1101         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102                 chunk = 65536;
1103         if (count < chunk)
1104                 chunk = count;
1105
1106         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107         if (tty->write_cnt < chunk) {
1108                 unsigned char *buf_chunk;
1109
1110                 if (chunk < 1024)
1111                         chunk = 1024;
1112
1113                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114                 if (!buf_chunk) {
1115                         ret = -ENOMEM;
1116                         goto out;
1117                 }
1118                 kfree(tty->write_buf);
1119                 tty->write_cnt = chunk;
1120                 tty->write_buf = buf_chunk;
1121         }
1122
1123         /* Do the write .. */
1124         for (;;) {
1125                 size_t size = count;
1126                 if (size > chunk)
1127                         size = chunk;
1128                 ret = -EFAULT;
1129                 if (copy_from_user(tty->write_buf, buf, size))
1130                         break;
1131                 ret = write(tty, file, tty->write_buf, size);
1132                 if (ret <= 0)
1133                         break;
1134                 written += ret;
1135                 buf += ret;
1136                 count -= ret;
1137                 if (!count)
1138                         break;
1139                 ret = -ERESTARTSYS;
1140                 if (signal_pending(current))
1141                         break;
1142                 cond_resched();
1143         }
1144         if (written) {
1145                 tty_update_time(&file_inode(file)->i_mtime);
1146                 ret = written;
1147         }
1148 out:
1149         tty_write_unlock(tty);
1150         return ret;
1151 }
1152
1153 /**
1154  * tty_write_message - write a message to a certain tty, not just the console.
1155  * @tty: the destination tty_struct
1156  * @msg: the message to write
1157  *
1158  * This is used for messages that need to be redirected to a specific tty.
1159  * We don't put it into the syslog queue right now maybe in the future if
1160  * really needed.
1161  *
1162  * We must still hold the BTM and test the CLOSING flag for the moment.
1163  */
1164
1165 void tty_write_message(struct tty_struct *tty, char *msg)
1166 {
1167         if (tty) {
1168                 mutex_lock(&tty->atomic_write_lock);
1169                 tty_lock(tty);
1170                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171                         tty_unlock(tty);
1172                         tty->ops->write(tty, msg, strlen(msg));
1173                 } else
1174                         tty_unlock(tty);
1175                 tty_write_unlock(tty);
1176         }
1177         return;
1178 }
1179
1180
1181 /**
1182  *      tty_write               -       write method for tty device file
1183  *      @file: tty file pointer
1184  *      @buf: user data to write
1185  *      @count: bytes to write
1186  *      @ppos: unused
1187  *
1188  *      Write data to a tty device via the line discipline.
1189  *
1190  *      Locking:
1191  *              Locks the line discipline as required
1192  *              Writes to the tty driver are serialized by the atomic_write_lock
1193  *      and are then processed in chunks to the device. The line discipline
1194  *      write method will not be invoked in parallel for each device.
1195  */
1196
1197 static ssize_t tty_write(struct file *file, const char __user *buf,
1198                                                 size_t count, loff_t *ppos)
1199 {
1200         struct tty_struct *tty = file_tty(file);
1201         struct tty_ldisc *ld;
1202         ssize_t ret;
1203
1204         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205                 return -EIO;
1206         if (!tty || !tty->ops->write ||
1207                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1208                         return -EIO;
1209         /* Short term debug to catch buggy drivers */
1210         if (tty->ops->write_room == NULL)
1211                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212                         tty->driver->name);
1213         ld = tty_ldisc_ref_wait(tty);
1214         if (!ld->ops->write)
1215                 ret = -EIO;
1216         else
1217                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218         tty_ldisc_deref(ld);
1219         return ret;
1220 }
1221
1222 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223                                                 size_t count, loff_t *ppos)
1224 {
1225         struct file *p = NULL;
1226
1227         spin_lock(&redirect_lock);
1228         if (redirect)
1229                 p = get_file(redirect);
1230         spin_unlock(&redirect_lock);
1231
1232         if (p) {
1233                 ssize_t res;
1234                 res = vfs_write(p, buf, count, &p->f_pos);
1235                 fput(p);
1236                 return res;
1237         }
1238         return tty_write(file, buf, count, ppos);
1239 }
1240
1241 static char ptychar[] = "pqrstuvwxyzabcde";
1242
1243 /**
1244  *      pty_line_name   -       generate name for a pty
1245  *      @driver: the tty driver in use
1246  *      @index: the minor number
1247  *      @p: output buffer of at least 6 bytes
1248  *
1249  *      Generate a name from a driver reference and write it to the output
1250  *      buffer.
1251  *
1252  *      Locking: None
1253  */
1254 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1255 {
1256         int i = index + driver->name_base;
1257         /* ->name is initialized to "ttyp", but "tty" is expected */
1258         sprintf(p, "%s%c%x",
1259                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260                 ptychar[i >> 4 & 0xf], i & 0xf);
1261 }
1262
1263 /**
1264  *      tty_line_name   -       generate name for a tty
1265  *      @driver: the tty driver in use
1266  *      @index: the minor number
1267  *      @p: output buffer of at least 7 bytes
1268  *
1269  *      Generate a name from a driver reference and write it to the output
1270  *      buffer.
1271  *
1272  *      Locking: None
1273  */
1274 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1275 {
1276         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277                 return sprintf(p, "%s", driver->name);
1278         else
1279                 return sprintf(p, "%s%d", driver->name,
1280                                index + driver->name_base);
1281 }
1282
1283 /**
1284  *      tty_driver_lookup_tty() - find an existing tty, if any
1285  *      @driver: the driver for the tty
1286  *      @idx:    the minor number
1287  *
1288  *      Return the tty, if found or ERR_PTR() otherwise.
1289  *
1290  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1291  *      be held until the 'fast-open' is also done. Will change once we
1292  *      have refcounting in the driver and per driver locking
1293  */
1294 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1295                 struct inode *inode, int idx)
1296 {
1297         if (driver->ops->lookup)
1298                 return driver->ops->lookup(driver, inode, idx);
1299
1300         return driver->ttys[idx];
1301 }
1302
1303 /**
1304  *      tty_init_termios        -  helper for termios setup
1305  *      @tty: the tty to set up
1306  *
1307  *      Initialise the termios structures for this tty. Thus runs under
1308  *      the tty_mutex currently so we can be relaxed about ordering.
1309  */
1310
1311 int tty_init_termios(struct tty_struct *tty)
1312 {
1313         struct ktermios *tp;
1314         int idx = tty->index;
1315
1316         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1317                 tty->termios = tty->driver->init_termios;
1318         else {
1319                 /* Check for lazy saved data */
1320                 tp = tty->driver->termios[idx];
1321                 if (tp != NULL)
1322                         tty->termios = *tp;
1323                 else
1324                         tty->termios = tty->driver->init_termios;
1325         }
1326         /* Compatibility until drivers always set this */
1327         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1328         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1329         return 0;
1330 }
1331 EXPORT_SYMBOL_GPL(tty_init_termios);
1332
1333 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1334 {
1335         int ret = tty_init_termios(tty);
1336         if (ret)
1337                 return ret;
1338
1339         tty_driver_kref_get(driver);
1340         tty->count++;
1341         driver->ttys[tty->index] = tty;
1342         return 0;
1343 }
1344 EXPORT_SYMBOL_GPL(tty_standard_install);
1345
1346 /**
1347  *      tty_driver_install_tty() - install a tty entry in the driver
1348  *      @driver: the driver for the tty
1349  *      @tty: the tty
1350  *
1351  *      Install a tty object into the driver tables. The tty->index field
1352  *      will be set by the time this is called. This method is responsible
1353  *      for ensuring any need additional structures are allocated and
1354  *      configured.
1355  *
1356  *      Locking: tty_mutex for now
1357  */
1358 static int tty_driver_install_tty(struct tty_driver *driver,
1359                                                 struct tty_struct *tty)
1360 {
1361         return driver->ops->install ? driver->ops->install(driver, tty) :
1362                 tty_standard_install(driver, tty);
1363 }
1364
1365 /**
1366  *      tty_driver_remove_tty() - remove a tty from the driver tables
1367  *      @driver: the driver for the tty
1368  *      @idx:    the minor number
1369  *
1370  *      Remvoe a tty object from the driver tables. The tty->index field
1371  *      will be set by the time this is called.
1372  *
1373  *      Locking: tty_mutex for now
1374  */
1375 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1376 {
1377         if (driver->ops->remove)
1378                 driver->ops->remove(driver, tty);
1379         else
1380                 driver->ttys[tty->index] = NULL;
1381 }
1382
1383 /*
1384  *      tty_reopen()    - fast re-open of an open tty
1385  *      @tty    - the tty to open
1386  *
1387  *      Return 0 on success, -errno on error.
1388  *
1389  *      Locking: tty_mutex must be held from the time the tty was found
1390  *               till this open completes.
1391  */
1392 static int tty_reopen(struct tty_struct *tty)
1393 {
1394         struct tty_driver *driver = tty->driver;
1395
1396         if (test_bit(TTY_CLOSING, &tty->flags) ||
1397                         test_bit(TTY_HUPPING, &tty->flags))
1398                 return -EIO;
1399
1400         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1401             driver->subtype == PTY_TYPE_MASTER) {
1402                 /*
1403                  * special case for PTY masters: only one open permitted,
1404                  * and the slave side open count is incremented as well.
1405                  */
1406                 if (tty->count)
1407                         return -EIO;
1408
1409                 tty->link->count++;
1410         }
1411         tty->count++;
1412
1413         WARN_ON(!tty->ldisc);
1414
1415         return 0;
1416 }
1417
1418 /**
1419  *      tty_init_dev            -       initialise a tty device
1420  *      @driver: tty driver we are opening a device on
1421  *      @idx: device index
1422  *      @ret_tty: returned tty structure
1423  *
1424  *      Prepare a tty device. This may not be a "new" clean device but
1425  *      could also be an active device. The pty drivers require special
1426  *      handling because of this.
1427  *
1428  *      Locking:
1429  *              The function is called under the tty_mutex, which
1430  *      protects us from the tty struct or driver itself going away.
1431  *
1432  *      On exit the tty device has the line discipline attached and
1433  *      a reference count of 1. If a pair was created for pty/tty use
1434  *      and the other was a pty master then it too has a reference count of 1.
1435  *
1436  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1437  * failed open.  The new code protects the open with a mutex, so it's
1438  * really quite straightforward.  The mutex locking can probably be
1439  * relaxed for the (most common) case of reopening a tty.
1440  */
1441
1442 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1443 {
1444         struct tty_struct *tty;
1445         int retval;
1446
1447         /*
1448          * First time open is complex, especially for PTY devices.
1449          * This code guarantees that either everything succeeds and the
1450          * TTY is ready for operation, or else the table slots are vacated
1451          * and the allocated memory released.  (Except that the termios
1452          * and locked termios may be retained.)
1453          */
1454
1455         if (!try_module_get(driver->owner))
1456                 return ERR_PTR(-ENODEV);
1457
1458         tty = alloc_tty_struct();
1459         if (!tty) {
1460                 retval = -ENOMEM;
1461                 goto err_module_put;
1462         }
1463         initialize_tty_struct(tty, driver, idx);
1464
1465         tty_lock(tty);
1466         retval = tty_driver_install_tty(driver, tty);
1467         if (retval < 0)
1468                 goto err_deinit_tty;
1469
1470         if (!tty->port)
1471                 tty->port = driver->ports[idx];
1472
1473         WARN_RATELIMIT(!tty->port,
1474                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1475                         __func__, tty->driver->name);
1476
1477         tty->port->itty = tty;
1478
1479         /*
1480          * Structures all installed ... call the ldisc open routines.
1481          * If we fail here just call release_tty to clean up.  No need
1482          * to decrement the use counts, as release_tty doesn't care.
1483          */
1484         retval = tty_ldisc_setup(tty, tty->link);
1485         if (retval)
1486                 goto err_release_tty;
1487         /* Return the tty locked so that it cannot vanish under the caller */
1488         return tty;
1489
1490 err_deinit_tty:
1491         tty_unlock(tty);
1492         deinitialize_tty_struct(tty);
1493         free_tty_struct(tty);
1494 err_module_put:
1495         module_put(driver->owner);
1496         return ERR_PTR(retval);
1497
1498         /* call the tty release_tty routine to clean out this slot */
1499 err_release_tty:
1500         tty_unlock(tty);
1501         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1502                                  "clearing slot %d\n", idx);
1503         release_tty(tty, idx);
1504         return ERR_PTR(retval);
1505 }
1506
1507 void tty_free_termios(struct tty_struct *tty)
1508 {
1509         struct ktermios *tp;
1510         int idx = tty->index;
1511
1512         /* If the port is going to reset then it has no termios to save */
1513         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1514                 return;
1515
1516         /* Stash the termios data */
1517         tp = tty->driver->termios[idx];
1518         if (tp == NULL) {
1519                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1520                 if (tp == NULL) {
1521                         pr_warn("tty: no memory to save termios state.\n");
1522                         return;
1523                 }
1524                 tty->driver->termios[idx] = tp;
1525         }
1526         *tp = tty->termios;
1527 }
1528 EXPORT_SYMBOL(tty_free_termios);
1529
1530 /**
1531  *      tty_flush_works         -       flush all works of a tty
1532  *      @tty: tty device to flush works for
1533  *
1534  *      Sync flush all works belonging to @tty.
1535  */
1536 static void tty_flush_works(struct tty_struct *tty)
1537 {
1538         flush_work(&tty->SAK_work);
1539         flush_work(&tty->hangup_work);
1540 }
1541
1542 /**
1543  *      release_one_tty         -       release tty structure memory
1544  *      @kref: kref of tty we are obliterating
1545  *
1546  *      Releases memory associated with a tty structure, and clears out the
1547  *      driver table slots. This function is called when a device is no longer
1548  *      in use. It also gets called when setup of a device fails.
1549  *
1550  *      Locking:
1551  *              takes the file list lock internally when working on the list
1552  *      of ttys that the driver keeps.
1553  *
1554  *      This method gets called from a work queue so that the driver private
1555  *      cleanup ops can sleep (needed for USB at least)
1556  */
1557 static void release_one_tty(struct work_struct *work)
1558 {
1559         struct tty_struct *tty =
1560                 container_of(work, struct tty_struct, hangup_work);
1561         struct tty_driver *driver = tty->driver;
1562
1563         if (tty->ops->cleanup)
1564                 tty->ops->cleanup(tty);
1565
1566         tty->magic = 0;
1567         tty_driver_kref_put(driver);
1568         module_put(driver->owner);
1569
1570         spin_lock(&tty_files_lock);
1571         list_del_init(&tty->tty_files);
1572         spin_unlock(&tty_files_lock);
1573
1574         put_pid(tty->pgrp);
1575         put_pid(tty->session);
1576         free_tty_struct(tty);
1577 }
1578
1579 static void queue_release_one_tty(struct kref *kref)
1580 {
1581         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1582
1583         /* The hangup queue is now free so we can reuse it rather than
1584            waste a chunk of memory for each port */
1585         INIT_WORK(&tty->hangup_work, release_one_tty);
1586         schedule_work(&tty->hangup_work);
1587 }
1588
1589 /**
1590  *      tty_kref_put            -       release a tty kref
1591  *      @tty: tty device
1592  *
1593  *      Release a reference to a tty device and if need be let the kref
1594  *      layer destruct the object for us
1595  */
1596
1597 void tty_kref_put(struct tty_struct *tty)
1598 {
1599         if (tty)
1600                 kref_put(&tty->kref, queue_release_one_tty);
1601 }
1602 EXPORT_SYMBOL(tty_kref_put);
1603
1604 /**
1605  *      release_tty             -       release tty structure memory
1606  *
1607  *      Release both @tty and a possible linked partner (think pty pair),
1608  *      and decrement the refcount of the backing module.
1609  *
1610  *      Locking:
1611  *              tty_mutex
1612  *              takes the file list lock internally when working on the list
1613  *      of ttys that the driver keeps.
1614  *
1615  */
1616 static void release_tty(struct tty_struct *tty, int idx)
1617 {
1618         /* This should always be true but check for the moment */
1619         WARN_ON(tty->index != idx);
1620         WARN_ON(!mutex_is_locked(&tty_mutex));
1621         if (tty->ops->shutdown)
1622                 tty->ops->shutdown(tty);
1623         tty_free_termios(tty);
1624         tty_driver_remove_tty(tty->driver, tty);
1625         tty->port->itty = NULL;
1626         if (tty->link)
1627                 tty->link->port->itty = NULL;
1628         cancel_work_sync(&tty->port->buf.work);
1629
1630         if (tty->link)
1631                 tty_kref_put(tty->link);
1632         tty_kref_put(tty);
1633 }
1634
1635 /**
1636  *      tty_release_checks - check a tty before real release
1637  *      @tty: tty to check
1638  *      @o_tty: link of @tty (if any)
1639  *      @idx: index of the tty
1640  *
1641  *      Performs some paranoid checking before true release of the @tty.
1642  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1643  */
1644 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1645                 int idx)
1646 {
1647 #ifdef TTY_PARANOIA_CHECK
1648         if (idx < 0 || idx >= tty->driver->num) {
1649                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1650                                 __func__, tty->name);
1651                 return -1;
1652         }
1653
1654         /* not much to check for devpts */
1655         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1656                 return 0;
1657
1658         if (tty != tty->driver->ttys[idx]) {
1659                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1660                                 __func__, idx, tty->name);
1661                 return -1;
1662         }
1663         if (tty->driver->other) {
1664                 if (o_tty != tty->driver->other->ttys[idx]) {
1665                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1666                                         __func__, idx, tty->name);
1667                         return -1;
1668                 }
1669                 if (o_tty->link != tty) {
1670                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1671                         return -1;
1672                 }
1673         }
1674 #endif
1675         return 0;
1676 }
1677
1678 /**
1679  *      tty_release             -       vfs callback for close
1680  *      @inode: inode of tty
1681  *      @filp: file pointer for handle to tty
1682  *
1683  *      Called the last time each file handle is closed that references
1684  *      this tty. There may however be several such references.
1685  *
1686  *      Locking:
1687  *              Takes bkl. See tty_release_dev
1688  *
1689  * Even releasing the tty structures is a tricky business.. We have
1690  * to be very careful that the structures are all released at the
1691  * same time, as interrupts might otherwise get the wrong pointers.
1692  *
1693  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1694  * lead to double frees or releasing memory still in use.
1695  */
1696
1697 int tty_release(struct inode *inode, struct file *filp)
1698 {
1699         struct tty_struct *tty = file_tty(filp);
1700         struct tty_struct *o_tty;
1701         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1702         int     idx;
1703         char    buf[64];
1704
1705         if (tty_paranoia_check(tty, inode, __func__))
1706                 return 0;
1707
1708         tty_lock(tty);
1709         check_tty_count(tty, __func__);
1710
1711         __tty_fasync(-1, filp, 0);
1712
1713         idx = tty->index;
1714         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1715                       tty->driver->subtype == PTY_TYPE_MASTER);
1716         /* Review: parallel close */
1717         o_tty = tty->link;
1718
1719         if (tty_release_checks(tty, o_tty, idx)) {
1720                 tty_unlock(tty);
1721                 return 0;
1722         }
1723
1724 #ifdef TTY_DEBUG_HANGUP
1725         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1726                         tty_name(tty, buf), tty->count);
1727 #endif
1728
1729         if (tty->ops->close)
1730                 tty->ops->close(tty, filp);
1731
1732         tty_unlock(tty);
1733         /*
1734          * Sanity check: if tty->count is going to zero, there shouldn't be
1735          * any waiters on tty->read_wait or tty->write_wait.  We test the
1736          * wait queues and kick everyone out _before_ actually starting to
1737          * close.  This ensures that we won't block while releasing the tty
1738          * structure.
1739          *
1740          * The test for the o_tty closing is necessary, since the master and
1741          * slave sides may close in any order.  If the slave side closes out
1742          * first, its count will be one, since the master side holds an open.
1743          * Thus this test wouldn't be triggered at the time the slave closes,
1744          * so we do it now.
1745          *
1746          * Note that it's possible for the tty to be opened again while we're
1747          * flushing out waiters.  By recalculating the closing flags before
1748          * each iteration we avoid any problems.
1749          */
1750         while (1) {
1751                 /* Guard against races with tty->count changes elsewhere and
1752                    opens on /dev/tty */
1753
1754                 mutex_lock(&tty_mutex);
1755                 tty_lock_pair(tty, o_tty);
1756                 tty_closing = tty->count <= 1;
1757                 o_tty_closing = o_tty &&
1758                         (o_tty->count <= (pty_master ? 1 : 0));
1759                 do_sleep = 0;
1760
1761                 if (tty_closing) {
1762                         if (waitqueue_active(&tty->read_wait)) {
1763                                 wake_up_poll(&tty->read_wait, POLLIN);
1764                                 do_sleep++;
1765                         }
1766                         if (waitqueue_active(&tty->write_wait)) {
1767                                 wake_up_poll(&tty->write_wait, POLLOUT);
1768                                 do_sleep++;
1769                         }
1770                 }
1771                 if (o_tty_closing) {
1772                         if (waitqueue_active(&o_tty->read_wait)) {
1773                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1774                                 do_sleep++;
1775                         }
1776                         if (waitqueue_active(&o_tty->write_wait)) {
1777                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1778                                 do_sleep++;
1779                         }
1780                 }
1781                 if (!do_sleep)
1782                         break;
1783
1784                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1785                                 __func__, tty_name(tty, buf));
1786                 tty_unlock_pair(tty, o_tty);
1787                 mutex_unlock(&tty_mutex);
1788                 schedule();
1789         }
1790
1791         /*
1792          * The closing flags are now consistent with the open counts on
1793          * both sides, and we've completed the last operation that could
1794          * block, so it's safe to proceed with closing.
1795          *
1796          * We must *not* drop the tty_mutex until we ensure that a further
1797          * entry into tty_open can not pick up this tty.
1798          */
1799         if (pty_master) {
1800                 if (--o_tty->count < 0) {
1801                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1802                                 __func__, o_tty->count, tty_name(o_tty, buf));
1803                         o_tty->count = 0;
1804                 }
1805         }
1806         if (--tty->count < 0) {
1807                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1808                                 __func__, tty->count, tty_name(tty, buf));
1809                 tty->count = 0;
1810         }
1811
1812         /*
1813          * We've decremented tty->count, so we need to remove this file
1814          * descriptor off the tty->tty_files list; this serves two
1815          * purposes:
1816          *  - check_tty_count sees the correct number of file descriptors
1817          *    associated with this tty.
1818          *  - do_tty_hangup no longer sees this file descriptor as
1819          *    something that needs to be handled for hangups.
1820          */
1821         tty_del_file(filp);
1822
1823         /*
1824          * Perform some housekeeping before deciding whether to return.
1825          *
1826          * Set the TTY_CLOSING flag if this was the last open.  In the
1827          * case of a pty we may have to wait around for the other side
1828          * to close, and TTY_CLOSING makes sure we can't be reopened.
1829          */
1830         if (tty_closing)
1831                 set_bit(TTY_CLOSING, &tty->flags);
1832         if (o_tty_closing)
1833                 set_bit(TTY_CLOSING, &o_tty->flags);
1834
1835         /*
1836          * If _either_ side is closing, make sure there aren't any
1837          * processes that still think tty or o_tty is their controlling
1838          * tty.
1839          */
1840         if (tty_closing || o_tty_closing) {
1841                 read_lock(&tasklist_lock);
1842                 session_clear_tty(tty->session);
1843                 if (o_tty)
1844                         session_clear_tty(o_tty->session);
1845                 read_unlock(&tasklist_lock);
1846         }
1847
1848         mutex_unlock(&tty_mutex);
1849         tty_unlock_pair(tty, o_tty);
1850         /* At this point the TTY_CLOSING flag should ensure a dead tty
1851            cannot be re-opened by a racing opener */
1852
1853         /* check whether both sides are closing ... */
1854         if (!tty_closing || (o_tty && !o_tty_closing))
1855                 return 0;
1856
1857 #ifdef TTY_DEBUG_HANGUP
1858         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1859 #endif
1860         /*
1861          * Ask the line discipline code to release its structures
1862          */
1863         tty_ldisc_release(tty, o_tty);
1864
1865         /* Wait for pending work before tty destruction commmences */
1866         tty_flush_works(tty);
1867         if (o_tty)
1868                 tty_flush_works(o_tty);
1869
1870 #ifdef TTY_DEBUG_HANGUP
1871         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1872 #endif
1873         /*
1874          * The release_tty function takes care of the details of clearing
1875          * the slots and preserving the termios structure. The tty_unlock_pair
1876          * should be safe as we keep a kref while the tty is locked (so the
1877          * unlock never unlocks a freed tty).
1878          */
1879         mutex_lock(&tty_mutex);
1880         release_tty(tty, idx);
1881         mutex_unlock(&tty_mutex);
1882
1883         return 0;
1884 }
1885
1886 /**
1887  *      tty_open_current_tty - get tty of current task for open
1888  *      @device: device number
1889  *      @filp: file pointer to tty
1890  *      @return: tty of the current task iff @device is /dev/tty
1891  *
1892  *      We cannot return driver and index like for the other nodes because
1893  *      devpts will not work then. It expects inodes to be from devpts FS.
1894  *
1895  *      We need to move to returning a refcounted object from all the lookup
1896  *      paths including this one.
1897  */
1898 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1899 {
1900         struct tty_struct *tty;
1901
1902         if (device != MKDEV(TTYAUX_MAJOR, 0))
1903                 return NULL;
1904
1905         tty = get_current_tty();
1906         if (!tty)
1907                 return ERR_PTR(-ENXIO);
1908
1909         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1910         /* noctty = 1; */
1911         tty_kref_put(tty);
1912         /* FIXME: we put a reference and return a TTY! */
1913         /* This is only safe because the caller holds tty_mutex */
1914         return tty;
1915 }
1916
1917 /**
1918  *      tty_lookup_driver - lookup a tty driver for a given device file
1919  *      @device: device number
1920  *      @filp: file pointer to tty
1921  *      @noctty: set if the device should not become a controlling tty
1922  *      @index: index for the device in the @return driver
1923  *      @return: driver for this inode (with increased refcount)
1924  *
1925  *      If @return is not erroneous, the caller is responsible to decrement the
1926  *      refcount by tty_driver_kref_put.
1927  *
1928  *      Locking: tty_mutex protects get_tty_driver
1929  */
1930 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1931                 int *noctty, int *index)
1932 {
1933         struct tty_driver *driver;
1934
1935         switch (device) {
1936 #ifdef CONFIG_VT
1937         case MKDEV(TTY_MAJOR, 0): {
1938                 extern struct tty_driver *console_driver;
1939                 driver = tty_driver_kref_get(console_driver);
1940                 *index = fg_console;
1941                 *noctty = 1;
1942                 break;
1943         }
1944 #endif
1945         case MKDEV(TTYAUX_MAJOR, 1): {
1946                 struct tty_driver *console_driver = console_device(index);
1947                 if (console_driver) {
1948                         driver = tty_driver_kref_get(console_driver);
1949                         if (driver) {
1950                                 /* Don't let /dev/console block */
1951                                 filp->f_flags |= O_NONBLOCK;
1952                                 *noctty = 1;
1953                                 break;
1954                         }
1955                 }
1956                 return ERR_PTR(-ENODEV);
1957         }
1958         default:
1959                 driver = get_tty_driver(device, index);
1960                 if (!driver)
1961                         return ERR_PTR(-ENODEV);
1962                 break;
1963         }
1964         return driver;
1965 }
1966
1967 /**
1968  *      tty_open                -       open a tty device
1969  *      @inode: inode of device file
1970  *      @filp: file pointer to tty
1971  *
1972  *      tty_open and tty_release keep up the tty count that contains the
1973  *      number of opens done on a tty. We cannot use the inode-count, as
1974  *      different inodes might point to the same tty.
1975  *
1976  *      Open-counting is needed for pty masters, as well as for keeping
1977  *      track of serial lines: DTR is dropped when the last close happens.
1978  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1979  *
1980  *      The termios state of a pty is reset on first open so that
1981  *      settings don't persist across reuse.
1982  *
1983  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1984  *               tty->count should protect the rest.
1985  *               ->siglock protects ->signal/->sighand
1986  *
1987  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1988  *      tty_mutex
1989  */
1990
1991 static int tty_open(struct inode *inode, struct file *filp)
1992 {
1993         struct tty_struct *tty;
1994         int noctty, retval;
1995         struct tty_driver *driver = NULL;
1996         int index;
1997         dev_t device = inode->i_rdev;
1998         unsigned saved_flags = filp->f_flags;
1999
2000         nonseekable_open(inode, filp);
2001
2002 retry_open:
2003         retval = tty_alloc_file(filp);
2004         if (retval)
2005                 return -ENOMEM;
2006
2007         noctty = filp->f_flags & O_NOCTTY;
2008         index  = -1;
2009         retval = 0;
2010
2011         mutex_lock(&tty_mutex);
2012         /* This is protected by the tty_mutex */
2013         tty = tty_open_current_tty(device, filp);
2014         if (IS_ERR(tty)) {
2015                 retval = PTR_ERR(tty);
2016                 goto err_unlock;
2017         } else if (!tty) {
2018                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2019                 if (IS_ERR(driver)) {
2020                         retval = PTR_ERR(driver);
2021                         goto err_unlock;
2022                 }
2023
2024                 /* check whether we're reopening an existing tty */
2025                 tty = tty_driver_lookup_tty(driver, inode, index);
2026                 if (IS_ERR(tty)) {
2027                         retval = PTR_ERR(tty);
2028                         goto err_unlock;
2029                 }
2030         }
2031
2032         if (tty) {
2033                 tty_lock(tty);
2034                 retval = tty_reopen(tty);
2035                 if (retval < 0) {
2036                         tty_unlock(tty);
2037                         tty = ERR_PTR(retval);
2038                 }
2039         } else  /* Returns with the tty_lock held for now */
2040                 tty = tty_init_dev(driver, index);
2041
2042         mutex_unlock(&tty_mutex);
2043         if (driver)
2044                 tty_driver_kref_put(driver);
2045         if (IS_ERR(tty)) {
2046                 retval = PTR_ERR(tty);
2047                 goto err_file;
2048         }
2049
2050         tty_add_file(tty, filp);
2051
2052         check_tty_count(tty, __func__);
2053         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2054             tty->driver->subtype == PTY_TYPE_MASTER)
2055                 noctty = 1;
2056 #ifdef TTY_DEBUG_HANGUP
2057         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2058 #endif
2059         if (tty->ops->open)
2060                 retval = tty->ops->open(tty, filp);
2061         else
2062                 retval = -ENODEV;
2063         filp->f_flags = saved_flags;
2064
2065         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2066                                                 !capable(CAP_SYS_ADMIN))
2067                 retval = -EBUSY;
2068
2069         if (retval) {
2070 #ifdef TTY_DEBUG_HANGUP
2071                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2072                                 retval, tty->name);
2073 #endif
2074                 tty_unlock(tty); /* need to call tty_release without BTM */
2075                 tty_release(inode, filp);
2076                 if (retval != -ERESTARTSYS)
2077                         return retval;
2078
2079                 if (signal_pending(current))
2080                         return retval;
2081
2082                 schedule();
2083                 /*
2084                  * Need to reset f_op in case a hangup happened.
2085                  */
2086                 if (filp->f_op == &hung_up_tty_fops)
2087                         filp->f_op = &tty_fops;
2088                 goto retry_open;
2089         }
2090         clear_bit(TTY_HUPPED, &tty->flags);
2091         tty_unlock(tty);
2092
2093
2094         mutex_lock(&tty_mutex);
2095         tty_lock(tty);
2096         spin_lock_irq(&current->sighand->siglock);
2097         if (!noctty &&
2098             current->signal->leader &&
2099             !current->signal->tty &&
2100             tty->session == NULL)
2101                 __proc_set_tty(current, tty);
2102         spin_unlock_irq(&current->sighand->siglock);
2103         tty_unlock(tty);
2104         mutex_unlock(&tty_mutex);
2105         return 0;
2106 err_unlock:
2107         mutex_unlock(&tty_mutex);
2108         /* after locks to avoid deadlock */
2109         if (!IS_ERR_OR_NULL(driver))
2110                 tty_driver_kref_put(driver);
2111 err_file:
2112         tty_free_file(filp);
2113         return retval;
2114 }
2115
2116
2117
2118 /**
2119  *      tty_poll        -       check tty status
2120  *      @filp: file being polled
2121  *      @wait: poll wait structures to update
2122  *
2123  *      Call the line discipline polling method to obtain the poll
2124  *      status of the device.
2125  *
2126  *      Locking: locks called line discipline but ldisc poll method
2127  *      may be re-entered freely by other callers.
2128  */
2129
2130 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2131 {
2132         struct tty_struct *tty = file_tty(filp);
2133         struct tty_ldisc *ld;
2134         int ret = 0;
2135
2136         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2137                 return 0;
2138
2139         ld = tty_ldisc_ref_wait(tty);
2140         if (ld->ops->poll)
2141                 ret = (ld->ops->poll)(tty, filp, wait);
2142         tty_ldisc_deref(ld);
2143         return ret;
2144 }
2145
2146 static int __tty_fasync(int fd, struct file *filp, int on)
2147 {
2148         struct tty_struct *tty = file_tty(filp);
2149         struct tty_ldisc *ldisc;
2150         unsigned long flags;
2151         int retval = 0;
2152
2153         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2154                 goto out;
2155
2156         retval = fasync_helper(fd, filp, on, &tty->fasync);
2157         if (retval <= 0)
2158                 goto out;
2159
2160         ldisc = tty_ldisc_ref(tty);
2161         if (ldisc) {
2162                 if (ldisc->ops->fasync)
2163                         ldisc->ops->fasync(tty, on);
2164                 tty_ldisc_deref(ldisc);
2165         }
2166
2167         if (on) {
2168                 enum pid_type type;
2169                 struct pid *pid;
2170
2171                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2172                 if (tty->pgrp) {
2173                         pid = tty->pgrp;
2174                         type = PIDTYPE_PGID;
2175                 } else {
2176                         pid = task_pid(current);
2177                         type = PIDTYPE_PID;
2178                 }
2179                 get_pid(pid);
2180                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2181                 retval = __f_setown(filp, pid, type, 0);
2182                 put_pid(pid);
2183         }
2184 out:
2185         return retval;
2186 }
2187
2188 static int tty_fasync(int fd, struct file *filp, int on)
2189 {
2190         struct tty_struct *tty = file_tty(filp);
2191         int retval;
2192
2193         tty_lock(tty);
2194         retval = __tty_fasync(fd, filp, on);
2195         tty_unlock(tty);
2196
2197         return retval;
2198 }
2199
2200 /**
2201  *      tiocsti                 -       fake input character
2202  *      @tty: tty to fake input into
2203  *      @p: pointer to character
2204  *
2205  *      Fake input to a tty device. Does the necessary locking and
2206  *      input management.
2207  *
2208  *      FIXME: does not honour flow control ??
2209  *
2210  *      Locking:
2211  *              Called functions take tty_ldiscs_lock
2212  *              current->signal->tty check is safe without locks
2213  *
2214  *      FIXME: may race normal receive processing
2215  */
2216
2217 static int tiocsti(struct tty_struct *tty, char __user *p)
2218 {
2219         char ch, mbz = 0;
2220         struct tty_ldisc *ld;
2221
2222         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2223                 return -EPERM;
2224         if (get_user(ch, p))
2225                 return -EFAULT;
2226         tty_audit_tiocsti(tty, ch);
2227         ld = tty_ldisc_ref_wait(tty);
2228         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2229         tty_ldisc_deref(ld);
2230         return 0;
2231 }
2232
2233 /**
2234  *      tiocgwinsz              -       implement window query ioctl
2235  *      @tty; tty
2236  *      @arg: user buffer for result
2237  *
2238  *      Copies the kernel idea of the window size into the user buffer.
2239  *
2240  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2241  *              is consistent.
2242  */
2243
2244 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2245 {
2246         int err;
2247
2248         mutex_lock(&tty->winsize_mutex);
2249         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2250         mutex_unlock(&tty->winsize_mutex);
2251
2252         return err ? -EFAULT: 0;
2253 }
2254
2255 /**
2256  *      tty_do_resize           -       resize event
2257  *      @tty: tty being resized
2258  *      @rows: rows (character)
2259  *      @cols: cols (character)
2260  *
2261  *      Update the termios variables and send the necessary signals to
2262  *      peform a terminal resize correctly
2263  */
2264
2265 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2266 {
2267         struct pid *pgrp;
2268         unsigned long flags;
2269
2270         /* Lock the tty */
2271         mutex_lock(&tty->winsize_mutex);
2272         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2273                 goto done;
2274         /* Get the PID values and reference them so we can
2275            avoid holding the tty ctrl lock while sending signals */
2276         spin_lock_irqsave(&tty->ctrl_lock, flags);
2277         pgrp = get_pid(tty->pgrp);
2278         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2279
2280         if (pgrp)
2281                 kill_pgrp(pgrp, SIGWINCH, 1);
2282         put_pid(pgrp);
2283
2284         tty->winsize = *ws;
2285 done:
2286         mutex_unlock(&tty->winsize_mutex);
2287         return 0;
2288 }
2289 EXPORT_SYMBOL(tty_do_resize);
2290
2291 /**
2292  *      tiocswinsz              -       implement window size set ioctl
2293  *      @tty; tty side of tty
2294  *      @arg: user buffer for result
2295  *
2296  *      Copies the user idea of the window size to the kernel. Traditionally
2297  *      this is just advisory information but for the Linux console it
2298  *      actually has driver level meaning and triggers a VC resize.
2299  *
2300  *      Locking:
2301  *              Driver dependent. The default do_resize method takes the
2302  *      tty termios mutex and ctrl_lock. The console takes its own lock
2303  *      then calls into the default method.
2304  */
2305
2306 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2307 {
2308         struct winsize tmp_ws;
2309         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2310                 return -EFAULT;
2311
2312         if (tty->ops->resize)
2313                 return tty->ops->resize(tty, &tmp_ws);
2314         else
2315                 return tty_do_resize(tty, &tmp_ws);
2316 }
2317
2318 /**
2319  *      tioccons        -       allow admin to move logical console
2320  *      @file: the file to become console
2321  *
2322  *      Allow the administrator to move the redirected console device
2323  *
2324  *      Locking: uses redirect_lock to guard the redirect information
2325  */
2326
2327 static int tioccons(struct file *file)
2328 {
2329         if (!capable(CAP_SYS_ADMIN))
2330                 return -EPERM;
2331         if (file->f_op->write == redirected_tty_write) {
2332                 struct file *f;
2333                 spin_lock(&redirect_lock);
2334                 f = redirect;
2335                 redirect = NULL;
2336                 spin_unlock(&redirect_lock);
2337                 if (f)
2338                         fput(f);
2339                 return 0;
2340         }
2341         spin_lock(&redirect_lock);
2342         if (redirect) {
2343                 spin_unlock(&redirect_lock);
2344                 return -EBUSY;
2345         }
2346         redirect = get_file(file);
2347         spin_unlock(&redirect_lock);
2348         return 0;
2349 }
2350
2351 /**
2352  *      fionbio         -       non blocking ioctl
2353  *      @file: file to set blocking value
2354  *      @p: user parameter
2355  *
2356  *      Historical tty interfaces had a blocking control ioctl before
2357  *      the generic functionality existed. This piece of history is preserved
2358  *      in the expected tty API of posix OS's.
2359  *
2360  *      Locking: none, the open file handle ensures it won't go away.
2361  */
2362
2363 static int fionbio(struct file *file, int __user *p)
2364 {
2365         int nonblock;
2366
2367         if (get_user(nonblock, p))
2368                 return -EFAULT;
2369
2370         spin_lock(&file->f_lock);
2371         if (nonblock)
2372                 file->f_flags |= O_NONBLOCK;
2373         else
2374                 file->f_flags &= ~O_NONBLOCK;
2375         spin_unlock(&file->f_lock);
2376         return 0;
2377 }
2378
2379 /**
2380  *      tiocsctty       -       set controlling tty
2381  *      @tty: tty structure
2382  *      @arg: user argument
2383  *
2384  *      This ioctl is used to manage job control. It permits a session
2385  *      leader to set this tty as the controlling tty for the session.
2386  *
2387  *      Locking:
2388  *              Takes tty_mutex() to protect tty instance
2389  *              Takes tasklist_lock internally to walk sessions
2390  *              Takes ->siglock() when updating signal->tty
2391  */
2392
2393 static int tiocsctty(struct tty_struct *tty, int arg)
2394 {
2395         int ret = 0;
2396         if (current->signal->leader && (task_session(current) == tty->session))
2397                 return ret;
2398
2399         mutex_lock(&tty_mutex);
2400         /*
2401          * The process must be a session leader and
2402          * not have a controlling tty already.
2403          */
2404         if (!current->signal->leader || current->signal->tty) {
2405                 ret = -EPERM;
2406                 goto unlock;
2407         }
2408
2409         if (tty->session) {
2410                 /*
2411                  * This tty is already the controlling
2412                  * tty for another session group!
2413                  */
2414                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2415                         /*
2416                          * Steal it away
2417                          */
2418                         read_lock(&tasklist_lock);
2419                         session_clear_tty(tty->session);
2420                         read_unlock(&tasklist_lock);
2421                 } else {
2422                         ret = -EPERM;
2423                         goto unlock;
2424                 }
2425         }
2426         proc_set_tty(current, tty);
2427 unlock:
2428         mutex_unlock(&tty_mutex);
2429         return ret;
2430 }
2431
2432 /**
2433  *      tty_get_pgrp    -       return a ref counted pgrp pid
2434  *      @tty: tty to read
2435  *
2436  *      Returns a refcounted instance of the pid struct for the process
2437  *      group controlling the tty.
2438  */
2439
2440 struct pid *tty_get_pgrp(struct tty_struct *tty)
2441 {
2442         unsigned long flags;
2443         struct pid *pgrp;
2444
2445         spin_lock_irqsave(&tty->ctrl_lock, flags);
2446         pgrp = get_pid(tty->pgrp);
2447         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2448
2449         return pgrp;
2450 }
2451 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2452
2453 /**
2454  *      tiocgpgrp               -       get process group
2455  *      @tty: tty passed by user
2456  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2457  *      @p: returned pid
2458  *
2459  *      Obtain the process group of the tty. If there is no process group
2460  *      return an error.
2461  *
2462  *      Locking: none. Reference to current->signal->tty is safe.
2463  */
2464
2465 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2466 {
2467         struct pid *pid;
2468         int ret;
2469         /*
2470          * (tty == real_tty) is a cheap way of
2471          * testing if the tty is NOT a master pty.
2472          */
2473         if (tty == real_tty && current->signal->tty != real_tty)
2474                 return -ENOTTY;
2475         pid = tty_get_pgrp(real_tty);
2476         ret =  put_user(pid_vnr(pid), p);
2477         put_pid(pid);
2478         return ret;
2479 }
2480
2481 /**
2482  *      tiocspgrp               -       attempt to set process group
2483  *      @tty: tty passed by user
2484  *      @real_tty: tty side device matching tty passed by user
2485  *      @p: pid pointer
2486  *
2487  *      Set the process group of the tty to the session passed. Only
2488  *      permitted where the tty session is our session.
2489  *
2490  *      Locking: RCU, ctrl lock
2491  */
2492
2493 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2494 {
2495         struct pid *pgrp;
2496         pid_t pgrp_nr;
2497         int retval = tty_check_change(real_tty);
2498         unsigned long flags;
2499
2500         if (retval == -EIO)
2501                 return -ENOTTY;
2502         if (retval)
2503                 return retval;
2504         if (!current->signal->tty ||
2505             (current->signal->tty != real_tty) ||
2506             (real_tty->session != task_session(current)))
2507                 return -ENOTTY;
2508         if (get_user(pgrp_nr, p))
2509                 return -EFAULT;
2510         if (pgrp_nr < 0)
2511                 return -EINVAL;
2512         rcu_read_lock();
2513         pgrp = find_vpid(pgrp_nr);
2514         retval = -ESRCH;
2515         if (!pgrp)
2516                 goto out_unlock;
2517         retval = -EPERM;
2518         if (session_of_pgrp(pgrp) != task_session(current))
2519                 goto out_unlock;
2520         retval = 0;
2521         spin_lock_irqsave(&tty->ctrl_lock, flags);
2522         put_pid(real_tty->pgrp);
2523         real_tty->pgrp = get_pid(pgrp);
2524         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2525 out_unlock:
2526         rcu_read_unlock();
2527         return retval;
2528 }
2529
2530 /**
2531  *      tiocgsid                -       get session id
2532  *      @tty: tty passed by user
2533  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2534  *      @p: pointer to returned session id
2535  *
2536  *      Obtain the session id of the tty. If there is no session
2537  *      return an error.
2538  *
2539  *      Locking: none. Reference to current->signal->tty is safe.
2540  */
2541
2542 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2543 {
2544         /*
2545          * (tty == real_tty) is a cheap way of
2546          * testing if the tty is NOT a master pty.
2547         */
2548         if (tty == real_tty && current->signal->tty != real_tty)
2549                 return -ENOTTY;
2550         if (!real_tty->session)
2551                 return -ENOTTY;
2552         return put_user(pid_vnr(real_tty->session), p);
2553 }
2554
2555 /**
2556  *      tiocsetd        -       set line discipline
2557  *      @tty: tty device
2558  *      @p: pointer to user data
2559  *
2560  *      Set the line discipline according to user request.
2561  *
2562  *      Locking: see tty_set_ldisc, this function is just a helper
2563  */
2564
2565 static int tiocsetd(struct tty_struct *tty, int __user *p)
2566 {
2567         int ldisc;
2568         int ret;
2569
2570         if (get_user(ldisc, p))
2571                 return -EFAULT;
2572
2573         ret = tty_set_ldisc(tty, ldisc);
2574
2575         return ret;
2576 }
2577
2578 /**
2579  *      send_break      -       performed time break
2580  *      @tty: device to break on
2581  *      @duration: timeout in mS
2582  *
2583  *      Perform a timed break on hardware that lacks its own driver level
2584  *      timed break functionality.
2585  *
2586  *      Locking:
2587  *              atomic_write_lock serializes
2588  *
2589  */
2590
2591 static int send_break(struct tty_struct *tty, unsigned int duration)
2592 {
2593         int retval;
2594
2595         if (tty->ops->break_ctl == NULL)
2596                 return 0;
2597
2598         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2599                 retval = tty->ops->break_ctl(tty, duration);
2600         else {
2601                 /* Do the work ourselves */
2602                 if (tty_write_lock(tty, 0) < 0)
2603                         return -EINTR;
2604                 retval = tty->ops->break_ctl(tty, -1);
2605                 if (retval)
2606                         goto out;
2607                 if (!signal_pending(current))
2608                         msleep_interruptible(duration);
2609                 retval = tty->ops->break_ctl(tty, 0);
2610 out:
2611                 tty_write_unlock(tty);
2612                 if (signal_pending(current))
2613                         retval = -EINTR;
2614         }
2615         return retval;
2616 }
2617
2618 /**
2619  *      tty_tiocmget            -       get modem status
2620  *      @tty: tty device
2621  *      @file: user file pointer
2622  *      @p: pointer to result
2623  *
2624  *      Obtain the modem status bits from the tty driver if the feature
2625  *      is supported. Return -EINVAL if it is not available.
2626  *
2627  *      Locking: none (up to the driver)
2628  */
2629
2630 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2631 {
2632         int retval = -EINVAL;
2633
2634         if (tty->ops->tiocmget) {
2635                 retval = tty->ops->tiocmget(tty);
2636
2637                 if (retval >= 0)
2638                         retval = put_user(retval, p);
2639         }
2640         return retval;
2641 }
2642
2643 /**
2644  *      tty_tiocmset            -       set modem status
2645  *      @tty: tty device
2646  *      @cmd: command - clear bits, set bits or set all
2647  *      @p: pointer to desired bits
2648  *
2649  *      Set the modem status bits from the tty driver if the feature
2650  *      is supported. Return -EINVAL if it is not available.
2651  *
2652  *      Locking: none (up to the driver)
2653  */
2654
2655 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2656              unsigned __user *p)
2657 {
2658         int retval;
2659         unsigned int set, clear, val;
2660
2661         if (tty->ops->tiocmset == NULL)
2662                 return -EINVAL;
2663
2664         retval = get_user(val, p);
2665         if (retval)
2666                 return retval;
2667         set = clear = 0;
2668         switch (cmd) {
2669         case TIOCMBIS:
2670                 set = val;
2671                 break;
2672         case TIOCMBIC:
2673                 clear = val;
2674                 break;
2675         case TIOCMSET:
2676                 set = val;
2677                 clear = ~val;
2678                 break;
2679         }
2680         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2681         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2682         return tty->ops->tiocmset(tty, set, clear);
2683 }
2684
2685 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2686 {
2687         int retval = -EINVAL;
2688         struct serial_icounter_struct icount;
2689         memset(&icount, 0, sizeof(icount));
2690         if (tty->ops->get_icount)
2691                 retval = tty->ops->get_icount(tty, &icount);
2692         if (retval != 0)
2693                 return retval;
2694         if (copy_to_user(arg, &icount, sizeof(icount)))
2695                 return -EFAULT;
2696         return 0;
2697 }
2698
2699 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2700 {
2701         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2702             tty->driver->subtype == PTY_TYPE_MASTER)
2703                 tty = tty->link;
2704         return tty;
2705 }
2706 EXPORT_SYMBOL(tty_pair_get_tty);
2707
2708 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2709 {
2710         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2711             tty->driver->subtype == PTY_TYPE_MASTER)
2712             return tty;
2713         return tty->link;
2714 }
2715 EXPORT_SYMBOL(tty_pair_get_pty);
2716
2717 /*
2718  * Split this up, as gcc can choke on it otherwise..
2719  */
2720 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2721 {
2722         struct tty_struct *tty = file_tty(file);
2723         struct tty_struct *real_tty;
2724         void __user *p = (void __user *)arg;
2725         int retval;
2726         struct tty_ldisc *ld;
2727
2728         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2729                 return -EINVAL;
2730
2731         real_tty = tty_pair_get_tty(tty);
2732
2733         /*
2734          * Factor out some common prep work
2735          */
2736         switch (cmd) {
2737         case TIOCSETD:
2738         case TIOCSBRK:
2739         case TIOCCBRK:
2740         case TCSBRK:
2741         case TCSBRKP:
2742                 retval = tty_check_change(tty);
2743                 if (retval)
2744                         return retval;
2745                 if (cmd != TIOCCBRK) {
2746                         tty_wait_until_sent(tty, 0);
2747                         if (signal_pending(current))
2748                                 return -EINTR;
2749                 }
2750                 break;
2751         }
2752
2753         /*
2754          *      Now do the stuff.
2755          */
2756         switch (cmd) {
2757         case TIOCSTI:
2758                 return tiocsti(tty, p);
2759         case TIOCGWINSZ:
2760                 return tiocgwinsz(real_tty, p);
2761         case TIOCSWINSZ:
2762                 return tiocswinsz(real_tty, p);
2763         case TIOCCONS:
2764                 return real_tty != tty ? -EINVAL : tioccons(file);
2765         case FIONBIO:
2766                 return fionbio(file, p);
2767         case TIOCEXCL:
2768                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2769                 return 0;
2770         case TIOCNXCL:
2771                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2772                 return 0;
2773         case TIOCGEXCL:
2774         {
2775                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2776                 return put_user(excl, (int __user *)p);
2777         }
2778         case TIOCNOTTY:
2779                 if (current->signal->tty != tty)
2780                         return -ENOTTY;
2781                 no_tty();
2782                 return 0;
2783         case TIOCSCTTY:
2784                 return tiocsctty(tty, arg);
2785         case TIOCGPGRP:
2786                 return tiocgpgrp(tty, real_tty, p);
2787         case TIOCSPGRP:
2788                 return tiocspgrp(tty, real_tty, p);
2789         case TIOCGSID:
2790                 return tiocgsid(tty, real_tty, p);
2791         case TIOCGETD:
2792                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2793         case TIOCSETD:
2794                 return tiocsetd(tty, p);
2795         case TIOCVHANGUP:
2796                 if (!capable(CAP_SYS_ADMIN))
2797                         return -EPERM;
2798                 tty_vhangup(tty);
2799                 return 0;
2800         case TIOCGDEV:
2801         {
2802                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2803                 return put_user(ret, (unsigned int __user *)p);
2804         }
2805         /*
2806          * Break handling
2807          */
2808         case TIOCSBRK:  /* Turn break on, unconditionally */
2809                 if (tty->ops->break_ctl)
2810                         return tty->ops->break_ctl(tty, -1);
2811                 return 0;
2812         case TIOCCBRK:  /* Turn break off, unconditionally */
2813                 if (tty->ops->break_ctl)
2814                         return tty->ops->break_ctl(tty, 0);
2815                 return 0;
2816         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2817                 /* non-zero arg means wait for all output data
2818                  * to be sent (performed above) but don't send break.
2819                  * This is used by the tcdrain() termios function.
2820                  */
2821                 if (!arg)
2822                         return send_break(tty, 250);
2823                 return 0;
2824         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2825                 return send_break(tty, arg ? arg*100 : 250);
2826
2827         case TIOCMGET:
2828                 return tty_tiocmget(tty, p);
2829         case TIOCMSET:
2830         case TIOCMBIC:
2831         case TIOCMBIS:
2832                 return tty_tiocmset(tty, cmd, p);
2833         case TIOCGICOUNT:
2834                 retval = tty_tiocgicount(tty, p);
2835                 /* For the moment allow fall through to the old method */
2836                 if (retval != -EINVAL)
2837                         return retval;
2838                 break;
2839         case TCFLSH:
2840                 switch (arg) {
2841                 case TCIFLUSH:
2842                 case TCIOFLUSH:
2843                 /* flush tty buffer and allow ldisc to process ioctl */
2844                         tty_buffer_flush(tty);
2845                         break;
2846                 }
2847                 break;
2848         }
2849         if (tty->ops->ioctl) {
2850                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2851                 if (retval != -ENOIOCTLCMD)
2852                         return retval;
2853         }
2854         ld = tty_ldisc_ref_wait(tty);
2855         retval = -EINVAL;
2856         if (ld->ops->ioctl) {
2857                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2858                 if (retval == -ENOIOCTLCMD)
2859                         retval = -ENOTTY;
2860         }
2861         tty_ldisc_deref(ld);
2862         return retval;
2863 }
2864
2865 #ifdef CONFIG_COMPAT
2866 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2867                                 unsigned long arg)
2868 {
2869         struct tty_struct *tty = file_tty(file);
2870         struct tty_ldisc *ld;
2871         int retval = -ENOIOCTLCMD;
2872
2873         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2874                 return -EINVAL;
2875
2876         if (tty->ops->compat_ioctl) {
2877                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2878                 if (retval != -ENOIOCTLCMD)
2879                         return retval;
2880         }
2881
2882         ld = tty_ldisc_ref_wait(tty);
2883         if (ld->ops->compat_ioctl)
2884                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2885         else
2886                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2887         tty_ldisc_deref(ld);
2888
2889         return retval;
2890 }
2891 #endif
2892
2893 static int this_tty(const void *t, struct file *file, unsigned fd)
2894 {
2895         if (likely(file->f_op->read != tty_read))
2896                 return 0;
2897         return file_tty(file) != t ? 0 : fd + 1;
2898 }
2899         
2900 /*
2901  * This implements the "Secure Attention Key" ---  the idea is to
2902  * prevent trojan horses by killing all processes associated with this
2903  * tty when the user hits the "Secure Attention Key".  Required for
2904  * super-paranoid applications --- see the Orange Book for more details.
2905  *
2906  * This code could be nicer; ideally it should send a HUP, wait a few
2907  * seconds, then send a INT, and then a KILL signal.  But you then
2908  * have to coordinate with the init process, since all processes associated
2909  * with the current tty must be dead before the new getty is allowed
2910  * to spawn.
2911  *
2912  * Now, if it would be correct ;-/ The current code has a nasty hole -
2913  * it doesn't catch files in flight. We may send the descriptor to ourselves
2914  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2915  *
2916  * Nasty bug: do_SAK is being called in interrupt context.  This can
2917  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2918  */
2919 void __do_SAK(struct tty_struct *tty)
2920 {
2921 #ifdef TTY_SOFT_SAK
2922         tty_hangup(tty);
2923 #else
2924         struct task_struct *g, *p;
2925         struct pid *session;
2926         int             i;
2927
2928         if (!tty)
2929                 return;
2930         session = tty->session;
2931
2932         tty_ldisc_flush(tty);
2933
2934         tty_driver_flush_buffer(tty);
2935
2936         read_lock(&tasklist_lock);
2937         /* Kill the entire session */
2938         do_each_pid_task(session, PIDTYPE_SID, p) {
2939                 printk(KERN_NOTICE "SAK: killed process %d"
2940                         " (%s): task_session(p)==tty->session\n",
2941                         task_pid_nr(p), p->comm);
2942                 send_sig(SIGKILL, p, 1);
2943         } while_each_pid_task(session, PIDTYPE_SID, p);
2944         /* Now kill any processes that happen to have the
2945          * tty open.
2946          */
2947         do_each_thread(g, p) {
2948                 if (p->signal->tty == tty) {
2949                         printk(KERN_NOTICE "SAK: killed process %d"
2950                             " (%s): task_session(p)==tty->session\n",
2951                             task_pid_nr(p), p->comm);
2952                         send_sig(SIGKILL, p, 1);
2953                         continue;
2954                 }
2955                 task_lock(p);
2956                 i = iterate_fd(p->files, 0, this_tty, tty);
2957                 if (i != 0) {
2958                         printk(KERN_NOTICE "SAK: killed process %d"
2959                             " (%s): fd#%d opened to the tty\n",
2960                                     task_pid_nr(p), p->comm, i - 1);
2961                         force_sig(SIGKILL, p);
2962                 }
2963                 task_unlock(p);
2964         } while_each_thread(g, p);
2965         read_unlock(&tasklist_lock);
2966 #endif
2967 }
2968
2969 static void do_SAK_work(struct work_struct *work)
2970 {
2971         struct tty_struct *tty =
2972                 container_of(work, struct tty_struct, SAK_work);
2973         __do_SAK(tty);
2974 }
2975
2976 /*
2977  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2978  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2979  * the values which we write to it will be identical to the values which it
2980  * already has. --akpm
2981  */
2982 void do_SAK(struct tty_struct *tty)
2983 {
2984         if (!tty)
2985                 return;
2986         schedule_work(&tty->SAK_work);
2987 }
2988
2989 EXPORT_SYMBOL(do_SAK);
2990
2991 static int dev_match_devt(struct device *dev, const void *data)
2992 {
2993         const dev_t *devt = data;
2994         return dev->devt == *devt;
2995 }
2996
2997 /* Must put_device() after it's unused! */
2998 static struct device *tty_get_device(struct tty_struct *tty)
2999 {
3000         dev_t devt = tty_devnum(tty);
3001         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3002 }
3003
3004
3005 /**
3006  *      initialize_tty_struct
3007  *      @tty: tty to initialize
3008  *
3009  *      This subroutine initializes a tty structure that has been newly
3010  *      allocated.
3011  *
3012  *      Locking: none - tty in question must not be exposed at this point
3013  */
3014
3015 void initialize_tty_struct(struct tty_struct *tty,
3016                 struct tty_driver *driver, int idx)
3017 {
3018         memset(tty, 0, sizeof(struct tty_struct));
3019         kref_init(&tty->kref);
3020         tty->magic = TTY_MAGIC;
3021         tty_ldisc_init(tty);
3022         tty->session = NULL;
3023         tty->pgrp = NULL;
3024         mutex_init(&tty->legacy_mutex);
3025         mutex_init(&tty->throttle_mutex);
3026         init_rwsem(&tty->termios_rwsem);
3027         mutex_init(&tty->winsize_mutex);
3028         init_ldsem(&tty->ldisc_sem);
3029         init_waitqueue_head(&tty->write_wait);
3030         init_waitqueue_head(&tty->read_wait);
3031         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3032         mutex_init(&tty->atomic_write_lock);
3033         spin_lock_init(&tty->ctrl_lock);
3034         INIT_LIST_HEAD(&tty->tty_files);
3035         INIT_WORK(&tty->SAK_work, do_SAK_work);
3036
3037         tty->driver = driver;
3038         tty->ops = driver->ops;
3039         tty->index = idx;
3040         tty_line_name(driver, idx, tty->name);
3041         tty->dev = tty_get_device(tty);
3042 }
3043
3044 /**
3045  *      deinitialize_tty_struct
3046  *      @tty: tty to deinitialize
3047  *
3048  *      This subroutine deinitializes a tty structure that has been newly
3049  *      allocated but tty_release cannot be called on that yet.
3050  *
3051  *      Locking: none - tty in question must not be exposed at this point
3052  */
3053 void deinitialize_tty_struct(struct tty_struct *tty)
3054 {
3055         tty_ldisc_deinit(tty);
3056 }
3057
3058 /**
3059  *      tty_put_char    -       write one character to a tty
3060  *      @tty: tty
3061  *      @ch: character
3062  *
3063  *      Write one byte to the tty using the provided put_char method
3064  *      if present. Returns the number of characters successfully output.
3065  *
3066  *      Note: the specific put_char operation in the driver layer may go
3067  *      away soon. Don't call it directly, use this method
3068  */
3069
3070 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3071 {
3072         if (tty->ops->put_char)
3073                 return tty->ops->put_char(tty, ch);
3074         return tty->ops->write(tty, &ch, 1);
3075 }
3076 EXPORT_SYMBOL_GPL(tty_put_char);
3077
3078 struct class *tty_class;
3079
3080 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3081                 unsigned int index, unsigned int count)
3082 {
3083         /* init here, since reused cdevs cause crashes */
3084         cdev_init(&driver->cdevs[index], &tty_fops);
3085         driver->cdevs[index].owner = driver->owner;
3086         return cdev_add(&driver->cdevs[index], dev, count);
3087 }
3088
3089 /**
3090  *      tty_register_device - register a tty device
3091  *      @driver: the tty driver that describes the tty device
3092  *      @index: the index in the tty driver for this tty device
3093  *      @device: a struct device that is associated with this tty device.
3094  *              This field is optional, if there is no known struct device
3095  *              for this tty device it can be set to NULL safely.
3096  *
3097  *      Returns a pointer to the struct device for this tty device
3098  *      (or ERR_PTR(-EFOO) on error).
3099  *
3100  *      This call is required to be made to register an individual tty device
3101  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3102  *      that bit is not set, this function should not be called by a tty
3103  *      driver.
3104  *
3105  *      Locking: ??
3106  */
3107
3108 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3109                                    struct device *device)
3110 {
3111         return tty_register_device_attr(driver, index, device, NULL, NULL);
3112 }
3113 EXPORT_SYMBOL(tty_register_device);
3114
3115 static void tty_device_create_release(struct device *dev)
3116 {
3117         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3118         kfree(dev);
3119 }
3120
3121 /**
3122  *      tty_register_device_attr - register a tty device
3123  *      @driver: the tty driver that describes the tty device
3124  *      @index: the index in the tty driver for this tty device
3125  *      @device: a struct device that is associated with this tty device.
3126  *              This field is optional, if there is no known struct device
3127  *              for this tty device it can be set to NULL safely.
3128  *      @drvdata: Driver data to be set to device.
3129  *      @attr_grp: Attribute group to be set on device.
3130  *
3131  *      Returns a pointer to the struct device for this tty device
3132  *      (or ERR_PTR(-EFOO) on error).
3133  *
3134  *      This call is required to be made to register an individual tty device
3135  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3136  *      that bit is not set, this function should not be called by a tty
3137  *      driver.
3138  *
3139  *      Locking: ??
3140  */
3141 struct device *tty_register_device_attr(struct tty_driver *driver,
3142                                    unsigned index, struct device *device,
3143                                    void *drvdata,
3144                                    const struct attribute_group **attr_grp)
3145 {
3146         char name[64];
3147         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3148         struct device *dev = NULL;
3149         int retval = -ENODEV;
3150         bool cdev = false;
3151
3152         if (index >= driver->num) {
3153                 printk(KERN_ERR "Attempt to register invalid tty line number "
3154                        " (%d).\n", index);
3155                 return ERR_PTR(-EINVAL);
3156         }
3157
3158         if (driver->type == TTY_DRIVER_TYPE_PTY)
3159                 pty_line_name(driver, index, name);
3160         else
3161                 tty_line_name(driver, index, name);
3162
3163         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3164                 retval = tty_cdev_add(driver, devt, index, 1);
3165                 if (retval)
3166                         goto error;
3167                 cdev = true;
3168         }
3169
3170         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3171         if (!dev) {
3172                 retval = -ENOMEM;
3173                 goto error;
3174         }
3175
3176         dev->devt = devt;
3177         dev->class = tty_class;
3178         dev->parent = device;
3179         dev->release = tty_device_create_release;
3180         dev_set_name(dev, "%s", name);
3181         dev->groups = attr_grp;
3182         dev_set_drvdata(dev, drvdata);
3183
3184         retval = device_register(dev);
3185         if (retval)
3186                 goto error;
3187
3188         return dev;
3189
3190 error:
3191         put_device(dev);
3192         if (cdev)
3193                 cdev_del(&driver->cdevs[index]);
3194         return ERR_PTR(retval);
3195 }
3196 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3197
3198 /**
3199  *      tty_unregister_device - unregister a tty device
3200  *      @driver: the tty driver that describes the tty device
3201  *      @index: the index in the tty driver for this tty device
3202  *
3203  *      If a tty device is registered with a call to tty_register_device() then
3204  *      this function must be called when the tty device is gone.
3205  *
3206  *      Locking: ??
3207  */
3208
3209 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3210 {
3211         device_destroy(tty_class,
3212                 MKDEV(driver->major, driver->minor_start) + index);
3213         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3214                 cdev_del(&driver->cdevs[index]);
3215 }
3216 EXPORT_SYMBOL(tty_unregister_device);
3217
3218 /**
3219  * __tty_alloc_driver -- allocate tty driver
3220  * @lines: count of lines this driver can handle at most
3221  * @owner: module which is repsonsible for this driver
3222  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3223  *
3224  * This should not be called directly, some of the provided macros should be
3225  * used instead. Use IS_ERR and friends on @retval.
3226  */
3227 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3228                 unsigned long flags)
3229 {
3230         struct tty_driver *driver;
3231         unsigned int cdevs = 1;
3232         int err;
3233
3234         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3235                 return ERR_PTR(-EINVAL);
3236
3237         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3238         if (!driver)
3239                 return ERR_PTR(-ENOMEM);
3240
3241         kref_init(&driver->kref);
3242         driver->magic = TTY_DRIVER_MAGIC;
3243         driver->num = lines;
3244         driver->owner = owner;
3245         driver->flags = flags;
3246
3247         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3248                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3249                                 GFP_KERNEL);
3250                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3251                                 GFP_KERNEL);
3252                 if (!driver->ttys || !driver->termios) {
3253                         err = -ENOMEM;
3254                         goto err_free_all;
3255                 }
3256         }
3257
3258         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3259                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3260                                 GFP_KERNEL);
3261                 if (!driver->ports) {
3262                         err = -ENOMEM;
3263                         goto err_free_all;
3264                 }
3265                 cdevs = lines;
3266         }
3267
3268         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3269         if (!driver->cdevs) {
3270                 err = -ENOMEM;
3271                 goto err_free_all;
3272         }
3273
3274         return driver;
3275 err_free_all:
3276         kfree(driver->ports);
3277         kfree(driver->ttys);
3278         kfree(driver->termios);
3279         kfree(driver);
3280         return ERR_PTR(err);
3281 }
3282 EXPORT_SYMBOL(__tty_alloc_driver);
3283
3284 static void destruct_tty_driver(struct kref *kref)
3285 {
3286         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3287         int i;
3288         struct ktermios *tp;
3289
3290         if (driver->flags & TTY_DRIVER_INSTALLED) {
3291                 /*
3292                  * Free the termios and termios_locked structures because
3293                  * we don't want to get memory leaks when modular tty
3294                  * drivers are removed from the kernel.
3295                  */
3296                 for (i = 0; i < driver->num; i++) {
3297                         tp = driver->termios[i];
3298                         if (tp) {
3299                                 driver->termios[i] = NULL;
3300                                 kfree(tp);
3301                         }
3302                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3303                                 tty_unregister_device(driver, i);
3304                 }
3305                 proc_tty_unregister_driver(driver);
3306                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3307                         cdev_del(&driver->cdevs[0]);
3308         }
3309         kfree(driver->cdevs);
3310         kfree(driver->ports);
3311         kfree(driver->termios);
3312         kfree(driver->ttys);
3313         kfree(driver);
3314 }
3315
3316 void tty_driver_kref_put(struct tty_driver *driver)
3317 {
3318         kref_put(&driver->kref, destruct_tty_driver);
3319 }
3320 EXPORT_SYMBOL(tty_driver_kref_put);
3321
3322 void tty_set_operations(struct tty_driver *driver,
3323                         const struct tty_operations *op)
3324 {
3325         driver->ops = op;
3326 };
3327 EXPORT_SYMBOL(tty_set_operations);
3328
3329 void put_tty_driver(struct tty_driver *d)
3330 {
3331         tty_driver_kref_put(d);
3332 }
3333 EXPORT_SYMBOL(put_tty_driver);
3334
3335 /*
3336  * Called by a tty driver to register itself.
3337  */
3338 int tty_register_driver(struct tty_driver *driver)
3339 {
3340         int error;
3341         int i;
3342         dev_t dev;
3343         struct device *d;
3344
3345         if (!driver->major) {
3346                 error = alloc_chrdev_region(&dev, driver->minor_start,
3347                                                 driver->num, driver->name);
3348                 if (!error) {
3349                         driver->major = MAJOR(dev);
3350                         driver->minor_start = MINOR(dev);
3351                 }
3352         } else {
3353                 dev = MKDEV(driver->major, driver->minor_start);
3354                 error = register_chrdev_region(dev, driver->num, driver->name);
3355         }
3356         if (error < 0)
3357                 goto err;
3358
3359         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3360                 error = tty_cdev_add(driver, dev, 0, driver->num);
3361                 if (error)
3362                         goto err_unreg_char;
3363         }
3364
3365         mutex_lock(&tty_mutex);
3366         list_add(&driver->tty_drivers, &tty_drivers);
3367         mutex_unlock(&tty_mutex);
3368
3369         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3370                 for (i = 0; i < driver->num; i++) {
3371                         d = tty_register_device(driver, i, NULL);
3372                         if (IS_ERR(d)) {
3373                                 error = PTR_ERR(d);
3374                                 goto err_unreg_devs;
3375                         }
3376                 }
3377         }
3378         proc_tty_register_driver(driver);
3379         driver->flags |= TTY_DRIVER_INSTALLED;
3380         return 0;
3381
3382 err_unreg_devs:
3383         for (i--; i >= 0; i--)
3384                 tty_unregister_device(driver, i);
3385
3386         mutex_lock(&tty_mutex);
3387         list_del(&driver->tty_drivers);
3388         mutex_unlock(&tty_mutex);
3389
3390 err_unreg_char:
3391         unregister_chrdev_region(dev, driver->num);
3392 err:
3393         return error;
3394 }
3395 EXPORT_SYMBOL(tty_register_driver);
3396
3397 /*
3398  * Called by a tty driver to unregister itself.
3399  */
3400 int tty_unregister_driver(struct tty_driver *driver)
3401 {
3402 #if 0
3403         /* FIXME */
3404         if (driver->refcount)
3405                 return -EBUSY;
3406 #endif
3407         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3408                                 driver->num);
3409         mutex_lock(&tty_mutex);
3410         list_del(&driver->tty_drivers);
3411         mutex_unlock(&tty_mutex);
3412         return 0;
3413 }
3414
3415 EXPORT_SYMBOL(tty_unregister_driver);
3416
3417 dev_t tty_devnum(struct tty_struct *tty)
3418 {
3419         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3420 }
3421 EXPORT_SYMBOL(tty_devnum);
3422
3423 void proc_clear_tty(struct task_struct *p)
3424 {
3425         unsigned long flags;
3426         struct tty_struct *tty;
3427         spin_lock_irqsave(&p->sighand->siglock, flags);
3428         tty = p->signal->tty;
3429         p->signal->tty = NULL;
3430         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3431         tty_kref_put(tty);
3432 }
3433
3434 /* Called under the sighand lock */
3435
3436 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3437 {
3438         if (tty) {
3439                 unsigned long flags;
3440                 /* We should not have a session or pgrp to put here but.... */
3441                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3442                 put_pid(tty->session);
3443                 put_pid(tty->pgrp);
3444                 tty->pgrp = get_pid(task_pgrp(tsk));
3445                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3446                 tty->session = get_pid(task_session(tsk));
3447                 if (tsk->signal->tty) {
3448                         printk(KERN_DEBUG "tty not NULL!!\n");
3449                         tty_kref_put(tsk->signal->tty);
3450                 }
3451         }
3452         put_pid(tsk->signal->tty_old_pgrp);
3453         tsk->signal->tty = tty_kref_get(tty);
3454         tsk->signal->tty_old_pgrp = NULL;
3455 }
3456
3457 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3458 {
3459         spin_lock_irq(&tsk->sighand->siglock);
3460         __proc_set_tty(tsk, tty);
3461         spin_unlock_irq(&tsk->sighand->siglock);
3462 }
3463
3464 struct tty_struct *get_current_tty(void)
3465 {
3466         struct tty_struct *tty;
3467         unsigned long flags;
3468
3469         spin_lock_irqsave(&current->sighand->siglock, flags);
3470         tty = tty_kref_get(current->signal->tty);
3471         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3472         return tty;
3473 }
3474 EXPORT_SYMBOL_GPL(get_current_tty);
3475
3476 void tty_default_fops(struct file_operations *fops)
3477 {
3478         *fops = tty_fops;
3479 }
3480
3481 /*
3482  * Initialize the console device. This is called *early*, so
3483  * we can't necessarily depend on lots of kernel help here.
3484  * Just do some early initializations, and do the complex setup
3485  * later.
3486  */
3487 void __init console_init(void)
3488 {
3489         initcall_t *call;
3490
3491         /* Setup the default TTY line discipline. */
3492         tty_ldisc_begin();
3493
3494         /*
3495          * set up the console device so that later boot sequences can
3496          * inform about problems etc..
3497          */
3498         call = __con_initcall_start;
3499         while (call < __con_initcall_end) {
3500                 (*call)();
3501                 call++;
3502         }
3503 }
3504
3505 static char *tty_devnode(struct device *dev, umode_t *mode)
3506 {
3507         if (!mode)
3508                 return NULL;
3509         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3510             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3511                 *mode = 0666;
3512         return NULL;
3513 }
3514
3515 static int __init tty_class_init(void)
3516 {
3517         tty_class = class_create(THIS_MODULE, "tty");
3518         if (IS_ERR(tty_class))
3519                 return PTR_ERR(tty_class);
3520         tty_class->devnode = tty_devnode;
3521         return 0;
3522 }
3523
3524 postcore_initcall(tty_class_init);
3525
3526 /* 3/2004 jmc: why do these devices exist? */
3527 static struct cdev tty_cdev, console_cdev;
3528
3529 static ssize_t show_cons_active(struct device *dev,
3530                                 struct device_attribute *attr, char *buf)
3531 {
3532         struct console *cs[16];
3533         int i = 0;
3534         struct console *c;
3535         ssize_t count = 0;
3536
3537         console_lock();
3538         for_each_console(c) {
3539                 if (!c->device)
3540                         continue;
3541                 if (!c->write)
3542                         continue;
3543                 if ((c->flags & CON_ENABLED) == 0)
3544                         continue;
3545                 cs[i++] = c;
3546                 if (i >= ARRAY_SIZE(cs))
3547                         break;
3548         }
3549         while (i--) {
3550                 int index = cs[i]->index;
3551                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3552
3553                 /* don't resolve tty0 as some programs depend on it */
3554                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3555                         count += tty_line_name(drv, index, buf + count);
3556                 else
3557                         count += sprintf(buf + count, "%s%d",
3558                                          cs[i]->name, cs[i]->index);
3559
3560                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3561         }
3562         console_unlock();
3563
3564         return count;
3565 }
3566 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3567
3568 static struct device *consdev;
3569
3570 void console_sysfs_notify(void)
3571 {
3572         if (consdev)
3573                 sysfs_notify(&consdev->kobj, NULL, "active");
3574 }
3575
3576 /*
3577  * Ok, now we can initialize the rest of the tty devices and can count
3578  * on memory allocations, interrupts etc..
3579  */
3580 int __init tty_init(void)
3581 {
3582         cdev_init(&tty_cdev, &tty_fops);
3583         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3584             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3585                 panic("Couldn't register /dev/tty driver\n");
3586         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3587
3588         cdev_init(&console_cdev, &console_fops);
3589         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3590             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3591                 panic("Couldn't register /dev/console driver\n");
3592         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3593                               "console");
3594         if (IS_ERR(consdev))
3595                 consdev = NULL;
3596         else
3597                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3598
3599 #ifdef CONFIG_VT
3600         vty_init(&console_fops);
3601 #endif
3602         return 0;
3603 }
3604