]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/disk-io.c
572e21eb644cff4616e57781e7d49f238aba249e
[karo-tx-linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60                                     int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62                                              struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65                                       struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = 0,                              .name_stem = "tree"     },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164         int i, j;
165
166         /* initialize lockdep class names */
167         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171                         snprintf(ks->names[j], sizeof(ks->names[j]),
172                                  "btrfs-%s-%02d", ks->name_stem, j);
173         }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177                                     int level)
178 {
179         struct btrfs_lockdep_keyset *ks;
180
181         BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183         /* find the matching keyset, id 0 is the default entry */
184         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185                 if (ks->id == objectid)
186                         break;
187
188         lockdep_set_class_and_name(&eb->lock,
189                                    &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195  * extents on the btree inode are pretty simple, there's one extent
196  * that covers the entire device
197  */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199                 struct page *page, size_t pg_offset, u64 start, u64 len,
200                 int create)
201 {
202         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203         struct extent_map *em;
204         int ret;
205
206         read_lock(&em_tree->lock);
207         em = lookup_extent_mapping(em_tree, start, len);
208         if (em) {
209                 em->bdev =
210                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211                 read_unlock(&em_tree->lock);
212                 goto out;
213         }
214         read_unlock(&em_tree->lock);
215
216         em = alloc_extent_map();
217         if (!em) {
218                 em = ERR_PTR(-ENOMEM);
219                 goto out;
220         }
221         em->start = 0;
222         em->len = (u64)-1;
223         em->block_len = (u64)-1;
224         em->block_start = 0;
225         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227         write_lock(&em_tree->lock);
228         ret = add_extent_mapping(em_tree, em, 0);
229         if (ret == -EEXIST) {
230                 free_extent_map(em);
231                 em = lookup_extent_mapping(em_tree, start, len);
232                 if (!em)
233                         em = ERR_PTR(-EIO);
234         } else if (ret) {
235                 free_extent_map(em);
236                 em = ERR_PTR(ret);
237         }
238         write_unlock(&em_tree->lock);
239
240 out:
241         return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246         return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251         put_unaligned_le32(~crc, result);
252 }
253
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259                            int verify)
260 {
261         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262         char *result = NULL;
263         unsigned long len;
264         unsigned long cur_len;
265         unsigned long offset = BTRFS_CSUM_SIZE;
266         char *kaddr;
267         unsigned long map_start;
268         unsigned long map_len;
269         int err;
270         u32 crc = ~(u32)0;
271         unsigned long inline_result;
272
273         len = buf->len - offset;
274         while (len > 0) {
275                 err = map_private_extent_buffer(buf, offset, 32,
276                                         &kaddr, &map_start, &map_len);
277                 if (err)
278                         return 1;
279                 cur_len = min(len, map_len - (offset - map_start));
280                 crc = btrfs_csum_data(kaddr + offset - map_start,
281                                       crc, cur_len);
282                 len -= cur_len;
283                 offset += cur_len;
284         }
285         if (csum_size > sizeof(inline_result)) {
286                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287                 if (!result)
288                         return 1;
289         } else {
290                 result = (char *)&inline_result;
291         }
292
293         btrfs_csum_final(crc, result);
294
295         if (verify) {
296                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297                         u32 val;
298                         u32 found = 0;
299                         memcpy(&found, result, csum_size);
300
301                         read_extent_buffer(buf, &val, 0, csum_size);
302                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303                                        "failed on %llu wanted %X found %X "
304                                        "level %d\n",
305                                        root->fs_info->sb->s_id,
306                                        (unsigned long long)buf->start, val, found,
307                                        btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        (unsigned long long)eb->start,
349                        (unsigned long long)parent_transid,
350                        (unsigned long long)btrfs_header_generation(eb));
351         ret = 1;
352         clear_extent_buffer_uptodate(eb);
353 out:
354         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355                              &cached_state, GFP_NOFS);
356         return ret;
357 }
358
359 /*
360  * Return 0 if the superblock checksum type matches the checksum value of that
361  * algorithm. Pass the raw disk superblock data.
362  */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365         struct btrfs_super_block *disk_sb =
366                 (struct btrfs_super_block *)raw_disk_sb;
367         u16 csum_type = btrfs_super_csum_type(disk_sb);
368         int ret = 0;
369
370         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371                 u32 crc = ~(u32)0;
372                 const int csum_size = sizeof(crc);
373                 char result[csum_size];
374
375                 /*
376                  * The super_block structure does not span the whole
377                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378                  * is filled with zeros and is included in the checkum.
379                  */
380                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382                 btrfs_csum_final(crc, result);
383
384                 if (memcmp(raw_disk_sb, result, csum_size))
385                         ret = 1;
386
387                 if (ret && btrfs_super_generation(disk_sb) < 10) {
388                         printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389                         ret = 0;
390                 }
391         }
392
393         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395                                 csum_type);
396                 ret = 1;
397         }
398
399         return ret;
400 }
401
402 /*
403  * helper to read a given tree block, doing retries as required when
404  * the checksums don't match and we have alternate mirrors to try.
405  */
406 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407                                           struct extent_buffer *eb,
408                                           u64 start, u64 parent_transid)
409 {
410         struct extent_io_tree *io_tree;
411         int failed = 0;
412         int ret;
413         int num_copies = 0;
414         int mirror_num = 0;
415         int failed_mirror = 0;
416
417         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419         while (1) {
420                 ret = read_extent_buffer_pages(io_tree, eb, start,
421                                                WAIT_COMPLETE,
422                                                btree_get_extent, mirror_num);
423                 if (!ret) {
424                         if (!verify_parent_transid(io_tree, eb,
425                                                    parent_transid, 0))
426                                 break;
427                         else
428                                 ret = -EIO;
429                 }
430
431                 /*
432                  * This buffer's crc is fine, but its contents are corrupted, so
433                  * there is no reason to read the other copies, they won't be
434                  * any less wrong.
435                  */
436                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437                         break;
438
439                 num_copies = btrfs_num_copies(root->fs_info,
440                                               eb->start, eb->len);
441                 if (num_copies == 1)
442                         break;
443
444                 if (!failed_mirror) {
445                         failed = 1;
446                         failed_mirror = eb->read_mirror;
447                 }
448
449                 mirror_num++;
450                 if (mirror_num == failed_mirror)
451                         mirror_num++;
452
453                 if (mirror_num > num_copies)
454                         break;
455         }
456
457         if (failed && !ret && failed_mirror)
458                 repair_eb_io_failure(root, eb, failed_mirror);
459
460         return ret;
461 }
462
463 /*
464  * checksum a dirty tree block before IO.  This has extra checks to make sure
465  * we only fill in the checksum field in the first page of a multi-page block
466  */
467
468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469 {
470         struct extent_io_tree *tree;
471         u64 start = page_offset(page);
472         u64 found_start;
473         struct extent_buffer *eb;
474
475         tree = &BTRFS_I(page->mapping->host)->io_tree;
476
477         eb = (struct extent_buffer *)page->private;
478         if (page != eb->pages[0])
479                 return 0;
480         found_start = btrfs_header_bytenr(eb);
481         if (found_start != start) {
482                 WARN_ON(1);
483                 return 0;
484         }
485         if (!PageUptodate(page)) {
486                 WARN_ON(1);
487                 return 0;
488         }
489         csum_tree_block(root, eb, 0);
490         return 0;
491 }
492
493 static int check_tree_block_fsid(struct btrfs_root *root,
494                                  struct extent_buffer *eb)
495 {
496         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497         u8 fsid[BTRFS_UUID_SIZE];
498         int ret = 1;
499
500         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501                            BTRFS_FSID_SIZE);
502         while (fs_devices) {
503                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504                         ret = 0;
505                         break;
506                 }
507                 fs_devices = fs_devices->seed;
508         }
509         return ret;
510 }
511
512 #define CORRUPT(reason, eb, root, slot)                         \
513         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514                "root=%llu, slot=%d\n", reason,                  \
515                (unsigned long long)btrfs_header_bytenr(eb),     \
516                (unsigned long long)root->objectid, slot)
517
518 static noinline int check_leaf(struct btrfs_root *root,
519                                struct extent_buffer *leaf)
520 {
521         struct btrfs_key key;
522         struct btrfs_key leaf_key;
523         u32 nritems = btrfs_header_nritems(leaf);
524         int slot;
525
526         if (nritems == 0)
527                 return 0;
528
529         /* Check the 0 item */
530         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531             BTRFS_LEAF_DATA_SIZE(root)) {
532                 CORRUPT("invalid item offset size pair", leaf, root, 0);
533                 return -EIO;
534         }
535
536         /*
537          * Check to make sure each items keys are in the correct order and their
538          * offsets make sense.  We only have to loop through nritems-1 because
539          * we check the current slot against the next slot, which verifies the
540          * next slot's offset+size makes sense and that the current's slot
541          * offset is correct.
542          */
543         for (slot = 0; slot < nritems - 1; slot++) {
544                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546
547                 /* Make sure the keys are in the right order */
548                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549                         CORRUPT("bad key order", leaf, root, slot);
550                         return -EIO;
551                 }
552
553                 /*
554                  * Make sure the offset and ends are right, remember that the
555                  * item data starts at the end of the leaf and grows towards the
556                  * front.
557                  */
558                 if (btrfs_item_offset_nr(leaf, slot) !=
559                         btrfs_item_end_nr(leaf, slot + 1)) {
560                         CORRUPT("slot offset bad", leaf, root, slot);
561                         return -EIO;
562                 }
563
564                 /*
565                  * Check to make sure that we don't point outside of the leaf,
566                  * just incase all the items are consistent to eachother, but
567                  * all point outside of the leaf.
568                  */
569                 if (btrfs_item_end_nr(leaf, slot) >
570                     BTRFS_LEAF_DATA_SIZE(root)) {
571                         CORRUPT("slot end outside of leaf", leaf, root, slot);
572                         return -EIO;
573                 }
574         }
575
576         return 0;
577 }
578
579 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
580                                       u64 phy_offset, struct page *page,
581                                       u64 start, u64 end, int mirror)
582 {
583         struct extent_io_tree *tree;
584         u64 found_start;
585         int found_level;
586         struct extent_buffer *eb;
587         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
588         int ret = 0;
589         int reads_done;
590
591         if (!page->private)
592                 goto out;
593
594         tree = &BTRFS_I(page->mapping->host)->io_tree;
595         eb = (struct extent_buffer *)page->private;
596
597         /* the pending IO might have been the only thing that kept this buffer
598          * in memory.  Make sure we have a ref for all this other checks
599          */
600         extent_buffer_get(eb);
601
602         reads_done = atomic_dec_and_test(&eb->io_pages);
603         if (!reads_done)
604                 goto err;
605
606         eb->read_mirror = mirror;
607         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
608                 ret = -EIO;
609                 goto err;
610         }
611
612         found_start = btrfs_header_bytenr(eb);
613         if (found_start != eb->start) {
614                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
615                                "%llu %llu\n",
616                                (unsigned long long)found_start,
617                                (unsigned long long)eb->start);
618                 ret = -EIO;
619                 goto err;
620         }
621         if (check_tree_block_fsid(root, eb)) {
622                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
623                                (unsigned long long)eb->start);
624                 ret = -EIO;
625                 goto err;
626         }
627         found_level = btrfs_header_level(eb);
628         if (found_level >= BTRFS_MAX_LEVEL) {
629                 btrfs_info(root->fs_info, "bad tree block level %d\n",
630                            (int)btrfs_header_level(eb));
631                 ret = -EIO;
632                 goto err;
633         }
634
635         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
636                                        eb, found_level);
637
638         ret = csum_tree_block(root, eb, 1);
639         if (ret) {
640                 ret = -EIO;
641                 goto err;
642         }
643
644         /*
645          * If this is a leaf block and it is corrupt, set the corrupt bit so
646          * that we don't try and read the other copies of this block, just
647          * return -EIO.
648          */
649         if (found_level == 0 && check_leaf(root, eb)) {
650                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
651                 ret = -EIO;
652         }
653
654         if (!ret)
655                 set_extent_buffer_uptodate(eb);
656 err:
657         if (reads_done &&
658             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
659                 btree_readahead_hook(root, eb, eb->start, ret);
660
661         if (ret) {
662                 /*
663                  * our io error hook is going to dec the io pages
664                  * again, we have to make sure it has something
665                  * to decrement
666                  */
667                 atomic_inc(&eb->io_pages);
668                 clear_extent_buffer_uptodate(eb);
669         }
670         free_extent_buffer(eb);
671 out:
672         return ret;
673 }
674
675 static int btree_io_failed_hook(struct page *page, int failed_mirror)
676 {
677         struct extent_buffer *eb;
678         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
679
680         eb = (struct extent_buffer *)page->private;
681         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
682         eb->read_mirror = failed_mirror;
683         atomic_dec(&eb->io_pages);
684         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
685                 btree_readahead_hook(root, eb, eb->start, -EIO);
686         return -EIO;    /* we fixed nothing */
687 }
688
689 static void end_workqueue_bio(struct bio *bio, int err)
690 {
691         struct end_io_wq *end_io_wq = bio->bi_private;
692         struct btrfs_fs_info *fs_info;
693
694         fs_info = end_io_wq->info;
695         end_io_wq->error = err;
696         end_io_wq->work.func = end_workqueue_fn;
697         end_io_wq->work.flags = 0;
698
699         if (bio->bi_rw & REQ_WRITE) {
700                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
701                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
702                                            &end_io_wq->work);
703                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
704                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
705                                            &end_io_wq->work);
706                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
707                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
708                                            &end_io_wq->work);
709                 else
710                         btrfs_queue_worker(&fs_info->endio_write_workers,
711                                            &end_io_wq->work);
712         } else {
713                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
714                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
715                                            &end_io_wq->work);
716                 else if (end_io_wq->metadata)
717                         btrfs_queue_worker(&fs_info->endio_meta_workers,
718                                            &end_io_wq->work);
719                 else
720                         btrfs_queue_worker(&fs_info->endio_workers,
721                                            &end_io_wq->work);
722         }
723 }
724
725 /*
726  * For the metadata arg you want
727  *
728  * 0 - if data
729  * 1 - if normal metadta
730  * 2 - if writing to the free space cache area
731  * 3 - raid parity work
732  */
733 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
734                         int metadata)
735 {
736         struct end_io_wq *end_io_wq;
737         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
738         if (!end_io_wq)
739                 return -ENOMEM;
740
741         end_io_wq->private = bio->bi_private;
742         end_io_wq->end_io = bio->bi_end_io;
743         end_io_wq->info = info;
744         end_io_wq->error = 0;
745         end_io_wq->bio = bio;
746         end_io_wq->metadata = metadata;
747
748         bio->bi_private = end_io_wq;
749         bio->bi_end_io = end_workqueue_bio;
750         return 0;
751 }
752
753 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
754 {
755         unsigned long limit = min_t(unsigned long,
756                                     info->workers.max_workers,
757                                     info->fs_devices->open_devices);
758         return 256 * limit;
759 }
760
761 static void run_one_async_start(struct btrfs_work *work)
762 {
763         struct async_submit_bio *async;
764         int ret;
765
766         async = container_of(work, struct  async_submit_bio, work);
767         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
768                                       async->mirror_num, async->bio_flags,
769                                       async->bio_offset);
770         if (ret)
771                 async->error = ret;
772 }
773
774 static void run_one_async_done(struct btrfs_work *work)
775 {
776         struct btrfs_fs_info *fs_info;
777         struct async_submit_bio *async;
778         int limit;
779
780         async = container_of(work, struct  async_submit_bio, work);
781         fs_info = BTRFS_I(async->inode)->root->fs_info;
782
783         limit = btrfs_async_submit_limit(fs_info);
784         limit = limit * 2 / 3;
785
786         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
787             waitqueue_active(&fs_info->async_submit_wait))
788                 wake_up(&fs_info->async_submit_wait);
789
790         /* If an error occured we just want to clean up the bio and move on */
791         if (async->error) {
792                 bio_endio(async->bio, async->error);
793                 return;
794         }
795
796         async->submit_bio_done(async->inode, async->rw, async->bio,
797                                async->mirror_num, async->bio_flags,
798                                async->bio_offset);
799 }
800
801 static void run_one_async_free(struct btrfs_work *work)
802 {
803         struct async_submit_bio *async;
804
805         async = container_of(work, struct  async_submit_bio, work);
806         kfree(async);
807 }
808
809 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
810                         int rw, struct bio *bio, int mirror_num,
811                         unsigned long bio_flags,
812                         u64 bio_offset,
813                         extent_submit_bio_hook_t *submit_bio_start,
814                         extent_submit_bio_hook_t *submit_bio_done)
815 {
816         struct async_submit_bio *async;
817
818         async = kmalloc(sizeof(*async), GFP_NOFS);
819         if (!async)
820                 return -ENOMEM;
821
822         async->inode = inode;
823         async->rw = rw;
824         async->bio = bio;
825         async->mirror_num = mirror_num;
826         async->submit_bio_start = submit_bio_start;
827         async->submit_bio_done = submit_bio_done;
828
829         async->work.func = run_one_async_start;
830         async->work.ordered_func = run_one_async_done;
831         async->work.ordered_free = run_one_async_free;
832
833         async->work.flags = 0;
834         async->bio_flags = bio_flags;
835         async->bio_offset = bio_offset;
836
837         async->error = 0;
838
839         atomic_inc(&fs_info->nr_async_submits);
840
841         if (rw & REQ_SYNC)
842                 btrfs_set_work_high_prio(&async->work);
843
844         btrfs_queue_worker(&fs_info->workers, &async->work);
845
846         while (atomic_read(&fs_info->async_submit_draining) &&
847               atomic_read(&fs_info->nr_async_submits)) {
848                 wait_event(fs_info->async_submit_wait,
849                            (atomic_read(&fs_info->nr_async_submits) == 0));
850         }
851
852         return 0;
853 }
854
855 static int btree_csum_one_bio(struct bio *bio)
856 {
857         struct bio_vec *bvec = bio->bi_io_vec;
858         int bio_index = 0;
859         struct btrfs_root *root;
860         int ret = 0;
861
862         WARN_ON(bio->bi_vcnt <= 0);
863         while (bio_index < bio->bi_vcnt) {
864                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
865                 ret = csum_dirty_buffer(root, bvec->bv_page);
866                 if (ret)
867                         break;
868                 bio_index++;
869                 bvec++;
870         }
871         return ret;
872 }
873
874 static int __btree_submit_bio_start(struct inode *inode, int rw,
875                                     struct bio *bio, int mirror_num,
876                                     unsigned long bio_flags,
877                                     u64 bio_offset)
878 {
879         /*
880          * when we're called for a write, we're already in the async
881          * submission context.  Just jump into btrfs_map_bio
882          */
883         return btree_csum_one_bio(bio);
884 }
885
886 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
887                                  int mirror_num, unsigned long bio_flags,
888                                  u64 bio_offset)
889 {
890         int ret;
891
892         /*
893          * when we're called for a write, we're already in the async
894          * submission context.  Just jump into btrfs_map_bio
895          */
896         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
897         if (ret)
898                 bio_endio(bio, ret);
899         return ret;
900 }
901
902 static int check_async_write(struct inode *inode, unsigned long bio_flags)
903 {
904         if (bio_flags & EXTENT_BIO_TREE_LOG)
905                 return 0;
906 #ifdef CONFIG_X86
907         if (cpu_has_xmm4_2)
908                 return 0;
909 #endif
910         return 1;
911 }
912
913 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
914                                  int mirror_num, unsigned long bio_flags,
915                                  u64 bio_offset)
916 {
917         int async = check_async_write(inode, bio_flags);
918         int ret;
919
920         if (!(rw & REQ_WRITE)) {
921                 /*
922                  * called for a read, do the setup so that checksum validation
923                  * can happen in the async kernel threads
924                  */
925                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
926                                           bio, 1);
927                 if (ret)
928                         goto out_w_error;
929                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
930                                     mirror_num, 0);
931         } else if (!async) {
932                 ret = btree_csum_one_bio(bio);
933                 if (ret)
934                         goto out_w_error;
935                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
936                                     mirror_num, 0);
937         } else {
938                 /*
939                  * kthread helpers are used to submit writes so that
940                  * checksumming can happen in parallel across all CPUs
941                  */
942                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
943                                           inode, rw, bio, mirror_num, 0,
944                                           bio_offset,
945                                           __btree_submit_bio_start,
946                                           __btree_submit_bio_done);
947         }
948
949         if (ret) {
950 out_w_error:
951                 bio_endio(bio, ret);
952         }
953         return ret;
954 }
955
956 #ifdef CONFIG_MIGRATION
957 static int btree_migratepage(struct address_space *mapping,
958                         struct page *newpage, struct page *page,
959                         enum migrate_mode mode)
960 {
961         /*
962          * we can't safely write a btree page from here,
963          * we haven't done the locking hook
964          */
965         if (PageDirty(page))
966                 return -EAGAIN;
967         /*
968          * Buffers may be managed in a filesystem specific way.
969          * We must have no buffers or drop them.
970          */
971         if (page_has_private(page) &&
972             !try_to_release_page(page, GFP_KERNEL))
973                 return -EAGAIN;
974         return migrate_page(mapping, newpage, page, mode);
975 }
976 #endif
977
978
979 static int btree_writepages(struct address_space *mapping,
980                             struct writeback_control *wbc)
981 {
982         struct extent_io_tree *tree;
983         struct btrfs_fs_info *fs_info;
984         int ret;
985
986         tree = &BTRFS_I(mapping->host)->io_tree;
987         if (wbc->sync_mode == WB_SYNC_NONE) {
988
989                 if (wbc->for_kupdate)
990                         return 0;
991
992                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
993                 /* this is a bit racy, but that's ok */
994                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
995                                              BTRFS_DIRTY_METADATA_THRESH);
996                 if (ret < 0)
997                         return 0;
998         }
999         return btree_write_cache_pages(mapping, wbc);
1000 }
1001
1002 static int btree_readpage(struct file *file, struct page *page)
1003 {
1004         struct extent_io_tree *tree;
1005         tree = &BTRFS_I(page->mapping->host)->io_tree;
1006         return extent_read_full_page(tree, page, btree_get_extent, 0);
1007 }
1008
1009 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1010 {
1011         if (PageWriteback(page) || PageDirty(page))
1012                 return 0;
1013
1014         return try_release_extent_buffer(page);
1015 }
1016
1017 static void btree_invalidatepage(struct page *page, unsigned int offset,
1018                                  unsigned int length)
1019 {
1020         struct extent_io_tree *tree;
1021         tree = &BTRFS_I(page->mapping->host)->io_tree;
1022         extent_invalidatepage(tree, page, offset);
1023         btree_releasepage(page, GFP_NOFS);
1024         if (PagePrivate(page)) {
1025                 printk(KERN_WARNING "btrfs warning page private not zero "
1026                        "on page %llu\n", (unsigned long long)page_offset(page));
1027                 ClearPagePrivate(page);
1028                 set_page_private(page, 0);
1029                 page_cache_release(page);
1030         }
1031 }
1032
1033 static int btree_set_page_dirty(struct page *page)
1034 {
1035 #ifdef DEBUG
1036         struct extent_buffer *eb;
1037
1038         BUG_ON(!PagePrivate(page));
1039         eb = (struct extent_buffer *)page->private;
1040         BUG_ON(!eb);
1041         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1042         BUG_ON(!atomic_read(&eb->refs));
1043         btrfs_assert_tree_locked(eb);
1044 #endif
1045         return __set_page_dirty_nobuffers(page);
1046 }
1047
1048 static const struct address_space_operations btree_aops = {
1049         .readpage       = btree_readpage,
1050         .writepages     = btree_writepages,
1051         .releasepage    = btree_releasepage,
1052         .invalidatepage = btree_invalidatepage,
1053 #ifdef CONFIG_MIGRATION
1054         .migratepage    = btree_migratepage,
1055 #endif
1056         .set_page_dirty = btree_set_page_dirty,
1057 };
1058
1059 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1060                          u64 parent_transid)
1061 {
1062         struct extent_buffer *buf = NULL;
1063         struct inode *btree_inode = root->fs_info->btree_inode;
1064         int ret = 0;
1065
1066         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1067         if (!buf)
1068                 return 0;
1069         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1070                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1071         free_extent_buffer(buf);
1072         return ret;
1073 }
1074
1075 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1076                          int mirror_num, struct extent_buffer **eb)
1077 {
1078         struct extent_buffer *buf = NULL;
1079         struct inode *btree_inode = root->fs_info->btree_inode;
1080         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1081         int ret;
1082
1083         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1084         if (!buf)
1085                 return 0;
1086
1087         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1088
1089         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1090                                        btree_get_extent, mirror_num);
1091         if (ret) {
1092                 free_extent_buffer(buf);
1093                 return ret;
1094         }
1095
1096         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1097                 free_extent_buffer(buf);
1098                 return -EIO;
1099         } else if (extent_buffer_uptodate(buf)) {
1100                 *eb = buf;
1101         } else {
1102                 free_extent_buffer(buf);
1103         }
1104         return 0;
1105 }
1106
1107 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1108                                             u64 bytenr, u32 blocksize)
1109 {
1110         struct inode *btree_inode = root->fs_info->btree_inode;
1111         struct extent_buffer *eb;
1112         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1113                                 bytenr, blocksize);
1114         return eb;
1115 }
1116
1117 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1118                                                  u64 bytenr, u32 blocksize)
1119 {
1120         struct inode *btree_inode = root->fs_info->btree_inode;
1121         struct extent_buffer *eb;
1122
1123         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1124                                  bytenr, blocksize);
1125         return eb;
1126 }
1127
1128
1129 int btrfs_write_tree_block(struct extent_buffer *buf)
1130 {
1131         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1132                                         buf->start + buf->len - 1);
1133 }
1134
1135 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1136 {
1137         return filemap_fdatawait_range(buf->pages[0]->mapping,
1138                                        buf->start, buf->start + buf->len - 1);
1139 }
1140
1141 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1142                                       u32 blocksize, u64 parent_transid)
1143 {
1144         struct extent_buffer *buf = NULL;
1145         int ret;
1146
1147         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1148         if (!buf)
1149                 return NULL;
1150
1151         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1152         if (ret) {
1153                 free_extent_buffer(buf);
1154                 return NULL;
1155         }
1156         return buf;
1157
1158 }
1159
1160 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1161                       struct extent_buffer *buf)
1162 {
1163         struct btrfs_fs_info *fs_info = root->fs_info;
1164
1165         if (btrfs_header_generation(buf) ==
1166             fs_info->running_transaction->transid) {
1167                 btrfs_assert_tree_locked(buf);
1168
1169                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1170                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1171                                              -buf->len,
1172                                              fs_info->dirty_metadata_batch);
1173                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1174                         btrfs_set_lock_blocking(buf);
1175                         clear_extent_buffer_dirty(buf);
1176                 }
1177         }
1178 }
1179
1180 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1181                          u32 stripesize, struct btrfs_root *root,
1182                          struct btrfs_fs_info *fs_info,
1183                          u64 objectid)
1184 {
1185         root->node = NULL;
1186         root->commit_root = NULL;
1187         root->sectorsize = sectorsize;
1188         root->nodesize = nodesize;
1189         root->leafsize = leafsize;
1190         root->stripesize = stripesize;
1191         root->ref_cows = 0;
1192         root->track_dirty = 0;
1193         root->in_radix = 0;
1194         root->orphan_item_inserted = 0;
1195         root->orphan_cleanup_state = 0;
1196
1197         root->objectid = objectid;
1198         root->last_trans = 0;
1199         root->highest_objectid = 0;
1200         root->nr_delalloc_inodes = 0;
1201         root->nr_ordered_extents = 0;
1202         root->name = NULL;
1203         root->inode_tree = RB_ROOT;
1204         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1205         root->block_rsv = NULL;
1206         root->orphan_block_rsv = NULL;
1207
1208         INIT_LIST_HEAD(&root->dirty_list);
1209         INIT_LIST_HEAD(&root->root_list);
1210         INIT_LIST_HEAD(&root->delalloc_inodes);
1211         INIT_LIST_HEAD(&root->delalloc_root);
1212         INIT_LIST_HEAD(&root->ordered_extents);
1213         INIT_LIST_HEAD(&root->ordered_root);
1214         INIT_LIST_HEAD(&root->logged_list[0]);
1215         INIT_LIST_HEAD(&root->logged_list[1]);
1216         spin_lock_init(&root->orphan_lock);
1217         spin_lock_init(&root->inode_lock);
1218         spin_lock_init(&root->delalloc_lock);
1219         spin_lock_init(&root->ordered_extent_lock);
1220         spin_lock_init(&root->accounting_lock);
1221         spin_lock_init(&root->log_extents_lock[0]);
1222         spin_lock_init(&root->log_extents_lock[1]);
1223         mutex_init(&root->objectid_mutex);
1224         mutex_init(&root->log_mutex);
1225         init_waitqueue_head(&root->log_writer_wait);
1226         init_waitqueue_head(&root->log_commit_wait[0]);
1227         init_waitqueue_head(&root->log_commit_wait[1]);
1228         atomic_set(&root->log_commit[0], 0);
1229         atomic_set(&root->log_commit[1], 0);
1230         atomic_set(&root->log_writers, 0);
1231         atomic_set(&root->log_batch, 0);
1232         atomic_set(&root->orphan_inodes, 0);
1233         atomic_set(&root->refs, 1);
1234         root->log_transid = 0;
1235         root->last_log_commit = 0;
1236         extent_io_tree_init(&root->dirty_log_pages,
1237                              fs_info->btree_inode->i_mapping);
1238
1239         memset(&root->root_key, 0, sizeof(root->root_key));
1240         memset(&root->root_item, 0, sizeof(root->root_item));
1241         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1242         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1243         root->defrag_trans_start = fs_info->generation;
1244         init_completion(&root->kobj_unregister);
1245         root->defrag_running = 0;
1246         root->root_key.objectid = objectid;
1247         root->anon_dev = 0;
1248
1249         spin_lock_init(&root->root_item_lock);
1250 }
1251
1252 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1253 {
1254         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1255         if (root)
1256                 root->fs_info = fs_info;
1257         return root;
1258 }
1259
1260 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1261                                      struct btrfs_fs_info *fs_info,
1262                                      u64 objectid)
1263 {
1264         struct extent_buffer *leaf;
1265         struct btrfs_root *tree_root = fs_info->tree_root;
1266         struct btrfs_root *root;
1267         struct btrfs_key key;
1268         int ret = 0;
1269         u64 bytenr;
1270         uuid_le uuid;
1271
1272         root = btrfs_alloc_root(fs_info);
1273         if (!root)
1274                 return ERR_PTR(-ENOMEM);
1275
1276         __setup_root(tree_root->nodesize, tree_root->leafsize,
1277                      tree_root->sectorsize, tree_root->stripesize,
1278                      root, fs_info, objectid);
1279         root->root_key.objectid = objectid;
1280         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1281         root->root_key.offset = 0;
1282
1283         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1284                                       0, objectid, NULL, 0, 0, 0);
1285         if (IS_ERR(leaf)) {
1286                 ret = PTR_ERR(leaf);
1287                 leaf = NULL;
1288                 goto fail;
1289         }
1290
1291         bytenr = leaf->start;
1292         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1293         btrfs_set_header_bytenr(leaf, leaf->start);
1294         btrfs_set_header_generation(leaf, trans->transid);
1295         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1296         btrfs_set_header_owner(leaf, objectid);
1297         root->node = leaf;
1298
1299         write_extent_buffer(leaf, fs_info->fsid,
1300                             (unsigned long)btrfs_header_fsid(leaf),
1301                             BTRFS_FSID_SIZE);
1302         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1303                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1304                             BTRFS_UUID_SIZE);
1305         btrfs_mark_buffer_dirty(leaf);
1306
1307         root->commit_root = btrfs_root_node(root);
1308         root->track_dirty = 1;
1309
1310
1311         root->root_item.flags = 0;
1312         root->root_item.byte_limit = 0;
1313         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1314         btrfs_set_root_generation(&root->root_item, trans->transid);
1315         btrfs_set_root_level(&root->root_item, 0);
1316         btrfs_set_root_refs(&root->root_item, 1);
1317         btrfs_set_root_used(&root->root_item, leaf->len);
1318         btrfs_set_root_last_snapshot(&root->root_item, 0);
1319         btrfs_set_root_dirid(&root->root_item, 0);
1320         uuid_le_gen(&uuid);
1321         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1322         root->root_item.drop_level = 0;
1323
1324         key.objectid = objectid;
1325         key.type = BTRFS_ROOT_ITEM_KEY;
1326         key.offset = 0;
1327         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1328         if (ret)
1329                 goto fail;
1330
1331         btrfs_tree_unlock(leaf);
1332
1333         return root;
1334
1335 fail:
1336         if (leaf) {
1337                 btrfs_tree_unlock(leaf);
1338                 free_extent_buffer(leaf);
1339         }
1340         kfree(root);
1341
1342         return ERR_PTR(ret);
1343 }
1344
1345 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1346                                          struct btrfs_fs_info *fs_info)
1347 {
1348         struct btrfs_root *root;
1349         struct btrfs_root *tree_root = fs_info->tree_root;
1350         struct extent_buffer *leaf;
1351
1352         root = btrfs_alloc_root(fs_info);
1353         if (!root)
1354                 return ERR_PTR(-ENOMEM);
1355
1356         __setup_root(tree_root->nodesize, tree_root->leafsize,
1357                      tree_root->sectorsize, tree_root->stripesize,
1358                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1359
1360         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1361         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1362         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1363         /*
1364          * log trees do not get reference counted because they go away
1365          * before a real commit is actually done.  They do store pointers
1366          * to file data extents, and those reference counts still get
1367          * updated (along with back refs to the log tree).
1368          */
1369         root->ref_cows = 0;
1370
1371         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1372                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1373                                       0, 0, 0);
1374         if (IS_ERR(leaf)) {
1375                 kfree(root);
1376                 return ERR_CAST(leaf);
1377         }
1378
1379         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1380         btrfs_set_header_bytenr(leaf, leaf->start);
1381         btrfs_set_header_generation(leaf, trans->transid);
1382         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1383         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1384         root->node = leaf;
1385
1386         write_extent_buffer(root->node, root->fs_info->fsid,
1387                             (unsigned long)btrfs_header_fsid(root->node),
1388                             BTRFS_FSID_SIZE);
1389         btrfs_mark_buffer_dirty(root->node);
1390         btrfs_tree_unlock(root->node);
1391         return root;
1392 }
1393
1394 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1395                              struct btrfs_fs_info *fs_info)
1396 {
1397         struct btrfs_root *log_root;
1398
1399         log_root = alloc_log_tree(trans, fs_info);
1400         if (IS_ERR(log_root))
1401                 return PTR_ERR(log_root);
1402         WARN_ON(fs_info->log_root_tree);
1403         fs_info->log_root_tree = log_root;
1404         return 0;
1405 }
1406
1407 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1408                        struct btrfs_root *root)
1409 {
1410         struct btrfs_root *log_root;
1411         struct btrfs_inode_item *inode_item;
1412
1413         log_root = alloc_log_tree(trans, root->fs_info);
1414         if (IS_ERR(log_root))
1415                 return PTR_ERR(log_root);
1416
1417         log_root->last_trans = trans->transid;
1418         log_root->root_key.offset = root->root_key.objectid;
1419
1420         inode_item = &log_root->root_item.inode;
1421         btrfs_set_stack_inode_generation(inode_item, 1);
1422         btrfs_set_stack_inode_size(inode_item, 3);
1423         btrfs_set_stack_inode_nlink(inode_item, 1);
1424         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1425         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1426
1427         btrfs_set_root_node(&log_root->root_item, log_root->node);
1428
1429         WARN_ON(root->log_root);
1430         root->log_root = log_root;
1431         root->log_transid = 0;
1432         root->last_log_commit = 0;
1433         return 0;
1434 }
1435
1436 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1437                                         struct btrfs_key *key)
1438 {
1439         struct btrfs_root *root;
1440         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1441         struct btrfs_path *path;
1442         u64 generation;
1443         u32 blocksize;
1444         int ret;
1445
1446         path = btrfs_alloc_path();
1447         if (!path)
1448                 return ERR_PTR(-ENOMEM);
1449
1450         root = btrfs_alloc_root(fs_info);
1451         if (!root) {
1452                 ret = -ENOMEM;
1453                 goto alloc_fail;
1454         }
1455
1456         __setup_root(tree_root->nodesize, tree_root->leafsize,
1457                      tree_root->sectorsize, tree_root->stripesize,
1458                      root, fs_info, key->objectid);
1459
1460         ret = btrfs_find_root(tree_root, key, path,
1461                               &root->root_item, &root->root_key);
1462         if (ret) {
1463                 if (ret > 0)
1464                         ret = -ENOENT;
1465                 goto find_fail;
1466         }
1467
1468         generation = btrfs_root_generation(&root->root_item);
1469         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1470         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1471                                      blocksize, generation);
1472         if (!root->node) {
1473                 ret = -ENOMEM;
1474                 goto find_fail;
1475         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1476                 ret = -EIO;
1477                 goto read_fail;
1478         }
1479         root->commit_root = btrfs_root_node(root);
1480 out:
1481         btrfs_free_path(path);
1482         return root;
1483
1484 read_fail:
1485         free_extent_buffer(root->node);
1486 find_fail:
1487         kfree(root);
1488 alloc_fail:
1489         root = ERR_PTR(ret);
1490         goto out;
1491 }
1492
1493 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1494                                       struct btrfs_key *location)
1495 {
1496         struct btrfs_root *root;
1497
1498         root = btrfs_read_tree_root(tree_root, location);
1499         if (IS_ERR(root))
1500                 return root;
1501
1502         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1503                 root->ref_cows = 1;
1504                 btrfs_check_and_init_root_item(&root->root_item);
1505         }
1506
1507         return root;
1508 }
1509
1510 int btrfs_init_fs_root(struct btrfs_root *root)
1511 {
1512         int ret;
1513
1514         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1515         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1516                                         GFP_NOFS);
1517         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1518                 ret = -ENOMEM;
1519                 goto fail;
1520         }
1521
1522         btrfs_init_free_ino_ctl(root);
1523         mutex_init(&root->fs_commit_mutex);
1524         spin_lock_init(&root->cache_lock);
1525         init_waitqueue_head(&root->cache_wait);
1526
1527         ret = get_anon_bdev(&root->anon_dev);
1528         if (ret)
1529                 goto fail;
1530         return 0;
1531 fail:
1532         kfree(root->free_ino_ctl);
1533         kfree(root->free_ino_pinned);
1534         return ret;
1535 }
1536
1537 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1538                                         u64 root_id)
1539 {
1540         struct btrfs_root *root;
1541
1542         spin_lock(&fs_info->fs_roots_radix_lock);
1543         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1544                                  (unsigned long)root_id);
1545         spin_unlock(&fs_info->fs_roots_radix_lock);
1546         return root;
1547 }
1548
1549 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1550                          struct btrfs_root *root)
1551 {
1552         int ret;
1553
1554         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1555         if (ret)
1556                 return ret;
1557
1558         spin_lock(&fs_info->fs_roots_radix_lock);
1559         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1560                                 (unsigned long)root->root_key.objectid,
1561                                 root);
1562         if (ret == 0)
1563                 root->in_radix = 1;
1564         spin_unlock(&fs_info->fs_roots_radix_lock);
1565         radix_tree_preload_end();
1566
1567         return ret;
1568 }
1569
1570 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1571                                               struct btrfs_key *location)
1572 {
1573         struct btrfs_root *root;
1574         int ret;
1575
1576         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1577                 return fs_info->tree_root;
1578         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579                 return fs_info->extent_root;
1580         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581                 return fs_info->chunk_root;
1582         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1583                 return fs_info->dev_root;
1584         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1585                 return fs_info->csum_root;
1586         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587                 return fs_info->quota_root ? fs_info->quota_root :
1588                                              ERR_PTR(-ENOENT);
1589 again:
1590         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1591         if (root)
1592                 return root;
1593
1594         root = btrfs_read_fs_root(fs_info->tree_root, location);
1595         if (IS_ERR(root))
1596                 return root;
1597
1598         if (btrfs_root_refs(&root->root_item) == 0) {
1599                 ret = -ENOENT;
1600                 goto fail;
1601         }
1602
1603         ret = btrfs_init_fs_root(root);
1604         if (ret)
1605                 goto fail;
1606
1607         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1608         if (ret < 0)
1609                 goto fail;
1610         if (ret == 0)
1611                 root->orphan_item_inserted = 1;
1612
1613         ret = btrfs_insert_fs_root(fs_info, root);
1614         if (ret) {
1615                 if (ret == -EEXIST) {
1616                         free_fs_root(root);
1617                         goto again;
1618                 }
1619                 goto fail;
1620         }
1621         return root;
1622 fail:
1623         free_fs_root(root);
1624         return ERR_PTR(ret);
1625 }
1626
1627 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1628 {
1629         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1630         int ret = 0;
1631         struct btrfs_device *device;
1632         struct backing_dev_info *bdi;
1633
1634         rcu_read_lock();
1635         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1636                 if (!device->bdev)
1637                         continue;
1638                 bdi = blk_get_backing_dev_info(device->bdev);
1639                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1640                         ret = 1;
1641                         break;
1642                 }
1643         }
1644         rcu_read_unlock();
1645         return ret;
1646 }
1647
1648 /*
1649  * If this fails, caller must call bdi_destroy() to get rid of the
1650  * bdi again.
1651  */
1652 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1653 {
1654         int err;
1655
1656         bdi->capabilities = BDI_CAP_MAP_COPY;
1657         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1658         if (err)
1659                 return err;
1660
1661         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1662         bdi->congested_fn       = btrfs_congested_fn;
1663         bdi->congested_data     = info;
1664         return 0;
1665 }
1666
1667 /*
1668  * called by the kthread helper functions to finally call the bio end_io
1669  * functions.  This is where read checksum verification actually happens
1670  */
1671 static void end_workqueue_fn(struct btrfs_work *work)
1672 {
1673         struct bio *bio;
1674         struct end_io_wq *end_io_wq;
1675         struct btrfs_fs_info *fs_info;
1676         int error;
1677
1678         end_io_wq = container_of(work, struct end_io_wq, work);
1679         bio = end_io_wq->bio;
1680         fs_info = end_io_wq->info;
1681
1682         error = end_io_wq->error;
1683         bio->bi_private = end_io_wq->private;
1684         bio->bi_end_io = end_io_wq->end_io;
1685         kfree(end_io_wq);
1686         bio_endio(bio, error);
1687 }
1688
1689 static int cleaner_kthread(void *arg)
1690 {
1691         struct btrfs_root *root = arg;
1692         int again;
1693
1694         do {
1695                 again = 0;
1696
1697                 /* Make the cleaner go to sleep early. */
1698                 if (btrfs_need_cleaner_sleep(root))
1699                         goto sleep;
1700
1701                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1702                         goto sleep;
1703
1704                 /*
1705                  * Avoid the problem that we change the status of the fs
1706                  * during the above check and trylock.
1707                  */
1708                 if (btrfs_need_cleaner_sleep(root)) {
1709                         mutex_unlock(&root->fs_info->cleaner_mutex);
1710                         goto sleep;
1711                 }
1712
1713                 btrfs_run_delayed_iputs(root);
1714                 again = btrfs_clean_one_deleted_snapshot(root);
1715                 mutex_unlock(&root->fs_info->cleaner_mutex);
1716
1717                 /*
1718                  * The defragger has dealt with the R/O remount and umount,
1719                  * needn't do anything special here.
1720                  */
1721                 btrfs_run_defrag_inodes(root->fs_info);
1722 sleep:
1723                 if (!try_to_freeze() && !again) {
1724                         set_current_state(TASK_INTERRUPTIBLE);
1725                         if (!kthread_should_stop())
1726                                 schedule();
1727                         __set_current_state(TASK_RUNNING);
1728                 }
1729         } while (!kthread_should_stop());
1730         return 0;
1731 }
1732
1733 static int transaction_kthread(void *arg)
1734 {
1735         struct btrfs_root *root = arg;
1736         struct btrfs_trans_handle *trans;
1737         struct btrfs_transaction *cur;
1738         u64 transid;
1739         unsigned long now;
1740         unsigned long delay;
1741         bool cannot_commit;
1742
1743         do {
1744                 cannot_commit = false;
1745                 delay = HZ * root->fs_info->commit_interval;
1746                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1747
1748                 spin_lock(&root->fs_info->trans_lock);
1749                 cur = root->fs_info->running_transaction;
1750                 if (!cur) {
1751                         spin_unlock(&root->fs_info->trans_lock);
1752                         goto sleep;
1753                 }
1754
1755                 now = get_seconds();
1756                 if (cur->state < TRANS_STATE_BLOCKED &&
1757                     (now < cur->start_time ||
1758                      now - cur->start_time < root->fs_info->commit_interval)) {
1759                         spin_unlock(&root->fs_info->trans_lock);
1760                         delay = HZ * 5;
1761                         goto sleep;
1762                 }
1763                 transid = cur->transid;
1764                 spin_unlock(&root->fs_info->trans_lock);
1765
1766                 /* If the file system is aborted, this will always fail. */
1767                 trans = btrfs_attach_transaction(root);
1768                 if (IS_ERR(trans)) {
1769                         if (PTR_ERR(trans) != -ENOENT)
1770                                 cannot_commit = true;
1771                         goto sleep;
1772                 }
1773                 if (transid == trans->transid) {
1774                         btrfs_commit_transaction(trans, root);
1775                 } else {
1776                         btrfs_end_transaction(trans, root);
1777                 }
1778 sleep:
1779                 wake_up_process(root->fs_info->cleaner_kthread);
1780                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1781
1782                 if (!try_to_freeze()) {
1783                         set_current_state(TASK_INTERRUPTIBLE);
1784                         if (!kthread_should_stop() &&
1785                             (!btrfs_transaction_blocked(root->fs_info) ||
1786                              cannot_commit))
1787                                 schedule_timeout(delay);
1788                         __set_current_state(TASK_RUNNING);
1789                 }
1790         } while (!kthread_should_stop());
1791         return 0;
1792 }
1793
1794 /*
1795  * this will find the highest generation in the array of
1796  * root backups.  The index of the highest array is returned,
1797  * or -1 if we can't find anything.
1798  *
1799  * We check to make sure the array is valid by comparing the
1800  * generation of the latest  root in the array with the generation
1801  * in the super block.  If they don't match we pitch it.
1802  */
1803 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804 {
1805         u64 cur;
1806         int newest_index = -1;
1807         struct btrfs_root_backup *root_backup;
1808         int i;
1809
1810         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811                 root_backup = info->super_copy->super_roots + i;
1812                 cur = btrfs_backup_tree_root_gen(root_backup);
1813                 if (cur == newest_gen)
1814                         newest_index = i;
1815         }
1816
1817         /* check to see if we actually wrapped around */
1818         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819                 root_backup = info->super_copy->super_roots;
1820                 cur = btrfs_backup_tree_root_gen(root_backup);
1821                 if (cur == newest_gen)
1822                         newest_index = 0;
1823         }
1824         return newest_index;
1825 }
1826
1827
1828 /*
1829  * find the oldest backup so we know where to store new entries
1830  * in the backup array.  This will set the backup_root_index
1831  * field in the fs_info struct
1832  */
1833 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834                                      u64 newest_gen)
1835 {
1836         int newest_index = -1;
1837
1838         newest_index = find_newest_super_backup(info, newest_gen);
1839         /* if there was garbage in there, just move along */
1840         if (newest_index == -1) {
1841                 info->backup_root_index = 0;
1842         } else {
1843                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844         }
1845 }
1846
1847 /*
1848  * copy all the root pointers into the super backup array.
1849  * this will bump the backup pointer by one when it is
1850  * done
1851  */
1852 static void backup_super_roots(struct btrfs_fs_info *info)
1853 {
1854         int next_backup;
1855         struct btrfs_root_backup *root_backup;
1856         int last_backup;
1857
1858         next_backup = info->backup_root_index;
1859         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860                 BTRFS_NUM_BACKUP_ROOTS;
1861
1862         /*
1863          * just overwrite the last backup if we're at the same generation
1864          * this happens only at umount
1865          */
1866         root_backup = info->super_for_commit->super_roots + last_backup;
1867         if (btrfs_backup_tree_root_gen(root_backup) ==
1868             btrfs_header_generation(info->tree_root->node))
1869                 next_backup = last_backup;
1870
1871         root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873         /*
1874          * make sure all of our padding and empty slots get zero filled
1875          * regardless of which ones we use today
1876          */
1877         memset(root_backup, 0, sizeof(*root_backup));
1878
1879         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882         btrfs_set_backup_tree_root_gen(root_backup,
1883                                btrfs_header_generation(info->tree_root->node));
1884
1885         btrfs_set_backup_tree_root_level(root_backup,
1886                                btrfs_header_level(info->tree_root->node));
1887
1888         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889         btrfs_set_backup_chunk_root_gen(root_backup,
1890                                btrfs_header_generation(info->chunk_root->node));
1891         btrfs_set_backup_chunk_root_level(root_backup,
1892                                btrfs_header_level(info->chunk_root->node));
1893
1894         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895         btrfs_set_backup_extent_root_gen(root_backup,
1896                                btrfs_header_generation(info->extent_root->node));
1897         btrfs_set_backup_extent_root_level(root_backup,
1898                                btrfs_header_level(info->extent_root->node));
1899
1900         /*
1901          * we might commit during log recovery, which happens before we set
1902          * the fs_root.  Make sure it is valid before we fill it in.
1903          */
1904         if (info->fs_root && info->fs_root->node) {
1905                 btrfs_set_backup_fs_root(root_backup,
1906                                          info->fs_root->node->start);
1907                 btrfs_set_backup_fs_root_gen(root_backup,
1908                                btrfs_header_generation(info->fs_root->node));
1909                 btrfs_set_backup_fs_root_level(root_backup,
1910                                btrfs_header_level(info->fs_root->node));
1911         }
1912
1913         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914         btrfs_set_backup_dev_root_gen(root_backup,
1915                                btrfs_header_generation(info->dev_root->node));
1916         btrfs_set_backup_dev_root_level(root_backup,
1917                                        btrfs_header_level(info->dev_root->node));
1918
1919         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920         btrfs_set_backup_csum_root_gen(root_backup,
1921                                btrfs_header_generation(info->csum_root->node));
1922         btrfs_set_backup_csum_root_level(root_backup,
1923                                btrfs_header_level(info->csum_root->node));
1924
1925         btrfs_set_backup_total_bytes(root_backup,
1926                              btrfs_super_total_bytes(info->super_copy));
1927         btrfs_set_backup_bytes_used(root_backup,
1928                              btrfs_super_bytes_used(info->super_copy));
1929         btrfs_set_backup_num_devices(root_backup,
1930                              btrfs_super_num_devices(info->super_copy));
1931
1932         /*
1933          * if we don't copy this out to the super_copy, it won't get remembered
1934          * for the next commit
1935          */
1936         memcpy(&info->super_copy->super_roots,
1937                &info->super_for_commit->super_roots,
1938                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939 }
1940
1941 /*
1942  * this copies info out of the root backup array and back into
1943  * the in-memory super block.  It is meant to help iterate through
1944  * the array, so you send it the number of backups you've already
1945  * tried and the last backup index you used.
1946  *
1947  * this returns -1 when it has tried all the backups
1948  */
1949 static noinline int next_root_backup(struct btrfs_fs_info *info,
1950                                      struct btrfs_super_block *super,
1951                                      int *num_backups_tried, int *backup_index)
1952 {
1953         struct btrfs_root_backup *root_backup;
1954         int newest = *backup_index;
1955
1956         if (*num_backups_tried == 0) {
1957                 u64 gen = btrfs_super_generation(super);
1958
1959                 newest = find_newest_super_backup(info, gen);
1960                 if (newest == -1)
1961                         return -1;
1962
1963                 *backup_index = newest;
1964                 *num_backups_tried = 1;
1965         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966                 /* we've tried all the backups, all done */
1967                 return -1;
1968         } else {
1969                 /* jump to the next oldest backup */
1970                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971                         BTRFS_NUM_BACKUP_ROOTS;
1972                 *backup_index = newest;
1973                 *num_backups_tried += 1;
1974         }
1975         root_backup = super->super_roots + newest;
1976
1977         btrfs_set_super_generation(super,
1978                                    btrfs_backup_tree_root_gen(root_backup));
1979         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980         btrfs_set_super_root_level(super,
1981                                    btrfs_backup_tree_root_level(root_backup));
1982         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984         /*
1985          * fixme: the total bytes and num_devices need to match or we should
1986          * need a fsck
1987          */
1988         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990         return 0;
1991 }
1992
1993 /* helper to cleanup workers */
1994 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995 {
1996         btrfs_stop_workers(&fs_info->generic_worker);
1997         btrfs_stop_workers(&fs_info->fixup_workers);
1998         btrfs_stop_workers(&fs_info->delalloc_workers);
1999         btrfs_stop_workers(&fs_info->workers);
2000         btrfs_stop_workers(&fs_info->endio_workers);
2001         btrfs_stop_workers(&fs_info->endio_meta_workers);
2002         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2003         btrfs_stop_workers(&fs_info->rmw_workers);
2004         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2005         btrfs_stop_workers(&fs_info->endio_write_workers);
2006         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2007         btrfs_stop_workers(&fs_info->submit_workers);
2008         btrfs_stop_workers(&fs_info->delayed_workers);
2009         btrfs_stop_workers(&fs_info->caching_workers);
2010         btrfs_stop_workers(&fs_info->readahead_workers);
2011         btrfs_stop_workers(&fs_info->flush_workers);
2012         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2013 }
2014
2015 /* helper to cleanup tree roots */
2016 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2017 {
2018         free_extent_buffer(info->tree_root->node);
2019         free_extent_buffer(info->tree_root->commit_root);
2020         info->tree_root->node = NULL;
2021         info->tree_root->commit_root = NULL;
2022
2023         if (info->dev_root) {
2024                 free_extent_buffer(info->dev_root->node);
2025                 free_extent_buffer(info->dev_root->commit_root);
2026                 info->dev_root->node = NULL;
2027                 info->dev_root->commit_root = NULL;
2028         }
2029         if (info->extent_root) {
2030                 free_extent_buffer(info->extent_root->node);
2031                 free_extent_buffer(info->extent_root->commit_root);
2032                 info->extent_root->node = NULL;
2033                 info->extent_root->commit_root = NULL;
2034         }
2035         if (info->csum_root) {
2036                 free_extent_buffer(info->csum_root->node);
2037                 free_extent_buffer(info->csum_root->commit_root);
2038                 info->csum_root->node = NULL;
2039                 info->csum_root->commit_root = NULL;
2040         }
2041         if (info->quota_root) {
2042                 free_extent_buffer(info->quota_root->node);
2043                 free_extent_buffer(info->quota_root->commit_root);
2044                 info->quota_root->node = NULL;
2045                 info->quota_root->commit_root = NULL;
2046         }
2047         if (chunk_root) {
2048                 free_extent_buffer(info->chunk_root->node);
2049                 free_extent_buffer(info->chunk_root->commit_root);
2050                 info->chunk_root->node = NULL;
2051                 info->chunk_root->commit_root = NULL;
2052         }
2053 }
2054
2055 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2056 {
2057         int ret;
2058         struct btrfs_root *gang[8];
2059         int i;
2060
2061         while (!list_empty(&fs_info->dead_roots)) {
2062                 gang[0] = list_entry(fs_info->dead_roots.next,
2063                                      struct btrfs_root, root_list);
2064                 list_del(&gang[0]->root_list);
2065
2066                 if (gang[0]->in_radix) {
2067                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2068                 } else {
2069                         free_extent_buffer(gang[0]->node);
2070                         free_extent_buffer(gang[0]->commit_root);
2071                         btrfs_put_fs_root(gang[0]);
2072                 }
2073         }
2074
2075         while (1) {
2076                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2077                                              (void **)gang, 0,
2078                                              ARRAY_SIZE(gang));
2079                 if (!ret)
2080                         break;
2081                 for (i = 0; i < ret; i++)
2082                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2083         }
2084 }
2085
2086 int open_ctree(struct super_block *sb,
2087                struct btrfs_fs_devices *fs_devices,
2088                char *options)
2089 {
2090         u32 sectorsize;
2091         u32 nodesize;
2092         u32 leafsize;
2093         u32 blocksize;
2094         u32 stripesize;
2095         u64 generation;
2096         u64 features;
2097         struct btrfs_key location;
2098         struct buffer_head *bh;
2099         struct btrfs_super_block *disk_super;
2100         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2101         struct btrfs_root *tree_root;
2102         struct btrfs_root *extent_root;
2103         struct btrfs_root *csum_root;
2104         struct btrfs_root *chunk_root;
2105         struct btrfs_root *dev_root;
2106         struct btrfs_root *quota_root;
2107         struct btrfs_root *log_tree_root;
2108         int ret;
2109         int err = -EINVAL;
2110         int num_backups_tried = 0;
2111         int backup_index = 0;
2112
2113         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2114         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2115         if (!tree_root || !chunk_root) {
2116                 err = -ENOMEM;
2117                 goto fail;
2118         }
2119
2120         ret = init_srcu_struct(&fs_info->subvol_srcu);
2121         if (ret) {
2122                 err = ret;
2123                 goto fail;
2124         }
2125
2126         ret = setup_bdi(fs_info, &fs_info->bdi);
2127         if (ret) {
2128                 err = ret;
2129                 goto fail_srcu;
2130         }
2131
2132         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2133         if (ret) {
2134                 err = ret;
2135                 goto fail_bdi;
2136         }
2137         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2138                                         (1 + ilog2(nr_cpu_ids));
2139
2140         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2141         if (ret) {
2142                 err = ret;
2143                 goto fail_dirty_metadata_bytes;
2144         }
2145
2146         fs_info->btree_inode = new_inode(sb);
2147         if (!fs_info->btree_inode) {
2148                 err = -ENOMEM;
2149                 goto fail_delalloc_bytes;
2150         }
2151
2152         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2153
2154         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2155         INIT_LIST_HEAD(&fs_info->trans_list);
2156         INIT_LIST_HEAD(&fs_info->dead_roots);
2157         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2158         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2159         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2160         spin_lock_init(&fs_info->delalloc_root_lock);
2161         spin_lock_init(&fs_info->trans_lock);
2162         spin_lock_init(&fs_info->fs_roots_radix_lock);
2163         spin_lock_init(&fs_info->delayed_iput_lock);
2164         spin_lock_init(&fs_info->defrag_inodes_lock);
2165         spin_lock_init(&fs_info->free_chunk_lock);
2166         spin_lock_init(&fs_info->tree_mod_seq_lock);
2167         spin_lock_init(&fs_info->super_lock);
2168         rwlock_init(&fs_info->tree_mod_log_lock);
2169         mutex_init(&fs_info->reloc_mutex);
2170         seqlock_init(&fs_info->profiles_lock);
2171
2172         init_completion(&fs_info->kobj_unregister);
2173         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2174         INIT_LIST_HEAD(&fs_info->space_info);
2175         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2176         btrfs_mapping_init(&fs_info->mapping_tree);
2177         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2178                              BTRFS_BLOCK_RSV_GLOBAL);
2179         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2180                              BTRFS_BLOCK_RSV_DELALLOC);
2181         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2182         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2183         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2184         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2185                              BTRFS_BLOCK_RSV_DELOPS);
2186         atomic_set(&fs_info->nr_async_submits, 0);
2187         atomic_set(&fs_info->async_delalloc_pages, 0);
2188         atomic_set(&fs_info->async_submit_draining, 0);
2189         atomic_set(&fs_info->nr_async_bios, 0);
2190         atomic_set(&fs_info->defrag_running, 0);
2191         atomic64_set(&fs_info->tree_mod_seq, 0);
2192         fs_info->sb = sb;
2193         fs_info->max_inline = 8192 * 1024;
2194         fs_info->metadata_ratio = 0;
2195         fs_info->defrag_inodes = RB_ROOT;
2196         fs_info->free_chunk_space = 0;
2197         fs_info->tree_mod_log = RB_ROOT;
2198         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2199
2200         /* readahead state */
2201         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2202         spin_lock_init(&fs_info->reada_lock);
2203
2204         fs_info->thread_pool_size = min_t(unsigned long,
2205                                           num_online_cpus() + 2, 8);
2206
2207         INIT_LIST_HEAD(&fs_info->ordered_roots);
2208         spin_lock_init(&fs_info->ordered_root_lock);
2209         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2210                                         GFP_NOFS);
2211         if (!fs_info->delayed_root) {
2212                 err = -ENOMEM;
2213                 goto fail_iput;
2214         }
2215         btrfs_init_delayed_root(fs_info->delayed_root);
2216
2217         mutex_init(&fs_info->scrub_lock);
2218         atomic_set(&fs_info->scrubs_running, 0);
2219         atomic_set(&fs_info->scrub_pause_req, 0);
2220         atomic_set(&fs_info->scrubs_paused, 0);
2221         atomic_set(&fs_info->scrub_cancel_req, 0);
2222         init_waitqueue_head(&fs_info->scrub_pause_wait);
2223         init_rwsem(&fs_info->scrub_super_lock);
2224         fs_info->scrub_workers_refcnt = 0;
2225 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2226         fs_info->check_integrity_print_mask = 0;
2227 #endif
2228
2229         spin_lock_init(&fs_info->balance_lock);
2230         mutex_init(&fs_info->balance_mutex);
2231         atomic_set(&fs_info->balance_running, 0);
2232         atomic_set(&fs_info->balance_pause_req, 0);
2233         atomic_set(&fs_info->balance_cancel_req, 0);
2234         fs_info->balance_ctl = NULL;
2235         init_waitqueue_head(&fs_info->balance_wait_q);
2236
2237         sb->s_blocksize = 4096;
2238         sb->s_blocksize_bits = blksize_bits(4096);
2239         sb->s_bdi = &fs_info->bdi;
2240
2241         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2242         set_nlink(fs_info->btree_inode, 1);
2243         /*
2244          * we set the i_size on the btree inode to the max possible int.
2245          * the real end of the address space is determined by all of
2246          * the devices in the system
2247          */
2248         fs_info->btree_inode->i_size = OFFSET_MAX;
2249         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2250         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2251
2252         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2253         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2254                              fs_info->btree_inode->i_mapping);
2255         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2256         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2257
2258         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2259
2260         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2261         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2262                sizeof(struct btrfs_key));
2263         set_bit(BTRFS_INODE_DUMMY,
2264                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2265         insert_inode_hash(fs_info->btree_inode);
2266
2267         spin_lock_init(&fs_info->block_group_cache_lock);
2268         fs_info->block_group_cache_tree = RB_ROOT;
2269         fs_info->first_logical_byte = (u64)-1;
2270
2271         extent_io_tree_init(&fs_info->freed_extents[0],
2272                              fs_info->btree_inode->i_mapping);
2273         extent_io_tree_init(&fs_info->freed_extents[1],
2274                              fs_info->btree_inode->i_mapping);
2275         fs_info->pinned_extents = &fs_info->freed_extents[0];
2276         fs_info->do_barriers = 1;
2277
2278
2279         mutex_init(&fs_info->ordered_operations_mutex);
2280         mutex_init(&fs_info->tree_log_mutex);
2281         mutex_init(&fs_info->chunk_mutex);
2282         mutex_init(&fs_info->transaction_kthread_mutex);
2283         mutex_init(&fs_info->cleaner_mutex);
2284         mutex_init(&fs_info->volume_mutex);
2285         init_rwsem(&fs_info->extent_commit_sem);
2286         init_rwsem(&fs_info->cleanup_work_sem);
2287         init_rwsem(&fs_info->subvol_sem);
2288         fs_info->dev_replace.lock_owner = 0;
2289         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2290         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2291         mutex_init(&fs_info->dev_replace.lock_management_lock);
2292         mutex_init(&fs_info->dev_replace.lock);
2293
2294         spin_lock_init(&fs_info->qgroup_lock);
2295         mutex_init(&fs_info->qgroup_ioctl_lock);
2296         fs_info->qgroup_tree = RB_ROOT;
2297         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2298         fs_info->qgroup_seq = 1;
2299         fs_info->quota_enabled = 0;
2300         fs_info->pending_quota_state = 0;
2301         fs_info->qgroup_ulist = NULL;
2302         mutex_init(&fs_info->qgroup_rescan_lock);
2303
2304         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2305         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2306
2307         init_waitqueue_head(&fs_info->transaction_throttle);
2308         init_waitqueue_head(&fs_info->transaction_wait);
2309         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2310         init_waitqueue_head(&fs_info->async_submit_wait);
2311
2312         ret = btrfs_alloc_stripe_hash_table(fs_info);
2313         if (ret) {
2314                 err = ret;
2315                 goto fail_alloc;
2316         }
2317
2318         __setup_root(4096, 4096, 4096, 4096, tree_root,
2319                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2320
2321         invalidate_bdev(fs_devices->latest_bdev);
2322
2323         /*
2324          * Read super block and check the signature bytes only
2325          */
2326         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2327         if (!bh) {
2328                 err = -EINVAL;
2329                 goto fail_alloc;
2330         }
2331
2332         /*
2333          * We want to check superblock checksum, the type is stored inside.
2334          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2335          */
2336         if (btrfs_check_super_csum(bh->b_data)) {
2337                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2338                 err = -EINVAL;
2339                 goto fail_alloc;
2340         }
2341
2342         /*
2343          * super_copy is zeroed at allocation time and we never touch the
2344          * following bytes up to INFO_SIZE, the checksum is calculated from
2345          * the whole block of INFO_SIZE
2346          */
2347         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2348         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2349                sizeof(*fs_info->super_for_commit));
2350         brelse(bh);
2351
2352         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2353
2354         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2355         if (ret) {
2356                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2357                 err = -EINVAL;
2358                 goto fail_alloc;
2359         }
2360
2361         disk_super = fs_info->super_copy;
2362         if (!btrfs_super_root(disk_super))
2363                 goto fail_alloc;
2364
2365         /* check FS state, whether FS is broken. */
2366         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2367                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2368
2369         /*
2370          * run through our array of backup supers and setup
2371          * our ring pointer to the oldest one
2372          */
2373         generation = btrfs_super_generation(disk_super);
2374         find_oldest_super_backup(fs_info, generation);
2375
2376         /*
2377          * In the long term, we'll store the compression type in the super
2378          * block, and it'll be used for per file compression control.
2379          */
2380         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2381
2382         ret = btrfs_parse_options(tree_root, options);
2383         if (ret) {
2384                 err = ret;
2385                 goto fail_alloc;
2386         }
2387
2388         features = btrfs_super_incompat_flags(disk_super) &
2389                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2390         if (features) {
2391                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2392                        "unsupported optional features (%Lx).\n",
2393                        (unsigned long long)features);
2394                 err = -EINVAL;
2395                 goto fail_alloc;
2396         }
2397
2398         if (btrfs_super_leafsize(disk_super) !=
2399             btrfs_super_nodesize(disk_super)) {
2400                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2401                        "blocksizes don't match.  node %d leaf %d\n",
2402                        btrfs_super_nodesize(disk_super),
2403                        btrfs_super_leafsize(disk_super));
2404                 err = -EINVAL;
2405                 goto fail_alloc;
2406         }
2407         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2408                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2409                        "blocksize (%d) was too large\n",
2410                        btrfs_super_leafsize(disk_super));
2411                 err = -EINVAL;
2412                 goto fail_alloc;
2413         }
2414
2415         features = btrfs_super_incompat_flags(disk_super);
2416         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2417         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2418                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2419
2420         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2421                 printk(KERN_ERR "btrfs: has skinny extents\n");
2422
2423         /*
2424          * flag our filesystem as having big metadata blocks if
2425          * they are bigger than the page size
2426          */
2427         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2428                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2429                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2430                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2431         }
2432
2433         nodesize = btrfs_super_nodesize(disk_super);
2434         leafsize = btrfs_super_leafsize(disk_super);
2435         sectorsize = btrfs_super_sectorsize(disk_super);
2436         stripesize = btrfs_super_stripesize(disk_super);
2437         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2438         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2439
2440         /*
2441          * mixed block groups end up with duplicate but slightly offset
2442          * extent buffers for the same range.  It leads to corruptions
2443          */
2444         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2445             (sectorsize != leafsize)) {
2446                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2447                                 "are not allowed for mixed block groups on %s\n",
2448                                 sb->s_id);
2449                 goto fail_alloc;
2450         }
2451
2452         /*
2453          * Needn't use the lock because there is no other task which will
2454          * update the flag.
2455          */
2456         btrfs_set_super_incompat_flags(disk_super, features);
2457
2458         features = btrfs_super_compat_ro_flags(disk_super) &
2459                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2460         if (!(sb->s_flags & MS_RDONLY) && features) {
2461                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2462                        "unsupported option features (%Lx).\n",
2463                        (unsigned long long)features);
2464                 err = -EINVAL;
2465                 goto fail_alloc;
2466         }
2467
2468         btrfs_init_workers(&fs_info->generic_worker,
2469                            "genwork", 1, NULL);
2470
2471         btrfs_init_workers(&fs_info->workers, "worker",
2472                            fs_info->thread_pool_size,
2473                            &fs_info->generic_worker);
2474
2475         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2476                            fs_info->thread_pool_size,
2477                            &fs_info->generic_worker);
2478
2479         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2480                            fs_info->thread_pool_size,
2481                            &fs_info->generic_worker);
2482
2483         btrfs_init_workers(&fs_info->submit_workers, "submit",
2484                            min_t(u64, fs_devices->num_devices,
2485                            fs_info->thread_pool_size),
2486                            &fs_info->generic_worker);
2487
2488         btrfs_init_workers(&fs_info->caching_workers, "cache",
2489                            2, &fs_info->generic_worker);
2490
2491         /* a higher idle thresh on the submit workers makes it much more
2492          * likely that bios will be send down in a sane order to the
2493          * devices
2494          */
2495         fs_info->submit_workers.idle_thresh = 64;
2496
2497         fs_info->workers.idle_thresh = 16;
2498         fs_info->workers.ordered = 1;
2499
2500         fs_info->delalloc_workers.idle_thresh = 2;
2501         fs_info->delalloc_workers.ordered = 1;
2502
2503         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2504                            &fs_info->generic_worker);
2505         btrfs_init_workers(&fs_info->endio_workers, "endio",
2506                            fs_info->thread_pool_size,
2507                            &fs_info->generic_worker);
2508         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2509                            fs_info->thread_pool_size,
2510                            &fs_info->generic_worker);
2511         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2512                            "endio-meta-write", fs_info->thread_pool_size,
2513                            &fs_info->generic_worker);
2514         btrfs_init_workers(&fs_info->endio_raid56_workers,
2515                            "endio-raid56", fs_info->thread_pool_size,
2516                            &fs_info->generic_worker);
2517         btrfs_init_workers(&fs_info->rmw_workers,
2518                            "rmw", fs_info->thread_pool_size,
2519                            &fs_info->generic_worker);
2520         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2521                            fs_info->thread_pool_size,
2522                            &fs_info->generic_worker);
2523         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2524                            1, &fs_info->generic_worker);
2525         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2526                            fs_info->thread_pool_size,
2527                            &fs_info->generic_worker);
2528         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2529                            fs_info->thread_pool_size,
2530                            &fs_info->generic_worker);
2531         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2532                            &fs_info->generic_worker);
2533
2534         /*
2535          * endios are largely parallel and should have a very
2536          * low idle thresh
2537          */
2538         fs_info->endio_workers.idle_thresh = 4;
2539         fs_info->endio_meta_workers.idle_thresh = 4;
2540         fs_info->endio_raid56_workers.idle_thresh = 4;
2541         fs_info->rmw_workers.idle_thresh = 2;
2542
2543         fs_info->endio_write_workers.idle_thresh = 2;
2544         fs_info->endio_meta_write_workers.idle_thresh = 2;
2545         fs_info->readahead_workers.idle_thresh = 2;
2546
2547         /*
2548          * btrfs_start_workers can really only fail because of ENOMEM so just
2549          * return -ENOMEM if any of these fail.
2550          */
2551         ret = btrfs_start_workers(&fs_info->workers);
2552         ret |= btrfs_start_workers(&fs_info->generic_worker);
2553         ret |= btrfs_start_workers(&fs_info->submit_workers);
2554         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2555         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2556         ret |= btrfs_start_workers(&fs_info->endio_workers);
2557         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2558         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2559         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2560         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2561         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2562         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2563         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2564         ret |= btrfs_start_workers(&fs_info->caching_workers);
2565         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2566         ret |= btrfs_start_workers(&fs_info->flush_workers);
2567         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2568         if (ret) {
2569                 err = -ENOMEM;
2570                 goto fail_sb_buffer;
2571         }
2572
2573         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2574         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2575                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2576
2577         tree_root->nodesize = nodesize;
2578         tree_root->leafsize = leafsize;
2579         tree_root->sectorsize = sectorsize;
2580         tree_root->stripesize = stripesize;
2581
2582         sb->s_blocksize = sectorsize;
2583         sb->s_blocksize_bits = blksize_bits(sectorsize);
2584
2585         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2586                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2587                 goto fail_sb_buffer;
2588         }
2589
2590         if (sectorsize != PAGE_SIZE) {
2591                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2592                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2593                 goto fail_sb_buffer;
2594         }
2595
2596         mutex_lock(&fs_info->chunk_mutex);
2597         ret = btrfs_read_sys_array(tree_root);
2598         mutex_unlock(&fs_info->chunk_mutex);
2599         if (ret) {
2600                 printk(KERN_WARNING "btrfs: failed to read the system "
2601                        "array on %s\n", sb->s_id);
2602                 goto fail_sb_buffer;
2603         }
2604
2605         blocksize = btrfs_level_size(tree_root,
2606                                      btrfs_super_chunk_root_level(disk_super));
2607         generation = btrfs_super_chunk_root_generation(disk_super);
2608
2609         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2610                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2611
2612         chunk_root->node = read_tree_block(chunk_root,
2613                                            btrfs_super_chunk_root(disk_super),
2614                                            blocksize, generation);
2615         if (!chunk_root->node ||
2616             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2617                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2618                        sb->s_id);
2619                 goto fail_tree_roots;
2620         }
2621         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2622         chunk_root->commit_root = btrfs_root_node(chunk_root);
2623
2624         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2625            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2626            BTRFS_UUID_SIZE);
2627
2628         ret = btrfs_read_chunk_tree(chunk_root);
2629         if (ret) {
2630                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2631                        sb->s_id);
2632                 goto fail_tree_roots;
2633         }
2634
2635         /*
2636          * keep the device that is marked to be the target device for the
2637          * dev_replace procedure
2638          */
2639         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2640
2641         if (!fs_devices->latest_bdev) {
2642                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2643                        sb->s_id);
2644                 goto fail_tree_roots;
2645         }
2646
2647 retry_root_backup:
2648         blocksize = btrfs_level_size(tree_root,
2649                                      btrfs_super_root_level(disk_super));
2650         generation = btrfs_super_generation(disk_super);
2651
2652         tree_root->node = read_tree_block(tree_root,
2653                                           btrfs_super_root(disk_super),
2654                                           blocksize, generation);
2655         if (!tree_root->node ||
2656             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2657                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2658                        sb->s_id);
2659
2660                 goto recovery_tree_root;
2661         }
2662
2663         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2664         tree_root->commit_root = btrfs_root_node(tree_root);
2665
2666         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2667         location.type = BTRFS_ROOT_ITEM_KEY;
2668         location.offset = 0;
2669
2670         extent_root = btrfs_read_tree_root(tree_root, &location);
2671         if (IS_ERR(extent_root)) {
2672                 ret = PTR_ERR(extent_root);
2673                 goto recovery_tree_root;
2674         }
2675         extent_root->track_dirty = 1;
2676         fs_info->extent_root = extent_root;
2677
2678         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2679         dev_root = btrfs_read_tree_root(tree_root, &location);
2680         if (IS_ERR(dev_root)) {
2681                 ret = PTR_ERR(dev_root);
2682                 goto recovery_tree_root;
2683         }
2684         dev_root->track_dirty = 1;
2685         fs_info->dev_root = dev_root;
2686         btrfs_init_devices_late(fs_info);
2687
2688         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2689         csum_root = btrfs_read_tree_root(tree_root, &location);
2690         if (IS_ERR(csum_root)) {
2691                 ret = PTR_ERR(csum_root);
2692                 goto recovery_tree_root;
2693         }
2694         csum_root->track_dirty = 1;
2695         fs_info->csum_root = csum_root;
2696
2697         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2698         quota_root = btrfs_read_tree_root(tree_root, &location);
2699         if (!IS_ERR(quota_root)) {
2700                 quota_root->track_dirty = 1;
2701                 fs_info->quota_enabled = 1;
2702                 fs_info->pending_quota_state = 1;
2703                 fs_info->quota_root = quota_root;
2704         }
2705
2706         fs_info->generation = generation;
2707         fs_info->last_trans_committed = generation;
2708
2709         ret = btrfs_recover_balance(fs_info);
2710         if (ret) {
2711                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2712                 goto fail_block_groups;
2713         }
2714
2715         ret = btrfs_init_dev_stats(fs_info);
2716         if (ret) {
2717                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2718                        ret);
2719                 goto fail_block_groups;
2720         }
2721
2722         ret = btrfs_init_dev_replace(fs_info);
2723         if (ret) {
2724                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2725                 goto fail_block_groups;
2726         }
2727
2728         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2729
2730         ret = btrfs_init_space_info(fs_info);
2731         if (ret) {
2732                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2733                 goto fail_block_groups;
2734         }
2735
2736         ret = btrfs_read_block_groups(extent_root);
2737         if (ret) {
2738                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2739                 goto fail_block_groups;
2740         }
2741         fs_info->num_tolerated_disk_barrier_failures =
2742                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2743         if (fs_info->fs_devices->missing_devices >
2744              fs_info->num_tolerated_disk_barrier_failures &&
2745             !(sb->s_flags & MS_RDONLY)) {
2746                 printk(KERN_WARNING
2747                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2748                 goto fail_block_groups;
2749         }
2750
2751         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2752                                                "btrfs-cleaner");
2753         if (IS_ERR(fs_info->cleaner_kthread))
2754                 goto fail_block_groups;
2755
2756         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2757                                                    tree_root,
2758                                                    "btrfs-transaction");
2759         if (IS_ERR(fs_info->transaction_kthread))
2760                 goto fail_cleaner;
2761
2762         if (!btrfs_test_opt(tree_root, SSD) &&
2763             !btrfs_test_opt(tree_root, NOSSD) &&
2764             !fs_info->fs_devices->rotating) {
2765                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2766                        "mode\n");
2767                 btrfs_set_opt(fs_info->mount_opt, SSD);
2768         }
2769
2770 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2771         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2772                 ret = btrfsic_mount(tree_root, fs_devices,
2773                                     btrfs_test_opt(tree_root,
2774                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2775                                     1 : 0,
2776                                     fs_info->check_integrity_print_mask);
2777                 if (ret)
2778                         printk(KERN_WARNING "btrfs: failed to initialize"
2779                                " integrity check module %s\n", sb->s_id);
2780         }
2781 #endif
2782         ret = btrfs_read_qgroup_config(fs_info);
2783         if (ret)
2784                 goto fail_trans_kthread;
2785
2786         /* do not make disk changes in broken FS */
2787         if (btrfs_super_log_root(disk_super) != 0) {
2788                 u64 bytenr = btrfs_super_log_root(disk_super);
2789
2790                 if (fs_devices->rw_devices == 0) {
2791                         printk(KERN_WARNING "Btrfs log replay required "
2792                                "on RO media\n");
2793                         err = -EIO;
2794                         goto fail_qgroup;
2795                 }
2796                 blocksize =
2797                      btrfs_level_size(tree_root,
2798                                       btrfs_super_log_root_level(disk_super));
2799
2800                 log_tree_root = btrfs_alloc_root(fs_info);
2801                 if (!log_tree_root) {
2802                         err = -ENOMEM;
2803                         goto fail_qgroup;
2804                 }
2805
2806                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2807                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2808
2809                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2810                                                       blocksize,
2811                                                       generation + 1);
2812                 if (!log_tree_root->node ||
2813                     !extent_buffer_uptodate(log_tree_root->node)) {
2814                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2815                         free_extent_buffer(log_tree_root->node);
2816                         kfree(log_tree_root);
2817                         goto fail_trans_kthread;
2818                 }
2819                 /* returns with log_tree_root freed on success */
2820                 ret = btrfs_recover_log_trees(log_tree_root);
2821                 if (ret) {
2822                         btrfs_error(tree_root->fs_info, ret,
2823                                     "Failed to recover log tree");
2824                         free_extent_buffer(log_tree_root->node);
2825                         kfree(log_tree_root);
2826                         goto fail_trans_kthread;
2827                 }
2828
2829                 if (sb->s_flags & MS_RDONLY) {
2830                         ret = btrfs_commit_super(tree_root);
2831                         if (ret)
2832                                 goto fail_trans_kthread;
2833                 }
2834         }
2835
2836         ret = btrfs_find_orphan_roots(tree_root);
2837         if (ret)
2838                 goto fail_trans_kthread;
2839
2840         if (!(sb->s_flags & MS_RDONLY)) {
2841                 ret = btrfs_cleanup_fs_roots(fs_info);
2842                 if (ret)
2843                         goto fail_trans_kthread;
2844
2845                 ret = btrfs_recover_relocation(tree_root);
2846                 if (ret < 0) {
2847                         printk(KERN_WARNING
2848                                "btrfs: failed to recover relocation\n");
2849                         err = -EINVAL;
2850                         goto fail_qgroup;
2851                 }
2852         }
2853
2854         location.objectid = BTRFS_FS_TREE_OBJECTID;
2855         location.type = BTRFS_ROOT_ITEM_KEY;
2856         location.offset = 0;
2857
2858         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2859         if (IS_ERR(fs_info->fs_root)) {
2860                 err = PTR_ERR(fs_info->fs_root);
2861                 goto fail_qgroup;
2862         }
2863
2864         if (sb->s_flags & MS_RDONLY)
2865                 return 0;
2866
2867         down_read(&fs_info->cleanup_work_sem);
2868         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2869             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2870                 up_read(&fs_info->cleanup_work_sem);
2871                 close_ctree(tree_root);
2872                 return ret;
2873         }
2874         up_read(&fs_info->cleanup_work_sem);
2875
2876         ret = btrfs_resume_balance_async(fs_info);
2877         if (ret) {
2878                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2879                 close_ctree(tree_root);
2880                 return ret;
2881         }
2882
2883         ret = btrfs_resume_dev_replace_async(fs_info);
2884         if (ret) {
2885                 pr_warn("btrfs: failed to resume dev_replace\n");
2886                 close_ctree(tree_root);
2887                 return ret;
2888         }
2889
2890         btrfs_qgroup_rescan_resume(fs_info);
2891
2892         return 0;
2893
2894 fail_qgroup:
2895         btrfs_free_qgroup_config(fs_info);
2896 fail_trans_kthread:
2897         kthread_stop(fs_info->transaction_kthread);
2898         btrfs_cleanup_transaction(fs_info->tree_root);
2899         del_fs_roots(fs_info);
2900 fail_cleaner:
2901         kthread_stop(fs_info->cleaner_kthread);
2902
2903         /*
2904          * make sure we're done with the btree inode before we stop our
2905          * kthreads
2906          */
2907         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2908
2909 fail_block_groups:
2910         btrfs_put_block_group_cache(fs_info);
2911         btrfs_free_block_groups(fs_info);
2912
2913 fail_tree_roots:
2914         free_root_pointers(fs_info, 1);
2915         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2916
2917 fail_sb_buffer:
2918         btrfs_stop_all_workers(fs_info);
2919 fail_alloc:
2920 fail_iput:
2921         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2922
2923         iput(fs_info->btree_inode);
2924 fail_delalloc_bytes:
2925         percpu_counter_destroy(&fs_info->delalloc_bytes);
2926 fail_dirty_metadata_bytes:
2927         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2928 fail_bdi:
2929         bdi_destroy(&fs_info->bdi);
2930 fail_srcu:
2931         cleanup_srcu_struct(&fs_info->subvol_srcu);
2932 fail:
2933         btrfs_free_stripe_hash_table(fs_info);
2934         btrfs_close_devices(fs_info->fs_devices);
2935         return err;
2936
2937 recovery_tree_root:
2938         if (!btrfs_test_opt(tree_root, RECOVERY))
2939                 goto fail_tree_roots;
2940
2941         free_root_pointers(fs_info, 0);
2942
2943         /* don't use the log in recovery mode, it won't be valid */
2944         btrfs_set_super_log_root(disk_super, 0);
2945
2946         /* we can't trust the free space cache either */
2947         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2948
2949         ret = next_root_backup(fs_info, fs_info->super_copy,
2950                                &num_backups_tried, &backup_index);
2951         if (ret == -1)
2952                 goto fail_block_groups;
2953         goto retry_root_backup;
2954 }
2955
2956 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2957 {
2958         if (uptodate) {
2959                 set_buffer_uptodate(bh);
2960         } else {
2961                 struct btrfs_device *device = (struct btrfs_device *)
2962                         bh->b_private;
2963
2964                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2965                                           "I/O error on %s\n",
2966                                           rcu_str_deref(device->name));
2967                 /* note, we dont' set_buffer_write_io_error because we have
2968                  * our own ways of dealing with the IO errors
2969                  */
2970                 clear_buffer_uptodate(bh);
2971                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2972         }
2973         unlock_buffer(bh);
2974         put_bh(bh);
2975 }
2976
2977 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2978 {
2979         struct buffer_head *bh;
2980         struct buffer_head *latest = NULL;
2981         struct btrfs_super_block *super;
2982         int i;
2983         u64 transid = 0;
2984         u64 bytenr;
2985
2986         /* we would like to check all the supers, but that would make
2987          * a btrfs mount succeed after a mkfs from a different FS.
2988          * So, we need to add a special mount option to scan for
2989          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2990          */
2991         for (i = 0; i < 1; i++) {
2992                 bytenr = btrfs_sb_offset(i);
2993                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2994                                         i_size_read(bdev->bd_inode))
2995                         break;
2996                 bh = __bread(bdev, bytenr / 4096,
2997                                         BTRFS_SUPER_INFO_SIZE);
2998                 if (!bh)
2999                         continue;
3000
3001                 super = (struct btrfs_super_block *)bh->b_data;
3002                 if (btrfs_super_bytenr(super) != bytenr ||
3003                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3004                         brelse(bh);
3005                         continue;
3006                 }
3007
3008                 if (!latest || btrfs_super_generation(super) > transid) {
3009                         brelse(latest);
3010                         latest = bh;
3011                         transid = btrfs_super_generation(super);
3012                 } else {
3013                         brelse(bh);
3014                 }
3015         }
3016         return latest;
3017 }
3018
3019 /*
3020  * this should be called twice, once with wait == 0 and
3021  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3022  * we write are pinned.
3023  *
3024  * They are released when wait == 1 is done.
3025  * max_mirrors must be the same for both runs, and it indicates how
3026  * many supers on this one device should be written.
3027  *
3028  * max_mirrors == 0 means to write them all.
3029  */
3030 static int write_dev_supers(struct btrfs_device *device,
3031                             struct btrfs_super_block *sb,
3032                             int do_barriers, int wait, int max_mirrors)
3033 {
3034         struct buffer_head *bh;
3035         int i;
3036         int ret;
3037         int errors = 0;
3038         u32 crc;
3039         u64 bytenr;
3040
3041         if (max_mirrors == 0)
3042                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3043
3044         for (i = 0; i < max_mirrors; i++) {
3045                 bytenr = btrfs_sb_offset(i);
3046                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3047                         break;
3048
3049                 if (wait) {
3050                         bh = __find_get_block(device->bdev, bytenr / 4096,
3051                                               BTRFS_SUPER_INFO_SIZE);
3052                         if (!bh) {
3053                                 errors++;
3054                                 continue;
3055                         }
3056                         wait_on_buffer(bh);
3057                         if (!buffer_uptodate(bh))
3058                                 errors++;
3059
3060                         /* drop our reference */
3061                         brelse(bh);
3062
3063                         /* drop the reference from the wait == 0 run */
3064                         brelse(bh);
3065                         continue;
3066                 } else {
3067                         btrfs_set_super_bytenr(sb, bytenr);
3068
3069                         crc = ~(u32)0;
3070                         crc = btrfs_csum_data((char *)sb +
3071                                               BTRFS_CSUM_SIZE, crc,
3072                                               BTRFS_SUPER_INFO_SIZE -
3073                                               BTRFS_CSUM_SIZE);
3074                         btrfs_csum_final(crc, sb->csum);
3075
3076                         /*
3077                          * one reference for us, and we leave it for the
3078                          * caller
3079                          */
3080                         bh = __getblk(device->bdev, bytenr / 4096,
3081                                       BTRFS_SUPER_INFO_SIZE);
3082                         if (!bh) {
3083                                 printk(KERN_ERR "btrfs: couldn't get super "
3084                                        "buffer head for bytenr %Lu\n", bytenr);
3085                                 errors++;
3086                                 continue;
3087                         }
3088
3089                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3090
3091                         /* one reference for submit_bh */
3092                         get_bh(bh);
3093
3094                         set_buffer_uptodate(bh);
3095                         lock_buffer(bh);
3096                         bh->b_end_io = btrfs_end_buffer_write_sync;
3097                         bh->b_private = device;
3098                 }
3099
3100                 /*
3101                  * we fua the first super.  The others we allow
3102                  * to go down lazy.
3103                  */
3104                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3105                 if (ret)
3106                         errors++;
3107         }
3108         return errors < i ? 0 : -1;
3109 }
3110
3111 /*
3112  * endio for the write_dev_flush, this will wake anyone waiting
3113  * for the barrier when it is done
3114  */
3115 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3116 {
3117         if (err) {
3118                 if (err == -EOPNOTSUPP)
3119                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3120                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3121         }
3122         if (bio->bi_private)
3123                 complete(bio->bi_private);
3124         bio_put(bio);
3125 }
3126
3127 /*
3128  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3129  * sent down.  With wait == 1, it waits for the previous flush.
3130  *
3131  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3132  * capable
3133  */
3134 static int write_dev_flush(struct btrfs_device *device, int wait)
3135 {
3136         struct bio *bio;
3137         int ret = 0;
3138
3139         if (device->nobarriers)
3140                 return 0;
3141
3142         if (wait) {
3143                 bio = device->flush_bio;
3144                 if (!bio)
3145                         return 0;
3146
3147                 wait_for_completion(&device->flush_wait);
3148
3149                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3150                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3151                                       rcu_str_deref(device->name));
3152                         device->nobarriers = 1;
3153                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3154                         ret = -EIO;
3155                         btrfs_dev_stat_inc_and_print(device,
3156                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3157                 }
3158
3159                 /* drop the reference from the wait == 0 run */
3160                 bio_put(bio);
3161                 device->flush_bio = NULL;
3162
3163                 return ret;
3164         }
3165
3166         /*
3167          * one reference for us, and we leave it for the
3168          * caller
3169          */
3170         device->flush_bio = NULL;
3171         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3172         if (!bio)
3173                 return -ENOMEM;
3174
3175         bio->bi_end_io = btrfs_end_empty_barrier;
3176         bio->bi_bdev = device->bdev;
3177         init_completion(&device->flush_wait);
3178         bio->bi_private = &device->flush_wait;
3179         device->flush_bio = bio;
3180
3181         bio_get(bio);
3182         btrfsic_submit_bio(WRITE_FLUSH, bio);
3183
3184         return 0;
3185 }
3186
3187 /*
3188  * send an empty flush down to each device in parallel,
3189  * then wait for them
3190  */
3191 static int barrier_all_devices(struct btrfs_fs_info *info)
3192 {
3193         struct list_head *head;
3194         struct btrfs_device *dev;
3195         int errors_send = 0;
3196         int errors_wait = 0;
3197         int ret;
3198
3199         /* send down all the barriers */
3200         head = &info->fs_devices->devices;
3201         list_for_each_entry_rcu(dev, head, dev_list) {
3202                 if (!dev->bdev) {
3203                         errors_send++;
3204                         continue;
3205                 }
3206                 if (!dev->in_fs_metadata || !dev->writeable)
3207                         continue;
3208
3209                 ret = write_dev_flush(dev, 0);
3210                 if (ret)
3211                         errors_send++;
3212         }
3213
3214         /* wait for all the barriers */
3215         list_for_each_entry_rcu(dev, head, dev_list) {
3216                 if (!dev->bdev) {
3217                         errors_wait++;
3218                         continue;
3219                 }
3220                 if (!dev->in_fs_metadata || !dev->writeable)
3221                         continue;
3222
3223                 ret = write_dev_flush(dev, 1);
3224                 if (ret)
3225                         errors_wait++;
3226         }
3227         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3228             errors_wait > info->num_tolerated_disk_barrier_failures)
3229                 return -EIO;
3230         return 0;
3231 }
3232
3233 int btrfs_calc_num_tolerated_disk_barrier_failures(
3234         struct btrfs_fs_info *fs_info)
3235 {
3236         struct btrfs_ioctl_space_info space;
3237         struct btrfs_space_info *sinfo;
3238         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3239                        BTRFS_BLOCK_GROUP_SYSTEM,
3240                        BTRFS_BLOCK_GROUP_METADATA,
3241                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3242         int num_types = 4;
3243         int i;
3244         int c;
3245         int num_tolerated_disk_barrier_failures =
3246                 (int)fs_info->fs_devices->num_devices;
3247
3248         for (i = 0; i < num_types; i++) {
3249                 struct btrfs_space_info *tmp;
3250
3251                 sinfo = NULL;
3252                 rcu_read_lock();
3253                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3254                         if (tmp->flags == types[i]) {
3255                                 sinfo = tmp;
3256                                 break;
3257                         }
3258                 }
3259                 rcu_read_unlock();
3260
3261                 if (!sinfo)
3262                         continue;
3263
3264                 down_read(&sinfo->groups_sem);
3265                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3266                         if (!list_empty(&sinfo->block_groups[c])) {
3267                                 u64 flags;
3268
3269                                 btrfs_get_block_group_info(
3270                                         &sinfo->block_groups[c], &space);
3271                                 if (space.total_bytes == 0 ||
3272                                     space.used_bytes == 0)
3273                                         continue;
3274                                 flags = space.flags;
3275                                 /*
3276                                  * return
3277                                  * 0: if dup, single or RAID0 is configured for
3278                                  *    any of metadata, system or data, else
3279                                  * 1: if RAID5 is configured, or if RAID1 or
3280                                  *    RAID10 is configured and only two mirrors
3281                                  *    are used, else
3282                                  * 2: if RAID6 is configured, else
3283                                  * num_mirrors - 1: if RAID1 or RAID10 is
3284                                  *                  configured and more than
3285                                  *                  2 mirrors are used.
3286                                  */
3287                                 if (num_tolerated_disk_barrier_failures > 0 &&
3288                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3289                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3290                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3291                                       == 0)))
3292                                         num_tolerated_disk_barrier_failures = 0;
3293                                 else if (num_tolerated_disk_barrier_failures > 1) {
3294                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3295                                             BTRFS_BLOCK_GROUP_RAID5 |
3296                                             BTRFS_BLOCK_GROUP_RAID10)) {
3297                                                 num_tolerated_disk_barrier_failures = 1;
3298                                         } else if (flags &
3299                                                    BTRFS_BLOCK_GROUP_RAID6) {
3300                                                 num_tolerated_disk_barrier_failures = 2;
3301                                         }
3302                                 }
3303                         }
3304                 }
3305                 up_read(&sinfo->groups_sem);
3306         }
3307
3308         return num_tolerated_disk_barrier_failures;
3309 }
3310
3311 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3312 {
3313         struct list_head *head;
3314         struct btrfs_device *dev;
3315         struct btrfs_super_block *sb;
3316         struct btrfs_dev_item *dev_item;
3317         int ret;
3318         int do_barriers;
3319         int max_errors;
3320         int total_errors = 0;
3321         u64 flags;
3322
3323         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3324         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3325         backup_super_roots(root->fs_info);
3326
3327         sb = root->fs_info->super_for_commit;
3328         dev_item = &sb->dev_item;
3329
3330         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3331         head = &root->fs_info->fs_devices->devices;
3332
3333         if (do_barriers) {
3334                 ret = barrier_all_devices(root->fs_info);
3335                 if (ret) {
3336                         mutex_unlock(
3337                                 &root->fs_info->fs_devices->device_list_mutex);
3338                         btrfs_error(root->fs_info, ret,
3339                                     "errors while submitting device barriers.");
3340                         return ret;
3341                 }
3342         }
3343
3344         list_for_each_entry_rcu(dev, head, dev_list) {
3345                 if (!dev->bdev) {
3346                         total_errors++;
3347                         continue;
3348                 }
3349                 if (!dev->in_fs_metadata || !dev->writeable)
3350                         continue;
3351
3352                 btrfs_set_stack_device_generation(dev_item, 0);
3353                 btrfs_set_stack_device_type(dev_item, dev->type);
3354                 btrfs_set_stack_device_id(dev_item, dev->devid);
3355                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3356                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3357                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3358                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3359                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3360                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3361                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3362
3363                 flags = btrfs_super_flags(sb);
3364                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3365
3366                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3367                 if (ret)
3368                         total_errors++;
3369         }
3370         if (total_errors > max_errors) {
3371                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3372                        total_errors);
3373
3374                 /* This shouldn't happen. FUA is masked off if unsupported */
3375                 BUG();
3376         }
3377
3378         total_errors = 0;
3379         list_for_each_entry_rcu(dev, head, dev_list) {
3380                 if (!dev->bdev)
3381                         continue;
3382                 if (!dev->in_fs_metadata || !dev->writeable)
3383                         continue;
3384
3385                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3386                 if (ret)
3387                         total_errors++;
3388         }
3389         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3390         if (total_errors > max_errors) {
3391                 btrfs_error(root->fs_info, -EIO,
3392                             "%d errors while writing supers", total_errors);
3393                 return -EIO;
3394         }
3395         return 0;
3396 }
3397
3398 int write_ctree_super(struct btrfs_trans_handle *trans,
3399                       struct btrfs_root *root, int max_mirrors)
3400 {
3401         int ret;
3402
3403         ret = write_all_supers(root, max_mirrors);
3404         return ret;
3405 }
3406
3407 /* Drop a fs root from the radix tree and free it. */
3408 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3409                                   struct btrfs_root *root)
3410 {
3411         spin_lock(&fs_info->fs_roots_radix_lock);
3412         radix_tree_delete(&fs_info->fs_roots_radix,
3413                           (unsigned long)root->root_key.objectid);
3414         spin_unlock(&fs_info->fs_roots_radix_lock);
3415
3416         if (btrfs_root_refs(&root->root_item) == 0)
3417                 synchronize_srcu(&fs_info->subvol_srcu);
3418
3419         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3420                 btrfs_free_log(NULL, root);
3421                 btrfs_free_log_root_tree(NULL, fs_info);
3422         }
3423
3424         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3425         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3426         free_fs_root(root);
3427 }
3428
3429 static void free_fs_root(struct btrfs_root *root)
3430 {
3431         iput(root->cache_inode);
3432         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3433         if (root->anon_dev)
3434                 free_anon_bdev(root->anon_dev);
3435         free_extent_buffer(root->node);
3436         free_extent_buffer(root->commit_root);
3437         kfree(root->free_ino_ctl);
3438         kfree(root->free_ino_pinned);
3439         kfree(root->name);
3440         btrfs_put_fs_root(root);
3441 }
3442
3443 void btrfs_free_fs_root(struct btrfs_root *root)
3444 {
3445         free_fs_root(root);
3446 }
3447
3448 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3449 {
3450         u64 root_objectid = 0;
3451         struct btrfs_root *gang[8];
3452         int i;
3453         int ret;
3454
3455         while (1) {
3456                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3457                                              (void **)gang, root_objectid,
3458                                              ARRAY_SIZE(gang));
3459                 if (!ret)
3460                         break;
3461
3462                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3463                 for (i = 0; i < ret; i++) {
3464                         int err;
3465
3466                         root_objectid = gang[i]->root_key.objectid;
3467                         err = btrfs_orphan_cleanup(gang[i]);
3468                         if (err)
3469                                 return err;
3470                 }
3471                 root_objectid++;
3472         }
3473         return 0;
3474 }
3475
3476 int btrfs_commit_super(struct btrfs_root *root)
3477 {
3478         struct btrfs_trans_handle *trans;
3479         int ret;
3480
3481         mutex_lock(&root->fs_info->cleaner_mutex);
3482         btrfs_run_delayed_iputs(root);
3483         mutex_unlock(&root->fs_info->cleaner_mutex);
3484         wake_up_process(root->fs_info->cleaner_kthread);
3485
3486         /* wait until ongoing cleanup work done */
3487         down_write(&root->fs_info->cleanup_work_sem);
3488         up_write(&root->fs_info->cleanup_work_sem);
3489
3490         trans = btrfs_join_transaction(root);
3491         if (IS_ERR(trans))
3492                 return PTR_ERR(trans);
3493         ret = btrfs_commit_transaction(trans, root);
3494         if (ret)
3495                 return ret;
3496         /* run commit again to drop the original snapshot */
3497         trans = btrfs_join_transaction(root);
3498         if (IS_ERR(trans))
3499                 return PTR_ERR(trans);
3500         ret = btrfs_commit_transaction(trans, root);
3501         if (ret)
3502                 return ret;
3503         ret = btrfs_write_and_wait_transaction(NULL, root);
3504         if (ret) {
3505                 btrfs_error(root->fs_info, ret,
3506                             "Failed to sync btree inode to disk.");
3507                 return ret;
3508         }
3509
3510         ret = write_ctree_super(NULL, root, 0);
3511         return ret;
3512 }
3513
3514 int close_ctree(struct btrfs_root *root)
3515 {
3516         struct btrfs_fs_info *fs_info = root->fs_info;
3517         int ret;
3518
3519         fs_info->closing = 1;
3520         smp_mb();
3521
3522         /* pause restriper - we want to resume on mount */
3523         btrfs_pause_balance(fs_info);
3524
3525         btrfs_dev_replace_suspend_for_unmount(fs_info);
3526
3527         btrfs_scrub_cancel(fs_info);
3528
3529         /* wait for any defraggers to finish */
3530         wait_event(fs_info->transaction_wait,
3531                    (atomic_read(&fs_info->defrag_running) == 0));
3532
3533         /* clear out the rbtree of defraggable inodes */
3534         btrfs_cleanup_defrag_inodes(fs_info);
3535
3536         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3537                 ret = btrfs_commit_super(root);
3538                 if (ret)
3539                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3540         }
3541
3542         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3543                 btrfs_error_commit_super(root);
3544
3545         btrfs_put_block_group_cache(fs_info);
3546
3547         kthread_stop(fs_info->transaction_kthread);
3548         kthread_stop(fs_info->cleaner_kthread);
3549
3550         fs_info->closing = 2;
3551         smp_mb();
3552
3553         btrfs_free_qgroup_config(root->fs_info);
3554
3555         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3556                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3557                        percpu_counter_sum(&fs_info->delalloc_bytes));
3558         }
3559
3560         btrfs_free_block_groups(fs_info);
3561
3562         btrfs_stop_all_workers(fs_info);
3563
3564         del_fs_roots(fs_info);
3565
3566         free_root_pointers(fs_info, 1);
3567
3568         iput(fs_info->btree_inode);
3569
3570 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3571         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3572                 btrfsic_unmount(root, fs_info->fs_devices);
3573 #endif
3574
3575         btrfs_close_devices(fs_info->fs_devices);
3576         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3577
3578         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3579         percpu_counter_destroy(&fs_info->delalloc_bytes);
3580         bdi_destroy(&fs_info->bdi);
3581         cleanup_srcu_struct(&fs_info->subvol_srcu);
3582
3583         btrfs_free_stripe_hash_table(fs_info);
3584
3585         return 0;
3586 }
3587
3588 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3589                           int atomic)
3590 {
3591         int ret;
3592         struct inode *btree_inode = buf->pages[0]->mapping->host;
3593
3594         ret = extent_buffer_uptodate(buf);
3595         if (!ret)
3596                 return ret;
3597
3598         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3599                                     parent_transid, atomic);
3600         if (ret == -EAGAIN)
3601                 return ret;
3602         return !ret;
3603 }
3604
3605 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3606 {
3607         return set_extent_buffer_uptodate(buf);
3608 }
3609
3610 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3611 {
3612         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3613         u64 transid = btrfs_header_generation(buf);
3614         int was_dirty;
3615
3616         btrfs_assert_tree_locked(buf);
3617         if (transid != root->fs_info->generation)
3618                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3619                        "found %llu running %llu\n",
3620                         (unsigned long long)buf->start,
3621                         (unsigned long long)transid,
3622                         (unsigned long long)root->fs_info->generation);
3623         was_dirty = set_extent_buffer_dirty(buf);
3624         if (!was_dirty)
3625                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3626                                      buf->len,
3627                                      root->fs_info->dirty_metadata_batch);
3628 }
3629
3630 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3631                                         int flush_delayed)
3632 {
3633         /*
3634          * looks as though older kernels can get into trouble with
3635          * this code, they end up stuck in balance_dirty_pages forever
3636          */
3637         int ret;
3638
3639         if (current->flags & PF_MEMALLOC)
3640                 return;
3641
3642         if (flush_delayed)
3643                 btrfs_balance_delayed_items(root);
3644
3645         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3646                                      BTRFS_DIRTY_METADATA_THRESH);
3647         if (ret > 0) {
3648                 balance_dirty_pages_ratelimited(
3649                                    root->fs_info->btree_inode->i_mapping);
3650         }
3651         return;
3652 }
3653
3654 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3655 {
3656         __btrfs_btree_balance_dirty(root, 1);
3657 }
3658
3659 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3660 {
3661         __btrfs_btree_balance_dirty(root, 0);
3662 }
3663
3664 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3665 {
3666         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3667         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3668 }
3669
3670 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3671                               int read_only)
3672 {
3673         /*
3674          * Placeholder for checks
3675          */
3676         return 0;
3677 }
3678
3679 static void btrfs_error_commit_super(struct btrfs_root *root)
3680 {
3681         mutex_lock(&root->fs_info->cleaner_mutex);
3682         btrfs_run_delayed_iputs(root);
3683         mutex_unlock(&root->fs_info->cleaner_mutex);
3684
3685         down_write(&root->fs_info->cleanup_work_sem);
3686         up_write(&root->fs_info->cleanup_work_sem);
3687
3688         /* cleanup FS via transaction */
3689         btrfs_cleanup_transaction(root);
3690 }
3691
3692 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3693                                              struct btrfs_root *root)
3694 {
3695         struct btrfs_inode *btrfs_inode;
3696         struct list_head splice;
3697
3698         INIT_LIST_HEAD(&splice);
3699
3700         mutex_lock(&root->fs_info->ordered_operations_mutex);
3701         spin_lock(&root->fs_info->ordered_root_lock);
3702
3703         list_splice_init(&t->ordered_operations, &splice);
3704         while (!list_empty(&splice)) {
3705                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3706                                          ordered_operations);
3707
3708                 list_del_init(&btrfs_inode->ordered_operations);
3709                 spin_unlock(&root->fs_info->ordered_root_lock);
3710
3711                 btrfs_invalidate_inodes(btrfs_inode->root);
3712
3713                 spin_lock(&root->fs_info->ordered_root_lock);
3714         }
3715
3716         spin_unlock(&root->fs_info->ordered_root_lock);
3717         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3718 }
3719
3720 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3721 {
3722         struct btrfs_ordered_extent *ordered;
3723
3724         spin_lock(&root->ordered_extent_lock);
3725         /*
3726          * This will just short circuit the ordered completion stuff which will
3727          * make sure the ordered extent gets properly cleaned up.
3728          */
3729         list_for_each_entry(ordered, &root->ordered_extents,
3730                             root_extent_list)
3731                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3732         spin_unlock(&root->ordered_extent_lock);
3733 }
3734
3735 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3736 {
3737         struct btrfs_root *root;
3738         struct list_head splice;
3739
3740         INIT_LIST_HEAD(&splice);
3741
3742         spin_lock(&fs_info->ordered_root_lock);
3743         list_splice_init(&fs_info->ordered_roots, &splice);
3744         while (!list_empty(&splice)) {
3745                 root = list_first_entry(&splice, struct btrfs_root,
3746                                         ordered_root);
3747                 list_del_init(&root->ordered_root);
3748
3749                 btrfs_destroy_ordered_extents(root);
3750
3751                 cond_resched_lock(&fs_info->ordered_root_lock);
3752         }
3753         spin_unlock(&fs_info->ordered_root_lock);
3754 }
3755
3756 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3757                                struct btrfs_root *root)
3758 {
3759         struct rb_node *node;
3760         struct btrfs_delayed_ref_root *delayed_refs;
3761         struct btrfs_delayed_ref_node *ref;
3762         int ret = 0;
3763
3764         delayed_refs = &trans->delayed_refs;
3765
3766         spin_lock(&delayed_refs->lock);
3767         if (delayed_refs->num_entries == 0) {
3768                 spin_unlock(&delayed_refs->lock);
3769                 printk(KERN_INFO "delayed_refs has NO entry\n");
3770                 return ret;
3771         }
3772
3773         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3774                 struct btrfs_delayed_ref_head *head = NULL;
3775                 bool pin_bytes = false;
3776
3777                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3778                 atomic_set(&ref->refs, 1);
3779                 if (btrfs_delayed_ref_is_head(ref)) {
3780
3781                         head = btrfs_delayed_node_to_head(ref);
3782                         if (!mutex_trylock(&head->mutex)) {
3783                                 atomic_inc(&ref->refs);
3784                                 spin_unlock(&delayed_refs->lock);
3785
3786                                 /* Need to wait for the delayed ref to run */
3787                                 mutex_lock(&head->mutex);
3788                                 mutex_unlock(&head->mutex);
3789                                 btrfs_put_delayed_ref(ref);
3790
3791                                 spin_lock(&delayed_refs->lock);
3792                                 continue;
3793                         }
3794
3795                         if (head->must_insert_reserved)
3796                                 pin_bytes = true;
3797                         btrfs_free_delayed_extent_op(head->extent_op);
3798                         delayed_refs->num_heads--;
3799                         if (list_empty(&head->cluster))
3800                                 delayed_refs->num_heads_ready--;
3801                         list_del_init(&head->cluster);
3802                 }
3803
3804                 ref->in_tree = 0;
3805                 rb_erase(&ref->rb_node, &delayed_refs->root);
3806                 delayed_refs->num_entries--;
3807                 spin_unlock(&delayed_refs->lock);
3808                 if (head) {
3809                         if (pin_bytes)
3810                                 btrfs_pin_extent(root, ref->bytenr,
3811                                                  ref->num_bytes, 1);
3812                         mutex_unlock(&head->mutex);
3813                 }
3814                 btrfs_put_delayed_ref(ref);
3815
3816                 cond_resched();
3817                 spin_lock(&delayed_refs->lock);
3818         }
3819
3820         spin_unlock(&delayed_refs->lock);
3821
3822         return ret;
3823 }
3824
3825 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3826 {
3827         struct btrfs_pending_snapshot *snapshot;
3828         struct list_head splice;
3829
3830         INIT_LIST_HEAD(&splice);
3831
3832         list_splice_init(&t->pending_snapshots, &splice);
3833
3834         while (!list_empty(&splice)) {
3835                 snapshot = list_entry(splice.next,
3836                                       struct btrfs_pending_snapshot,
3837                                       list);
3838                 snapshot->error = -ECANCELED;
3839                 list_del_init(&snapshot->list);
3840         }
3841 }
3842
3843 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3844 {
3845         struct btrfs_inode *btrfs_inode;
3846         struct list_head splice;
3847
3848         INIT_LIST_HEAD(&splice);
3849
3850         spin_lock(&root->delalloc_lock);
3851         list_splice_init(&root->delalloc_inodes, &splice);
3852
3853         while (!list_empty(&splice)) {
3854                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3855                                                delalloc_inodes);
3856
3857                 list_del_init(&btrfs_inode->delalloc_inodes);
3858                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3859                           &btrfs_inode->runtime_flags);
3860                 spin_unlock(&root->delalloc_lock);
3861
3862                 btrfs_invalidate_inodes(btrfs_inode->root);
3863
3864                 spin_lock(&root->delalloc_lock);
3865         }
3866
3867         spin_unlock(&root->delalloc_lock);
3868 }
3869
3870 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3871 {
3872         struct btrfs_root *root;
3873         struct list_head splice;
3874
3875         INIT_LIST_HEAD(&splice);
3876
3877         spin_lock(&fs_info->delalloc_root_lock);
3878         list_splice_init(&fs_info->delalloc_roots, &splice);
3879         while (!list_empty(&splice)) {
3880                 root = list_first_entry(&splice, struct btrfs_root,
3881                                          delalloc_root);
3882                 list_del_init(&root->delalloc_root);
3883                 root = btrfs_grab_fs_root(root);
3884                 BUG_ON(!root);
3885                 spin_unlock(&fs_info->delalloc_root_lock);
3886
3887                 btrfs_destroy_delalloc_inodes(root);
3888                 btrfs_put_fs_root(root);
3889
3890                 spin_lock(&fs_info->delalloc_root_lock);
3891         }
3892         spin_unlock(&fs_info->delalloc_root_lock);
3893 }
3894
3895 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3896                                         struct extent_io_tree *dirty_pages,
3897                                         int mark)
3898 {
3899         int ret;
3900         struct extent_buffer *eb;
3901         u64 start = 0;
3902         u64 end;
3903
3904         while (1) {
3905                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3906                                             mark, NULL);
3907                 if (ret)
3908                         break;
3909
3910                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3911                 while (start <= end) {
3912                         eb = btrfs_find_tree_block(root, start,
3913                                                    root->leafsize);
3914                         start += root->leafsize;
3915                         if (!eb)
3916                                 continue;
3917                         wait_on_extent_buffer_writeback(eb);
3918
3919                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3920                                                &eb->bflags))
3921                                 clear_extent_buffer_dirty(eb);
3922                         free_extent_buffer_stale(eb);
3923                 }
3924         }
3925
3926         return ret;
3927 }
3928
3929 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3930                                        struct extent_io_tree *pinned_extents)
3931 {
3932         struct extent_io_tree *unpin;
3933         u64 start;
3934         u64 end;
3935         int ret;
3936         bool loop = true;
3937
3938         unpin = pinned_extents;
3939 again:
3940         while (1) {
3941                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3942                                             EXTENT_DIRTY, NULL);
3943                 if (ret)
3944                         break;
3945
3946                 /* opt_discard */
3947                 if (btrfs_test_opt(root, DISCARD))
3948                         ret = btrfs_error_discard_extent(root, start,
3949                                                          end + 1 - start,
3950                                                          NULL);
3951
3952                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3953                 btrfs_error_unpin_extent_range(root, start, end);
3954                 cond_resched();
3955         }
3956
3957         if (loop) {
3958                 if (unpin == &root->fs_info->freed_extents[0])
3959                         unpin = &root->fs_info->freed_extents[1];
3960                 else
3961                         unpin = &root->fs_info->freed_extents[0];
3962                 loop = false;
3963                 goto again;
3964         }
3965
3966         return 0;
3967 }
3968
3969 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3970                                    struct btrfs_root *root)
3971 {
3972         btrfs_destroy_delayed_refs(cur_trans, root);
3973         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3974                                 cur_trans->dirty_pages.dirty_bytes);
3975
3976         cur_trans->state = TRANS_STATE_COMMIT_START;
3977         wake_up(&root->fs_info->transaction_blocked_wait);
3978
3979         btrfs_evict_pending_snapshots(cur_trans);
3980
3981         cur_trans->state = TRANS_STATE_UNBLOCKED;
3982         wake_up(&root->fs_info->transaction_wait);
3983
3984         btrfs_destroy_delayed_inodes(root);
3985         btrfs_assert_delayed_root_empty(root);
3986
3987         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3988                                      EXTENT_DIRTY);
3989         btrfs_destroy_pinned_extent(root,
3990                                     root->fs_info->pinned_extents);
3991
3992         cur_trans->state =TRANS_STATE_COMPLETED;
3993         wake_up(&cur_trans->commit_wait);
3994
3995         /*
3996         memset(cur_trans, 0, sizeof(*cur_trans));
3997         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3998         */
3999 }
4000
4001 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4002 {
4003         struct btrfs_transaction *t;
4004         LIST_HEAD(list);
4005
4006         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4007
4008         spin_lock(&root->fs_info->trans_lock);
4009         list_splice_init(&root->fs_info->trans_list, &list);
4010         root->fs_info->running_transaction = NULL;
4011         spin_unlock(&root->fs_info->trans_lock);
4012
4013         while (!list_empty(&list)) {
4014                 t = list_entry(list.next, struct btrfs_transaction, list);
4015
4016                 btrfs_destroy_ordered_operations(t, root);
4017
4018                 btrfs_destroy_all_ordered_extents(root->fs_info);
4019
4020                 btrfs_destroy_delayed_refs(t, root);
4021
4022                 /*
4023                  *  FIXME: cleanup wait for commit
4024                  *  We needn't acquire the lock here, because we are during
4025                  *  the umount, there is no other task which will change it.
4026                  */
4027                 t->state = TRANS_STATE_COMMIT_START;
4028                 smp_mb();
4029                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4030                         wake_up(&root->fs_info->transaction_blocked_wait);
4031
4032                 btrfs_evict_pending_snapshots(t);
4033
4034                 t->state = TRANS_STATE_UNBLOCKED;
4035                 smp_mb();
4036                 if (waitqueue_active(&root->fs_info->transaction_wait))
4037                         wake_up(&root->fs_info->transaction_wait);
4038
4039                 btrfs_destroy_delayed_inodes(root);
4040                 btrfs_assert_delayed_root_empty(root);
4041
4042                 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4043
4044                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4045                                              EXTENT_DIRTY);
4046
4047                 btrfs_destroy_pinned_extent(root,
4048                                             root->fs_info->pinned_extents);
4049
4050                 t->state = TRANS_STATE_COMPLETED;
4051                 smp_mb();
4052                 if (waitqueue_active(&t->commit_wait))
4053                         wake_up(&t->commit_wait);
4054
4055                 atomic_set(&t->use_count, 0);
4056                 list_del_init(&t->list);
4057                 memset(t, 0, sizeof(*t));
4058                 kmem_cache_free(btrfs_transaction_cachep, t);
4059         }
4060
4061         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4062
4063         return 0;
4064 }
4065
4066 static struct extent_io_ops btree_extent_io_ops = {
4067         .readpage_end_io_hook = btree_readpage_end_io_hook,
4068         .readpage_io_failed_hook = btree_io_failed_hook,
4069         .submit_bio_hook = btree_submit_bio_hook,
4070         /* note we're sharing with inode.c for the merge bio hook */
4071         .merge_bio_hook = btrfs_merge_bio_hook,
4072 };