]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/scrub.c
Merge tag 'powerpc-4.3-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[karo-tx-linux.git] / fs / btrfs / scrub.c
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45
46 struct scrub_block;
47 struct scrub_ctx;
48
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
58
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
65
66 struct scrub_recover {
67         atomic_t                refs;
68         struct btrfs_bio        *bbio;
69         u64                     map_length;
70 };
71
72 struct scrub_page {
73         struct scrub_block      *sblock;
74         struct page             *page;
75         struct btrfs_device     *dev;
76         struct list_head        list;
77         u64                     flags;  /* extent flags */
78         u64                     generation;
79         u64                     logical;
80         u64                     physical;
81         u64                     physical_for_dev_replace;
82         atomic_t                refs;
83         struct {
84                 unsigned int    mirror_num:8;
85                 unsigned int    have_csum:1;
86                 unsigned int    io_error:1;
87         };
88         u8                      csum[BTRFS_CSUM_SIZE];
89
90         struct scrub_recover    *recover;
91 };
92
93 struct scrub_bio {
94         int                     index;
95         struct scrub_ctx        *sctx;
96         struct btrfs_device     *dev;
97         struct bio              *bio;
98         int                     err;
99         u64                     logical;
100         u64                     physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102         struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104         struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106         int                     page_count;
107         int                     next_free;
108         struct btrfs_work       work;
109 };
110
111 struct scrub_block {
112         struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113         int                     page_count;
114         atomic_t                outstanding_pages;
115         atomic_t                refs; /* free mem on transition to zero */
116         struct scrub_ctx        *sctx;
117         struct scrub_parity     *sparity;
118         struct {
119                 unsigned int    header_error:1;
120                 unsigned int    checksum_error:1;
121                 unsigned int    no_io_error_seen:1;
122                 unsigned int    generation_error:1; /* also sets header_error */
123
124                 /* The following is for the data used to check parity */
125                 /* It is for the data with checksum */
126                 unsigned int    data_corrected:1;
127         };
128         struct btrfs_work       work;
129 };
130
131 /* Used for the chunks with parity stripe such RAID5/6 */
132 struct scrub_parity {
133         struct scrub_ctx        *sctx;
134
135         struct btrfs_device     *scrub_dev;
136
137         u64                     logic_start;
138
139         u64                     logic_end;
140
141         int                     nsectors;
142
143         int                     stripe_len;
144
145         atomic_t                refs;
146
147         struct list_head        spages;
148
149         /* Work of parity check and repair */
150         struct btrfs_work       work;
151
152         /* Mark the parity blocks which have data */
153         unsigned long           *dbitmap;
154
155         /*
156          * Mark the parity blocks which have data, but errors happen when
157          * read data or check data
158          */
159         unsigned long           *ebitmap;
160
161         unsigned long           bitmap[0];
162 };
163
164 struct scrub_wr_ctx {
165         struct scrub_bio *wr_curr_bio;
166         struct btrfs_device *tgtdev;
167         int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168         atomic_t flush_all_writes;
169         struct mutex wr_lock;
170 };
171
172 struct scrub_ctx {
173         struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
174         struct btrfs_root       *dev_root;
175         int                     first_free;
176         int                     curr;
177         atomic_t                bios_in_flight;
178         atomic_t                workers_pending;
179         spinlock_t              list_lock;
180         wait_queue_head_t       list_wait;
181         u16                     csum_size;
182         struct list_head        csum_list;
183         atomic_t                cancel_req;
184         int                     readonly;
185         int                     pages_per_rd_bio;
186         u32                     sectorsize;
187         u32                     nodesize;
188
189         int                     is_dev_replace;
190         struct scrub_wr_ctx     wr_ctx;
191
192         /*
193          * statistics
194          */
195         struct btrfs_scrub_progress stat;
196         spinlock_t              stat_lock;
197
198         /*
199          * Use a ref counter to avoid use-after-free issues. Scrub workers
200          * decrement bios_in_flight and workers_pending and then do a wakeup
201          * on the list_wait wait queue. We must ensure the main scrub task
202          * doesn't free the scrub context before or while the workers are
203          * doing the wakeup() call.
204          */
205         atomic_t                refs;
206 };
207
208 struct scrub_fixup_nodatasum {
209         struct scrub_ctx        *sctx;
210         struct btrfs_device     *dev;
211         u64                     logical;
212         struct btrfs_root       *root;
213         struct btrfs_work       work;
214         int                     mirror_num;
215 };
216
217 struct scrub_nocow_inode {
218         u64                     inum;
219         u64                     offset;
220         u64                     root;
221         struct list_head        list;
222 };
223
224 struct scrub_copy_nocow_ctx {
225         struct scrub_ctx        *sctx;
226         u64                     logical;
227         u64                     len;
228         int                     mirror_num;
229         u64                     physical_for_dev_replace;
230         struct list_head        inodes;
231         struct btrfs_work       work;
232 };
233
234 struct scrub_warning {
235         struct btrfs_path       *path;
236         u64                     extent_item_size;
237         const char              *errstr;
238         sector_t                sector;
239         u64                     logical;
240         struct btrfs_device     *dev;
241 };
242
243 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
244 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
245 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
246 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249                                      struct scrub_block *sblocks_for_recheck);
250 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251                                 struct scrub_block *sblock, int is_metadata,
252                                 int have_csum, u8 *csum, u64 generation,
253                                 u16 csum_size, int retry_failed_mirror);
254 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
255                                          struct scrub_block *sblock,
256                                          int is_metadata, int have_csum,
257                                          const u8 *csum, u64 generation,
258                                          u16 csum_size);
259 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
260                                              struct scrub_block *sblock_good);
261 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
262                                             struct scrub_block *sblock_good,
263                                             int page_num, int force_write);
264 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
265 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
266                                            int page_num);
267 static int scrub_checksum_data(struct scrub_block *sblock);
268 static int scrub_checksum_tree_block(struct scrub_block *sblock);
269 static int scrub_checksum_super(struct scrub_block *sblock);
270 static void scrub_block_get(struct scrub_block *sblock);
271 static void scrub_block_put(struct scrub_block *sblock);
272 static void scrub_page_get(struct scrub_page *spage);
273 static void scrub_page_put(struct scrub_page *spage);
274 static void scrub_parity_get(struct scrub_parity *sparity);
275 static void scrub_parity_put(struct scrub_parity *sparity);
276 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
277                                     struct scrub_page *spage);
278 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
279                        u64 physical, struct btrfs_device *dev, u64 flags,
280                        u64 gen, int mirror_num, u8 *csum, int force,
281                        u64 physical_for_dev_replace);
282 static void scrub_bio_end_io(struct bio *bio);
283 static void scrub_bio_end_io_worker(struct btrfs_work *work);
284 static void scrub_block_complete(struct scrub_block *sblock);
285 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
286                                u64 extent_logical, u64 extent_len,
287                                u64 *extent_physical,
288                                struct btrfs_device **extent_dev,
289                                int *extent_mirror_num);
290 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
291                               struct scrub_wr_ctx *wr_ctx,
292                               struct btrfs_fs_info *fs_info,
293                               struct btrfs_device *dev,
294                               int is_dev_replace);
295 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
296 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
297                                     struct scrub_page *spage);
298 static void scrub_wr_submit(struct scrub_ctx *sctx);
299 static void scrub_wr_bio_end_io(struct bio *bio);
300 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
301 static int write_page_nocow(struct scrub_ctx *sctx,
302                             u64 physical_for_dev_replace, struct page *page);
303 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
304                                       struct scrub_copy_nocow_ctx *ctx);
305 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
306                             int mirror_num, u64 physical_for_dev_replace);
307 static void copy_nocow_pages_worker(struct btrfs_work *work);
308 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
309 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
310 static void scrub_put_ctx(struct scrub_ctx *sctx);
311
312
313 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
314 {
315         atomic_inc(&sctx->refs);
316         atomic_inc(&sctx->bios_in_flight);
317 }
318
319 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
320 {
321         atomic_dec(&sctx->bios_in_flight);
322         wake_up(&sctx->list_wait);
323         scrub_put_ctx(sctx);
324 }
325
326 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
327 {
328         while (atomic_read(&fs_info->scrub_pause_req)) {
329                 mutex_unlock(&fs_info->scrub_lock);
330                 wait_event(fs_info->scrub_pause_wait,
331                    atomic_read(&fs_info->scrub_pause_req) == 0);
332                 mutex_lock(&fs_info->scrub_lock);
333         }
334 }
335
336 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
337 {
338         atomic_inc(&fs_info->scrubs_paused);
339         wake_up(&fs_info->scrub_pause_wait);
340 }
341
342 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
343 {
344         mutex_lock(&fs_info->scrub_lock);
345         __scrub_blocked_if_needed(fs_info);
346         atomic_dec(&fs_info->scrubs_paused);
347         mutex_unlock(&fs_info->scrub_lock);
348
349         wake_up(&fs_info->scrub_pause_wait);
350 }
351
352 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
353 {
354         scrub_pause_on(fs_info);
355         scrub_pause_off(fs_info);
356 }
357
358 /*
359  * used for workers that require transaction commits (i.e., for the
360  * NOCOW case)
361  */
362 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
363 {
364         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
365
366         atomic_inc(&sctx->refs);
367         /*
368          * increment scrubs_running to prevent cancel requests from
369          * completing as long as a worker is running. we must also
370          * increment scrubs_paused to prevent deadlocking on pause
371          * requests used for transactions commits (as the worker uses a
372          * transaction context). it is safe to regard the worker
373          * as paused for all matters practical. effectively, we only
374          * avoid cancellation requests from completing.
375          */
376         mutex_lock(&fs_info->scrub_lock);
377         atomic_inc(&fs_info->scrubs_running);
378         atomic_inc(&fs_info->scrubs_paused);
379         mutex_unlock(&fs_info->scrub_lock);
380
381         /*
382          * check if @scrubs_running=@scrubs_paused condition
383          * inside wait_event() is not an atomic operation.
384          * which means we may inc/dec @scrub_running/paused
385          * at any time. Let's wake up @scrub_pause_wait as
386          * much as we can to let commit transaction blocked less.
387          */
388         wake_up(&fs_info->scrub_pause_wait);
389
390         atomic_inc(&sctx->workers_pending);
391 }
392
393 /* used for workers that require transaction commits */
394 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
395 {
396         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
397
398         /*
399          * see scrub_pending_trans_workers_inc() why we're pretending
400          * to be paused in the scrub counters
401          */
402         mutex_lock(&fs_info->scrub_lock);
403         atomic_dec(&fs_info->scrubs_running);
404         atomic_dec(&fs_info->scrubs_paused);
405         mutex_unlock(&fs_info->scrub_lock);
406         atomic_dec(&sctx->workers_pending);
407         wake_up(&fs_info->scrub_pause_wait);
408         wake_up(&sctx->list_wait);
409         scrub_put_ctx(sctx);
410 }
411
412 static void scrub_free_csums(struct scrub_ctx *sctx)
413 {
414         while (!list_empty(&sctx->csum_list)) {
415                 struct btrfs_ordered_sum *sum;
416                 sum = list_first_entry(&sctx->csum_list,
417                                        struct btrfs_ordered_sum, list);
418                 list_del(&sum->list);
419                 kfree(sum);
420         }
421 }
422
423 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
424 {
425         int i;
426
427         if (!sctx)
428                 return;
429
430         scrub_free_wr_ctx(&sctx->wr_ctx);
431
432         /* this can happen when scrub is cancelled */
433         if (sctx->curr != -1) {
434                 struct scrub_bio *sbio = sctx->bios[sctx->curr];
435
436                 for (i = 0; i < sbio->page_count; i++) {
437                         WARN_ON(!sbio->pagev[i]->page);
438                         scrub_block_put(sbio->pagev[i]->sblock);
439                 }
440                 bio_put(sbio->bio);
441         }
442
443         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
444                 struct scrub_bio *sbio = sctx->bios[i];
445
446                 if (!sbio)
447                         break;
448                 kfree(sbio);
449         }
450
451         scrub_free_csums(sctx);
452         kfree(sctx);
453 }
454
455 static void scrub_put_ctx(struct scrub_ctx *sctx)
456 {
457         if (atomic_dec_and_test(&sctx->refs))
458                 scrub_free_ctx(sctx);
459 }
460
461 static noinline_for_stack
462 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
463 {
464         struct scrub_ctx *sctx;
465         int             i;
466         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
467         int ret;
468
469         sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
470         if (!sctx)
471                 goto nomem;
472         atomic_set(&sctx->refs, 1);
473         sctx->is_dev_replace = is_dev_replace;
474         sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
475         sctx->curr = -1;
476         sctx->dev_root = dev->dev_root;
477         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
478                 struct scrub_bio *sbio;
479
480                 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
481                 if (!sbio)
482                         goto nomem;
483                 sctx->bios[i] = sbio;
484
485                 sbio->index = i;
486                 sbio->sctx = sctx;
487                 sbio->page_count = 0;
488                 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
489                                 scrub_bio_end_io_worker, NULL, NULL);
490
491                 if (i != SCRUB_BIOS_PER_SCTX - 1)
492                         sctx->bios[i]->next_free = i + 1;
493                 else
494                         sctx->bios[i]->next_free = -1;
495         }
496         sctx->first_free = 0;
497         sctx->nodesize = dev->dev_root->nodesize;
498         sctx->sectorsize = dev->dev_root->sectorsize;
499         atomic_set(&sctx->bios_in_flight, 0);
500         atomic_set(&sctx->workers_pending, 0);
501         atomic_set(&sctx->cancel_req, 0);
502         sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
503         INIT_LIST_HEAD(&sctx->csum_list);
504
505         spin_lock_init(&sctx->list_lock);
506         spin_lock_init(&sctx->stat_lock);
507         init_waitqueue_head(&sctx->list_wait);
508
509         ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
510                                  fs_info->dev_replace.tgtdev, is_dev_replace);
511         if (ret) {
512                 scrub_free_ctx(sctx);
513                 return ERR_PTR(ret);
514         }
515         return sctx;
516
517 nomem:
518         scrub_free_ctx(sctx);
519         return ERR_PTR(-ENOMEM);
520 }
521
522 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
523                                      void *warn_ctx)
524 {
525         u64 isize;
526         u32 nlink;
527         int ret;
528         int i;
529         struct extent_buffer *eb;
530         struct btrfs_inode_item *inode_item;
531         struct scrub_warning *swarn = warn_ctx;
532         struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
533         struct inode_fs_paths *ipath = NULL;
534         struct btrfs_root *local_root;
535         struct btrfs_key root_key;
536         struct btrfs_key key;
537
538         root_key.objectid = root;
539         root_key.type = BTRFS_ROOT_ITEM_KEY;
540         root_key.offset = (u64)-1;
541         local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
542         if (IS_ERR(local_root)) {
543                 ret = PTR_ERR(local_root);
544                 goto err;
545         }
546
547         /*
548          * this makes the path point to (inum INODE_ITEM ioff)
549          */
550         key.objectid = inum;
551         key.type = BTRFS_INODE_ITEM_KEY;
552         key.offset = 0;
553
554         ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
555         if (ret) {
556                 btrfs_release_path(swarn->path);
557                 goto err;
558         }
559
560         eb = swarn->path->nodes[0];
561         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
562                                         struct btrfs_inode_item);
563         isize = btrfs_inode_size(eb, inode_item);
564         nlink = btrfs_inode_nlink(eb, inode_item);
565         btrfs_release_path(swarn->path);
566
567         ipath = init_ipath(4096, local_root, swarn->path);
568         if (IS_ERR(ipath)) {
569                 ret = PTR_ERR(ipath);
570                 ipath = NULL;
571                 goto err;
572         }
573         ret = paths_from_inode(inum, ipath);
574
575         if (ret < 0)
576                 goto err;
577
578         /*
579          * we deliberately ignore the bit ipath might have been too small to
580          * hold all of the paths here
581          */
582         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
583                 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
584                         "%s, sector %llu, root %llu, inode %llu, offset %llu, "
585                         "length %llu, links %u (path: %s)\n", swarn->errstr,
586                         swarn->logical, rcu_str_deref(swarn->dev->name),
587                         (unsigned long long)swarn->sector, root, inum, offset,
588                         min(isize - offset, (u64)PAGE_SIZE), nlink,
589                         (char *)(unsigned long)ipath->fspath->val[i]);
590
591         free_ipath(ipath);
592         return 0;
593
594 err:
595         printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
596                 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
597                 "resolving failed with ret=%d\n", swarn->errstr,
598                 swarn->logical, rcu_str_deref(swarn->dev->name),
599                 (unsigned long long)swarn->sector, root, inum, offset, ret);
600
601         free_ipath(ipath);
602         return 0;
603 }
604
605 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
606 {
607         struct btrfs_device *dev;
608         struct btrfs_fs_info *fs_info;
609         struct btrfs_path *path;
610         struct btrfs_key found_key;
611         struct extent_buffer *eb;
612         struct btrfs_extent_item *ei;
613         struct scrub_warning swarn;
614         unsigned long ptr = 0;
615         u64 extent_item_pos;
616         u64 flags = 0;
617         u64 ref_root;
618         u32 item_size;
619         u8 ref_level;
620         int ret;
621
622         WARN_ON(sblock->page_count < 1);
623         dev = sblock->pagev[0]->dev;
624         fs_info = sblock->sctx->dev_root->fs_info;
625
626         path = btrfs_alloc_path();
627         if (!path)
628                 return;
629
630         swarn.sector = (sblock->pagev[0]->physical) >> 9;
631         swarn.logical = sblock->pagev[0]->logical;
632         swarn.errstr = errstr;
633         swarn.dev = NULL;
634
635         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
636                                   &flags);
637         if (ret < 0)
638                 goto out;
639
640         extent_item_pos = swarn.logical - found_key.objectid;
641         swarn.extent_item_size = found_key.offset;
642
643         eb = path->nodes[0];
644         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
645         item_size = btrfs_item_size_nr(eb, path->slots[0]);
646
647         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
648                 do {
649                         ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
650                                                       item_size, &ref_root,
651                                                       &ref_level);
652                         printk_in_rcu(KERN_WARNING
653                                 "BTRFS: %s at logical %llu on dev %s, "
654                                 "sector %llu: metadata %s (level %d) in tree "
655                                 "%llu\n", errstr, swarn.logical,
656                                 rcu_str_deref(dev->name),
657                                 (unsigned long long)swarn.sector,
658                                 ref_level ? "node" : "leaf",
659                                 ret < 0 ? -1 : ref_level,
660                                 ret < 0 ? -1 : ref_root);
661                 } while (ret != 1);
662                 btrfs_release_path(path);
663         } else {
664                 btrfs_release_path(path);
665                 swarn.path = path;
666                 swarn.dev = dev;
667                 iterate_extent_inodes(fs_info, found_key.objectid,
668                                         extent_item_pos, 1,
669                                         scrub_print_warning_inode, &swarn);
670         }
671
672 out:
673         btrfs_free_path(path);
674 }
675
676 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
677 {
678         struct page *page = NULL;
679         unsigned long index;
680         struct scrub_fixup_nodatasum *fixup = fixup_ctx;
681         int ret;
682         int corrected = 0;
683         struct btrfs_key key;
684         struct inode *inode = NULL;
685         struct btrfs_fs_info *fs_info;
686         u64 end = offset + PAGE_SIZE - 1;
687         struct btrfs_root *local_root;
688         int srcu_index;
689
690         key.objectid = root;
691         key.type = BTRFS_ROOT_ITEM_KEY;
692         key.offset = (u64)-1;
693
694         fs_info = fixup->root->fs_info;
695         srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
696
697         local_root = btrfs_read_fs_root_no_name(fs_info, &key);
698         if (IS_ERR(local_root)) {
699                 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
700                 return PTR_ERR(local_root);
701         }
702
703         key.type = BTRFS_INODE_ITEM_KEY;
704         key.objectid = inum;
705         key.offset = 0;
706         inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
707         srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
708         if (IS_ERR(inode))
709                 return PTR_ERR(inode);
710
711         index = offset >> PAGE_CACHE_SHIFT;
712
713         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
714         if (!page) {
715                 ret = -ENOMEM;
716                 goto out;
717         }
718
719         if (PageUptodate(page)) {
720                 if (PageDirty(page)) {
721                         /*
722                          * we need to write the data to the defect sector. the
723                          * data that was in that sector is not in memory,
724                          * because the page was modified. we must not write the
725                          * modified page to that sector.
726                          *
727                          * TODO: what could be done here: wait for the delalloc
728                          *       runner to write out that page (might involve
729                          *       COW) and see whether the sector is still
730                          *       referenced afterwards.
731                          *
732                          * For the meantime, we'll treat this error
733                          * incorrectable, although there is a chance that a
734                          * later scrub will find the bad sector again and that
735                          * there's no dirty page in memory, then.
736                          */
737                         ret = -EIO;
738                         goto out;
739                 }
740                 ret = repair_io_failure(inode, offset, PAGE_SIZE,
741                                         fixup->logical, page,
742                                         offset - page_offset(page),
743                                         fixup->mirror_num);
744                 unlock_page(page);
745                 corrected = !ret;
746         } else {
747                 /*
748                  * we need to get good data first. the general readpage path
749                  * will call repair_io_failure for us, we just have to make
750                  * sure we read the bad mirror.
751                  */
752                 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
753                                         EXTENT_DAMAGED, GFP_NOFS);
754                 if (ret) {
755                         /* set_extent_bits should give proper error */
756                         WARN_ON(ret > 0);
757                         if (ret > 0)
758                                 ret = -EFAULT;
759                         goto out;
760                 }
761
762                 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
763                                                 btrfs_get_extent,
764                                                 fixup->mirror_num);
765                 wait_on_page_locked(page);
766
767                 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
768                                                 end, EXTENT_DAMAGED, 0, NULL);
769                 if (!corrected)
770                         clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
771                                                 EXTENT_DAMAGED, GFP_NOFS);
772         }
773
774 out:
775         if (page)
776                 put_page(page);
777
778         iput(inode);
779
780         if (ret < 0)
781                 return ret;
782
783         if (ret == 0 && corrected) {
784                 /*
785                  * we only need to call readpage for one of the inodes belonging
786                  * to this extent. so make iterate_extent_inodes stop
787                  */
788                 return 1;
789         }
790
791         return -EIO;
792 }
793
794 static void scrub_fixup_nodatasum(struct btrfs_work *work)
795 {
796         int ret;
797         struct scrub_fixup_nodatasum *fixup;
798         struct scrub_ctx *sctx;
799         struct btrfs_trans_handle *trans = NULL;
800         struct btrfs_path *path;
801         int uncorrectable = 0;
802
803         fixup = container_of(work, struct scrub_fixup_nodatasum, work);
804         sctx = fixup->sctx;
805
806         path = btrfs_alloc_path();
807         if (!path) {
808                 spin_lock(&sctx->stat_lock);
809                 ++sctx->stat.malloc_errors;
810                 spin_unlock(&sctx->stat_lock);
811                 uncorrectable = 1;
812                 goto out;
813         }
814
815         trans = btrfs_join_transaction(fixup->root);
816         if (IS_ERR(trans)) {
817                 uncorrectable = 1;
818                 goto out;
819         }
820
821         /*
822          * the idea is to trigger a regular read through the standard path. we
823          * read a page from the (failed) logical address by specifying the
824          * corresponding copynum of the failed sector. thus, that readpage is
825          * expected to fail.
826          * that is the point where on-the-fly error correction will kick in
827          * (once it's finished) and rewrite the failed sector if a good copy
828          * can be found.
829          */
830         ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
831                                                 path, scrub_fixup_readpage,
832                                                 fixup);
833         if (ret < 0) {
834                 uncorrectable = 1;
835                 goto out;
836         }
837         WARN_ON(ret != 1);
838
839         spin_lock(&sctx->stat_lock);
840         ++sctx->stat.corrected_errors;
841         spin_unlock(&sctx->stat_lock);
842
843 out:
844         if (trans && !IS_ERR(trans))
845                 btrfs_end_transaction(trans, fixup->root);
846         if (uncorrectable) {
847                 spin_lock(&sctx->stat_lock);
848                 ++sctx->stat.uncorrectable_errors;
849                 spin_unlock(&sctx->stat_lock);
850                 btrfs_dev_replace_stats_inc(
851                         &sctx->dev_root->fs_info->dev_replace.
852                         num_uncorrectable_read_errors);
853                 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
854                     "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
855                         fixup->logical, rcu_str_deref(fixup->dev->name));
856         }
857
858         btrfs_free_path(path);
859         kfree(fixup);
860
861         scrub_pending_trans_workers_dec(sctx);
862 }
863
864 static inline void scrub_get_recover(struct scrub_recover *recover)
865 {
866         atomic_inc(&recover->refs);
867 }
868
869 static inline void scrub_put_recover(struct scrub_recover *recover)
870 {
871         if (atomic_dec_and_test(&recover->refs)) {
872                 btrfs_put_bbio(recover->bbio);
873                 kfree(recover);
874         }
875 }
876
877 /*
878  * scrub_handle_errored_block gets called when either verification of the
879  * pages failed or the bio failed to read, e.g. with EIO. In the latter
880  * case, this function handles all pages in the bio, even though only one
881  * may be bad.
882  * The goal of this function is to repair the errored block by using the
883  * contents of one of the mirrors.
884  */
885 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
886 {
887         struct scrub_ctx *sctx = sblock_to_check->sctx;
888         struct btrfs_device *dev;
889         struct btrfs_fs_info *fs_info;
890         u64 length;
891         u64 logical;
892         u64 generation;
893         unsigned int failed_mirror_index;
894         unsigned int is_metadata;
895         unsigned int have_csum;
896         u8 *csum;
897         struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
898         struct scrub_block *sblock_bad;
899         int ret;
900         int mirror_index;
901         int page_num;
902         int success;
903         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
904                                       DEFAULT_RATELIMIT_BURST);
905
906         BUG_ON(sblock_to_check->page_count < 1);
907         fs_info = sctx->dev_root->fs_info;
908         if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
909                 /*
910                  * if we find an error in a super block, we just report it.
911                  * They will get written with the next transaction commit
912                  * anyway
913                  */
914                 spin_lock(&sctx->stat_lock);
915                 ++sctx->stat.super_errors;
916                 spin_unlock(&sctx->stat_lock);
917                 return 0;
918         }
919         length = sblock_to_check->page_count * PAGE_SIZE;
920         logical = sblock_to_check->pagev[0]->logical;
921         generation = sblock_to_check->pagev[0]->generation;
922         BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
923         failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
924         is_metadata = !(sblock_to_check->pagev[0]->flags &
925                         BTRFS_EXTENT_FLAG_DATA);
926         have_csum = sblock_to_check->pagev[0]->have_csum;
927         csum = sblock_to_check->pagev[0]->csum;
928         dev = sblock_to_check->pagev[0]->dev;
929
930         if (sctx->is_dev_replace && !is_metadata && !have_csum) {
931                 sblocks_for_recheck = NULL;
932                 goto nodatasum_case;
933         }
934
935         /*
936          * read all mirrors one after the other. This includes to
937          * re-read the extent or metadata block that failed (that was
938          * the cause that this fixup code is called) another time,
939          * page by page this time in order to know which pages
940          * caused I/O errors and which ones are good (for all mirrors).
941          * It is the goal to handle the situation when more than one
942          * mirror contains I/O errors, but the errors do not
943          * overlap, i.e. the data can be repaired by selecting the
944          * pages from those mirrors without I/O error on the
945          * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
946          * would be that mirror #1 has an I/O error on the first page,
947          * the second page is good, and mirror #2 has an I/O error on
948          * the second page, but the first page is good.
949          * Then the first page of the first mirror can be repaired by
950          * taking the first page of the second mirror, and the
951          * second page of the second mirror can be repaired by
952          * copying the contents of the 2nd page of the 1st mirror.
953          * One more note: if the pages of one mirror contain I/O
954          * errors, the checksum cannot be verified. In order to get
955          * the best data for repairing, the first attempt is to find
956          * a mirror without I/O errors and with a validated checksum.
957          * Only if this is not possible, the pages are picked from
958          * mirrors with I/O errors without considering the checksum.
959          * If the latter is the case, at the end, the checksum of the
960          * repaired area is verified in order to correctly maintain
961          * the statistics.
962          */
963
964         sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
965                                       sizeof(*sblocks_for_recheck), GFP_NOFS);
966         if (!sblocks_for_recheck) {
967                 spin_lock(&sctx->stat_lock);
968                 sctx->stat.malloc_errors++;
969                 sctx->stat.read_errors++;
970                 sctx->stat.uncorrectable_errors++;
971                 spin_unlock(&sctx->stat_lock);
972                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
973                 goto out;
974         }
975
976         /* setup the context, map the logical blocks and alloc the pages */
977         ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
978         if (ret) {
979                 spin_lock(&sctx->stat_lock);
980                 sctx->stat.read_errors++;
981                 sctx->stat.uncorrectable_errors++;
982                 spin_unlock(&sctx->stat_lock);
983                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
984                 goto out;
985         }
986         BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
987         sblock_bad = sblocks_for_recheck + failed_mirror_index;
988
989         /* build and submit the bios for the failed mirror, check checksums */
990         scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
991                             csum, generation, sctx->csum_size, 1);
992
993         if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
994             sblock_bad->no_io_error_seen) {
995                 /*
996                  * the error disappeared after reading page by page, or
997                  * the area was part of a huge bio and other parts of the
998                  * bio caused I/O errors, or the block layer merged several
999                  * read requests into one and the error is caused by a
1000                  * different bio (usually one of the two latter cases is
1001                  * the cause)
1002                  */
1003                 spin_lock(&sctx->stat_lock);
1004                 sctx->stat.unverified_errors++;
1005                 sblock_to_check->data_corrected = 1;
1006                 spin_unlock(&sctx->stat_lock);
1007
1008                 if (sctx->is_dev_replace)
1009                         scrub_write_block_to_dev_replace(sblock_bad);
1010                 goto out;
1011         }
1012
1013         if (!sblock_bad->no_io_error_seen) {
1014                 spin_lock(&sctx->stat_lock);
1015                 sctx->stat.read_errors++;
1016                 spin_unlock(&sctx->stat_lock);
1017                 if (__ratelimit(&_rs))
1018                         scrub_print_warning("i/o error", sblock_to_check);
1019                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1020         } else if (sblock_bad->checksum_error) {
1021                 spin_lock(&sctx->stat_lock);
1022                 sctx->stat.csum_errors++;
1023                 spin_unlock(&sctx->stat_lock);
1024                 if (__ratelimit(&_rs))
1025                         scrub_print_warning("checksum error", sblock_to_check);
1026                 btrfs_dev_stat_inc_and_print(dev,
1027                                              BTRFS_DEV_STAT_CORRUPTION_ERRS);
1028         } else if (sblock_bad->header_error) {
1029                 spin_lock(&sctx->stat_lock);
1030                 sctx->stat.verify_errors++;
1031                 spin_unlock(&sctx->stat_lock);
1032                 if (__ratelimit(&_rs))
1033                         scrub_print_warning("checksum/header error",
1034                                             sblock_to_check);
1035                 if (sblock_bad->generation_error)
1036                         btrfs_dev_stat_inc_and_print(dev,
1037                                 BTRFS_DEV_STAT_GENERATION_ERRS);
1038                 else
1039                         btrfs_dev_stat_inc_and_print(dev,
1040                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1041         }
1042
1043         if (sctx->readonly) {
1044                 ASSERT(!sctx->is_dev_replace);
1045                 goto out;
1046         }
1047
1048         if (!is_metadata && !have_csum) {
1049                 struct scrub_fixup_nodatasum *fixup_nodatasum;
1050
1051                 WARN_ON(sctx->is_dev_replace);
1052
1053 nodatasum_case:
1054
1055                 /*
1056                  * !is_metadata and !have_csum, this means that the data
1057                  * might not be COW'ed, that it might be modified
1058                  * concurrently. The general strategy to work on the
1059                  * commit root does not help in the case when COW is not
1060                  * used.
1061                  */
1062                 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1063                 if (!fixup_nodatasum)
1064                         goto did_not_correct_error;
1065                 fixup_nodatasum->sctx = sctx;
1066                 fixup_nodatasum->dev = dev;
1067                 fixup_nodatasum->logical = logical;
1068                 fixup_nodatasum->root = fs_info->extent_root;
1069                 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1070                 scrub_pending_trans_workers_inc(sctx);
1071                 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1072                                 scrub_fixup_nodatasum, NULL, NULL);
1073                 btrfs_queue_work(fs_info->scrub_workers,
1074                                  &fixup_nodatasum->work);
1075                 goto out;
1076         }
1077
1078         /*
1079          * now build and submit the bios for the other mirrors, check
1080          * checksums.
1081          * First try to pick the mirror which is completely without I/O
1082          * errors and also does not have a checksum error.
1083          * If one is found, and if a checksum is present, the full block
1084          * that is known to contain an error is rewritten. Afterwards
1085          * the block is known to be corrected.
1086          * If a mirror is found which is completely correct, and no
1087          * checksum is present, only those pages are rewritten that had
1088          * an I/O error in the block to be repaired, since it cannot be
1089          * determined, which copy of the other pages is better (and it
1090          * could happen otherwise that a correct page would be
1091          * overwritten by a bad one).
1092          */
1093         for (mirror_index = 0;
1094              mirror_index < BTRFS_MAX_MIRRORS &&
1095              sblocks_for_recheck[mirror_index].page_count > 0;
1096              mirror_index++) {
1097                 struct scrub_block *sblock_other;
1098
1099                 if (mirror_index == failed_mirror_index)
1100                         continue;
1101                 sblock_other = sblocks_for_recheck + mirror_index;
1102
1103                 /* build and submit the bios, check checksums */
1104                 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1105                                     have_csum, csum, generation,
1106                                     sctx->csum_size, 0);
1107
1108                 if (!sblock_other->header_error &&
1109                     !sblock_other->checksum_error &&
1110                     sblock_other->no_io_error_seen) {
1111                         if (sctx->is_dev_replace) {
1112                                 scrub_write_block_to_dev_replace(sblock_other);
1113                                 goto corrected_error;
1114                         } else {
1115                                 ret = scrub_repair_block_from_good_copy(
1116                                                 sblock_bad, sblock_other);
1117                                 if (!ret)
1118                                         goto corrected_error;
1119                         }
1120                 }
1121         }
1122
1123         if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1124                 goto did_not_correct_error;
1125
1126         /*
1127          * In case of I/O errors in the area that is supposed to be
1128          * repaired, continue by picking good copies of those pages.
1129          * Select the good pages from mirrors to rewrite bad pages from
1130          * the area to fix. Afterwards verify the checksum of the block
1131          * that is supposed to be repaired. This verification step is
1132          * only done for the purpose of statistic counting and for the
1133          * final scrub report, whether errors remain.
1134          * A perfect algorithm could make use of the checksum and try
1135          * all possible combinations of pages from the different mirrors
1136          * until the checksum verification succeeds. For example, when
1137          * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1138          * of mirror #2 is readable but the final checksum test fails,
1139          * then the 2nd page of mirror #3 could be tried, whether now
1140          * the final checksum succeedes. But this would be a rare
1141          * exception and is therefore not implemented. At least it is
1142          * avoided that the good copy is overwritten.
1143          * A more useful improvement would be to pick the sectors
1144          * without I/O error based on sector sizes (512 bytes on legacy
1145          * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1146          * mirror could be repaired by taking 512 byte of a different
1147          * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1148          * area are unreadable.
1149          */
1150         success = 1;
1151         for (page_num = 0; page_num < sblock_bad->page_count;
1152              page_num++) {
1153                 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1154                 struct scrub_block *sblock_other = NULL;
1155
1156                 /* skip no-io-error page in scrub */
1157                 if (!page_bad->io_error && !sctx->is_dev_replace)
1158                         continue;
1159
1160                 /* try to find no-io-error page in mirrors */
1161                 if (page_bad->io_error) {
1162                         for (mirror_index = 0;
1163                              mirror_index < BTRFS_MAX_MIRRORS &&
1164                              sblocks_for_recheck[mirror_index].page_count > 0;
1165                              mirror_index++) {
1166                                 if (!sblocks_for_recheck[mirror_index].
1167                                     pagev[page_num]->io_error) {
1168                                         sblock_other = sblocks_for_recheck +
1169                                                        mirror_index;
1170                                         break;
1171                                 }
1172                         }
1173                         if (!sblock_other)
1174                                 success = 0;
1175                 }
1176
1177                 if (sctx->is_dev_replace) {
1178                         /*
1179                          * did not find a mirror to fetch the page
1180                          * from. scrub_write_page_to_dev_replace()
1181                          * handles this case (page->io_error), by
1182                          * filling the block with zeros before
1183                          * submitting the write request
1184                          */
1185                         if (!sblock_other)
1186                                 sblock_other = sblock_bad;
1187
1188                         if (scrub_write_page_to_dev_replace(sblock_other,
1189                                                             page_num) != 0) {
1190                                 btrfs_dev_replace_stats_inc(
1191                                         &sctx->dev_root->
1192                                         fs_info->dev_replace.
1193                                         num_write_errors);
1194                                 success = 0;
1195                         }
1196                 } else if (sblock_other) {
1197                         ret = scrub_repair_page_from_good_copy(sblock_bad,
1198                                                                sblock_other,
1199                                                                page_num, 0);
1200                         if (0 == ret)
1201                                 page_bad->io_error = 0;
1202                         else
1203                                 success = 0;
1204                 }
1205         }
1206
1207         if (success && !sctx->is_dev_replace) {
1208                 if (is_metadata || have_csum) {
1209                         /*
1210                          * need to verify the checksum now that all
1211                          * sectors on disk are repaired (the write
1212                          * request for data to be repaired is on its way).
1213                          * Just be lazy and use scrub_recheck_block()
1214                          * which re-reads the data before the checksum
1215                          * is verified, but most likely the data comes out
1216                          * of the page cache.
1217                          */
1218                         scrub_recheck_block(fs_info, sblock_bad,
1219                                             is_metadata, have_csum, csum,
1220                                             generation, sctx->csum_size, 1);
1221                         if (!sblock_bad->header_error &&
1222                             !sblock_bad->checksum_error &&
1223                             sblock_bad->no_io_error_seen)
1224                                 goto corrected_error;
1225                         else
1226                                 goto did_not_correct_error;
1227                 } else {
1228 corrected_error:
1229                         spin_lock(&sctx->stat_lock);
1230                         sctx->stat.corrected_errors++;
1231                         sblock_to_check->data_corrected = 1;
1232                         spin_unlock(&sctx->stat_lock);
1233                         printk_ratelimited_in_rcu(KERN_ERR
1234                                 "BTRFS: fixed up error at logical %llu on dev %s\n",
1235                                 logical, rcu_str_deref(dev->name));
1236                 }
1237         } else {
1238 did_not_correct_error:
1239                 spin_lock(&sctx->stat_lock);
1240                 sctx->stat.uncorrectable_errors++;
1241                 spin_unlock(&sctx->stat_lock);
1242                 printk_ratelimited_in_rcu(KERN_ERR
1243                         "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1244                         logical, rcu_str_deref(dev->name));
1245         }
1246
1247 out:
1248         if (sblocks_for_recheck) {
1249                 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1250                      mirror_index++) {
1251                         struct scrub_block *sblock = sblocks_for_recheck +
1252                                                      mirror_index;
1253                         struct scrub_recover *recover;
1254                         int page_index;
1255
1256                         for (page_index = 0; page_index < sblock->page_count;
1257                              page_index++) {
1258                                 sblock->pagev[page_index]->sblock = NULL;
1259                                 recover = sblock->pagev[page_index]->recover;
1260                                 if (recover) {
1261                                         scrub_put_recover(recover);
1262                                         sblock->pagev[page_index]->recover =
1263                                                                         NULL;
1264                                 }
1265                                 scrub_page_put(sblock->pagev[page_index]);
1266                         }
1267                 }
1268                 kfree(sblocks_for_recheck);
1269         }
1270
1271         return 0;
1272 }
1273
1274 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1275 {
1276         if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1277                 return 2;
1278         else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1279                 return 3;
1280         else
1281                 return (int)bbio->num_stripes;
1282 }
1283
1284 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1285                                                  u64 *raid_map,
1286                                                  u64 mapped_length,
1287                                                  int nstripes, int mirror,
1288                                                  int *stripe_index,
1289                                                  u64 *stripe_offset)
1290 {
1291         int i;
1292
1293         if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1294                 /* RAID5/6 */
1295                 for (i = 0; i < nstripes; i++) {
1296                         if (raid_map[i] == RAID6_Q_STRIPE ||
1297                             raid_map[i] == RAID5_P_STRIPE)
1298                                 continue;
1299
1300                         if (logical >= raid_map[i] &&
1301                             logical < raid_map[i] + mapped_length)
1302                                 break;
1303                 }
1304
1305                 *stripe_index = i;
1306                 *stripe_offset = logical - raid_map[i];
1307         } else {
1308                 /* The other RAID type */
1309                 *stripe_index = mirror;
1310                 *stripe_offset = 0;
1311         }
1312 }
1313
1314 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1315                                      struct scrub_block *sblocks_for_recheck)
1316 {
1317         struct scrub_ctx *sctx = original_sblock->sctx;
1318         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
1319         u64 length = original_sblock->page_count * PAGE_SIZE;
1320         u64 logical = original_sblock->pagev[0]->logical;
1321         struct scrub_recover *recover;
1322         struct btrfs_bio *bbio;
1323         u64 sublen;
1324         u64 mapped_length;
1325         u64 stripe_offset;
1326         int stripe_index;
1327         int page_index = 0;
1328         int mirror_index;
1329         int nmirrors;
1330         int ret;
1331
1332         /*
1333          * note: the two members refs and outstanding_pages
1334          * are not used (and not set) in the blocks that are used for
1335          * the recheck procedure
1336          */
1337
1338         while (length > 0) {
1339                 sublen = min_t(u64, length, PAGE_SIZE);
1340                 mapped_length = sublen;
1341                 bbio = NULL;
1342
1343                 /*
1344                  * with a length of PAGE_SIZE, each returned stripe
1345                  * represents one mirror
1346                  */
1347                 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1348                                        &mapped_length, &bbio, 0, 1);
1349                 if (ret || !bbio || mapped_length < sublen) {
1350                         btrfs_put_bbio(bbio);
1351                         return -EIO;
1352                 }
1353
1354                 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1355                 if (!recover) {
1356                         btrfs_put_bbio(bbio);
1357                         return -ENOMEM;
1358                 }
1359
1360                 atomic_set(&recover->refs, 1);
1361                 recover->bbio = bbio;
1362                 recover->map_length = mapped_length;
1363
1364                 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1365
1366                 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1367
1368                 for (mirror_index = 0; mirror_index < nmirrors;
1369                      mirror_index++) {
1370                         struct scrub_block *sblock;
1371                         struct scrub_page *page;
1372
1373                         sblock = sblocks_for_recheck + mirror_index;
1374                         sblock->sctx = sctx;
1375                         page = kzalloc(sizeof(*page), GFP_NOFS);
1376                         if (!page) {
1377 leave_nomem:
1378                                 spin_lock(&sctx->stat_lock);
1379                                 sctx->stat.malloc_errors++;
1380                                 spin_unlock(&sctx->stat_lock);
1381                                 scrub_put_recover(recover);
1382                                 return -ENOMEM;
1383                         }
1384                         scrub_page_get(page);
1385                         sblock->pagev[page_index] = page;
1386                         page->logical = logical;
1387
1388                         scrub_stripe_index_and_offset(logical,
1389                                                       bbio->map_type,
1390                                                       bbio->raid_map,
1391                                                       mapped_length,
1392                                                       bbio->num_stripes -
1393                                                       bbio->num_tgtdevs,
1394                                                       mirror_index,
1395                                                       &stripe_index,
1396                                                       &stripe_offset);
1397                         page->physical = bbio->stripes[stripe_index].physical +
1398                                          stripe_offset;
1399                         page->dev = bbio->stripes[stripe_index].dev;
1400
1401                         BUG_ON(page_index >= original_sblock->page_count);
1402                         page->physical_for_dev_replace =
1403                                 original_sblock->pagev[page_index]->
1404                                 physical_for_dev_replace;
1405                         /* for missing devices, dev->bdev is NULL */
1406                         page->mirror_num = mirror_index + 1;
1407                         sblock->page_count++;
1408                         page->page = alloc_page(GFP_NOFS);
1409                         if (!page->page)
1410                                 goto leave_nomem;
1411
1412                         scrub_get_recover(recover);
1413                         page->recover = recover;
1414                 }
1415                 scrub_put_recover(recover);
1416                 length -= sublen;
1417                 logical += sublen;
1418                 page_index++;
1419         }
1420
1421         return 0;
1422 }
1423
1424 struct scrub_bio_ret {
1425         struct completion event;
1426         int error;
1427 };
1428
1429 static void scrub_bio_wait_endio(struct bio *bio)
1430 {
1431         struct scrub_bio_ret *ret = bio->bi_private;
1432
1433         ret->error = bio->bi_error;
1434         complete(&ret->event);
1435 }
1436
1437 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1438 {
1439         return page->recover &&
1440                (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1441 }
1442
1443 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1444                                         struct bio *bio,
1445                                         struct scrub_page *page)
1446 {
1447         struct scrub_bio_ret done;
1448         int ret;
1449
1450         init_completion(&done.event);
1451         done.error = 0;
1452         bio->bi_iter.bi_sector = page->logical >> 9;
1453         bio->bi_private = &done;
1454         bio->bi_end_io = scrub_bio_wait_endio;
1455
1456         ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
1457                                     page->recover->map_length,
1458                                     page->mirror_num, 0);
1459         if (ret)
1460                 return ret;
1461
1462         wait_for_completion(&done.event);
1463         if (done.error)
1464                 return -EIO;
1465
1466         return 0;
1467 }
1468
1469 /*
1470  * this function will check the on disk data for checksum errors, header
1471  * errors and read I/O errors. If any I/O errors happen, the exact pages
1472  * which are errored are marked as being bad. The goal is to enable scrub
1473  * to take those pages that are not errored from all the mirrors so that
1474  * the pages that are errored in the just handled mirror can be repaired.
1475  */
1476 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1477                                 struct scrub_block *sblock, int is_metadata,
1478                                 int have_csum, u8 *csum, u64 generation,
1479                                 u16 csum_size, int retry_failed_mirror)
1480 {
1481         int page_num;
1482
1483         sblock->no_io_error_seen = 1;
1484         sblock->header_error = 0;
1485         sblock->checksum_error = 0;
1486
1487         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1488                 struct bio *bio;
1489                 struct scrub_page *page = sblock->pagev[page_num];
1490
1491                 if (page->dev->bdev == NULL) {
1492                         page->io_error = 1;
1493                         sblock->no_io_error_seen = 0;
1494                         continue;
1495                 }
1496
1497                 WARN_ON(!page->page);
1498                 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1499                 if (!bio) {
1500                         page->io_error = 1;
1501                         sblock->no_io_error_seen = 0;
1502                         continue;
1503                 }
1504                 bio->bi_bdev = page->dev->bdev;
1505
1506                 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1507                 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1508                         if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1509                                 sblock->no_io_error_seen = 0;
1510                 } else {
1511                         bio->bi_iter.bi_sector = page->physical >> 9;
1512
1513                         if (btrfsic_submit_bio_wait(READ, bio))
1514                                 sblock->no_io_error_seen = 0;
1515                 }
1516
1517                 bio_put(bio);
1518         }
1519
1520         if (sblock->no_io_error_seen)
1521                 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1522                                              have_csum, csum, generation,
1523                                              csum_size);
1524
1525         return;
1526 }
1527
1528 static inline int scrub_check_fsid(u8 fsid[],
1529                                    struct scrub_page *spage)
1530 {
1531         struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1532         int ret;
1533
1534         ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1535         return !ret;
1536 }
1537
1538 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1539                                          struct scrub_block *sblock,
1540                                          int is_metadata, int have_csum,
1541                                          const u8 *csum, u64 generation,
1542                                          u16 csum_size)
1543 {
1544         int page_num;
1545         u8 calculated_csum[BTRFS_CSUM_SIZE];
1546         u32 crc = ~(u32)0;
1547         void *mapped_buffer;
1548
1549         WARN_ON(!sblock->pagev[0]->page);
1550         if (is_metadata) {
1551                 struct btrfs_header *h;
1552
1553                 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1554                 h = (struct btrfs_header *)mapped_buffer;
1555
1556                 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1557                     !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1558                     memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1559                            BTRFS_UUID_SIZE)) {
1560                         sblock->header_error = 1;
1561                 } else if (generation != btrfs_stack_header_generation(h)) {
1562                         sblock->header_error = 1;
1563                         sblock->generation_error = 1;
1564                 }
1565                 csum = h->csum;
1566         } else {
1567                 if (!have_csum)
1568                         return;
1569
1570                 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1571         }
1572
1573         for (page_num = 0;;) {
1574                 if (page_num == 0 && is_metadata)
1575                         crc = btrfs_csum_data(
1576                                 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1577                                 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1578                 else
1579                         crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1580
1581                 kunmap_atomic(mapped_buffer);
1582                 page_num++;
1583                 if (page_num >= sblock->page_count)
1584                         break;
1585                 WARN_ON(!sblock->pagev[page_num]->page);
1586
1587                 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1588         }
1589
1590         btrfs_csum_final(crc, calculated_csum);
1591         if (memcmp(calculated_csum, csum, csum_size))
1592                 sblock->checksum_error = 1;
1593 }
1594
1595 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1596                                              struct scrub_block *sblock_good)
1597 {
1598         int page_num;
1599         int ret = 0;
1600
1601         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1602                 int ret_sub;
1603
1604                 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1605                                                            sblock_good,
1606                                                            page_num, 1);
1607                 if (ret_sub)
1608                         ret = ret_sub;
1609         }
1610
1611         return ret;
1612 }
1613
1614 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1615                                             struct scrub_block *sblock_good,
1616                                             int page_num, int force_write)
1617 {
1618         struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1619         struct scrub_page *page_good = sblock_good->pagev[page_num];
1620
1621         BUG_ON(page_bad->page == NULL);
1622         BUG_ON(page_good->page == NULL);
1623         if (force_write || sblock_bad->header_error ||
1624             sblock_bad->checksum_error || page_bad->io_error) {
1625                 struct bio *bio;
1626                 int ret;
1627
1628                 if (!page_bad->dev->bdev) {
1629                         printk_ratelimited(KERN_WARNING "BTRFS: "
1630                                 "scrub_repair_page_from_good_copy(bdev == NULL) "
1631                                 "is unexpected!\n");
1632                         return -EIO;
1633                 }
1634
1635                 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1636                 if (!bio)
1637                         return -EIO;
1638                 bio->bi_bdev = page_bad->dev->bdev;
1639                 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1640
1641                 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1642                 if (PAGE_SIZE != ret) {
1643                         bio_put(bio);
1644                         return -EIO;
1645                 }
1646
1647                 if (btrfsic_submit_bio_wait(WRITE, bio)) {
1648                         btrfs_dev_stat_inc_and_print(page_bad->dev,
1649                                 BTRFS_DEV_STAT_WRITE_ERRS);
1650                         btrfs_dev_replace_stats_inc(
1651                                 &sblock_bad->sctx->dev_root->fs_info->
1652                                 dev_replace.num_write_errors);
1653                         bio_put(bio);
1654                         return -EIO;
1655                 }
1656                 bio_put(bio);
1657         }
1658
1659         return 0;
1660 }
1661
1662 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1663 {
1664         int page_num;
1665
1666         /*
1667          * This block is used for the check of the parity on the source device,
1668          * so the data needn't be written into the destination device.
1669          */
1670         if (sblock->sparity)
1671                 return;
1672
1673         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1674                 int ret;
1675
1676                 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1677                 if (ret)
1678                         btrfs_dev_replace_stats_inc(
1679                                 &sblock->sctx->dev_root->fs_info->dev_replace.
1680                                 num_write_errors);
1681         }
1682 }
1683
1684 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1685                                            int page_num)
1686 {
1687         struct scrub_page *spage = sblock->pagev[page_num];
1688
1689         BUG_ON(spage->page == NULL);
1690         if (spage->io_error) {
1691                 void *mapped_buffer = kmap_atomic(spage->page);
1692
1693                 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1694                 flush_dcache_page(spage->page);
1695                 kunmap_atomic(mapped_buffer);
1696         }
1697         return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1698 }
1699
1700 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1701                                     struct scrub_page *spage)
1702 {
1703         struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1704         struct scrub_bio *sbio;
1705         int ret;
1706
1707         mutex_lock(&wr_ctx->wr_lock);
1708 again:
1709         if (!wr_ctx->wr_curr_bio) {
1710                 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1711                                               GFP_NOFS);
1712                 if (!wr_ctx->wr_curr_bio) {
1713                         mutex_unlock(&wr_ctx->wr_lock);
1714                         return -ENOMEM;
1715                 }
1716                 wr_ctx->wr_curr_bio->sctx = sctx;
1717                 wr_ctx->wr_curr_bio->page_count = 0;
1718         }
1719         sbio = wr_ctx->wr_curr_bio;
1720         if (sbio->page_count == 0) {
1721                 struct bio *bio;
1722
1723                 sbio->physical = spage->physical_for_dev_replace;
1724                 sbio->logical = spage->logical;
1725                 sbio->dev = wr_ctx->tgtdev;
1726                 bio = sbio->bio;
1727                 if (!bio) {
1728                         bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1729                         if (!bio) {
1730                                 mutex_unlock(&wr_ctx->wr_lock);
1731                                 return -ENOMEM;
1732                         }
1733                         sbio->bio = bio;
1734                 }
1735
1736                 bio->bi_private = sbio;
1737                 bio->bi_end_io = scrub_wr_bio_end_io;
1738                 bio->bi_bdev = sbio->dev->bdev;
1739                 bio->bi_iter.bi_sector = sbio->physical >> 9;
1740                 sbio->err = 0;
1741         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1742                    spage->physical_for_dev_replace ||
1743                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1744                    spage->logical) {
1745                 scrub_wr_submit(sctx);
1746                 goto again;
1747         }
1748
1749         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1750         if (ret != PAGE_SIZE) {
1751                 if (sbio->page_count < 1) {
1752                         bio_put(sbio->bio);
1753                         sbio->bio = NULL;
1754                         mutex_unlock(&wr_ctx->wr_lock);
1755                         return -EIO;
1756                 }
1757                 scrub_wr_submit(sctx);
1758                 goto again;
1759         }
1760
1761         sbio->pagev[sbio->page_count] = spage;
1762         scrub_page_get(spage);
1763         sbio->page_count++;
1764         if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1765                 scrub_wr_submit(sctx);
1766         mutex_unlock(&wr_ctx->wr_lock);
1767
1768         return 0;
1769 }
1770
1771 static void scrub_wr_submit(struct scrub_ctx *sctx)
1772 {
1773         struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1774         struct scrub_bio *sbio;
1775
1776         if (!wr_ctx->wr_curr_bio)
1777                 return;
1778
1779         sbio = wr_ctx->wr_curr_bio;
1780         wr_ctx->wr_curr_bio = NULL;
1781         WARN_ON(!sbio->bio->bi_bdev);
1782         scrub_pending_bio_inc(sctx);
1783         /* process all writes in a single worker thread. Then the block layer
1784          * orders the requests before sending them to the driver which
1785          * doubled the write performance on spinning disks when measured
1786          * with Linux 3.5 */
1787         btrfsic_submit_bio(WRITE, sbio->bio);
1788 }
1789
1790 static void scrub_wr_bio_end_io(struct bio *bio)
1791 {
1792         struct scrub_bio *sbio = bio->bi_private;
1793         struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1794
1795         sbio->err = bio->bi_error;
1796         sbio->bio = bio;
1797
1798         btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1799                          scrub_wr_bio_end_io_worker, NULL, NULL);
1800         btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1801 }
1802
1803 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1804 {
1805         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1806         struct scrub_ctx *sctx = sbio->sctx;
1807         int i;
1808
1809         WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1810         if (sbio->err) {
1811                 struct btrfs_dev_replace *dev_replace =
1812                         &sbio->sctx->dev_root->fs_info->dev_replace;
1813
1814                 for (i = 0; i < sbio->page_count; i++) {
1815                         struct scrub_page *spage = sbio->pagev[i];
1816
1817                         spage->io_error = 1;
1818                         btrfs_dev_replace_stats_inc(&dev_replace->
1819                                                     num_write_errors);
1820                 }
1821         }
1822
1823         for (i = 0; i < sbio->page_count; i++)
1824                 scrub_page_put(sbio->pagev[i]);
1825
1826         bio_put(sbio->bio);
1827         kfree(sbio);
1828         scrub_pending_bio_dec(sctx);
1829 }
1830
1831 static int scrub_checksum(struct scrub_block *sblock)
1832 {
1833         u64 flags;
1834         int ret;
1835
1836         WARN_ON(sblock->page_count < 1);
1837         flags = sblock->pagev[0]->flags;
1838         ret = 0;
1839         if (flags & BTRFS_EXTENT_FLAG_DATA)
1840                 ret = scrub_checksum_data(sblock);
1841         else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1842                 ret = scrub_checksum_tree_block(sblock);
1843         else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1844                 (void)scrub_checksum_super(sblock);
1845         else
1846                 WARN_ON(1);
1847         if (ret)
1848                 scrub_handle_errored_block(sblock);
1849
1850         return ret;
1851 }
1852
1853 static int scrub_checksum_data(struct scrub_block *sblock)
1854 {
1855         struct scrub_ctx *sctx = sblock->sctx;
1856         u8 csum[BTRFS_CSUM_SIZE];
1857         u8 *on_disk_csum;
1858         struct page *page;
1859         void *buffer;
1860         u32 crc = ~(u32)0;
1861         int fail = 0;
1862         u64 len;
1863         int index;
1864
1865         BUG_ON(sblock->page_count < 1);
1866         if (!sblock->pagev[0]->have_csum)
1867                 return 0;
1868
1869         on_disk_csum = sblock->pagev[0]->csum;
1870         page = sblock->pagev[0]->page;
1871         buffer = kmap_atomic(page);
1872
1873         len = sctx->sectorsize;
1874         index = 0;
1875         for (;;) {
1876                 u64 l = min_t(u64, len, PAGE_SIZE);
1877
1878                 crc = btrfs_csum_data(buffer, crc, l);
1879                 kunmap_atomic(buffer);
1880                 len -= l;
1881                 if (len == 0)
1882                         break;
1883                 index++;
1884                 BUG_ON(index >= sblock->page_count);
1885                 BUG_ON(!sblock->pagev[index]->page);
1886                 page = sblock->pagev[index]->page;
1887                 buffer = kmap_atomic(page);
1888         }
1889
1890         btrfs_csum_final(crc, csum);
1891         if (memcmp(csum, on_disk_csum, sctx->csum_size))
1892                 fail = 1;
1893
1894         return fail;
1895 }
1896
1897 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1898 {
1899         struct scrub_ctx *sctx = sblock->sctx;
1900         struct btrfs_header *h;
1901         struct btrfs_root *root = sctx->dev_root;
1902         struct btrfs_fs_info *fs_info = root->fs_info;
1903         u8 calculated_csum[BTRFS_CSUM_SIZE];
1904         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1905         struct page *page;
1906         void *mapped_buffer;
1907         u64 mapped_size;
1908         void *p;
1909         u32 crc = ~(u32)0;
1910         int fail = 0;
1911         int crc_fail = 0;
1912         u64 len;
1913         int index;
1914
1915         BUG_ON(sblock->page_count < 1);
1916         page = sblock->pagev[0]->page;
1917         mapped_buffer = kmap_atomic(page);
1918         h = (struct btrfs_header *)mapped_buffer;
1919         memcpy(on_disk_csum, h->csum, sctx->csum_size);
1920
1921         /*
1922          * we don't use the getter functions here, as we
1923          * a) don't have an extent buffer and
1924          * b) the page is already kmapped
1925          */
1926
1927         if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1928                 ++fail;
1929
1930         if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1931                 ++fail;
1932
1933         if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1934                 ++fail;
1935
1936         if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1937                    BTRFS_UUID_SIZE))
1938                 ++fail;
1939
1940         len = sctx->nodesize - BTRFS_CSUM_SIZE;
1941         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1942         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1943         index = 0;
1944         for (;;) {
1945                 u64 l = min_t(u64, len, mapped_size);
1946
1947                 crc = btrfs_csum_data(p, crc, l);
1948                 kunmap_atomic(mapped_buffer);
1949                 len -= l;
1950                 if (len == 0)
1951                         break;
1952                 index++;
1953                 BUG_ON(index >= sblock->page_count);
1954                 BUG_ON(!sblock->pagev[index]->page);
1955                 page = sblock->pagev[index]->page;
1956                 mapped_buffer = kmap_atomic(page);
1957                 mapped_size = PAGE_SIZE;
1958                 p = mapped_buffer;
1959         }
1960
1961         btrfs_csum_final(crc, calculated_csum);
1962         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1963                 ++crc_fail;
1964
1965         return fail || crc_fail;
1966 }
1967
1968 static int scrub_checksum_super(struct scrub_block *sblock)
1969 {
1970         struct btrfs_super_block *s;
1971         struct scrub_ctx *sctx = sblock->sctx;
1972         u8 calculated_csum[BTRFS_CSUM_SIZE];
1973         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1974         struct page *page;
1975         void *mapped_buffer;
1976         u64 mapped_size;
1977         void *p;
1978         u32 crc = ~(u32)0;
1979         int fail_gen = 0;
1980         int fail_cor = 0;
1981         u64 len;
1982         int index;
1983
1984         BUG_ON(sblock->page_count < 1);
1985         page = sblock->pagev[0]->page;
1986         mapped_buffer = kmap_atomic(page);
1987         s = (struct btrfs_super_block *)mapped_buffer;
1988         memcpy(on_disk_csum, s->csum, sctx->csum_size);
1989
1990         if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1991                 ++fail_cor;
1992
1993         if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1994                 ++fail_gen;
1995
1996         if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1997                 ++fail_cor;
1998
1999         len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2000         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2001         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2002         index = 0;
2003         for (;;) {
2004                 u64 l = min_t(u64, len, mapped_size);
2005
2006                 crc = btrfs_csum_data(p, crc, l);
2007                 kunmap_atomic(mapped_buffer);
2008                 len -= l;
2009                 if (len == 0)
2010                         break;
2011                 index++;
2012                 BUG_ON(index >= sblock->page_count);
2013                 BUG_ON(!sblock->pagev[index]->page);
2014                 page = sblock->pagev[index]->page;
2015                 mapped_buffer = kmap_atomic(page);
2016                 mapped_size = PAGE_SIZE;
2017                 p = mapped_buffer;
2018         }
2019
2020         btrfs_csum_final(crc, calculated_csum);
2021         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2022                 ++fail_cor;
2023
2024         if (fail_cor + fail_gen) {
2025                 /*
2026                  * if we find an error in a super block, we just report it.
2027                  * They will get written with the next transaction commit
2028                  * anyway
2029                  */
2030                 spin_lock(&sctx->stat_lock);
2031                 ++sctx->stat.super_errors;
2032                 spin_unlock(&sctx->stat_lock);
2033                 if (fail_cor)
2034                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2035                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2036                 else
2037                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2038                                 BTRFS_DEV_STAT_GENERATION_ERRS);
2039         }
2040
2041         return fail_cor + fail_gen;
2042 }
2043
2044 static void scrub_block_get(struct scrub_block *sblock)
2045 {
2046         atomic_inc(&sblock->refs);
2047 }
2048
2049 static void scrub_block_put(struct scrub_block *sblock)
2050 {
2051         if (atomic_dec_and_test(&sblock->refs)) {
2052                 int i;
2053
2054                 if (sblock->sparity)
2055                         scrub_parity_put(sblock->sparity);
2056
2057                 for (i = 0; i < sblock->page_count; i++)
2058                         scrub_page_put(sblock->pagev[i]);
2059                 kfree(sblock);
2060         }
2061 }
2062
2063 static void scrub_page_get(struct scrub_page *spage)
2064 {
2065         atomic_inc(&spage->refs);
2066 }
2067
2068 static void scrub_page_put(struct scrub_page *spage)
2069 {
2070         if (atomic_dec_and_test(&spage->refs)) {
2071                 if (spage->page)
2072                         __free_page(spage->page);
2073                 kfree(spage);
2074         }
2075 }
2076
2077 static void scrub_submit(struct scrub_ctx *sctx)
2078 {
2079         struct scrub_bio *sbio;
2080
2081         if (sctx->curr == -1)
2082                 return;
2083
2084         sbio = sctx->bios[sctx->curr];
2085         sctx->curr = -1;
2086         scrub_pending_bio_inc(sctx);
2087         btrfsic_submit_bio(READ, sbio->bio);
2088 }
2089
2090 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2091                                     struct scrub_page *spage)
2092 {
2093         struct scrub_block *sblock = spage->sblock;
2094         struct scrub_bio *sbio;
2095         int ret;
2096
2097 again:
2098         /*
2099          * grab a fresh bio or wait for one to become available
2100          */
2101         while (sctx->curr == -1) {
2102                 spin_lock(&sctx->list_lock);
2103                 sctx->curr = sctx->first_free;
2104                 if (sctx->curr != -1) {
2105                         sctx->first_free = sctx->bios[sctx->curr]->next_free;
2106                         sctx->bios[sctx->curr]->next_free = -1;
2107                         sctx->bios[sctx->curr]->page_count = 0;
2108                         spin_unlock(&sctx->list_lock);
2109                 } else {
2110                         spin_unlock(&sctx->list_lock);
2111                         wait_event(sctx->list_wait, sctx->first_free != -1);
2112                 }
2113         }
2114         sbio = sctx->bios[sctx->curr];
2115         if (sbio->page_count == 0) {
2116                 struct bio *bio;
2117
2118                 sbio->physical = spage->physical;
2119                 sbio->logical = spage->logical;
2120                 sbio->dev = spage->dev;
2121                 bio = sbio->bio;
2122                 if (!bio) {
2123                         bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2124                         if (!bio)
2125                                 return -ENOMEM;
2126                         sbio->bio = bio;
2127                 }
2128
2129                 bio->bi_private = sbio;
2130                 bio->bi_end_io = scrub_bio_end_io;
2131                 bio->bi_bdev = sbio->dev->bdev;
2132                 bio->bi_iter.bi_sector = sbio->physical >> 9;
2133                 sbio->err = 0;
2134         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2135                    spage->physical ||
2136                    sbio->logical + sbio->page_count * PAGE_SIZE !=
2137                    spage->logical ||
2138                    sbio->dev != spage->dev) {
2139                 scrub_submit(sctx);
2140                 goto again;
2141         }
2142
2143         sbio->pagev[sbio->page_count] = spage;
2144         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2145         if (ret != PAGE_SIZE) {
2146                 if (sbio->page_count < 1) {
2147                         bio_put(sbio->bio);
2148                         sbio->bio = NULL;
2149                         return -EIO;
2150                 }
2151                 scrub_submit(sctx);
2152                 goto again;
2153         }
2154
2155         scrub_block_get(sblock); /* one for the page added to the bio */
2156         atomic_inc(&sblock->outstanding_pages);
2157         sbio->page_count++;
2158         if (sbio->page_count == sctx->pages_per_rd_bio)
2159                 scrub_submit(sctx);
2160
2161         return 0;
2162 }
2163
2164 static void scrub_missing_raid56_end_io(struct bio *bio)
2165 {
2166         struct scrub_block *sblock = bio->bi_private;
2167         struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;
2168
2169         if (bio->bi_error)
2170                 sblock->no_io_error_seen = 0;
2171
2172         btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2173 }
2174
2175 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2176 {
2177         struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2178         struct scrub_ctx *sctx = sblock->sctx;
2179         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2180         unsigned int is_metadata;
2181         unsigned int have_csum;
2182         u8 *csum;
2183         u64 generation;
2184         u64 logical;
2185         struct btrfs_device *dev;
2186
2187         is_metadata = !(sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA);
2188         have_csum = sblock->pagev[0]->have_csum;
2189         csum = sblock->pagev[0]->csum;
2190         generation = sblock->pagev[0]->generation;
2191         logical = sblock->pagev[0]->logical;
2192         dev = sblock->pagev[0]->dev;
2193
2194         if (sblock->no_io_error_seen) {
2195                 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
2196                                              have_csum, csum, generation,
2197                                              sctx->csum_size);
2198         }
2199
2200         if (!sblock->no_io_error_seen) {
2201                 spin_lock(&sctx->stat_lock);
2202                 sctx->stat.read_errors++;
2203                 spin_unlock(&sctx->stat_lock);
2204                 printk_ratelimited_in_rcu(KERN_ERR
2205                         "BTRFS: I/O error rebulding logical %llu for dev %s\n",
2206                         logical, rcu_str_deref(dev->name));
2207         } else if (sblock->header_error || sblock->checksum_error) {
2208                 spin_lock(&sctx->stat_lock);
2209                 sctx->stat.uncorrectable_errors++;
2210                 spin_unlock(&sctx->stat_lock);
2211                 printk_ratelimited_in_rcu(KERN_ERR
2212                         "BTRFS: failed to rebuild valid logical %llu for dev %s\n",
2213                         logical, rcu_str_deref(dev->name));
2214         } else {
2215                 scrub_write_block_to_dev_replace(sblock);
2216         }
2217
2218         scrub_block_put(sblock);
2219
2220         if (sctx->is_dev_replace &&
2221             atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2222                 mutex_lock(&sctx->wr_ctx.wr_lock);
2223                 scrub_wr_submit(sctx);
2224                 mutex_unlock(&sctx->wr_ctx.wr_lock);
2225         }
2226
2227         scrub_pending_bio_dec(sctx);
2228 }
2229
2230 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2231 {
2232         struct scrub_ctx *sctx = sblock->sctx;
2233         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2234         u64 length = sblock->page_count * PAGE_SIZE;
2235         u64 logical = sblock->pagev[0]->logical;
2236         struct btrfs_bio *bbio;
2237         struct bio *bio;
2238         struct btrfs_raid_bio *rbio;
2239         int ret;
2240         int i;
2241
2242         ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
2243                                &bbio, 0, 1);
2244         if (ret || !bbio || !bbio->raid_map)
2245                 goto bbio_out;
2246
2247         if (WARN_ON(!sctx->is_dev_replace ||
2248                     !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2249                 /*
2250                  * We shouldn't be scrubbing a missing device. Even for dev
2251                  * replace, we should only get here for RAID 5/6. We either
2252                  * managed to mount something with no mirrors remaining or
2253                  * there's a bug in scrub_remap_extent()/btrfs_map_block().
2254                  */
2255                 goto bbio_out;
2256         }
2257
2258         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2259         if (!bio)
2260                 goto bbio_out;
2261
2262         bio->bi_iter.bi_sector = logical >> 9;
2263         bio->bi_private = sblock;
2264         bio->bi_end_io = scrub_missing_raid56_end_io;
2265
2266         rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
2267         if (!rbio)
2268                 goto rbio_out;
2269
2270         for (i = 0; i < sblock->page_count; i++) {
2271                 struct scrub_page *spage = sblock->pagev[i];
2272
2273                 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2274         }
2275
2276         btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2277                         scrub_missing_raid56_worker, NULL, NULL);
2278         scrub_block_get(sblock);
2279         scrub_pending_bio_inc(sctx);
2280         raid56_submit_missing_rbio(rbio);
2281         return;
2282
2283 rbio_out:
2284         bio_put(bio);
2285 bbio_out:
2286         btrfs_put_bbio(bbio);
2287         spin_lock(&sctx->stat_lock);
2288         sctx->stat.malloc_errors++;
2289         spin_unlock(&sctx->stat_lock);
2290 }
2291
2292 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2293                        u64 physical, struct btrfs_device *dev, u64 flags,
2294                        u64 gen, int mirror_num, u8 *csum, int force,
2295                        u64 physical_for_dev_replace)
2296 {
2297         struct scrub_block *sblock;
2298         int index;
2299
2300         sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2301         if (!sblock) {
2302                 spin_lock(&sctx->stat_lock);
2303                 sctx->stat.malloc_errors++;
2304                 spin_unlock(&sctx->stat_lock);
2305                 return -ENOMEM;
2306         }
2307
2308         /* one ref inside this function, plus one for each page added to
2309          * a bio later on */
2310         atomic_set(&sblock->refs, 1);
2311         sblock->sctx = sctx;
2312         sblock->no_io_error_seen = 1;
2313
2314         for (index = 0; len > 0; index++) {
2315                 struct scrub_page *spage;
2316                 u64 l = min_t(u64, len, PAGE_SIZE);
2317
2318                 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2319                 if (!spage) {
2320 leave_nomem:
2321                         spin_lock(&sctx->stat_lock);
2322                         sctx->stat.malloc_errors++;
2323                         spin_unlock(&sctx->stat_lock);
2324                         scrub_block_put(sblock);
2325                         return -ENOMEM;
2326                 }
2327                 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2328                 scrub_page_get(spage);
2329                 sblock->pagev[index] = spage;
2330                 spage->sblock = sblock;
2331                 spage->dev = dev;
2332                 spage->flags = flags;
2333                 spage->generation = gen;
2334                 spage->logical = logical;
2335                 spage->physical = physical;
2336                 spage->physical_for_dev_replace = physical_for_dev_replace;
2337                 spage->mirror_num = mirror_num;
2338                 if (csum) {
2339                         spage->have_csum = 1;
2340                         memcpy(spage->csum, csum, sctx->csum_size);
2341                 } else {
2342                         spage->have_csum = 0;
2343                 }
2344                 sblock->page_count++;
2345                 spage->page = alloc_page(GFP_NOFS);
2346                 if (!spage->page)
2347                         goto leave_nomem;
2348                 len -= l;
2349                 logical += l;
2350                 physical += l;
2351                 physical_for_dev_replace += l;
2352         }
2353
2354         WARN_ON(sblock->page_count == 0);
2355         if (dev->missing) {
2356                 /*
2357                  * This case should only be hit for RAID 5/6 device replace. See
2358                  * the comment in scrub_missing_raid56_pages() for details.
2359                  */
2360                 scrub_missing_raid56_pages(sblock);
2361         } else {
2362                 for (index = 0; index < sblock->page_count; index++) {
2363                         struct scrub_page *spage = sblock->pagev[index];
2364                         int ret;
2365
2366                         ret = scrub_add_page_to_rd_bio(sctx, spage);
2367                         if (ret) {
2368                                 scrub_block_put(sblock);
2369                                 return ret;
2370                         }
2371                 }
2372
2373                 if (force)
2374                         scrub_submit(sctx);
2375         }
2376
2377         /* last one frees, either here or in bio completion for last page */
2378         scrub_block_put(sblock);
2379         return 0;
2380 }
2381
2382 static void scrub_bio_end_io(struct bio *bio)
2383 {
2384         struct scrub_bio *sbio = bio->bi_private;
2385         struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2386
2387         sbio->err = bio->bi_error;
2388         sbio->bio = bio;
2389
2390         btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2391 }
2392
2393 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2394 {
2395         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2396         struct scrub_ctx *sctx = sbio->sctx;
2397         int i;
2398
2399         BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2400         if (sbio->err) {
2401                 for (i = 0; i < sbio->page_count; i++) {
2402                         struct scrub_page *spage = sbio->pagev[i];
2403
2404                         spage->io_error = 1;
2405                         spage->sblock->no_io_error_seen = 0;
2406                 }
2407         }
2408
2409         /* now complete the scrub_block items that have all pages completed */
2410         for (i = 0; i < sbio->page_count; i++) {
2411                 struct scrub_page *spage = sbio->pagev[i];
2412                 struct scrub_block *sblock = spage->sblock;
2413
2414                 if (atomic_dec_and_test(&sblock->outstanding_pages))
2415                         scrub_block_complete(sblock);
2416                 scrub_block_put(sblock);
2417         }
2418
2419         bio_put(sbio->bio);
2420         sbio->bio = NULL;
2421         spin_lock(&sctx->list_lock);
2422         sbio->next_free = sctx->first_free;
2423         sctx->first_free = sbio->index;
2424         spin_unlock(&sctx->list_lock);
2425
2426         if (sctx->is_dev_replace &&
2427             atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2428                 mutex_lock(&sctx->wr_ctx.wr_lock);
2429                 scrub_wr_submit(sctx);
2430                 mutex_unlock(&sctx->wr_ctx.wr_lock);
2431         }
2432
2433         scrub_pending_bio_dec(sctx);
2434 }
2435
2436 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2437                                        unsigned long *bitmap,
2438                                        u64 start, u64 len)
2439 {
2440         u32 offset;
2441         int nsectors;
2442         int sectorsize = sparity->sctx->dev_root->sectorsize;
2443
2444         if (len >= sparity->stripe_len) {
2445                 bitmap_set(bitmap, 0, sparity->nsectors);
2446                 return;
2447         }
2448
2449         start -= sparity->logic_start;
2450         start = div_u64_rem(start, sparity->stripe_len, &offset);
2451         offset /= sectorsize;
2452         nsectors = (int)len / sectorsize;
2453
2454         if (offset + nsectors <= sparity->nsectors) {
2455                 bitmap_set(bitmap, offset, nsectors);
2456                 return;
2457         }
2458
2459         bitmap_set(bitmap, offset, sparity->nsectors - offset);
2460         bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2461 }
2462
2463 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2464                                                    u64 start, u64 len)
2465 {
2466         __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2467 }
2468
2469 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2470                                                   u64 start, u64 len)
2471 {
2472         __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2473 }
2474
2475 static void scrub_block_complete(struct scrub_block *sblock)
2476 {
2477         int corrupted = 0;
2478
2479         if (!sblock->no_io_error_seen) {
2480                 corrupted = 1;
2481                 scrub_handle_errored_block(sblock);
2482         } else {
2483                 /*
2484                  * if has checksum error, write via repair mechanism in
2485                  * dev replace case, otherwise write here in dev replace
2486                  * case.
2487                  */
2488                 corrupted = scrub_checksum(sblock);
2489                 if (!corrupted && sblock->sctx->is_dev_replace)
2490                         scrub_write_block_to_dev_replace(sblock);
2491         }
2492
2493         if (sblock->sparity && corrupted && !sblock->data_corrected) {
2494                 u64 start = sblock->pagev[0]->logical;
2495                 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2496                           PAGE_SIZE;
2497
2498                 scrub_parity_mark_sectors_error(sblock->sparity,
2499                                                 start, end - start);
2500         }
2501 }
2502
2503 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2504                            u8 *csum)
2505 {
2506         struct btrfs_ordered_sum *sum = NULL;
2507         unsigned long index;
2508         unsigned long num_sectors;
2509
2510         while (!list_empty(&sctx->csum_list)) {
2511                 sum = list_first_entry(&sctx->csum_list,
2512                                        struct btrfs_ordered_sum, list);
2513                 if (sum->bytenr > logical)
2514                         return 0;
2515                 if (sum->bytenr + sum->len > logical)
2516                         break;
2517
2518                 ++sctx->stat.csum_discards;
2519                 list_del(&sum->list);
2520                 kfree(sum);
2521                 sum = NULL;
2522         }
2523         if (!sum)
2524                 return 0;
2525
2526         index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2527         num_sectors = sum->len / sctx->sectorsize;
2528         memcpy(csum, sum->sums + index, sctx->csum_size);
2529         if (index == num_sectors - 1) {
2530                 list_del(&sum->list);
2531                 kfree(sum);
2532         }
2533         return 1;
2534 }
2535
2536 /* scrub extent tries to collect up to 64 kB for each bio */
2537 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2538                         u64 physical, struct btrfs_device *dev, u64 flags,
2539                         u64 gen, int mirror_num, u64 physical_for_dev_replace)
2540 {
2541         int ret;
2542         u8 csum[BTRFS_CSUM_SIZE];
2543         u32 blocksize;
2544
2545         if (flags & BTRFS_EXTENT_FLAG_DATA) {
2546                 blocksize = sctx->sectorsize;
2547                 spin_lock(&sctx->stat_lock);
2548                 sctx->stat.data_extents_scrubbed++;
2549                 sctx->stat.data_bytes_scrubbed += len;
2550                 spin_unlock(&sctx->stat_lock);
2551         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2552                 blocksize = sctx->nodesize;
2553                 spin_lock(&sctx->stat_lock);
2554                 sctx->stat.tree_extents_scrubbed++;
2555                 sctx->stat.tree_bytes_scrubbed += len;
2556                 spin_unlock(&sctx->stat_lock);
2557         } else {
2558                 blocksize = sctx->sectorsize;
2559                 WARN_ON(1);
2560         }
2561
2562         while (len) {
2563                 u64 l = min_t(u64, len, blocksize);
2564                 int have_csum = 0;
2565
2566                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2567                         /* push csums to sbio */
2568                         have_csum = scrub_find_csum(sctx, logical, l, csum);
2569                         if (have_csum == 0)
2570                                 ++sctx->stat.no_csum;
2571                         if (sctx->is_dev_replace && !have_csum) {
2572                                 ret = copy_nocow_pages(sctx, logical, l,
2573                                                        mirror_num,
2574                                                       physical_for_dev_replace);
2575                                 goto behind_scrub_pages;
2576                         }
2577                 }
2578                 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2579                                   mirror_num, have_csum ? csum : NULL, 0,
2580                                   physical_for_dev_replace);
2581 behind_scrub_pages:
2582                 if (ret)
2583                         return ret;
2584                 len -= l;
2585                 logical += l;
2586                 physical += l;
2587                 physical_for_dev_replace += l;
2588         }
2589         return 0;
2590 }
2591
2592 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2593                                   u64 logical, u64 len,
2594                                   u64 physical, struct btrfs_device *dev,
2595                                   u64 flags, u64 gen, int mirror_num, u8 *csum)
2596 {
2597         struct scrub_ctx *sctx = sparity->sctx;
2598         struct scrub_block *sblock;
2599         int index;
2600
2601         sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2602         if (!sblock) {
2603                 spin_lock(&sctx->stat_lock);
2604                 sctx->stat.malloc_errors++;
2605                 spin_unlock(&sctx->stat_lock);
2606                 return -ENOMEM;
2607         }
2608
2609         /* one ref inside this function, plus one for each page added to
2610          * a bio later on */
2611         atomic_set(&sblock->refs, 1);
2612         sblock->sctx = sctx;
2613         sblock->no_io_error_seen = 1;
2614         sblock->sparity = sparity;
2615         scrub_parity_get(sparity);
2616
2617         for (index = 0; len > 0; index++) {
2618                 struct scrub_page *spage;
2619                 u64 l = min_t(u64, len, PAGE_SIZE);
2620
2621                 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2622                 if (!spage) {
2623 leave_nomem:
2624                         spin_lock(&sctx->stat_lock);
2625                         sctx->stat.malloc_errors++;
2626                         spin_unlock(&sctx->stat_lock);
2627                         scrub_block_put(sblock);
2628                         return -ENOMEM;
2629                 }
2630                 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2631                 /* For scrub block */
2632                 scrub_page_get(spage);
2633                 sblock->pagev[index] = spage;
2634                 /* For scrub parity */
2635                 scrub_page_get(spage);
2636                 list_add_tail(&spage->list, &sparity->spages);
2637                 spage->sblock = sblock;
2638                 spage->dev = dev;
2639                 spage->flags = flags;
2640                 spage->generation = gen;
2641                 spage->logical = logical;
2642                 spage->physical = physical;
2643                 spage->mirror_num = mirror_num;
2644                 if (csum) {
2645                         spage->have_csum = 1;
2646                         memcpy(spage->csum, csum, sctx->csum_size);
2647                 } else {
2648                         spage->have_csum = 0;
2649                 }
2650                 sblock->page_count++;
2651                 spage->page = alloc_page(GFP_NOFS);
2652                 if (!spage->page)
2653                         goto leave_nomem;
2654                 len -= l;
2655                 logical += l;
2656                 physical += l;
2657         }
2658
2659         WARN_ON(sblock->page_count == 0);
2660         for (index = 0; index < sblock->page_count; index++) {
2661                 struct scrub_page *spage = sblock->pagev[index];
2662                 int ret;
2663
2664                 ret = scrub_add_page_to_rd_bio(sctx, spage);
2665                 if (ret) {
2666                         scrub_block_put(sblock);
2667                         return ret;
2668                 }
2669         }
2670
2671         /* last one frees, either here or in bio completion for last page */
2672         scrub_block_put(sblock);
2673         return 0;
2674 }
2675
2676 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2677                                    u64 logical, u64 len,
2678                                    u64 physical, struct btrfs_device *dev,
2679                                    u64 flags, u64 gen, int mirror_num)
2680 {
2681         struct scrub_ctx *sctx = sparity->sctx;
2682         int ret;
2683         u8 csum[BTRFS_CSUM_SIZE];
2684         u32 blocksize;
2685
2686         if (dev->missing) {
2687                 scrub_parity_mark_sectors_error(sparity, logical, len);
2688                 return 0;
2689         }
2690
2691         if (flags & BTRFS_EXTENT_FLAG_DATA) {
2692                 blocksize = sctx->sectorsize;
2693         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2694                 blocksize = sctx->nodesize;
2695         } else {
2696                 blocksize = sctx->sectorsize;
2697                 WARN_ON(1);
2698         }
2699
2700         while (len) {
2701                 u64 l = min_t(u64, len, blocksize);
2702                 int have_csum = 0;
2703
2704                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2705                         /* push csums to sbio */
2706                         have_csum = scrub_find_csum(sctx, logical, l, csum);
2707                         if (have_csum == 0)
2708                                 goto skip;
2709                 }
2710                 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2711                                              flags, gen, mirror_num,
2712                                              have_csum ? csum : NULL);
2713                 if (ret)
2714                         return ret;
2715 skip:
2716                 len -= l;
2717                 logical += l;
2718                 physical += l;
2719         }
2720         return 0;
2721 }
2722
2723 /*
2724  * Given a physical address, this will calculate it's
2725  * logical offset. if this is a parity stripe, it will return
2726  * the most left data stripe's logical offset.
2727  *
2728  * return 0 if it is a data stripe, 1 means parity stripe.
2729  */
2730 static int get_raid56_logic_offset(u64 physical, int num,
2731                                    struct map_lookup *map, u64 *offset,
2732                                    u64 *stripe_start)
2733 {
2734         int i;
2735         int j = 0;
2736         u64 stripe_nr;
2737         u64 last_offset;
2738         u32 stripe_index;
2739         u32 rot;
2740
2741         last_offset = (physical - map->stripes[num].physical) *
2742                       nr_data_stripes(map);
2743         if (stripe_start)
2744                 *stripe_start = last_offset;
2745
2746         *offset = last_offset;
2747         for (i = 0; i < nr_data_stripes(map); i++) {
2748                 *offset = last_offset + i * map->stripe_len;
2749
2750                 stripe_nr = div_u64(*offset, map->stripe_len);
2751                 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2752
2753                 /* Work out the disk rotation on this stripe-set */
2754                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2755                 /* calculate which stripe this data locates */
2756                 rot += i;
2757                 stripe_index = rot % map->num_stripes;
2758                 if (stripe_index == num)
2759                         return 0;
2760                 if (stripe_index < num)
2761                         j++;
2762         }
2763         *offset = last_offset + j * map->stripe_len;
2764         return 1;
2765 }
2766
2767 static void scrub_free_parity(struct scrub_parity *sparity)
2768 {
2769         struct scrub_ctx *sctx = sparity->sctx;
2770         struct scrub_page *curr, *next;
2771         int nbits;
2772
2773         nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2774         if (nbits) {
2775                 spin_lock(&sctx->stat_lock);
2776                 sctx->stat.read_errors += nbits;
2777                 sctx->stat.uncorrectable_errors += nbits;
2778                 spin_unlock(&sctx->stat_lock);
2779         }
2780
2781         list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2782                 list_del_init(&curr->list);
2783                 scrub_page_put(curr);
2784         }
2785
2786         kfree(sparity);
2787 }
2788
2789 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2790 {
2791         struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2792                                                     work);
2793         struct scrub_ctx *sctx = sparity->sctx;
2794
2795         scrub_free_parity(sparity);
2796         scrub_pending_bio_dec(sctx);
2797 }
2798
2799 static void scrub_parity_bio_endio(struct bio *bio)
2800 {
2801         struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2802
2803         if (bio->bi_error)
2804                 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2805                           sparity->nsectors);
2806
2807         bio_put(bio);
2808
2809         btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2810                         scrub_parity_bio_endio_worker, NULL, NULL);
2811         btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
2812                          &sparity->work);
2813 }
2814
2815 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2816 {
2817         struct scrub_ctx *sctx = sparity->sctx;
2818         struct bio *bio;
2819         struct btrfs_raid_bio *rbio;
2820         struct scrub_page *spage;
2821         struct btrfs_bio *bbio = NULL;
2822         u64 length;
2823         int ret;
2824
2825         if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2826                            sparity->nsectors))
2827                 goto out;
2828
2829         length = sparity->logic_end - sparity->logic_start;
2830         ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2831                                sparity->logic_start,
2832                                &length, &bbio, 0, 1);
2833         if (ret || !bbio || !bbio->raid_map)
2834                 goto bbio_out;
2835
2836         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2837         if (!bio)
2838                 goto bbio_out;
2839
2840         bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2841         bio->bi_private = sparity;
2842         bio->bi_end_io = scrub_parity_bio_endio;
2843
2844         rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2845                                               length, sparity->scrub_dev,
2846                                               sparity->dbitmap,
2847                                               sparity->nsectors);
2848         if (!rbio)
2849                 goto rbio_out;
2850
2851         list_for_each_entry(spage, &sparity->spages, list)
2852                 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2853
2854         scrub_pending_bio_inc(sctx);
2855         raid56_parity_submit_scrub_rbio(rbio);
2856         return;
2857
2858 rbio_out:
2859         bio_put(bio);
2860 bbio_out:
2861         btrfs_put_bbio(bbio);
2862         bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2863                   sparity->nsectors);
2864         spin_lock(&sctx->stat_lock);
2865         sctx->stat.malloc_errors++;
2866         spin_unlock(&sctx->stat_lock);
2867 out:
2868         scrub_free_parity(sparity);
2869 }
2870
2871 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2872 {
2873         return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
2874 }
2875
2876 static void scrub_parity_get(struct scrub_parity *sparity)
2877 {
2878         atomic_inc(&sparity->refs);
2879 }
2880
2881 static void scrub_parity_put(struct scrub_parity *sparity)
2882 {
2883         if (!atomic_dec_and_test(&sparity->refs))
2884                 return;
2885
2886         scrub_parity_check_and_repair(sparity);
2887 }
2888
2889 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2890                                                   struct map_lookup *map,
2891                                                   struct btrfs_device *sdev,
2892                                                   struct btrfs_path *path,
2893                                                   u64 logic_start,
2894                                                   u64 logic_end)
2895 {
2896         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2897         struct btrfs_root *root = fs_info->extent_root;
2898         struct btrfs_root *csum_root = fs_info->csum_root;
2899         struct btrfs_extent_item *extent;
2900         struct btrfs_bio *bbio = NULL;
2901         u64 flags;
2902         int ret;
2903         int slot;
2904         struct extent_buffer *l;
2905         struct btrfs_key key;
2906         u64 generation;
2907         u64 extent_logical;
2908         u64 extent_physical;
2909         u64 extent_len;
2910         u64 mapped_length;
2911         struct btrfs_device *extent_dev;
2912         struct scrub_parity *sparity;
2913         int nsectors;
2914         int bitmap_len;
2915         int extent_mirror_num;
2916         int stop_loop = 0;
2917
2918         nsectors = map->stripe_len / root->sectorsize;
2919         bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2920         sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2921                           GFP_NOFS);
2922         if (!sparity) {
2923                 spin_lock(&sctx->stat_lock);
2924                 sctx->stat.malloc_errors++;
2925                 spin_unlock(&sctx->stat_lock);
2926                 return -ENOMEM;
2927         }
2928
2929         sparity->stripe_len = map->stripe_len;
2930         sparity->nsectors = nsectors;
2931         sparity->sctx = sctx;
2932         sparity->scrub_dev = sdev;
2933         sparity->logic_start = logic_start;
2934         sparity->logic_end = logic_end;
2935         atomic_set(&sparity->refs, 1);
2936         INIT_LIST_HEAD(&sparity->spages);
2937         sparity->dbitmap = sparity->bitmap;
2938         sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2939
2940         ret = 0;
2941         while (logic_start < logic_end) {
2942                 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2943                         key.type = BTRFS_METADATA_ITEM_KEY;
2944                 else
2945                         key.type = BTRFS_EXTENT_ITEM_KEY;
2946                 key.objectid = logic_start;
2947                 key.offset = (u64)-1;
2948
2949                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2950                 if (ret < 0)
2951                         goto out;
2952
2953                 if (ret > 0) {
2954                         ret = btrfs_previous_extent_item(root, path, 0);
2955                         if (ret < 0)
2956                                 goto out;
2957                         if (ret > 0) {
2958                                 btrfs_release_path(path);
2959                                 ret = btrfs_search_slot(NULL, root, &key,
2960                                                         path, 0, 0);
2961                                 if (ret < 0)
2962                                         goto out;
2963                         }
2964                 }
2965
2966                 stop_loop = 0;
2967                 while (1) {
2968                         u64 bytes;
2969
2970                         l = path->nodes[0];
2971                         slot = path->slots[0];
2972                         if (slot >= btrfs_header_nritems(l)) {
2973                                 ret = btrfs_next_leaf(root, path);
2974                                 if (ret == 0)
2975                                         continue;
2976                                 if (ret < 0)
2977                                         goto out;
2978
2979                                 stop_loop = 1;
2980                                 break;
2981                         }
2982                         btrfs_item_key_to_cpu(l, &key, slot);
2983
2984                         if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2985                             key.type != BTRFS_METADATA_ITEM_KEY)
2986                                 goto next;
2987
2988                         if (key.type == BTRFS_METADATA_ITEM_KEY)
2989                                 bytes = root->nodesize;
2990                         else
2991                                 bytes = key.offset;
2992
2993                         if (key.objectid + bytes <= logic_start)
2994                                 goto next;
2995
2996                         if (key.objectid >= logic_end) {
2997                                 stop_loop = 1;
2998                                 break;
2999                         }
3000
3001                         while (key.objectid >= logic_start + map->stripe_len)
3002                                 logic_start += map->stripe_len;
3003
3004                         extent = btrfs_item_ptr(l, slot,
3005                                                 struct btrfs_extent_item);
3006                         flags = btrfs_extent_flags(l, extent);
3007                         generation = btrfs_extent_generation(l, extent);
3008
3009                         if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3010                             (key.objectid < logic_start ||
3011                              key.objectid + bytes >
3012                              logic_start + map->stripe_len)) {
3013                                 btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3014                                           key.objectid, logic_start);
3015                                 goto next;
3016                         }
3017 again:
3018                         extent_logical = key.objectid;
3019                         extent_len = bytes;
3020
3021                         if (extent_logical < logic_start) {
3022                                 extent_len -= logic_start - extent_logical;
3023                                 extent_logical = logic_start;
3024                         }
3025
3026                         if (extent_logical + extent_len >
3027                             logic_start + map->stripe_len)
3028                                 extent_len = logic_start + map->stripe_len -
3029                                              extent_logical;
3030
3031                         scrub_parity_mark_sectors_data(sparity, extent_logical,
3032                                                        extent_len);
3033
3034                         mapped_length = extent_len;
3035                         ret = btrfs_map_block(fs_info, READ, extent_logical,
3036                                               &mapped_length, &bbio, 0);
3037                         if (!ret) {
3038                                 if (!bbio || mapped_length < extent_len)
3039                                         ret = -EIO;
3040                         }
3041                         if (ret) {
3042                                 btrfs_put_bbio(bbio);
3043                                 goto out;
3044                         }
3045                         extent_physical = bbio->stripes[0].physical;
3046                         extent_mirror_num = bbio->mirror_num;
3047                         extent_dev = bbio->stripes[0].dev;
3048                         btrfs_put_bbio(bbio);
3049
3050                         ret = btrfs_lookup_csums_range(csum_root,
3051                                                 extent_logical,
3052                                                 extent_logical + extent_len - 1,
3053                                                 &sctx->csum_list, 1);
3054                         if (ret)
3055                                 goto out;
3056
3057                         ret = scrub_extent_for_parity(sparity, extent_logical,
3058                                                       extent_len,
3059                                                       extent_physical,
3060                                                       extent_dev, flags,
3061                                                       generation,
3062                                                       extent_mirror_num);
3063
3064                         scrub_free_csums(sctx);
3065
3066                         if (ret)
3067                                 goto out;
3068
3069                         if (extent_logical + extent_len <
3070                             key.objectid + bytes) {
3071                                 logic_start += map->stripe_len;
3072
3073                                 if (logic_start >= logic_end) {
3074                                         stop_loop = 1;
3075                                         break;
3076                                 }
3077
3078                                 if (logic_start < key.objectid + bytes) {
3079                                         cond_resched();
3080                                         goto again;
3081                                 }
3082                         }
3083 next:
3084                         path->slots[0]++;
3085                 }
3086
3087                 btrfs_release_path(path);
3088
3089                 if (stop_loop)
3090                         break;
3091
3092                 logic_start += map->stripe_len;
3093         }
3094 out:
3095         if (ret < 0)
3096                 scrub_parity_mark_sectors_error(sparity, logic_start,
3097                                                 logic_end - logic_start);
3098         scrub_parity_put(sparity);
3099         scrub_submit(sctx);
3100         mutex_lock(&sctx->wr_ctx.wr_lock);
3101         scrub_wr_submit(sctx);
3102         mutex_unlock(&sctx->wr_ctx.wr_lock);
3103
3104         btrfs_release_path(path);
3105         return ret < 0 ? ret : 0;
3106 }
3107
3108 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3109                                            struct map_lookup *map,
3110                                            struct btrfs_device *scrub_dev,
3111                                            int num, u64 base, u64 length,
3112                                            int is_dev_replace)
3113 {
3114         struct btrfs_path *path, *ppath;
3115         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3116         struct btrfs_root *root = fs_info->extent_root;
3117         struct btrfs_root *csum_root = fs_info->csum_root;
3118         struct btrfs_extent_item *extent;
3119         struct blk_plug plug;
3120         u64 flags;
3121         int ret;
3122         int slot;
3123         u64 nstripes;
3124         struct extent_buffer *l;
3125         struct btrfs_key key;
3126         u64 physical;
3127         u64 logical;
3128         u64 logic_end;
3129         u64 physical_end;
3130         u64 generation;
3131         int mirror_num;
3132         struct reada_control *reada1;
3133         struct reada_control *reada2;
3134         struct btrfs_key key_start;
3135         struct btrfs_key key_end;
3136         u64 increment = map->stripe_len;
3137         u64 offset;
3138         u64 extent_logical;
3139         u64 extent_physical;
3140         u64 extent_len;
3141         u64 stripe_logical;
3142         u64 stripe_end;
3143         struct btrfs_device *extent_dev;
3144         int extent_mirror_num;
3145         int stop_loop = 0;
3146
3147         physical = map->stripes[num].physical;
3148         offset = 0;
3149         nstripes = div_u64(length, map->stripe_len);
3150         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3151                 offset = map->stripe_len * num;
3152                 increment = map->stripe_len * map->num_stripes;
3153                 mirror_num = 1;
3154         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3155                 int factor = map->num_stripes / map->sub_stripes;
3156                 offset = map->stripe_len * (num / map->sub_stripes);
3157                 increment = map->stripe_len * factor;
3158                 mirror_num = num % map->sub_stripes + 1;
3159         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3160                 increment = map->stripe_len;
3161                 mirror_num = num % map->num_stripes + 1;
3162         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3163                 increment = map->stripe_len;
3164                 mirror_num = num % map->num_stripes + 1;
3165         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3166                 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3167                 increment = map->stripe_len * nr_data_stripes(map);
3168                 mirror_num = 1;
3169         } else {
3170                 increment = map->stripe_len;
3171                 mirror_num = 1;
3172         }
3173
3174         path = btrfs_alloc_path();
3175         if (!path)
3176                 return -ENOMEM;
3177
3178         ppath = btrfs_alloc_path();
3179         if (!ppath) {
3180                 btrfs_free_path(path);
3181                 return -ENOMEM;
3182         }
3183
3184         /*
3185          * work on commit root. The related disk blocks are static as
3186          * long as COW is applied. This means, it is save to rewrite
3187          * them to repair disk errors without any race conditions
3188          */
3189         path->search_commit_root = 1;
3190         path->skip_locking = 1;
3191
3192         ppath->search_commit_root = 1;
3193         ppath->skip_locking = 1;
3194         /*
3195          * trigger the readahead for extent tree csum tree and wait for
3196          * completion. During readahead, the scrub is officially paused
3197          * to not hold off transaction commits
3198          */
3199         logical = base + offset;
3200         physical_end = physical + nstripes * map->stripe_len;
3201         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3202                 get_raid56_logic_offset(physical_end, num,
3203                                         map, &logic_end, NULL);
3204                 logic_end += base;
3205         } else {
3206                 logic_end = logical + increment * nstripes;
3207         }
3208         wait_event(sctx->list_wait,
3209                    atomic_read(&sctx->bios_in_flight) == 0);
3210         scrub_blocked_if_needed(fs_info);
3211
3212         /* FIXME it might be better to start readahead at commit root */
3213         key_start.objectid = logical;
3214         key_start.type = BTRFS_EXTENT_ITEM_KEY;
3215         key_start.offset = (u64)0;
3216         key_end.objectid = logic_end;
3217         key_end.type = BTRFS_METADATA_ITEM_KEY;
3218         key_end.offset = (u64)-1;
3219         reada1 = btrfs_reada_add(root, &key_start, &key_end);
3220
3221         key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3222         key_start.type = BTRFS_EXTENT_CSUM_KEY;
3223         key_start.offset = logical;
3224         key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3225         key_end.type = BTRFS_EXTENT_CSUM_KEY;
3226         key_end.offset = logic_end;
3227         reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
3228
3229         if (!IS_ERR(reada1))
3230                 btrfs_reada_wait(reada1);
3231         if (!IS_ERR(reada2))
3232                 btrfs_reada_wait(reada2);
3233
3234
3235         /*
3236          * collect all data csums for the stripe to avoid seeking during
3237          * the scrub. This might currently (crc32) end up to be about 1MB
3238          */
3239         blk_start_plug(&plug);
3240
3241         /*
3242          * now find all extents for each stripe and scrub them
3243          */
3244         ret = 0;
3245         while (physical < physical_end) {
3246                 /*
3247                  * canceled?
3248                  */
3249                 if (atomic_read(&fs_info->scrub_cancel_req) ||
3250                     atomic_read(&sctx->cancel_req)) {
3251                         ret = -ECANCELED;
3252                         goto out;
3253                 }
3254                 /*
3255                  * check to see if we have to pause
3256                  */
3257                 if (atomic_read(&fs_info->scrub_pause_req)) {
3258                         /* push queued extents */
3259                         atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3260                         scrub_submit(sctx);
3261                         mutex_lock(&sctx->wr_ctx.wr_lock);
3262                         scrub_wr_submit(sctx);
3263                         mutex_unlock(&sctx->wr_ctx.wr_lock);
3264                         wait_event(sctx->list_wait,
3265                                    atomic_read(&sctx->bios_in_flight) == 0);
3266                         atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3267                         scrub_blocked_if_needed(fs_info);
3268                 }
3269
3270                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3271                         ret = get_raid56_logic_offset(physical, num, map,
3272                                                       &logical,
3273                                                       &stripe_logical);
3274                         logical += base;
3275                         if (ret) {
3276                                 /* it is parity strip */
3277                                 stripe_logical += base;
3278                                 stripe_end = stripe_logical + increment;
3279                                 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3280                                                           ppath, stripe_logical,
3281                                                           stripe_end);
3282                                 if (ret)
3283                                         goto out;
3284                                 goto skip;
3285                         }
3286                 }
3287
3288                 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3289                         key.type = BTRFS_METADATA_ITEM_KEY;
3290                 else
3291                         key.type = BTRFS_EXTENT_ITEM_KEY;
3292                 key.objectid = logical;
3293                 key.offset = (u64)-1;
3294
3295                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3296                 if (ret < 0)
3297                         goto out;
3298
3299                 if (ret > 0) {
3300                         ret = btrfs_previous_extent_item(root, path, 0);
3301                         if (ret < 0)
3302                                 goto out;
3303                         if (ret > 0) {
3304                                 /* there's no smaller item, so stick with the
3305                                  * larger one */
3306                                 btrfs_release_path(path);
3307                                 ret = btrfs_search_slot(NULL, root, &key,
3308                                                         path, 0, 0);
3309                                 if (ret < 0)
3310                                         goto out;
3311                         }
3312                 }
3313
3314                 stop_loop = 0;
3315                 while (1) {
3316                         u64 bytes;
3317
3318                         l = path->nodes[0];
3319                         slot = path->slots[0];
3320                         if (slot >= btrfs_header_nritems(l)) {
3321                                 ret = btrfs_next_leaf(root, path);
3322                                 if (ret == 0)
3323                                         continue;
3324                                 if (ret < 0)
3325                                         goto out;
3326
3327                                 stop_loop = 1;
3328                                 break;
3329                         }
3330                         btrfs_item_key_to_cpu(l, &key, slot);
3331
3332                         if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3333                             key.type != BTRFS_METADATA_ITEM_KEY)
3334                                 goto next;
3335
3336                         if (key.type == BTRFS_METADATA_ITEM_KEY)
3337                                 bytes = root->nodesize;
3338                         else
3339                                 bytes = key.offset;
3340
3341                         if (key.objectid + bytes <= logical)
3342                                 goto next;
3343
3344                         if (key.objectid >= logical + map->stripe_len) {
3345                                 /* out of this device extent */
3346                                 if (key.objectid >= logic_end)
3347                                         stop_loop = 1;
3348                                 break;
3349                         }
3350
3351                         extent = btrfs_item_ptr(l, slot,
3352                                                 struct btrfs_extent_item);
3353                         flags = btrfs_extent_flags(l, extent);
3354                         generation = btrfs_extent_generation(l, extent);
3355
3356                         if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3357                             (key.objectid < logical ||
3358                              key.objectid + bytes >
3359                              logical + map->stripe_len)) {
3360                                 btrfs_err(fs_info,
3361                                            "scrub: tree block %llu spanning "
3362                                            "stripes, ignored. logical=%llu",
3363                                        key.objectid, logical);
3364                                 goto next;
3365                         }
3366
3367 again:
3368                         extent_logical = key.objectid;
3369                         extent_len = bytes;
3370
3371                         /*
3372                          * trim extent to this stripe
3373                          */
3374                         if (extent_logical < logical) {
3375                                 extent_len -= logical - extent_logical;
3376                                 extent_logical = logical;
3377                         }
3378                         if (extent_logical + extent_len >
3379                             logical + map->stripe_len) {
3380                                 extent_len = logical + map->stripe_len -
3381                                              extent_logical;
3382                         }
3383
3384                         extent_physical = extent_logical - logical + physical;
3385                         extent_dev = scrub_dev;
3386                         extent_mirror_num = mirror_num;
3387                         if (is_dev_replace)
3388                                 scrub_remap_extent(fs_info, extent_logical,
3389                                                    extent_len, &extent_physical,
3390                                                    &extent_dev,
3391                                                    &extent_mirror_num);
3392
3393                         ret = btrfs_lookup_csums_range(csum_root,
3394                                                        extent_logical,
3395                                                        extent_logical +
3396                                                        extent_len - 1,
3397                                                        &sctx->csum_list, 1);
3398                         if (ret)
3399                                 goto out;
3400
3401                         ret = scrub_extent(sctx, extent_logical, extent_len,
3402                                            extent_physical, extent_dev, flags,
3403                                            generation, extent_mirror_num,
3404                                            extent_logical - logical + physical);
3405
3406                         scrub_free_csums(sctx);
3407
3408                         if (ret)
3409                                 goto out;
3410
3411                         if (extent_logical + extent_len <
3412                             key.objectid + bytes) {
3413                                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3414                                         /*
3415                                          * loop until we find next data stripe
3416                                          * or we have finished all stripes.
3417                                          */
3418 loop:
3419                                         physical += map->stripe_len;
3420                                         ret = get_raid56_logic_offset(physical,
3421                                                         num, map, &logical,
3422                                                         &stripe_logical);
3423                                         logical += base;
3424
3425                                         if (ret && physical < physical_end) {
3426                                                 stripe_logical += base;
3427                                                 stripe_end = stripe_logical +
3428                                                                 increment;
3429                                                 ret = scrub_raid56_parity(sctx,
3430                                                         map, scrub_dev, ppath,
3431                                                         stripe_logical,
3432                                                         stripe_end);
3433                                                 if (ret)
3434                                                         goto out;
3435                                                 goto loop;
3436                                         }
3437                                 } else {
3438                                         physical += map->stripe_len;
3439                                         logical += increment;
3440                                 }
3441                                 if (logical < key.objectid + bytes) {
3442                                         cond_resched();
3443                                         goto again;
3444                                 }
3445
3446                                 if (physical >= physical_end) {
3447                                         stop_loop = 1;
3448                                         break;
3449                                 }
3450                         }
3451 next:
3452                         path->slots[0]++;
3453                 }
3454                 btrfs_release_path(path);
3455 skip:
3456                 logical += increment;
3457                 physical += map->stripe_len;
3458                 spin_lock(&sctx->stat_lock);
3459                 if (stop_loop)
3460                         sctx->stat.last_physical = map->stripes[num].physical +
3461                                                    length;
3462                 else
3463                         sctx->stat.last_physical = physical;
3464                 spin_unlock(&sctx->stat_lock);
3465                 if (stop_loop)
3466                         break;
3467         }
3468 out:
3469         /* push queued extents */
3470         scrub_submit(sctx);
3471         mutex_lock(&sctx->wr_ctx.wr_lock);
3472         scrub_wr_submit(sctx);
3473         mutex_unlock(&sctx->wr_ctx.wr_lock);
3474
3475         blk_finish_plug(&plug);
3476         btrfs_free_path(path);
3477         btrfs_free_path(ppath);
3478         return ret < 0 ? ret : 0;
3479 }
3480
3481 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3482                                           struct btrfs_device *scrub_dev,
3483                                           u64 chunk_offset, u64 length,
3484                                           u64 dev_offset, int is_dev_replace)
3485 {
3486         struct btrfs_mapping_tree *map_tree =
3487                 &sctx->dev_root->fs_info->mapping_tree;
3488         struct map_lookup *map;
3489         struct extent_map *em;
3490         int i;
3491         int ret = 0;
3492
3493         read_lock(&map_tree->map_tree.lock);
3494         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3495         read_unlock(&map_tree->map_tree.lock);
3496
3497         if (!em)
3498                 return -EINVAL;
3499
3500         map = (struct map_lookup *)em->bdev;
3501         if (em->start != chunk_offset)
3502                 goto out;
3503
3504         if (em->len < length)
3505                 goto out;
3506
3507         for (i = 0; i < map->num_stripes; ++i) {
3508                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3509                     map->stripes[i].physical == dev_offset) {
3510                         ret = scrub_stripe(sctx, map, scrub_dev, i,
3511                                            chunk_offset, length,
3512                                            is_dev_replace);
3513                         if (ret)
3514                                 goto out;
3515                 }
3516         }
3517 out:
3518         free_extent_map(em);
3519
3520         return ret;
3521 }
3522
3523 static noinline_for_stack
3524 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3525                            struct btrfs_device *scrub_dev, u64 start, u64 end,
3526                            int is_dev_replace)
3527 {
3528         struct btrfs_dev_extent *dev_extent = NULL;
3529         struct btrfs_path *path;
3530         struct btrfs_root *root = sctx->dev_root;
3531         struct btrfs_fs_info *fs_info = root->fs_info;
3532         u64 length;
3533         u64 chunk_offset;
3534         int ret = 0;
3535         int slot;
3536         struct extent_buffer *l;
3537         struct btrfs_key key;
3538         struct btrfs_key found_key;
3539         struct btrfs_block_group_cache *cache;
3540         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3541
3542         path = btrfs_alloc_path();
3543         if (!path)
3544                 return -ENOMEM;
3545
3546         path->reada = 2;
3547         path->search_commit_root = 1;
3548         path->skip_locking = 1;
3549
3550         key.objectid = scrub_dev->devid;
3551         key.offset = 0ull;
3552         key.type = BTRFS_DEV_EXTENT_KEY;
3553
3554         while (1) {
3555                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3556                 if (ret < 0)
3557                         break;
3558                 if (ret > 0) {
3559                         if (path->slots[0] >=
3560                             btrfs_header_nritems(path->nodes[0])) {
3561                                 ret = btrfs_next_leaf(root, path);
3562                                 if (ret < 0)
3563                                         break;
3564                                 if (ret > 0) {
3565                                         ret = 0;
3566                                         break;
3567                                 }
3568                         } else {
3569                                 ret = 0;
3570                         }
3571                 }
3572
3573                 l = path->nodes[0];
3574                 slot = path->slots[0];
3575
3576                 btrfs_item_key_to_cpu(l, &found_key, slot);
3577
3578                 if (found_key.objectid != scrub_dev->devid)
3579                         break;
3580
3581                 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3582                         break;
3583
3584                 if (found_key.offset >= end)
3585                         break;
3586
3587                 if (found_key.offset < key.offset)
3588                         break;
3589
3590                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3591                 length = btrfs_dev_extent_length(l, dev_extent);
3592
3593                 if (found_key.offset + length <= start)
3594                         goto skip;
3595
3596                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3597
3598                 /*
3599                  * get a reference on the corresponding block group to prevent
3600                  * the chunk from going away while we scrub it
3601                  */
3602                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3603
3604                 /* some chunks are removed but not committed to disk yet,
3605                  * continue scrubbing */
3606                 if (!cache)
3607                         goto skip;
3608
3609                 /*
3610                  * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3611                  * to avoid deadlock caused by:
3612                  * btrfs_inc_block_group_ro()
3613                  * -> btrfs_wait_for_commit()
3614                  * -> btrfs_commit_transaction()
3615                  * -> btrfs_scrub_pause()
3616                  */
3617                 scrub_pause_on(fs_info);
3618                 ret = btrfs_inc_block_group_ro(root, cache);
3619                 scrub_pause_off(fs_info);
3620                 if (ret) {
3621                         btrfs_put_block_group(cache);
3622                         break;
3623                 }
3624
3625                 dev_replace->cursor_right = found_key.offset + length;
3626                 dev_replace->cursor_left = found_key.offset;
3627                 dev_replace->item_needs_writeback = 1;
3628                 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3629                                   found_key.offset, is_dev_replace);
3630
3631                 /*
3632                  * flush, submit all pending read and write bios, afterwards
3633                  * wait for them.
3634                  * Note that in the dev replace case, a read request causes
3635                  * write requests that are submitted in the read completion
3636                  * worker. Therefore in the current situation, it is required
3637                  * that all write requests are flushed, so that all read and
3638                  * write requests are really completed when bios_in_flight
3639                  * changes to 0.
3640                  */
3641                 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3642                 scrub_submit(sctx);
3643                 mutex_lock(&sctx->wr_ctx.wr_lock);
3644                 scrub_wr_submit(sctx);
3645                 mutex_unlock(&sctx->wr_ctx.wr_lock);
3646
3647                 wait_event(sctx->list_wait,
3648                            atomic_read(&sctx->bios_in_flight) == 0);
3649
3650                 scrub_pause_on(fs_info);
3651
3652                 /*
3653                  * must be called before we decrease @scrub_paused.
3654                  * make sure we don't block transaction commit while
3655                  * we are waiting pending workers finished.
3656                  */
3657                 wait_event(sctx->list_wait,
3658                            atomic_read(&sctx->workers_pending) == 0);
3659                 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3660
3661                 scrub_pause_off(fs_info);
3662
3663                 btrfs_dec_block_group_ro(root, cache);
3664
3665                 btrfs_put_block_group(cache);
3666                 if (ret)
3667                         break;
3668                 if (is_dev_replace &&
3669                     atomic64_read(&dev_replace->num_write_errors) > 0) {
3670                         ret = -EIO;
3671                         break;
3672                 }
3673                 if (sctx->stat.malloc_errors > 0) {
3674                         ret = -ENOMEM;
3675                         break;
3676                 }
3677
3678                 dev_replace->cursor_left = dev_replace->cursor_right;
3679                 dev_replace->item_needs_writeback = 1;
3680 skip:
3681                 key.offset = found_key.offset + length;
3682                 btrfs_release_path(path);
3683         }
3684
3685         btrfs_free_path(path);
3686
3687         return ret;
3688 }
3689
3690 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3691                                            struct btrfs_device *scrub_dev)
3692 {
3693         int     i;
3694         u64     bytenr;
3695         u64     gen;
3696         int     ret;
3697         struct btrfs_root *root = sctx->dev_root;
3698
3699         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3700                 return -EIO;
3701
3702         /* Seed devices of a new filesystem has their own generation. */
3703         if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3704                 gen = scrub_dev->generation;
3705         else
3706                 gen = root->fs_info->last_trans_committed;
3707
3708         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3709                 bytenr = btrfs_sb_offset(i);
3710                 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3711                     scrub_dev->commit_total_bytes)
3712                         break;
3713
3714                 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3715                                   scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3716                                   NULL, 1, bytenr);
3717                 if (ret)
3718                         return ret;
3719         }
3720         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3721
3722         return 0;
3723 }
3724
3725 /*
3726  * get a reference count on fs_info->scrub_workers. start worker if necessary
3727  */
3728 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3729                                                 int is_dev_replace)
3730 {
3731         unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3732         int max_active = fs_info->thread_pool_size;
3733
3734         if (fs_info->scrub_workers_refcnt == 0) {
3735                 if (is_dev_replace)
3736                         fs_info->scrub_workers =
3737                                 btrfs_alloc_workqueue("btrfs-scrub", flags,
3738                                                       1, 4);
3739                 else
3740                         fs_info->scrub_workers =
3741                                 btrfs_alloc_workqueue("btrfs-scrub", flags,
3742                                                       max_active, 4);
3743                 if (!fs_info->scrub_workers)
3744                         goto fail_scrub_workers;
3745
3746                 fs_info->scrub_wr_completion_workers =
3747                         btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
3748                                               max_active, 2);
3749                 if (!fs_info->scrub_wr_completion_workers)
3750                         goto fail_scrub_wr_completion_workers;
3751
3752                 fs_info->scrub_nocow_workers =
3753                         btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3754                 if (!fs_info->scrub_nocow_workers)
3755                         goto fail_scrub_nocow_workers;
3756                 fs_info->scrub_parity_workers =
3757                         btrfs_alloc_workqueue("btrfs-scrubparity", flags,
3758                                               max_active, 2);
3759                 if (!fs_info->scrub_parity_workers)
3760                         goto fail_scrub_parity_workers;
3761         }
3762         ++fs_info->scrub_workers_refcnt;
3763         return 0;
3764
3765 fail_scrub_parity_workers:
3766         btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3767 fail_scrub_nocow_workers:
3768         btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3769 fail_scrub_wr_completion_workers:
3770         btrfs_destroy_workqueue(fs_info->scrub_workers);
3771 fail_scrub_workers:
3772         return -ENOMEM;
3773 }
3774
3775 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3776 {
3777         if (--fs_info->scrub_workers_refcnt == 0) {
3778                 btrfs_destroy_workqueue(fs_info->scrub_workers);
3779                 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3780                 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3781                 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3782         }
3783         WARN_ON(fs_info->scrub_workers_refcnt < 0);
3784 }
3785
3786 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3787                     u64 end, struct btrfs_scrub_progress *progress,
3788                     int readonly, int is_dev_replace)
3789 {
3790         struct scrub_ctx *sctx;
3791         int ret;
3792         struct btrfs_device *dev;
3793         struct rcu_string *name;
3794
3795         if (btrfs_fs_closing(fs_info))
3796                 return -EINVAL;
3797
3798         if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3799                 /*
3800                  * in this case scrub is unable to calculate the checksum
3801                  * the way scrub is implemented. Do not handle this
3802                  * situation at all because it won't ever happen.
3803                  */
3804                 btrfs_err(fs_info,
3805                            "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3806                        fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3807                 return -EINVAL;
3808         }
3809
3810         if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3811                 /* not supported for data w/o checksums */
3812                 btrfs_err(fs_info,
3813                            "scrub: size assumption sectorsize != PAGE_SIZE "
3814                            "(%d != %lu) fails",
3815                        fs_info->chunk_root->sectorsize, PAGE_SIZE);
3816                 return -EINVAL;
3817         }
3818
3819         if (fs_info->chunk_root->nodesize >
3820             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3821             fs_info->chunk_root->sectorsize >
3822             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3823                 /*
3824                  * would exhaust the array bounds of pagev member in
3825                  * struct scrub_block
3826                  */
3827                 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3828                            "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3829                        fs_info->chunk_root->nodesize,
3830                        SCRUB_MAX_PAGES_PER_BLOCK,
3831                        fs_info->chunk_root->sectorsize,
3832                        SCRUB_MAX_PAGES_PER_BLOCK);
3833                 return -EINVAL;
3834         }
3835
3836
3837         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3838         dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3839         if (!dev || (dev->missing && !is_dev_replace)) {
3840                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3841                 return -ENODEV;
3842         }
3843
3844         if (!is_dev_replace && !readonly && !dev->writeable) {
3845                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3846                 rcu_read_lock();
3847                 name = rcu_dereference(dev->name);
3848                 btrfs_err(fs_info, "scrub: device %s is not writable",
3849                           name->str);
3850                 rcu_read_unlock();
3851                 return -EROFS;
3852         }
3853
3854         mutex_lock(&fs_info->scrub_lock);
3855         if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3856                 mutex_unlock(&fs_info->scrub_lock);
3857                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3858                 return -EIO;
3859         }
3860
3861         btrfs_dev_replace_lock(&fs_info->dev_replace);
3862         if (dev->scrub_device ||
3863             (!is_dev_replace &&
3864              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3865                 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3866                 mutex_unlock(&fs_info->scrub_lock);
3867                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3868                 return -EINPROGRESS;
3869         }
3870         btrfs_dev_replace_unlock(&fs_info->dev_replace);
3871
3872         ret = scrub_workers_get(fs_info, is_dev_replace);
3873         if (ret) {
3874                 mutex_unlock(&fs_info->scrub_lock);
3875                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3876                 return ret;
3877         }
3878
3879         sctx = scrub_setup_ctx(dev, is_dev_replace);
3880         if (IS_ERR(sctx)) {
3881                 mutex_unlock(&fs_info->scrub_lock);
3882                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3883                 scrub_workers_put(fs_info);
3884                 return PTR_ERR(sctx);
3885         }
3886         sctx->readonly = readonly;
3887         dev->scrub_device = sctx;
3888         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3889
3890         /*
3891          * checking @scrub_pause_req here, we can avoid
3892          * race between committing transaction and scrubbing.
3893          */
3894         __scrub_blocked_if_needed(fs_info);
3895         atomic_inc(&fs_info->scrubs_running);
3896         mutex_unlock(&fs_info->scrub_lock);
3897
3898         if (!is_dev_replace) {
3899                 /*
3900                  * by holding device list mutex, we can
3901                  * kick off writing super in log tree sync.
3902                  */
3903                 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3904                 ret = scrub_supers(sctx, dev);
3905                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3906         }
3907
3908         if (!ret)
3909                 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3910                                              is_dev_replace);
3911
3912         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3913         atomic_dec(&fs_info->scrubs_running);
3914         wake_up(&fs_info->scrub_pause_wait);
3915
3916         wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3917
3918         if (progress)
3919                 memcpy(progress, &sctx->stat, sizeof(*progress));
3920
3921         mutex_lock(&fs_info->scrub_lock);
3922         dev->scrub_device = NULL;
3923         scrub_workers_put(fs_info);
3924         mutex_unlock(&fs_info->scrub_lock);
3925
3926         scrub_put_ctx(sctx);
3927
3928         return ret;
3929 }
3930
3931 void btrfs_scrub_pause(struct btrfs_root *root)
3932 {
3933         struct btrfs_fs_info *fs_info = root->fs_info;
3934
3935         mutex_lock(&fs_info->scrub_lock);
3936         atomic_inc(&fs_info->scrub_pause_req);
3937         while (atomic_read(&fs_info->scrubs_paused) !=
3938                atomic_read(&fs_info->scrubs_running)) {
3939                 mutex_unlock(&fs_info->scrub_lock);
3940                 wait_event(fs_info->scrub_pause_wait,
3941                            atomic_read(&fs_info->scrubs_paused) ==
3942                            atomic_read(&fs_info->scrubs_running));
3943                 mutex_lock(&fs_info->scrub_lock);
3944         }
3945         mutex_unlock(&fs_info->scrub_lock);
3946 }
3947
3948 void btrfs_scrub_continue(struct btrfs_root *root)
3949 {
3950         struct btrfs_fs_info *fs_info = root->fs_info;
3951
3952         atomic_dec(&fs_info->scrub_pause_req);
3953         wake_up(&fs_info->scrub_pause_wait);
3954 }
3955
3956 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3957 {
3958         mutex_lock(&fs_info->scrub_lock);
3959         if (!atomic_read(&fs_info->scrubs_running)) {
3960                 mutex_unlock(&fs_info->scrub_lock);
3961                 return -ENOTCONN;
3962         }
3963
3964         atomic_inc(&fs_info->scrub_cancel_req);
3965         while (atomic_read(&fs_info->scrubs_running)) {
3966                 mutex_unlock(&fs_info->scrub_lock);
3967                 wait_event(fs_info->scrub_pause_wait,
3968                            atomic_read(&fs_info->scrubs_running) == 0);
3969                 mutex_lock(&fs_info->scrub_lock);
3970         }
3971         atomic_dec(&fs_info->scrub_cancel_req);
3972         mutex_unlock(&fs_info->scrub_lock);
3973
3974         return 0;
3975 }
3976
3977 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3978                            struct btrfs_device *dev)
3979 {
3980         struct scrub_ctx *sctx;
3981
3982         mutex_lock(&fs_info->scrub_lock);
3983         sctx = dev->scrub_device;
3984         if (!sctx) {
3985                 mutex_unlock(&fs_info->scrub_lock);
3986                 return -ENOTCONN;
3987         }
3988         atomic_inc(&sctx->cancel_req);
3989         while (dev->scrub_device) {
3990                 mutex_unlock(&fs_info->scrub_lock);
3991                 wait_event(fs_info->scrub_pause_wait,
3992                            dev->scrub_device == NULL);
3993                 mutex_lock(&fs_info->scrub_lock);
3994         }
3995         mutex_unlock(&fs_info->scrub_lock);
3996
3997         return 0;
3998 }
3999
4000 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4001                          struct btrfs_scrub_progress *progress)
4002 {
4003         struct btrfs_device *dev;
4004         struct scrub_ctx *sctx = NULL;
4005
4006         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
4007         dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
4008         if (dev)
4009                 sctx = dev->scrub_device;
4010         if (sctx)
4011                 memcpy(progress, &sctx->stat, sizeof(*progress));
4012         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
4013
4014         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4015 }
4016
4017 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4018                                u64 extent_logical, u64 extent_len,
4019                                u64 *extent_physical,
4020                                struct btrfs_device **extent_dev,
4021                                int *extent_mirror_num)
4022 {
4023         u64 mapped_length;
4024         struct btrfs_bio *bbio = NULL;
4025         int ret;
4026
4027         mapped_length = extent_len;
4028         ret = btrfs_map_block(fs_info, READ, extent_logical,
4029                               &mapped_length, &bbio, 0);
4030         if (ret || !bbio || mapped_length < extent_len ||
4031             !bbio->stripes[0].dev->bdev) {
4032                 btrfs_put_bbio(bbio);
4033                 return;
4034         }
4035
4036         *extent_physical = bbio->stripes[0].physical;
4037         *extent_mirror_num = bbio->mirror_num;
4038         *extent_dev = bbio->stripes[0].dev;
4039         btrfs_put_bbio(bbio);
4040 }
4041
4042 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4043                               struct scrub_wr_ctx *wr_ctx,
4044                               struct btrfs_fs_info *fs_info,
4045                               struct btrfs_device *dev,
4046                               int is_dev_replace)
4047 {
4048         WARN_ON(wr_ctx->wr_curr_bio != NULL);
4049
4050         mutex_init(&wr_ctx->wr_lock);
4051         wr_ctx->wr_curr_bio = NULL;
4052         if (!is_dev_replace)
4053                 return 0;
4054
4055         WARN_ON(!dev->bdev);
4056         wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4057         wr_ctx->tgtdev = dev;
4058         atomic_set(&wr_ctx->flush_all_writes, 0);
4059         return 0;
4060 }
4061
4062 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4063 {
4064         mutex_lock(&wr_ctx->wr_lock);
4065         kfree(wr_ctx->wr_curr_bio);
4066         wr_ctx->wr_curr_bio = NULL;
4067         mutex_unlock(&wr_ctx->wr_lock);
4068 }
4069
4070 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4071                             int mirror_num, u64 physical_for_dev_replace)
4072 {
4073         struct scrub_copy_nocow_ctx *nocow_ctx;
4074         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
4075
4076         nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4077         if (!nocow_ctx) {
4078                 spin_lock(&sctx->stat_lock);
4079                 sctx->stat.malloc_errors++;
4080                 spin_unlock(&sctx->stat_lock);
4081                 return -ENOMEM;
4082         }
4083
4084         scrub_pending_trans_workers_inc(sctx);
4085
4086         nocow_ctx->sctx = sctx;
4087         nocow_ctx->logical = logical;
4088         nocow_ctx->len = len;
4089         nocow_ctx->mirror_num = mirror_num;
4090         nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4091         btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4092                         copy_nocow_pages_worker, NULL, NULL);
4093         INIT_LIST_HEAD(&nocow_ctx->inodes);
4094         btrfs_queue_work(fs_info->scrub_nocow_workers,
4095                          &nocow_ctx->work);
4096
4097         return 0;
4098 }
4099
4100 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4101 {
4102         struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4103         struct scrub_nocow_inode *nocow_inode;
4104
4105         nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4106         if (!nocow_inode)
4107                 return -ENOMEM;
4108         nocow_inode->inum = inum;
4109         nocow_inode->offset = offset;
4110         nocow_inode->root = root;
4111         list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4112         return 0;
4113 }
4114
4115 #define COPY_COMPLETE 1
4116
4117 static void copy_nocow_pages_worker(struct btrfs_work *work)
4118 {
4119         struct scrub_copy_nocow_ctx *nocow_ctx =
4120                 container_of(work, struct scrub_copy_nocow_ctx, work);
4121         struct scrub_ctx *sctx = nocow_ctx->sctx;
4122         u64 logical = nocow_ctx->logical;
4123         u64 len = nocow_ctx->len;
4124         int mirror_num = nocow_ctx->mirror_num;
4125         u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4126         int ret;
4127         struct btrfs_trans_handle *trans = NULL;
4128         struct btrfs_fs_info *fs_info;
4129         struct btrfs_path *path;
4130         struct btrfs_root *root;
4131         int not_written = 0;
4132
4133         fs_info = sctx->dev_root->fs_info;
4134         root = fs_info->extent_root;
4135
4136         path = btrfs_alloc_path();
4137         if (!path) {
4138                 spin_lock(&sctx->stat_lock);
4139                 sctx->stat.malloc_errors++;
4140                 spin_unlock(&sctx->stat_lock);
4141                 not_written = 1;
4142                 goto out;
4143         }
4144
4145         trans = btrfs_join_transaction(root);
4146         if (IS_ERR(trans)) {
4147                 not_written = 1;
4148                 goto out;
4149         }
4150
4151         ret = iterate_inodes_from_logical(logical, fs_info, path,
4152                                           record_inode_for_nocow, nocow_ctx);
4153         if (ret != 0 && ret != -ENOENT) {
4154                 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
4155                         "phys %llu, len %llu, mir %u, ret %d",
4156                         logical, physical_for_dev_replace, len, mirror_num,
4157                         ret);
4158                 not_written = 1;
4159                 goto out;
4160         }
4161
4162         btrfs_end_transaction(trans, root);
4163         trans = NULL;
4164         while (!list_empty(&nocow_ctx->inodes)) {
4165                 struct scrub_nocow_inode *entry;
4166                 entry = list_first_entry(&nocow_ctx->inodes,
4167                                          struct scrub_nocow_inode,
4168                                          list);
4169                 list_del_init(&entry->list);
4170                 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4171                                                  entry->root, nocow_ctx);
4172                 kfree(entry);
4173                 if (ret == COPY_COMPLETE) {
4174                         ret = 0;
4175                         break;
4176                 } else if (ret) {
4177                         break;
4178                 }
4179         }
4180 out:
4181         while (!list_empty(&nocow_ctx->inodes)) {
4182                 struct scrub_nocow_inode *entry;
4183                 entry = list_first_entry(&nocow_ctx->inodes,
4184                                          struct scrub_nocow_inode,
4185                                          list);
4186                 list_del_init(&entry->list);
4187                 kfree(entry);
4188         }
4189         if (trans && !IS_ERR(trans))
4190                 btrfs_end_transaction(trans, root);
4191         if (not_written)
4192                 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4193                                             num_uncorrectable_read_errors);
4194
4195         btrfs_free_path(path);
4196         kfree(nocow_ctx);
4197
4198         scrub_pending_trans_workers_dec(sctx);
4199 }
4200
4201 static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4202                                  u64 logical)
4203 {
4204         struct extent_state *cached_state = NULL;
4205         struct btrfs_ordered_extent *ordered;
4206         struct extent_io_tree *io_tree;
4207         struct extent_map *em;
4208         u64 lockstart = start, lockend = start + len - 1;
4209         int ret = 0;
4210
4211         io_tree = &BTRFS_I(inode)->io_tree;
4212
4213         lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
4214         ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4215         if (ordered) {
4216                 btrfs_put_ordered_extent(ordered);
4217                 ret = 1;
4218                 goto out_unlock;
4219         }
4220
4221         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4222         if (IS_ERR(em)) {
4223                 ret = PTR_ERR(em);
4224                 goto out_unlock;
4225         }
4226
4227         /*
4228          * This extent does not actually cover the logical extent anymore,
4229          * move on to the next inode.
4230          */
4231         if (em->block_start > logical ||
4232             em->block_start + em->block_len < logical + len) {
4233                 free_extent_map(em);
4234                 ret = 1;
4235                 goto out_unlock;
4236         }
4237         free_extent_map(em);
4238
4239 out_unlock:
4240         unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4241                              GFP_NOFS);
4242         return ret;
4243 }
4244
4245 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4246                                       struct scrub_copy_nocow_ctx *nocow_ctx)
4247 {
4248         struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4249         struct btrfs_key key;
4250         struct inode *inode;
4251         struct page *page;
4252         struct btrfs_root *local_root;
4253         struct extent_io_tree *io_tree;
4254         u64 physical_for_dev_replace;
4255         u64 nocow_ctx_logical;
4256         u64 len = nocow_ctx->len;
4257         unsigned long index;
4258         int srcu_index;
4259         int ret = 0;
4260         int err = 0;
4261
4262         key.objectid = root;
4263         key.type = BTRFS_ROOT_ITEM_KEY;
4264         key.offset = (u64)-1;
4265
4266         srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4267
4268         local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4269         if (IS_ERR(local_root)) {
4270                 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4271                 return PTR_ERR(local_root);
4272         }
4273
4274         key.type = BTRFS_INODE_ITEM_KEY;
4275         key.objectid = inum;
4276         key.offset = 0;
4277         inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4278         srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4279         if (IS_ERR(inode))
4280                 return PTR_ERR(inode);
4281
4282         /* Avoid truncate/dio/punch hole.. */
4283         mutex_lock(&inode->i_mutex);
4284         inode_dio_wait(inode);
4285
4286         physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4287         io_tree = &BTRFS_I(inode)->io_tree;
4288         nocow_ctx_logical = nocow_ctx->logical;
4289
4290         ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4291         if (ret) {
4292                 ret = ret > 0 ? 0 : ret;
4293                 goto out;
4294         }
4295
4296         while (len >= PAGE_CACHE_SIZE) {
4297                 index = offset >> PAGE_CACHE_SHIFT;
4298 again:
4299                 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4300                 if (!page) {
4301                         btrfs_err(fs_info, "find_or_create_page() failed");
4302                         ret = -ENOMEM;
4303                         goto out;
4304                 }
4305
4306                 if (PageUptodate(page)) {
4307                         if (PageDirty(page))
4308                                 goto next_page;
4309                 } else {
4310                         ClearPageError(page);
4311                         err = extent_read_full_page(io_tree, page,
4312                                                            btrfs_get_extent,
4313                                                            nocow_ctx->mirror_num);
4314                         if (err) {
4315                                 ret = err;
4316                                 goto next_page;
4317                         }
4318
4319                         lock_page(page);
4320                         /*
4321                          * If the page has been remove from the page cache,
4322                          * the data on it is meaningless, because it may be
4323                          * old one, the new data may be written into the new
4324                          * page in the page cache.
4325                          */
4326                         if (page->mapping != inode->i_mapping) {
4327                                 unlock_page(page);
4328                                 page_cache_release(page);
4329                                 goto again;
4330                         }
4331                         if (!PageUptodate(page)) {
4332                                 ret = -EIO;
4333                                 goto next_page;
4334                         }
4335                 }
4336
4337                 ret = check_extent_to_block(inode, offset, len,
4338                                             nocow_ctx_logical);
4339                 if (ret) {
4340                         ret = ret > 0 ? 0 : ret;
4341                         goto next_page;
4342                 }
4343
4344                 err = write_page_nocow(nocow_ctx->sctx,
4345                                        physical_for_dev_replace, page);
4346                 if (err)
4347                         ret = err;
4348 next_page:
4349                 unlock_page(page);
4350                 page_cache_release(page);
4351
4352                 if (ret)
4353                         break;
4354
4355                 offset += PAGE_CACHE_SIZE;
4356                 physical_for_dev_replace += PAGE_CACHE_SIZE;
4357                 nocow_ctx_logical += PAGE_CACHE_SIZE;
4358                 len -= PAGE_CACHE_SIZE;
4359         }
4360         ret = COPY_COMPLETE;
4361 out:
4362         mutex_unlock(&inode->i_mutex);
4363         iput(inode);
4364         return ret;
4365 }
4366
4367 static int write_page_nocow(struct scrub_ctx *sctx,
4368                             u64 physical_for_dev_replace, struct page *page)
4369 {
4370         struct bio *bio;
4371         struct btrfs_device *dev;
4372         int ret;
4373
4374         dev = sctx->wr_ctx.tgtdev;
4375         if (!dev)
4376                 return -EIO;
4377         if (!dev->bdev) {
4378                 printk_ratelimited(KERN_WARNING
4379                         "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4380                 return -EIO;
4381         }
4382         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4383         if (!bio) {
4384                 spin_lock(&sctx->stat_lock);
4385                 sctx->stat.malloc_errors++;
4386                 spin_unlock(&sctx->stat_lock);
4387                 return -ENOMEM;
4388         }
4389         bio->bi_iter.bi_size = 0;
4390         bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4391         bio->bi_bdev = dev->bdev;
4392         ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
4393         if (ret != PAGE_CACHE_SIZE) {
4394 leave_with_eio:
4395                 bio_put(bio);
4396                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4397                 return -EIO;
4398         }
4399
4400         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4401                 goto leave_with_eio;
4402
4403         bio_put(bio);
4404         return 0;
4405 }