]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/buffer.c
pnfs/blocklayout: include vmalloc.h for __vmalloc
[karo-tx-linux.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59         trace_block_touch_buffer(bh);
60         mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63
64 void __lock_buffer(struct buffer_head *bh)
65 {
66         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69
70 void unlock_buffer(struct buffer_head *bh)
71 {
72         clear_bit_unlock(BH_Lock, &bh->b_state);
73         smp_mb__after_atomic();
74         wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77
78 /*
79  * Returns if the page has dirty or writeback buffers. If all the buffers
80  * are unlocked and clean then the PageDirty information is stale. If
81  * any of the pages are locked, it is assumed they are locked for IO.
82  */
83 void buffer_check_dirty_writeback(struct page *page,
84                                      bool *dirty, bool *writeback)
85 {
86         struct buffer_head *head, *bh;
87         *dirty = false;
88         *writeback = false;
89
90         BUG_ON(!PageLocked(page));
91
92         if (!page_has_buffers(page))
93                 return;
94
95         if (PageWriteback(page))
96                 *writeback = true;
97
98         head = page_buffers(page);
99         bh = head;
100         do {
101                 if (buffer_locked(bh))
102                         *writeback = true;
103
104                 if (buffer_dirty(bh))
105                         *dirty = true;
106
107                 bh = bh->b_this_page;
108         } while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
112 /*
113  * Block until a buffer comes unlocked.  This doesn't stop it
114  * from becoming locked again - you have to lock it yourself
115  * if you want to preserve its state.
116  */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126         ClearPagePrivate(page);
127         set_page_private(page, 0);
128         page_cache_release(page);
129 }
130
131
132 static int quiet_error(struct buffer_head *bh)
133 {
134         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
135                 return 0;
136         return 1;
137 }
138
139
140 static void buffer_io_error(struct buffer_head *bh)
141 {
142         char b[BDEVNAME_SIZE];
143         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
144                         bdevname(bh->b_bdev, b),
145                         (unsigned long long)bh->b_blocknr);
146 }
147
148 /*
149  * End-of-IO handler helper function which does not touch the bh after
150  * unlocking it.
151  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152  * a race there is benign: unlock_buffer() only use the bh's address for
153  * hashing after unlocking the buffer, so it doesn't actually touch the bh
154  * itself.
155  */
156 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
157 {
158         if (uptodate) {
159                 set_buffer_uptodate(bh);
160         } else {
161                 /* This happens, due to failed READA attempts. */
162                 clear_buffer_uptodate(bh);
163         }
164         unlock_buffer(bh);
165 }
166
167 /*
168  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
169  * unlock the buffer. This is what ll_rw_block uses too.
170  */
171 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
172 {
173         __end_buffer_read_notouch(bh, uptodate);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_read_sync);
177
178 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
179 {
180         char b[BDEVNAME_SIZE];
181
182         if (uptodate) {
183                 set_buffer_uptodate(bh);
184         } else {
185                 if (!quiet_error(bh)) {
186                         buffer_io_error(bh);
187                         printk(KERN_WARNING "lost page write due to "
188                                         "I/O error on %s\n",
189                                        bdevname(bh->b_bdev, b));
190                 }
191                 set_buffer_write_io_error(bh);
192                 clear_buffer_uptodate(bh);
193         }
194         unlock_buffer(bh);
195         put_bh(bh);
196 }
197 EXPORT_SYMBOL(end_buffer_write_sync);
198
199 /*
200  * Various filesystems appear to want __find_get_block to be non-blocking.
201  * But it's the page lock which protects the buffers.  To get around this,
202  * we get exclusion from try_to_free_buffers with the blockdev mapping's
203  * private_lock.
204  *
205  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206  * may be quite high.  This code could TryLock the page, and if that
207  * succeeds, there is no need to take private_lock. (But if
208  * private_lock is contended then so is mapping->tree_lock).
209  */
210 static struct buffer_head *
211 __find_get_block_slow(struct block_device *bdev, sector_t block)
212 {
213         struct inode *bd_inode = bdev->bd_inode;
214         struct address_space *bd_mapping = bd_inode->i_mapping;
215         struct buffer_head *ret = NULL;
216         pgoff_t index;
217         struct buffer_head *bh;
218         struct buffer_head *head;
219         struct page *page;
220         int all_mapped = 1;
221
222         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
223         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
224         if (!page)
225                 goto out;
226
227         spin_lock(&bd_mapping->private_lock);
228         if (!page_has_buffers(page))
229                 goto out_unlock;
230         head = page_buffers(page);
231         bh = head;
232         do {
233                 if (!buffer_mapped(bh))
234                         all_mapped = 0;
235                 else if (bh->b_blocknr == block) {
236                         ret = bh;
237                         get_bh(bh);
238                         goto out_unlock;
239                 }
240                 bh = bh->b_this_page;
241         } while (bh != head);
242
243         /* we might be here because some of the buffers on this page are
244          * not mapped.  This is due to various races between
245          * file io on the block device and getblk.  It gets dealt with
246          * elsewhere, don't buffer_error if we had some unmapped buffers
247          */
248         if (all_mapped) {
249                 char b[BDEVNAME_SIZE];
250
251                 printk("__find_get_block_slow() failed. "
252                         "block=%llu, b_blocknr=%llu\n",
253                         (unsigned long long)block,
254                         (unsigned long long)bh->b_blocknr);
255                 printk("b_state=0x%08lx, b_size=%zu\n",
256                         bh->b_state, bh->b_size);
257                 printk("device %s blocksize: %d\n", bdevname(bdev, b),
258                         1 << bd_inode->i_blkbits);
259         }
260 out_unlock:
261         spin_unlock(&bd_mapping->private_lock);
262         page_cache_release(page);
263 out:
264         return ret;
265 }
266
267 /*
268  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
269  */
270 static void free_more_memory(void)
271 {
272         struct zone *zone;
273         int nid;
274
275         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
276         yield();
277
278         for_each_online_node(nid) {
279                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
280                                                 gfp_zone(GFP_NOFS), NULL,
281                                                 &zone);
282                 if (zone)
283                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
284                                                 GFP_NOFS, NULL);
285         }
286 }
287
288 /*
289  * I/O completion handler for block_read_full_page() - pages
290  * which come unlocked at the end of I/O.
291  */
292 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
293 {
294         unsigned long flags;
295         struct buffer_head *first;
296         struct buffer_head *tmp;
297         struct page *page;
298         int page_uptodate = 1;
299
300         BUG_ON(!buffer_async_read(bh));
301
302         page = bh->b_page;
303         if (uptodate) {
304                 set_buffer_uptodate(bh);
305         } else {
306                 clear_buffer_uptodate(bh);
307                 if (!quiet_error(bh))
308                         buffer_io_error(bh);
309                 SetPageError(page);
310         }
311
312         /*
313          * Be _very_ careful from here on. Bad things can happen if
314          * two buffer heads end IO at almost the same time and both
315          * decide that the page is now completely done.
316          */
317         first = page_buffers(page);
318         local_irq_save(flags);
319         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
320         clear_buffer_async_read(bh);
321         unlock_buffer(bh);
322         tmp = bh;
323         do {
324                 if (!buffer_uptodate(tmp))
325                         page_uptodate = 0;
326                 if (buffer_async_read(tmp)) {
327                         BUG_ON(!buffer_locked(tmp));
328                         goto still_busy;
329                 }
330                 tmp = tmp->b_this_page;
331         } while (tmp != bh);
332         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333         local_irq_restore(flags);
334
335         /*
336          * If none of the buffers had errors and they are all
337          * uptodate then we can set the page uptodate.
338          */
339         if (page_uptodate && !PageError(page))
340                 SetPageUptodate(page);
341         unlock_page(page);
342         return;
343
344 still_busy:
345         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346         local_irq_restore(flags);
347         return;
348 }
349
350 /*
351  * Completion handler for block_write_full_page() - pages which are unlocked
352  * during I/O, and which have PageWriteback cleared upon I/O completion.
353  */
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
355 {
356         char b[BDEVNAME_SIZE];
357         unsigned long flags;
358         struct buffer_head *first;
359         struct buffer_head *tmp;
360         struct page *page;
361
362         BUG_ON(!buffer_async_write(bh));
363
364         page = bh->b_page;
365         if (uptodate) {
366                 set_buffer_uptodate(bh);
367         } else {
368                 if (!quiet_error(bh)) {
369                         buffer_io_error(bh);
370                         printk(KERN_WARNING "lost page write due to "
371                                         "I/O error on %s\n",
372                                bdevname(bh->b_bdev, b));
373                 }
374                 set_bit(AS_EIO, &page->mapping->flags);
375                 set_buffer_write_io_error(bh);
376                 clear_buffer_uptodate(bh);
377                 SetPageError(page);
378         }
379
380         first = page_buffers(page);
381         local_irq_save(flags);
382         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
383
384         clear_buffer_async_write(bh);
385         unlock_buffer(bh);
386         tmp = bh->b_this_page;
387         while (tmp != bh) {
388                 if (buffer_async_write(tmp)) {
389                         BUG_ON(!buffer_locked(tmp));
390                         goto still_busy;
391                 }
392                 tmp = tmp->b_this_page;
393         }
394         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
395         local_irq_restore(flags);
396         end_page_writeback(page);
397         return;
398
399 still_busy:
400         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
401         local_irq_restore(flags);
402         return;
403 }
404 EXPORT_SYMBOL(end_buffer_async_write);
405
406 /*
407  * If a page's buffers are under async readin (end_buffer_async_read
408  * completion) then there is a possibility that another thread of
409  * control could lock one of the buffers after it has completed
410  * but while some of the other buffers have not completed.  This
411  * locked buffer would confuse end_buffer_async_read() into not unlocking
412  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
413  * that this buffer is not under async I/O.
414  *
415  * The page comes unlocked when it has no locked buffer_async buffers
416  * left.
417  *
418  * PageLocked prevents anyone starting new async I/O reads any of
419  * the buffers.
420  *
421  * PageWriteback is used to prevent simultaneous writeout of the same
422  * page.
423  *
424  * PageLocked prevents anyone from starting writeback of a page which is
425  * under read I/O (PageWriteback is only ever set against a locked page).
426  */
427 static void mark_buffer_async_read(struct buffer_head *bh)
428 {
429         bh->b_end_io = end_buffer_async_read;
430         set_buffer_async_read(bh);
431 }
432
433 static void mark_buffer_async_write_endio(struct buffer_head *bh,
434                                           bh_end_io_t *handler)
435 {
436         bh->b_end_io = handler;
437         set_buffer_async_write(bh);
438 }
439
440 void mark_buffer_async_write(struct buffer_head *bh)
441 {
442         mark_buffer_async_write_endio(bh, end_buffer_async_write);
443 }
444 EXPORT_SYMBOL(mark_buffer_async_write);
445
446
447 /*
448  * fs/buffer.c contains helper functions for buffer-backed address space's
449  * fsync functions.  A common requirement for buffer-based filesystems is
450  * that certain data from the backing blockdev needs to be written out for
451  * a successful fsync().  For example, ext2 indirect blocks need to be
452  * written back and waited upon before fsync() returns.
453  *
454  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456  * management of a list of dependent buffers at ->i_mapping->private_list.
457  *
458  * Locking is a little subtle: try_to_free_buffers() will remove buffers
459  * from their controlling inode's queue when they are being freed.  But
460  * try_to_free_buffers() will be operating against the *blockdev* mapping
461  * at the time, not against the S_ISREG file which depends on those buffers.
462  * So the locking for private_list is via the private_lock in the address_space
463  * which backs the buffers.  Which is different from the address_space 
464  * against which the buffers are listed.  So for a particular address_space,
465  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
466  * mapping->private_list will always be protected by the backing blockdev's
467  * ->private_lock.
468  *
469  * Which introduces a requirement: all buffers on an address_space's
470  * ->private_list must be from the same address_space: the blockdev's.
471  *
472  * address_spaces which do not place buffers at ->private_list via these
473  * utility functions are free to use private_lock and private_list for
474  * whatever they want.  The only requirement is that list_empty(private_list)
475  * be true at clear_inode() time.
476  *
477  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
478  * filesystems should do that.  invalidate_inode_buffers() should just go
479  * BUG_ON(!list_empty).
480  *
481  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
482  * take an address_space, not an inode.  And it should be called
483  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
484  * queued up.
485  *
486  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487  * list if it is already on a list.  Because if the buffer is on a list,
488  * it *must* already be on the right one.  If not, the filesystem is being
489  * silly.  This will save a ton of locking.  But first we have to ensure
490  * that buffers are taken *off* the old inode's list when they are freed
491  * (presumably in truncate).  That requires careful auditing of all
492  * filesystems (do it inside bforget()).  It could also be done by bringing
493  * b_inode back.
494  */
495
496 /*
497  * The buffer's backing address_space's private_lock must be held
498  */
499 static void __remove_assoc_queue(struct buffer_head *bh)
500 {
501         list_del_init(&bh->b_assoc_buffers);
502         WARN_ON(!bh->b_assoc_map);
503         if (buffer_write_io_error(bh))
504                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
505         bh->b_assoc_map = NULL;
506 }
507
508 int inode_has_buffers(struct inode *inode)
509 {
510         return !list_empty(&inode->i_data.private_list);
511 }
512
513 /*
514  * osync is designed to support O_SYNC io.  It waits synchronously for
515  * all already-submitted IO to complete, but does not queue any new
516  * writes to the disk.
517  *
518  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519  * you dirty the buffers, and then use osync_inode_buffers to wait for
520  * completion.  Any other dirty buffers which are not yet queued for
521  * write will not be flushed to disk by the osync.
522  */
523 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
524 {
525         struct buffer_head *bh;
526         struct list_head *p;
527         int err = 0;
528
529         spin_lock(lock);
530 repeat:
531         list_for_each_prev(p, list) {
532                 bh = BH_ENTRY(p);
533                 if (buffer_locked(bh)) {
534                         get_bh(bh);
535                         spin_unlock(lock);
536                         wait_on_buffer(bh);
537                         if (!buffer_uptodate(bh))
538                                 err = -EIO;
539                         brelse(bh);
540                         spin_lock(lock);
541                         goto repeat;
542                 }
543         }
544         spin_unlock(lock);
545         return err;
546 }
547
548 static void do_thaw_one(struct super_block *sb, void *unused)
549 {
550         char b[BDEVNAME_SIZE];
551         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
552                 printk(KERN_WARNING "Emergency Thaw on %s\n",
553                        bdevname(sb->s_bdev, b));
554 }
555
556 static void do_thaw_all(struct work_struct *work)
557 {
558         iterate_supers(do_thaw_one, NULL);
559         kfree(work);
560         printk(KERN_WARNING "Emergency Thaw complete\n");
561 }
562
563 /**
564  * emergency_thaw_all -- forcibly thaw every frozen filesystem
565  *
566  * Used for emergency unfreeze of all filesystems via SysRq
567  */
568 void emergency_thaw_all(void)
569 {
570         struct work_struct *work;
571
572         work = kmalloc(sizeof(*work), GFP_ATOMIC);
573         if (work) {
574                 INIT_WORK(work, do_thaw_all);
575                 schedule_work(work);
576         }
577 }
578
579 /**
580  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
581  * @mapping: the mapping which wants those buffers written
582  *
583  * Starts I/O against the buffers at mapping->private_list, and waits upon
584  * that I/O.
585  *
586  * Basically, this is a convenience function for fsync().
587  * @mapping is a file or directory which needs those buffers to be written for
588  * a successful fsync().
589  */
590 int sync_mapping_buffers(struct address_space *mapping)
591 {
592         struct address_space *buffer_mapping = mapping->private_data;
593
594         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
595                 return 0;
596
597         return fsync_buffers_list(&buffer_mapping->private_lock,
598                                         &mapping->private_list);
599 }
600 EXPORT_SYMBOL(sync_mapping_buffers);
601
602 /*
603  * Called when we've recently written block `bblock', and it is known that
604  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
605  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
606  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
607  */
608 void write_boundary_block(struct block_device *bdev,
609                         sector_t bblock, unsigned blocksize)
610 {
611         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
612         if (bh) {
613                 if (buffer_dirty(bh))
614                         ll_rw_block(WRITE, 1, &bh);
615                 put_bh(bh);
616         }
617 }
618
619 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
620 {
621         struct address_space *mapping = inode->i_mapping;
622         struct address_space *buffer_mapping = bh->b_page->mapping;
623
624         mark_buffer_dirty(bh);
625         if (!mapping->private_data) {
626                 mapping->private_data = buffer_mapping;
627         } else {
628                 BUG_ON(mapping->private_data != buffer_mapping);
629         }
630         if (!bh->b_assoc_map) {
631                 spin_lock(&buffer_mapping->private_lock);
632                 list_move_tail(&bh->b_assoc_buffers,
633                                 &mapping->private_list);
634                 bh->b_assoc_map = mapping;
635                 spin_unlock(&buffer_mapping->private_lock);
636         }
637 }
638 EXPORT_SYMBOL(mark_buffer_dirty_inode);
639
640 /*
641  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
642  * dirty.
643  *
644  * If warn is true, then emit a warning if the page is not uptodate and has
645  * not been truncated.
646  */
647 static void __set_page_dirty(struct page *page,
648                 struct address_space *mapping, int warn)
649 {
650         unsigned long flags;
651
652         spin_lock_irqsave(&mapping->tree_lock, flags);
653         if (page->mapping) {    /* Race with truncate? */
654                 WARN_ON_ONCE(warn && !PageUptodate(page));
655                 account_page_dirtied(page, mapping);
656                 radix_tree_tag_set(&mapping->page_tree,
657                                 page_index(page), PAGECACHE_TAG_DIRTY);
658         }
659         spin_unlock_irqrestore(&mapping->tree_lock, flags);
660         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
661 }
662
663 /*
664  * Add a page to the dirty page list.
665  *
666  * It is a sad fact of life that this function is called from several places
667  * deeply under spinlocking.  It may not sleep.
668  *
669  * If the page has buffers, the uptodate buffers are set dirty, to preserve
670  * dirty-state coherency between the page and the buffers.  It the page does
671  * not have buffers then when they are later attached they will all be set
672  * dirty.
673  *
674  * The buffers are dirtied before the page is dirtied.  There's a small race
675  * window in which a writepage caller may see the page cleanness but not the
676  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
677  * before the buffers, a concurrent writepage caller could clear the page dirty
678  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679  * page on the dirty page list.
680  *
681  * We use private_lock to lock against try_to_free_buffers while using the
682  * page's buffer list.  Also use this to protect against clean buffers being
683  * added to the page after it was set dirty.
684  *
685  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
686  * address_space though.
687  */
688 int __set_page_dirty_buffers(struct page *page)
689 {
690         int newly_dirty;
691         struct address_space *mapping = page_mapping(page);
692
693         if (unlikely(!mapping))
694                 return !TestSetPageDirty(page);
695
696         spin_lock(&mapping->private_lock);
697         if (page_has_buffers(page)) {
698                 struct buffer_head *head = page_buffers(page);
699                 struct buffer_head *bh = head;
700
701                 do {
702                         set_buffer_dirty(bh);
703                         bh = bh->b_this_page;
704                 } while (bh != head);
705         }
706         newly_dirty = !TestSetPageDirty(page);
707         spin_unlock(&mapping->private_lock);
708
709         if (newly_dirty)
710                 __set_page_dirty(page, mapping, 1);
711         return newly_dirty;
712 }
713 EXPORT_SYMBOL(__set_page_dirty_buffers);
714
715 /*
716  * Write out and wait upon a list of buffers.
717  *
718  * We have conflicting pressures: we want to make sure that all
719  * initially dirty buffers get waited on, but that any subsequently
720  * dirtied buffers don't.  After all, we don't want fsync to last
721  * forever if somebody is actively writing to the file.
722  *
723  * Do this in two main stages: first we copy dirty buffers to a
724  * temporary inode list, queueing the writes as we go.  Then we clean
725  * up, waiting for those writes to complete.
726  * 
727  * During this second stage, any subsequent updates to the file may end
728  * up refiling the buffer on the original inode's dirty list again, so
729  * there is a chance we will end up with a buffer queued for write but
730  * not yet completed on that list.  So, as a final cleanup we go through
731  * the osync code to catch these locked, dirty buffers without requeuing
732  * any newly dirty buffers for write.
733  */
734 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
735 {
736         struct buffer_head *bh;
737         struct list_head tmp;
738         struct address_space *mapping;
739         int err = 0, err2;
740         struct blk_plug plug;
741
742         INIT_LIST_HEAD(&tmp);
743         blk_start_plug(&plug);
744
745         spin_lock(lock);
746         while (!list_empty(list)) {
747                 bh = BH_ENTRY(list->next);
748                 mapping = bh->b_assoc_map;
749                 __remove_assoc_queue(bh);
750                 /* Avoid race with mark_buffer_dirty_inode() which does
751                  * a lockless check and we rely on seeing the dirty bit */
752                 smp_mb();
753                 if (buffer_dirty(bh) || buffer_locked(bh)) {
754                         list_add(&bh->b_assoc_buffers, &tmp);
755                         bh->b_assoc_map = mapping;
756                         if (buffer_dirty(bh)) {
757                                 get_bh(bh);
758                                 spin_unlock(lock);
759                                 /*
760                                  * Ensure any pending I/O completes so that
761                                  * write_dirty_buffer() actually writes the
762                                  * current contents - it is a noop if I/O is
763                                  * still in flight on potentially older
764                                  * contents.
765                                  */
766                                 write_dirty_buffer(bh, WRITE_SYNC);
767
768                                 /*
769                                  * Kick off IO for the previous mapping. Note
770                                  * that we will not run the very last mapping,
771                                  * wait_on_buffer() will do that for us
772                                  * through sync_buffer().
773                                  */
774                                 brelse(bh);
775                                 spin_lock(lock);
776                         }
777                 }
778         }
779
780         spin_unlock(lock);
781         blk_finish_plug(&plug);
782         spin_lock(lock);
783
784         while (!list_empty(&tmp)) {
785                 bh = BH_ENTRY(tmp.prev);
786                 get_bh(bh);
787                 mapping = bh->b_assoc_map;
788                 __remove_assoc_queue(bh);
789                 /* Avoid race with mark_buffer_dirty_inode() which does
790                  * a lockless check and we rely on seeing the dirty bit */
791                 smp_mb();
792                 if (buffer_dirty(bh)) {
793                         list_add(&bh->b_assoc_buffers,
794                                  &mapping->private_list);
795                         bh->b_assoc_map = mapping;
796                 }
797                 spin_unlock(lock);
798                 wait_on_buffer(bh);
799                 if (!buffer_uptodate(bh))
800                         err = -EIO;
801                 brelse(bh);
802                 spin_lock(lock);
803         }
804         
805         spin_unlock(lock);
806         err2 = osync_buffers_list(lock, list);
807         if (err)
808                 return err;
809         else
810                 return err2;
811 }
812
813 /*
814  * Invalidate any and all dirty buffers on a given inode.  We are
815  * probably unmounting the fs, but that doesn't mean we have already
816  * done a sync().  Just drop the buffers from the inode list.
817  *
818  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
819  * assumes that all the buffers are against the blockdev.  Not true
820  * for reiserfs.
821  */
822 void invalidate_inode_buffers(struct inode *inode)
823 {
824         if (inode_has_buffers(inode)) {
825                 struct address_space *mapping = &inode->i_data;
826                 struct list_head *list = &mapping->private_list;
827                 struct address_space *buffer_mapping = mapping->private_data;
828
829                 spin_lock(&buffer_mapping->private_lock);
830                 while (!list_empty(list))
831                         __remove_assoc_queue(BH_ENTRY(list->next));
832                 spin_unlock(&buffer_mapping->private_lock);
833         }
834 }
835 EXPORT_SYMBOL(invalidate_inode_buffers);
836
837 /*
838  * Remove any clean buffers from the inode's buffer list.  This is called
839  * when we're trying to free the inode itself.  Those buffers can pin it.
840  *
841  * Returns true if all buffers were removed.
842  */
843 int remove_inode_buffers(struct inode *inode)
844 {
845         int ret = 1;
846
847         if (inode_has_buffers(inode)) {
848                 struct address_space *mapping = &inode->i_data;
849                 struct list_head *list = &mapping->private_list;
850                 struct address_space *buffer_mapping = mapping->private_data;
851
852                 spin_lock(&buffer_mapping->private_lock);
853                 while (!list_empty(list)) {
854                         struct buffer_head *bh = BH_ENTRY(list->next);
855                         if (buffer_dirty(bh)) {
856                                 ret = 0;
857                                 break;
858                         }
859                         __remove_assoc_queue(bh);
860                 }
861                 spin_unlock(&buffer_mapping->private_lock);
862         }
863         return ret;
864 }
865
866 /*
867  * Create the appropriate buffers when given a page for data area and
868  * the size of each buffer.. Use the bh->b_this_page linked list to
869  * follow the buffers created.  Return NULL if unable to create more
870  * buffers.
871  *
872  * The retry flag is used to differentiate async IO (paging, swapping)
873  * which may not fail from ordinary buffer allocations.
874  */
875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876                 int retry)
877 {
878         struct buffer_head *bh, *head;
879         long offset;
880
881 try_again:
882         head = NULL;
883         offset = PAGE_SIZE;
884         while ((offset -= size) >= 0) {
885                 bh = alloc_buffer_head(GFP_NOFS);
886                 if (!bh)
887                         goto no_grow;
888
889                 bh->b_this_page = head;
890                 bh->b_blocknr = -1;
891                 head = bh;
892
893                 bh->b_size = size;
894
895                 /* Link the buffer to its page */
896                 set_bh_page(bh, page, offset);
897         }
898         return head;
899 /*
900  * In case anything failed, we just free everything we got.
901  */
902 no_grow:
903         if (head) {
904                 do {
905                         bh = head;
906                         head = head->b_this_page;
907                         free_buffer_head(bh);
908                 } while (head);
909         }
910
911         /*
912          * Return failure for non-async IO requests.  Async IO requests
913          * are not allowed to fail, so we have to wait until buffer heads
914          * become available.  But we don't want tasks sleeping with 
915          * partially complete buffers, so all were released above.
916          */
917         if (!retry)
918                 return NULL;
919
920         /* We're _really_ low on memory. Now we just
921          * wait for old buffer heads to become free due to
922          * finishing IO.  Since this is an async request and
923          * the reserve list is empty, we're sure there are 
924          * async buffer heads in use.
925          */
926         free_more_memory();
927         goto try_again;
928 }
929 EXPORT_SYMBOL_GPL(alloc_page_buffers);
930
931 static inline void
932 link_dev_buffers(struct page *page, struct buffer_head *head)
933 {
934         struct buffer_head *bh, *tail;
935
936         bh = head;
937         do {
938                 tail = bh;
939                 bh = bh->b_this_page;
940         } while (bh);
941         tail->b_this_page = head;
942         attach_page_buffers(page, head);
943 }
944
945 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
946 {
947         sector_t retval = ~((sector_t)0);
948         loff_t sz = i_size_read(bdev->bd_inode);
949
950         if (sz) {
951                 unsigned int sizebits = blksize_bits(size);
952                 retval = (sz >> sizebits);
953         }
954         return retval;
955 }
956
957 /*
958  * Initialise the state of a blockdev page's buffers.
959  */ 
960 static sector_t
961 init_page_buffers(struct page *page, struct block_device *bdev,
962                         sector_t block, int size)
963 {
964         struct buffer_head *head = page_buffers(page);
965         struct buffer_head *bh = head;
966         int uptodate = PageUptodate(page);
967         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
968
969         do {
970                 if (!buffer_mapped(bh)) {
971                         init_buffer(bh, NULL, NULL);
972                         bh->b_bdev = bdev;
973                         bh->b_blocknr = block;
974                         if (uptodate)
975                                 set_buffer_uptodate(bh);
976                         if (block < end_block)
977                                 set_buffer_mapped(bh);
978                 }
979                 block++;
980                 bh = bh->b_this_page;
981         } while (bh != head);
982
983         /*
984          * Caller needs to validate requested block against end of device.
985          */
986         return end_block;
987 }
988
989 /*
990  * Create the page-cache page that contains the requested block.
991  *
992  * This is used purely for blockdev mappings.
993  */
994 static int
995 grow_dev_page(struct block_device *bdev, sector_t block,
996                 pgoff_t index, int size, int sizebits)
997 {
998         struct inode *inode = bdev->bd_inode;
999         struct page *page;
1000         struct buffer_head *bh;
1001         sector_t end_block;
1002         int ret = 0;            /* Will call free_more_memory() */
1003         gfp_t gfp_mask;
1004
1005         gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1006         gfp_mask |= __GFP_MOVABLE;
1007         /*
1008          * XXX: __getblk_slow() can not really deal with failure and
1009          * will endlessly loop on improvised global reclaim.  Prefer
1010          * looping in the allocator rather than here, at least that
1011          * code knows what it's doing.
1012          */
1013         gfp_mask |= __GFP_NOFAIL;
1014
1015         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1016         if (!page)
1017                 return ret;
1018
1019         BUG_ON(!PageLocked(page));
1020
1021         if (page_has_buffers(page)) {
1022                 bh = page_buffers(page);
1023                 if (bh->b_size == size) {
1024                         end_block = init_page_buffers(page, bdev,
1025                                                 index << sizebits, size);
1026                         goto done;
1027                 }
1028                 if (!try_to_free_buffers(page))
1029                         goto failed;
1030         }
1031
1032         /*
1033          * Allocate some buffers for this page
1034          */
1035         bh = alloc_page_buffers(page, size, 0);
1036         if (!bh)
1037                 goto failed;
1038
1039         /*
1040          * Link the page to the buffers and initialise them.  Take the
1041          * lock to be atomic wrt __find_get_block(), which does not
1042          * run under the page lock.
1043          */
1044         spin_lock(&inode->i_mapping->private_lock);
1045         link_dev_buffers(page, bh);
1046         end_block = init_page_buffers(page, bdev, index << sizebits, size);
1047         spin_unlock(&inode->i_mapping->private_lock);
1048 done:
1049         ret = (block < end_block) ? 1 : -ENXIO;
1050 failed:
1051         unlock_page(page);
1052         page_cache_release(page);
1053         return ret;
1054 }
1055
1056 /*
1057  * Create buffers for the specified block device block's page.  If
1058  * that page was dirty, the buffers are set dirty also.
1059  */
1060 static int
1061 grow_buffers(struct block_device *bdev, sector_t block, int size)
1062 {
1063         pgoff_t index;
1064         int sizebits;
1065
1066         sizebits = -1;
1067         do {
1068                 sizebits++;
1069         } while ((size << sizebits) < PAGE_SIZE);
1070
1071         index = block >> sizebits;
1072
1073         /*
1074          * Check for a block which wants to lie outside our maximum possible
1075          * pagecache index.  (this comparison is done using sector_t types).
1076          */
1077         if (unlikely(index != block >> sizebits)) {
1078                 char b[BDEVNAME_SIZE];
1079
1080                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1081                         "device %s\n",
1082                         __func__, (unsigned long long)block,
1083                         bdevname(bdev, b));
1084                 return -EIO;
1085         }
1086
1087         /* Create a page with the proper size buffers.. */
1088         return grow_dev_page(bdev, block, index, size, sizebits);
1089 }
1090
1091 static struct buffer_head *
1092 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1093 {
1094         /* Size must be multiple of hard sectorsize */
1095         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1096                         (size < 512 || size > PAGE_SIZE))) {
1097                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1098                                         size);
1099                 printk(KERN_ERR "logical block size: %d\n",
1100                                         bdev_logical_block_size(bdev));
1101
1102                 dump_stack();
1103                 return NULL;
1104         }
1105
1106         for (;;) {
1107                 struct buffer_head *bh;
1108                 int ret;
1109
1110                 bh = __find_get_block(bdev, block, size);
1111                 if (bh)
1112                         return bh;
1113
1114                 ret = grow_buffers(bdev, block, size);
1115                 if (ret < 0)
1116                         return NULL;
1117                 if (ret == 0)
1118                         free_more_memory();
1119         }
1120 }
1121
1122 /*
1123  * The relationship between dirty buffers and dirty pages:
1124  *
1125  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1126  * the page is tagged dirty in its radix tree.
1127  *
1128  * At all times, the dirtiness of the buffers represents the dirtiness of
1129  * subsections of the page.  If the page has buffers, the page dirty bit is
1130  * merely a hint about the true dirty state.
1131  *
1132  * When a page is set dirty in its entirety, all its buffers are marked dirty
1133  * (if the page has buffers).
1134  *
1135  * When a buffer is marked dirty, its page is dirtied, but the page's other
1136  * buffers are not.
1137  *
1138  * Also.  When blockdev buffers are explicitly read with bread(), they
1139  * individually become uptodate.  But their backing page remains not
1140  * uptodate - even if all of its buffers are uptodate.  A subsequent
1141  * block_read_full_page() against that page will discover all the uptodate
1142  * buffers, will set the page uptodate and will perform no I/O.
1143  */
1144
1145 /**
1146  * mark_buffer_dirty - mark a buffer_head as needing writeout
1147  * @bh: the buffer_head to mark dirty
1148  *
1149  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1150  * backing page dirty, then tag the page as dirty in its address_space's radix
1151  * tree and then attach the address_space's inode to its superblock's dirty
1152  * inode list.
1153  *
1154  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1155  * mapping->tree_lock and mapping->host->i_lock.
1156  */
1157 void mark_buffer_dirty(struct buffer_head *bh)
1158 {
1159         WARN_ON_ONCE(!buffer_uptodate(bh));
1160
1161         trace_block_dirty_buffer(bh);
1162
1163         /*
1164          * Very *carefully* optimize the it-is-already-dirty case.
1165          *
1166          * Don't let the final "is it dirty" escape to before we
1167          * perhaps modified the buffer.
1168          */
1169         if (buffer_dirty(bh)) {
1170                 smp_mb();
1171                 if (buffer_dirty(bh))
1172                         return;
1173         }
1174
1175         if (!test_set_buffer_dirty(bh)) {
1176                 struct page *page = bh->b_page;
1177                 if (!TestSetPageDirty(page)) {
1178                         struct address_space *mapping = page_mapping(page);
1179                         if (mapping)
1180                                 __set_page_dirty(page, mapping, 0);
1181                 }
1182         }
1183 }
1184 EXPORT_SYMBOL(mark_buffer_dirty);
1185
1186 /*
1187  * Decrement a buffer_head's reference count.  If all buffers against a page
1188  * have zero reference count, are clean and unlocked, and if the page is clean
1189  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1190  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1191  * a page but it ends up not being freed, and buffers may later be reattached).
1192  */
1193 void __brelse(struct buffer_head * buf)
1194 {
1195         if (atomic_read(&buf->b_count)) {
1196                 put_bh(buf);
1197                 return;
1198         }
1199         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1200 }
1201 EXPORT_SYMBOL(__brelse);
1202
1203 /*
1204  * bforget() is like brelse(), except it discards any
1205  * potentially dirty data.
1206  */
1207 void __bforget(struct buffer_head *bh)
1208 {
1209         clear_buffer_dirty(bh);
1210         if (bh->b_assoc_map) {
1211                 struct address_space *buffer_mapping = bh->b_page->mapping;
1212
1213                 spin_lock(&buffer_mapping->private_lock);
1214                 list_del_init(&bh->b_assoc_buffers);
1215                 bh->b_assoc_map = NULL;
1216                 spin_unlock(&buffer_mapping->private_lock);
1217         }
1218         __brelse(bh);
1219 }
1220 EXPORT_SYMBOL(__bforget);
1221
1222 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1223 {
1224         lock_buffer(bh);
1225         if (buffer_uptodate(bh)) {
1226                 unlock_buffer(bh);
1227                 return bh;
1228         } else {
1229                 get_bh(bh);
1230                 bh->b_end_io = end_buffer_read_sync;
1231                 submit_bh(READ, bh);
1232                 wait_on_buffer(bh);
1233                 if (buffer_uptodate(bh))
1234                         return bh;
1235         }
1236         brelse(bh);
1237         return NULL;
1238 }
1239
1240 /*
1241  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1242  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1243  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1244  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1245  * CPU's LRUs at the same time.
1246  *
1247  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1248  * sb_find_get_block().
1249  *
1250  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1251  * a local interrupt disable for that.
1252  */
1253
1254 #define BH_LRU_SIZE     8
1255
1256 struct bh_lru {
1257         struct buffer_head *bhs[BH_LRU_SIZE];
1258 };
1259
1260 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1261
1262 #ifdef CONFIG_SMP
1263 #define bh_lru_lock()   local_irq_disable()
1264 #define bh_lru_unlock() local_irq_enable()
1265 #else
1266 #define bh_lru_lock()   preempt_disable()
1267 #define bh_lru_unlock() preempt_enable()
1268 #endif
1269
1270 static inline void check_irqs_on(void)
1271 {
1272 #ifdef irqs_disabled
1273         BUG_ON(irqs_disabled());
1274 #endif
1275 }
1276
1277 /*
1278  * The LRU management algorithm is dopey-but-simple.  Sorry.
1279  */
1280 static void bh_lru_install(struct buffer_head *bh)
1281 {
1282         struct buffer_head *evictee = NULL;
1283
1284         check_irqs_on();
1285         bh_lru_lock();
1286         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1287                 struct buffer_head *bhs[BH_LRU_SIZE];
1288                 int in;
1289                 int out = 0;
1290
1291                 get_bh(bh);
1292                 bhs[out++] = bh;
1293                 for (in = 0; in < BH_LRU_SIZE; in++) {
1294                         struct buffer_head *bh2 =
1295                                 __this_cpu_read(bh_lrus.bhs[in]);
1296
1297                         if (bh2 == bh) {
1298                                 __brelse(bh2);
1299                         } else {
1300                                 if (out >= BH_LRU_SIZE) {
1301                                         BUG_ON(evictee != NULL);
1302                                         evictee = bh2;
1303                                 } else {
1304                                         bhs[out++] = bh2;
1305                                 }
1306                         }
1307                 }
1308                 while (out < BH_LRU_SIZE)
1309                         bhs[out++] = NULL;
1310                 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1311         }
1312         bh_lru_unlock();
1313
1314         if (evictee)
1315                 __brelse(evictee);
1316 }
1317
1318 /*
1319  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1320  */
1321 static struct buffer_head *
1322 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1323 {
1324         struct buffer_head *ret = NULL;
1325         unsigned int i;
1326
1327         check_irqs_on();
1328         bh_lru_lock();
1329         for (i = 0; i < BH_LRU_SIZE; i++) {
1330                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1331
1332                 if (bh && bh->b_bdev == bdev &&
1333                                 bh->b_blocknr == block && bh->b_size == size) {
1334                         if (i) {
1335                                 while (i) {
1336                                         __this_cpu_write(bh_lrus.bhs[i],
1337                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1338                                         i--;
1339                                 }
1340                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1341                         }
1342                         get_bh(bh);
1343                         ret = bh;
1344                         break;
1345                 }
1346         }
1347         bh_lru_unlock();
1348         return ret;
1349 }
1350
1351 /*
1352  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1353  * it in the LRU and mark it as accessed.  If it is not present then return
1354  * NULL
1355  */
1356 struct buffer_head *
1357 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1358 {
1359         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1360
1361         if (bh == NULL) {
1362                 /* __find_get_block_slow will mark the page accessed */
1363                 bh = __find_get_block_slow(bdev, block);
1364                 if (bh)
1365                         bh_lru_install(bh);
1366         } else
1367                 touch_buffer(bh);
1368
1369         return bh;
1370 }
1371 EXPORT_SYMBOL(__find_get_block);
1372
1373 /*
1374  * __getblk will locate (and, if necessary, create) the buffer_head
1375  * which corresponds to the passed block_device, block and size. The
1376  * returned buffer has its reference count incremented.
1377  *
1378  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1379  * attempt is failing.  FIXME, perhaps?
1380  */
1381 struct buffer_head *
1382 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1383 {
1384         struct buffer_head *bh = __find_get_block(bdev, block, size);
1385
1386         might_sleep();
1387         if (bh == NULL)
1388                 bh = __getblk_slow(bdev, block, size);
1389         return bh;
1390 }
1391 EXPORT_SYMBOL(__getblk);
1392
1393 /*
1394  * Do async read-ahead on a buffer..
1395  */
1396 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1397 {
1398         struct buffer_head *bh = __getblk(bdev, block, size);
1399         if (likely(bh)) {
1400                 ll_rw_block(READA, 1, &bh);
1401                 brelse(bh);
1402         }
1403 }
1404 EXPORT_SYMBOL(__breadahead);
1405
1406 /**
1407  *  __bread() - reads a specified block and returns the bh
1408  *  @bdev: the block_device to read from
1409  *  @block: number of block
1410  *  @size: size (in bytes) to read
1411  * 
1412  *  Reads a specified block, and returns buffer head that contains it.
1413  *  It returns NULL if the block was unreadable.
1414  */
1415 struct buffer_head *
1416 __bread(struct block_device *bdev, sector_t block, unsigned size)
1417 {
1418         struct buffer_head *bh = __getblk(bdev, block, size);
1419
1420         if (likely(bh) && !buffer_uptodate(bh))
1421                 bh = __bread_slow(bh);
1422         return bh;
1423 }
1424 EXPORT_SYMBOL(__bread);
1425
1426 /*
1427  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1428  * This doesn't race because it runs in each cpu either in irq
1429  * or with preempt disabled.
1430  */
1431 static void invalidate_bh_lru(void *arg)
1432 {
1433         struct bh_lru *b = &get_cpu_var(bh_lrus);
1434         int i;
1435
1436         for (i = 0; i < BH_LRU_SIZE; i++) {
1437                 brelse(b->bhs[i]);
1438                 b->bhs[i] = NULL;
1439         }
1440         put_cpu_var(bh_lrus);
1441 }
1442
1443 static bool has_bh_in_lru(int cpu, void *dummy)
1444 {
1445         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1446         int i;
1447         
1448         for (i = 0; i < BH_LRU_SIZE; i++) {
1449                 if (b->bhs[i])
1450                         return 1;
1451         }
1452
1453         return 0;
1454 }
1455
1456 void invalidate_bh_lrus(void)
1457 {
1458         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1459 }
1460 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1461
1462 void set_bh_page(struct buffer_head *bh,
1463                 struct page *page, unsigned long offset)
1464 {
1465         bh->b_page = page;
1466         BUG_ON(offset >= PAGE_SIZE);
1467         if (PageHighMem(page))
1468                 /*
1469                  * This catches illegal uses and preserves the offset:
1470                  */
1471                 bh->b_data = (char *)(0 + offset);
1472         else
1473                 bh->b_data = page_address(page) + offset;
1474 }
1475 EXPORT_SYMBOL(set_bh_page);
1476
1477 /*
1478  * Called when truncating a buffer on a page completely.
1479  */
1480
1481 /* Bits that are cleared during an invalidate */
1482 #define BUFFER_FLAGS_DISCARD \
1483         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1484          1 << BH_Delay | 1 << BH_Unwritten)
1485
1486 static void discard_buffer(struct buffer_head * bh)
1487 {
1488         unsigned long b_state, b_state_old;
1489
1490         lock_buffer(bh);
1491         clear_buffer_dirty(bh);
1492         bh->b_bdev = NULL;
1493         b_state = bh->b_state;
1494         for (;;) {
1495                 b_state_old = cmpxchg(&bh->b_state, b_state,
1496                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1497                 if (b_state_old == b_state)
1498                         break;
1499                 b_state = b_state_old;
1500         }
1501         unlock_buffer(bh);
1502 }
1503
1504 /**
1505  * block_invalidatepage - invalidate part or all of a buffer-backed page
1506  *
1507  * @page: the page which is affected
1508  * @offset: start of the range to invalidate
1509  * @length: length of the range to invalidate
1510  *
1511  * block_invalidatepage() is called when all or part of the page has become
1512  * invalidated by a truncate operation.
1513  *
1514  * block_invalidatepage() does not have to release all buffers, but it must
1515  * ensure that no dirty buffer is left outside @offset and that no I/O
1516  * is underway against any of the blocks which are outside the truncation
1517  * point.  Because the caller is about to free (and possibly reuse) those
1518  * blocks on-disk.
1519  */
1520 void block_invalidatepage(struct page *page, unsigned int offset,
1521                           unsigned int length)
1522 {
1523         struct buffer_head *head, *bh, *next;
1524         unsigned int curr_off = 0;
1525         unsigned int stop = length + offset;
1526
1527         BUG_ON(!PageLocked(page));
1528         if (!page_has_buffers(page))
1529                 goto out;
1530
1531         /*
1532          * Check for overflow
1533          */
1534         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1535
1536         head = page_buffers(page);
1537         bh = head;
1538         do {
1539                 unsigned int next_off = curr_off + bh->b_size;
1540                 next = bh->b_this_page;
1541
1542                 /*
1543                  * Are we still fully in range ?
1544                  */
1545                 if (next_off > stop)
1546                         goto out;
1547
1548                 /*
1549                  * is this block fully invalidated?
1550                  */
1551                 if (offset <= curr_off)
1552                         discard_buffer(bh);
1553                 curr_off = next_off;
1554                 bh = next;
1555         } while (bh != head);
1556
1557         /*
1558          * We release buffers only if the entire page is being invalidated.
1559          * The get_block cached value has been unconditionally invalidated,
1560          * so real IO is not possible anymore.
1561          */
1562         if (offset == 0)
1563                 try_to_release_page(page, 0);
1564 out:
1565         return;
1566 }
1567 EXPORT_SYMBOL(block_invalidatepage);
1568
1569
1570 /*
1571  * We attach and possibly dirty the buffers atomically wrt
1572  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1573  * is already excluded via the page lock.
1574  */
1575 void create_empty_buffers(struct page *page,
1576                         unsigned long blocksize, unsigned long b_state)
1577 {
1578         struct buffer_head *bh, *head, *tail;
1579
1580         head = alloc_page_buffers(page, blocksize, 1);
1581         bh = head;
1582         do {
1583                 bh->b_state |= b_state;
1584                 tail = bh;
1585                 bh = bh->b_this_page;
1586         } while (bh);
1587         tail->b_this_page = head;
1588
1589         spin_lock(&page->mapping->private_lock);
1590         if (PageUptodate(page) || PageDirty(page)) {
1591                 bh = head;
1592                 do {
1593                         if (PageDirty(page))
1594                                 set_buffer_dirty(bh);
1595                         if (PageUptodate(page))
1596                                 set_buffer_uptodate(bh);
1597                         bh = bh->b_this_page;
1598                 } while (bh != head);
1599         }
1600         attach_page_buffers(page, head);
1601         spin_unlock(&page->mapping->private_lock);
1602 }
1603 EXPORT_SYMBOL(create_empty_buffers);
1604
1605 /*
1606  * We are taking a block for data and we don't want any output from any
1607  * buffer-cache aliases starting from return from that function and
1608  * until the moment when something will explicitly mark the buffer
1609  * dirty (hopefully that will not happen until we will free that block ;-)
1610  * We don't even need to mark it not-uptodate - nobody can expect
1611  * anything from a newly allocated buffer anyway. We used to used
1612  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1613  * don't want to mark the alias unmapped, for example - it would confuse
1614  * anyone who might pick it with bread() afterwards...
1615  *
1616  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1617  * be writeout I/O going on against recently-freed buffers.  We don't
1618  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1619  * only if we really need to.  That happens here.
1620  */
1621 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1622 {
1623         struct buffer_head *old_bh;
1624
1625         might_sleep();
1626
1627         old_bh = __find_get_block_slow(bdev, block);
1628         if (old_bh) {
1629                 clear_buffer_dirty(old_bh);
1630                 wait_on_buffer(old_bh);
1631                 clear_buffer_req(old_bh);
1632                 __brelse(old_bh);
1633         }
1634 }
1635 EXPORT_SYMBOL(unmap_underlying_metadata);
1636
1637 /*
1638  * Size is a power-of-two in the range 512..PAGE_SIZE,
1639  * and the case we care about most is PAGE_SIZE.
1640  *
1641  * So this *could* possibly be written with those
1642  * constraints in mind (relevant mostly if some
1643  * architecture has a slow bit-scan instruction)
1644  */
1645 static inline int block_size_bits(unsigned int blocksize)
1646 {
1647         return ilog2(blocksize);
1648 }
1649
1650 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1651 {
1652         BUG_ON(!PageLocked(page));
1653
1654         if (!page_has_buffers(page))
1655                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1656         return page_buffers(page);
1657 }
1658
1659 /*
1660  * NOTE! All mapped/uptodate combinations are valid:
1661  *
1662  *      Mapped  Uptodate        Meaning
1663  *
1664  *      No      No              "unknown" - must do get_block()
1665  *      No      Yes             "hole" - zero-filled
1666  *      Yes     No              "allocated" - allocated on disk, not read in
1667  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1668  *
1669  * "Dirty" is valid only with the last case (mapped+uptodate).
1670  */
1671
1672 /*
1673  * While block_write_full_page is writing back the dirty buffers under
1674  * the page lock, whoever dirtied the buffers may decide to clean them
1675  * again at any time.  We handle that by only looking at the buffer
1676  * state inside lock_buffer().
1677  *
1678  * If block_write_full_page() is called for regular writeback
1679  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1680  * locked buffer.   This only can happen if someone has written the buffer
1681  * directly, with submit_bh().  At the address_space level PageWriteback
1682  * prevents this contention from occurring.
1683  *
1684  * If block_write_full_page() is called with wbc->sync_mode ==
1685  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1686  * causes the writes to be flagged as synchronous writes.
1687  */
1688 static int __block_write_full_page(struct inode *inode, struct page *page,
1689                         get_block_t *get_block, struct writeback_control *wbc,
1690                         bh_end_io_t *handler)
1691 {
1692         int err;
1693         sector_t block;
1694         sector_t last_block;
1695         struct buffer_head *bh, *head;
1696         unsigned int blocksize, bbits;
1697         int nr_underway = 0;
1698         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1699                         WRITE_SYNC : WRITE);
1700
1701         head = create_page_buffers(page, inode,
1702                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1703
1704         /*
1705          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1706          * here, and the (potentially unmapped) buffers may become dirty at
1707          * any time.  If a buffer becomes dirty here after we've inspected it
1708          * then we just miss that fact, and the page stays dirty.
1709          *
1710          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1711          * handle that here by just cleaning them.
1712          */
1713
1714         bh = head;
1715         blocksize = bh->b_size;
1716         bbits = block_size_bits(blocksize);
1717
1718         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1719         last_block = (i_size_read(inode) - 1) >> bbits;
1720
1721         /*
1722          * Get all the dirty buffers mapped to disk addresses and
1723          * handle any aliases from the underlying blockdev's mapping.
1724          */
1725         do {
1726                 if (block > last_block) {
1727                         /*
1728                          * mapped buffers outside i_size will occur, because
1729                          * this page can be outside i_size when there is a
1730                          * truncate in progress.
1731                          */
1732                         /*
1733                          * The buffer was zeroed by block_write_full_page()
1734                          */
1735                         clear_buffer_dirty(bh);
1736                         set_buffer_uptodate(bh);
1737                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1738                            buffer_dirty(bh)) {
1739                         WARN_ON(bh->b_size != blocksize);
1740                         err = get_block(inode, block, bh, 1);
1741                         if (err)
1742                                 goto recover;
1743                         clear_buffer_delay(bh);
1744                         if (buffer_new(bh)) {
1745                                 /* blockdev mappings never come here */
1746                                 clear_buffer_new(bh);
1747                                 unmap_underlying_metadata(bh->b_bdev,
1748                                                         bh->b_blocknr);
1749                         }
1750                 }
1751                 bh = bh->b_this_page;
1752                 block++;
1753         } while (bh != head);
1754
1755         do {
1756                 if (!buffer_mapped(bh))
1757                         continue;
1758                 /*
1759                  * If it's a fully non-blocking write attempt and we cannot
1760                  * lock the buffer then redirty the page.  Note that this can
1761                  * potentially cause a busy-wait loop from writeback threads
1762                  * and kswapd activity, but those code paths have their own
1763                  * higher-level throttling.
1764                  */
1765                 if (wbc->sync_mode != WB_SYNC_NONE) {
1766                         lock_buffer(bh);
1767                 } else if (!trylock_buffer(bh)) {
1768                         redirty_page_for_writepage(wbc, page);
1769                         continue;
1770                 }
1771                 if (test_clear_buffer_dirty(bh)) {
1772                         mark_buffer_async_write_endio(bh, handler);
1773                 } else {
1774                         unlock_buffer(bh);
1775                 }
1776         } while ((bh = bh->b_this_page) != head);
1777
1778         /*
1779          * The page and its buffers are protected by PageWriteback(), so we can
1780          * drop the bh refcounts early.
1781          */
1782         BUG_ON(PageWriteback(page));
1783         set_page_writeback(page);
1784
1785         do {
1786                 struct buffer_head *next = bh->b_this_page;
1787                 if (buffer_async_write(bh)) {
1788                         submit_bh(write_op, bh);
1789                         nr_underway++;
1790                 }
1791                 bh = next;
1792         } while (bh != head);
1793         unlock_page(page);
1794
1795         err = 0;
1796 done:
1797         if (nr_underway == 0) {
1798                 /*
1799                  * The page was marked dirty, but the buffers were
1800                  * clean.  Someone wrote them back by hand with
1801                  * ll_rw_block/submit_bh.  A rare case.
1802                  */
1803                 end_page_writeback(page);
1804
1805                 /*
1806                  * The page and buffer_heads can be released at any time from
1807                  * here on.
1808                  */
1809         }
1810         return err;
1811
1812 recover:
1813         /*
1814          * ENOSPC, or some other error.  We may already have added some
1815          * blocks to the file, so we need to write these out to avoid
1816          * exposing stale data.
1817          * The page is currently locked and not marked for writeback
1818          */
1819         bh = head;
1820         /* Recovery: lock and submit the mapped buffers */
1821         do {
1822                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1823                     !buffer_delay(bh)) {
1824                         lock_buffer(bh);
1825                         mark_buffer_async_write_endio(bh, handler);
1826                 } else {
1827                         /*
1828                          * The buffer may have been set dirty during
1829                          * attachment to a dirty page.
1830                          */
1831                         clear_buffer_dirty(bh);
1832                 }
1833         } while ((bh = bh->b_this_page) != head);
1834         SetPageError(page);
1835         BUG_ON(PageWriteback(page));
1836         mapping_set_error(page->mapping, err);
1837         set_page_writeback(page);
1838         do {
1839                 struct buffer_head *next = bh->b_this_page;
1840                 if (buffer_async_write(bh)) {
1841                         clear_buffer_dirty(bh);
1842                         submit_bh(write_op, bh);
1843                         nr_underway++;
1844                 }
1845                 bh = next;
1846         } while (bh != head);
1847         unlock_page(page);
1848         goto done;
1849 }
1850
1851 /*
1852  * If a page has any new buffers, zero them out here, and mark them uptodate
1853  * and dirty so they'll be written out (in order to prevent uninitialised
1854  * block data from leaking). And clear the new bit.
1855  */
1856 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1857 {
1858         unsigned int block_start, block_end;
1859         struct buffer_head *head, *bh;
1860
1861         BUG_ON(!PageLocked(page));
1862         if (!page_has_buffers(page))
1863                 return;
1864
1865         bh = head = page_buffers(page);
1866         block_start = 0;
1867         do {
1868                 block_end = block_start + bh->b_size;
1869
1870                 if (buffer_new(bh)) {
1871                         if (block_end > from && block_start < to) {
1872                                 if (!PageUptodate(page)) {
1873                                         unsigned start, size;
1874
1875                                         start = max(from, block_start);
1876                                         size = min(to, block_end) - start;
1877
1878                                         zero_user(page, start, size);
1879                                         set_buffer_uptodate(bh);
1880                                 }
1881
1882                                 clear_buffer_new(bh);
1883                                 mark_buffer_dirty(bh);
1884                         }
1885                 }
1886
1887                 block_start = block_end;
1888                 bh = bh->b_this_page;
1889         } while (bh != head);
1890 }
1891 EXPORT_SYMBOL(page_zero_new_buffers);
1892
1893 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1894                 get_block_t *get_block)
1895 {
1896         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1897         unsigned to = from + len;
1898         struct inode *inode = page->mapping->host;
1899         unsigned block_start, block_end;
1900         sector_t block;
1901         int err = 0;
1902         unsigned blocksize, bbits;
1903         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1904
1905         BUG_ON(!PageLocked(page));
1906         BUG_ON(from > PAGE_CACHE_SIZE);
1907         BUG_ON(to > PAGE_CACHE_SIZE);
1908         BUG_ON(from > to);
1909
1910         head = create_page_buffers(page, inode, 0);
1911         blocksize = head->b_size;
1912         bbits = block_size_bits(blocksize);
1913
1914         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1915
1916         for(bh = head, block_start = 0; bh != head || !block_start;
1917             block++, block_start=block_end, bh = bh->b_this_page) {
1918                 block_end = block_start + blocksize;
1919                 if (block_end <= from || block_start >= to) {
1920                         if (PageUptodate(page)) {
1921                                 if (!buffer_uptodate(bh))
1922                                         set_buffer_uptodate(bh);
1923                         }
1924                         continue;
1925                 }
1926                 if (buffer_new(bh))
1927                         clear_buffer_new(bh);
1928                 if (!buffer_mapped(bh)) {
1929                         WARN_ON(bh->b_size != blocksize);
1930                         err = get_block(inode, block, bh, 1);
1931                         if (err)
1932                                 break;
1933                         if (buffer_new(bh)) {
1934                                 unmap_underlying_metadata(bh->b_bdev,
1935                                                         bh->b_blocknr);
1936                                 if (PageUptodate(page)) {
1937                                         clear_buffer_new(bh);
1938                                         set_buffer_uptodate(bh);
1939                                         mark_buffer_dirty(bh);
1940                                         continue;
1941                                 }
1942                                 if (block_end > to || block_start < from)
1943                                         zero_user_segments(page,
1944                                                 to, block_end,
1945                                                 block_start, from);
1946                                 continue;
1947                         }
1948                 }
1949                 if (PageUptodate(page)) {
1950                         if (!buffer_uptodate(bh))
1951                                 set_buffer_uptodate(bh);
1952                         continue; 
1953                 }
1954                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1955                     !buffer_unwritten(bh) &&
1956                      (block_start < from || block_end > to)) {
1957                         ll_rw_block(READ, 1, &bh);
1958                         *wait_bh++=bh;
1959                 }
1960         }
1961         /*
1962          * If we issued read requests - let them complete.
1963          */
1964         while(wait_bh > wait) {
1965                 wait_on_buffer(*--wait_bh);
1966                 if (!buffer_uptodate(*wait_bh))
1967                         err = -EIO;
1968         }
1969         if (unlikely(err))
1970                 page_zero_new_buffers(page, from, to);
1971         return err;
1972 }
1973 EXPORT_SYMBOL(__block_write_begin);
1974
1975 static int __block_commit_write(struct inode *inode, struct page *page,
1976                 unsigned from, unsigned to)
1977 {
1978         unsigned block_start, block_end;
1979         int partial = 0;
1980         unsigned blocksize;
1981         struct buffer_head *bh, *head;
1982
1983         bh = head = page_buffers(page);
1984         blocksize = bh->b_size;
1985
1986         block_start = 0;
1987         do {
1988                 block_end = block_start + blocksize;
1989                 if (block_end <= from || block_start >= to) {
1990                         if (!buffer_uptodate(bh))
1991                                 partial = 1;
1992                 } else {
1993                         set_buffer_uptodate(bh);
1994                         mark_buffer_dirty(bh);
1995                 }
1996                 clear_buffer_new(bh);
1997
1998                 block_start = block_end;
1999                 bh = bh->b_this_page;
2000         } while (bh != head);
2001
2002         /*
2003          * If this is a partial write which happened to make all buffers
2004          * uptodate then we can optimize away a bogus readpage() for
2005          * the next read(). Here we 'discover' whether the page went
2006          * uptodate as a result of this (potentially partial) write.
2007          */
2008         if (!partial)
2009                 SetPageUptodate(page);
2010         return 0;
2011 }
2012
2013 /*
2014  * block_write_begin takes care of the basic task of block allocation and
2015  * bringing partial write blocks uptodate first.
2016  *
2017  * The filesystem needs to handle block truncation upon failure.
2018  */
2019 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2020                 unsigned flags, struct page **pagep, get_block_t *get_block)
2021 {
2022         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2023         struct page *page;
2024         int status;
2025
2026         page = grab_cache_page_write_begin(mapping, index, flags);
2027         if (!page)
2028                 return -ENOMEM;
2029
2030         status = __block_write_begin(page, pos, len, get_block);
2031         if (unlikely(status)) {
2032                 unlock_page(page);
2033                 page_cache_release(page);
2034                 page = NULL;
2035         }
2036
2037         *pagep = page;
2038         return status;
2039 }
2040 EXPORT_SYMBOL(block_write_begin);
2041
2042 int block_write_end(struct file *file, struct address_space *mapping,
2043                         loff_t pos, unsigned len, unsigned copied,
2044                         struct page *page, void *fsdata)
2045 {
2046         struct inode *inode = mapping->host;
2047         unsigned start;
2048
2049         start = pos & (PAGE_CACHE_SIZE - 1);
2050
2051         if (unlikely(copied < len)) {
2052                 /*
2053                  * The buffers that were written will now be uptodate, so we
2054                  * don't have to worry about a readpage reading them and
2055                  * overwriting a partial write. However if we have encountered
2056                  * a short write and only partially written into a buffer, it
2057                  * will not be marked uptodate, so a readpage might come in and
2058                  * destroy our partial write.
2059                  *
2060                  * Do the simplest thing, and just treat any short write to a
2061                  * non uptodate page as a zero-length write, and force the
2062                  * caller to redo the whole thing.
2063                  */
2064                 if (!PageUptodate(page))
2065                         copied = 0;
2066
2067                 page_zero_new_buffers(page, start+copied, start+len);
2068         }
2069         flush_dcache_page(page);
2070
2071         /* This could be a short (even 0-length) commit */
2072         __block_commit_write(inode, page, start, start+copied);
2073
2074         return copied;
2075 }
2076 EXPORT_SYMBOL(block_write_end);
2077
2078 int generic_write_end(struct file *file, struct address_space *mapping,
2079                         loff_t pos, unsigned len, unsigned copied,
2080                         struct page *page, void *fsdata)
2081 {
2082         struct inode *inode = mapping->host;
2083         int i_size_changed = 0;
2084
2085         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2086
2087         /*
2088          * No need to use i_size_read() here, the i_size
2089          * cannot change under us because we hold i_mutex.
2090          *
2091          * But it's important to update i_size while still holding page lock:
2092          * page writeout could otherwise come in and zero beyond i_size.
2093          */
2094         if (pos+copied > inode->i_size) {
2095                 i_size_write(inode, pos+copied);
2096                 i_size_changed = 1;
2097         }
2098
2099         unlock_page(page);
2100         page_cache_release(page);
2101
2102         /*
2103          * Don't mark the inode dirty under page lock. First, it unnecessarily
2104          * makes the holding time of page lock longer. Second, it forces lock
2105          * ordering of page lock and transaction start for journaling
2106          * filesystems.
2107          */
2108         if (i_size_changed)
2109                 mark_inode_dirty(inode);
2110
2111         return copied;
2112 }
2113 EXPORT_SYMBOL(generic_write_end);
2114
2115 /*
2116  * block_is_partially_uptodate checks whether buffers within a page are
2117  * uptodate or not.
2118  *
2119  * Returns true if all buffers which correspond to a file portion
2120  * we want to read are uptodate.
2121  */
2122 int block_is_partially_uptodate(struct page *page, unsigned long from,
2123                                         unsigned long count)
2124 {
2125         unsigned block_start, block_end, blocksize;
2126         unsigned to;
2127         struct buffer_head *bh, *head;
2128         int ret = 1;
2129
2130         if (!page_has_buffers(page))
2131                 return 0;
2132
2133         head = page_buffers(page);
2134         blocksize = head->b_size;
2135         to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2136         to = from + to;
2137         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2138                 return 0;
2139
2140         bh = head;
2141         block_start = 0;
2142         do {
2143                 block_end = block_start + blocksize;
2144                 if (block_end > from && block_start < to) {
2145                         if (!buffer_uptodate(bh)) {
2146                                 ret = 0;
2147                                 break;
2148                         }
2149                         if (block_end >= to)
2150                                 break;
2151                 }
2152                 block_start = block_end;
2153                 bh = bh->b_this_page;
2154         } while (bh != head);
2155
2156         return ret;
2157 }
2158 EXPORT_SYMBOL(block_is_partially_uptodate);
2159
2160 /*
2161  * Generic "read page" function for block devices that have the normal
2162  * get_block functionality. This is most of the block device filesystems.
2163  * Reads the page asynchronously --- the unlock_buffer() and
2164  * set/clear_buffer_uptodate() functions propagate buffer state into the
2165  * page struct once IO has completed.
2166  */
2167 int block_read_full_page(struct page *page, get_block_t *get_block)
2168 {
2169         struct inode *inode = page->mapping->host;
2170         sector_t iblock, lblock;
2171         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2172         unsigned int blocksize, bbits;
2173         int nr, i;
2174         int fully_mapped = 1;
2175
2176         head = create_page_buffers(page, inode, 0);
2177         blocksize = head->b_size;
2178         bbits = block_size_bits(blocksize);
2179
2180         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2181         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2182         bh = head;
2183         nr = 0;
2184         i = 0;
2185
2186         do {
2187                 if (buffer_uptodate(bh))
2188                         continue;
2189
2190                 if (!buffer_mapped(bh)) {
2191                         int err = 0;
2192
2193                         fully_mapped = 0;
2194                         if (iblock < lblock) {
2195                                 WARN_ON(bh->b_size != blocksize);
2196                                 err = get_block(inode, iblock, bh, 0);
2197                                 if (err)
2198                                         SetPageError(page);
2199                         }
2200                         if (!buffer_mapped(bh)) {
2201                                 zero_user(page, i * blocksize, blocksize);
2202                                 if (!err)
2203                                         set_buffer_uptodate(bh);
2204                                 continue;
2205                         }
2206                         /*
2207                          * get_block() might have updated the buffer
2208                          * synchronously
2209                          */
2210                         if (buffer_uptodate(bh))
2211                                 continue;
2212                 }
2213                 arr[nr++] = bh;
2214         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2215
2216         if (fully_mapped)
2217                 SetPageMappedToDisk(page);
2218
2219         if (!nr) {
2220                 /*
2221                  * All buffers are uptodate - we can set the page uptodate
2222                  * as well. But not if get_block() returned an error.
2223                  */
2224                 if (!PageError(page))
2225                         SetPageUptodate(page);
2226                 unlock_page(page);
2227                 return 0;
2228         }
2229
2230         /* Stage two: lock the buffers */
2231         for (i = 0; i < nr; i++) {
2232                 bh = arr[i];
2233                 lock_buffer(bh);
2234                 mark_buffer_async_read(bh);
2235         }
2236
2237         /*
2238          * Stage 3: start the IO.  Check for uptodateness
2239          * inside the buffer lock in case another process reading
2240          * the underlying blockdev brought it uptodate (the sct fix).
2241          */
2242         for (i = 0; i < nr; i++) {
2243                 bh = arr[i];
2244                 if (buffer_uptodate(bh))
2245                         end_buffer_async_read(bh, 1);
2246                 else
2247                         submit_bh(READ, bh);
2248         }
2249         return 0;
2250 }
2251 EXPORT_SYMBOL(block_read_full_page);
2252
2253 /* utility function for filesystems that need to do work on expanding
2254  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2255  * deal with the hole.  
2256  */
2257 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2258 {
2259         struct address_space *mapping = inode->i_mapping;
2260         struct page *page;
2261         void *fsdata;
2262         int err;
2263
2264         err = inode_newsize_ok(inode, size);
2265         if (err)
2266                 goto out;
2267
2268         err = pagecache_write_begin(NULL, mapping, size, 0,
2269                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2270                                 &page, &fsdata);
2271         if (err)
2272                 goto out;
2273
2274         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2275         BUG_ON(err > 0);
2276
2277 out:
2278         return err;
2279 }
2280 EXPORT_SYMBOL(generic_cont_expand_simple);
2281
2282 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2283                             loff_t pos, loff_t *bytes)
2284 {
2285         struct inode *inode = mapping->host;
2286         unsigned blocksize = 1 << inode->i_blkbits;
2287         struct page *page;
2288         void *fsdata;
2289         pgoff_t index, curidx;
2290         loff_t curpos;
2291         unsigned zerofrom, offset, len;
2292         int err = 0;
2293
2294         index = pos >> PAGE_CACHE_SHIFT;
2295         offset = pos & ~PAGE_CACHE_MASK;
2296
2297         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2298                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2299                 if (zerofrom & (blocksize-1)) {
2300                         *bytes |= (blocksize-1);
2301                         (*bytes)++;
2302                 }
2303                 len = PAGE_CACHE_SIZE - zerofrom;
2304
2305                 err = pagecache_write_begin(file, mapping, curpos, len,
2306                                                 AOP_FLAG_UNINTERRUPTIBLE,
2307                                                 &page, &fsdata);
2308                 if (err)
2309                         goto out;
2310                 zero_user(page, zerofrom, len);
2311                 err = pagecache_write_end(file, mapping, curpos, len, len,
2312                                                 page, fsdata);
2313                 if (err < 0)
2314                         goto out;
2315                 BUG_ON(err != len);
2316                 err = 0;
2317
2318                 balance_dirty_pages_ratelimited(mapping);
2319         }
2320
2321         /* page covers the boundary, find the boundary offset */
2322         if (index == curidx) {
2323                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2324                 /* if we will expand the thing last block will be filled */
2325                 if (offset <= zerofrom) {
2326                         goto out;
2327                 }
2328                 if (zerofrom & (blocksize-1)) {
2329                         *bytes |= (blocksize-1);
2330                         (*bytes)++;
2331                 }
2332                 len = offset - zerofrom;
2333
2334                 err = pagecache_write_begin(file, mapping, curpos, len,
2335                                                 AOP_FLAG_UNINTERRUPTIBLE,
2336                                                 &page, &fsdata);
2337                 if (err)
2338                         goto out;
2339                 zero_user(page, zerofrom, len);
2340                 err = pagecache_write_end(file, mapping, curpos, len, len,
2341                                                 page, fsdata);
2342                 if (err < 0)
2343                         goto out;
2344                 BUG_ON(err != len);
2345                 err = 0;
2346         }
2347 out:
2348         return err;
2349 }
2350
2351 /*
2352  * For moronic filesystems that do not allow holes in file.
2353  * We may have to extend the file.
2354  */
2355 int cont_write_begin(struct file *file, struct address_space *mapping,
2356                         loff_t pos, unsigned len, unsigned flags,
2357                         struct page **pagep, void **fsdata,
2358                         get_block_t *get_block, loff_t *bytes)
2359 {
2360         struct inode *inode = mapping->host;
2361         unsigned blocksize = 1 << inode->i_blkbits;
2362         unsigned zerofrom;
2363         int err;
2364
2365         err = cont_expand_zero(file, mapping, pos, bytes);
2366         if (err)
2367                 return err;
2368
2369         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2370         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2371                 *bytes |= (blocksize-1);
2372                 (*bytes)++;
2373         }
2374
2375         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2376 }
2377 EXPORT_SYMBOL(cont_write_begin);
2378
2379 int block_commit_write(struct page *page, unsigned from, unsigned to)
2380 {
2381         struct inode *inode = page->mapping->host;
2382         __block_commit_write(inode,page,from,to);
2383         return 0;
2384 }
2385 EXPORT_SYMBOL(block_commit_write);
2386
2387 /*
2388  * block_page_mkwrite() is not allowed to change the file size as it gets
2389  * called from a page fault handler when a page is first dirtied. Hence we must
2390  * be careful to check for EOF conditions here. We set the page up correctly
2391  * for a written page which means we get ENOSPC checking when writing into
2392  * holes and correct delalloc and unwritten extent mapping on filesystems that
2393  * support these features.
2394  *
2395  * We are not allowed to take the i_mutex here so we have to play games to
2396  * protect against truncate races as the page could now be beyond EOF.  Because
2397  * truncate writes the inode size before removing pages, once we have the
2398  * page lock we can determine safely if the page is beyond EOF. If it is not
2399  * beyond EOF, then the page is guaranteed safe against truncation until we
2400  * unlock the page.
2401  *
2402  * Direct callers of this function should protect against filesystem freezing
2403  * using sb_start_write() - sb_end_write() functions.
2404  */
2405 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2406                          get_block_t get_block)
2407 {
2408         struct page *page = vmf->page;
2409         struct inode *inode = file_inode(vma->vm_file);
2410         unsigned long end;
2411         loff_t size;
2412         int ret;
2413
2414         lock_page(page);
2415         size = i_size_read(inode);
2416         if ((page->mapping != inode->i_mapping) ||
2417             (page_offset(page) > size)) {
2418                 /* We overload EFAULT to mean page got truncated */
2419                 ret = -EFAULT;
2420                 goto out_unlock;
2421         }
2422
2423         /* page is wholly or partially inside EOF */
2424         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2425                 end = size & ~PAGE_CACHE_MASK;
2426         else
2427                 end = PAGE_CACHE_SIZE;
2428
2429         ret = __block_write_begin(page, 0, end, get_block);
2430         if (!ret)
2431                 ret = block_commit_write(page, 0, end);
2432
2433         if (unlikely(ret < 0))
2434                 goto out_unlock;
2435         set_page_dirty(page);
2436         wait_for_stable_page(page);
2437         return 0;
2438 out_unlock:
2439         unlock_page(page);
2440         return ret;
2441 }
2442 EXPORT_SYMBOL(__block_page_mkwrite);
2443
2444 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2445                    get_block_t get_block)
2446 {
2447         int ret;
2448         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2449
2450         sb_start_pagefault(sb);
2451
2452         /*
2453          * Update file times before taking page lock. We may end up failing the
2454          * fault so this update may be superfluous but who really cares...
2455          */
2456         file_update_time(vma->vm_file);
2457
2458         ret = __block_page_mkwrite(vma, vmf, get_block);
2459         sb_end_pagefault(sb);
2460         return block_page_mkwrite_return(ret);
2461 }
2462 EXPORT_SYMBOL(block_page_mkwrite);
2463
2464 /*
2465  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2466  * immediately, while under the page lock.  So it needs a special end_io
2467  * handler which does not touch the bh after unlocking it.
2468  */
2469 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2470 {
2471         __end_buffer_read_notouch(bh, uptodate);
2472 }
2473
2474 /*
2475  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2476  * the page (converting it to circular linked list and taking care of page
2477  * dirty races).
2478  */
2479 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2480 {
2481         struct buffer_head *bh;
2482
2483         BUG_ON(!PageLocked(page));
2484
2485         spin_lock(&page->mapping->private_lock);
2486         bh = head;
2487         do {
2488                 if (PageDirty(page))
2489                         set_buffer_dirty(bh);
2490                 if (!bh->b_this_page)
2491                         bh->b_this_page = head;
2492                 bh = bh->b_this_page;
2493         } while (bh != head);
2494         attach_page_buffers(page, head);
2495         spin_unlock(&page->mapping->private_lock);
2496 }
2497
2498 /*
2499  * On entry, the page is fully not uptodate.
2500  * On exit the page is fully uptodate in the areas outside (from,to)
2501  * The filesystem needs to handle block truncation upon failure.
2502  */
2503 int nobh_write_begin(struct address_space *mapping,
2504                         loff_t pos, unsigned len, unsigned flags,
2505                         struct page **pagep, void **fsdata,
2506                         get_block_t *get_block)
2507 {
2508         struct inode *inode = mapping->host;
2509         const unsigned blkbits = inode->i_blkbits;
2510         const unsigned blocksize = 1 << blkbits;
2511         struct buffer_head *head, *bh;
2512         struct page *page;
2513         pgoff_t index;
2514         unsigned from, to;
2515         unsigned block_in_page;
2516         unsigned block_start, block_end;
2517         sector_t block_in_file;
2518         int nr_reads = 0;
2519         int ret = 0;
2520         int is_mapped_to_disk = 1;
2521
2522         index = pos >> PAGE_CACHE_SHIFT;
2523         from = pos & (PAGE_CACHE_SIZE - 1);
2524         to = from + len;
2525
2526         page = grab_cache_page_write_begin(mapping, index, flags);
2527         if (!page)
2528                 return -ENOMEM;
2529         *pagep = page;
2530         *fsdata = NULL;
2531
2532         if (page_has_buffers(page)) {
2533                 ret = __block_write_begin(page, pos, len, get_block);
2534                 if (unlikely(ret))
2535                         goto out_release;
2536                 return ret;
2537         }
2538
2539         if (PageMappedToDisk(page))
2540                 return 0;
2541
2542         /*
2543          * Allocate buffers so that we can keep track of state, and potentially
2544          * attach them to the page if an error occurs. In the common case of
2545          * no error, they will just be freed again without ever being attached
2546          * to the page (which is all OK, because we're under the page lock).
2547          *
2548          * Be careful: the buffer linked list is a NULL terminated one, rather
2549          * than the circular one we're used to.
2550          */
2551         head = alloc_page_buffers(page, blocksize, 0);
2552         if (!head) {
2553                 ret = -ENOMEM;
2554                 goto out_release;
2555         }
2556
2557         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2558
2559         /*
2560          * We loop across all blocks in the page, whether or not they are
2561          * part of the affected region.  This is so we can discover if the
2562          * page is fully mapped-to-disk.
2563          */
2564         for (block_start = 0, block_in_page = 0, bh = head;
2565                   block_start < PAGE_CACHE_SIZE;
2566                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2567                 int create;
2568
2569                 block_end = block_start + blocksize;
2570                 bh->b_state = 0;
2571                 create = 1;
2572                 if (block_start >= to)
2573                         create = 0;
2574                 ret = get_block(inode, block_in_file + block_in_page,
2575                                         bh, create);
2576                 if (ret)
2577                         goto failed;
2578                 if (!buffer_mapped(bh))
2579                         is_mapped_to_disk = 0;
2580                 if (buffer_new(bh))
2581                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2582                 if (PageUptodate(page)) {
2583                         set_buffer_uptodate(bh);
2584                         continue;
2585                 }
2586                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2587                         zero_user_segments(page, block_start, from,
2588                                                         to, block_end);
2589                         continue;
2590                 }
2591                 if (buffer_uptodate(bh))
2592                         continue;       /* reiserfs does this */
2593                 if (block_start < from || block_end > to) {
2594                         lock_buffer(bh);
2595                         bh->b_end_io = end_buffer_read_nobh;
2596                         submit_bh(READ, bh);
2597                         nr_reads++;
2598                 }
2599         }
2600
2601         if (nr_reads) {
2602                 /*
2603                  * The page is locked, so these buffers are protected from
2604                  * any VM or truncate activity.  Hence we don't need to care
2605                  * for the buffer_head refcounts.
2606                  */
2607                 for (bh = head; bh; bh = bh->b_this_page) {
2608                         wait_on_buffer(bh);
2609                         if (!buffer_uptodate(bh))
2610                                 ret = -EIO;
2611                 }
2612                 if (ret)
2613                         goto failed;
2614         }
2615
2616         if (is_mapped_to_disk)
2617                 SetPageMappedToDisk(page);
2618
2619         *fsdata = head; /* to be released by nobh_write_end */
2620
2621         return 0;
2622
2623 failed:
2624         BUG_ON(!ret);
2625         /*
2626          * Error recovery is a bit difficult. We need to zero out blocks that
2627          * were newly allocated, and dirty them to ensure they get written out.
2628          * Buffers need to be attached to the page at this point, otherwise
2629          * the handling of potential IO errors during writeout would be hard
2630          * (could try doing synchronous writeout, but what if that fails too?)
2631          */
2632         attach_nobh_buffers(page, head);
2633         page_zero_new_buffers(page, from, to);
2634
2635 out_release:
2636         unlock_page(page);
2637         page_cache_release(page);
2638         *pagep = NULL;
2639
2640         return ret;
2641 }
2642 EXPORT_SYMBOL(nobh_write_begin);
2643
2644 int nobh_write_end(struct file *file, struct address_space *mapping,
2645                         loff_t pos, unsigned len, unsigned copied,
2646                         struct page *page, void *fsdata)
2647 {
2648         struct inode *inode = page->mapping->host;
2649         struct buffer_head *head = fsdata;
2650         struct buffer_head *bh;
2651         BUG_ON(fsdata != NULL && page_has_buffers(page));
2652
2653         if (unlikely(copied < len) && head)
2654                 attach_nobh_buffers(page, head);
2655         if (page_has_buffers(page))
2656                 return generic_write_end(file, mapping, pos, len,
2657                                         copied, page, fsdata);
2658
2659         SetPageUptodate(page);
2660         set_page_dirty(page);
2661         if (pos+copied > inode->i_size) {
2662                 i_size_write(inode, pos+copied);
2663                 mark_inode_dirty(inode);
2664         }
2665
2666         unlock_page(page);
2667         page_cache_release(page);
2668
2669         while (head) {
2670                 bh = head;
2671                 head = head->b_this_page;
2672                 free_buffer_head(bh);
2673         }
2674
2675         return copied;
2676 }
2677 EXPORT_SYMBOL(nobh_write_end);
2678
2679 /*
2680  * nobh_writepage() - based on block_full_write_page() except
2681  * that it tries to operate without attaching bufferheads to
2682  * the page.
2683  */
2684 int nobh_writepage(struct page *page, get_block_t *get_block,
2685                         struct writeback_control *wbc)
2686 {
2687         struct inode * const inode = page->mapping->host;
2688         loff_t i_size = i_size_read(inode);
2689         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2690         unsigned offset;
2691         int ret;
2692
2693         /* Is the page fully inside i_size? */
2694         if (page->index < end_index)
2695                 goto out;
2696
2697         /* Is the page fully outside i_size? (truncate in progress) */
2698         offset = i_size & (PAGE_CACHE_SIZE-1);
2699         if (page->index >= end_index+1 || !offset) {
2700                 /*
2701                  * The page may have dirty, unmapped buffers.  For example,
2702                  * they may have been added in ext3_writepage().  Make them
2703                  * freeable here, so the page does not leak.
2704                  */
2705 #if 0
2706                 /* Not really sure about this  - do we need this ? */
2707                 if (page->mapping->a_ops->invalidatepage)
2708                         page->mapping->a_ops->invalidatepage(page, offset);
2709 #endif
2710                 unlock_page(page);
2711                 return 0; /* don't care */
2712         }
2713
2714         /*
2715          * The page straddles i_size.  It must be zeroed out on each and every
2716          * writepage invocation because it may be mmapped.  "A file is mapped
2717          * in multiples of the page size.  For a file that is not a multiple of
2718          * the  page size, the remaining memory is zeroed when mapped, and
2719          * writes to that region are not written out to the file."
2720          */
2721         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2722 out:
2723         ret = mpage_writepage(page, get_block, wbc);
2724         if (ret == -EAGAIN)
2725                 ret = __block_write_full_page(inode, page, get_block, wbc,
2726                                               end_buffer_async_write);
2727         return ret;
2728 }
2729 EXPORT_SYMBOL(nobh_writepage);
2730
2731 int nobh_truncate_page(struct address_space *mapping,
2732                         loff_t from, get_block_t *get_block)
2733 {
2734         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2735         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2736         unsigned blocksize;
2737         sector_t iblock;
2738         unsigned length, pos;
2739         struct inode *inode = mapping->host;
2740         struct page *page;
2741         struct buffer_head map_bh;
2742         int err;
2743
2744         blocksize = 1 << inode->i_blkbits;
2745         length = offset & (blocksize - 1);
2746
2747         /* Block boundary? Nothing to do */
2748         if (!length)
2749                 return 0;
2750
2751         length = blocksize - length;
2752         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2753
2754         page = grab_cache_page(mapping, index);
2755         err = -ENOMEM;
2756         if (!page)
2757                 goto out;
2758
2759         if (page_has_buffers(page)) {
2760 has_buffers:
2761                 unlock_page(page);
2762                 page_cache_release(page);
2763                 return block_truncate_page(mapping, from, get_block);
2764         }
2765
2766         /* Find the buffer that contains "offset" */
2767         pos = blocksize;
2768         while (offset >= pos) {
2769                 iblock++;
2770                 pos += blocksize;
2771         }
2772
2773         map_bh.b_size = blocksize;
2774         map_bh.b_state = 0;
2775         err = get_block(inode, iblock, &map_bh, 0);
2776         if (err)
2777                 goto unlock;
2778         /* unmapped? It's a hole - nothing to do */
2779         if (!buffer_mapped(&map_bh))
2780                 goto unlock;
2781
2782         /* Ok, it's mapped. Make sure it's up-to-date */
2783         if (!PageUptodate(page)) {
2784                 err = mapping->a_ops->readpage(NULL, page);
2785                 if (err) {
2786                         page_cache_release(page);
2787                         goto out;
2788                 }
2789                 lock_page(page);
2790                 if (!PageUptodate(page)) {
2791                         err = -EIO;
2792                         goto unlock;
2793                 }
2794                 if (page_has_buffers(page))
2795                         goto has_buffers;
2796         }
2797         zero_user(page, offset, length);
2798         set_page_dirty(page);
2799         err = 0;
2800
2801 unlock:
2802         unlock_page(page);
2803         page_cache_release(page);
2804 out:
2805         return err;
2806 }
2807 EXPORT_SYMBOL(nobh_truncate_page);
2808
2809 int block_truncate_page(struct address_space *mapping,
2810                         loff_t from, get_block_t *get_block)
2811 {
2812         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2813         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2814         unsigned blocksize;
2815         sector_t iblock;
2816         unsigned length, pos;
2817         struct inode *inode = mapping->host;
2818         struct page *page;
2819         struct buffer_head *bh;
2820         int err;
2821
2822         blocksize = 1 << inode->i_blkbits;
2823         length = offset & (blocksize - 1);
2824
2825         /* Block boundary? Nothing to do */
2826         if (!length)
2827                 return 0;
2828
2829         length = blocksize - length;
2830         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2831         
2832         page = grab_cache_page(mapping, index);
2833         err = -ENOMEM;
2834         if (!page)
2835                 goto out;
2836
2837         if (!page_has_buffers(page))
2838                 create_empty_buffers(page, blocksize, 0);
2839
2840         /* Find the buffer that contains "offset" */
2841         bh = page_buffers(page);
2842         pos = blocksize;
2843         while (offset >= pos) {
2844                 bh = bh->b_this_page;
2845                 iblock++;
2846                 pos += blocksize;
2847         }
2848
2849         err = 0;
2850         if (!buffer_mapped(bh)) {
2851                 WARN_ON(bh->b_size != blocksize);
2852                 err = get_block(inode, iblock, bh, 0);
2853                 if (err)
2854                         goto unlock;
2855                 /* unmapped? It's a hole - nothing to do */
2856                 if (!buffer_mapped(bh))
2857                         goto unlock;
2858         }
2859
2860         /* Ok, it's mapped. Make sure it's up-to-date */
2861         if (PageUptodate(page))
2862                 set_buffer_uptodate(bh);
2863
2864         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2865                 err = -EIO;
2866                 ll_rw_block(READ, 1, &bh);
2867                 wait_on_buffer(bh);
2868                 /* Uhhuh. Read error. Complain and punt. */
2869                 if (!buffer_uptodate(bh))
2870                         goto unlock;
2871         }
2872
2873         zero_user(page, offset, length);
2874         mark_buffer_dirty(bh);
2875         err = 0;
2876
2877 unlock:
2878         unlock_page(page);
2879         page_cache_release(page);
2880 out:
2881         return err;
2882 }
2883 EXPORT_SYMBOL(block_truncate_page);
2884
2885 /*
2886  * The generic ->writepage function for buffer-backed address_spaces
2887  */
2888 int block_write_full_page(struct page *page, get_block_t *get_block,
2889                         struct writeback_control *wbc)
2890 {
2891         struct inode * const inode = page->mapping->host;
2892         loff_t i_size = i_size_read(inode);
2893         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2894         unsigned offset;
2895
2896         /* Is the page fully inside i_size? */
2897         if (page->index < end_index)
2898                 return __block_write_full_page(inode, page, get_block, wbc,
2899                                                end_buffer_async_write);
2900
2901         /* Is the page fully outside i_size? (truncate in progress) */
2902         offset = i_size & (PAGE_CACHE_SIZE-1);
2903         if (page->index >= end_index+1 || !offset) {
2904                 /*
2905                  * The page may have dirty, unmapped buffers.  For example,
2906                  * they may have been added in ext3_writepage().  Make them
2907                  * freeable here, so the page does not leak.
2908                  */
2909                 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2910                 unlock_page(page);
2911                 return 0; /* don't care */
2912         }
2913
2914         /*
2915          * The page straddles i_size.  It must be zeroed out on each and every
2916          * writepage invocation because it may be mmapped.  "A file is mapped
2917          * in multiples of the page size.  For a file that is not a multiple of
2918          * the  page size, the remaining memory is zeroed when mapped, and
2919          * writes to that region are not written out to the file."
2920          */
2921         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2922         return __block_write_full_page(inode, page, get_block, wbc,
2923                                                         end_buffer_async_write);
2924 }
2925 EXPORT_SYMBOL(block_write_full_page);
2926
2927 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2928                             get_block_t *get_block)
2929 {
2930         struct buffer_head tmp;
2931         struct inode *inode = mapping->host;
2932         tmp.b_state = 0;
2933         tmp.b_blocknr = 0;
2934         tmp.b_size = 1 << inode->i_blkbits;
2935         get_block(inode, block, &tmp, 0);
2936         return tmp.b_blocknr;
2937 }
2938 EXPORT_SYMBOL(generic_block_bmap);
2939
2940 static void end_bio_bh_io_sync(struct bio *bio, int err)
2941 {
2942         struct buffer_head *bh = bio->bi_private;
2943
2944         if (err == -EOPNOTSUPP) {
2945                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2946         }
2947
2948         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2949                 set_bit(BH_Quiet, &bh->b_state);
2950
2951         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2952         bio_put(bio);
2953 }
2954
2955 /*
2956  * This allows us to do IO even on the odd last sectors
2957  * of a device, even if the bh block size is some multiple
2958  * of the physical sector size.
2959  *
2960  * We'll just truncate the bio to the size of the device,
2961  * and clear the end of the buffer head manually.
2962  *
2963  * Truly out-of-range accesses will turn into actual IO
2964  * errors, this only handles the "we need to be able to
2965  * do IO at the final sector" case.
2966  */
2967 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2968 {
2969         sector_t maxsector;
2970         unsigned bytes;
2971
2972         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2973         if (!maxsector)
2974                 return;
2975
2976         /*
2977          * If the *whole* IO is past the end of the device,
2978          * let it through, and the IO layer will turn it into
2979          * an EIO.
2980          */
2981         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2982                 return;
2983
2984         maxsector -= bio->bi_iter.bi_sector;
2985         bytes = bio->bi_iter.bi_size;
2986         if (likely((bytes >> 9) <= maxsector))
2987                 return;
2988
2989         /* Uhhuh. We've got a bh that straddles the device size! */
2990         bytes = maxsector << 9;
2991
2992         /* Truncate the bio.. */
2993         bio->bi_iter.bi_size = bytes;
2994         bio->bi_io_vec[0].bv_len = bytes;
2995
2996         /* ..and clear the end of the buffer for reads */
2997         if ((rw & RW_MASK) == READ) {
2998                 void *kaddr = kmap_atomic(bh->b_page);
2999                 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3000                 kunmap_atomic(kaddr);
3001                 flush_dcache_page(bh->b_page);
3002         }
3003 }
3004
3005 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3006 {
3007         struct bio *bio;
3008         int ret = 0;
3009
3010         BUG_ON(!buffer_locked(bh));
3011         BUG_ON(!buffer_mapped(bh));
3012         BUG_ON(!bh->b_end_io);
3013         BUG_ON(buffer_delay(bh));
3014         BUG_ON(buffer_unwritten(bh));
3015
3016         /*
3017          * Only clear out a write error when rewriting
3018          */
3019         if (test_set_buffer_req(bh) && (rw & WRITE))
3020                 clear_buffer_write_io_error(bh);
3021
3022         /*
3023          * from here on down, it's all bio -- do the initial mapping,
3024          * submit_bio -> generic_make_request may further map this bio around
3025          */
3026         bio = bio_alloc(GFP_NOIO, 1);
3027
3028         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3029         bio->bi_bdev = bh->b_bdev;
3030         bio->bi_io_vec[0].bv_page = bh->b_page;
3031         bio->bi_io_vec[0].bv_len = bh->b_size;
3032         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3033
3034         bio->bi_vcnt = 1;
3035         bio->bi_iter.bi_size = bh->b_size;
3036
3037         bio->bi_end_io = end_bio_bh_io_sync;
3038         bio->bi_private = bh;
3039         bio->bi_flags |= bio_flags;
3040
3041         /* Take care of bh's that straddle the end of the device */
3042         guard_bh_eod(rw, bio, bh);
3043
3044         if (buffer_meta(bh))
3045                 rw |= REQ_META;
3046         if (buffer_prio(bh))
3047                 rw |= REQ_PRIO;
3048
3049         bio_get(bio);
3050         submit_bio(rw, bio);
3051
3052         if (bio_flagged(bio, BIO_EOPNOTSUPP))
3053                 ret = -EOPNOTSUPP;
3054
3055         bio_put(bio);
3056         return ret;
3057 }
3058 EXPORT_SYMBOL_GPL(_submit_bh);
3059
3060 int submit_bh(int rw, struct buffer_head *bh)
3061 {
3062         return _submit_bh(rw, bh, 0);
3063 }
3064 EXPORT_SYMBOL(submit_bh);
3065
3066 /**
3067  * ll_rw_block: low-level access to block devices (DEPRECATED)
3068  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3069  * @nr: number of &struct buffer_heads in the array
3070  * @bhs: array of pointers to &struct buffer_head
3071  *
3072  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3073  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3074  * %READA option is described in the documentation for generic_make_request()
3075  * which ll_rw_block() calls.
3076  *
3077  * This function drops any buffer that it cannot get a lock on (with the
3078  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3079  * request, and any buffer that appears to be up-to-date when doing read
3080  * request.  Further it marks as clean buffers that are processed for
3081  * writing (the buffer cache won't assume that they are actually clean
3082  * until the buffer gets unlocked).
3083  *
3084  * ll_rw_block sets b_end_io to simple completion handler that marks
3085  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3086  * any waiters. 
3087  *
3088  * All of the buffers must be for the same device, and must also be a
3089  * multiple of the current approved size for the device.
3090  */
3091 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3092 {
3093         int i;
3094
3095         for (i = 0; i < nr; i++) {
3096                 struct buffer_head *bh = bhs[i];
3097
3098                 if (!trylock_buffer(bh))
3099                         continue;
3100                 if (rw == WRITE) {
3101                         if (test_clear_buffer_dirty(bh)) {
3102                                 bh->b_end_io = end_buffer_write_sync;
3103                                 get_bh(bh);
3104                                 submit_bh(WRITE, bh);
3105                                 continue;
3106                         }
3107                 } else {
3108                         if (!buffer_uptodate(bh)) {
3109                                 bh->b_end_io = end_buffer_read_sync;
3110                                 get_bh(bh);
3111                                 submit_bh(rw, bh);
3112                                 continue;
3113                         }
3114                 }
3115                 unlock_buffer(bh);
3116         }
3117 }
3118 EXPORT_SYMBOL(ll_rw_block);
3119
3120 void write_dirty_buffer(struct buffer_head *bh, int rw)
3121 {
3122         lock_buffer(bh);
3123         if (!test_clear_buffer_dirty(bh)) {
3124                 unlock_buffer(bh);
3125                 return;
3126         }
3127         bh->b_end_io = end_buffer_write_sync;
3128         get_bh(bh);
3129         submit_bh(rw, bh);
3130 }
3131 EXPORT_SYMBOL(write_dirty_buffer);
3132
3133 /*
3134  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3135  * and then start new I/O and then wait upon it.  The caller must have a ref on
3136  * the buffer_head.
3137  */
3138 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3139 {
3140         int ret = 0;
3141
3142         WARN_ON(atomic_read(&bh->b_count) < 1);
3143         lock_buffer(bh);
3144         if (test_clear_buffer_dirty(bh)) {
3145                 get_bh(bh);
3146                 bh->b_end_io = end_buffer_write_sync;
3147                 ret = submit_bh(rw, bh);
3148                 wait_on_buffer(bh);
3149                 if (!ret && !buffer_uptodate(bh))
3150                         ret = -EIO;
3151         } else {
3152                 unlock_buffer(bh);
3153         }
3154         return ret;
3155 }
3156 EXPORT_SYMBOL(__sync_dirty_buffer);
3157
3158 int sync_dirty_buffer(struct buffer_head *bh)
3159 {
3160         return __sync_dirty_buffer(bh, WRITE_SYNC);
3161 }
3162 EXPORT_SYMBOL(sync_dirty_buffer);
3163
3164 /*
3165  * try_to_free_buffers() checks if all the buffers on this particular page
3166  * are unused, and releases them if so.
3167  *
3168  * Exclusion against try_to_free_buffers may be obtained by either
3169  * locking the page or by holding its mapping's private_lock.
3170  *
3171  * If the page is dirty but all the buffers are clean then we need to
3172  * be sure to mark the page clean as well.  This is because the page
3173  * may be against a block device, and a later reattachment of buffers
3174  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3175  * filesystem data on the same device.
3176  *
3177  * The same applies to regular filesystem pages: if all the buffers are
3178  * clean then we set the page clean and proceed.  To do that, we require
3179  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3180  * private_lock.
3181  *
3182  * try_to_free_buffers() is non-blocking.
3183  */
3184 static inline int buffer_busy(struct buffer_head *bh)
3185 {
3186         return atomic_read(&bh->b_count) |
3187                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3188 }
3189
3190 static int
3191 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3192 {
3193         struct buffer_head *head = page_buffers(page);
3194         struct buffer_head *bh;
3195
3196         bh = head;
3197         do {
3198                 if (buffer_write_io_error(bh) && page->mapping)
3199                         set_bit(AS_EIO, &page->mapping->flags);
3200                 if (buffer_busy(bh))
3201                         goto failed;
3202                 bh = bh->b_this_page;
3203         } while (bh != head);
3204
3205         do {
3206                 struct buffer_head *next = bh->b_this_page;
3207
3208                 if (bh->b_assoc_map)
3209                         __remove_assoc_queue(bh);
3210                 bh = next;
3211         } while (bh != head);
3212         *buffers_to_free = head;
3213         __clear_page_buffers(page);
3214         return 1;
3215 failed:
3216         return 0;
3217 }
3218
3219 int try_to_free_buffers(struct page *page)
3220 {
3221         struct address_space * const mapping = page->mapping;
3222         struct buffer_head *buffers_to_free = NULL;
3223         int ret = 0;
3224
3225         BUG_ON(!PageLocked(page));
3226         if (PageWriteback(page))
3227                 return 0;
3228
3229         if (mapping == NULL) {          /* can this still happen? */
3230                 ret = drop_buffers(page, &buffers_to_free);
3231                 goto out;
3232         }
3233
3234         spin_lock(&mapping->private_lock);
3235         ret = drop_buffers(page, &buffers_to_free);
3236
3237         /*
3238          * If the filesystem writes its buffers by hand (eg ext3)
3239          * then we can have clean buffers against a dirty page.  We
3240          * clean the page here; otherwise the VM will never notice
3241          * that the filesystem did any IO at all.
3242          *
3243          * Also, during truncate, discard_buffer will have marked all
3244          * the page's buffers clean.  We discover that here and clean
3245          * the page also.
3246          *
3247          * private_lock must be held over this entire operation in order
3248          * to synchronise against __set_page_dirty_buffers and prevent the
3249          * dirty bit from being lost.
3250          */
3251         if (ret)
3252                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3253         spin_unlock(&mapping->private_lock);
3254 out:
3255         if (buffers_to_free) {
3256                 struct buffer_head *bh = buffers_to_free;
3257
3258                 do {
3259                         struct buffer_head *next = bh->b_this_page;
3260                         free_buffer_head(bh);
3261                         bh = next;
3262                 } while (bh != buffers_to_free);
3263         }
3264         return ret;
3265 }
3266 EXPORT_SYMBOL(try_to_free_buffers);
3267
3268 /*
3269  * There are no bdflush tunables left.  But distributions are
3270  * still running obsolete flush daemons, so we terminate them here.
3271  *
3272  * Use of bdflush() is deprecated and will be removed in a future kernel.
3273  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3274  */
3275 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3276 {
3277         static int msg_count;
3278
3279         if (!capable(CAP_SYS_ADMIN))
3280                 return -EPERM;
3281
3282         if (msg_count < 5) {
3283                 msg_count++;
3284                 printk(KERN_INFO
3285                         "warning: process `%s' used the obsolete bdflush"
3286                         " system call\n", current->comm);
3287                 printk(KERN_INFO "Fix your initscripts?\n");
3288         }
3289
3290         if (func == 1)
3291                 do_exit(0);
3292         return 0;
3293 }
3294
3295 /*
3296  * Buffer-head allocation
3297  */
3298 static struct kmem_cache *bh_cachep __read_mostly;
3299
3300 /*
3301  * Once the number of bh's in the machine exceeds this level, we start
3302  * stripping them in writeback.
3303  */
3304 static unsigned long max_buffer_heads;
3305
3306 int buffer_heads_over_limit;
3307
3308 struct bh_accounting {
3309         int nr;                 /* Number of live bh's */
3310         int ratelimit;          /* Limit cacheline bouncing */
3311 };
3312
3313 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3314
3315 static void recalc_bh_state(void)
3316 {
3317         int i;
3318         int tot = 0;
3319
3320         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3321                 return;
3322         __this_cpu_write(bh_accounting.ratelimit, 0);
3323         for_each_online_cpu(i)
3324                 tot += per_cpu(bh_accounting, i).nr;
3325         buffer_heads_over_limit = (tot > max_buffer_heads);
3326 }
3327
3328 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3329 {
3330         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3331         if (ret) {
3332                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3333                 preempt_disable();
3334                 __this_cpu_inc(bh_accounting.nr);
3335                 recalc_bh_state();
3336                 preempt_enable();
3337         }
3338         return ret;
3339 }
3340 EXPORT_SYMBOL(alloc_buffer_head);
3341
3342 void free_buffer_head(struct buffer_head *bh)
3343 {
3344         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3345         kmem_cache_free(bh_cachep, bh);
3346         preempt_disable();
3347         __this_cpu_dec(bh_accounting.nr);
3348         recalc_bh_state();
3349         preempt_enable();
3350 }
3351 EXPORT_SYMBOL(free_buffer_head);
3352
3353 static void buffer_exit_cpu(int cpu)
3354 {
3355         int i;
3356         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3357
3358         for (i = 0; i < BH_LRU_SIZE; i++) {
3359                 brelse(b->bhs[i]);
3360                 b->bhs[i] = NULL;
3361         }
3362         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3363         per_cpu(bh_accounting, cpu).nr = 0;
3364 }
3365
3366 static int buffer_cpu_notify(struct notifier_block *self,
3367                               unsigned long action, void *hcpu)
3368 {
3369         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3370                 buffer_exit_cpu((unsigned long)hcpu);
3371         return NOTIFY_OK;
3372 }
3373
3374 /**
3375  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3376  * @bh: struct buffer_head
3377  *
3378  * Return true if the buffer is up-to-date and false,
3379  * with the buffer locked, if not.
3380  */
3381 int bh_uptodate_or_lock(struct buffer_head *bh)
3382 {
3383         if (!buffer_uptodate(bh)) {
3384                 lock_buffer(bh);
3385                 if (!buffer_uptodate(bh))
3386                         return 0;
3387                 unlock_buffer(bh);
3388         }
3389         return 1;
3390 }
3391 EXPORT_SYMBOL(bh_uptodate_or_lock);
3392
3393 /**
3394  * bh_submit_read - Submit a locked buffer for reading
3395  * @bh: struct buffer_head
3396  *
3397  * Returns zero on success and -EIO on error.
3398  */
3399 int bh_submit_read(struct buffer_head *bh)
3400 {
3401         BUG_ON(!buffer_locked(bh));
3402
3403         if (buffer_uptodate(bh)) {
3404                 unlock_buffer(bh);
3405                 return 0;
3406         }
3407
3408         get_bh(bh);
3409         bh->b_end_io = end_buffer_read_sync;
3410         submit_bh(READ, bh);
3411         wait_on_buffer(bh);
3412         if (buffer_uptodate(bh))
3413                 return 0;
3414         return -EIO;
3415 }
3416 EXPORT_SYMBOL(bh_submit_read);
3417
3418 void __init buffer_init(void)
3419 {
3420         unsigned long nrpages;
3421
3422         bh_cachep = kmem_cache_create("buffer_head",
3423                         sizeof(struct buffer_head), 0,
3424                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3425                                 SLAB_MEM_SPREAD),
3426                                 NULL);
3427
3428         /*
3429          * Limit the bh occupancy to 10% of ZONE_NORMAL
3430          */
3431         nrpages = (nr_free_buffer_pages() * 10) / 100;
3432         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3433         hotcpu_notifier(buffer_cpu_notify, 0);
3434 }