]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/extents.c
Merge remote-tracking branch 'asoc/topic/tegra' into asoc-next
[karo-tx-linux.git] / fs / ext4 / extents.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * Architecture independence:
6  *   Copyright (c) 2005, Bull S.A.
7  *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public Licens
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
21  */
22
23 /*
24  * Extents support for EXT4
25  *
26  * TODO:
27  *   - ext4*_error() should be used in some situations
28  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29  *   - smart tree reduction
30  */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46
47 #include <trace/events/ext4.h>
48
49 /*
50  * used by extent splitting.
51  */
52 #define EXT4_EXT_MAY_ZEROOUT    0x1  /* safe to zeroout if split fails \
53                                         due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1   0x2  /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2   0x4  /* mark second half uninitialized */
56
57 #define EXT4_EXT_DATA_VALID1    0x8  /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2    0x10 /* second half contains valid data */
59
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61                                      struct ext4_extent_header *eh)
62 {
63         struct ext4_inode_info *ei = EXT4_I(inode);
64         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65         __u32 csum;
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68                            EXT4_EXTENT_TAIL_OFFSET(eh));
69         return cpu_to_le32(csum);
70 }
71
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73                                          struct ext4_extent_header *eh)
74 {
75         struct ext4_extent_tail *et;
76
77         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79                 return 1;
80
81         et = find_ext4_extent_tail(eh);
82         if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83                 return 0;
84         return 1;
85 }
86
87 static void ext4_extent_block_csum_set(struct inode *inode,
88                                        struct ext4_extent_header *eh)
89 {
90         struct ext4_extent_tail *et;
91
92         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94                 return;
95
96         et = find_ext4_extent_tail(eh);
97         et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99
100 static int ext4_split_extent(handle_t *handle,
101                                 struct inode *inode,
102                                 struct ext4_ext_path *path,
103                                 struct ext4_map_blocks *map,
104                                 int split_flag,
105                                 int flags);
106
107 static int ext4_split_extent_at(handle_t *handle,
108                              struct inode *inode,
109                              struct ext4_ext_path *path,
110                              ext4_lblk_t split,
111                              int split_flag,
112                              int flags);
113
114 static int ext4_find_delayed_extent(struct inode *inode,
115                                     struct ext4_ext_cache *newex);
116
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118                                             struct inode *inode,
119                                             int needed)
120 {
121         int err;
122
123         if (!ext4_handle_valid(handle))
124                 return 0;
125         if (handle->h_buffer_credits > needed)
126                 return 0;
127         err = ext4_journal_extend(handle, needed);
128         if (err <= 0)
129                 return err;
130         err = ext4_truncate_restart_trans(handle, inode, needed);
131         if (err == 0)
132                 err = -EAGAIN;
133
134         return err;
135 }
136
137 /*
138  * could return:
139  *  - EROFS
140  *  - ENOMEM
141  */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143                                 struct ext4_ext_path *path)
144 {
145         if (path->p_bh) {
146                 /* path points to block */
147                 return ext4_journal_get_write_access(handle, path->p_bh);
148         }
149         /* path points to leaf/index in inode body */
150         /* we use in-core data, no need to protect them */
151         return 0;
152 }
153
154 /*
155  * could return:
156  *  - EROFS
157  *  - ENOMEM
158  *  - EIO
159  */
160 #define ext4_ext_dirty(handle, inode, path) \
161                 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162 static int __ext4_ext_dirty(const char *where, unsigned int line,
163                             handle_t *handle, struct inode *inode,
164                             struct ext4_ext_path *path)
165 {
166         int err;
167         if (path->p_bh) {
168                 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169                 /* path points to block */
170                 err = __ext4_handle_dirty_metadata(where, line, handle,
171                                                    inode, path->p_bh);
172         } else {
173                 /* path points to leaf/index in inode body */
174                 err = ext4_mark_inode_dirty(handle, inode);
175         }
176         return err;
177 }
178
179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180                               struct ext4_ext_path *path,
181                               ext4_lblk_t block)
182 {
183         if (path) {
184                 int depth = path->p_depth;
185                 struct ext4_extent *ex;
186
187                 /*
188                  * Try to predict block placement assuming that we are
189                  * filling in a file which will eventually be
190                  * non-sparse --- i.e., in the case of libbfd writing
191                  * an ELF object sections out-of-order but in a way
192                  * the eventually results in a contiguous object or
193                  * executable file, or some database extending a table
194                  * space file.  However, this is actually somewhat
195                  * non-ideal if we are writing a sparse file such as
196                  * qemu or KVM writing a raw image file that is going
197                  * to stay fairly sparse, since it will end up
198                  * fragmenting the file system's free space.  Maybe we
199                  * should have some hueristics or some way to allow
200                  * userspace to pass a hint to file system,
201                  * especially if the latter case turns out to be
202                  * common.
203                  */
204                 ex = path[depth].p_ext;
205                 if (ex) {
206                         ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207                         ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
208
209                         if (block > ext_block)
210                                 return ext_pblk + (block - ext_block);
211                         else
212                                 return ext_pblk - (ext_block - block);
213                 }
214
215                 /* it looks like index is empty;
216                  * try to find starting block from index itself */
217                 if (path[depth].p_bh)
218                         return path[depth].p_bh->b_blocknr;
219         }
220
221         /* OK. use inode's group */
222         return ext4_inode_to_goal_block(inode);
223 }
224
225 /*
226  * Allocation for a meta data block
227  */
228 static ext4_fsblk_t
229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230                         struct ext4_ext_path *path,
231                         struct ext4_extent *ex, int *err, unsigned int flags)
232 {
233         ext4_fsblk_t goal, newblock;
234
235         goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236         newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
237                                         NULL, err);
238         return newblock;
239 }
240
241 static inline int ext4_ext_space_block(struct inode *inode, int check)
242 {
243         int size;
244
245         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246                         / sizeof(struct ext4_extent);
247 #ifdef AGGRESSIVE_TEST
248         if (!check && size > 6)
249                 size = 6;
250 #endif
251         return size;
252 }
253
254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
255 {
256         int size;
257
258         size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259                         / sizeof(struct ext4_extent_idx);
260 #ifdef AGGRESSIVE_TEST
261         if (!check && size > 5)
262                 size = 5;
263 #endif
264         return size;
265 }
266
267 static inline int ext4_ext_space_root(struct inode *inode, int check)
268 {
269         int size;
270
271         size = sizeof(EXT4_I(inode)->i_data);
272         size -= sizeof(struct ext4_extent_header);
273         size /= sizeof(struct ext4_extent);
274 #ifdef AGGRESSIVE_TEST
275         if (!check && size > 3)
276                 size = 3;
277 #endif
278         return size;
279 }
280
281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
282 {
283         int size;
284
285         size = sizeof(EXT4_I(inode)->i_data);
286         size -= sizeof(struct ext4_extent_header);
287         size /= sizeof(struct ext4_extent_idx);
288 #ifdef AGGRESSIVE_TEST
289         if (!check && size > 4)
290                 size = 4;
291 #endif
292         return size;
293 }
294
295 /*
296  * Calculate the number of metadata blocks needed
297  * to allocate @blocks
298  * Worse case is one block per extent
299  */
300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
301 {
302         struct ext4_inode_info *ei = EXT4_I(inode);
303         int idxs;
304
305         idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306                 / sizeof(struct ext4_extent_idx));
307
308         /*
309          * If the new delayed allocation block is contiguous with the
310          * previous da block, it can share index blocks with the
311          * previous block, so we only need to allocate a new index
312          * block every idxs leaf blocks.  At ldxs**2 blocks, we need
313          * an additional index block, and at ldxs**3 blocks, yet
314          * another index blocks.
315          */
316         if (ei->i_da_metadata_calc_len &&
317             ei->i_da_metadata_calc_last_lblock+1 == lblock) {
318                 int num = 0;
319
320                 if ((ei->i_da_metadata_calc_len % idxs) == 0)
321                         num++;
322                 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
323                         num++;
324                 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
325                         num++;
326                         ei->i_da_metadata_calc_len = 0;
327                 } else
328                         ei->i_da_metadata_calc_len++;
329                 ei->i_da_metadata_calc_last_lblock++;
330                 return num;
331         }
332
333         /*
334          * In the worst case we need a new set of index blocks at
335          * every level of the inode's extent tree.
336          */
337         ei->i_da_metadata_calc_len = 1;
338         ei->i_da_metadata_calc_last_lblock = lblock;
339         return ext_depth(inode) + 1;
340 }
341
342 static int
343 ext4_ext_max_entries(struct inode *inode, int depth)
344 {
345         int max;
346
347         if (depth == ext_depth(inode)) {
348                 if (depth == 0)
349                         max = ext4_ext_space_root(inode, 1);
350                 else
351                         max = ext4_ext_space_root_idx(inode, 1);
352         } else {
353                 if (depth == 0)
354                         max = ext4_ext_space_block(inode, 1);
355                 else
356                         max = ext4_ext_space_block_idx(inode, 1);
357         }
358
359         return max;
360 }
361
362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
363 {
364         ext4_fsblk_t block = ext4_ext_pblock(ext);
365         int len = ext4_ext_get_actual_len(ext);
366
367         if (len == 0)
368                 return 0;
369         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
370 }
371
372 static int ext4_valid_extent_idx(struct inode *inode,
373                                 struct ext4_extent_idx *ext_idx)
374 {
375         ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
376
377         return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
378 }
379
380 static int ext4_valid_extent_entries(struct inode *inode,
381                                 struct ext4_extent_header *eh,
382                                 int depth)
383 {
384         unsigned short entries;
385         if (eh->eh_entries == 0)
386                 return 1;
387
388         entries = le16_to_cpu(eh->eh_entries);
389
390         if (depth == 0) {
391                 /* leaf entries */
392                 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
393                 while (entries) {
394                         if (!ext4_valid_extent(inode, ext))
395                                 return 0;
396                         ext++;
397                         entries--;
398                 }
399         } else {
400                 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
401                 while (entries) {
402                         if (!ext4_valid_extent_idx(inode, ext_idx))
403                                 return 0;
404                         ext_idx++;
405                         entries--;
406                 }
407         }
408         return 1;
409 }
410
411 static int __ext4_ext_check(const char *function, unsigned int line,
412                             struct inode *inode, struct ext4_extent_header *eh,
413                             int depth)
414 {
415         const char *error_msg;
416         int max = 0;
417
418         if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419                 error_msg = "invalid magic";
420                 goto corrupted;
421         }
422         if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423                 error_msg = "unexpected eh_depth";
424                 goto corrupted;
425         }
426         if (unlikely(eh->eh_max == 0)) {
427                 error_msg = "invalid eh_max";
428                 goto corrupted;
429         }
430         max = ext4_ext_max_entries(inode, depth);
431         if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432                 error_msg = "too large eh_max";
433                 goto corrupted;
434         }
435         if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436                 error_msg = "invalid eh_entries";
437                 goto corrupted;
438         }
439         if (!ext4_valid_extent_entries(inode, eh, depth)) {
440                 error_msg = "invalid extent entries";
441                 goto corrupted;
442         }
443         /* Verify checksum on non-root extent tree nodes */
444         if (ext_depth(inode) != depth &&
445             !ext4_extent_block_csum_verify(inode, eh)) {
446                 error_msg = "extent tree corrupted";
447                 goto corrupted;
448         }
449         return 0;
450
451 corrupted:
452         ext4_error_inode(inode, function, line, 0,
453                         "bad header/extent: %s - magic %x, "
454                         "entries %u, max %u(%u), depth %u(%u)",
455                         error_msg, le16_to_cpu(eh->eh_magic),
456                         le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457                         max, le16_to_cpu(eh->eh_depth), depth);
458
459         return -EIO;
460 }
461
462 #define ext4_ext_check(inode, eh, depth)        \
463         __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
464
465 int ext4_ext_check_inode(struct inode *inode)
466 {
467         return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
468 }
469
470 static int __ext4_ext_check_block(const char *function, unsigned int line,
471                                   struct inode *inode,
472                                   struct ext4_extent_header *eh,
473                                   int depth,
474                                   struct buffer_head *bh)
475 {
476         int ret;
477
478         if (buffer_verified(bh))
479                 return 0;
480         ret = ext4_ext_check(inode, eh, depth);
481         if (ret)
482                 return ret;
483         set_buffer_verified(bh);
484         return ret;
485 }
486
487 #define ext4_ext_check_block(inode, eh, depth, bh)      \
488         __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
489
490 #ifdef EXT_DEBUG
491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
492 {
493         int k, l = path->p_depth;
494
495         ext_debug("path:");
496         for (k = 0; k <= l; k++, path++) {
497                 if (path->p_idx) {
498                   ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499                             ext4_idx_pblock(path->p_idx));
500                 } else if (path->p_ext) {
501                         ext_debug("  %d:[%d]%d:%llu ",
502                                   le32_to_cpu(path->p_ext->ee_block),
503                                   ext4_ext_is_uninitialized(path->p_ext),
504                                   ext4_ext_get_actual_len(path->p_ext),
505                                   ext4_ext_pblock(path->p_ext));
506                 } else
507                         ext_debug("  []");
508         }
509         ext_debug("\n");
510 }
511
512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
513 {
514         int depth = ext_depth(inode);
515         struct ext4_extent_header *eh;
516         struct ext4_extent *ex;
517         int i;
518
519         if (!path)
520                 return;
521
522         eh = path[depth].p_hdr;
523         ex = EXT_FIRST_EXTENT(eh);
524
525         ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
526
527         for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528                 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529                           ext4_ext_is_uninitialized(ex),
530                           ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
531         }
532         ext_debug("\n");
533 }
534
535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536                         ext4_fsblk_t newblock, int level)
537 {
538         int depth = ext_depth(inode);
539         struct ext4_extent *ex;
540
541         if (depth != level) {
542                 struct ext4_extent_idx *idx;
543                 idx = path[level].p_idx;
544                 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545                         ext_debug("%d: move %d:%llu in new index %llu\n", level,
546                                         le32_to_cpu(idx->ei_block),
547                                         ext4_idx_pblock(idx),
548                                         newblock);
549                         idx++;
550                 }
551
552                 return;
553         }
554
555         ex = path[depth].p_ext;
556         while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557                 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558                                 le32_to_cpu(ex->ee_block),
559                                 ext4_ext_pblock(ex),
560                                 ext4_ext_is_uninitialized(ex),
561                                 ext4_ext_get_actual_len(ex),
562                                 newblock);
563                 ex++;
564         }
565 }
566
567 #else
568 #define ext4_ext_show_path(inode, path)
569 #define ext4_ext_show_leaf(inode, path)
570 #define ext4_ext_show_move(inode, path, newblock, level)
571 #endif
572
573 void ext4_ext_drop_refs(struct ext4_ext_path *path)
574 {
575         int depth = path->p_depth;
576         int i;
577
578         for (i = 0; i <= depth; i++, path++)
579                 if (path->p_bh) {
580                         brelse(path->p_bh);
581                         path->p_bh = NULL;
582                 }
583 }
584
585 /*
586  * ext4_ext_binsearch_idx:
587  * binary search for the closest index of the given block
588  * the header must be checked before calling this
589  */
590 static void
591 ext4_ext_binsearch_idx(struct inode *inode,
592                         struct ext4_ext_path *path, ext4_lblk_t block)
593 {
594         struct ext4_extent_header *eh = path->p_hdr;
595         struct ext4_extent_idx *r, *l, *m;
596
597
598         ext_debug("binsearch for %u(idx):  ", block);
599
600         l = EXT_FIRST_INDEX(eh) + 1;
601         r = EXT_LAST_INDEX(eh);
602         while (l <= r) {
603                 m = l + (r - l) / 2;
604                 if (block < le32_to_cpu(m->ei_block))
605                         r = m - 1;
606                 else
607                         l = m + 1;
608                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609                                 m, le32_to_cpu(m->ei_block),
610                                 r, le32_to_cpu(r->ei_block));
611         }
612
613         path->p_idx = l - 1;
614         ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615                   ext4_idx_pblock(path->p_idx));
616
617 #ifdef CHECK_BINSEARCH
618         {
619                 struct ext4_extent_idx *chix, *ix;
620                 int k;
621
622                 chix = ix = EXT_FIRST_INDEX(eh);
623                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
624                   if (k != 0 &&
625                       le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626                                 printk(KERN_DEBUG "k=%d, ix=0x%p, "
627                                        "first=0x%p\n", k,
628                                        ix, EXT_FIRST_INDEX(eh));
629                                 printk(KERN_DEBUG "%u <= %u\n",
630                                        le32_to_cpu(ix->ei_block),
631                                        le32_to_cpu(ix[-1].ei_block));
632                         }
633                         BUG_ON(k && le32_to_cpu(ix->ei_block)
634                                            <= le32_to_cpu(ix[-1].ei_block));
635                         if (block < le32_to_cpu(ix->ei_block))
636                                 break;
637                         chix = ix;
638                 }
639                 BUG_ON(chix != path->p_idx);
640         }
641 #endif
642
643 }
644
645 /*
646  * ext4_ext_binsearch:
647  * binary search for closest extent of the given block
648  * the header must be checked before calling this
649  */
650 static void
651 ext4_ext_binsearch(struct inode *inode,
652                 struct ext4_ext_path *path, ext4_lblk_t block)
653 {
654         struct ext4_extent_header *eh = path->p_hdr;
655         struct ext4_extent *r, *l, *m;
656
657         if (eh->eh_entries == 0) {
658                 /*
659                  * this leaf is empty:
660                  * we get such a leaf in split/add case
661                  */
662                 return;
663         }
664
665         ext_debug("binsearch for %u:  ", block);
666
667         l = EXT_FIRST_EXTENT(eh) + 1;
668         r = EXT_LAST_EXTENT(eh);
669
670         while (l <= r) {
671                 m = l + (r - l) / 2;
672                 if (block < le32_to_cpu(m->ee_block))
673                         r = m - 1;
674                 else
675                         l = m + 1;
676                 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677                                 m, le32_to_cpu(m->ee_block),
678                                 r, le32_to_cpu(r->ee_block));
679         }
680
681         path->p_ext = l - 1;
682         ext_debug("  -> %d:%llu:[%d]%d ",
683                         le32_to_cpu(path->p_ext->ee_block),
684                         ext4_ext_pblock(path->p_ext),
685                         ext4_ext_is_uninitialized(path->p_ext),
686                         ext4_ext_get_actual_len(path->p_ext));
687
688 #ifdef CHECK_BINSEARCH
689         {
690                 struct ext4_extent *chex, *ex;
691                 int k;
692
693                 chex = ex = EXT_FIRST_EXTENT(eh);
694                 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695                         BUG_ON(k && le32_to_cpu(ex->ee_block)
696                                           <= le32_to_cpu(ex[-1].ee_block));
697                         if (block < le32_to_cpu(ex->ee_block))
698                                 break;
699                         chex = ex;
700                 }
701                 BUG_ON(chex != path->p_ext);
702         }
703 #endif
704
705 }
706
707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
708 {
709         struct ext4_extent_header *eh;
710
711         eh = ext_inode_hdr(inode);
712         eh->eh_depth = 0;
713         eh->eh_entries = 0;
714         eh->eh_magic = EXT4_EXT_MAGIC;
715         eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716         ext4_mark_inode_dirty(handle, inode);
717         ext4_ext_invalidate_cache(inode);
718         return 0;
719 }
720
721 struct ext4_ext_path *
722 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
723                                         struct ext4_ext_path *path)
724 {
725         struct ext4_extent_header *eh;
726         struct buffer_head *bh;
727         short int depth, i, ppos = 0, alloc = 0;
728
729         eh = ext_inode_hdr(inode);
730         depth = ext_depth(inode);
731
732         /* account possible depth increase */
733         if (!path) {
734                 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
735                                 GFP_NOFS);
736                 if (!path)
737                         return ERR_PTR(-ENOMEM);
738                 alloc = 1;
739         }
740         path[0].p_hdr = eh;
741         path[0].p_bh = NULL;
742
743         i = depth;
744         /* walk through the tree */
745         while (i) {
746                 ext_debug("depth %d: num %d, max %d\n",
747                           ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
748
749                 ext4_ext_binsearch_idx(inode, path + ppos, block);
750                 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
751                 path[ppos].p_depth = i;
752                 path[ppos].p_ext = NULL;
753
754                 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
755                 if (unlikely(!bh))
756                         goto err;
757                 if (!bh_uptodate_or_lock(bh)) {
758                         trace_ext4_ext_load_extent(inode, block,
759                                                 path[ppos].p_block);
760                         if (bh_submit_read(bh) < 0) {
761                                 put_bh(bh);
762                                 goto err;
763                         }
764                 }
765                 eh = ext_block_hdr(bh);
766                 ppos++;
767                 if (unlikely(ppos > depth)) {
768                         put_bh(bh);
769                         EXT4_ERROR_INODE(inode,
770                                          "ppos %d > depth %d", ppos, depth);
771                         goto err;
772                 }
773                 path[ppos].p_bh = bh;
774                 path[ppos].p_hdr = eh;
775                 i--;
776
777                 if (ext4_ext_check_block(inode, eh, i, bh))
778                         goto err;
779         }
780
781         path[ppos].p_depth = i;
782         path[ppos].p_ext = NULL;
783         path[ppos].p_idx = NULL;
784
785         /* find extent */
786         ext4_ext_binsearch(inode, path + ppos, block);
787         /* if not an empty leaf */
788         if (path[ppos].p_ext)
789                 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
790
791         ext4_ext_show_path(inode, path);
792
793         return path;
794
795 err:
796         ext4_ext_drop_refs(path);
797         if (alloc)
798                 kfree(path);
799         return ERR_PTR(-EIO);
800 }
801
802 /*
803  * ext4_ext_insert_index:
804  * insert new index [@logical;@ptr] into the block at @curp;
805  * check where to insert: before @curp or after @curp
806  */
807 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
808                                  struct ext4_ext_path *curp,
809                                  int logical, ext4_fsblk_t ptr)
810 {
811         struct ext4_extent_idx *ix;
812         int len, err;
813
814         err = ext4_ext_get_access(handle, inode, curp);
815         if (err)
816                 return err;
817
818         if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
819                 EXT4_ERROR_INODE(inode,
820                                  "logical %d == ei_block %d!",
821                                  logical, le32_to_cpu(curp->p_idx->ei_block));
822                 return -EIO;
823         }
824
825         if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
826                              >= le16_to_cpu(curp->p_hdr->eh_max))) {
827                 EXT4_ERROR_INODE(inode,
828                                  "eh_entries %d >= eh_max %d!",
829                                  le16_to_cpu(curp->p_hdr->eh_entries),
830                                  le16_to_cpu(curp->p_hdr->eh_max));
831                 return -EIO;
832         }
833
834         if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
835                 /* insert after */
836                 ext_debug("insert new index %d after: %llu\n", logical, ptr);
837                 ix = curp->p_idx + 1;
838         } else {
839                 /* insert before */
840                 ext_debug("insert new index %d before: %llu\n", logical, ptr);
841                 ix = curp->p_idx;
842         }
843
844         len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
845         BUG_ON(len < 0);
846         if (len > 0) {
847                 ext_debug("insert new index %d: "
848                                 "move %d indices from 0x%p to 0x%p\n",
849                                 logical, len, ix, ix + 1);
850                 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
851         }
852
853         if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
854                 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
855                 return -EIO;
856         }
857
858         ix->ei_block = cpu_to_le32(logical);
859         ext4_idx_store_pblock(ix, ptr);
860         le16_add_cpu(&curp->p_hdr->eh_entries, 1);
861
862         if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
863                 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
864                 return -EIO;
865         }
866
867         err = ext4_ext_dirty(handle, inode, curp);
868         ext4_std_error(inode->i_sb, err);
869
870         return err;
871 }
872
873 /*
874  * ext4_ext_split:
875  * inserts new subtree into the path, using free index entry
876  * at depth @at:
877  * - allocates all needed blocks (new leaf and all intermediate index blocks)
878  * - makes decision where to split
879  * - moves remaining extents and index entries (right to the split point)
880  *   into the newly allocated blocks
881  * - initializes subtree
882  */
883 static int ext4_ext_split(handle_t *handle, struct inode *inode,
884                           unsigned int flags,
885                           struct ext4_ext_path *path,
886                           struct ext4_extent *newext, int at)
887 {
888         struct buffer_head *bh = NULL;
889         int depth = ext_depth(inode);
890         struct ext4_extent_header *neh;
891         struct ext4_extent_idx *fidx;
892         int i = at, k, m, a;
893         ext4_fsblk_t newblock, oldblock;
894         __le32 border;
895         ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
896         int err = 0;
897
898         /* make decision: where to split? */
899         /* FIXME: now decision is simplest: at current extent */
900
901         /* if current leaf will be split, then we should use
902          * border from split point */
903         if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
904                 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
905                 return -EIO;
906         }
907         if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
908                 border = path[depth].p_ext[1].ee_block;
909                 ext_debug("leaf will be split."
910                                 " next leaf starts at %d\n",
911                                   le32_to_cpu(border));
912         } else {
913                 border = newext->ee_block;
914                 ext_debug("leaf will be added."
915                                 " next leaf starts at %d\n",
916                                 le32_to_cpu(border));
917         }
918
919         /*
920          * If error occurs, then we break processing
921          * and mark filesystem read-only. index won't
922          * be inserted and tree will be in consistent
923          * state. Next mount will repair buffers too.
924          */
925
926         /*
927          * Get array to track all allocated blocks.
928          * We need this to handle errors and free blocks
929          * upon them.
930          */
931         ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
932         if (!ablocks)
933                 return -ENOMEM;
934
935         /* allocate all needed blocks */
936         ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
937         for (a = 0; a < depth - at; a++) {
938                 newblock = ext4_ext_new_meta_block(handle, inode, path,
939                                                    newext, &err, flags);
940                 if (newblock == 0)
941                         goto cleanup;
942                 ablocks[a] = newblock;
943         }
944
945         /* initialize new leaf */
946         newblock = ablocks[--a];
947         if (unlikely(newblock == 0)) {
948                 EXT4_ERROR_INODE(inode, "newblock == 0!");
949                 err = -EIO;
950                 goto cleanup;
951         }
952         bh = sb_getblk(inode->i_sb, newblock);
953         if (!bh) {
954                 err = -EIO;
955                 goto cleanup;
956         }
957         lock_buffer(bh);
958
959         err = ext4_journal_get_create_access(handle, bh);
960         if (err)
961                 goto cleanup;
962
963         neh = ext_block_hdr(bh);
964         neh->eh_entries = 0;
965         neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
966         neh->eh_magic = EXT4_EXT_MAGIC;
967         neh->eh_depth = 0;
968
969         /* move remainder of path[depth] to the new leaf */
970         if (unlikely(path[depth].p_hdr->eh_entries !=
971                      path[depth].p_hdr->eh_max)) {
972                 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
973                                  path[depth].p_hdr->eh_entries,
974                                  path[depth].p_hdr->eh_max);
975                 err = -EIO;
976                 goto cleanup;
977         }
978         /* start copy from next extent */
979         m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
980         ext4_ext_show_move(inode, path, newblock, depth);
981         if (m) {
982                 struct ext4_extent *ex;
983                 ex = EXT_FIRST_EXTENT(neh);
984                 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
985                 le16_add_cpu(&neh->eh_entries, m);
986         }
987
988         ext4_extent_block_csum_set(inode, neh);
989         set_buffer_uptodate(bh);
990         unlock_buffer(bh);
991
992         err = ext4_handle_dirty_metadata(handle, inode, bh);
993         if (err)
994                 goto cleanup;
995         brelse(bh);
996         bh = NULL;
997
998         /* correct old leaf */
999         if (m) {
1000                 err = ext4_ext_get_access(handle, inode, path + depth);
1001                 if (err)
1002                         goto cleanup;
1003                 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1004                 err = ext4_ext_dirty(handle, inode, path + depth);
1005                 if (err)
1006                         goto cleanup;
1007
1008         }
1009
1010         /* create intermediate indexes */
1011         k = depth - at - 1;
1012         if (unlikely(k < 0)) {
1013                 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1014                 err = -EIO;
1015                 goto cleanup;
1016         }
1017         if (k)
1018                 ext_debug("create %d intermediate indices\n", k);
1019         /* insert new index into current index block */
1020         /* current depth stored in i var */
1021         i = depth - 1;
1022         while (k--) {
1023                 oldblock = newblock;
1024                 newblock = ablocks[--a];
1025                 bh = sb_getblk(inode->i_sb, newblock);
1026                 if (!bh) {
1027                         err = -EIO;
1028                         goto cleanup;
1029                 }
1030                 lock_buffer(bh);
1031
1032                 err = ext4_journal_get_create_access(handle, bh);
1033                 if (err)
1034                         goto cleanup;
1035
1036                 neh = ext_block_hdr(bh);
1037                 neh->eh_entries = cpu_to_le16(1);
1038                 neh->eh_magic = EXT4_EXT_MAGIC;
1039                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1040                 neh->eh_depth = cpu_to_le16(depth - i);
1041                 fidx = EXT_FIRST_INDEX(neh);
1042                 fidx->ei_block = border;
1043                 ext4_idx_store_pblock(fidx, oldblock);
1044
1045                 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1046                                 i, newblock, le32_to_cpu(border), oldblock);
1047
1048                 /* move remainder of path[i] to the new index block */
1049                 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1050                                         EXT_LAST_INDEX(path[i].p_hdr))) {
1051                         EXT4_ERROR_INODE(inode,
1052                                          "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1053                                          le32_to_cpu(path[i].p_ext->ee_block));
1054                         err = -EIO;
1055                         goto cleanup;
1056                 }
1057                 /* start copy indexes */
1058                 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1059                 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1060                                 EXT_MAX_INDEX(path[i].p_hdr));
1061                 ext4_ext_show_move(inode, path, newblock, i);
1062                 if (m) {
1063                         memmove(++fidx, path[i].p_idx,
1064                                 sizeof(struct ext4_extent_idx) * m);
1065                         le16_add_cpu(&neh->eh_entries, m);
1066                 }
1067                 ext4_extent_block_csum_set(inode, neh);
1068                 set_buffer_uptodate(bh);
1069                 unlock_buffer(bh);
1070
1071                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1072                 if (err)
1073                         goto cleanup;
1074                 brelse(bh);
1075                 bh = NULL;
1076
1077                 /* correct old index */
1078                 if (m) {
1079                         err = ext4_ext_get_access(handle, inode, path + i);
1080                         if (err)
1081                                 goto cleanup;
1082                         le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1083                         err = ext4_ext_dirty(handle, inode, path + i);
1084                         if (err)
1085                                 goto cleanup;
1086                 }
1087
1088                 i--;
1089         }
1090
1091         /* insert new index */
1092         err = ext4_ext_insert_index(handle, inode, path + at,
1093                                     le32_to_cpu(border), newblock);
1094
1095 cleanup:
1096         if (bh) {
1097                 if (buffer_locked(bh))
1098                         unlock_buffer(bh);
1099                 brelse(bh);
1100         }
1101
1102         if (err) {
1103                 /* free all allocated blocks in error case */
1104                 for (i = 0; i < depth; i++) {
1105                         if (!ablocks[i])
1106                                 continue;
1107                         ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1108                                          EXT4_FREE_BLOCKS_METADATA);
1109                 }
1110         }
1111         kfree(ablocks);
1112
1113         return err;
1114 }
1115
1116 /*
1117  * ext4_ext_grow_indepth:
1118  * implements tree growing procedure:
1119  * - allocates new block
1120  * - moves top-level data (index block or leaf) into the new block
1121  * - initializes new top-level, creating index that points to the
1122  *   just created block
1123  */
1124 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1125                                  unsigned int flags,
1126                                  struct ext4_extent *newext)
1127 {
1128         struct ext4_extent_header *neh;
1129         struct buffer_head *bh;
1130         ext4_fsblk_t newblock;
1131         int err = 0;
1132
1133         newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1134                 newext, &err, flags);
1135         if (newblock == 0)
1136                 return err;
1137
1138         bh = sb_getblk(inode->i_sb, newblock);
1139         if (!bh) {
1140                 err = -EIO;
1141                 ext4_std_error(inode->i_sb, err);
1142                 return err;
1143         }
1144         lock_buffer(bh);
1145
1146         err = ext4_journal_get_create_access(handle, bh);
1147         if (err) {
1148                 unlock_buffer(bh);
1149                 goto out;
1150         }
1151
1152         /* move top-level index/leaf into new block */
1153         memmove(bh->b_data, EXT4_I(inode)->i_data,
1154                 sizeof(EXT4_I(inode)->i_data));
1155
1156         /* set size of new block */
1157         neh = ext_block_hdr(bh);
1158         /* old root could have indexes or leaves
1159          * so calculate e_max right way */
1160         if (ext_depth(inode))
1161                 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1162         else
1163                 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1164         neh->eh_magic = EXT4_EXT_MAGIC;
1165         ext4_extent_block_csum_set(inode, neh);
1166         set_buffer_uptodate(bh);
1167         unlock_buffer(bh);
1168
1169         err = ext4_handle_dirty_metadata(handle, inode, bh);
1170         if (err)
1171                 goto out;
1172
1173         /* Update top-level index: num,max,pointer */
1174         neh = ext_inode_hdr(inode);
1175         neh->eh_entries = cpu_to_le16(1);
1176         ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1177         if (neh->eh_depth == 0) {
1178                 /* Root extent block becomes index block */
1179                 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1180                 EXT_FIRST_INDEX(neh)->ei_block =
1181                         EXT_FIRST_EXTENT(neh)->ee_block;
1182         }
1183         ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1184                   le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1185                   le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1186                   ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1187
1188         le16_add_cpu(&neh->eh_depth, 1);
1189         ext4_mark_inode_dirty(handle, inode);
1190 out:
1191         brelse(bh);
1192
1193         return err;
1194 }
1195
1196 /*
1197  * ext4_ext_create_new_leaf:
1198  * finds empty index and adds new leaf.
1199  * if no free index is found, then it requests in-depth growing.
1200  */
1201 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1202                                     unsigned int flags,
1203                                     struct ext4_ext_path *path,
1204                                     struct ext4_extent *newext)
1205 {
1206         struct ext4_ext_path *curp;
1207         int depth, i, err = 0;
1208
1209 repeat:
1210         i = depth = ext_depth(inode);
1211
1212         /* walk up to the tree and look for free index entry */
1213         curp = path + depth;
1214         while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1215                 i--;
1216                 curp--;
1217         }
1218
1219         /* we use already allocated block for index block,
1220          * so subsequent data blocks should be contiguous */
1221         if (EXT_HAS_FREE_INDEX(curp)) {
1222                 /* if we found index with free entry, then use that
1223                  * entry: create all needed subtree and add new leaf */
1224                 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1225                 if (err)
1226                         goto out;
1227
1228                 /* refill path */
1229                 ext4_ext_drop_refs(path);
1230                 path = ext4_ext_find_extent(inode,
1231                                     (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1232                                     path);
1233                 if (IS_ERR(path))
1234                         err = PTR_ERR(path);
1235         } else {
1236                 /* tree is full, time to grow in depth */
1237                 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1238                 if (err)
1239                         goto out;
1240
1241                 /* refill path */
1242                 ext4_ext_drop_refs(path);
1243                 path = ext4_ext_find_extent(inode,
1244                                    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1245                                     path);
1246                 if (IS_ERR(path)) {
1247                         err = PTR_ERR(path);
1248                         goto out;
1249                 }
1250
1251                 /*
1252                  * only first (depth 0 -> 1) produces free space;
1253                  * in all other cases we have to split the grown tree
1254                  */
1255                 depth = ext_depth(inode);
1256                 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1257                         /* now we need to split */
1258                         goto repeat;
1259                 }
1260         }
1261
1262 out:
1263         return err;
1264 }
1265
1266 /*
1267  * search the closest allocated block to the left for *logical
1268  * and returns it at @logical + it's physical address at @phys
1269  * if *logical is the smallest allocated block, the function
1270  * returns 0 at @phys
1271  * return value contains 0 (success) or error code
1272  */
1273 static int ext4_ext_search_left(struct inode *inode,
1274                                 struct ext4_ext_path *path,
1275                                 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1276 {
1277         struct ext4_extent_idx *ix;
1278         struct ext4_extent *ex;
1279         int depth, ee_len;
1280
1281         if (unlikely(path == NULL)) {
1282                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1283                 return -EIO;
1284         }
1285         depth = path->p_depth;
1286         *phys = 0;
1287
1288         if (depth == 0 && path->p_ext == NULL)
1289                 return 0;
1290
1291         /* usually extent in the path covers blocks smaller
1292          * then *logical, but it can be that extent is the
1293          * first one in the file */
1294
1295         ex = path[depth].p_ext;
1296         ee_len = ext4_ext_get_actual_len(ex);
1297         if (*logical < le32_to_cpu(ex->ee_block)) {
1298                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1299                         EXT4_ERROR_INODE(inode,
1300                                          "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1301                                          *logical, le32_to_cpu(ex->ee_block));
1302                         return -EIO;
1303                 }
1304                 while (--depth >= 0) {
1305                         ix = path[depth].p_idx;
1306                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1307                                 EXT4_ERROR_INODE(inode,
1308                                   "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1309                                   ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1310                                   EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1311                 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1312                                   depth);
1313                                 return -EIO;
1314                         }
1315                 }
1316                 return 0;
1317         }
1318
1319         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1320                 EXT4_ERROR_INODE(inode,
1321                                  "logical %d < ee_block %d + ee_len %d!",
1322                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1323                 return -EIO;
1324         }
1325
1326         *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1327         *phys = ext4_ext_pblock(ex) + ee_len - 1;
1328         return 0;
1329 }
1330
1331 /*
1332  * search the closest allocated block to the right for *logical
1333  * and returns it at @logical + it's physical address at @phys
1334  * if *logical is the largest allocated block, the function
1335  * returns 0 at @phys
1336  * return value contains 0 (success) or error code
1337  */
1338 static int ext4_ext_search_right(struct inode *inode,
1339                                  struct ext4_ext_path *path,
1340                                  ext4_lblk_t *logical, ext4_fsblk_t *phys,
1341                                  struct ext4_extent **ret_ex)
1342 {
1343         struct buffer_head *bh = NULL;
1344         struct ext4_extent_header *eh;
1345         struct ext4_extent_idx *ix;
1346         struct ext4_extent *ex;
1347         ext4_fsblk_t block;
1348         int depth;      /* Note, NOT eh_depth; depth from top of tree */
1349         int ee_len;
1350
1351         if (unlikely(path == NULL)) {
1352                 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1353                 return -EIO;
1354         }
1355         depth = path->p_depth;
1356         *phys = 0;
1357
1358         if (depth == 0 && path->p_ext == NULL)
1359                 return 0;
1360
1361         /* usually extent in the path covers blocks smaller
1362          * then *logical, but it can be that extent is the
1363          * first one in the file */
1364
1365         ex = path[depth].p_ext;
1366         ee_len = ext4_ext_get_actual_len(ex);
1367         if (*logical < le32_to_cpu(ex->ee_block)) {
1368                 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1369                         EXT4_ERROR_INODE(inode,
1370                                          "first_extent(path[%d].p_hdr) != ex",
1371                                          depth);
1372                         return -EIO;
1373                 }
1374                 while (--depth >= 0) {
1375                         ix = path[depth].p_idx;
1376                         if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1377                                 EXT4_ERROR_INODE(inode,
1378                                                  "ix != EXT_FIRST_INDEX *logical %d!",
1379                                                  *logical);
1380                                 return -EIO;
1381                         }
1382                 }
1383                 goto found_extent;
1384         }
1385
1386         if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1387                 EXT4_ERROR_INODE(inode,
1388                                  "logical %d < ee_block %d + ee_len %d!",
1389                                  *logical, le32_to_cpu(ex->ee_block), ee_len);
1390                 return -EIO;
1391         }
1392
1393         if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1394                 /* next allocated block in this leaf */
1395                 ex++;
1396                 goto found_extent;
1397         }
1398
1399         /* go up and search for index to the right */
1400         while (--depth >= 0) {
1401                 ix = path[depth].p_idx;
1402                 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1403                         goto got_index;
1404         }
1405
1406         /* we've gone up to the root and found no index to the right */
1407         return 0;
1408
1409 got_index:
1410         /* we've found index to the right, let's
1411          * follow it and find the closest allocated
1412          * block to the right */
1413         ix++;
1414         block = ext4_idx_pblock(ix);
1415         while (++depth < path->p_depth) {
1416                 bh = sb_bread(inode->i_sb, block);
1417                 if (bh == NULL)
1418                         return -EIO;
1419                 eh = ext_block_hdr(bh);
1420                 /* subtract from p_depth to get proper eh_depth */
1421                 if (ext4_ext_check_block(inode, eh,
1422                                          path->p_depth - depth, bh)) {
1423                         put_bh(bh);
1424                         return -EIO;
1425                 }
1426                 ix = EXT_FIRST_INDEX(eh);
1427                 block = ext4_idx_pblock(ix);
1428                 put_bh(bh);
1429         }
1430
1431         bh = sb_bread(inode->i_sb, block);
1432         if (bh == NULL)
1433                 return -EIO;
1434         eh = ext_block_hdr(bh);
1435         if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1436                 put_bh(bh);
1437                 return -EIO;
1438         }
1439         ex = EXT_FIRST_EXTENT(eh);
1440 found_extent:
1441         *logical = le32_to_cpu(ex->ee_block);
1442         *phys = ext4_ext_pblock(ex);
1443         *ret_ex = ex;
1444         if (bh)
1445                 put_bh(bh);
1446         return 0;
1447 }
1448
1449 /*
1450  * ext4_ext_next_allocated_block:
1451  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1452  * NOTE: it considers block number from index entry as
1453  * allocated block. Thus, index entries have to be consistent
1454  * with leaves.
1455  */
1456 static ext4_lblk_t
1457 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1458 {
1459         int depth;
1460
1461         BUG_ON(path == NULL);
1462         depth = path->p_depth;
1463
1464         if (depth == 0 && path->p_ext == NULL)
1465                 return EXT_MAX_BLOCKS;
1466
1467         while (depth >= 0) {
1468                 if (depth == path->p_depth) {
1469                         /* leaf */
1470                         if (path[depth].p_ext &&
1471                                 path[depth].p_ext !=
1472                                         EXT_LAST_EXTENT(path[depth].p_hdr))
1473                           return le32_to_cpu(path[depth].p_ext[1].ee_block);
1474                 } else {
1475                         /* index */
1476                         if (path[depth].p_idx !=
1477                                         EXT_LAST_INDEX(path[depth].p_hdr))
1478                           return le32_to_cpu(path[depth].p_idx[1].ei_block);
1479                 }
1480                 depth--;
1481         }
1482
1483         return EXT_MAX_BLOCKS;
1484 }
1485
1486 /*
1487  * ext4_ext_next_leaf_block:
1488  * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1489  */
1490 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1491 {
1492         int depth;
1493
1494         BUG_ON(path == NULL);
1495         depth = path->p_depth;
1496
1497         /* zero-tree has no leaf blocks at all */
1498         if (depth == 0)
1499                 return EXT_MAX_BLOCKS;
1500
1501         /* go to index block */
1502         depth--;
1503
1504         while (depth >= 0) {
1505                 if (path[depth].p_idx !=
1506                                 EXT_LAST_INDEX(path[depth].p_hdr))
1507                         return (ext4_lblk_t)
1508                                 le32_to_cpu(path[depth].p_idx[1].ei_block);
1509                 depth--;
1510         }
1511
1512         return EXT_MAX_BLOCKS;
1513 }
1514
1515 /*
1516  * ext4_ext_correct_indexes:
1517  * if leaf gets modified and modified extent is first in the leaf,
1518  * then we have to correct all indexes above.
1519  * TODO: do we need to correct tree in all cases?
1520  */
1521 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1522                                 struct ext4_ext_path *path)
1523 {
1524         struct ext4_extent_header *eh;
1525         int depth = ext_depth(inode);
1526         struct ext4_extent *ex;
1527         __le32 border;
1528         int k, err = 0;
1529
1530         eh = path[depth].p_hdr;
1531         ex = path[depth].p_ext;
1532
1533         if (unlikely(ex == NULL || eh == NULL)) {
1534                 EXT4_ERROR_INODE(inode,
1535                                  "ex %p == NULL or eh %p == NULL", ex, eh);
1536                 return -EIO;
1537         }
1538
1539         if (depth == 0) {
1540                 /* there is no tree at all */
1541                 return 0;
1542         }
1543
1544         if (ex != EXT_FIRST_EXTENT(eh)) {
1545                 /* we correct tree if first leaf got modified only */
1546                 return 0;
1547         }
1548
1549         /*
1550          * TODO: we need correction if border is smaller than current one
1551          */
1552         k = depth - 1;
1553         border = path[depth].p_ext->ee_block;
1554         err = ext4_ext_get_access(handle, inode, path + k);
1555         if (err)
1556                 return err;
1557         path[k].p_idx->ei_block = border;
1558         err = ext4_ext_dirty(handle, inode, path + k);
1559         if (err)
1560                 return err;
1561
1562         while (k--) {
1563                 /* change all left-side indexes */
1564                 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1565                         break;
1566                 err = ext4_ext_get_access(handle, inode, path + k);
1567                 if (err)
1568                         break;
1569                 path[k].p_idx->ei_block = border;
1570                 err = ext4_ext_dirty(handle, inode, path + k);
1571                 if (err)
1572                         break;
1573         }
1574
1575         return err;
1576 }
1577
1578 int
1579 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1580                                 struct ext4_extent *ex2)
1581 {
1582         unsigned short ext1_ee_len, ext2_ee_len, max_len;
1583
1584         /*
1585          * Make sure that either both extents are uninitialized, or
1586          * both are _not_.
1587          */
1588         if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1589                 return 0;
1590
1591         if (ext4_ext_is_uninitialized(ex1))
1592                 max_len = EXT_UNINIT_MAX_LEN;
1593         else
1594                 max_len = EXT_INIT_MAX_LEN;
1595
1596         ext1_ee_len = ext4_ext_get_actual_len(ex1);
1597         ext2_ee_len = ext4_ext_get_actual_len(ex2);
1598
1599         if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1600                         le32_to_cpu(ex2->ee_block))
1601                 return 0;
1602
1603         /*
1604          * To allow future support for preallocated extents to be added
1605          * as an RO_COMPAT feature, refuse to merge to extents if
1606          * this can result in the top bit of ee_len being set.
1607          */
1608         if (ext1_ee_len + ext2_ee_len > max_len)
1609                 return 0;
1610 #ifdef AGGRESSIVE_TEST
1611         if (ext1_ee_len >= 4)
1612                 return 0;
1613 #endif
1614
1615         if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1616                 return 1;
1617         return 0;
1618 }
1619
1620 /*
1621  * This function tries to merge the "ex" extent to the next extent in the tree.
1622  * It always tries to merge towards right. If you want to merge towards
1623  * left, pass "ex - 1" as argument instead of "ex".
1624  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1625  * 1 if they got merged.
1626  */
1627 static int ext4_ext_try_to_merge_right(struct inode *inode,
1628                                  struct ext4_ext_path *path,
1629                                  struct ext4_extent *ex)
1630 {
1631         struct ext4_extent_header *eh;
1632         unsigned int depth, len;
1633         int merge_done = 0;
1634         int uninitialized = 0;
1635
1636         depth = ext_depth(inode);
1637         BUG_ON(path[depth].p_hdr == NULL);
1638         eh = path[depth].p_hdr;
1639
1640         while (ex < EXT_LAST_EXTENT(eh)) {
1641                 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1642                         break;
1643                 /* merge with next extent! */
1644                 if (ext4_ext_is_uninitialized(ex))
1645                         uninitialized = 1;
1646                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1647                                 + ext4_ext_get_actual_len(ex + 1));
1648                 if (uninitialized)
1649                         ext4_ext_mark_uninitialized(ex);
1650
1651                 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1652                         len = (EXT_LAST_EXTENT(eh) - ex - 1)
1653                                 * sizeof(struct ext4_extent);
1654                         memmove(ex + 1, ex + 2, len);
1655                 }
1656                 le16_add_cpu(&eh->eh_entries, -1);
1657                 merge_done = 1;
1658                 WARN_ON(eh->eh_entries == 0);
1659                 if (!eh->eh_entries)
1660                         EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1661         }
1662
1663         return merge_done;
1664 }
1665
1666 /*
1667  * This function does a very simple check to see if we can collapse
1668  * an extent tree with a single extent tree leaf block into the inode.
1669  */
1670 static void ext4_ext_try_to_merge_up(handle_t *handle,
1671                                      struct inode *inode,
1672                                      struct ext4_ext_path *path)
1673 {
1674         size_t s;
1675         unsigned max_root = ext4_ext_space_root(inode, 0);
1676         ext4_fsblk_t blk;
1677
1678         if ((path[0].p_depth != 1) ||
1679             (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1680             (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1681                 return;
1682
1683         /*
1684          * We need to modify the block allocation bitmap and the block
1685          * group descriptor to release the extent tree block.  If we
1686          * can't get the journal credits, give up.
1687          */
1688         if (ext4_journal_extend(handle, 2))
1689                 return;
1690
1691         /*
1692          * Copy the extent data up to the inode
1693          */
1694         blk = ext4_idx_pblock(path[0].p_idx);
1695         s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1696                 sizeof(struct ext4_extent_idx);
1697         s += sizeof(struct ext4_extent_header);
1698
1699         memcpy(path[0].p_hdr, path[1].p_hdr, s);
1700         path[0].p_depth = 0;
1701         path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1702                 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1703         path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1704
1705         brelse(path[1].p_bh);
1706         ext4_free_blocks(handle, inode, NULL, blk, 1,
1707                          EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1708 }
1709
1710 /*
1711  * This function tries to merge the @ex extent to neighbours in the tree.
1712  * return 1 if merge left else 0.
1713  */
1714 static void ext4_ext_try_to_merge(handle_t *handle,
1715                                   struct inode *inode,
1716                                   struct ext4_ext_path *path,
1717                                   struct ext4_extent *ex) {
1718         struct ext4_extent_header *eh;
1719         unsigned int depth;
1720         int merge_done = 0;
1721
1722         depth = ext_depth(inode);
1723         BUG_ON(path[depth].p_hdr == NULL);
1724         eh = path[depth].p_hdr;
1725
1726         if (ex > EXT_FIRST_EXTENT(eh))
1727                 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1728
1729         if (!merge_done)
1730                 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1731
1732         ext4_ext_try_to_merge_up(handle, inode, path);
1733 }
1734
1735 /*
1736  * check if a portion of the "newext" extent overlaps with an
1737  * existing extent.
1738  *
1739  * If there is an overlap discovered, it updates the length of the newext
1740  * such that there will be no overlap, and then returns 1.
1741  * If there is no overlap found, it returns 0.
1742  */
1743 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1744                                            struct inode *inode,
1745                                            struct ext4_extent *newext,
1746                                            struct ext4_ext_path *path)
1747 {
1748         ext4_lblk_t b1, b2;
1749         unsigned int depth, len1;
1750         unsigned int ret = 0;
1751
1752         b1 = le32_to_cpu(newext->ee_block);
1753         len1 = ext4_ext_get_actual_len(newext);
1754         depth = ext_depth(inode);
1755         if (!path[depth].p_ext)
1756                 goto out;
1757         b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1758         b2 &= ~(sbi->s_cluster_ratio - 1);
1759
1760         /*
1761          * get the next allocated block if the extent in the path
1762          * is before the requested block(s)
1763          */
1764         if (b2 < b1) {
1765                 b2 = ext4_ext_next_allocated_block(path);
1766                 if (b2 == EXT_MAX_BLOCKS)
1767                         goto out;
1768                 b2 &= ~(sbi->s_cluster_ratio - 1);
1769         }
1770
1771         /* check for wrap through zero on extent logical start block*/
1772         if (b1 + len1 < b1) {
1773                 len1 = EXT_MAX_BLOCKS - b1;
1774                 newext->ee_len = cpu_to_le16(len1);
1775                 ret = 1;
1776         }
1777
1778         /* check for overlap */
1779         if (b1 + len1 > b2) {
1780                 newext->ee_len = cpu_to_le16(b2 - b1);
1781                 ret = 1;
1782         }
1783 out:
1784         return ret;
1785 }
1786
1787 /*
1788  * ext4_ext_insert_extent:
1789  * tries to merge requsted extent into the existing extent or
1790  * inserts requested extent as new one into the tree,
1791  * creating new leaf in the no-space case.
1792  */
1793 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1794                                 struct ext4_ext_path *path,
1795                                 struct ext4_extent *newext, int flag)
1796 {
1797         struct ext4_extent_header *eh;
1798         struct ext4_extent *ex, *fex;
1799         struct ext4_extent *nearex; /* nearest extent */
1800         struct ext4_ext_path *npath = NULL;
1801         int depth, len, err;
1802         ext4_lblk_t next;
1803         unsigned uninitialized = 0;
1804         int flags = 0;
1805
1806         if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1807                 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1808                 return -EIO;
1809         }
1810         depth = ext_depth(inode);
1811         ex = path[depth].p_ext;
1812         if (unlikely(path[depth].p_hdr == NULL)) {
1813                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1814                 return -EIO;
1815         }
1816
1817         /* try to insert block into found extent and return */
1818         if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1819                 && ext4_can_extents_be_merged(inode, ex, newext)) {
1820                 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1821                           ext4_ext_is_uninitialized(newext),
1822                           ext4_ext_get_actual_len(newext),
1823                           le32_to_cpu(ex->ee_block),
1824                           ext4_ext_is_uninitialized(ex),
1825                           ext4_ext_get_actual_len(ex),
1826                           ext4_ext_pblock(ex));
1827                 err = ext4_ext_get_access(handle, inode, path + depth);
1828                 if (err)
1829                         return err;
1830
1831                 /*
1832                  * ext4_can_extents_be_merged should have checked that either
1833                  * both extents are uninitialized, or both aren't. Thus we
1834                  * need to check only one of them here.
1835                  */
1836                 if (ext4_ext_is_uninitialized(ex))
1837                         uninitialized = 1;
1838                 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1839                                         + ext4_ext_get_actual_len(newext));
1840                 if (uninitialized)
1841                         ext4_ext_mark_uninitialized(ex);
1842                 eh = path[depth].p_hdr;
1843                 nearex = ex;
1844                 goto merge;
1845         }
1846
1847         depth = ext_depth(inode);
1848         eh = path[depth].p_hdr;
1849         if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1850                 goto has_space;
1851
1852         /* probably next leaf has space for us? */
1853         fex = EXT_LAST_EXTENT(eh);
1854         next = EXT_MAX_BLOCKS;
1855         if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1856                 next = ext4_ext_next_leaf_block(path);
1857         if (next != EXT_MAX_BLOCKS) {
1858                 ext_debug("next leaf block - %u\n", next);
1859                 BUG_ON(npath != NULL);
1860                 npath = ext4_ext_find_extent(inode, next, NULL);
1861                 if (IS_ERR(npath))
1862                         return PTR_ERR(npath);
1863                 BUG_ON(npath->p_depth != path->p_depth);
1864                 eh = npath[depth].p_hdr;
1865                 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1866                         ext_debug("next leaf isn't full(%d)\n",
1867                                   le16_to_cpu(eh->eh_entries));
1868                         path = npath;
1869                         goto has_space;
1870                 }
1871                 ext_debug("next leaf has no free space(%d,%d)\n",
1872                           le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1873         }
1874
1875         /*
1876          * There is no free space in the found leaf.
1877          * We're gonna add a new leaf in the tree.
1878          */
1879         if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1880                 flags = EXT4_MB_USE_ROOT_BLOCKS;
1881         err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1882         if (err)
1883                 goto cleanup;
1884         depth = ext_depth(inode);
1885         eh = path[depth].p_hdr;
1886
1887 has_space:
1888         nearex = path[depth].p_ext;
1889
1890         err = ext4_ext_get_access(handle, inode, path + depth);
1891         if (err)
1892                 goto cleanup;
1893
1894         if (!nearex) {
1895                 /* there is no extent in this leaf, create first one */
1896                 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1897                                 le32_to_cpu(newext->ee_block),
1898                                 ext4_ext_pblock(newext),
1899                                 ext4_ext_is_uninitialized(newext),
1900                                 ext4_ext_get_actual_len(newext));
1901                 nearex = EXT_FIRST_EXTENT(eh);
1902         } else {
1903                 if (le32_to_cpu(newext->ee_block)
1904                            > le32_to_cpu(nearex->ee_block)) {
1905                         /* Insert after */
1906                         ext_debug("insert %u:%llu:[%d]%d before: "
1907                                         "nearest %p\n",
1908                                         le32_to_cpu(newext->ee_block),
1909                                         ext4_ext_pblock(newext),
1910                                         ext4_ext_is_uninitialized(newext),
1911                                         ext4_ext_get_actual_len(newext),
1912                                         nearex);
1913                         nearex++;
1914                 } else {
1915                         /* Insert before */
1916                         BUG_ON(newext->ee_block == nearex->ee_block);
1917                         ext_debug("insert %u:%llu:[%d]%d after: "
1918                                         "nearest %p\n",
1919                                         le32_to_cpu(newext->ee_block),
1920                                         ext4_ext_pblock(newext),
1921                                         ext4_ext_is_uninitialized(newext),
1922                                         ext4_ext_get_actual_len(newext),
1923                                         nearex);
1924                 }
1925                 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1926                 if (len > 0) {
1927                         ext_debug("insert %u:%llu:[%d]%d: "
1928                                         "move %d extents from 0x%p to 0x%p\n",
1929                                         le32_to_cpu(newext->ee_block),
1930                                         ext4_ext_pblock(newext),
1931                                         ext4_ext_is_uninitialized(newext),
1932                                         ext4_ext_get_actual_len(newext),
1933                                         len, nearex, nearex + 1);
1934                         memmove(nearex + 1, nearex,
1935                                 len * sizeof(struct ext4_extent));
1936                 }
1937         }
1938
1939         le16_add_cpu(&eh->eh_entries, 1);
1940         path[depth].p_ext = nearex;
1941         nearex->ee_block = newext->ee_block;
1942         ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1943         nearex->ee_len = newext->ee_len;
1944
1945 merge:
1946         /* try to merge extents */
1947         if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1948                 ext4_ext_try_to_merge(handle, inode, path, nearex);
1949
1950
1951         /* time to correct all indexes above */
1952         err = ext4_ext_correct_indexes(handle, inode, path);
1953         if (err)
1954                 goto cleanup;
1955
1956         err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1957
1958 cleanup:
1959         if (npath) {
1960                 ext4_ext_drop_refs(npath);
1961                 kfree(npath);
1962         }
1963         ext4_ext_invalidate_cache(inode);
1964         return err;
1965 }
1966
1967 static int ext4_fill_fiemap_extents(struct inode *inode,
1968                                     ext4_lblk_t block, ext4_lblk_t num,
1969                                     struct fiemap_extent_info *fieinfo)
1970 {
1971         struct ext4_ext_path *path = NULL;
1972         struct ext4_ext_cache newex;
1973         struct ext4_extent *ex;
1974         ext4_lblk_t next, next_del, start = 0, end = 0;
1975         ext4_lblk_t last = block + num;
1976         int exists, depth = 0, err = 0;
1977         unsigned int flags = 0;
1978         unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1979
1980         while (block < last && block != EXT_MAX_BLOCKS) {
1981                 num = last - block;
1982                 /* find extent for this block */
1983                 down_read(&EXT4_I(inode)->i_data_sem);
1984
1985                 if (path && ext_depth(inode) != depth) {
1986                         /* depth was changed. we have to realloc path */
1987                         kfree(path);
1988                         path = NULL;
1989                 }
1990
1991                 path = ext4_ext_find_extent(inode, block, path);
1992                 if (IS_ERR(path)) {
1993                         up_read(&EXT4_I(inode)->i_data_sem);
1994                         err = PTR_ERR(path);
1995                         path = NULL;
1996                         break;
1997                 }
1998
1999                 depth = ext_depth(inode);
2000                 if (unlikely(path[depth].p_hdr == NULL)) {
2001                         up_read(&EXT4_I(inode)->i_data_sem);
2002                         EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2003                         err = -EIO;
2004                         break;
2005                 }
2006                 ex = path[depth].p_ext;
2007                 next = ext4_ext_next_allocated_block(path);
2008                 ext4_ext_drop_refs(path);
2009
2010                 flags = 0;
2011                 exists = 0;
2012                 if (!ex) {
2013                         /* there is no extent yet, so try to allocate
2014                          * all requested space */
2015                         start = block;
2016                         end = block + num;
2017                 } else if (le32_to_cpu(ex->ee_block) > block) {
2018                         /* need to allocate space before found extent */
2019                         start = block;
2020                         end = le32_to_cpu(ex->ee_block);
2021                         if (block + num < end)
2022                                 end = block + num;
2023                 } else if (block >= le32_to_cpu(ex->ee_block)
2024                                         + ext4_ext_get_actual_len(ex)) {
2025                         /* need to allocate space after found extent */
2026                         start = block;
2027                         end = block + num;
2028                         if (end >= next)
2029                                 end = next;
2030                 } else if (block >= le32_to_cpu(ex->ee_block)) {
2031                         /*
2032                          * some part of requested space is covered
2033                          * by found extent
2034                          */
2035                         start = block;
2036                         end = le32_to_cpu(ex->ee_block)
2037                                 + ext4_ext_get_actual_len(ex);
2038                         if (block + num < end)
2039                                 end = block + num;
2040                         exists = 1;
2041                 } else {
2042                         BUG();
2043                 }
2044                 BUG_ON(end <= start);
2045
2046                 if (!exists) {
2047                         newex.ec_block = start;
2048                         newex.ec_len = end - start;
2049                         newex.ec_start = 0;
2050                 } else {
2051                         newex.ec_block = le32_to_cpu(ex->ee_block);
2052                         newex.ec_len = ext4_ext_get_actual_len(ex);
2053                         newex.ec_start = ext4_ext_pblock(ex);
2054                         if (ext4_ext_is_uninitialized(ex))
2055                                 flags |= FIEMAP_EXTENT_UNWRITTEN;
2056                 }
2057
2058                 /*
2059                  * Find delayed extent and update newex accordingly. We call
2060                  * it even in !exists case to find out whether newex is the
2061                  * last existing extent or not.
2062                  */
2063                 next_del = ext4_find_delayed_extent(inode, &newex);
2064                 if (!exists && next_del) {
2065                         exists = 1;
2066                         flags |= FIEMAP_EXTENT_DELALLOC;
2067                 }
2068                 up_read(&EXT4_I(inode)->i_data_sem);
2069
2070                 if (unlikely(newex.ec_len == 0)) {
2071                         EXT4_ERROR_INODE(inode, "newex.ec_len == 0");
2072                         err = -EIO;
2073                         break;
2074                 }
2075
2076                 /* This is possible iff next == next_del == EXT_MAX_BLOCKS */
2077                 if (next == next_del) {
2078                         flags |= FIEMAP_EXTENT_LAST;
2079                         if (unlikely(next_del != EXT_MAX_BLOCKS ||
2080                                      next != EXT_MAX_BLOCKS)) {
2081                                 EXT4_ERROR_INODE(inode,
2082                                                  "next extent == %u, next "
2083                                                  "delalloc extent = %u",
2084                                                  next, next_del);
2085                                 err = -EIO;
2086                                 break;
2087                         }
2088                 }
2089
2090                 if (exists) {
2091                         err = fiemap_fill_next_extent(fieinfo,
2092                                 (__u64)newex.ec_block << blksize_bits,
2093                                 (__u64)newex.ec_start << blksize_bits,
2094                                 (__u64)newex.ec_len << blksize_bits,
2095                                 flags);
2096                         if (err < 0)
2097                                 break;
2098                         if (err == 1) {
2099                                 err = 0;
2100                                 break;
2101                         }
2102                 }
2103
2104                 block = newex.ec_block + newex.ec_len;
2105         }
2106
2107         if (path) {
2108                 ext4_ext_drop_refs(path);
2109                 kfree(path);
2110         }
2111
2112         return err;
2113 }
2114
2115 static void
2116 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2117                         __u32 len, ext4_fsblk_t start)
2118 {
2119         struct ext4_ext_cache *cex;
2120         BUG_ON(len == 0);
2121         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2122         trace_ext4_ext_put_in_cache(inode, block, len, start);
2123         cex = &EXT4_I(inode)->i_cached_extent;
2124         cex->ec_block = block;
2125         cex->ec_len = len;
2126         cex->ec_start = start;
2127         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2128 }
2129
2130 /*
2131  * ext4_ext_put_gap_in_cache:
2132  * calculate boundaries of the gap that the requested block fits into
2133  * and cache this gap
2134  */
2135 static void
2136 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2137                                 ext4_lblk_t block)
2138 {
2139         int depth = ext_depth(inode);
2140         unsigned long len;
2141         ext4_lblk_t lblock;
2142         struct ext4_extent *ex;
2143
2144         ex = path[depth].p_ext;
2145         if (ex == NULL) {
2146                 /* there is no extent yet, so gap is [0;-] */
2147                 lblock = 0;
2148                 len = EXT_MAX_BLOCKS;
2149                 ext_debug("cache gap(whole file):");
2150         } else if (block < le32_to_cpu(ex->ee_block)) {
2151                 lblock = block;
2152                 len = le32_to_cpu(ex->ee_block) - block;
2153                 ext_debug("cache gap(before): %u [%u:%u]",
2154                                 block,
2155                                 le32_to_cpu(ex->ee_block),
2156                                  ext4_ext_get_actual_len(ex));
2157         } else if (block >= le32_to_cpu(ex->ee_block)
2158                         + ext4_ext_get_actual_len(ex)) {
2159                 ext4_lblk_t next;
2160                 lblock = le32_to_cpu(ex->ee_block)
2161                         + ext4_ext_get_actual_len(ex);
2162
2163                 next = ext4_ext_next_allocated_block(path);
2164                 ext_debug("cache gap(after): [%u:%u] %u",
2165                                 le32_to_cpu(ex->ee_block),
2166                                 ext4_ext_get_actual_len(ex),
2167                                 block);
2168                 BUG_ON(next == lblock);
2169                 len = next - lblock;
2170         } else {
2171                 lblock = len = 0;
2172                 BUG();
2173         }
2174
2175         ext_debug(" -> %u:%lu\n", lblock, len);
2176         ext4_ext_put_in_cache(inode, lblock, len, 0);
2177 }
2178
2179 /*
2180  * ext4_ext_in_cache()
2181  * Checks to see if the given block is in the cache.
2182  * If it is, the cached extent is stored in the given
2183  * cache extent pointer.
2184  *
2185  * @inode: The files inode
2186  * @block: The block to look for in the cache
2187  * @ex:    Pointer where the cached extent will be stored
2188  *         if it contains block
2189  *
2190  * Return 0 if cache is invalid; 1 if the cache is valid
2191  */
2192 static int
2193 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2194                   struct ext4_extent *ex)
2195 {
2196         struct ext4_ext_cache *cex;
2197         int ret = 0;
2198
2199         /*
2200          * We borrow i_block_reservation_lock to protect i_cached_extent
2201          */
2202         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2203         cex = &EXT4_I(inode)->i_cached_extent;
2204
2205         /* has cache valid data? */
2206         if (cex->ec_len == 0)
2207                 goto errout;
2208
2209         if (in_range(block, cex->ec_block, cex->ec_len)) {
2210                 ex->ee_block = cpu_to_le32(cex->ec_block);
2211                 ext4_ext_store_pblock(ex, cex->ec_start);
2212                 ex->ee_len = cpu_to_le16(cex->ec_len);
2213                 ext_debug("%u cached by %u:%u:%llu\n",
2214                                 block,
2215                                 cex->ec_block, cex->ec_len, cex->ec_start);
2216                 ret = 1;
2217         }
2218 errout:
2219         trace_ext4_ext_in_cache(inode, block, ret);
2220         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2221         return ret;
2222 }
2223
2224 /*
2225  * ext4_ext_rm_idx:
2226  * removes index from the index block.
2227  */
2228 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2229                         struct ext4_ext_path *path, int depth)
2230 {
2231         int err;
2232         ext4_fsblk_t leaf;
2233
2234         /* free index block */
2235         depth--;
2236         path = path + depth;
2237         leaf = ext4_idx_pblock(path->p_idx);
2238         if (unlikely(path->p_hdr->eh_entries == 0)) {
2239                 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2240                 return -EIO;
2241         }
2242         err = ext4_ext_get_access(handle, inode, path);
2243         if (err)
2244                 return err;
2245
2246         if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2247                 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2248                 len *= sizeof(struct ext4_extent_idx);
2249                 memmove(path->p_idx, path->p_idx + 1, len);
2250         }
2251
2252         le16_add_cpu(&path->p_hdr->eh_entries, -1);
2253         err = ext4_ext_dirty(handle, inode, path);
2254         if (err)
2255                 return err;
2256         ext_debug("index is empty, remove it, free block %llu\n", leaf);
2257         trace_ext4_ext_rm_idx(inode, leaf);
2258
2259         ext4_free_blocks(handle, inode, NULL, leaf, 1,
2260                          EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2261
2262         while (--depth >= 0) {
2263                 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2264                         break;
2265                 path--;
2266                 err = ext4_ext_get_access(handle, inode, path);
2267                 if (err)
2268                         break;
2269                 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2270                 err = ext4_ext_dirty(handle, inode, path);
2271                 if (err)
2272                         break;
2273         }
2274         return err;
2275 }
2276
2277 /*
2278  * ext4_ext_calc_credits_for_single_extent:
2279  * This routine returns max. credits that needed to insert an extent
2280  * to the extent tree.
2281  * When pass the actual path, the caller should calculate credits
2282  * under i_data_sem.
2283  */
2284 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2285                                                 struct ext4_ext_path *path)
2286 {
2287         if (path) {
2288                 int depth = ext_depth(inode);
2289                 int ret = 0;
2290
2291                 /* probably there is space in leaf? */
2292                 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2293                                 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2294
2295                         /*
2296                          *  There are some space in the leaf tree, no
2297                          *  need to account for leaf block credit
2298                          *
2299                          *  bitmaps and block group descriptor blocks
2300                          *  and other metadata blocks still need to be
2301                          *  accounted.
2302                          */
2303                         /* 1 bitmap, 1 block group descriptor */
2304                         ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2305                         return ret;
2306                 }
2307         }
2308
2309         return ext4_chunk_trans_blocks(inode, nrblocks);
2310 }
2311
2312 /*
2313  * How many index/leaf blocks need to change/allocate to modify nrblocks?
2314  *
2315  * if nrblocks are fit in a single extent (chunk flag is 1), then
2316  * in the worse case, each tree level index/leaf need to be changed
2317  * if the tree split due to insert a new extent, then the old tree
2318  * index/leaf need to be updated too
2319  *
2320  * If the nrblocks are discontiguous, they could cause
2321  * the whole tree split more than once, but this is really rare.
2322  */
2323 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2324 {
2325         int index;
2326         int depth;
2327
2328         /* If we are converting the inline data, only one is needed here. */
2329         if (ext4_has_inline_data(inode))
2330                 return 1;
2331
2332         depth = ext_depth(inode);
2333
2334         if (chunk)
2335                 index = depth * 2;
2336         else
2337                 index = depth * 3;
2338
2339         return index;
2340 }
2341
2342 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2343                               struct ext4_extent *ex,
2344                               ext4_fsblk_t *partial_cluster,
2345                               ext4_lblk_t from, ext4_lblk_t to)
2346 {
2347         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2348         unsigned short ee_len =  ext4_ext_get_actual_len(ex);
2349         ext4_fsblk_t pblk;
2350         int flags = 0;
2351
2352         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2353                 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2354         else if (ext4_should_journal_data(inode))
2355                 flags |= EXT4_FREE_BLOCKS_FORGET;
2356
2357         /*
2358          * For bigalloc file systems, we never free a partial cluster
2359          * at the beginning of the extent.  Instead, we make a note
2360          * that we tried freeing the cluster, and check to see if we
2361          * need to free it on a subsequent call to ext4_remove_blocks,
2362          * or at the end of the ext4_truncate() operation.
2363          */
2364         flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2365
2366         trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2367         /*
2368          * If we have a partial cluster, and it's different from the
2369          * cluster of the last block, we need to explicitly free the
2370          * partial cluster here.
2371          */
2372         pblk = ext4_ext_pblock(ex) + ee_len - 1;
2373         if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2374                 ext4_free_blocks(handle, inode, NULL,
2375                                  EXT4_C2B(sbi, *partial_cluster),
2376                                  sbi->s_cluster_ratio, flags);
2377                 *partial_cluster = 0;
2378         }
2379
2380 #ifdef EXTENTS_STATS
2381         {
2382                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2383                 spin_lock(&sbi->s_ext_stats_lock);
2384                 sbi->s_ext_blocks += ee_len;
2385                 sbi->s_ext_extents++;
2386                 if (ee_len < sbi->s_ext_min)
2387                         sbi->s_ext_min = ee_len;
2388                 if (ee_len > sbi->s_ext_max)
2389                         sbi->s_ext_max = ee_len;
2390                 if (ext_depth(inode) > sbi->s_depth_max)
2391                         sbi->s_depth_max = ext_depth(inode);
2392                 spin_unlock(&sbi->s_ext_stats_lock);
2393         }
2394 #endif
2395         if (from >= le32_to_cpu(ex->ee_block)
2396             && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2397                 /* tail removal */
2398                 ext4_lblk_t num;
2399
2400                 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2401                 pblk = ext4_ext_pblock(ex) + ee_len - num;
2402                 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2403                 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2404                 /*
2405                  * If the block range to be freed didn't start at the
2406                  * beginning of a cluster, and we removed the entire
2407                  * extent, save the partial cluster here, since we
2408                  * might need to delete if we determine that the
2409                  * truncate operation has removed all of the blocks in
2410                  * the cluster.
2411                  */
2412                 if (pblk & (sbi->s_cluster_ratio - 1) &&
2413                     (ee_len == num))
2414                         *partial_cluster = EXT4_B2C(sbi, pblk);
2415                 else
2416                         *partial_cluster = 0;
2417         } else if (from == le32_to_cpu(ex->ee_block)
2418                    && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2419                 /* head removal */
2420                 ext4_lblk_t num;
2421                 ext4_fsblk_t start;
2422
2423                 num = to - from;
2424                 start = ext4_ext_pblock(ex);
2425
2426                 ext_debug("free first %u blocks starting %llu\n", num, start);
2427                 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2428
2429         } else {
2430                 printk(KERN_INFO "strange request: removal(2) "
2431                                 "%u-%u from %u:%u\n",
2432                                 from, to, le32_to_cpu(ex->ee_block), ee_len);
2433         }
2434         return 0;
2435 }
2436
2437
2438 /*
2439  * ext4_ext_rm_leaf() Removes the extents associated with the
2440  * blocks appearing between "start" and "end", and splits the extents
2441  * if "start" and "end" appear in the same extent
2442  *
2443  * @handle: The journal handle
2444  * @inode:  The files inode
2445  * @path:   The path to the leaf
2446  * @start:  The first block to remove
2447  * @end:   The last block to remove
2448  */
2449 static int
2450 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2451                  struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2452                  ext4_lblk_t start, ext4_lblk_t end)
2453 {
2454         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2455         int err = 0, correct_index = 0;
2456         int depth = ext_depth(inode), credits;
2457         struct ext4_extent_header *eh;
2458         ext4_lblk_t a, b;
2459         unsigned num;
2460         ext4_lblk_t ex_ee_block;
2461         unsigned short ex_ee_len;
2462         unsigned uninitialized = 0;
2463         struct ext4_extent *ex;
2464
2465         /* the header must be checked already in ext4_ext_remove_space() */
2466         ext_debug("truncate since %u in leaf to %u\n", start, end);
2467         if (!path[depth].p_hdr)
2468                 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2469         eh = path[depth].p_hdr;
2470         if (unlikely(path[depth].p_hdr == NULL)) {
2471                 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2472                 return -EIO;
2473         }
2474         /* find where to start removing */
2475         ex = EXT_LAST_EXTENT(eh);
2476
2477         ex_ee_block = le32_to_cpu(ex->ee_block);
2478         ex_ee_len = ext4_ext_get_actual_len(ex);
2479
2480         trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2481
2482         while (ex >= EXT_FIRST_EXTENT(eh) &&
2483                         ex_ee_block + ex_ee_len > start) {
2484
2485                 if (ext4_ext_is_uninitialized(ex))
2486                         uninitialized = 1;
2487                 else
2488                         uninitialized = 0;
2489
2490                 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2491                          uninitialized, ex_ee_len);
2492                 path[depth].p_ext = ex;
2493
2494                 a = ex_ee_block > start ? ex_ee_block : start;
2495                 b = ex_ee_block+ex_ee_len - 1 < end ?
2496                         ex_ee_block+ex_ee_len - 1 : end;
2497
2498                 ext_debug("  border %u:%u\n", a, b);
2499
2500                 /* If this extent is beyond the end of the hole, skip it */
2501                 if (end < ex_ee_block) {
2502                         ex--;
2503                         ex_ee_block = le32_to_cpu(ex->ee_block);
2504                         ex_ee_len = ext4_ext_get_actual_len(ex);
2505                         continue;
2506                 } else if (b != ex_ee_block + ex_ee_len - 1) {
2507                         EXT4_ERROR_INODE(inode,
2508                                          "can not handle truncate %u:%u "
2509                                          "on extent %u:%u",
2510                                          start, end, ex_ee_block,
2511                                          ex_ee_block + ex_ee_len - 1);
2512                         err = -EIO;
2513                         goto out;
2514                 } else if (a != ex_ee_block) {
2515                         /* remove tail of the extent */
2516                         num = a - ex_ee_block;
2517                 } else {
2518                         /* remove whole extent: excellent! */
2519                         num = 0;
2520                 }
2521                 /*
2522                  * 3 for leaf, sb, and inode plus 2 (bmap and group
2523                  * descriptor) for each block group; assume two block
2524                  * groups plus ex_ee_len/blocks_per_block_group for
2525                  * the worst case
2526                  */
2527                 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2528                 if (ex == EXT_FIRST_EXTENT(eh)) {
2529                         correct_index = 1;
2530                         credits += (ext_depth(inode)) + 1;
2531                 }
2532                 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2533
2534                 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2535                 if (err)
2536                         goto out;
2537
2538                 err = ext4_ext_get_access(handle, inode, path + depth);
2539                 if (err)
2540                         goto out;
2541
2542                 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2543                                          a, b);
2544                 if (err)
2545                         goto out;
2546
2547                 if (num == 0)
2548                         /* this extent is removed; mark slot entirely unused */
2549                         ext4_ext_store_pblock(ex, 0);
2550
2551                 ex->ee_len = cpu_to_le16(num);
2552                 /*
2553                  * Do not mark uninitialized if all the blocks in the
2554                  * extent have been removed.
2555                  */
2556                 if (uninitialized && num)
2557                         ext4_ext_mark_uninitialized(ex);
2558                 /*
2559                  * If the extent was completely released,
2560                  * we need to remove it from the leaf
2561                  */
2562                 if (num == 0) {
2563                         if (end != EXT_MAX_BLOCKS - 1) {
2564                                 /*
2565                                  * For hole punching, we need to scoot all the
2566                                  * extents up when an extent is removed so that
2567                                  * we dont have blank extents in the middle
2568                                  */
2569                                 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2570                                         sizeof(struct ext4_extent));
2571
2572                                 /* Now get rid of the one at the end */
2573                                 memset(EXT_LAST_EXTENT(eh), 0,
2574                                         sizeof(struct ext4_extent));
2575                         }
2576                         le16_add_cpu(&eh->eh_entries, -1);
2577                 } else
2578                         *partial_cluster = 0;
2579
2580                 err = ext4_ext_dirty(handle, inode, path + depth);
2581                 if (err)
2582                         goto out;
2583
2584                 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2585                                 ext4_ext_pblock(ex));
2586                 ex--;
2587                 ex_ee_block = le32_to_cpu(ex->ee_block);
2588                 ex_ee_len = ext4_ext_get_actual_len(ex);
2589         }
2590
2591         if (correct_index && eh->eh_entries)
2592                 err = ext4_ext_correct_indexes(handle, inode, path);
2593
2594         /*
2595          * If there is still a entry in the leaf node, check to see if
2596          * it references the partial cluster.  This is the only place
2597          * where it could; if it doesn't, we can free the cluster.
2598          */
2599         if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2600             (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2601              *partial_cluster)) {
2602                 int flags = EXT4_FREE_BLOCKS_FORGET;
2603
2604                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2605                         flags |= EXT4_FREE_BLOCKS_METADATA;
2606
2607                 ext4_free_blocks(handle, inode, NULL,
2608                                  EXT4_C2B(sbi, *partial_cluster),
2609                                  sbi->s_cluster_ratio, flags);
2610                 *partial_cluster = 0;
2611         }
2612
2613         /* if this leaf is free, then we should
2614          * remove it from index block above */
2615         if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2616                 err = ext4_ext_rm_idx(handle, inode, path, depth);
2617
2618 out:
2619         return err;
2620 }
2621
2622 /*
2623  * ext4_ext_more_to_rm:
2624  * returns 1 if current index has to be freed (even partial)
2625  */
2626 static int
2627 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2628 {
2629         BUG_ON(path->p_idx == NULL);
2630
2631         if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2632                 return 0;
2633
2634         /*
2635          * if truncate on deeper level happened, it wasn't partial,
2636          * so we have to consider current index for truncation
2637          */
2638         if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2639                 return 0;
2640         return 1;
2641 }
2642
2643 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2644                                  ext4_lblk_t end)
2645 {
2646         struct super_block *sb = inode->i_sb;
2647         int depth = ext_depth(inode);
2648         struct ext4_ext_path *path = NULL;
2649         ext4_fsblk_t partial_cluster = 0;
2650         handle_t *handle;
2651         int i = 0, err = 0;
2652
2653         ext_debug("truncate since %u to %u\n", start, end);
2654
2655         /* probably first extent we're gonna free will be last in block */
2656         handle = ext4_journal_start(inode, depth + 1);
2657         if (IS_ERR(handle))
2658                 return PTR_ERR(handle);
2659
2660 again:
2661         ext4_ext_invalidate_cache(inode);
2662
2663         trace_ext4_ext_remove_space(inode, start, depth);
2664
2665         /*
2666          * Check if we are removing extents inside the extent tree. If that
2667          * is the case, we are going to punch a hole inside the extent tree
2668          * so we have to check whether we need to split the extent covering
2669          * the last block to remove so we can easily remove the part of it
2670          * in ext4_ext_rm_leaf().
2671          */
2672         if (end < EXT_MAX_BLOCKS - 1) {
2673                 struct ext4_extent *ex;
2674                 ext4_lblk_t ee_block;
2675
2676                 /* find extent for this block */
2677                 path = ext4_ext_find_extent(inode, end, NULL);
2678                 if (IS_ERR(path)) {
2679                         ext4_journal_stop(handle);
2680                         return PTR_ERR(path);
2681                 }
2682                 depth = ext_depth(inode);
2683                 /* Leaf not may not exist only if inode has no blocks at all */
2684                 ex = path[depth].p_ext;
2685                 if (!ex) {
2686                         if (depth) {
2687                                 EXT4_ERROR_INODE(inode,
2688                                                  "path[%d].p_hdr == NULL",
2689                                                  depth);
2690                                 err = -EIO;
2691                         }
2692                         goto out;
2693                 }
2694
2695                 ee_block = le32_to_cpu(ex->ee_block);
2696
2697                 /*
2698                  * See if the last block is inside the extent, if so split
2699                  * the extent at 'end' block so we can easily remove the
2700                  * tail of the first part of the split extent in
2701                  * ext4_ext_rm_leaf().
2702                  */
2703                 if (end >= ee_block &&
2704                     end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2705                         int split_flag = 0;
2706
2707                         if (ext4_ext_is_uninitialized(ex))
2708                                 split_flag = EXT4_EXT_MARK_UNINIT1 |
2709                                              EXT4_EXT_MARK_UNINIT2;
2710
2711                         /*
2712                          * Split the extent in two so that 'end' is the last
2713                          * block in the first new extent
2714                          */
2715                         err = ext4_split_extent_at(handle, inode, path,
2716                                                 end + 1, split_flag,
2717                                                 EXT4_GET_BLOCKS_PRE_IO |
2718                                                 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2719
2720                         if (err < 0)
2721                                 goto out;
2722                 }
2723         }
2724         /*
2725          * We start scanning from right side, freeing all the blocks
2726          * after i_size and walking into the tree depth-wise.
2727          */
2728         depth = ext_depth(inode);
2729         if (path) {
2730                 int k = i = depth;
2731                 while (--k > 0)
2732                         path[k].p_block =
2733                                 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2734         } else {
2735                 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2736                                GFP_NOFS);
2737                 if (path == NULL) {
2738                         ext4_journal_stop(handle);
2739                         return -ENOMEM;
2740                 }
2741                 path[0].p_depth = depth;
2742                 path[0].p_hdr = ext_inode_hdr(inode);
2743                 i = 0;
2744
2745                 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2746                         err = -EIO;
2747                         goto out;
2748                 }
2749         }
2750         err = 0;
2751
2752         while (i >= 0 && err == 0) {
2753                 if (i == depth) {
2754                         /* this is leaf block */
2755                         err = ext4_ext_rm_leaf(handle, inode, path,
2756                                                &partial_cluster, start,
2757                                                end);
2758                         /* root level has p_bh == NULL, brelse() eats this */
2759                         brelse(path[i].p_bh);
2760                         path[i].p_bh = NULL;
2761                         i--;
2762                         continue;
2763                 }
2764
2765                 /* this is index block */
2766                 if (!path[i].p_hdr) {
2767                         ext_debug("initialize header\n");
2768                         path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2769                 }
2770
2771                 if (!path[i].p_idx) {
2772                         /* this level hasn't been touched yet */
2773                         path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2774                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2775                         ext_debug("init index ptr: hdr 0x%p, num %d\n",
2776                                   path[i].p_hdr,
2777                                   le16_to_cpu(path[i].p_hdr->eh_entries));
2778                 } else {
2779                         /* we were already here, see at next index */
2780                         path[i].p_idx--;
2781                 }
2782
2783                 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2784                                 i, EXT_FIRST_INDEX(path[i].p_hdr),
2785                                 path[i].p_idx);
2786                 if (ext4_ext_more_to_rm(path + i)) {
2787                         struct buffer_head *bh;
2788                         /* go to the next level */
2789                         ext_debug("move to level %d (block %llu)\n",
2790                                   i + 1, ext4_idx_pblock(path[i].p_idx));
2791                         memset(path + i + 1, 0, sizeof(*path));
2792                         bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2793                         if (!bh) {
2794                                 /* should we reset i_size? */
2795                                 err = -EIO;
2796                                 break;
2797                         }
2798                         if (WARN_ON(i + 1 > depth)) {
2799                                 err = -EIO;
2800                                 break;
2801                         }
2802                         if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2803                                                         depth - i - 1, bh)) {
2804                                 err = -EIO;
2805                                 break;
2806                         }
2807                         path[i + 1].p_bh = bh;
2808
2809                         /* save actual number of indexes since this
2810                          * number is changed at the next iteration */
2811                         path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2812                         i++;
2813                 } else {
2814                         /* we finished processing this index, go up */
2815                         if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2816                                 /* index is empty, remove it;
2817                                  * handle must be already prepared by the
2818                                  * truncatei_leaf() */
2819                                 err = ext4_ext_rm_idx(handle, inode, path, i);
2820                         }
2821                         /* root level has p_bh == NULL, brelse() eats this */
2822                         brelse(path[i].p_bh);
2823                         path[i].p_bh = NULL;
2824                         i--;
2825                         ext_debug("return to level %d\n", i);
2826                 }
2827         }
2828
2829         trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2830                         path->p_hdr->eh_entries);
2831
2832         /* If we still have something in the partial cluster and we have removed
2833          * even the first extent, then we should free the blocks in the partial
2834          * cluster as well. */
2835         if (partial_cluster && path->p_hdr->eh_entries == 0) {
2836                 int flags = EXT4_FREE_BLOCKS_FORGET;
2837
2838                 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2839                         flags |= EXT4_FREE_BLOCKS_METADATA;
2840
2841                 ext4_free_blocks(handle, inode, NULL,
2842                                  EXT4_C2B(EXT4_SB(sb), partial_cluster),
2843                                  EXT4_SB(sb)->s_cluster_ratio, flags);
2844                 partial_cluster = 0;
2845         }
2846
2847         /* TODO: flexible tree reduction should be here */
2848         if (path->p_hdr->eh_entries == 0) {
2849                 /*
2850                  * truncate to zero freed all the tree,
2851                  * so we need to correct eh_depth
2852                  */
2853                 err = ext4_ext_get_access(handle, inode, path);
2854                 if (err == 0) {
2855                         ext_inode_hdr(inode)->eh_depth = 0;
2856                         ext_inode_hdr(inode)->eh_max =
2857                                 cpu_to_le16(ext4_ext_space_root(inode, 0));
2858                         err = ext4_ext_dirty(handle, inode, path);
2859                 }
2860         }
2861 out:
2862         ext4_ext_drop_refs(path);
2863         kfree(path);
2864         if (err == -EAGAIN) {
2865                 path = NULL;
2866                 goto again;
2867         }
2868         ext4_journal_stop(handle);
2869
2870         return err;
2871 }
2872
2873 /*
2874  * called at mount time
2875  */
2876 void ext4_ext_init(struct super_block *sb)
2877 {
2878         /*
2879          * possible initialization would be here
2880          */
2881
2882         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2883 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2884                 printk(KERN_INFO "EXT4-fs: file extents enabled"
2885 #ifdef AGGRESSIVE_TEST
2886                        ", aggressive tests"
2887 #endif
2888 #ifdef CHECK_BINSEARCH
2889                        ", check binsearch"
2890 #endif
2891 #ifdef EXTENTS_STATS
2892                        ", stats"
2893 #endif
2894                        "\n");
2895 #endif
2896 #ifdef EXTENTS_STATS
2897                 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2898                 EXT4_SB(sb)->s_ext_min = 1 << 30;
2899                 EXT4_SB(sb)->s_ext_max = 0;
2900 #endif
2901         }
2902 }
2903
2904 /*
2905  * called at umount time
2906  */
2907 void ext4_ext_release(struct super_block *sb)
2908 {
2909         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2910                 return;
2911
2912 #ifdef EXTENTS_STATS
2913         if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2914                 struct ext4_sb_info *sbi = EXT4_SB(sb);
2915                 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2916                         sbi->s_ext_blocks, sbi->s_ext_extents,
2917                         sbi->s_ext_blocks / sbi->s_ext_extents);
2918                 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2919                         sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2920         }
2921 #endif
2922 }
2923
2924 /* FIXME!! we need to try to merge to left or right after zero-out  */
2925 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2926 {
2927         ext4_fsblk_t ee_pblock;
2928         unsigned int ee_len;
2929         int ret;
2930
2931         ee_len    = ext4_ext_get_actual_len(ex);
2932         ee_pblock = ext4_ext_pblock(ex);
2933
2934         ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2935         if (ret > 0)
2936                 ret = 0;
2937
2938         return ret;
2939 }
2940
2941 /*
2942  * ext4_split_extent_at() splits an extent at given block.
2943  *
2944  * @handle: the journal handle
2945  * @inode: the file inode
2946  * @path: the path to the extent
2947  * @split: the logical block where the extent is splitted.
2948  * @split_flags: indicates if the extent could be zeroout if split fails, and
2949  *               the states(init or uninit) of new extents.
2950  * @flags: flags used to insert new extent to extent tree.
2951  *
2952  *
2953  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2954  * of which are deterimined by split_flag.
2955  *
2956  * There are two cases:
2957  *  a> the extent are splitted into two extent.
2958  *  b> split is not needed, and just mark the extent.
2959  *
2960  * return 0 on success.
2961  */
2962 static int ext4_split_extent_at(handle_t *handle,
2963                              struct inode *inode,
2964                              struct ext4_ext_path *path,
2965                              ext4_lblk_t split,
2966                              int split_flag,
2967                              int flags)
2968 {
2969         ext4_fsblk_t newblock;
2970         ext4_lblk_t ee_block;
2971         struct ext4_extent *ex, newex, orig_ex;
2972         struct ext4_extent *ex2 = NULL;
2973         unsigned int ee_len, depth;
2974         int err = 0;
2975
2976         BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2977                (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2978
2979         ext_debug("ext4_split_extents_at: inode %lu, logical"
2980                 "block %llu\n", inode->i_ino, (unsigned long long)split);
2981
2982         ext4_ext_show_leaf(inode, path);
2983
2984         depth = ext_depth(inode);
2985         ex = path[depth].p_ext;
2986         ee_block = le32_to_cpu(ex->ee_block);
2987         ee_len = ext4_ext_get_actual_len(ex);
2988         newblock = split - ee_block + ext4_ext_pblock(ex);
2989
2990         BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2991
2992         err = ext4_ext_get_access(handle, inode, path + depth);
2993         if (err)
2994                 goto out;
2995
2996         if (split == ee_block) {
2997                 /*
2998                  * case b: block @split is the block that the extent begins with
2999                  * then we just change the state of the extent, and splitting
3000                  * is not needed.
3001                  */
3002                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3003                         ext4_ext_mark_uninitialized(ex);
3004                 else
3005                         ext4_ext_mark_initialized(ex);
3006
3007                 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3008                         ext4_ext_try_to_merge(handle, inode, path, ex);
3009
3010                 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3011                 goto out;
3012         }
3013
3014         /* case a */
3015         memcpy(&orig_ex, ex, sizeof(orig_ex));
3016         ex->ee_len = cpu_to_le16(split - ee_block);
3017         if (split_flag & EXT4_EXT_MARK_UNINIT1)
3018                 ext4_ext_mark_uninitialized(ex);
3019
3020         /*
3021          * path may lead to new leaf, not to original leaf any more
3022          * after ext4_ext_insert_extent() returns,
3023          */
3024         err = ext4_ext_dirty(handle, inode, path + depth);
3025         if (err)
3026                 goto fix_extent_len;
3027
3028         ex2 = &newex;
3029         ex2->ee_block = cpu_to_le32(split);
3030         ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
3031         ext4_ext_store_pblock(ex2, newblock);
3032         if (split_flag & EXT4_EXT_MARK_UNINIT2)
3033                 ext4_ext_mark_uninitialized(ex2);
3034
3035         err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3036         if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3037                 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3038                         if (split_flag & EXT4_EXT_DATA_VALID1)
3039                                 err = ext4_ext_zeroout(inode, ex2);
3040                         else
3041                                 err = ext4_ext_zeroout(inode, ex);
3042                 } else
3043                         err = ext4_ext_zeroout(inode, &orig_ex);
3044
3045                 if (err)
3046                         goto fix_extent_len;
3047                 /* update the extent length and mark as initialized */
3048                 ex->ee_len = cpu_to_le16(ee_len);
3049                 ext4_ext_try_to_merge(handle, inode, path, ex);
3050                 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3051                 goto out;
3052         } else if (err)
3053                 goto fix_extent_len;
3054
3055 out:
3056         ext4_ext_show_leaf(inode, path);
3057         return err;
3058
3059 fix_extent_len:
3060         ex->ee_len = orig_ex.ee_len;
3061         ext4_ext_dirty(handle, inode, path + depth);
3062         return err;
3063 }
3064
3065 /*
3066  * ext4_split_extents() splits an extent and mark extent which is covered
3067  * by @map as split_flags indicates
3068  *
3069  * It may result in splitting the extent into multiple extents (upto three)
3070  * There are three possibilities:
3071  *   a> There is no split required
3072  *   b> Splits in two extents: Split is happening at either end of the extent
3073  *   c> Splits in three extents: Somone is splitting in middle of the extent
3074  *
3075  */
3076 static int ext4_split_extent(handle_t *handle,
3077                               struct inode *inode,
3078                               struct ext4_ext_path *path,
3079                               struct ext4_map_blocks *map,
3080                               int split_flag,
3081                               int flags)
3082 {
3083         ext4_lblk_t ee_block;
3084         struct ext4_extent *ex;
3085         unsigned int ee_len, depth;
3086         int err = 0;
3087         int uninitialized;
3088         int split_flag1, flags1;
3089
3090         depth = ext_depth(inode);
3091         ex = path[depth].p_ext;
3092         ee_block = le32_to_cpu(ex->ee_block);
3093         ee_len = ext4_ext_get_actual_len(ex);
3094         uninitialized = ext4_ext_is_uninitialized(ex);
3095
3096         if (map->m_lblk + map->m_len < ee_block + ee_len) {
3097                 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3098                 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3099                 if (uninitialized)
3100                         split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3101                                        EXT4_EXT_MARK_UNINIT2;
3102                 if (split_flag & EXT4_EXT_DATA_VALID2)
3103                         split_flag1 |= EXT4_EXT_DATA_VALID1;
3104                 err = ext4_split_extent_at(handle, inode, path,
3105                                 map->m_lblk + map->m_len, split_flag1, flags1);
3106                 if (err)
3107                         goto out;
3108         }
3109
3110         ext4_ext_drop_refs(path);
3111         path = ext4_ext_find_extent(inode, map->m_lblk, path);
3112         if (IS_ERR(path))
3113                 return PTR_ERR(path);
3114
3115         if (map->m_lblk >= ee_block) {
3116                 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3117                                             EXT4_EXT_DATA_VALID2);
3118                 if (uninitialized)
3119                         split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3120                 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3121                         split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3122                 err = ext4_split_extent_at(handle, inode, path,
3123                                 map->m_lblk, split_flag1, flags);
3124                 if (err)
3125                         goto out;
3126         }
3127
3128         ext4_ext_show_leaf(inode, path);
3129 out:
3130         return err ? err : map->m_len;
3131 }
3132
3133 /*
3134  * This function is called by ext4_ext_map_blocks() if someone tries to write
3135  * to an uninitialized extent. It may result in splitting the uninitialized
3136  * extent into multiple extents (up to three - one initialized and two
3137  * uninitialized).
3138  * There are three possibilities:
3139  *   a> There is no split required: Entire extent should be initialized
3140  *   b> Splits in two extents: Write is happening at either end of the extent
3141  *   c> Splits in three extents: Somone is writing in middle of the extent
3142  *
3143  * Pre-conditions:
3144  *  - The extent pointed to by 'path' is uninitialized.
3145  *  - The extent pointed to by 'path' contains a superset
3146  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3147  *
3148  * Post-conditions on success:
3149  *  - the returned value is the number of blocks beyond map->l_lblk
3150  *    that are allocated and initialized.
3151  *    It is guaranteed to be >= map->m_len.
3152  */
3153 static int ext4_ext_convert_to_initialized(handle_t *handle,
3154                                            struct inode *inode,
3155                                            struct ext4_map_blocks *map,
3156                                            struct ext4_ext_path *path)
3157 {
3158         struct ext4_sb_info *sbi;
3159         struct ext4_extent_header *eh;
3160         struct ext4_map_blocks split_map;
3161         struct ext4_extent zero_ex;
3162         struct ext4_extent *ex;
3163         ext4_lblk_t ee_block, eof_block;
3164         unsigned int ee_len, depth;
3165         int allocated, max_zeroout = 0;
3166         int err = 0;
3167         int split_flag = 0;
3168
3169         ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3170                 "block %llu, max_blocks %u\n", inode->i_ino,
3171                 (unsigned long long)map->m_lblk, map->m_len);
3172
3173         sbi = EXT4_SB(inode->i_sb);
3174         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3175                 inode->i_sb->s_blocksize_bits;
3176         if (eof_block < map->m_lblk + map->m_len)
3177                 eof_block = map->m_lblk + map->m_len;
3178
3179         depth = ext_depth(inode);
3180         eh = path[depth].p_hdr;
3181         ex = path[depth].p_ext;
3182         ee_block = le32_to_cpu(ex->ee_block);
3183         ee_len = ext4_ext_get_actual_len(ex);
3184         allocated = ee_len - (map->m_lblk - ee_block);
3185
3186         trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3187
3188         /* Pre-conditions */
3189         BUG_ON(!ext4_ext_is_uninitialized(ex));
3190         BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3191
3192         /*
3193          * Attempt to transfer newly initialized blocks from the currently
3194          * uninitialized extent to its left neighbor. This is much cheaper
3195          * than an insertion followed by a merge as those involve costly
3196          * memmove() calls. This is the common case in steady state for
3197          * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3198          * writes.
3199          *
3200          * Limitations of the current logic:
3201          *  - L1: we only deal with writes at the start of the extent.
3202          *    The approach could be extended to writes at the end
3203          *    of the extent but this scenario was deemed less common.
3204          *  - L2: we do not deal with writes covering the whole extent.
3205          *    This would require removing the extent if the transfer
3206          *    is possible.
3207          *  - L3: we only attempt to merge with an extent stored in the
3208          *    same extent tree node.
3209          */
3210         if ((map->m_lblk == ee_block) &&        /*L1*/
3211                 (map->m_len < ee_len) &&        /*L2*/
3212                 (ex > EXT_FIRST_EXTENT(eh))) {  /*L3*/
3213                 struct ext4_extent *prev_ex;
3214                 ext4_lblk_t prev_lblk;
3215                 ext4_fsblk_t prev_pblk, ee_pblk;
3216                 unsigned int prev_len, write_len;
3217
3218                 prev_ex = ex - 1;
3219                 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3220                 prev_len = ext4_ext_get_actual_len(prev_ex);
3221                 prev_pblk = ext4_ext_pblock(prev_ex);
3222                 ee_pblk = ext4_ext_pblock(ex);
3223                 write_len = map->m_len;
3224
3225                 /*
3226                  * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3227                  * upon those conditions:
3228                  * - C1: prev_ex is initialized,
3229                  * - C2: prev_ex is logically abutting ex,
3230                  * - C3: prev_ex is physically abutting ex,
3231                  * - C4: prev_ex can receive the additional blocks without
3232                  *   overflowing the (initialized) length limit.
3233                  */
3234                 if ((!ext4_ext_is_uninitialized(prev_ex)) &&            /*C1*/
3235                         ((prev_lblk + prev_len) == ee_block) &&         /*C2*/
3236                         ((prev_pblk + prev_len) == ee_pblk) &&          /*C3*/
3237                         (prev_len < (EXT_INIT_MAX_LEN - write_len))) {  /*C4*/
3238                         err = ext4_ext_get_access(handle, inode, path + depth);
3239                         if (err)
3240                                 goto out;
3241
3242                         trace_ext4_ext_convert_to_initialized_fastpath(inode,
3243                                 map, ex, prev_ex);
3244
3245                         /* Shift the start of ex by 'write_len' blocks */
3246                         ex->ee_block = cpu_to_le32(ee_block + write_len);
3247                         ext4_ext_store_pblock(ex, ee_pblk + write_len);
3248                         ex->ee_len = cpu_to_le16(ee_len - write_len);
3249                         ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3250
3251                         /* Extend prev_ex by 'write_len' blocks */
3252                         prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3253
3254                         /* Mark the block containing both extents as dirty */
3255                         ext4_ext_dirty(handle, inode, path + depth);
3256
3257                         /* Update path to point to the right extent */
3258                         path[depth].p_ext = prev_ex;
3259
3260                         /* Result: number of initialized blocks past m_lblk */
3261                         allocated = write_len;
3262                         goto out;
3263                 }
3264         }
3265
3266         WARN_ON(map->m_lblk < ee_block);
3267         /*
3268          * It is safe to convert extent to initialized via explicit
3269          * zeroout only if extent is fully insde i_size or new_size.
3270          */
3271         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3272
3273         if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3274                 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3275                         inode->i_sb->s_blocksize_bits;
3276
3277         /* If extent is less than s_max_zeroout_kb, zeroout directly */
3278         if (max_zeroout && (ee_len <= max_zeroout)) {
3279                 err = ext4_ext_zeroout(inode, ex);
3280                 if (err)
3281                         goto out;
3282
3283                 err = ext4_ext_get_access(handle, inode, path + depth);
3284                 if (err)
3285                         goto out;
3286                 ext4_ext_mark_initialized(ex);
3287                 ext4_ext_try_to_merge(handle, inode, path, ex);
3288                 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3289                 goto out;
3290         }
3291
3292         /*
3293          * four cases:
3294          * 1. split the extent into three extents.
3295          * 2. split the extent into two extents, zeroout the first half.
3296          * 3. split the extent into two extents, zeroout the second half.
3297          * 4. split the extent into two extents with out zeroout.
3298          */
3299         split_map.m_lblk = map->m_lblk;
3300         split_map.m_len = map->m_len;
3301
3302         if (max_zeroout && (allocated > map->m_len)) {
3303                 if (allocated <= max_zeroout) {
3304                         /* case 3 */
3305                         zero_ex.ee_block =
3306                                          cpu_to_le32(map->m_lblk);
3307                         zero_ex.ee_len = cpu_to_le16(allocated);
3308                         ext4_ext_store_pblock(&zero_ex,
3309                                 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3310                         err = ext4_ext_zeroout(inode, &zero_ex);
3311                         if (err)
3312                                 goto out;
3313                         split_map.m_lblk = map->m_lblk;
3314                         split_map.m_len = allocated;
3315                 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3316                         /* case 2 */
3317                         if (map->m_lblk != ee_block) {
3318                                 zero_ex.ee_block = ex->ee_block;
3319                                 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3320                                                         ee_block);
3321                                 ext4_ext_store_pblock(&zero_ex,
3322                                                       ext4_ext_pblock(ex));
3323                                 err = ext4_ext_zeroout(inode, &zero_ex);
3324                                 if (err)
3325                                         goto out;
3326                         }
3327
3328                         split_map.m_lblk = ee_block;
3329                         split_map.m_len = map->m_lblk - ee_block + map->m_len;
3330                         allocated = map->m_len;
3331                 }
3332         }
3333
3334         allocated = ext4_split_extent(handle, inode, path,
3335                                       &split_map, split_flag, 0);
3336         if (allocated < 0)
3337                 err = allocated;
3338
3339 out:
3340         return err ? err : allocated;
3341 }
3342
3343 /*
3344  * This function is called by ext4_ext_map_blocks() from
3345  * ext4_get_blocks_dio_write() when DIO to write
3346  * to an uninitialized extent.
3347  *
3348  * Writing to an uninitialized extent may result in splitting the uninitialized
3349  * extent into multiple initialized/uninitialized extents (up to three)
3350  * There are three possibilities:
3351  *   a> There is no split required: Entire extent should be uninitialized
3352  *   b> Splits in two extents: Write is happening at either end of the extent
3353  *   c> Splits in three extents: Somone is writing in middle of the extent
3354  *
3355  * One of more index blocks maybe needed if the extent tree grow after
3356  * the uninitialized extent split. To prevent ENOSPC occur at the IO
3357  * complete, we need to split the uninitialized extent before DIO submit
3358  * the IO. The uninitialized extent called at this time will be split
3359  * into three uninitialized extent(at most). After IO complete, the part
3360  * being filled will be convert to initialized by the end_io callback function
3361  * via ext4_convert_unwritten_extents().
3362  *
3363  * Returns the size of uninitialized extent to be written on success.
3364  */
3365 static int ext4_split_unwritten_extents(handle_t *handle,
3366                                         struct inode *inode,
3367                                         struct ext4_map_blocks *map,
3368                                         struct ext4_ext_path *path,
3369                                         int flags)
3370 {
3371         ext4_lblk_t eof_block;
3372         ext4_lblk_t ee_block;
3373         struct ext4_extent *ex;
3374         unsigned int ee_len;
3375         int split_flag = 0, depth;
3376
3377         ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3378                 "block %llu, max_blocks %u\n", inode->i_ino,
3379                 (unsigned long long)map->m_lblk, map->m_len);
3380
3381         eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3382                 inode->i_sb->s_blocksize_bits;
3383         if (eof_block < map->m_lblk + map->m_len)
3384                 eof_block = map->m_lblk + map->m_len;
3385         /*
3386          * It is safe to convert extent to initialized via explicit
3387          * zeroout only if extent is fully insde i_size or new_size.
3388          */
3389         depth = ext_depth(inode);
3390         ex = path[depth].p_ext;
3391         ee_block = le32_to_cpu(ex->ee_block);
3392         ee_len = ext4_ext_get_actual_len(ex);
3393
3394         split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3395         split_flag |= EXT4_EXT_MARK_UNINIT2;
3396         if (flags & EXT4_GET_BLOCKS_CONVERT)
3397                 split_flag |= EXT4_EXT_DATA_VALID2;
3398         flags |= EXT4_GET_BLOCKS_PRE_IO;
3399         return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3400 }
3401
3402 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3403                                                 struct inode *inode,
3404                                                 struct ext4_map_blocks *map,
3405                                                 struct ext4_ext_path *path)
3406 {
3407         struct ext4_extent *ex;
3408         ext4_lblk_t ee_block;
3409         unsigned int ee_len;
3410         int depth;
3411         int err = 0;
3412
3413         depth = ext_depth(inode);
3414         ex = path[depth].p_ext;
3415         ee_block = le32_to_cpu(ex->ee_block);
3416         ee_len = ext4_ext_get_actual_len(ex);
3417
3418         ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3419                 "block %llu, max_blocks %u\n", inode->i_ino,
3420                   (unsigned long long)ee_block, ee_len);
3421
3422         /* If extent is larger than requested then split is required */
3423         if (ee_block != map->m_lblk || ee_len > map->m_len) {
3424                 err = ext4_split_unwritten_extents(handle, inode, map, path,
3425                                                    EXT4_GET_BLOCKS_CONVERT);
3426                 if (err < 0)
3427                         goto out;
3428                 ext4_ext_drop_refs(path);
3429                 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3430                 if (IS_ERR(path)) {
3431                         err = PTR_ERR(path);
3432                         goto out;
3433                 }
3434                 depth = ext_depth(inode);
3435                 ex = path[depth].p_ext;
3436         }
3437
3438         err = ext4_ext_get_access(handle, inode, path + depth);
3439         if (err)
3440                 goto out;
3441         /* first mark the extent as initialized */
3442         ext4_ext_mark_initialized(ex);
3443
3444         /* note: ext4_ext_correct_indexes() isn't needed here because
3445          * borders are not changed
3446          */
3447         ext4_ext_try_to_merge(handle, inode, path, ex);
3448
3449         /* Mark modified extent as dirty */
3450         err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3451 out:
3452         ext4_ext_show_leaf(inode, path);
3453         return err;
3454 }
3455
3456 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3457                         sector_t block, int count)
3458 {
3459         int i;
3460         for (i = 0; i < count; i++)
3461                 unmap_underlying_metadata(bdev, block + i);
3462 }
3463
3464 /*
3465  * Handle EOFBLOCKS_FL flag, clearing it if necessary
3466  */
3467 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3468                               ext4_lblk_t lblk,
3469                               struct ext4_ext_path *path,
3470                               unsigned int len)
3471 {
3472         int i, depth;
3473         struct ext4_extent_header *eh;
3474         struct ext4_extent *last_ex;
3475
3476         if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3477                 return 0;
3478
3479         depth = ext_depth(inode);
3480         eh = path[depth].p_hdr;
3481
3482         /*
3483          * We're going to remove EOFBLOCKS_FL entirely in future so we
3484          * do not care for this case anymore. Simply remove the flag
3485          * if there are no extents.
3486          */
3487         if (unlikely(!eh->eh_entries))
3488                 goto out;
3489         last_ex = EXT_LAST_EXTENT(eh);
3490         /*
3491          * We should clear the EOFBLOCKS_FL flag if we are writing the
3492          * last block in the last extent in the file.  We test this by
3493          * first checking to see if the caller to
3494          * ext4_ext_get_blocks() was interested in the last block (or
3495          * a block beyond the last block) in the current extent.  If
3496          * this turns out to be false, we can bail out from this
3497          * function immediately.
3498          */
3499         if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3500             ext4_ext_get_actual_len(last_ex))
3501                 return 0;
3502         /*
3503          * If the caller does appear to be planning to write at or
3504          * beyond the end of the current extent, we then test to see
3505          * if the current extent is the last extent in the file, by
3506          * checking to make sure it was reached via the rightmost node
3507          * at each level of the tree.
3508          */
3509         for (i = depth-1; i >= 0; i--)
3510                 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3511                         return 0;
3512 out:
3513         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3514         return ext4_mark_inode_dirty(handle, inode);
3515 }
3516
3517 /**
3518  * ext4_find_delalloc_range: find delayed allocated block in the given range.
3519  *
3520  * Return 1 if there is a delalloc block in the range, otherwise 0.
3521  */
3522 static int ext4_find_delalloc_range(struct inode *inode,
3523                                     ext4_lblk_t lblk_start,
3524                                     ext4_lblk_t lblk_end)
3525 {
3526         struct extent_status es;
3527
3528         es.start = lblk_start;
3529         ext4_es_find_extent(inode, &es);
3530         if (es.len == 0)
3531                 return 0; /* there is no delay extent in this tree */
3532         else if (es.start <= lblk_start && lblk_start < es.start + es.len)
3533                 return 1;
3534         else if (lblk_start <= es.start && es.start <= lblk_end)
3535                 return 1;
3536         else
3537                 return 0;
3538 }
3539
3540 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3541 {
3542         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3543         ext4_lblk_t lblk_start, lblk_end;
3544         lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3545         lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3546
3547         return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3548 }
3549
3550 /**
3551  * Determines how many complete clusters (out of those specified by the 'map')
3552  * are under delalloc and were reserved quota for.
3553  * This function is called when we are writing out the blocks that were
3554  * originally written with their allocation delayed, but then the space was
3555  * allocated using fallocate() before the delayed allocation could be resolved.
3556  * The cases to look for are:
3557  * ('=' indicated delayed allocated blocks
3558  *  '-' indicates non-delayed allocated blocks)
3559  * (a) partial clusters towards beginning and/or end outside of allocated range
3560  *     are not delalloc'ed.
3561  *      Ex:
3562  *      |----c---=|====c====|====c====|===-c----|
3563  *               |++++++ allocated ++++++|
3564  *      ==> 4 complete clusters in above example
3565  *
3566  * (b) partial cluster (outside of allocated range) towards either end is
3567  *     marked for delayed allocation. In this case, we will exclude that
3568  *     cluster.
3569  *      Ex:
3570  *      |----====c========|========c========|
3571  *           |++++++ allocated ++++++|
3572  *      ==> 1 complete clusters in above example
3573  *
3574  *      Ex:
3575  *      |================c================|
3576  *            |++++++ allocated ++++++|
3577  *      ==> 0 complete clusters in above example
3578  *
3579  * The ext4_da_update_reserve_space will be called only if we
3580  * determine here that there were some "entire" clusters that span
3581  * this 'allocated' range.
3582  * In the non-bigalloc case, this function will just end up returning num_blks
3583  * without ever calling ext4_find_delalloc_range.
3584  */
3585 static unsigned int
3586 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3587                            unsigned int num_blks)
3588 {
3589         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3590         ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3591         ext4_lblk_t lblk_from, lblk_to, c_offset;
3592         unsigned int allocated_clusters = 0;
3593
3594         alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3595         alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3596
3597         /* max possible clusters for this allocation */
3598         allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3599
3600         trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3601
3602         /* Check towards left side */
3603         c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3604         if (c_offset) {
3605                 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3606                 lblk_to = lblk_from + c_offset - 1;
3607
3608                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3609                         allocated_clusters--;
3610         }
3611
3612         /* Now check towards right. */
3613         c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3614         if (allocated_clusters && c_offset) {
3615                 lblk_from = lblk_start + num_blks;
3616                 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3617
3618                 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3619                         allocated_clusters--;
3620         }
3621
3622         return allocated_clusters;
3623 }
3624
3625 static int
3626 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3627                         struct ext4_map_blocks *map,
3628                         struct ext4_ext_path *path, int flags,
3629                         unsigned int allocated, ext4_fsblk_t newblock)
3630 {
3631         int ret = 0;
3632         int err = 0;
3633         ext4_io_end_t *io = ext4_inode_aio(inode);
3634
3635         ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3636                   "block %llu, max_blocks %u, flags %x, allocated %u\n",
3637                   inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3638                   flags, allocated);
3639         ext4_ext_show_leaf(inode, path);
3640
3641         trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3642                                                     allocated, newblock);
3643
3644         /* get_block() before submit the IO, split the extent */
3645         if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3646                 ret = ext4_split_unwritten_extents(handle, inode, map,
3647                                                    path, flags);
3648                 if (ret <= 0)
3649                         goto out;
3650                 /*
3651                  * Flag the inode(non aio case) or end_io struct (aio case)
3652                  * that this IO needs to conversion to written when IO is
3653                  * completed
3654                  */
3655                 if (io)
3656                         ext4_set_io_unwritten_flag(inode, io);
3657                 else
3658                         ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3659                 if (ext4_should_dioread_nolock(inode))
3660                         map->m_flags |= EXT4_MAP_UNINIT;
3661                 goto out;
3662         }
3663         /* IO end_io complete, convert the filled extent to written */
3664         if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3665                 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3666                                                         path);
3667                 if (ret >= 0) {
3668                         ext4_update_inode_fsync_trans(handle, inode, 1);
3669                         err = check_eofblocks_fl(handle, inode, map->m_lblk,
3670                                                  path, map->m_len);
3671                 } else
3672                         err = ret;
3673                 goto out2;
3674         }
3675         /* buffered IO case */
3676         /*
3677          * repeat fallocate creation request
3678          * we already have an unwritten extent
3679          */
3680         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3681                 goto map_out;
3682
3683         /* buffered READ or buffered write_begin() lookup */
3684         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3685                 /*
3686                  * We have blocks reserved already.  We
3687                  * return allocated blocks so that delalloc
3688                  * won't do block reservation for us.  But
3689                  * the buffer head will be unmapped so that
3690                  * a read from the block returns 0s.
3691                  */
3692                 map->m_flags |= EXT4_MAP_UNWRITTEN;
3693                 goto out1;
3694         }
3695
3696         /* buffered write, writepage time, convert*/
3697         ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3698         if (ret >= 0)
3699                 ext4_update_inode_fsync_trans(handle, inode, 1);
3700 out:
3701         if (ret <= 0) {
3702                 err = ret;
3703                 goto out2;
3704         } else
3705                 allocated = ret;
3706         map->m_flags |= EXT4_MAP_NEW;
3707         /*
3708          * if we allocated more blocks than requested
3709          * we need to make sure we unmap the extra block
3710          * allocated. The actual needed block will get
3711          * unmapped later when we find the buffer_head marked
3712          * new.
3713          */
3714         if (allocated > map->m_len) {
3715                 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3716                                         newblock + map->m_len,
3717                                         allocated - map->m_len);
3718                 allocated = map->m_len;
3719         }
3720
3721         /*
3722          * If we have done fallocate with the offset that is already
3723          * delayed allocated, we would have block reservation
3724          * and quota reservation done in the delayed write path.
3725          * But fallocate would have already updated quota and block
3726          * count for this offset. So cancel these reservation
3727          */
3728         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3729                 unsigned int reserved_clusters;
3730                 reserved_clusters = get_reserved_cluster_alloc(inode,
3731                                 map->m_lblk, map->m_len);
3732                 if (reserved_clusters)
3733                         ext4_da_update_reserve_space(inode,
3734                                                      reserved_clusters,
3735                                                      0);
3736         }
3737
3738 map_out:
3739         map->m_flags |= EXT4_MAP_MAPPED;
3740         if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3741                 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3742                                          map->m_len);
3743                 if (err < 0)
3744                         goto out2;
3745         }
3746 out1:
3747         if (allocated > map->m_len)
3748                 allocated = map->m_len;
3749         ext4_ext_show_leaf(inode, path);
3750         map->m_pblk = newblock;
3751         map->m_len = allocated;
3752 out2:
3753         if (path) {
3754                 ext4_ext_drop_refs(path);
3755                 kfree(path);
3756         }
3757         return err ? err : allocated;
3758 }
3759
3760 /*
3761  * get_implied_cluster_alloc - check to see if the requested
3762  * allocation (in the map structure) overlaps with a cluster already
3763  * allocated in an extent.
3764  *      @sb     The filesystem superblock structure
3765  *      @map    The requested lblk->pblk mapping
3766  *      @ex     The extent structure which might contain an implied
3767  *                      cluster allocation
3768  *
3769  * This function is called by ext4_ext_map_blocks() after we failed to
3770  * find blocks that were already in the inode's extent tree.  Hence,
3771  * we know that the beginning of the requested region cannot overlap
3772  * the extent from the inode's extent tree.  There are three cases we
3773  * want to catch.  The first is this case:
3774  *
3775  *               |--- cluster # N--|
3776  *    |--- extent ---|  |---- requested region ---|
3777  *                      |==========|
3778  *
3779  * The second case that we need to test for is this one:
3780  *
3781  *   |--------- cluster # N ----------------|
3782  *         |--- requested region --|   |------- extent ----|
3783  *         |=======================|
3784  *
3785  * The third case is when the requested region lies between two extents
3786  * within the same cluster:
3787  *          |------------- cluster # N-------------|
3788  * |----- ex -----|                  |---- ex_right ----|
3789  *                  |------ requested region ------|
3790  *                  |================|
3791  *
3792  * In each of the above cases, we need to set the map->m_pblk and
3793  * map->m_len so it corresponds to the return the extent labelled as
3794  * "|====|" from cluster #N, since it is already in use for data in
3795  * cluster EXT4_B2C(sbi, map->m_lblk).  We will then return 1 to
3796  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3797  * as a new "allocated" block region.  Otherwise, we will return 0 and
3798  * ext4_ext_map_blocks() will then allocate one or more new clusters
3799  * by calling ext4_mb_new_blocks().
3800  */
3801 static int get_implied_cluster_alloc(struct super_block *sb,
3802                                      struct ext4_map_blocks *map,
3803                                      struct ext4_extent *ex,
3804                                      struct ext4_ext_path *path)
3805 {
3806         struct ext4_sb_info *sbi = EXT4_SB(sb);
3807         ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3808         ext4_lblk_t ex_cluster_start, ex_cluster_end;
3809         ext4_lblk_t rr_cluster_start;
3810         ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3811         ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3812         unsigned short ee_len = ext4_ext_get_actual_len(ex);
3813
3814         /* The extent passed in that we are trying to match */
3815         ex_cluster_start = EXT4_B2C(sbi, ee_block);
3816         ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3817
3818         /* The requested region passed into ext4_map_blocks() */
3819         rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3820
3821         if ((rr_cluster_start == ex_cluster_end) ||
3822             (rr_cluster_start == ex_cluster_start)) {
3823                 if (rr_cluster_start == ex_cluster_end)
3824                         ee_start += ee_len - 1;
3825                 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3826                         c_offset;
3827                 map->m_len = min(map->m_len,
3828                                  (unsigned) sbi->s_cluster_ratio - c_offset);
3829                 /*
3830                  * Check for and handle this case:
3831                  *
3832                  *   |--------- cluster # N-------------|
3833                  *                     |------- extent ----|
3834                  *         |--- requested region ---|
3835                  *         |===========|
3836                  */
3837
3838                 if (map->m_lblk < ee_block)
3839                         map->m_len = min(map->m_len, ee_block - map->m_lblk);
3840
3841                 /*
3842                  * Check for the case where there is already another allocated
3843                  * block to the right of 'ex' but before the end of the cluster.
3844                  *
3845                  *          |------------- cluster # N-------------|
3846                  * |----- ex -----|                  |---- ex_right ----|
3847                  *                  |------ requested region ------|
3848                  *                  |================|
3849                  */
3850                 if (map->m_lblk > ee_block) {
3851                         ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3852                         map->m_len = min(map->m_len, next - map->m_lblk);
3853                 }
3854
3855                 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3856                 return 1;
3857         }
3858
3859         trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3860         return 0;
3861 }
3862
3863
3864 /*
3865  * Block allocation/map/preallocation routine for extents based files
3866  *
3867  *
3868  * Need to be called with
3869  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3870  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3871  *
3872  * return > 0, number of of blocks already mapped/allocated
3873  *          if create == 0 and these are pre-allocated blocks
3874  *              buffer head is unmapped
3875  *          otherwise blocks are mapped
3876  *
3877  * return = 0, if plain look up failed (blocks have not been allocated)
3878  *          buffer head is unmapped
3879  *
3880  * return < 0, error case.
3881  */
3882 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3883                         struct ext4_map_blocks *map, int flags)
3884 {
3885         struct ext4_ext_path *path = NULL;
3886         struct ext4_extent newex, *ex, *ex2;
3887         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3888         ext4_fsblk_t newblock = 0;
3889         int free_on_err = 0, err = 0, depth;
3890         unsigned int allocated = 0, offset = 0;
3891         unsigned int allocated_clusters = 0;
3892         struct ext4_allocation_request ar;
3893         ext4_io_end_t *io = ext4_inode_aio(inode);
3894         ext4_lblk_t cluster_offset;
3895         int set_unwritten = 0;
3896
3897         ext_debug("blocks %u/%u requested for inode %lu\n",
3898                   map->m_lblk, map->m_len, inode->i_ino);
3899         trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3900
3901         /* check in cache */
3902         if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3903                 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3904                         if ((sbi->s_cluster_ratio > 1) &&
3905                             ext4_find_delalloc_cluster(inode, map->m_lblk))
3906                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3907
3908                         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3909                                 /*
3910                                  * block isn't allocated yet and
3911                                  * user doesn't want to allocate it
3912                                  */
3913                                 goto out2;
3914                         }
3915                         /* we should allocate requested block */
3916                 } else {
3917                         /* block is already allocated */
3918                         if (sbi->s_cluster_ratio > 1)
3919                                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3920                         newblock = map->m_lblk
3921                                    - le32_to_cpu(newex.ee_block)
3922                                    + ext4_ext_pblock(&newex);
3923                         /* number of remaining blocks in the extent */
3924                         allocated = ext4_ext_get_actual_len(&newex) -
3925                                 (map->m_lblk - le32_to_cpu(newex.ee_block));
3926                         goto out;
3927                 }
3928         }
3929
3930         /* find extent for this block */
3931         path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3932         if (IS_ERR(path)) {
3933                 err = PTR_ERR(path);
3934                 path = NULL;
3935                 goto out2;
3936         }
3937
3938         depth = ext_depth(inode);
3939
3940         /*
3941          * consistent leaf must not be empty;
3942          * this situation is possible, though, _during_ tree modification;
3943          * this is why assert can't be put in ext4_ext_find_extent()
3944          */
3945         if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3946                 EXT4_ERROR_INODE(inode, "bad extent address "
3947                                  "lblock: %lu, depth: %d pblock %lld",
3948                                  (unsigned long) map->m_lblk, depth,
3949                                  path[depth].p_block);
3950                 err = -EIO;
3951                 goto out2;
3952         }
3953
3954         ex = path[depth].p_ext;
3955         if (ex) {
3956                 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3957                 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3958                 unsigned short ee_len;
3959
3960                 /*
3961                  * Uninitialized extents are treated as holes, except that
3962                  * we split out initialized portions during a write.
3963                  */
3964                 ee_len = ext4_ext_get_actual_len(ex);
3965
3966                 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3967
3968                 /* if found extent covers block, simply return it */
3969                 if (in_range(map->m_lblk, ee_block, ee_len)) {
3970                         newblock = map->m_lblk - ee_block + ee_start;
3971                         /* number of remaining blocks in the extent */
3972                         allocated = ee_len - (map->m_lblk - ee_block);
3973                         ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3974                                   ee_block, ee_len, newblock);
3975
3976                         /*
3977                          * Do not put uninitialized extent
3978                          * in the cache
3979                          */
3980                         if (!ext4_ext_is_uninitialized(ex)) {
3981                                 ext4_ext_put_in_cache(inode, ee_block,
3982                                         ee_len, ee_start);
3983                                 goto out;
3984                         }
3985                         allocated = ext4_ext_handle_uninitialized_extents(
3986                                 handle, inode, map, path, flags,
3987                                 allocated, newblock);
3988                         goto out3;
3989                 }
3990         }
3991
3992         if ((sbi->s_cluster_ratio > 1) &&
3993             ext4_find_delalloc_cluster(inode, map->m_lblk))
3994                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3995
3996         /*
3997          * requested block isn't allocated yet;
3998          * we couldn't try to create block if create flag is zero
3999          */
4000         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4001                 /*
4002                  * put just found gap into cache to speed up
4003                  * subsequent requests
4004                  */
4005                 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4006                 goto out2;
4007         }
4008
4009         /*
4010          * Okay, we need to do block allocation.
4011          */
4012         map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4013         newex.ee_block = cpu_to_le32(map->m_lblk);
4014         cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4015
4016         /*
4017          * If we are doing bigalloc, check to see if the extent returned
4018          * by ext4_ext_find_extent() implies a cluster we can use.
4019          */
4020         if (cluster_offset && ex &&
4021             get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4022                 ar.len = allocated = map->m_len;
4023                 newblock = map->m_pblk;
4024                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4025                 goto got_allocated_blocks;
4026         }
4027
4028         /* find neighbour allocated blocks */
4029         ar.lleft = map->m_lblk;
4030         err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4031         if (err)
4032                 goto out2;
4033         ar.lright = map->m_lblk;
4034         ex2 = NULL;
4035         err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4036         if (err)
4037                 goto out2;
4038
4039         /* Check if the extent after searching to the right implies a
4040          * cluster we can use. */
4041         if ((sbi->s_cluster_ratio > 1) && ex2 &&
4042             get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4043                 ar.len = allocated = map->m_len;
4044                 newblock = map->m_pblk;
4045                 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4046                 goto got_allocated_blocks;
4047         }
4048
4049         /*
4050          * See if request is beyond maximum number of blocks we can have in
4051          * a single extent. For an initialized extent this limit is
4052          * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4053          * EXT_UNINIT_MAX_LEN.
4054          */
4055         if (map->m_len > EXT_INIT_MAX_LEN &&
4056             !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4057                 map->m_len = EXT_INIT_MAX_LEN;
4058         else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4059                  (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4060                 map->m_len = EXT_UNINIT_MAX_LEN;
4061
4062         /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4063         newex.ee_len = cpu_to_le16(map->m_len);
4064         err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4065         if (err)
4066                 allocated = ext4_ext_get_actual_len(&newex);
4067         else
4068                 allocated = map->m_len;
4069
4070         /* allocate new block */
4071         ar.inode = inode;
4072         ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4073         ar.logical = map->m_lblk;
4074         /*
4075          * We calculate the offset from the beginning of the cluster
4076          * for the logical block number, since when we allocate a
4077          * physical cluster, the physical block should start at the
4078          * same offset from the beginning of the cluster.  This is
4079          * needed so that future calls to get_implied_cluster_alloc()
4080          * work correctly.
4081          */
4082         offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4083         ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4084         ar.goal -= offset;
4085         ar.logical -= offset;
4086         if (S_ISREG(inode->i_mode))
4087                 ar.flags = EXT4_MB_HINT_DATA;
4088         else
4089                 /* disable in-core preallocation for non-regular files */
4090                 ar.flags = 0;
4091         if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4092                 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4093         newblock = ext4_mb_new_blocks(handle, &ar, &err);
4094         if (!newblock)
4095                 goto out2;
4096         ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4097                   ar.goal, newblock, allocated);
4098         free_on_err = 1;
4099         allocated_clusters = ar.len;
4100         ar.len = EXT4_C2B(sbi, ar.len) - offset;
4101         if (ar.len > allocated)
4102                 ar.len = allocated;
4103
4104 got_allocated_blocks:
4105         /* try to insert new extent into found leaf and return */
4106         ext4_ext_store_pblock(&newex, newblock + offset);
4107         newex.ee_len = cpu_to_le16(ar.len);
4108         /* Mark uninitialized */
4109         if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4110                 ext4_ext_mark_uninitialized(&newex);
4111                 /*
4112                  * io_end structure was created for every IO write to an
4113                  * uninitialized extent. To avoid unnecessary conversion,
4114                  * here we flag the IO that really needs the conversion.
4115                  * For non asycn direct IO case, flag the inode state
4116                  * that we need to perform conversion when IO is done.
4117                  */
4118                 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4119                         set_unwritten = 1;
4120                 if (ext4_should_dioread_nolock(inode))
4121                         map->m_flags |= EXT4_MAP_UNINIT;
4122         }
4123
4124         err = 0;
4125         if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4126                 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4127                                          path, ar.len);
4128         if (!err)
4129                 err = ext4_ext_insert_extent(handle, inode, path,
4130                                              &newex, flags);
4131
4132         if (!err && set_unwritten) {
4133                 if (io)
4134                         ext4_set_io_unwritten_flag(inode, io);
4135                 else
4136                         ext4_set_inode_state(inode,
4137                                              EXT4_STATE_DIO_UNWRITTEN);
4138         }
4139
4140         if (err && free_on_err) {
4141                 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4142                         EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4143                 /* free data blocks we just allocated */
4144                 /* not a good idea to call discard here directly,
4145                  * but otherwise we'd need to call it every free() */
4146                 ext4_discard_preallocations(inode);
4147                 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4148                                  ext4_ext_get_actual_len(&newex), fb_flags);
4149                 goto out2;
4150         }
4151
4152         /* previous routine could use block we allocated */
4153         newblock = ext4_ext_pblock(&newex);
4154         allocated = ext4_ext_get_actual_len(&newex);
4155         if (allocated > map->m_len)
4156                 allocated = map->m_len;
4157         map->m_flags |= EXT4_MAP_NEW;
4158
4159         /*
4160          * Update reserved blocks/metadata blocks after successful
4161          * block allocation which had been deferred till now.
4162          */
4163         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4164                 unsigned int reserved_clusters;
4165                 /*
4166                  * Check how many clusters we had reserved this allocated range
4167                  */
4168                 reserved_clusters = get_reserved_cluster_alloc(inode,
4169                                                 map->m_lblk, allocated);
4170                 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4171                         if (reserved_clusters) {
4172                                 /*
4173                                  * We have clusters reserved for this range.
4174                                  * But since we are not doing actual allocation
4175                                  * and are simply using blocks from previously
4176                                  * allocated cluster, we should release the
4177                                  * reservation and not claim quota.
4178                                  */
4179                                 ext4_da_update_reserve_space(inode,
4180                                                 reserved_clusters, 0);
4181                         }
4182                 } else {
4183                         BUG_ON(allocated_clusters < reserved_clusters);
4184                         /* We will claim quota for all newly allocated blocks.*/
4185                         ext4_da_update_reserve_space(inode, allocated_clusters,
4186                                                         1);
4187                         if (reserved_clusters < allocated_clusters) {
4188                                 struct ext4_inode_info *ei = EXT4_I(inode);
4189                                 int reservation = allocated_clusters -
4190                                                   reserved_clusters;
4191                                 /*
4192                                  * It seems we claimed few clusters outside of
4193                                  * the range of this allocation. We should give
4194                                  * it back to the reservation pool. This can
4195                                  * happen in the following case:
4196                                  *
4197                                  * * Suppose s_cluster_ratio is 4 (i.e., each
4198                                  *   cluster has 4 blocks. Thus, the clusters
4199                                  *   are [0-3],[4-7],[8-11]...
4200                                  * * First comes delayed allocation write for
4201                                  *   logical blocks 10 & 11. Since there were no
4202                                  *   previous delayed allocated blocks in the
4203                                  *   range [8-11], we would reserve 1 cluster
4204                                  *   for this write.
4205                                  * * Next comes write for logical blocks 3 to 8.
4206                                  *   In this case, we will reserve 2 clusters
4207                                  *   (for [0-3] and [4-7]; and not for [8-11] as
4208                                  *   that range has a delayed allocated blocks.
4209                                  *   Thus total reserved clusters now becomes 3.
4210                                  * * Now, during the delayed allocation writeout
4211                                  *   time, we will first write blocks [3-8] and
4212                                  *   allocate 3 clusters for writing these
4213                                  *   blocks. Also, we would claim all these
4214                                  *   three clusters above.
4215                                  * * Now when we come here to writeout the
4216                                  *   blocks [10-11], we would expect to claim
4217                                  *   the reservation of 1 cluster we had made
4218                                  *   (and we would claim it since there are no
4219                                  *   more delayed allocated blocks in the range
4220                                  *   [8-11]. But our reserved cluster count had
4221                                  *   already gone to 0.
4222                                  *
4223                                  *   Thus, at the step 4 above when we determine
4224                                  *   that there are still some unwritten delayed
4225                                  *   allocated blocks outside of our current
4226                                  *   block range, we should increment the
4227                                  *   reserved clusters count so that when the
4228                                  *   remaining blocks finally gets written, we
4229                                  *   could claim them.
4230                                  */
4231                                 dquot_reserve_block(inode,
4232                                                 EXT4_C2B(sbi, reservation));
4233                                 spin_lock(&ei->i_block_reservation_lock);
4234                                 ei->i_reserved_data_blocks += reservation;
4235                                 spin_unlock(&ei->i_block_reservation_lock);
4236                         }
4237                 }
4238         }
4239
4240         /*
4241          * Cache the extent and update transaction to commit on fdatasync only
4242          * when it is _not_ an uninitialized extent.
4243          */
4244         if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4245                 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4246                 ext4_update_inode_fsync_trans(handle, inode, 1);
4247         } else
4248                 ext4_update_inode_fsync_trans(handle, inode, 0);
4249 out:
4250         if (allocated > map->m_len)
4251                 allocated = map->m_len;
4252         ext4_ext_show_leaf(inode, path);
4253         map->m_flags |= EXT4_MAP_MAPPED;
4254         map->m_pblk = newblock;
4255         map->m_len = allocated;
4256 out2:
4257         if (path) {
4258                 ext4_ext_drop_refs(path);
4259                 kfree(path);
4260         }
4261
4262 out3:
4263         trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4264
4265         return err ? err : allocated;
4266 }
4267
4268 void ext4_ext_truncate(struct inode *inode)
4269 {
4270         struct address_space *mapping = inode->i_mapping;
4271         struct super_block *sb = inode->i_sb;
4272         ext4_lblk_t last_block;
4273         handle_t *handle;
4274         loff_t page_len;
4275         int err = 0;
4276
4277         /*
4278          * finish any pending end_io work so we won't run the risk of
4279          * converting any truncated blocks to initialized later
4280          */
4281         ext4_flush_unwritten_io(inode);
4282
4283         /*
4284          * probably first extent we're gonna free will be last in block
4285          */
4286         err = ext4_writepage_trans_blocks(inode);
4287         handle = ext4_journal_start(inode, err);
4288         if (IS_ERR(handle))
4289                 return;
4290
4291         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4292                 page_len = PAGE_CACHE_SIZE -
4293                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4294
4295                 err = ext4_discard_partial_page_buffers(handle,
4296                         mapping, inode->i_size, page_len, 0);
4297
4298                 if (err)
4299                         goto out_stop;
4300         }
4301
4302         if (ext4_orphan_add(handle, inode))
4303                 goto out_stop;
4304
4305         down_write(&EXT4_I(inode)->i_data_sem);
4306         ext4_ext_invalidate_cache(inode);
4307
4308         ext4_discard_preallocations(inode);
4309
4310         /*
4311          * TODO: optimization is possible here.
4312          * Probably we need not scan at all,
4313          * because page truncation is enough.
4314          */
4315
4316         /* we have to know where to truncate from in crash case */
4317         EXT4_I(inode)->i_disksize = inode->i_size;
4318         ext4_mark_inode_dirty(handle, inode);
4319
4320         last_block = (inode->i_size + sb->s_blocksize - 1)
4321                         >> EXT4_BLOCK_SIZE_BITS(sb);
4322         err = ext4_es_remove_extent(inode, last_block,
4323                                     EXT_MAX_BLOCKS - last_block);
4324         err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4325
4326         /* In a multi-transaction truncate, we only make the final
4327          * transaction synchronous.
4328          */
4329         if (IS_SYNC(inode))
4330                 ext4_handle_sync(handle);
4331
4332         up_write(&EXT4_I(inode)->i_data_sem);
4333
4334 out_stop:
4335         /*
4336          * If this was a simple ftruncate() and the file will remain alive,
4337          * then we need to clear up the orphan record which we created above.
4338          * However, if this was a real unlink then we were called by
4339          * ext4_delete_inode(), and we allow that function to clean up the
4340          * orphan info for us.
4341          */
4342         if (inode->i_nlink)
4343                 ext4_orphan_del(handle, inode);
4344
4345         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4346         ext4_mark_inode_dirty(handle, inode);
4347         ext4_journal_stop(handle);
4348 }
4349
4350 static void ext4_falloc_update_inode(struct inode *inode,
4351                                 int mode, loff_t new_size, int update_ctime)
4352 {
4353         struct timespec now;
4354
4355         if (update_ctime) {
4356                 now = current_fs_time(inode->i_sb);
4357                 if (!timespec_equal(&inode->i_ctime, &now))
4358                         inode->i_ctime = now;
4359         }
4360         /*
4361          * Update only when preallocation was requested beyond
4362          * the file size.
4363          */
4364         if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4365                 if (new_size > i_size_read(inode))
4366                         i_size_write(inode, new_size);
4367                 if (new_size > EXT4_I(inode)->i_disksize)
4368                         ext4_update_i_disksize(inode, new_size);
4369         } else {
4370                 /*
4371                  * Mark that we allocate beyond EOF so the subsequent truncate
4372                  * can proceed even if the new size is the same as i_size.
4373                  */
4374                 if (new_size > i_size_read(inode))
4375                         ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4376         }
4377
4378 }
4379
4380 /*
4381  * preallocate space for a file. This implements ext4's fallocate file
4382  * operation, which gets called from sys_fallocate system call.
4383  * For block-mapped files, posix_fallocate should fall back to the method
4384  * of writing zeroes to the required new blocks (the same behavior which is
4385  * expected for file systems which do not support fallocate() system call).
4386  */
4387 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4388 {
4389         struct inode *inode = file->f_path.dentry->d_inode;
4390         handle_t *handle;
4391         loff_t new_size;
4392         unsigned int max_blocks;
4393         int ret = 0;
4394         int ret2 = 0;
4395         int retries = 0;
4396         int flags;
4397         struct ext4_map_blocks map;
4398         unsigned int credits, blkbits = inode->i_blkbits;
4399
4400         /*
4401          * currently supporting (pre)allocate mode for extent-based
4402          * files _only_
4403          */
4404         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4405                 return -EOPNOTSUPP;
4406
4407         /* Return error if mode is not supported */
4408         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4409                 return -EOPNOTSUPP;
4410
4411         if (mode & FALLOC_FL_PUNCH_HOLE)
4412                 return ext4_punch_hole(file, offset, len);
4413
4414         ret = ext4_convert_inline_data(inode);
4415         if (ret)
4416                 return ret;
4417
4418         trace_ext4_fallocate_enter(inode, offset, len, mode);
4419         map.m_lblk = offset >> blkbits;
4420         /*
4421          * We can't just convert len to max_blocks because
4422          * If blocksize = 4096 offset = 3072 and len = 2048
4423          */
4424         max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4425                 - map.m_lblk;
4426         /*
4427          * credits to insert 1 extent into extent tree
4428          */
4429         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4430         mutex_lock(&inode->i_mutex);
4431         ret = inode_newsize_ok(inode, (len + offset));
4432         if (ret) {
4433                 mutex_unlock(&inode->i_mutex);
4434                 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4435                 return ret;
4436         }
4437         flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4438         if (mode & FALLOC_FL_KEEP_SIZE)
4439                 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4440         /*
4441          * Don't normalize the request if it can fit in one extent so
4442          * that it doesn't get unnecessarily split into multiple
4443          * extents.
4444          */
4445         if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4446                 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4447
4448         /* Prevent race condition between unwritten */
4449         ext4_flush_unwritten_io(inode);
4450 retry:
4451         while (ret >= 0 && ret < max_blocks) {
4452                 map.m_lblk = map.m_lblk + ret;
4453                 map.m_len = max_blocks = max_blocks - ret;
4454                 handle = ext4_journal_start(inode, credits);
4455                 if (IS_ERR(handle)) {
4456                         ret = PTR_ERR(handle);
4457                         break;
4458                 }
4459                 ret = ext4_map_blocks(handle, inode, &map, flags);
4460                 if (ret <= 0) {
4461 #ifdef EXT4FS_DEBUG
4462                         WARN_ON(ret <= 0);
4463                         printk(KERN_ERR "%s: ext4_ext_map_blocks "
4464                                     "returned error inode#%lu, block=%u, "
4465                                     "max_blocks=%u", __func__,
4466                                     inode->i_ino, map.m_lblk, max_blocks);
4467 #endif
4468                         ext4_mark_inode_dirty(handle, inode);
4469                         ret2 = ext4_journal_stop(handle);
4470                         break;
4471                 }
4472                 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4473                                                 blkbits) >> blkbits))
4474                         new_size = offset + len;
4475                 else
4476                         new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4477
4478                 ext4_falloc_update_inode(inode, mode, new_size,
4479                                          (map.m_flags & EXT4_MAP_NEW));
4480                 ext4_mark_inode_dirty(handle, inode);
4481                 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4482                         ext4_handle_sync(handle);
4483                 ret2 = ext4_journal_stop(handle);
4484                 if (ret2)
4485                         break;
4486         }
4487         if (ret == -ENOSPC &&
4488                         ext4_should_retry_alloc(inode->i_sb, &retries)) {
4489                 ret = 0;
4490                 goto retry;
4491         }
4492         mutex_unlock(&inode->i_mutex);
4493         trace_ext4_fallocate_exit(inode, offset, max_blocks,
4494                                 ret > 0 ? ret2 : ret);
4495         return ret > 0 ? ret2 : ret;
4496 }
4497
4498 /*
4499  * This function convert a range of blocks to written extents
4500  * The caller of this function will pass the start offset and the size.
4501  * all unwritten extents within this range will be converted to
4502  * written extents.
4503  *
4504  * This function is called from the direct IO end io call back
4505  * function, to convert the fallocated extents after IO is completed.
4506  * Returns 0 on success.
4507  */
4508 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4509                                     ssize_t len)
4510 {
4511         handle_t *handle;
4512         unsigned int max_blocks;
4513         int ret = 0;
4514         int ret2 = 0;
4515         struct ext4_map_blocks map;
4516         unsigned int credits, blkbits = inode->i_blkbits;
4517
4518         map.m_lblk = offset >> blkbits;
4519         /*
4520          * We can't just convert len to max_blocks because
4521          * If blocksize = 4096 offset = 3072 and len = 2048
4522          */
4523         max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4524                       map.m_lblk);
4525         /*
4526          * credits to insert 1 extent into extent tree
4527          */
4528         credits = ext4_chunk_trans_blocks(inode, max_blocks);
4529         while (ret >= 0 && ret < max_blocks) {
4530                 map.m_lblk += ret;
4531                 map.m_len = (max_blocks -= ret);
4532                 handle = ext4_journal_start(inode, credits);
4533                 if (IS_ERR(handle)) {
4534                         ret = PTR_ERR(handle);
4535                         break;
4536                 }
4537                 ret = ext4_map_blocks(handle, inode, &map,
4538                                       EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4539                 if (ret <= 0) {
4540                         WARN_ON(ret <= 0);
4541                         ext4_msg(inode->i_sb, KERN_ERR,
4542                                  "%s:%d: inode #%lu: block %u: len %u: "
4543                                  "ext4_ext_map_blocks returned %d",
4544                                  __func__, __LINE__, inode->i_ino, map.m_lblk,
4545                                  map.m_len, ret);
4546                 }
4547                 ext4_mark_inode_dirty(handle, inode);
4548                 ret2 = ext4_journal_stop(handle);
4549                 if (ret <= 0 || ret2 )
4550                         break;
4551         }
4552         return ret > 0 ? ret2 : ret;
4553 }
4554
4555 /*
4556  * If newex is not existing extent (newex->ec_start equals zero) find
4557  * delayed extent at start of newex and update newex accordingly and
4558  * return start of the next delayed extent.
4559  *
4560  * If newex is existing extent (newex->ec_start is not equal zero)
4561  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4562  * extent found. Leave newex unmodified.
4563  */
4564 static int ext4_find_delayed_extent(struct inode *inode,
4565                                     struct ext4_ext_cache *newex)
4566 {
4567         struct extent_status es;
4568         ext4_lblk_t next_del;
4569
4570         es.start = newex->ec_block;
4571         next_del = ext4_es_find_extent(inode, &es);
4572
4573         if (newex->ec_start == 0) {
4574                 /*
4575                  * No extent in extent-tree contains block @newex->ec_start,
4576                  * then the block may stay in 1)a hole or 2)delayed-extent.
4577                  */
4578                 if (es.len == 0)
4579                         /* A hole found. */
4580                         return 0;
4581
4582                 if (es.start > newex->ec_block) {
4583                         /* A hole found. */
4584                         newex->ec_len = min(es.start - newex->ec_block,
4585                                             newex->ec_len);
4586                         return 0;
4587                 }
4588
4589                 newex->ec_len = es.start + es.len - newex->ec_block;
4590         }
4591
4592         return next_del;
4593 }
4594 /* fiemap flags we can handle specified here */
4595 #define EXT4_FIEMAP_FLAGS       (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4596
4597 static int ext4_xattr_fiemap(struct inode *inode,
4598                                 struct fiemap_extent_info *fieinfo)
4599 {
4600         __u64 physical = 0;
4601         __u64 length;
4602         __u32 flags = FIEMAP_EXTENT_LAST;
4603         int blockbits = inode->i_sb->s_blocksize_bits;
4604         int error = 0;
4605
4606         /* in-inode? */
4607         if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4608                 struct ext4_iloc iloc;
4609                 int offset;     /* offset of xattr in inode */
4610
4611                 error = ext4_get_inode_loc(inode, &iloc);
4612                 if (error)
4613                         return error;
4614                 physical = iloc.bh->b_blocknr << blockbits;
4615                 offset = EXT4_GOOD_OLD_INODE_SIZE +
4616                                 EXT4_I(inode)->i_extra_isize;
4617                 physical += offset;
4618                 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4619                 flags |= FIEMAP_EXTENT_DATA_INLINE;
4620                 brelse(iloc.bh);
4621         } else { /* external block */
4622                 physical = EXT4_I(inode)->i_file_acl << blockbits;
4623                 length = inode->i_sb->s_blocksize;
4624         }
4625
4626         if (physical)
4627                 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4628                                                 length, flags);
4629         return (error < 0 ? error : 0);
4630 }
4631
4632 /*
4633  * ext4_ext_punch_hole
4634  *
4635  * Punches a hole of "length" bytes in a file starting
4636  * at byte "offset"
4637  *
4638  * @inode:  The inode of the file to punch a hole in
4639  * @offset: The starting byte offset of the hole
4640  * @length: The length of the hole
4641  *
4642  * Returns the number of blocks removed or negative on err
4643  */
4644 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4645 {
4646         struct inode *inode = file->f_path.dentry->d_inode;
4647         struct super_block *sb = inode->i_sb;
4648         ext4_lblk_t first_block, stop_block;
4649         struct address_space *mapping = inode->i_mapping;
4650         handle_t *handle;
4651         loff_t first_page, last_page, page_len;
4652         loff_t first_page_offset, last_page_offset;
4653         int credits, err = 0;
4654
4655         /*
4656          * Write out all dirty pages to avoid race conditions
4657          * Then release them.
4658          */
4659         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4660                 err = filemap_write_and_wait_range(mapping,
4661                         offset, offset + length - 1);
4662
4663                 if (err)
4664                         return err;
4665         }
4666
4667         mutex_lock(&inode->i_mutex);
4668         /* It's not possible punch hole on append only file */
4669         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4670                 err = -EPERM;
4671                 goto out_mutex;
4672         }
4673         if (IS_SWAPFILE(inode)) {
4674                 err = -ETXTBSY;
4675                 goto out_mutex;
4676         }
4677
4678         /* No need to punch hole beyond i_size */
4679         if (offset >= inode->i_size)
4680                 goto out_mutex;
4681
4682         /*
4683          * If the hole extends beyond i_size, set the hole
4684          * to end after the page that contains i_size
4685          */
4686         if (offset + length > inode->i_size) {
4687                 length = inode->i_size +
4688                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4689                    offset;
4690         }
4691
4692         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4693         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4694
4695         first_page_offset = first_page << PAGE_CACHE_SHIFT;
4696         last_page_offset = last_page << PAGE_CACHE_SHIFT;
4697
4698         /* Now release the pages */
4699         if (last_page_offset > first_page_offset) {
4700                 truncate_pagecache_range(inode, first_page_offset,
4701                                          last_page_offset - 1);
4702         }
4703
4704         /* Wait all existing dio workers, newcomers will block on i_mutex */
4705         ext4_inode_block_unlocked_dio(inode);
4706         err = ext4_flush_unwritten_io(inode);
4707         if (err)
4708                 goto out_dio;
4709         inode_dio_wait(inode);
4710
4711         credits = ext4_writepage_trans_blocks(inode);
4712         handle = ext4_journal_start(inode, credits);
4713         if (IS_ERR(handle)) {
4714                 err = PTR_ERR(handle);
4715                 goto out_dio;
4716         }
4717
4718
4719         /*
4720          * Now we need to zero out the non-page-aligned data in the
4721          * pages at the start and tail of the hole, and unmap the buffer
4722          * heads for the block aligned regions of the page that were
4723          * completely zeroed.
4724          */
4725         if (first_page > last_page) {
4726                 /*
4727                  * If the file space being truncated is contained within a page
4728                  * just zero out and unmap the middle of that page
4729                  */
4730                 err = ext4_discard_partial_page_buffers(handle,
4731                         mapping, offset, length, 0);
4732
4733                 if (err)
4734                         goto out;
4735         } else {
4736                 /*
4737                  * zero out and unmap the partial page that contains
4738                  * the start of the hole
4739                  */
4740                 page_len  = first_page_offset - offset;
4741                 if (page_len > 0) {
4742                         err = ext4_discard_partial_page_buffers(handle, mapping,
4743                                                    offset, page_len, 0);
4744                         if (err)
4745                                 goto out;
4746                 }
4747
4748                 /*
4749                  * zero out and unmap the partial page that contains
4750                  * the end of the hole
4751                  */
4752                 page_len = offset + length - last_page_offset;
4753                 if (page_len > 0) {
4754                         err = ext4_discard_partial_page_buffers(handle, mapping,
4755                                         last_page_offset, page_len, 0);
4756                         if (err)
4757                                 goto out;
4758                 }
4759         }
4760
4761         /*
4762          * If i_size is contained in the last page, we need to
4763          * unmap and zero the partial page after i_size
4764          */
4765         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4766            inode->i_size % PAGE_CACHE_SIZE != 0) {
4767
4768                 page_len = PAGE_CACHE_SIZE -
4769                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
4770
4771                 if (page_len > 0) {
4772                         err = ext4_discard_partial_page_buffers(handle,
4773                           mapping, inode->i_size, page_len, 0);
4774
4775                         if (err)
4776                                 goto out;
4777                 }
4778         }
4779
4780         first_block = (offset + sb->s_blocksize - 1) >>
4781                 EXT4_BLOCK_SIZE_BITS(sb);
4782         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4783
4784         /* If there are no blocks to remove, return now */
4785         if (first_block >= stop_block)
4786                 goto out;
4787
4788         down_write(&EXT4_I(inode)->i_data_sem);
4789         ext4_ext_invalidate_cache(inode);
4790         ext4_discard_preallocations(inode);
4791
4792         err = ext4_es_remove_extent(inode, first_block,
4793                                     stop_block - first_block);
4794         err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4795
4796         ext4_ext_invalidate_cache(inode);
4797         ext4_discard_preallocations(inode);
4798
4799         if (IS_SYNC(inode))
4800                 ext4_handle_sync(handle);
4801
4802         up_write(&EXT4_I(inode)->i_data_sem);
4803
4804 out:
4805         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4806         ext4_mark_inode_dirty(handle, inode);
4807         ext4_journal_stop(handle);
4808 out_dio:
4809         ext4_inode_resume_unlocked_dio(inode);
4810 out_mutex:
4811         mutex_unlock(&inode->i_mutex);
4812         return err;
4813 }
4814
4815 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4816                 __u64 start, __u64 len)
4817 {
4818         ext4_lblk_t start_blk;
4819         int error = 0;
4820
4821         if (ext4_has_inline_data(inode)) {
4822                 int has_inline = 1;
4823
4824                 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4825
4826                 if (has_inline)
4827                         return error;
4828         }
4829
4830         /* fallback to generic here if not in extents fmt */
4831         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4832                 return generic_block_fiemap(inode, fieinfo, start, len,
4833                         ext4_get_block);
4834
4835         if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4836                 return -EBADR;
4837
4838         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4839                 error = ext4_xattr_fiemap(inode, fieinfo);
4840         } else {
4841                 ext4_lblk_t len_blks;
4842                 __u64 last_blk;
4843
4844                 start_blk = start >> inode->i_sb->s_blocksize_bits;
4845                 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4846                 if (last_blk >= EXT_MAX_BLOCKS)
4847                         last_blk = EXT_MAX_BLOCKS-1;
4848                 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4849
4850                 /*
4851                  * Walk the extent tree gathering extent information
4852                  * and pushing extents back to the user.
4853                  */
4854                 error = ext4_fill_fiemap_extents(inode, start_blk,
4855                                                  len_blks, fieinfo);
4856         }
4857
4858         return error;
4859 }