]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
Merge tag 'writeback-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg...
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         ext4_ioend_wait(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_log_start_commit(journal, commit_tid);
215                         jbd2_log_wait_commit(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328                 return ext4_ext_calc_metadata_amount(inode, lblock);
329
330         return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356                         "with only %d reserved metadata blocks "
357                         "(releasing %d blocks with reserved %d data blocks)",
358                         inode->i_ino, ei->i_allocated_meta_blocks,
359                              ei->i_reserved_meta_blocks, used,
360                              ei->i_reserved_data_blocks);
361                 WARN_ON(1);
362                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363         }
364
365         /* Update per-inode reservations */
366         ei->i_reserved_data_blocks -= used;
367         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369                            used + ei->i_allocated_meta_blocks);
370         ei->i_allocated_meta_blocks = 0;
371
372         if (ei->i_reserved_data_blocks == 0) {
373                 /*
374                  * We can release all of the reserved metadata blocks
375                  * only when we have written all of the delayed
376                  * allocation blocks.
377                  */
378                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379                                    ei->i_reserved_meta_blocks);
380                 ei->i_reserved_meta_blocks = 0;
381                 ei->i_da_metadata_calc_len = 0;
382         }
383         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385         /* Update quota subsystem for data blocks */
386         if (quota_claim)
387                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388         else {
389                 /*
390                  * We did fallocate with an offset that is already delayed
391                  * allocated. So on delayed allocated writeback we should
392                  * not re-claim the quota for fallocated blocks.
393                  */
394                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395         }
396
397         /*
398          * If we have done all the pending block allocations and if
399          * there aren't any writers on the inode, we can discard the
400          * inode's preallocations.
401          */
402         if ((ei->i_reserved_data_blocks == 0) &&
403             (atomic_read(&inode->i_writecount) == 0))
404                 ext4_discard_preallocations(inode);
405 }
406
407 static int __check_block_validity(struct inode *inode, const char *func,
408                                 unsigned int line,
409                                 struct ext4_map_blocks *map)
410 {
411         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412                                    map->m_len)) {
413                 ext4_error_inode(inode, func, line, map->m_pblk,
414                                  "lblock %lu mapped to illegal pblock "
415                                  "(length %d)", (unsigned long) map->m_lblk,
416                                  map->m_len);
417                 return -EIO;
418         }
419         return 0;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430                                     unsigned int max_pages)
431 {
432         struct address_space *mapping = inode->i_mapping;
433         pgoff_t index;
434         struct pagevec pvec;
435         pgoff_t num = 0;
436         int i, nr_pages, done = 0;
437
438         if (max_pages == 0)
439                 return 0;
440         pagevec_init(&pvec, 0);
441         while (!done) {
442                 index = idx;
443                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444                                               PAGECACHE_TAG_DIRTY,
445                                               (pgoff_t)PAGEVEC_SIZE);
446                 if (nr_pages == 0)
447                         break;
448                 for (i = 0; i < nr_pages; i++) {
449                         struct page *page = pvec.pages[i];
450                         struct buffer_head *bh, *head;
451
452                         lock_page(page);
453                         if (unlikely(page->mapping != mapping) ||
454                             !PageDirty(page) ||
455                             PageWriteback(page) ||
456                             page->index != idx) {
457                                 done = 1;
458                                 unlock_page(page);
459                                 break;
460                         }
461                         if (page_has_buffers(page)) {
462                                 bh = head = page_buffers(page);
463                                 do {
464                                         if (!buffer_delay(bh) &&
465                                             !buffer_unwritten(bh))
466                                                 done = 1;
467                                         bh = bh->b_this_page;
468                                 } while (!done && (bh != head));
469                         }
470                         unlock_page(page);
471                         if (done)
472                                 break;
473                         idx++;
474                         num++;
475                         if (num >= max_pages) {
476                                 done = 1;
477                                 break;
478                         }
479                 }
480                 pagevec_release(&pvec);
481         }
482         return num;
483 }
484
485 /*
486  * The ext4_map_blocks() function tries to look up the requested blocks,
487  * and returns if the blocks are already mapped.
488  *
489  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
490  * and store the allocated blocks in the result buffer head and mark it
491  * mapped.
492  *
493  * If file type is extents based, it will call ext4_ext_map_blocks(),
494  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
495  * based files
496  *
497  * On success, it returns the number of blocks being mapped or allocate.
498  * if create==0 and the blocks are pre-allocated and uninitialized block,
499  * the result buffer head is unmapped. If the create ==1, it will make sure
500  * the buffer head is mapped.
501  *
502  * It returns 0 if plain look up failed (blocks have not been allocated), in
503  * that case, buffer head is unmapped
504  *
505  * It returns the error in case of allocation failure.
506  */
507 int ext4_map_blocks(handle_t *handle, struct inode *inode,
508                     struct ext4_map_blocks *map, int flags)
509 {
510         struct extent_status es;
511         int retval;
512
513         map->m_flags = 0;
514         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
516                   (unsigned long) map->m_lblk);
517
518         /* Lookup extent status tree firstly */
519         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
520                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521                         map->m_pblk = ext4_es_pblock(&es) +
522                                         map->m_lblk - es.es_lblk;
523                         map->m_flags |= ext4_es_is_written(&es) ?
524                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525                         retval = es.es_len - (map->m_lblk - es.es_lblk);
526                         if (retval > map->m_len)
527                                 retval = map->m_len;
528                         map->m_len = retval;
529                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530                         retval = 0;
531                 } else {
532                         BUG_ON(1);
533                 }
534                 goto found;
535         }
536
537         /*
538          * Try to see if we can get the block without requesting a new
539          * file system block.
540          */
541         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
542                 down_read((&EXT4_I(inode)->i_data_sem));
543         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
544                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
545                                              EXT4_GET_BLOCKS_KEEP_SIZE);
546         } else {
547                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
548                                              EXT4_GET_BLOCKS_KEEP_SIZE);
549         }
550         if (retval > 0) {
551                 int ret;
552                 unsigned long long status;
553
554                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
555                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
556                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
557                     ext4_find_delalloc_range(inode, map->m_lblk,
558                                              map->m_lblk + map->m_len - 1))
559                         status |= EXTENT_STATUS_DELAYED;
560                 ret = ext4_es_insert_extent(inode, map->m_lblk,
561                                             map->m_len, map->m_pblk, status);
562                 if (ret < 0)
563                         retval = ret;
564         }
565         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
566                 up_read((&EXT4_I(inode)->i_data_sem));
567
568 found:
569         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
570                 int ret = check_block_validity(inode, map);
571                 if (ret != 0)
572                         return ret;
573         }
574
575         /* If it is only a block(s) look up */
576         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
577                 return retval;
578
579         /*
580          * Returns if the blocks have already allocated
581          *
582          * Note that if blocks have been preallocated
583          * ext4_ext_get_block() returns the create = 0
584          * with buffer head unmapped.
585          */
586         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
587                 return retval;
588
589         /*
590          * Here we clear m_flags because after allocating an new extent,
591          * it will be set again.
592          */
593         map->m_flags &= ~EXT4_MAP_FLAGS;
594
595         /*
596          * New blocks allocate and/or writing to uninitialized extent
597          * will possibly result in updating i_data, so we take
598          * the write lock of i_data_sem, and call get_blocks()
599          * with create == 1 flag.
600          */
601         down_write((&EXT4_I(inode)->i_data_sem));
602
603         /*
604          * if the caller is from delayed allocation writeout path
605          * we have already reserved fs blocks for allocation
606          * let the underlying get_block() function know to
607          * avoid double accounting
608          */
609         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
610                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
611         /*
612          * We need to check for EXT4 here because migrate
613          * could have changed the inode type in between
614          */
615         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
616                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
617         } else {
618                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
619
620                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
621                         /*
622                          * We allocated new blocks which will result in
623                          * i_data's format changing.  Force the migrate
624                          * to fail by clearing migrate flags
625                          */
626                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
627                 }
628
629                 /*
630                  * Update reserved blocks/metadata blocks after successful
631                  * block allocation which had been deferred till now. We don't
632                  * support fallocate for non extent files. So we can update
633                  * reserve space here.
634                  */
635                 if ((retval > 0) &&
636                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
637                         ext4_da_update_reserve_space(inode, retval, 1);
638         }
639         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
640                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
641
642         if (retval > 0) {
643                 int ret;
644                 unsigned long long status;
645
646                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
647                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
648                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
649                     ext4_find_delalloc_range(inode, map->m_lblk,
650                                              map->m_lblk + map->m_len - 1))
651                         status |= EXTENT_STATUS_DELAYED;
652                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
653                                             map->m_pblk, status);
654                 if (ret < 0)
655                         retval = ret;
656         }
657
658         up_write((&EXT4_I(inode)->i_data_sem));
659         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
660                 int ret = check_block_validity(inode, map);
661                 if (ret != 0)
662                         return ret;
663         }
664         return retval;
665 }
666
667 /* Maximum number of blocks we map for direct IO at once. */
668 #define DIO_MAX_BLOCKS 4096
669
670 static int _ext4_get_block(struct inode *inode, sector_t iblock,
671                            struct buffer_head *bh, int flags)
672 {
673         handle_t *handle = ext4_journal_current_handle();
674         struct ext4_map_blocks map;
675         int ret = 0, started = 0;
676         int dio_credits;
677
678         if (ext4_has_inline_data(inode))
679                 return -ERANGE;
680
681         map.m_lblk = iblock;
682         map.m_len = bh->b_size >> inode->i_blkbits;
683
684         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
685                 /* Direct IO write... */
686                 if (map.m_len > DIO_MAX_BLOCKS)
687                         map.m_len = DIO_MAX_BLOCKS;
688                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
689                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
690                                             dio_credits);
691                 if (IS_ERR(handle)) {
692                         ret = PTR_ERR(handle);
693                         return ret;
694                 }
695                 started = 1;
696         }
697
698         ret = ext4_map_blocks(handle, inode, &map, flags);
699         if (ret > 0) {
700                 map_bh(bh, inode->i_sb, map.m_pblk);
701                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
702                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
703                 ret = 0;
704         }
705         if (started)
706                 ext4_journal_stop(handle);
707         return ret;
708 }
709
710 int ext4_get_block(struct inode *inode, sector_t iblock,
711                    struct buffer_head *bh, int create)
712 {
713         return _ext4_get_block(inode, iblock, bh,
714                                create ? EXT4_GET_BLOCKS_CREATE : 0);
715 }
716
717 /*
718  * `handle' can be NULL if create is zero
719  */
720 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
721                                 ext4_lblk_t block, int create, int *errp)
722 {
723         struct ext4_map_blocks map;
724         struct buffer_head *bh;
725         int fatal = 0, err;
726
727         J_ASSERT(handle != NULL || create == 0);
728
729         map.m_lblk = block;
730         map.m_len = 1;
731         err = ext4_map_blocks(handle, inode, &map,
732                               create ? EXT4_GET_BLOCKS_CREATE : 0);
733
734         /* ensure we send some value back into *errp */
735         *errp = 0;
736
737         if (create && err == 0)
738                 err = -ENOSPC;  /* should never happen */
739         if (err < 0)
740                 *errp = err;
741         if (err <= 0)
742                 return NULL;
743
744         bh = sb_getblk(inode->i_sb, map.m_pblk);
745         if (unlikely(!bh)) {
746                 *errp = -ENOMEM;
747                 return NULL;
748         }
749         if (map.m_flags & EXT4_MAP_NEW) {
750                 J_ASSERT(create != 0);
751                 J_ASSERT(handle != NULL);
752
753                 /*
754                  * Now that we do not always journal data, we should
755                  * keep in mind whether this should always journal the
756                  * new buffer as metadata.  For now, regular file
757                  * writes use ext4_get_block instead, so it's not a
758                  * problem.
759                  */
760                 lock_buffer(bh);
761                 BUFFER_TRACE(bh, "call get_create_access");
762                 fatal = ext4_journal_get_create_access(handle, bh);
763                 if (!fatal && !buffer_uptodate(bh)) {
764                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
765                         set_buffer_uptodate(bh);
766                 }
767                 unlock_buffer(bh);
768                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
769                 err = ext4_handle_dirty_metadata(handle, inode, bh);
770                 if (!fatal)
771                         fatal = err;
772         } else {
773                 BUFFER_TRACE(bh, "not a new buffer");
774         }
775         if (fatal) {
776                 *errp = fatal;
777                 brelse(bh);
778                 bh = NULL;
779         }
780         return bh;
781 }
782
783 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
784                                ext4_lblk_t block, int create, int *err)
785 {
786         struct buffer_head *bh;
787
788         bh = ext4_getblk(handle, inode, block, create, err);
789         if (!bh)
790                 return bh;
791         if (buffer_uptodate(bh))
792                 return bh;
793         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
794         wait_on_buffer(bh);
795         if (buffer_uptodate(bh))
796                 return bh;
797         put_bh(bh);
798         *err = -EIO;
799         return NULL;
800 }
801
802 int ext4_walk_page_buffers(handle_t *handle,
803                            struct buffer_head *head,
804                            unsigned from,
805                            unsigned to,
806                            int *partial,
807                            int (*fn)(handle_t *handle,
808                                      struct buffer_head *bh))
809 {
810         struct buffer_head *bh;
811         unsigned block_start, block_end;
812         unsigned blocksize = head->b_size;
813         int err, ret = 0;
814         struct buffer_head *next;
815
816         for (bh = head, block_start = 0;
817              ret == 0 && (bh != head || !block_start);
818              block_start = block_end, bh = next) {
819                 next = bh->b_this_page;
820                 block_end = block_start + blocksize;
821                 if (block_end <= from || block_start >= to) {
822                         if (partial && !buffer_uptodate(bh))
823                                 *partial = 1;
824                         continue;
825                 }
826                 err = (*fn)(handle, bh);
827                 if (!ret)
828                         ret = err;
829         }
830         return ret;
831 }
832
833 /*
834  * To preserve ordering, it is essential that the hole instantiation and
835  * the data write be encapsulated in a single transaction.  We cannot
836  * close off a transaction and start a new one between the ext4_get_block()
837  * and the commit_write().  So doing the jbd2_journal_start at the start of
838  * prepare_write() is the right place.
839  *
840  * Also, this function can nest inside ext4_writepage().  In that case, we
841  * *know* that ext4_writepage() has generated enough buffer credits to do the
842  * whole page.  So we won't block on the journal in that case, which is good,
843  * because the caller may be PF_MEMALLOC.
844  *
845  * By accident, ext4 can be reentered when a transaction is open via
846  * quota file writes.  If we were to commit the transaction while thus
847  * reentered, there can be a deadlock - we would be holding a quota
848  * lock, and the commit would never complete if another thread had a
849  * transaction open and was blocking on the quota lock - a ranking
850  * violation.
851  *
852  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853  * will _not_ run commit under these circumstances because handle->h_ref
854  * is elevated.  We'll still have enough credits for the tiny quotafile
855  * write.
856  */
857 int do_journal_get_write_access(handle_t *handle,
858                                 struct buffer_head *bh)
859 {
860         int dirty = buffer_dirty(bh);
861         int ret;
862
863         if (!buffer_mapped(bh) || buffer_freed(bh))
864                 return 0;
865         /*
866          * __block_write_begin() could have dirtied some buffers. Clean
867          * the dirty bit as jbd2_journal_get_write_access() could complain
868          * otherwise about fs integrity issues. Setting of the dirty bit
869          * by __block_write_begin() isn't a real problem here as we clear
870          * the bit before releasing a page lock and thus writeback cannot
871          * ever write the buffer.
872          */
873         if (dirty)
874                 clear_buffer_dirty(bh);
875         ret = ext4_journal_get_write_access(handle, bh);
876         if (!ret && dirty)
877                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878         return ret;
879 }
880
881 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882                    struct buffer_head *bh_result, int create);
883 static int ext4_write_begin(struct file *file, struct address_space *mapping,
884                             loff_t pos, unsigned len, unsigned flags,
885                             struct page **pagep, void **fsdata)
886 {
887         struct inode *inode = mapping->host;
888         int ret, needed_blocks;
889         handle_t *handle;
890         int retries = 0;
891         struct page *page;
892         pgoff_t index;
893         unsigned from, to;
894
895         trace_ext4_write_begin(inode, pos, len, flags);
896         /*
897          * Reserve one block more for addition to orphan list in case
898          * we allocate blocks but write fails for some reason
899          */
900         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
901         index = pos >> PAGE_CACHE_SHIFT;
902         from = pos & (PAGE_CACHE_SIZE - 1);
903         to = from + len;
904
905         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
906                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
907                                                     flags, pagep);
908                 if (ret < 0)
909                         return ret;
910                 if (ret == 1)
911                         return 0;
912         }
913
914         /*
915          * grab_cache_page_write_begin() can take a long time if the
916          * system is thrashing due to memory pressure, or if the page
917          * is being written back.  So grab it first before we start
918          * the transaction handle.  This also allows us to allocate
919          * the page (if needed) without using GFP_NOFS.
920          */
921 retry_grab:
922         page = grab_cache_page_write_begin(mapping, index, flags);
923         if (!page)
924                 return -ENOMEM;
925         unlock_page(page);
926
927 retry_journal:
928         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
929         if (IS_ERR(handle)) {
930                 page_cache_release(page);
931                 return PTR_ERR(handle);
932         }
933
934         lock_page(page);
935         if (page->mapping != mapping) {
936                 /* The page got truncated from under us */
937                 unlock_page(page);
938                 page_cache_release(page);
939                 ext4_journal_stop(handle);
940                 goto retry_grab;
941         }
942         wait_on_page_writeback(page);
943
944         if (ext4_should_dioread_nolock(inode))
945                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
946         else
947                 ret = __block_write_begin(page, pos, len, ext4_get_block);
948
949         if (!ret && ext4_should_journal_data(inode)) {
950                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
951                                              from, to, NULL,
952                                              do_journal_get_write_access);
953         }
954
955         if (ret) {
956                 unlock_page(page);
957                 /*
958                  * __block_write_begin may have instantiated a few blocks
959                  * outside i_size.  Trim these off again. Don't need
960                  * i_size_read because we hold i_mutex.
961                  *
962                  * Add inode to orphan list in case we crash before
963                  * truncate finishes
964                  */
965                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
966                         ext4_orphan_add(handle, inode);
967
968                 ext4_journal_stop(handle);
969                 if (pos + len > inode->i_size) {
970                         ext4_truncate_failed_write(inode);
971                         /*
972                          * If truncate failed early the inode might
973                          * still be on the orphan list; we need to
974                          * make sure the inode is removed from the
975                          * orphan list in that case.
976                          */
977                         if (inode->i_nlink)
978                                 ext4_orphan_del(NULL, inode);
979                 }
980
981                 if (ret == -ENOSPC &&
982                     ext4_should_retry_alloc(inode->i_sb, &retries))
983                         goto retry_journal;
984                 page_cache_release(page);
985                 return ret;
986         }
987         *pagep = page;
988         return ret;
989 }
990
991 /* For write_end() in data=journal mode */
992 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
993 {
994         if (!buffer_mapped(bh) || buffer_freed(bh))
995                 return 0;
996         set_buffer_uptodate(bh);
997         return ext4_handle_dirty_metadata(handle, NULL, bh);
998 }
999
1000 static int ext4_generic_write_end(struct file *file,
1001                                   struct address_space *mapping,
1002                                   loff_t pos, unsigned len, unsigned copied,
1003                                   struct page *page, void *fsdata)
1004 {
1005         int i_size_changed = 0;
1006         struct inode *inode = mapping->host;
1007         handle_t *handle = ext4_journal_current_handle();
1008
1009         if (ext4_has_inline_data(inode))
1010                 copied = ext4_write_inline_data_end(inode, pos, len,
1011                                                     copied, page);
1012         else
1013                 copied = block_write_end(file, mapping, pos,
1014                                          len, copied, page, fsdata);
1015
1016         /*
1017          * No need to use i_size_read() here, the i_size
1018          * cannot change under us because we hold i_mutex.
1019          *
1020          * But it's important to update i_size while still holding page lock:
1021          * page writeout could otherwise come in and zero beyond i_size.
1022          */
1023         if (pos + copied > inode->i_size) {
1024                 i_size_write(inode, pos + copied);
1025                 i_size_changed = 1;
1026         }
1027
1028         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1029                 /* We need to mark inode dirty even if
1030                  * new_i_size is less that inode->i_size
1031                  * bu greater than i_disksize.(hint delalloc)
1032                  */
1033                 ext4_update_i_disksize(inode, (pos + copied));
1034                 i_size_changed = 1;
1035         }
1036         unlock_page(page);
1037         page_cache_release(page);
1038
1039         /*
1040          * Don't mark the inode dirty under page lock. First, it unnecessarily
1041          * makes the holding time of page lock longer. Second, it forces lock
1042          * ordering of page lock and transaction start for journaling
1043          * filesystems.
1044          */
1045         if (i_size_changed)
1046                 ext4_mark_inode_dirty(handle, inode);
1047
1048         return copied;
1049 }
1050
1051 /*
1052  * We need to pick up the new inode size which generic_commit_write gave us
1053  * `file' can be NULL - eg, when called from page_symlink().
1054  *
1055  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1056  * buffers are managed internally.
1057  */
1058 static int ext4_ordered_write_end(struct file *file,
1059                                   struct address_space *mapping,
1060                                   loff_t pos, unsigned len, unsigned copied,
1061                                   struct page *page, void *fsdata)
1062 {
1063         handle_t *handle = ext4_journal_current_handle();
1064         struct inode *inode = mapping->host;
1065         int ret = 0, ret2;
1066
1067         trace_ext4_ordered_write_end(inode, pos, len, copied);
1068         ret = ext4_jbd2_file_inode(handle, inode);
1069
1070         if (ret == 0) {
1071                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1072                                                         page, fsdata);
1073                 copied = ret2;
1074                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1075                         /* if we have allocated more blocks and copied
1076                          * less. We will have blocks allocated outside
1077                          * inode->i_size. So truncate them
1078                          */
1079                         ext4_orphan_add(handle, inode);
1080                 if (ret2 < 0)
1081                         ret = ret2;
1082         } else {
1083                 unlock_page(page);
1084                 page_cache_release(page);
1085         }
1086
1087         ret2 = ext4_journal_stop(handle);
1088         if (!ret)
1089                 ret = ret2;
1090
1091         if (pos + len > inode->i_size) {
1092                 ext4_truncate_failed_write(inode);
1093                 /*
1094                  * If truncate failed early the inode might still be
1095                  * on the orphan list; we need to make sure the inode
1096                  * is removed from the orphan list in that case.
1097                  */
1098                 if (inode->i_nlink)
1099                         ext4_orphan_del(NULL, inode);
1100         }
1101
1102
1103         return ret ? ret : copied;
1104 }
1105
1106 static int ext4_writeback_write_end(struct file *file,
1107                                     struct address_space *mapping,
1108                                     loff_t pos, unsigned len, unsigned copied,
1109                                     struct page *page, void *fsdata)
1110 {
1111         handle_t *handle = ext4_journal_current_handle();
1112         struct inode *inode = mapping->host;
1113         int ret = 0, ret2;
1114
1115         trace_ext4_writeback_write_end(inode, pos, len, copied);
1116         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1117                                                         page, fsdata);
1118         copied = ret2;
1119         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1120                 /* if we have allocated more blocks and copied
1121                  * less. We will have blocks allocated outside
1122                  * inode->i_size. So truncate them
1123                  */
1124                 ext4_orphan_add(handle, inode);
1125
1126         if (ret2 < 0)
1127                 ret = ret2;
1128
1129         ret2 = ext4_journal_stop(handle);
1130         if (!ret)
1131                 ret = ret2;
1132
1133         if (pos + len > inode->i_size) {
1134                 ext4_truncate_failed_write(inode);
1135                 /*
1136                  * If truncate failed early the inode might still be
1137                  * on the orphan list; we need to make sure the inode
1138                  * is removed from the orphan list in that case.
1139                  */
1140                 if (inode->i_nlink)
1141                         ext4_orphan_del(NULL, inode);
1142         }
1143
1144         return ret ? ret : copied;
1145 }
1146
1147 static int ext4_journalled_write_end(struct file *file,
1148                                      struct address_space *mapping,
1149                                      loff_t pos, unsigned len, unsigned copied,
1150                                      struct page *page, void *fsdata)
1151 {
1152         handle_t *handle = ext4_journal_current_handle();
1153         struct inode *inode = mapping->host;
1154         int ret = 0, ret2;
1155         int partial = 0;
1156         unsigned from, to;
1157         loff_t new_i_size;
1158
1159         trace_ext4_journalled_write_end(inode, pos, len, copied);
1160         from = pos & (PAGE_CACHE_SIZE - 1);
1161         to = from + len;
1162
1163         BUG_ON(!ext4_handle_valid(handle));
1164
1165         if (ext4_has_inline_data(inode))
1166                 copied = ext4_write_inline_data_end(inode, pos, len,
1167                                                     copied, page);
1168         else {
1169                 if (copied < len) {
1170                         if (!PageUptodate(page))
1171                                 copied = 0;
1172                         page_zero_new_buffers(page, from+copied, to);
1173                 }
1174
1175                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1176                                              to, &partial, write_end_fn);
1177                 if (!partial)
1178                         SetPageUptodate(page);
1179         }
1180         new_i_size = pos + copied;
1181         if (new_i_size > inode->i_size)
1182                 i_size_write(inode, pos+copied);
1183         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1184         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1185         if (new_i_size > EXT4_I(inode)->i_disksize) {
1186                 ext4_update_i_disksize(inode, new_i_size);
1187                 ret2 = ext4_mark_inode_dirty(handle, inode);
1188                 if (!ret)
1189                         ret = ret2;
1190         }
1191
1192         unlock_page(page);
1193         page_cache_release(page);
1194         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1195                 /* if we have allocated more blocks and copied
1196                  * less. We will have blocks allocated outside
1197                  * inode->i_size. So truncate them
1198                  */
1199                 ext4_orphan_add(handle, inode);
1200
1201         ret2 = ext4_journal_stop(handle);
1202         if (!ret)
1203                 ret = ret2;
1204         if (pos + len > inode->i_size) {
1205                 ext4_truncate_failed_write(inode);
1206                 /*
1207                  * If truncate failed early the inode might still be
1208                  * on the orphan list; we need to make sure the inode
1209                  * is removed from the orphan list in that case.
1210                  */
1211                 if (inode->i_nlink)
1212                         ext4_orphan_del(NULL, inode);
1213         }
1214
1215         return ret ? ret : copied;
1216 }
1217
1218 /*
1219  * Reserve a single cluster located at lblock
1220  */
1221 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1222 {
1223         int retries = 0;
1224         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1225         struct ext4_inode_info *ei = EXT4_I(inode);
1226         unsigned int md_needed;
1227         int ret;
1228         ext4_lblk_t save_last_lblock;
1229         int save_len;
1230
1231         /*
1232          * We will charge metadata quota at writeout time; this saves
1233          * us from metadata over-estimation, though we may go over by
1234          * a small amount in the end.  Here we just reserve for data.
1235          */
1236         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1237         if (ret)
1238                 return ret;
1239
1240         /*
1241          * recalculate the amount of metadata blocks to reserve
1242          * in order to allocate nrblocks
1243          * worse case is one extent per block
1244          */
1245 repeat:
1246         spin_lock(&ei->i_block_reservation_lock);
1247         /*
1248          * ext4_calc_metadata_amount() has side effects, which we have
1249          * to be prepared undo if we fail to claim space.
1250          */
1251         save_len = ei->i_da_metadata_calc_len;
1252         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1253         md_needed = EXT4_NUM_B2C(sbi,
1254                                  ext4_calc_metadata_amount(inode, lblock));
1255         trace_ext4_da_reserve_space(inode, md_needed);
1256
1257         /*
1258          * We do still charge estimated metadata to the sb though;
1259          * we cannot afford to run out of free blocks.
1260          */
1261         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1262                 ei->i_da_metadata_calc_len = save_len;
1263                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1264                 spin_unlock(&ei->i_block_reservation_lock);
1265                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1266                         yield();
1267                         goto repeat;
1268                 }
1269                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1270                 return -ENOSPC;
1271         }
1272         ei->i_reserved_data_blocks++;
1273         ei->i_reserved_meta_blocks += md_needed;
1274         spin_unlock(&ei->i_block_reservation_lock);
1275
1276         return 0;       /* success */
1277 }
1278
1279 static void ext4_da_release_space(struct inode *inode, int to_free)
1280 {
1281         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1282         struct ext4_inode_info *ei = EXT4_I(inode);
1283
1284         if (!to_free)
1285                 return;         /* Nothing to release, exit */
1286
1287         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1288
1289         trace_ext4_da_release_space(inode, to_free);
1290         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1291                 /*
1292                  * if there aren't enough reserved blocks, then the
1293                  * counter is messed up somewhere.  Since this
1294                  * function is called from invalidate page, it's
1295                  * harmless to return without any action.
1296                  */
1297                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1298                          "ino %lu, to_free %d with only %d reserved "
1299                          "data blocks", inode->i_ino, to_free,
1300                          ei->i_reserved_data_blocks);
1301                 WARN_ON(1);
1302                 to_free = ei->i_reserved_data_blocks;
1303         }
1304         ei->i_reserved_data_blocks -= to_free;
1305
1306         if (ei->i_reserved_data_blocks == 0) {
1307                 /*
1308                  * We can release all of the reserved metadata blocks
1309                  * only when we have written all of the delayed
1310                  * allocation blocks.
1311                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1312                  * i_reserved_data_blocks, etc. refer to number of clusters.
1313                  */
1314                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1315                                    ei->i_reserved_meta_blocks);
1316                 ei->i_reserved_meta_blocks = 0;
1317                 ei->i_da_metadata_calc_len = 0;
1318         }
1319
1320         /* update fs dirty data blocks counter */
1321         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1322
1323         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1324
1325         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1326 }
1327
1328 static void ext4_da_page_release_reservation(struct page *page,
1329                                              unsigned long offset)
1330 {
1331         int to_release = 0;
1332         struct buffer_head *head, *bh;
1333         unsigned int curr_off = 0;
1334         struct inode *inode = page->mapping->host;
1335         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1336         int num_clusters;
1337         ext4_fsblk_t lblk;
1338
1339         head = page_buffers(page);
1340         bh = head;
1341         do {
1342                 unsigned int next_off = curr_off + bh->b_size;
1343
1344                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1345                         to_release++;
1346                         clear_buffer_delay(bh);
1347                 }
1348                 curr_off = next_off;
1349         } while ((bh = bh->b_this_page) != head);
1350
1351         if (to_release) {
1352                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1353                 ext4_es_remove_extent(inode, lblk, to_release);
1354         }
1355
1356         /* If we have released all the blocks belonging to a cluster, then we
1357          * need to release the reserved space for that cluster. */
1358         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1359         while (num_clusters > 0) {
1360                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1361                         ((num_clusters - 1) << sbi->s_cluster_bits);
1362                 if (sbi->s_cluster_ratio == 1 ||
1363                     !ext4_find_delalloc_cluster(inode, lblk))
1364                         ext4_da_release_space(inode, 1);
1365
1366                 num_clusters--;
1367         }
1368 }
1369
1370 /*
1371  * Delayed allocation stuff
1372  */
1373
1374 /*
1375  * mpage_da_submit_io - walks through extent of pages and try to write
1376  * them with writepage() call back
1377  *
1378  * @mpd->inode: inode
1379  * @mpd->first_page: first page of the extent
1380  * @mpd->next_page: page after the last page of the extent
1381  *
1382  * By the time mpage_da_submit_io() is called we expect all blocks
1383  * to be allocated. this may be wrong if allocation failed.
1384  *
1385  * As pages are already locked by write_cache_pages(), we can't use it
1386  */
1387 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1388                               struct ext4_map_blocks *map)
1389 {
1390         struct pagevec pvec;
1391         unsigned long index, end;
1392         int ret = 0, err, nr_pages, i;
1393         struct inode *inode = mpd->inode;
1394         struct address_space *mapping = inode->i_mapping;
1395         loff_t size = i_size_read(inode);
1396         unsigned int len, block_start;
1397         struct buffer_head *bh, *page_bufs = NULL;
1398         sector_t pblock = 0, cur_logical = 0;
1399         struct ext4_io_submit io_submit;
1400
1401         BUG_ON(mpd->next_page <= mpd->first_page);
1402         memset(&io_submit, 0, sizeof(io_submit));
1403         /*
1404          * We need to start from the first_page to the next_page - 1
1405          * to make sure we also write the mapped dirty buffer_heads.
1406          * If we look at mpd->b_blocknr we would only be looking
1407          * at the currently mapped buffer_heads.
1408          */
1409         index = mpd->first_page;
1410         end = mpd->next_page - 1;
1411
1412         pagevec_init(&pvec, 0);
1413         while (index <= end) {
1414                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1415                 if (nr_pages == 0)
1416                         break;
1417                 for (i = 0; i < nr_pages; i++) {
1418                         int skip_page = 0;
1419                         struct page *page = pvec.pages[i];
1420
1421                         index = page->index;
1422                         if (index > end)
1423                                 break;
1424
1425                         if (index == size >> PAGE_CACHE_SHIFT)
1426                                 len = size & ~PAGE_CACHE_MASK;
1427                         else
1428                                 len = PAGE_CACHE_SIZE;
1429                         if (map) {
1430                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1431                                                         inode->i_blkbits);
1432                                 pblock = map->m_pblk + (cur_logical -
1433                                                         map->m_lblk);
1434                         }
1435                         index++;
1436
1437                         BUG_ON(!PageLocked(page));
1438                         BUG_ON(PageWriteback(page));
1439
1440                         bh = page_bufs = page_buffers(page);
1441                         block_start = 0;
1442                         do {
1443                                 if (map && (cur_logical >= map->m_lblk) &&
1444                                     (cur_logical <= (map->m_lblk +
1445                                                      (map->m_len - 1)))) {
1446                                         if (buffer_delay(bh)) {
1447                                                 clear_buffer_delay(bh);
1448                                                 bh->b_blocknr = pblock;
1449                                         }
1450                                         if (buffer_unwritten(bh) ||
1451                                             buffer_mapped(bh))
1452                                                 BUG_ON(bh->b_blocknr != pblock);
1453                                         if (map->m_flags & EXT4_MAP_UNINIT)
1454                                                 set_buffer_uninit(bh);
1455                                         clear_buffer_unwritten(bh);
1456                                 }
1457
1458                                 /*
1459                                  * skip page if block allocation undone and
1460                                  * block is dirty
1461                                  */
1462                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1463                                         skip_page = 1;
1464                                 bh = bh->b_this_page;
1465                                 block_start += bh->b_size;
1466                                 cur_logical++;
1467                                 pblock++;
1468                         } while (bh != page_bufs);
1469
1470                         if (skip_page) {
1471                                 unlock_page(page);
1472                                 continue;
1473                         }
1474
1475                         clear_page_dirty_for_io(page);
1476                         err = ext4_bio_write_page(&io_submit, page, len,
1477                                                   mpd->wbc);
1478                         if (!err)
1479                                 mpd->pages_written++;
1480                         /*
1481                          * In error case, we have to continue because
1482                          * remaining pages are still locked
1483                          */
1484                         if (ret == 0)
1485                                 ret = err;
1486                 }
1487                 pagevec_release(&pvec);
1488         }
1489         ext4_io_submit(&io_submit);
1490         return ret;
1491 }
1492
1493 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1494 {
1495         int nr_pages, i;
1496         pgoff_t index, end;
1497         struct pagevec pvec;
1498         struct inode *inode = mpd->inode;
1499         struct address_space *mapping = inode->i_mapping;
1500         ext4_lblk_t start, last;
1501
1502         index = mpd->first_page;
1503         end   = mpd->next_page - 1;
1504
1505         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1506         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1507         ext4_es_remove_extent(inode, start, last - start + 1);
1508
1509         pagevec_init(&pvec, 0);
1510         while (index <= end) {
1511                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512                 if (nr_pages == 0)
1513                         break;
1514                 for (i = 0; i < nr_pages; i++) {
1515                         struct page *page = pvec.pages[i];
1516                         if (page->index > end)
1517                                 break;
1518                         BUG_ON(!PageLocked(page));
1519                         BUG_ON(PageWriteback(page));
1520                         block_invalidatepage(page, 0);
1521                         ClearPageUptodate(page);
1522                         unlock_page(page);
1523                 }
1524                 index = pvec.pages[nr_pages - 1]->index + 1;
1525                 pagevec_release(&pvec);
1526         }
1527         return;
1528 }
1529
1530 static void ext4_print_free_blocks(struct inode *inode)
1531 {
1532         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1533         struct super_block *sb = inode->i_sb;
1534
1535         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1536                EXT4_C2B(EXT4_SB(inode->i_sb),
1537                         ext4_count_free_clusters(inode->i_sb)));
1538         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1539         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1540                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1541                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1542         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1543                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1544                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1545         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1546         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1547                  EXT4_I(inode)->i_reserved_data_blocks);
1548         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1549                EXT4_I(inode)->i_reserved_meta_blocks);
1550         return;
1551 }
1552
1553 /*
1554  * mpage_da_map_and_submit - go through given space, map them
1555  *       if necessary, and then submit them for I/O
1556  *
1557  * @mpd - bh describing space
1558  *
1559  * The function skips space we know is already mapped to disk blocks.
1560  *
1561  */
1562 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1563 {
1564         int err, blks, get_blocks_flags;
1565         struct ext4_map_blocks map, *mapp = NULL;
1566         sector_t next = mpd->b_blocknr;
1567         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1568         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1569         handle_t *handle = NULL;
1570
1571         /*
1572          * If the blocks are mapped already, or we couldn't accumulate
1573          * any blocks, then proceed immediately to the submission stage.
1574          */
1575         if ((mpd->b_size == 0) ||
1576             ((mpd->b_state  & (1 << BH_Mapped)) &&
1577              !(mpd->b_state & (1 << BH_Delay)) &&
1578              !(mpd->b_state & (1 << BH_Unwritten))))
1579                 goto submit_io;
1580
1581         handle = ext4_journal_current_handle();
1582         BUG_ON(!handle);
1583
1584         /*
1585          * Call ext4_map_blocks() to allocate any delayed allocation
1586          * blocks, or to convert an uninitialized extent to be
1587          * initialized (in the case where we have written into
1588          * one or more preallocated blocks).
1589          *
1590          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1591          * indicate that we are on the delayed allocation path.  This
1592          * affects functions in many different parts of the allocation
1593          * call path.  This flag exists primarily because we don't
1594          * want to change *many* call functions, so ext4_map_blocks()
1595          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1596          * inode's allocation semaphore is taken.
1597          *
1598          * If the blocks in questions were delalloc blocks, set
1599          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1600          * variables are updated after the blocks have been allocated.
1601          */
1602         map.m_lblk = next;
1603         map.m_len = max_blocks;
1604         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1605         if (ext4_should_dioread_nolock(mpd->inode))
1606                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1607         if (mpd->b_state & (1 << BH_Delay))
1608                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1609
1610         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1611         if (blks < 0) {
1612                 struct super_block *sb = mpd->inode->i_sb;
1613
1614                 err = blks;
1615                 /*
1616                  * If get block returns EAGAIN or ENOSPC and there
1617                  * appears to be free blocks we will just let
1618                  * mpage_da_submit_io() unlock all of the pages.
1619                  */
1620                 if (err == -EAGAIN)
1621                         goto submit_io;
1622
1623                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1624                         mpd->retval = err;
1625                         goto submit_io;
1626                 }
1627
1628                 /*
1629                  * get block failure will cause us to loop in
1630                  * writepages, because a_ops->writepage won't be able
1631                  * to make progress. The page will be redirtied by
1632                  * writepage and writepages will again try to write
1633                  * the same.
1634                  */
1635                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1636                         ext4_msg(sb, KERN_CRIT,
1637                                  "delayed block allocation failed for inode %lu "
1638                                  "at logical offset %llu with max blocks %zd "
1639                                  "with error %d", mpd->inode->i_ino,
1640                                  (unsigned long long) next,
1641                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1642                         ext4_msg(sb, KERN_CRIT,
1643                                 "This should not happen!! Data will be lost");
1644                         if (err == -ENOSPC)
1645                                 ext4_print_free_blocks(mpd->inode);
1646                 }
1647                 /* invalidate all the pages */
1648                 ext4_da_block_invalidatepages(mpd);
1649
1650                 /* Mark this page range as having been completed */
1651                 mpd->io_done = 1;
1652                 return;
1653         }
1654         BUG_ON(blks == 0);
1655
1656         mapp = &map;
1657         if (map.m_flags & EXT4_MAP_NEW) {
1658                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1659                 int i;
1660
1661                 for (i = 0; i < map.m_len; i++)
1662                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1663         }
1664
1665         /*
1666          * Update on-disk size along with block allocation.
1667          */
1668         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1669         if (disksize > i_size_read(mpd->inode))
1670                 disksize = i_size_read(mpd->inode);
1671         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1672                 ext4_update_i_disksize(mpd->inode, disksize);
1673                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1674                 if (err)
1675                         ext4_error(mpd->inode->i_sb,
1676                                    "Failed to mark inode %lu dirty",
1677                                    mpd->inode->i_ino);
1678         }
1679
1680 submit_io:
1681         mpage_da_submit_io(mpd, mapp);
1682         mpd->io_done = 1;
1683 }
1684
1685 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1686                 (1 << BH_Delay) | (1 << BH_Unwritten))
1687
1688 /*
1689  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1690  *
1691  * @mpd->lbh - extent of blocks
1692  * @logical - logical number of the block in the file
1693  * @b_state - b_state of the buffer head added
1694  *
1695  * the function is used to collect contig. blocks in same state
1696  */
1697 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1698                                    unsigned long b_state)
1699 {
1700         sector_t next;
1701         int blkbits = mpd->inode->i_blkbits;
1702         int nrblocks = mpd->b_size >> blkbits;
1703
1704         /*
1705          * XXX Don't go larger than mballoc is willing to allocate
1706          * This is a stopgap solution.  We eventually need to fold
1707          * mpage_da_submit_io() into this function and then call
1708          * ext4_map_blocks() multiple times in a loop
1709          */
1710         if (nrblocks >= (8*1024*1024 >> blkbits))
1711                 goto flush_it;
1712
1713         /* check if the reserved journal credits might overflow */
1714         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1715                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1716                         /*
1717                          * With non-extent format we are limited by the journal
1718                          * credit available.  Total credit needed to insert
1719                          * nrblocks contiguous blocks is dependent on the
1720                          * nrblocks.  So limit nrblocks.
1721                          */
1722                         goto flush_it;
1723                 }
1724         }
1725         /*
1726          * First block in the extent
1727          */
1728         if (mpd->b_size == 0) {
1729                 mpd->b_blocknr = logical;
1730                 mpd->b_size = 1 << blkbits;
1731                 mpd->b_state = b_state & BH_FLAGS;
1732                 return;
1733         }
1734
1735         next = mpd->b_blocknr + nrblocks;
1736         /*
1737          * Can we merge the block to our big extent?
1738          */
1739         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1740                 mpd->b_size += 1 << blkbits;
1741                 return;
1742         }
1743
1744 flush_it:
1745         /*
1746          * We couldn't merge the block to our extent, so we
1747          * need to flush current  extent and start new one
1748          */
1749         mpage_da_map_and_submit(mpd);
1750         return;
1751 }
1752
1753 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1754 {
1755         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1756 }
1757
1758 /*
1759  * This function is grabs code from the very beginning of
1760  * ext4_map_blocks, but assumes that the caller is from delayed write
1761  * time. This function looks up the requested blocks and sets the
1762  * buffer delay bit under the protection of i_data_sem.
1763  */
1764 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1765                               struct ext4_map_blocks *map,
1766                               struct buffer_head *bh)
1767 {
1768         struct extent_status es;
1769         int retval;
1770         sector_t invalid_block = ~((sector_t) 0xffff);
1771
1772         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1773                 invalid_block = ~0;
1774
1775         map->m_flags = 0;
1776         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1777                   "logical block %lu\n", inode->i_ino, map->m_len,
1778                   (unsigned long) map->m_lblk);
1779
1780         /* Lookup extent status tree firstly */
1781         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1782
1783                 if (ext4_es_is_hole(&es)) {
1784                         retval = 0;
1785                         down_read((&EXT4_I(inode)->i_data_sem));
1786                         goto add_delayed;
1787                 }
1788
1789                 /*
1790                  * Delayed extent could be allocated by fallocate.
1791                  * So we need to check it.
1792                  */
1793                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1794                         map_bh(bh, inode->i_sb, invalid_block);
1795                         set_buffer_new(bh);
1796                         set_buffer_delay(bh);
1797                         return 0;
1798                 }
1799
1800                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1801                 retval = es.es_len - (iblock - es.es_lblk);
1802                 if (retval > map->m_len)
1803                         retval = map->m_len;
1804                 map->m_len = retval;
1805                 if (ext4_es_is_written(&es))
1806                         map->m_flags |= EXT4_MAP_MAPPED;
1807                 else if (ext4_es_is_unwritten(&es))
1808                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1809                 else
1810                         BUG_ON(1);
1811
1812                 return retval;
1813         }
1814
1815         /*
1816          * Try to see if we can get the block without requesting a new
1817          * file system block.
1818          */
1819         down_read((&EXT4_I(inode)->i_data_sem));
1820         if (ext4_has_inline_data(inode)) {
1821                 /*
1822                  * We will soon create blocks for this page, and let
1823                  * us pretend as if the blocks aren't allocated yet.
1824                  * In case of clusters, we have to handle the work
1825                  * of mapping from cluster so that the reserved space
1826                  * is calculated properly.
1827                  */
1828                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1829                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1830                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1831                 retval = 0;
1832         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1833                 retval = ext4_ext_map_blocks(NULL, inode, map,
1834                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1835         else
1836                 retval = ext4_ind_map_blocks(NULL, inode, map,
1837                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1838
1839 add_delayed:
1840         if (retval == 0) {
1841                 int ret;
1842                 /*
1843                  * XXX: __block_prepare_write() unmaps passed block,
1844                  * is it OK?
1845                  */
1846                 /* If the block was allocated from previously allocated cluster,
1847                  * then we dont need to reserve it again. */
1848                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1849                         ret = ext4_da_reserve_space(inode, iblock);
1850                         if (ret) {
1851                                 /* not enough space to reserve */
1852                                 retval = ret;
1853                                 goto out_unlock;
1854                         }
1855                 }
1856
1857                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1858                                             ~0, EXTENT_STATUS_DELAYED);
1859                 if (ret) {
1860                         retval = ret;
1861                         goto out_unlock;
1862                 }
1863
1864                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1865                  * and it should not appear on the bh->b_state.
1866                  */
1867                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1868
1869                 map_bh(bh, inode->i_sb, invalid_block);
1870                 set_buffer_new(bh);
1871                 set_buffer_delay(bh);
1872         } else if (retval > 0) {
1873                 int ret;
1874                 unsigned long long status;
1875
1876                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1877                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1878                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1879                                             map->m_pblk, status);
1880                 if (ret != 0)
1881                         retval = ret;
1882         }
1883
1884 out_unlock:
1885         up_read((&EXT4_I(inode)->i_data_sem));
1886
1887         return retval;
1888 }
1889
1890 /*
1891  * This is a special get_blocks_t callback which is used by
1892  * ext4_da_write_begin().  It will either return mapped block or
1893  * reserve space for a single block.
1894  *
1895  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1896  * We also have b_blocknr = -1 and b_bdev initialized properly
1897  *
1898  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1899  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1900  * initialized properly.
1901  */
1902 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1903                            struct buffer_head *bh, int create)
1904 {
1905         struct ext4_map_blocks map;
1906         int ret = 0;
1907
1908         BUG_ON(create == 0);
1909         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1910
1911         map.m_lblk = iblock;
1912         map.m_len = 1;
1913
1914         /*
1915          * first, we need to know whether the block is allocated already
1916          * preallocated blocks are unmapped but should treated
1917          * the same as allocated blocks.
1918          */
1919         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1920         if (ret <= 0)
1921                 return ret;
1922
1923         map_bh(bh, inode->i_sb, map.m_pblk);
1924         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1925
1926         if (buffer_unwritten(bh)) {
1927                 /* A delayed write to unwritten bh should be marked
1928                  * new and mapped.  Mapped ensures that we don't do
1929                  * get_block multiple times when we write to the same
1930                  * offset and new ensures that we do proper zero out
1931                  * for partial write.
1932                  */
1933                 set_buffer_new(bh);
1934                 set_buffer_mapped(bh);
1935         }
1936         return 0;
1937 }
1938
1939 static int bget_one(handle_t *handle, struct buffer_head *bh)
1940 {
1941         get_bh(bh);
1942         return 0;
1943 }
1944
1945 static int bput_one(handle_t *handle, struct buffer_head *bh)
1946 {
1947         put_bh(bh);
1948         return 0;
1949 }
1950
1951 static int __ext4_journalled_writepage(struct page *page,
1952                                        unsigned int len)
1953 {
1954         struct address_space *mapping = page->mapping;
1955         struct inode *inode = mapping->host;
1956         struct buffer_head *page_bufs = NULL;
1957         handle_t *handle = NULL;
1958         int ret = 0, err = 0;
1959         int inline_data = ext4_has_inline_data(inode);
1960         struct buffer_head *inode_bh = NULL;
1961
1962         ClearPageChecked(page);
1963
1964         if (inline_data) {
1965                 BUG_ON(page->index != 0);
1966                 BUG_ON(len > ext4_get_max_inline_size(inode));
1967                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1968                 if (inode_bh == NULL)
1969                         goto out;
1970         } else {
1971                 page_bufs = page_buffers(page);
1972                 if (!page_bufs) {
1973                         BUG();
1974                         goto out;
1975                 }
1976                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1977                                        NULL, bget_one);
1978         }
1979         /* As soon as we unlock the page, it can go away, but we have
1980          * references to buffers so we are safe */
1981         unlock_page(page);
1982
1983         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1984                                     ext4_writepage_trans_blocks(inode));
1985         if (IS_ERR(handle)) {
1986                 ret = PTR_ERR(handle);
1987                 goto out;
1988         }
1989
1990         BUG_ON(!ext4_handle_valid(handle));
1991
1992         if (inline_data) {
1993                 ret = ext4_journal_get_write_access(handle, inode_bh);
1994
1995                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1996
1997         } else {
1998                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1999                                              do_journal_get_write_access);
2000
2001                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2002                                              write_end_fn);
2003         }
2004         if (ret == 0)
2005                 ret = err;
2006         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2007         err = ext4_journal_stop(handle);
2008         if (!ret)
2009                 ret = err;
2010
2011         if (!ext4_has_inline_data(inode))
2012                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2013                                        NULL, bput_one);
2014         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2015 out:
2016         brelse(inode_bh);
2017         return ret;
2018 }
2019
2020 /*
2021  * Note that we don't need to start a transaction unless we're journaling data
2022  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2023  * need to file the inode to the transaction's list in ordered mode because if
2024  * we are writing back data added by write(), the inode is already there and if
2025  * we are writing back data modified via mmap(), no one guarantees in which
2026  * transaction the data will hit the disk. In case we are journaling data, we
2027  * cannot start transaction directly because transaction start ranks above page
2028  * lock so we have to do some magic.
2029  *
2030  * This function can get called via...
2031  *   - ext4_da_writepages after taking page lock (have journal handle)
2032  *   - journal_submit_inode_data_buffers (no journal handle)
2033  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2034  *   - grab_page_cache when doing write_begin (have journal handle)
2035  *
2036  * We don't do any block allocation in this function. If we have page with
2037  * multiple blocks we need to write those buffer_heads that are mapped. This
2038  * is important for mmaped based write. So if we do with blocksize 1K
2039  * truncate(f, 1024);
2040  * a = mmap(f, 0, 4096);
2041  * a[0] = 'a';
2042  * truncate(f, 4096);
2043  * we have in the page first buffer_head mapped via page_mkwrite call back
2044  * but other buffer_heads would be unmapped but dirty (dirty done via the
2045  * do_wp_page). So writepage should write the first block. If we modify
2046  * the mmap area beyond 1024 we will again get a page_fault and the
2047  * page_mkwrite callback will do the block allocation and mark the
2048  * buffer_heads mapped.
2049  *
2050  * We redirty the page if we have any buffer_heads that is either delay or
2051  * unwritten in the page.
2052  *
2053  * We can get recursively called as show below.
2054  *
2055  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2056  *              ext4_writepage()
2057  *
2058  * But since we don't do any block allocation we should not deadlock.
2059  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2060  */
2061 static int ext4_writepage(struct page *page,
2062                           struct writeback_control *wbc)
2063 {
2064         int ret = 0;
2065         loff_t size;
2066         unsigned int len;
2067         struct buffer_head *page_bufs = NULL;
2068         struct inode *inode = page->mapping->host;
2069         struct ext4_io_submit io_submit;
2070
2071         trace_ext4_writepage(page);
2072         size = i_size_read(inode);
2073         if (page->index == size >> PAGE_CACHE_SHIFT)
2074                 len = size & ~PAGE_CACHE_MASK;
2075         else
2076                 len = PAGE_CACHE_SIZE;
2077
2078         page_bufs = page_buffers(page);
2079         /*
2080          * We cannot do block allocation or other extent handling in this
2081          * function. If there are buffers needing that, we have to redirty
2082          * the page. But we may reach here when we do a journal commit via
2083          * journal_submit_inode_data_buffers() and in that case we must write
2084          * allocated buffers to achieve data=ordered mode guarantees.
2085          */
2086         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2087                                    ext4_bh_delay_or_unwritten)) {
2088                 redirty_page_for_writepage(wbc, page);
2089                 if (current->flags & PF_MEMALLOC) {
2090                         /*
2091                          * For memory cleaning there's no point in writing only
2092                          * some buffers. So just bail out. Warn if we came here
2093                          * from direct reclaim.
2094                          */
2095                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2096                                                         == PF_MEMALLOC);
2097                         unlock_page(page);
2098                         return 0;
2099                 }
2100         }
2101
2102         if (PageChecked(page) && ext4_should_journal_data(inode))
2103                 /*
2104                  * It's mmapped pagecache.  Add buffers and journal it.  There
2105                  * doesn't seem much point in redirtying the page here.
2106                  */
2107                 return __ext4_journalled_writepage(page, len);
2108
2109         memset(&io_submit, 0, sizeof(io_submit));
2110         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2111         ext4_io_submit(&io_submit);
2112         return ret;
2113 }
2114
2115 /*
2116  * This is called via ext4_da_writepages() to
2117  * calculate the total number of credits to reserve to fit
2118  * a single extent allocation into a single transaction,
2119  * ext4_da_writpeages() will loop calling this before
2120  * the block allocation.
2121  */
2122
2123 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2124 {
2125         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2126
2127         /*
2128          * With non-extent format the journal credit needed to
2129          * insert nrblocks contiguous block is dependent on
2130          * number of contiguous block. So we will limit
2131          * number of contiguous block to a sane value
2132          */
2133         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2134             (max_blocks > EXT4_MAX_TRANS_DATA))
2135                 max_blocks = EXT4_MAX_TRANS_DATA;
2136
2137         return ext4_chunk_trans_blocks(inode, max_blocks);
2138 }
2139
2140 /*
2141  * write_cache_pages_da - walk the list of dirty pages of the given
2142  * address space and accumulate pages that need writing, and call
2143  * mpage_da_map_and_submit to map a single contiguous memory region
2144  * and then write them.
2145  */
2146 static int write_cache_pages_da(handle_t *handle,
2147                                 struct address_space *mapping,
2148                                 struct writeback_control *wbc,
2149                                 struct mpage_da_data *mpd,
2150                                 pgoff_t *done_index)
2151 {
2152         struct buffer_head      *bh, *head;
2153         struct inode            *inode = mapping->host;
2154         struct pagevec          pvec;
2155         unsigned int            nr_pages;
2156         sector_t                logical;
2157         pgoff_t                 index, end;
2158         long                    nr_to_write = wbc->nr_to_write;
2159         int                     i, tag, ret = 0;
2160
2161         memset(mpd, 0, sizeof(struct mpage_da_data));
2162         mpd->wbc = wbc;
2163         mpd->inode = inode;
2164         pagevec_init(&pvec, 0);
2165         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2166         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2167
2168         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2169                 tag = PAGECACHE_TAG_TOWRITE;
2170         else
2171                 tag = PAGECACHE_TAG_DIRTY;
2172
2173         *done_index = index;
2174         while (index <= end) {
2175                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2176                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2177                 if (nr_pages == 0)
2178                         return 0;
2179
2180                 for (i = 0; i < nr_pages; i++) {
2181                         struct page *page = pvec.pages[i];
2182
2183                         /*
2184                          * At this point, the page may be truncated or
2185                          * invalidated (changing page->mapping to NULL), or
2186                          * even swizzled back from swapper_space to tmpfs file
2187                          * mapping. However, page->index will not change
2188                          * because we have a reference on the page.
2189                          */
2190                         if (page->index > end)
2191                                 goto out;
2192
2193                         *done_index = page->index + 1;
2194
2195                         /*
2196                          * If we can't merge this page, and we have
2197                          * accumulated an contiguous region, write it
2198                          */
2199                         if ((mpd->next_page != page->index) &&
2200                             (mpd->next_page != mpd->first_page)) {
2201                                 mpage_da_map_and_submit(mpd);
2202                                 goto ret_extent_tail;
2203                         }
2204
2205                         lock_page(page);
2206
2207                         /*
2208                          * If the page is no longer dirty, or its
2209                          * mapping no longer corresponds to inode we
2210                          * are writing (which means it has been
2211                          * truncated or invalidated), or the page is
2212                          * already under writeback and we are not
2213                          * doing a data integrity writeback, skip the page
2214                          */
2215                         if (!PageDirty(page) ||
2216                             (PageWriteback(page) &&
2217                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2218                             unlikely(page->mapping != mapping)) {
2219                                 unlock_page(page);
2220                                 continue;
2221                         }
2222
2223                         wait_on_page_writeback(page);
2224                         BUG_ON(PageWriteback(page));
2225
2226                         /*
2227                          * If we have inline data and arrive here, it means that
2228                          * we will soon create the block for the 1st page, so
2229                          * we'd better clear the inline data here.
2230                          */
2231                         if (ext4_has_inline_data(inode)) {
2232                                 BUG_ON(ext4_test_inode_state(inode,
2233                                                 EXT4_STATE_MAY_INLINE_DATA));
2234                                 ext4_destroy_inline_data(handle, inode);
2235                         }
2236
2237                         if (mpd->next_page != page->index)
2238                                 mpd->first_page = page->index;
2239                         mpd->next_page = page->index + 1;
2240                         logical = (sector_t) page->index <<
2241                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2242
2243                         /* Add all dirty buffers to mpd */
2244                         head = page_buffers(page);
2245                         bh = head;
2246                         do {
2247                                 BUG_ON(buffer_locked(bh));
2248                                 /*
2249                                  * We need to try to allocate unmapped blocks
2250                                  * in the same page.  Otherwise we won't make
2251                                  * progress with the page in ext4_writepage
2252                                  */
2253                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2254                                         mpage_add_bh_to_extent(mpd, logical,
2255                                                                bh->b_state);
2256                                         if (mpd->io_done)
2257                                                 goto ret_extent_tail;
2258                                 } else if (buffer_dirty(bh) &&
2259                                            buffer_mapped(bh)) {
2260                                         /*
2261                                          * mapped dirty buffer. We need to
2262                                          * update the b_state because we look
2263                                          * at b_state in mpage_da_map_blocks.
2264                                          * We don't update b_size because if we
2265                                          * find an unmapped buffer_head later
2266                                          * we need to use the b_state flag of
2267                                          * that buffer_head.
2268                                          */
2269                                         if (mpd->b_size == 0)
2270                                                 mpd->b_state =
2271                                                         bh->b_state & BH_FLAGS;
2272                                 }
2273                                 logical++;
2274                         } while ((bh = bh->b_this_page) != head);
2275
2276                         if (nr_to_write > 0) {
2277                                 nr_to_write--;
2278                                 if (nr_to_write == 0 &&
2279                                     wbc->sync_mode == WB_SYNC_NONE)
2280                                         /*
2281                                          * We stop writing back only if we are
2282                                          * not doing integrity sync. In case of
2283                                          * integrity sync we have to keep going
2284                                          * because someone may be concurrently
2285                                          * dirtying pages, and we might have
2286                                          * synced a lot of newly appeared dirty
2287                                          * pages, but have not synced all of the
2288                                          * old dirty pages.
2289                                          */
2290                                         goto out;
2291                         }
2292                 }
2293                 pagevec_release(&pvec);
2294                 cond_resched();
2295         }
2296         return 0;
2297 ret_extent_tail:
2298         ret = MPAGE_DA_EXTENT_TAIL;
2299 out:
2300         pagevec_release(&pvec);
2301         cond_resched();
2302         return ret;
2303 }
2304
2305
2306 static int ext4_da_writepages(struct address_space *mapping,
2307                               struct writeback_control *wbc)
2308 {
2309         pgoff_t index;
2310         int range_whole = 0;
2311         handle_t *handle = NULL;
2312         struct mpage_da_data mpd;
2313         struct inode *inode = mapping->host;
2314         int pages_written = 0;
2315         unsigned int max_pages;
2316         int range_cyclic, cycled = 1, io_done = 0;
2317         int needed_blocks, ret = 0;
2318         long desired_nr_to_write, nr_to_writebump = 0;
2319         loff_t range_start = wbc->range_start;
2320         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2321         pgoff_t done_index = 0;
2322         pgoff_t end;
2323         struct blk_plug plug;
2324
2325         trace_ext4_da_writepages(inode, wbc);
2326
2327         /*
2328          * No pages to write? This is mainly a kludge to avoid starting
2329          * a transaction for special inodes like journal inode on last iput()
2330          * because that could violate lock ordering on umount
2331          */
2332         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2333                 return 0;
2334
2335         /*
2336          * If the filesystem has aborted, it is read-only, so return
2337          * right away instead of dumping stack traces later on that
2338          * will obscure the real source of the problem.  We test
2339          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2340          * the latter could be true if the filesystem is mounted
2341          * read-only, and in that case, ext4_da_writepages should
2342          * *never* be called, so if that ever happens, we would want
2343          * the stack trace.
2344          */
2345         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2346                 return -EROFS;
2347
2348         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2349                 range_whole = 1;
2350
2351         range_cyclic = wbc->range_cyclic;
2352         if (wbc->range_cyclic) {
2353                 index = mapping->writeback_index;
2354                 if (index)
2355                         cycled = 0;
2356                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2357                 wbc->range_end  = LLONG_MAX;
2358                 wbc->range_cyclic = 0;
2359                 end = -1;
2360         } else {
2361                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2362                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2363         }
2364
2365         /*
2366          * This works around two forms of stupidity.  The first is in
2367          * the writeback code, which caps the maximum number of pages
2368          * written to be 1024 pages.  This is wrong on multiple
2369          * levels; different architectues have a different page size,
2370          * which changes the maximum amount of data which gets
2371          * written.  Secondly, 4 megabytes is way too small.  XFS
2372          * forces this value to be 16 megabytes by multiplying
2373          * nr_to_write parameter by four, and then relies on its
2374          * allocator to allocate larger extents to make them
2375          * contiguous.  Unfortunately this brings us to the second
2376          * stupidity, which is that ext4's mballoc code only allocates
2377          * at most 2048 blocks.  So we force contiguous writes up to
2378          * the number of dirty blocks in the inode, or
2379          * sbi->max_writeback_mb_bump whichever is smaller.
2380          */
2381         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2382         if (!range_cyclic && range_whole) {
2383                 if (wbc->nr_to_write == LONG_MAX)
2384                         desired_nr_to_write = wbc->nr_to_write;
2385                 else
2386                         desired_nr_to_write = wbc->nr_to_write * 8;
2387         } else
2388                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2389                                                            max_pages);
2390         if (desired_nr_to_write > max_pages)
2391                 desired_nr_to_write = max_pages;
2392
2393         if (wbc->nr_to_write < desired_nr_to_write) {
2394                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2395                 wbc->nr_to_write = desired_nr_to_write;
2396         }
2397
2398 retry:
2399         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2400                 tag_pages_for_writeback(mapping, index, end);
2401
2402         blk_start_plug(&plug);
2403         while (!ret && wbc->nr_to_write > 0) {
2404
2405                 /*
2406                  * we  insert one extent at a time. So we need
2407                  * credit needed for single extent allocation.
2408                  * journalled mode is currently not supported
2409                  * by delalloc
2410                  */
2411                 BUG_ON(ext4_should_journal_data(inode));
2412                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2413
2414                 /* start a new transaction*/
2415                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2416                                             needed_blocks);
2417                 if (IS_ERR(handle)) {
2418                         ret = PTR_ERR(handle);
2419                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2420                                "%ld pages, ino %lu; err %d", __func__,
2421                                 wbc->nr_to_write, inode->i_ino, ret);
2422                         blk_finish_plug(&plug);
2423                         goto out_writepages;
2424                 }
2425
2426                 /*
2427                  * Now call write_cache_pages_da() to find the next
2428                  * contiguous region of logical blocks that need
2429                  * blocks to be allocated by ext4 and submit them.
2430                  */
2431                 ret = write_cache_pages_da(handle, mapping,
2432                                            wbc, &mpd, &done_index);
2433                 /*
2434                  * If we have a contiguous extent of pages and we
2435                  * haven't done the I/O yet, map the blocks and submit
2436                  * them for I/O.
2437                  */
2438                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2439                         mpage_da_map_and_submit(&mpd);
2440                         ret = MPAGE_DA_EXTENT_TAIL;
2441                 }
2442                 trace_ext4_da_write_pages(inode, &mpd);
2443                 wbc->nr_to_write -= mpd.pages_written;
2444
2445                 ext4_journal_stop(handle);
2446
2447                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2448                         /* commit the transaction which would
2449                          * free blocks released in the transaction
2450                          * and try again
2451                          */
2452                         jbd2_journal_force_commit_nested(sbi->s_journal);
2453                         ret = 0;
2454                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2455                         /*
2456                          * Got one extent now try with rest of the pages.
2457                          * If mpd.retval is set -EIO, journal is aborted.
2458                          * So we don't need to write any more.
2459                          */
2460                         pages_written += mpd.pages_written;
2461                         ret = mpd.retval;
2462                         io_done = 1;
2463                 } else if (wbc->nr_to_write)
2464                         /*
2465                          * There is no more writeout needed
2466                          * or we requested for a noblocking writeout
2467                          * and we found the device congested
2468                          */
2469                         break;
2470         }
2471         blk_finish_plug(&plug);
2472         if (!io_done && !cycled) {
2473                 cycled = 1;
2474                 index = 0;
2475                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2476                 wbc->range_end  = mapping->writeback_index - 1;
2477                 goto retry;
2478         }
2479
2480         /* Update index */
2481         wbc->range_cyclic = range_cyclic;
2482         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2483                 /*
2484                  * set the writeback_index so that range_cyclic
2485                  * mode will write it back later
2486                  */
2487                 mapping->writeback_index = done_index;
2488
2489 out_writepages:
2490         wbc->nr_to_write -= nr_to_writebump;
2491         wbc->range_start = range_start;
2492         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2493         return ret;
2494 }
2495
2496 static int ext4_nonda_switch(struct super_block *sb)
2497 {
2498         s64 free_blocks, dirty_blocks;
2499         struct ext4_sb_info *sbi = EXT4_SB(sb);
2500
2501         /*
2502          * switch to non delalloc mode if we are running low
2503          * on free block. The free block accounting via percpu
2504          * counters can get slightly wrong with percpu_counter_batch getting
2505          * accumulated on each CPU without updating global counters
2506          * Delalloc need an accurate free block accounting. So switch
2507          * to non delalloc when we are near to error range.
2508          */
2509         free_blocks  = EXT4_C2B(sbi,
2510                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2511         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2512         /*
2513          * Start pushing delalloc when 1/2 of free blocks are dirty.
2514          */
2515         if (dirty_blocks && (free_blocks < 2 * dirty_blocks))
2516                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2517
2518         if (2 * free_blocks < 3 * dirty_blocks ||
2519                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2520                 /*
2521                  * free block count is less than 150% of dirty blocks
2522                  * or free blocks is less than watermark
2523                  */
2524                 return 1;
2525         }
2526         return 0;
2527 }
2528
2529 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2530                                loff_t pos, unsigned len, unsigned flags,
2531                                struct page **pagep, void **fsdata)
2532 {
2533         int ret, retries = 0;
2534         struct page *page;
2535         pgoff_t index;
2536         struct inode *inode = mapping->host;
2537         handle_t *handle;
2538
2539         index = pos >> PAGE_CACHE_SHIFT;
2540
2541         if (ext4_nonda_switch(inode->i_sb)) {
2542                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2543                 return ext4_write_begin(file, mapping, pos,
2544                                         len, flags, pagep, fsdata);
2545         }
2546         *fsdata = (void *)0;
2547         trace_ext4_da_write_begin(inode, pos, len, flags);
2548
2549         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2550                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2551                                                       pos, len, flags,
2552                                                       pagep, fsdata);
2553                 if (ret < 0)
2554                         return ret;
2555                 if (ret == 1)
2556                         return 0;
2557         }
2558
2559         /*
2560          * grab_cache_page_write_begin() can take a long time if the
2561          * system is thrashing due to memory pressure, or if the page
2562          * is being written back.  So grab it first before we start
2563          * the transaction handle.  This also allows us to allocate
2564          * the page (if needed) without using GFP_NOFS.
2565          */
2566 retry_grab:
2567         page = grab_cache_page_write_begin(mapping, index, flags);
2568         if (!page)
2569                 return -ENOMEM;
2570         unlock_page(page);
2571
2572         /*
2573          * With delayed allocation, we don't log the i_disksize update
2574          * if there is delayed block allocation. But we still need
2575          * to journalling the i_disksize update if writes to the end
2576          * of file which has an already mapped buffer.
2577          */
2578 retry_journal:
2579         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2580         if (IS_ERR(handle)) {
2581                 page_cache_release(page);
2582                 return PTR_ERR(handle);
2583         }
2584
2585         lock_page(page);
2586         if (page->mapping != mapping) {
2587                 /* The page got truncated from under us */
2588                 unlock_page(page);
2589                 page_cache_release(page);
2590                 ext4_journal_stop(handle);
2591                 goto retry_grab;
2592         }
2593         /* In case writeback began while the page was unlocked */
2594         wait_on_page_writeback(page);
2595
2596         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2597         if (ret < 0) {
2598                 unlock_page(page);
2599                 ext4_journal_stop(handle);
2600                 /*
2601                  * block_write_begin may have instantiated a few blocks
2602                  * outside i_size.  Trim these off again. Don't need
2603                  * i_size_read because we hold i_mutex.
2604                  */
2605                 if (pos + len > inode->i_size)
2606                         ext4_truncate_failed_write(inode);
2607
2608                 if (ret == -ENOSPC &&
2609                     ext4_should_retry_alloc(inode->i_sb, &retries))
2610                         goto retry_journal;
2611
2612                 page_cache_release(page);
2613                 return ret;
2614         }
2615
2616         *pagep = page;
2617         return ret;
2618 }
2619
2620 /*
2621  * Check if we should update i_disksize
2622  * when write to the end of file but not require block allocation
2623  */
2624 static int ext4_da_should_update_i_disksize(struct page *page,
2625                                             unsigned long offset)
2626 {
2627         struct buffer_head *bh;
2628         struct inode *inode = page->mapping->host;
2629         unsigned int idx;
2630         int i;
2631
2632         bh = page_buffers(page);
2633         idx = offset >> inode->i_blkbits;
2634
2635         for (i = 0; i < idx; i++)
2636                 bh = bh->b_this_page;
2637
2638         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2639                 return 0;
2640         return 1;
2641 }
2642
2643 static int ext4_da_write_end(struct file *file,
2644                              struct address_space *mapping,
2645                              loff_t pos, unsigned len, unsigned copied,
2646                              struct page *page, void *fsdata)
2647 {
2648         struct inode *inode = mapping->host;
2649         int ret = 0, ret2;
2650         handle_t *handle = ext4_journal_current_handle();
2651         loff_t new_i_size;
2652         unsigned long start, end;
2653         int write_mode = (int)(unsigned long)fsdata;
2654
2655         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2656                 switch (ext4_inode_journal_mode(inode)) {
2657                 case EXT4_INODE_ORDERED_DATA_MODE:
2658                         return ext4_ordered_write_end(file, mapping, pos,
2659                                         len, copied, page, fsdata);
2660                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2661                         return ext4_writeback_write_end(file, mapping, pos,
2662                                         len, copied, page, fsdata);
2663                 default:
2664                         BUG();
2665                 }
2666         }
2667
2668         trace_ext4_da_write_end(inode, pos, len, copied);
2669         start = pos & (PAGE_CACHE_SIZE - 1);
2670         end = start + copied - 1;
2671
2672         /*
2673          * generic_write_end() will run mark_inode_dirty() if i_size
2674          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2675          * into that.
2676          */
2677         new_i_size = pos + copied;
2678         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2679                 if (ext4_has_inline_data(inode) ||
2680                     ext4_da_should_update_i_disksize(page, end)) {
2681                         down_write(&EXT4_I(inode)->i_data_sem);
2682                         if (new_i_size > EXT4_I(inode)->i_disksize)
2683                                 EXT4_I(inode)->i_disksize = new_i_size;
2684                         up_write(&EXT4_I(inode)->i_data_sem);
2685                         /* We need to mark inode dirty even if
2686                          * new_i_size is less that inode->i_size
2687                          * bu greater than i_disksize.(hint delalloc)
2688                          */
2689                         ext4_mark_inode_dirty(handle, inode);
2690                 }
2691         }
2692
2693         if (write_mode != CONVERT_INLINE_DATA &&
2694             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2695             ext4_has_inline_data(inode))
2696                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2697                                                      page);
2698         else
2699                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2700                                                         page, fsdata);
2701
2702         copied = ret2;
2703         if (ret2 < 0)
2704                 ret = ret2;
2705         ret2 = ext4_journal_stop(handle);
2706         if (!ret)
2707                 ret = ret2;
2708
2709         return ret ? ret : copied;
2710 }
2711
2712 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2713 {
2714         /*
2715          * Drop reserved blocks
2716          */
2717         BUG_ON(!PageLocked(page));
2718         if (!page_has_buffers(page))
2719                 goto out;
2720
2721         ext4_da_page_release_reservation(page, offset);
2722
2723 out:
2724         ext4_invalidatepage(page, offset);
2725
2726         return;
2727 }
2728
2729 /*
2730  * Force all delayed allocation blocks to be allocated for a given inode.
2731  */
2732 int ext4_alloc_da_blocks(struct inode *inode)
2733 {
2734         trace_ext4_alloc_da_blocks(inode);
2735
2736         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2737             !EXT4_I(inode)->i_reserved_meta_blocks)
2738                 return 0;
2739
2740         /*
2741          * We do something simple for now.  The filemap_flush() will
2742          * also start triggering a write of the data blocks, which is
2743          * not strictly speaking necessary (and for users of
2744          * laptop_mode, not even desirable).  However, to do otherwise
2745          * would require replicating code paths in:
2746          *
2747          * ext4_da_writepages() ->
2748          *    write_cache_pages() ---> (via passed in callback function)
2749          *        __mpage_da_writepage() -->
2750          *           mpage_add_bh_to_extent()
2751          *           mpage_da_map_blocks()
2752          *
2753          * The problem is that write_cache_pages(), located in
2754          * mm/page-writeback.c, marks pages clean in preparation for
2755          * doing I/O, which is not desirable if we're not planning on
2756          * doing I/O at all.
2757          *
2758          * We could call write_cache_pages(), and then redirty all of
2759          * the pages by calling redirty_page_for_writepage() but that
2760          * would be ugly in the extreme.  So instead we would need to
2761          * replicate parts of the code in the above functions,
2762          * simplifying them because we wouldn't actually intend to
2763          * write out the pages, but rather only collect contiguous
2764          * logical block extents, call the multi-block allocator, and
2765          * then update the buffer heads with the block allocations.
2766          *
2767          * For now, though, we'll cheat by calling filemap_flush(),
2768          * which will map the blocks, and start the I/O, but not
2769          * actually wait for the I/O to complete.
2770          */
2771         return filemap_flush(inode->i_mapping);
2772 }
2773
2774 /*
2775  * bmap() is special.  It gets used by applications such as lilo and by
2776  * the swapper to find the on-disk block of a specific piece of data.
2777  *
2778  * Naturally, this is dangerous if the block concerned is still in the
2779  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2780  * filesystem and enables swap, then they may get a nasty shock when the
2781  * data getting swapped to that swapfile suddenly gets overwritten by
2782  * the original zero's written out previously to the journal and
2783  * awaiting writeback in the kernel's buffer cache.
2784  *
2785  * So, if we see any bmap calls here on a modified, data-journaled file,
2786  * take extra steps to flush any blocks which might be in the cache.
2787  */
2788 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2789 {
2790         struct inode *inode = mapping->host;
2791         journal_t *journal;
2792         int err;
2793
2794         /*
2795          * We can get here for an inline file via the FIBMAP ioctl
2796          */
2797         if (ext4_has_inline_data(inode))
2798                 return 0;
2799
2800         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2801                         test_opt(inode->i_sb, DELALLOC)) {
2802                 /*
2803                  * With delalloc we want to sync the file
2804                  * so that we can make sure we allocate
2805                  * blocks for file
2806                  */
2807                 filemap_write_and_wait(mapping);
2808         }
2809
2810         if (EXT4_JOURNAL(inode) &&
2811             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2812                 /*
2813                  * This is a REALLY heavyweight approach, but the use of
2814                  * bmap on dirty files is expected to be extremely rare:
2815                  * only if we run lilo or swapon on a freshly made file
2816                  * do we expect this to happen.
2817                  *
2818                  * (bmap requires CAP_SYS_RAWIO so this does not
2819                  * represent an unprivileged user DOS attack --- we'd be
2820                  * in trouble if mortal users could trigger this path at
2821                  * will.)
2822                  *
2823                  * NB. EXT4_STATE_JDATA is not set on files other than
2824                  * regular files.  If somebody wants to bmap a directory
2825                  * or symlink and gets confused because the buffer
2826                  * hasn't yet been flushed to disk, they deserve
2827                  * everything they get.
2828                  */
2829
2830                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2831                 journal = EXT4_JOURNAL(inode);
2832                 jbd2_journal_lock_updates(journal);
2833                 err = jbd2_journal_flush(journal);
2834                 jbd2_journal_unlock_updates(journal);
2835
2836                 if (err)
2837                         return 0;
2838         }
2839
2840         return generic_block_bmap(mapping, block, ext4_get_block);
2841 }
2842
2843 static int ext4_readpage(struct file *file, struct page *page)
2844 {
2845         int ret = -EAGAIN;
2846         struct inode *inode = page->mapping->host;
2847
2848         trace_ext4_readpage(page);
2849
2850         if (ext4_has_inline_data(inode))
2851                 ret = ext4_readpage_inline(inode, page);
2852
2853         if (ret == -EAGAIN)
2854                 return mpage_readpage(page, ext4_get_block);
2855
2856         return ret;
2857 }
2858
2859 static int
2860 ext4_readpages(struct file *file, struct address_space *mapping,
2861                 struct list_head *pages, unsigned nr_pages)
2862 {
2863         struct inode *inode = mapping->host;
2864
2865         /* If the file has inline data, no need to do readpages. */
2866         if (ext4_has_inline_data(inode))
2867                 return 0;
2868
2869         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2870 }
2871
2872 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2873 {
2874         trace_ext4_invalidatepage(page, offset);
2875
2876         /* No journalling happens on data buffers when this function is used */
2877         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2878
2879         block_invalidatepage(page, offset);
2880 }
2881
2882 static int __ext4_journalled_invalidatepage(struct page *page,
2883                                             unsigned long offset)
2884 {
2885         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2886
2887         trace_ext4_journalled_invalidatepage(page, offset);
2888
2889         /*
2890          * If it's a full truncate we just forget about the pending dirtying
2891          */
2892         if (offset == 0)
2893                 ClearPageChecked(page);
2894
2895         return jbd2_journal_invalidatepage(journal, page, offset);
2896 }
2897
2898 /* Wrapper for aops... */
2899 static void ext4_journalled_invalidatepage(struct page *page,
2900                                            unsigned long offset)
2901 {
2902         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2903 }
2904
2905 static int ext4_releasepage(struct page *page, gfp_t wait)
2906 {
2907         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2908
2909         trace_ext4_releasepage(page);
2910
2911         WARN_ON(PageChecked(page));
2912         if (!page_has_buffers(page))
2913                 return 0;
2914         if (journal)
2915                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2916         else
2917                 return try_to_free_buffers(page);
2918 }
2919
2920 /*
2921  * ext4_get_block used when preparing for a DIO write or buffer write.
2922  * We allocate an uinitialized extent if blocks haven't been allocated.
2923  * The extent will be converted to initialized after the IO is complete.
2924  */
2925 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2926                    struct buffer_head *bh_result, int create)
2927 {
2928         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2929                    inode->i_ino, create);
2930         return _ext4_get_block(inode, iblock, bh_result,
2931                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2932 }
2933
2934 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2935                    struct buffer_head *bh_result, int create)
2936 {
2937         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2938                    inode->i_ino, create);
2939         return _ext4_get_block(inode, iblock, bh_result,
2940                                EXT4_GET_BLOCKS_NO_LOCK);
2941 }
2942
2943 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2944                             ssize_t size, void *private, int ret,
2945                             bool is_async)
2946 {
2947         struct inode *inode = file_inode(iocb->ki_filp);
2948         ext4_io_end_t *io_end = iocb->private;
2949
2950         /* if not async direct IO or dio with 0 bytes write, just return */
2951         if (!io_end || !size)
2952                 goto out;
2953
2954         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2955                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2956                   iocb->private, io_end->inode->i_ino, iocb, offset,
2957                   size);
2958
2959         iocb->private = NULL;
2960
2961         /* if not aio dio with unwritten extents, just free io and return */
2962         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2963                 ext4_free_io_end(io_end);
2964 out:
2965                 inode_dio_done(inode);
2966                 if (is_async)
2967                         aio_complete(iocb, ret, 0);
2968                 return;
2969         }
2970
2971         io_end->offset = offset;
2972         io_end->size = size;
2973         if (is_async) {
2974                 io_end->iocb = iocb;
2975                 io_end->result = ret;
2976         }
2977
2978         ext4_add_complete_io(io_end);
2979 }
2980
2981 /*
2982  * For ext4 extent files, ext4 will do direct-io write to holes,
2983  * preallocated extents, and those write extend the file, no need to
2984  * fall back to buffered IO.
2985  *
2986  * For holes, we fallocate those blocks, mark them as uninitialized
2987  * If those blocks were preallocated, we mark sure they are split, but
2988  * still keep the range to write as uninitialized.
2989  *
2990  * The unwritten extents will be converted to written when DIO is completed.
2991  * For async direct IO, since the IO may still pending when return, we
2992  * set up an end_io call back function, which will do the conversion
2993  * when async direct IO completed.
2994  *
2995  * If the O_DIRECT write will extend the file then add this inode to the
2996  * orphan list.  So recovery will truncate it back to the original size
2997  * if the machine crashes during the write.
2998  *
2999  */
3000 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3001                               const struct iovec *iov, loff_t offset,
3002                               unsigned long nr_segs)
3003 {
3004         struct file *file = iocb->ki_filp;
3005         struct inode *inode = file->f_mapping->host;
3006         ssize_t ret;
3007         size_t count = iov_length(iov, nr_segs);
3008         int overwrite = 0;
3009         get_block_t *get_block_func = NULL;
3010         int dio_flags = 0;
3011         loff_t final_size = offset + count;
3012
3013         /* Use the old path for reads and writes beyond i_size. */
3014         if (rw != WRITE || final_size > inode->i_size)
3015                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3016
3017         BUG_ON(iocb->private == NULL);
3018
3019         /* If we do a overwrite dio, i_mutex locking can be released */
3020         overwrite = *((int *)iocb->private);
3021
3022         if (overwrite) {
3023                 atomic_inc(&inode->i_dio_count);
3024                 down_read(&EXT4_I(inode)->i_data_sem);
3025                 mutex_unlock(&inode->i_mutex);
3026         }
3027
3028         /*
3029          * We could direct write to holes and fallocate.
3030          *
3031          * Allocated blocks to fill the hole are marked as
3032          * uninitialized to prevent parallel buffered read to expose
3033          * the stale data before DIO complete the data IO.
3034          *
3035          * As to previously fallocated extents, ext4 get_block will
3036          * just simply mark the buffer mapped but still keep the
3037          * extents uninitialized.
3038          *
3039          * For non AIO case, we will convert those unwritten extents
3040          * to written after return back from blockdev_direct_IO.
3041          *
3042          * For async DIO, the conversion needs to be deferred when the
3043          * IO is completed. The ext4 end_io callback function will be
3044          * called to take care of the conversion work.  Here for async
3045          * case, we allocate an io_end structure to hook to the iocb.
3046          */
3047         iocb->private = NULL;
3048         ext4_inode_aio_set(inode, NULL);
3049         if (!is_sync_kiocb(iocb)) {
3050                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3051                 if (!io_end) {
3052                         ret = -ENOMEM;
3053                         goto retake_lock;
3054                 }
3055                 io_end->flag |= EXT4_IO_END_DIRECT;
3056                 iocb->private = io_end;
3057                 /*
3058                  * we save the io structure for current async direct
3059                  * IO, so that later ext4_map_blocks() could flag the
3060                  * io structure whether there is a unwritten extents
3061                  * needs to be converted when IO is completed.
3062                  */
3063                 ext4_inode_aio_set(inode, io_end);
3064         }
3065
3066         if (overwrite) {
3067                 get_block_func = ext4_get_block_write_nolock;
3068         } else {
3069                 get_block_func = ext4_get_block_write;
3070                 dio_flags = DIO_LOCKING;
3071         }
3072         ret = __blockdev_direct_IO(rw, iocb, inode,
3073                                    inode->i_sb->s_bdev, iov,
3074                                    offset, nr_segs,
3075                                    get_block_func,
3076                                    ext4_end_io_dio,
3077                                    NULL,
3078                                    dio_flags);
3079
3080         if (iocb->private)
3081                 ext4_inode_aio_set(inode, NULL);
3082         /*
3083          * The io_end structure takes a reference to the inode, that
3084          * structure needs to be destroyed and the reference to the
3085          * inode need to be dropped, when IO is complete, even with 0
3086          * byte write, or failed.
3087          *
3088          * In the successful AIO DIO case, the io_end structure will
3089          * be destroyed and the reference to the inode will be dropped
3090          * after the end_io call back function is called.
3091          *
3092          * In the case there is 0 byte write, or error case, since VFS
3093          * direct IO won't invoke the end_io call back function, we
3094          * need to free the end_io structure here.
3095          */
3096         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3097                 ext4_free_io_end(iocb->private);
3098                 iocb->private = NULL;
3099         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3100                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3101                 int err;
3102                 /*
3103                  * for non AIO case, since the IO is already
3104                  * completed, we could do the conversion right here
3105                  */
3106                 err = ext4_convert_unwritten_extents(inode,
3107                                                      offset, ret);
3108                 if (err < 0)
3109                         ret = err;
3110                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3111         }
3112
3113 retake_lock:
3114         /* take i_mutex locking again if we do a ovewrite dio */
3115         if (overwrite) {
3116                 inode_dio_done(inode);
3117                 up_read(&EXT4_I(inode)->i_data_sem);
3118                 mutex_lock(&inode->i_mutex);
3119         }
3120
3121         return ret;
3122 }
3123
3124 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3125                               const struct iovec *iov, loff_t offset,
3126                               unsigned long nr_segs)
3127 {
3128         struct file *file = iocb->ki_filp;
3129         struct inode *inode = file->f_mapping->host;
3130         ssize_t ret;
3131
3132         /*
3133          * If we are doing data journalling we don't support O_DIRECT
3134          */
3135         if (ext4_should_journal_data(inode))
3136                 return 0;
3137
3138         /* Let buffer I/O handle the inline data case. */
3139         if (ext4_has_inline_data(inode))
3140                 return 0;
3141
3142         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3143         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3144                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3145         else
3146                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3147         trace_ext4_direct_IO_exit(inode, offset,
3148                                 iov_length(iov, nr_segs), rw, ret);
3149         return ret;
3150 }
3151
3152 /*
3153  * Pages can be marked dirty completely asynchronously from ext4's journalling
3154  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3155  * much here because ->set_page_dirty is called under VFS locks.  The page is
3156  * not necessarily locked.
3157  *
3158  * We cannot just dirty the page and leave attached buffers clean, because the
3159  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3160  * or jbddirty because all the journalling code will explode.
3161  *
3162  * So what we do is to mark the page "pending dirty" and next time writepage
3163  * is called, propagate that into the buffers appropriately.
3164  */
3165 static int ext4_journalled_set_page_dirty(struct page *page)
3166 {
3167         SetPageChecked(page);
3168         return __set_page_dirty_nobuffers(page);
3169 }
3170
3171 static const struct address_space_operations ext4_ordered_aops = {
3172         .readpage               = ext4_readpage,
3173         .readpages              = ext4_readpages,
3174         .writepage              = ext4_writepage,
3175         .write_begin            = ext4_write_begin,
3176         .write_end              = ext4_ordered_write_end,
3177         .bmap                   = ext4_bmap,
3178         .invalidatepage         = ext4_invalidatepage,
3179         .releasepage            = ext4_releasepage,
3180         .direct_IO              = ext4_direct_IO,
3181         .migratepage            = buffer_migrate_page,
3182         .is_partially_uptodate  = block_is_partially_uptodate,
3183         .error_remove_page      = generic_error_remove_page,
3184 };
3185
3186 static const struct address_space_operations ext4_writeback_aops = {
3187         .readpage               = ext4_readpage,
3188         .readpages              = ext4_readpages,
3189         .writepage              = ext4_writepage,
3190         .write_begin            = ext4_write_begin,
3191         .write_end              = ext4_writeback_write_end,
3192         .bmap                   = ext4_bmap,
3193         .invalidatepage         = ext4_invalidatepage,
3194         .releasepage            = ext4_releasepage,
3195         .direct_IO              = ext4_direct_IO,
3196         .migratepage            = buffer_migrate_page,
3197         .is_partially_uptodate  = block_is_partially_uptodate,
3198         .error_remove_page      = generic_error_remove_page,
3199 };
3200
3201 static const struct address_space_operations ext4_journalled_aops = {
3202         .readpage               = ext4_readpage,
3203         .readpages              = ext4_readpages,
3204         .writepage              = ext4_writepage,
3205         .write_begin            = ext4_write_begin,
3206         .write_end              = ext4_journalled_write_end,
3207         .set_page_dirty         = ext4_journalled_set_page_dirty,
3208         .bmap                   = ext4_bmap,
3209         .invalidatepage         = ext4_journalled_invalidatepage,
3210         .releasepage            = ext4_releasepage,
3211         .direct_IO              = ext4_direct_IO,
3212         .is_partially_uptodate  = block_is_partially_uptodate,
3213         .error_remove_page      = generic_error_remove_page,
3214 };
3215
3216 static const struct address_space_operations ext4_da_aops = {
3217         .readpage               = ext4_readpage,
3218         .readpages              = ext4_readpages,
3219         .writepage              = ext4_writepage,
3220         .writepages             = ext4_da_writepages,
3221         .write_begin            = ext4_da_write_begin,
3222         .write_end              = ext4_da_write_end,
3223         .bmap                   = ext4_bmap,
3224         .invalidatepage         = ext4_da_invalidatepage,
3225         .releasepage            = ext4_releasepage,
3226         .direct_IO              = ext4_direct_IO,
3227         .migratepage            = buffer_migrate_page,
3228         .is_partially_uptodate  = block_is_partially_uptodate,
3229         .error_remove_page      = generic_error_remove_page,
3230 };
3231
3232 void ext4_set_aops(struct inode *inode)
3233 {
3234         switch (ext4_inode_journal_mode(inode)) {
3235         case EXT4_INODE_ORDERED_DATA_MODE:
3236                 if (test_opt(inode->i_sb, DELALLOC))
3237                         inode->i_mapping->a_ops = &ext4_da_aops;
3238                 else
3239                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3240                 break;
3241         case EXT4_INODE_WRITEBACK_DATA_MODE:
3242                 if (test_opt(inode->i_sb, DELALLOC))
3243                         inode->i_mapping->a_ops = &ext4_da_aops;
3244                 else
3245                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3246                 break;
3247         case EXT4_INODE_JOURNAL_DATA_MODE:
3248                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3249                 break;
3250         default:
3251                 BUG();
3252         }
3253 }
3254
3255
3256 /*
3257  * ext4_discard_partial_page_buffers()
3258  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3259  * This function finds and locks the page containing the offset
3260  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3261  * Calling functions that already have the page locked should call
3262  * ext4_discard_partial_page_buffers_no_lock directly.
3263  */
3264 int ext4_discard_partial_page_buffers(handle_t *handle,
3265                 struct address_space *mapping, loff_t from,
3266                 loff_t length, int flags)
3267 {
3268         struct inode *inode = mapping->host;
3269         struct page *page;
3270         int err = 0;
3271
3272         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3273                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3274         if (!page)
3275                 return -ENOMEM;
3276
3277         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3278                 from, length, flags);
3279
3280         unlock_page(page);
3281         page_cache_release(page);
3282         return err;
3283 }
3284
3285 /*
3286  * ext4_discard_partial_page_buffers_no_lock()
3287  * Zeros a page range of length 'length' starting from offset 'from'.
3288  * Buffer heads that correspond to the block aligned regions of the
3289  * zeroed range will be unmapped.  Unblock aligned regions
3290  * will have the corresponding buffer head mapped if needed so that
3291  * that region of the page can be updated with the partial zero out.
3292  *
3293  * This function assumes that the page has already been  locked.  The
3294  * The range to be discarded must be contained with in the given page.
3295  * If the specified range exceeds the end of the page it will be shortened
3296  * to the end of the page that corresponds to 'from'.  This function is
3297  * appropriate for updating a page and it buffer heads to be unmapped and
3298  * zeroed for blocks that have been either released, or are going to be
3299  * released.
3300  *
3301  * handle: The journal handle
3302  * inode:  The files inode
3303  * page:   A locked page that contains the offset "from"
3304  * from:   The starting byte offset (from the beginning of the file)
3305  *         to begin discarding
3306  * len:    The length of bytes to discard
3307  * flags:  Optional flags that may be used:
3308  *
3309  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3310  *         Only zero the regions of the page whose buffer heads
3311  *         have already been unmapped.  This flag is appropriate
3312  *         for updating the contents of a page whose blocks may
3313  *         have already been released, and we only want to zero
3314  *         out the regions that correspond to those released blocks.
3315  *
3316  * Returns zero on success or negative on failure.
3317  */
3318 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3319                 struct inode *inode, struct page *page, loff_t from,
3320                 loff_t length, int flags)
3321 {
3322         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3323         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3324         unsigned int blocksize, max, pos;
3325         ext4_lblk_t iblock;
3326         struct buffer_head *bh;
3327         int err = 0;
3328
3329         blocksize = inode->i_sb->s_blocksize;
3330         max = PAGE_CACHE_SIZE - offset;
3331
3332         if (index != page->index)
3333                 return -EINVAL;
3334
3335         /*
3336          * correct length if it does not fall between
3337          * 'from' and the end of the page
3338          */
3339         if (length > max || length < 0)
3340                 length = max;
3341
3342         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3343
3344         if (!page_has_buffers(page))
3345                 create_empty_buffers(page, blocksize, 0);
3346
3347         /* Find the buffer that contains "offset" */
3348         bh = page_buffers(page);
3349         pos = blocksize;
3350         while (offset >= pos) {
3351                 bh = bh->b_this_page;
3352                 iblock++;
3353                 pos += blocksize;
3354         }
3355
3356         pos = offset;
3357         while (pos < offset + length) {
3358                 unsigned int end_of_block, range_to_discard;
3359
3360                 err = 0;
3361
3362                 /* The length of space left to zero and unmap */
3363                 range_to_discard = offset + length - pos;
3364
3365                 /* The length of space until the end of the block */
3366                 end_of_block = blocksize - (pos & (blocksize-1));
3367
3368                 /*
3369                  * Do not unmap or zero past end of block
3370                  * for this buffer head
3371                  */
3372                 if (range_to_discard > end_of_block)
3373                         range_to_discard = end_of_block;
3374
3375
3376                 /*
3377                  * Skip this buffer head if we are only zeroing unampped
3378                  * regions of the page
3379                  */
3380                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3381                         buffer_mapped(bh))
3382                                 goto next;
3383
3384                 /* If the range is block aligned, unmap */
3385                 if (range_to_discard == blocksize) {
3386                         clear_buffer_dirty(bh);
3387                         bh->b_bdev = NULL;
3388                         clear_buffer_mapped(bh);
3389                         clear_buffer_req(bh);
3390                         clear_buffer_new(bh);
3391                         clear_buffer_delay(bh);
3392                         clear_buffer_unwritten(bh);
3393                         clear_buffer_uptodate(bh);
3394                         zero_user(page, pos, range_to_discard);
3395                         BUFFER_TRACE(bh, "Buffer discarded");
3396                         goto next;
3397                 }
3398
3399                 /*
3400                  * If this block is not completely contained in the range
3401                  * to be discarded, then it is not going to be released. Because
3402                  * we need to keep this block, we need to make sure this part
3403                  * of the page is uptodate before we modify it by writeing
3404                  * partial zeros on it.
3405                  */
3406                 if (!buffer_mapped(bh)) {
3407                         /*
3408                          * Buffer head must be mapped before we can read
3409                          * from the block
3410                          */
3411                         BUFFER_TRACE(bh, "unmapped");
3412                         ext4_get_block(inode, iblock, bh, 0);
3413                         /* unmapped? It's a hole - nothing to do */
3414                         if (!buffer_mapped(bh)) {
3415                                 BUFFER_TRACE(bh, "still unmapped");
3416                                 goto next;
3417                         }
3418                 }
3419
3420                 /* Ok, it's mapped. Make sure it's up-to-date */
3421                 if (PageUptodate(page))
3422                         set_buffer_uptodate(bh);
3423
3424                 if (!buffer_uptodate(bh)) {
3425                         err = -EIO;
3426                         ll_rw_block(READ, 1, &bh);
3427                         wait_on_buffer(bh);
3428                         /* Uhhuh. Read error. Complain and punt.*/
3429                         if (!buffer_uptodate(bh))
3430                                 goto next;
3431                 }
3432
3433                 if (ext4_should_journal_data(inode)) {
3434                         BUFFER_TRACE(bh, "get write access");
3435                         err = ext4_journal_get_write_access(handle, bh);
3436                         if (err)
3437                                 goto next;
3438                 }
3439
3440                 zero_user(page, pos, range_to_discard);
3441
3442                 err = 0;
3443                 if (ext4_should_journal_data(inode)) {
3444                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3445                 } else
3446                         mark_buffer_dirty(bh);
3447
3448                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3449 next:
3450                 bh = bh->b_this_page;
3451                 iblock++;
3452                 pos += range_to_discard;
3453         }
3454
3455         return err;
3456 }
3457
3458 int ext4_can_truncate(struct inode *inode)
3459 {
3460         if (S_ISREG(inode->i_mode))
3461                 return 1;
3462         if (S_ISDIR(inode->i_mode))
3463                 return 1;
3464         if (S_ISLNK(inode->i_mode))
3465                 return !ext4_inode_is_fast_symlink(inode);
3466         return 0;
3467 }
3468
3469 /*
3470  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3471  * associated with the given offset and length
3472  *
3473  * @inode:  File inode
3474  * @offset: The offset where the hole will begin
3475  * @len:    The length of the hole
3476  *
3477  * Returns: 0 on success or negative on failure
3478  */
3479
3480 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3481 {
3482         struct inode *inode = file_inode(file);
3483         if (!S_ISREG(inode->i_mode))
3484                 return -EOPNOTSUPP;
3485
3486         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3487                 return ext4_ind_punch_hole(file, offset, length);
3488
3489         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3490                 /* TODO: Add support for bigalloc file systems */
3491                 return -EOPNOTSUPP;
3492         }
3493
3494         trace_ext4_punch_hole(inode, offset, length);
3495
3496         return ext4_ext_punch_hole(file, offset, length);
3497 }
3498
3499 /*
3500  * ext4_truncate()
3501  *
3502  * We block out ext4_get_block() block instantiations across the entire
3503  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3504  * simultaneously on behalf of the same inode.
3505  *
3506  * As we work through the truncate and commit bits of it to the journal there
3507  * is one core, guiding principle: the file's tree must always be consistent on
3508  * disk.  We must be able to restart the truncate after a crash.
3509  *
3510  * The file's tree may be transiently inconsistent in memory (although it
3511  * probably isn't), but whenever we close off and commit a journal transaction,
3512  * the contents of (the filesystem + the journal) must be consistent and
3513  * restartable.  It's pretty simple, really: bottom up, right to left (although
3514  * left-to-right works OK too).
3515  *
3516  * Note that at recovery time, journal replay occurs *before* the restart of
3517  * truncate against the orphan inode list.
3518  *
3519  * The committed inode has the new, desired i_size (which is the same as
3520  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3521  * that this inode's truncate did not complete and it will again call
3522  * ext4_truncate() to have another go.  So there will be instantiated blocks
3523  * to the right of the truncation point in a crashed ext4 filesystem.  But
3524  * that's fine - as long as they are linked from the inode, the post-crash
3525  * ext4_truncate() run will find them and release them.
3526  */
3527 void ext4_truncate(struct inode *inode)
3528 {
3529         trace_ext4_truncate_enter(inode);
3530
3531         if (!ext4_can_truncate(inode))
3532                 return;
3533
3534         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3535
3536         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3537                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3538
3539         if (ext4_has_inline_data(inode)) {
3540                 int has_inline = 1;
3541
3542                 ext4_inline_data_truncate(inode, &has_inline);
3543                 if (has_inline)
3544                         return;
3545         }
3546
3547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3548                 ext4_ext_truncate(inode);
3549         else
3550                 ext4_ind_truncate(inode);
3551
3552         trace_ext4_truncate_exit(inode);
3553 }
3554
3555 /*
3556  * ext4_get_inode_loc returns with an extra refcount against the inode's
3557  * underlying buffer_head on success. If 'in_mem' is true, we have all
3558  * data in memory that is needed to recreate the on-disk version of this
3559  * inode.
3560  */
3561 static int __ext4_get_inode_loc(struct inode *inode,
3562                                 struct ext4_iloc *iloc, int in_mem)
3563 {
3564         struct ext4_group_desc  *gdp;
3565         struct buffer_head      *bh;
3566         struct super_block      *sb = inode->i_sb;
3567         ext4_fsblk_t            block;
3568         int                     inodes_per_block, inode_offset;
3569
3570         iloc->bh = NULL;
3571         if (!ext4_valid_inum(sb, inode->i_ino))
3572                 return -EIO;
3573
3574         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3575         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3576         if (!gdp)
3577                 return -EIO;
3578
3579         /*
3580          * Figure out the offset within the block group inode table
3581          */
3582         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3583         inode_offset = ((inode->i_ino - 1) %
3584                         EXT4_INODES_PER_GROUP(sb));
3585         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3586         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3587
3588         bh = sb_getblk(sb, block);
3589         if (unlikely(!bh))
3590                 return -ENOMEM;
3591         if (!buffer_uptodate(bh)) {
3592                 lock_buffer(bh);
3593
3594                 /*
3595                  * If the buffer has the write error flag, we have failed
3596                  * to write out another inode in the same block.  In this
3597                  * case, we don't have to read the block because we may
3598                  * read the old inode data successfully.
3599                  */
3600                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3601                         set_buffer_uptodate(bh);
3602
3603                 if (buffer_uptodate(bh)) {
3604                         /* someone brought it uptodate while we waited */
3605                         unlock_buffer(bh);
3606                         goto has_buffer;
3607                 }
3608
3609                 /*
3610                  * If we have all information of the inode in memory and this
3611                  * is the only valid inode in the block, we need not read the
3612                  * block.
3613                  */
3614                 if (in_mem) {
3615                         struct buffer_head *bitmap_bh;
3616                         int i, start;
3617
3618                         start = inode_offset & ~(inodes_per_block - 1);
3619
3620                         /* Is the inode bitmap in cache? */
3621                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3622                         if (unlikely(!bitmap_bh))
3623                                 goto make_io;
3624
3625                         /*
3626                          * If the inode bitmap isn't in cache then the
3627                          * optimisation may end up performing two reads instead
3628                          * of one, so skip it.
3629                          */
3630                         if (!buffer_uptodate(bitmap_bh)) {
3631                                 brelse(bitmap_bh);
3632                                 goto make_io;
3633                         }
3634                         for (i = start; i < start + inodes_per_block; i++) {
3635                                 if (i == inode_offset)
3636                                         continue;
3637                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3638                                         break;
3639                         }
3640                         brelse(bitmap_bh);
3641                         if (i == start + inodes_per_block) {
3642                                 /* all other inodes are free, so skip I/O */
3643                                 memset(bh->b_data, 0, bh->b_size);
3644                                 set_buffer_uptodate(bh);
3645                                 unlock_buffer(bh);
3646                                 goto has_buffer;
3647                         }
3648                 }
3649
3650 make_io:
3651                 /*
3652                  * If we need to do any I/O, try to pre-readahead extra
3653                  * blocks from the inode table.
3654                  */
3655                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3656                         ext4_fsblk_t b, end, table;
3657                         unsigned num;
3658
3659                         table = ext4_inode_table(sb, gdp);
3660                         /* s_inode_readahead_blks is always a power of 2 */
3661                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3662                         if (table > b)
3663                                 b = table;
3664                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3665                         num = EXT4_INODES_PER_GROUP(sb);
3666                         if (ext4_has_group_desc_csum(sb))
3667                                 num -= ext4_itable_unused_count(sb, gdp);
3668                         table += num / inodes_per_block;
3669                         if (end > table)
3670                                 end = table;
3671                         while (b <= end)
3672                                 sb_breadahead(sb, b++);
3673                 }
3674
3675                 /*
3676                  * There are other valid inodes in the buffer, this inode
3677                  * has in-inode xattrs, or we don't have this inode in memory.
3678                  * Read the block from disk.
3679                  */
3680                 trace_ext4_load_inode(inode);
3681                 get_bh(bh);
3682                 bh->b_end_io = end_buffer_read_sync;
3683                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3684                 wait_on_buffer(bh);
3685                 if (!buffer_uptodate(bh)) {
3686                         EXT4_ERROR_INODE_BLOCK(inode, block,
3687                                                "unable to read itable block");
3688                         brelse(bh);
3689                         return -EIO;
3690                 }
3691         }
3692 has_buffer:
3693         iloc->bh = bh;
3694         return 0;
3695 }
3696
3697 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3698 {
3699         /* We have all inode data except xattrs in memory here. */
3700         return __ext4_get_inode_loc(inode, iloc,
3701                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3702 }
3703
3704 void ext4_set_inode_flags(struct inode *inode)
3705 {
3706         unsigned int flags = EXT4_I(inode)->i_flags;
3707
3708         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3709         if (flags & EXT4_SYNC_FL)
3710                 inode->i_flags |= S_SYNC;
3711         if (flags & EXT4_APPEND_FL)
3712                 inode->i_flags |= S_APPEND;
3713         if (flags & EXT4_IMMUTABLE_FL)
3714                 inode->i_flags |= S_IMMUTABLE;
3715         if (flags & EXT4_NOATIME_FL)
3716                 inode->i_flags |= S_NOATIME;
3717         if (flags & EXT4_DIRSYNC_FL)
3718                 inode->i_flags |= S_DIRSYNC;
3719 }
3720
3721 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3722 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3723 {
3724         unsigned int vfs_fl;
3725         unsigned long old_fl, new_fl;
3726
3727         do {
3728                 vfs_fl = ei->vfs_inode.i_flags;
3729                 old_fl = ei->i_flags;
3730                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3731                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3732                                 EXT4_DIRSYNC_FL);
3733                 if (vfs_fl & S_SYNC)
3734                         new_fl |= EXT4_SYNC_FL;
3735                 if (vfs_fl & S_APPEND)
3736                         new_fl |= EXT4_APPEND_FL;
3737                 if (vfs_fl & S_IMMUTABLE)
3738                         new_fl |= EXT4_IMMUTABLE_FL;
3739                 if (vfs_fl & S_NOATIME)
3740                         new_fl |= EXT4_NOATIME_FL;
3741                 if (vfs_fl & S_DIRSYNC)
3742                         new_fl |= EXT4_DIRSYNC_FL;
3743         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3744 }
3745
3746 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3747                                   struct ext4_inode_info *ei)
3748 {
3749         blkcnt_t i_blocks ;
3750         struct inode *inode = &(ei->vfs_inode);
3751         struct super_block *sb = inode->i_sb;
3752
3753         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3754                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3755                 /* we are using combined 48 bit field */
3756                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3757                                         le32_to_cpu(raw_inode->i_blocks_lo);
3758                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3759                         /* i_blocks represent file system block size */
3760                         return i_blocks  << (inode->i_blkbits - 9);
3761                 } else {
3762                         return i_blocks;
3763                 }
3764         } else {
3765                 return le32_to_cpu(raw_inode->i_blocks_lo);
3766         }
3767 }
3768
3769 static inline void ext4_iget_extra_inode(struct inode *inode,
3770                                          struct ext4_inode *raw_inode,
3771                                          struct ext4_inode_info *ei)
3772 {
3773         __le32 *magic = (void *)raw_inode +
3774                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3775         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3776                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3777                 ext4_find_inline_data_nolock(inode);
3778         } else
3779                 EXT4_I(inode)->i_inline_off = 0;
3780 }
3781
3782 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3783 {
3784         struct ext4_iloc iloc;
3785         struct ext4_inode *raw_inode;
3786         struct ext4_inode_info *ei;
3787         struct inode *inode;
3788         journal_t *journal = EXT4_SB(sb)->s_journal;
3789         long ret;
3790         int block;
3791         uid_t i_uid;
3792         gid_t i_gid;
3793
3794         inode = iget_locked(sb, ino);
3795         if (!inode)
3796                 return ERR_PTR(-ENOMEM);
3797         if (!(inode->i_state & I_NEW))
3798                 return inode;
3799
3800         ei = EXT4_I(inode);
3801         iloc.bh = NULL;
3802
3803         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3804         if (ret < 0)
3805                 goto bad_inode;
3806         raw_inode = ext4_raw_inode(&iloc);
3807
3808         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3809                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3810                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3811                     EXT4_INODE_SIZE(inode->i_sb)) {
3812                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3813                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3814                                 EXT4_INODE_SIZE(inode->i_sb));
3815                         ret = -EIO;
3816                         goto bad_inode;
3817                 }
3818         } else
3819                 ei->i_extra_isize = 0;
3820
3821         /* Precompute checksum seed for inode metadata */
3822         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3823                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3824                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3825                 __u32 csum;
3826                 __le32 inum = cpu_to_le32(inode->i_ino);
3827                 __le32 gen = raw_inode->i_generation;
3828                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3829                                    sizeof(inum));
3830                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3831                                               sizeof(gen));
3832         }
3833
3834         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3835                 EXT4_ERROR_INODE(inode, "checksum invalid");
3836                 ret = -EIO;
3837                 goto bad_inode;
3838         }
3839
3840         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3841         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3842         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3843         if (!(test_opt(inode->i_sb, NO_UID32))) {
3844                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3845                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3846         }
3847         i_uid_write(inode, i_uid);
3848         i_gid_write(inode, i_gid);
3849         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3850
3851         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3852         ei->i_inline_off = 0;
3853         ei->i_dir_start_lookup = 0;
3854         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3855         /* We now have enough fields to check if the inode was active or not.
3856          * This is needed because nfsd might try to access dead inodes
3857          * the test is that same one that e2fsck uses
3858          * NeilBrown 1999oct15
3859          */
3860         if (inode->i_nlink == 0) {
3861                 if (inode->i_mode == 0 ||
3862                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3863                         /* this inode is deleted */
3864                         ret = -ESTALE;
3865                         goto bad_inode;
3866                 }
3867                 /* The only unlinked inodes we let through here have
3868                  * valid i_mode and are being read by the orphan
3869                  * recovery code: that's fine, we're about to complete
3870                  * the process of deleting those. */
3871         }
3872         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3873         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3874         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3875         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3876                 ei->i_file_acl |=
3877                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3878         inode->i_size = ext4_isize(raw_inode);
3879         ei->i_disksize = inode->i_size;
3880 #ifdef CONFIG_QUOTA
3881         ei->i_reserved_quota = 0;
3882 #endif
3883         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3884         ei->i_block_group = iloc.block_group;
3885         ei->i_last_alloc_group = ~0;
3886         /*
3887          * NOTE! The in-memory inode i_data array is in little-endian order
3888          * even on big-endian machines: we do NOT byteswap the block numbers!
3889          */
3890         for (block = 0; block < EXT4_N_BLOCKS; block++)
3891                 ei->i_data[block] = raw_inode->i_block[block];
3892         INIT_LIST_HEAD(&ei->i_orphan);
3893
3894         /*
3895          * Set transaction id's of transactions that have to be committed
3896          * to finish f[data]sync. We set them to currently running transaction
3897          * as we cannot be sure that the inode or some of its metadata isn't
3898          * part of the transaction - the inode could have been reclaimed and
3899          * now it is reread from disk.
3900          */
3901         if (journal) {
3902                 transaction_t *transaction;
3903                 tid_t tid;
3904
3905                 read_lock(&journal->j_state_lock);
3906                 if (journal->j_running_transaction)
3907                         transaction = journal->j_running_transaction;
3908                 else
3909                         transaction = journal->j_committing_transaction;
3910                 if (transaction)
3911                         tid = transaction->t_tid;
3912                 else
3913                         tid = journal->j_commit_sequence;
3914                 read_unlock(&journal->j_state_lock);
3915                 ei->i_sync_tid = tid;
3916                 ei->i_datasync_tid = tid;
3917         }
3918
3919         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3920                 if (ei->i_extra_isize == 0) {
3921                         /* The extra space is currently unused. Use it. */
3922                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3923                                             EXT4_GOOD_OLD_INODE_SIZE;
3924                 } else {
3925                         ext4_iget_extra_inode(inode, raw_inode, ei);
3926                 }
3927         }
3928
3929         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3930         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3931         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3932         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3933
3934         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3935         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3936                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3937                         inode->i_version |=
3938                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3939         }
3940
3941         ret = 0;
3942         if (ei->i_file_acl &&
3943             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3944                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3945                                  ei->i_file_acl);
3946                 ret = -EIO;
3947                 goto bad_inode;
3948         } else if (!ext4_has_inline_data(inode)) {
3949                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3950                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3951                             (S_ISLNK(inode->i_mode) &&
3952                              !ext4_inode_is_fast_symlink(inode))))
3953                                 /* Validate extent which is part of inode */
3954                                 ret = ext4_ext_check_inode(inode);
3955                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3956                            (S_ISLNK(inode->i_mode) &&
3957                             !ext4_inode_is_fast_symlink(inode))) {
3958                         /* Validate block references which are part of inode */
3959                         ret = ext4_ind_check_inode(inode);
3960                 }
3961         }
3962         if (ret)
3963                 goto bad_inode;
3964
3965         if (S_ISREG(inode->i_mode)) {
3966                 inode->i_op = &ext4_file_inode_operations;
3967                 inode->i_fop = &ext4_file_operations;
3968                 ext4_set_aops(inode);
3969         } else if (S_ISDIR(inode->i_mode)) {
3970                 inode->i_op = &ext4_dir_inode_operations;
3971                 inode->i_fop = &ext4_dir_operations;
3972         } else if (S_ISLNK(inode->i_mode)) {
3973                 if (ext4_inode_is_fast_symlink(inode)) {
3974                         inode->i_op = &ext4_fast_symlink_inode_operations;
3975                         nd_terminate_link(ei->i_data, inode->i_size,
3976                                 sizeof(ei->i_data) - 1);
3977                 } else {
3978                         inode->i_op = &ext4_symlink_inode_operations;
3979                         ext4_set_aops(inode);
3980                 }
3981         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3982               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3983                 inode->i_op = &ext4_special_inode_operations;
3984                 if (raw_inode->i_block[0])
3985                         init_special_inode(inode, inode->i_mode,
3986                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3987                 else
3988                         init_special_inode(inode, inode->i_mode,
3989                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3990         } else {
3991                 ret = -EIO;
3992                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3993                 goto bad_inode;
3994         }
3995         brelse(iloc.bh);
3996         ext4_set_inode_flags(inode);
3997         unlock_new_inode(inode);
3998         return inode;
3999
4000 bad_inode:
4001         brelse(iloc.bh);
4002         iget_failed(inode);
4003         return ERR_PTR(ret);
4004 }
4005
4006 static int ext4_inode_blocks_set(handle_t *handle,
4007                                 struct ext4_inode *raw_inode,
4008                                 struct ext4_inode_info *ei)
4009 {
4010         struct inode *inode = &(ei->vfs_inode);
4011         u64 i_blocks = inode->i_blocks;
4012         struct super_block *sb = inode->i_sb;
4013
4014         if (i_blocks <= ~0U) {
4015                 /*
4016                  * i_blocks can be represented in a 32 bit variable
4017                  * as multiple of 512 bytes
4018                  */
4019                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4020                 raw_inode->i_blocks_high = 0;
4021                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4022                 return 0;
4023         }
4024         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4025                 return -EFBIG;
4026
4027         if (i_blocks <= 0xffffffffffffULL) {
4028                 /*
4029                  * i_blocks can be represented in a 48 bit variable
4030                  * as multiple of 512 bytes
4031                  */
4032                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4033                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4034                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4035         } else {
4036                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4037                 /* i_block is stored in file system block size */
4038                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4039                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4040                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4041         }
4042         return 0;
4043 }
4044
4045 /*
4046  * Post the struct inode info into an on-disk inode location in the
4047  * buffer-cache.  This gobbles the caller's reference to the
4048  * buffer_head in the inode location struct.
4049  *
4050  * The caller must have write access to iloc->bh.
4051  */
4052 static int ext4_do_update_inode(handle_t *handle,
4053                                 struct inode *inode,
4054                                 struct ext4_iloc *iloc)
4055 {
4056         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4057         struct ext4_inode_info *ei = EXT4_I(inode);
4058         struct buffer_head *bh = iloc->bh;
4059         int err = 0, rc, block;
4060         int need_datasync = 0;
4061         uid_t i_uid;
4062         gid_t i_gid;
4063
4064         /* For fields not not tracking in the in-memory inode,
4065          * initialise them to zero for new inodes. */
4066         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4067                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4068
4069         ext4_get_inode_flags(ei);
4070         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4071         i_uid = i_uid_read(inode);
4072         i_gid = i_gid_read(inode);
4073         if (!(test_opt(inode->i_sb, NO_UID32))) {
4074                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4075                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4076 /*
4077  * Fix up interoperability with old kernels. Otherwise, old inodes get
4078  * re-used with the upper 16 bits of the uid/gid intact
4079  */
4080                 if (!ei->i_dtime) {
4081                         raw_inode->i_uid_high =
4082                                 cpu_to_le16(high_16_bits(i_uid));
4083                         raw_inode->i_gid_high =
4084                                 cpu_to_le16(high_16_bits(i_gid));
4085                 } else {
4086                         raw_inode->i_uid_high = 0;
4087                         raw_inode->i_gid_high = 0;
4088                 }
4089         } else {
4090                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4091                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4092                 raw_inode->i_uid_high = 0;
4093                 raw_inode->i_gid_high = 0;
4094         }
4095         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4096
4097         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4098         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4099         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4100         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4101
4102         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4103                 goto out_brelse;
4104         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4105         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4107             cpu_to_le32(EXT4_OS_HURD))
4108                 raw_inode->i_file_acl_high =
4109                         cpu_to_le16(ei->i_file_acl >> 32);
4110         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4111         if (ei->i_disksize != ext4_isize(raw_inode)) {
4112                 ext4_isize_set(raw_inode, ei->i_disksize);
4113                 need_datasync = 1;
4114         }
4115         if (ei->i_disksize > 0x7fffffffULL) {
4116                 struct super_block *sb = inode->i_sb;
4117                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4118                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4119                                 EXT4_SB(sb)->s_es->s_rev_level ==
4120                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4121                         /* If this is the first large file
4122                          * created, add a flag to the superblock.
4123                          */
4124                         err = ext4_journal_get_write_access(handle,
4125                                         EXT4_SB(sb)->s_sbh);
4126                         if (err)
4127                                 goto out_brelse;
4128                         ext4_update_dynamic_rev(sb);
4129                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4130                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4131                         ext4_handle_sync(handle);
4132                         err = ext4_handle_dirty_super(handle, sb);
4133                 }
4134         }
4135         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4136         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4137                 if (old_valid_dev(inode->i_rdev)) {
4138                         raw_inode->i_block[0] =
4139                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4140                         raw_inode->i_block[1] = 0;
4141                 } else {
4142                         raw_inode->i_block[0] = 0;
4143                         raw_inode->i_block[1] =
4144                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4145                         raw_inode->i_block[2] = 0;
4146                 }
4147         } else if (!ext4_has_inline_data(inode)) {
4148                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4149                         raw_inode->i_block[block] = ei->i_data[block];
4150         }
4151
4152         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4153         if (ei->i_extra_isize) {
4154                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4155                         raw_inode->i_version_hi =
4156                         cpu_to_le32(inode->i_version >> 32);
4157                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4158         }
4159
4160         ext4_inode_csum_set(inode, raw_inode, ei);
4161
4162         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4163         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4164         if (!err)
4165                 err = rc;
4166         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4167
4168         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4169 out_brelse:
4170         brelse(bh);
4171         ext4_std_error(inode->i_sb, err);
4172         return err;
4173 }
4174
4175 /*
4176  * ext4_write_inode()
4177  *
4178  * We are called from a few places:
4179  *
4180  * - Within generic_file_write() for O_SYNC files.
4181  *   Here, there will be no transaction running. We wait for any running
4182  *   transaction to commit.
4183  *
4184  * - Within sys_sync(), kupdate and such.
4185  *   We wait on commit, if tol to.
4186  *
4187  * - Within prune_icache() (PF_MEMALLOC == true)
4188  *   Here we simply return.  We can't afford to block kswapd on the
4189  *   journal commit.
4190  *
4191  * In all cases it is actually safe for us to return without doing anything,
4192  * because the inode has been copied into a raw inode buffer in
4193  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4194  * knfsd.
4195  *
4196  * Note that we are absolutely dependent upon all inode dirtiers doing the
4197  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4198  * which we are interested.
4199  *
4200  * It would be a bug for them to not do this.  The code:
4201  *
4202  *      mark_inode_dirty(inode)
4203  *      stuff();
4204  *      inode->i_size = expr;
4205  *
4206  * is in error because a kswapd-driven write_inode() could occur while
4207  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4208  * will no longer be on the superblock's dirty inode list.
4209  */
4210 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4211 {
4212         int err;
4213
4214         if (current->flags & PF_MEMALLOC)
4215                 return 0;
4216
4217         if (EXT4_SB(inode->i_sb)->s_journal) {
4218                 if (ext4_journal_current_handle()) {
4219                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4220                         dump_stack();
4221                         return -EIO;
4222                 }
4223
4224                 if (wbc->sync_mode != WB_SYNC_ALL)
4225                         return 0;
4226
4227                 err = ext4_force_commit(inode->i_sb);
4228         } else {
4229                 struct ext4_iloc iloc;
4230
4231                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4232                 if (err)
4233                         return err;
4234                 if (wbc->sync_mode == WB_SYNC_ALL)
4235                         sync_dirty_buffer(iloc.bh);
4236                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4237                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4238                                          "IO error syncing inode");
4239                         err = -EIO;
4240                 }
4241                 brelse(iloc.bh);
4242         }
4243         return err;
4244 }
4245
4246 /*
4247  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4248  * buffers that are attached to a page stradding i_size and are undergoing
4249  * commit. In that case we have to wait for commit to finish and try again.
4250  */
4251 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4252 {
4253         struct page *page;
4254         unsigned offset;
4255         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4256         tid_t commit_tid = 0;
4257         int ret;
4258
4259         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4260         /*
4261          * All buffers in the last page remain valid? Then there's nothing to
4262          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4263          * blocksize case
4264          */
4265         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4266                 return;
4267         while (1) {
4268                 page = find_lock_page(inode->i_mapping,
4269                                       inode->i_size >> PAGE_CACHE_SHIFT);
4270                 if (!page)
4271                         return;
4272                 ret = __ext4_journalled_invalidatepage(page, offset);
4273                 unlock_page(page);
4274                 page_cache_release(page);
4275                 if (ret != -EBUSY)
4276                         return;
4277                 commit_tid = 0;
4278                 read_lock(&journal->j_state_lock);
4279                 if (journal->j_committing_transaction)
4280                         commit_tid = journal->j_committing_transaction->t_tid;
4281                 read_unlock(&journal->j_state_lock);
4282                 if (commit_tid)
4283                         jbd2_log_wait_commit(journal, commit_tid);
4284         }
4285 }
4286
4287 /*
4288  * ext4_setattr()
4289  *
4290  * Called from notify_change.
4291  *
4292  * We want to trap VFS attempts to truncate the file as soon as
4293  * possible.  In particular, we want to make sure that when the VFS
4294  * shrinks i_size, we put the inode on the orphan list and modify
4295  * i_disksize immediately, so that during the subsequent flushing of
4296  * dirty pages and freeing of disk blocks, we can guarantee that any
4297  * commit will leave the blocks being flushed in an unused state on
4298  * disk.  (On recovery, the inode will get truncated and the blocks will
4299  * be freed, so we have a strong guarantee that no future commit will
4300  * leave these blocks visible to the user.)
4301  *
4302  * Another thing we have to assure is that if we are in ordered mode
4303  * and inode is still attached to the committing transaction, we must
4304  * we start writeout of all the dirty pages which are being truncated.
4305  * This way we are sure that all the data written in the previous
4306  * transaction are already on disk (truncate waits for pages under
4307  * writeback).
4308  *
4309  * Called with inode->i_mutex down.
4310  */
4311 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4312 {
4313         struct inode *inode = dentry->d_inode;
4314         int error, rc = 0;
4315         int orphan = 0;
4316         const unsigned int ia_valid = attr->ia_valid;
4317
4318         error = inode_change_ok(inode, attr);
4319         if (error)
4320                 return error;
4321
4322         if (is_quota_modification(inode, attr))
4323                 dquot_initialize(inode);
4324         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4325             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4326                 handle_t *handle;
4327
4328                 /* (user+group)*(old+new) structure, inode write (sb,
4329                  * inode block, ? - but truncate inode update has it) */
4330                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4331                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4332                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4333                 if (IS_ERR(handle)) {
4334                         error = PTR_ERR(handle);
4335                         goto err_out;
4336                 }
4337                 error = dquot_transfer(inode, attr);
4338                 if (error) {
4339                         ext4_journal_stop(handle);
4340                         return error;
4341                 }
4342                 /* Update corresponding info in inode so that everything is in
4343                  * one transaction */
4344                 if (attr->ia_valid & ATTR_UID)
4345                         inode->i_uid = attr->ia_uid;
4346                 if (attr->ia_valid & ATTR_GID)
4347                         inode->i_gid = attr->ia_gid;
4348                 error = ext4_mark_inode_dirty(handle, inode);
4349                 ext4_journal_stop(handle);
4350         }
4351
4352         if (attr->ia_valid & ATTR_SIZE) {
4353
4354                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4355                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4356
4357                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4358                                 return -EFBIG;
4359                 }
4360         }
4361
4362         if (S_ISREG(inode->i_mode) &&
4363             attr->ia_valid & ATTR_SIZE &&
4364             (attr->ia_size < inode->i_size)) {
4365                 handle_t *handle;
4366
4367                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4368                 if (IS_ERR(handle)) {
4369                         error = PTR_ERR(handle);
4370                         goto err_out;
4371                 }
4372                 if (ext4_handle_valid(handle)) {
4373                         error = ext4_orphan_add(handle, inode);
4374                         orphan = 1;
4375                 }
4376                 EXT4_I(inode)->i_disksize = attr->ia_size;
4377                 rc = ext4_mark_inode_dirty(handle, inode);
4378                 if (!error)
4379                         error = rc;
4380                 ext4_journal_stop(handle);
4381
4382                 if (ext4_should_order_data(inode)) {
4383                         error = ext4_begin_ordered_truncate(inode,
4384                                                             attr->ia_size);
4385                         if (error) {
4386                                 /* Do as much error cleanup as possible */
4387                                 handle = ext4_journal_start(inode,
4388                                                             EXT4_HT_INODE, 3);
4389                                 if (IS_ERR(handle)) {
4390                                         ext4_orphan_del(NULL, inode);
4391                                         goto err_out;
4392                                 }
4393                                 ext4_orphan_del(handle, inode);
4394                                 orphan = 0;
4395                                 ext4_journal_stop(handle);
4396                                 goto err_out;
4397                         }
4398                 }
4399         }
4400
4401         if (attr->ia_valid & ATTR_SIZE) {
4402                 if (attr->ia_size != inode->i_size) {
4403                         loff_t oldsize = inode->i_size;
4404
4405                         i_size_write(inode, attr->ia_size);
4406                         /*
4407                          * Blocks are going to be removed from the inode. Wait
4408                          * for dio in flight.  Temporarily disable
4409                          * dioread_nolock to prevent livelock.
4410                          */
4411                         if (orphan) {
4412                                 if (!ext4_should_journal_data(inode)) {
4413                                         ext4_inode_block_unlocked_dio(inode);
4414                                         inode_dio_wait(inode);
4415                                         ext4_inode_resume_unlocked_dio(inode);
4416                                 } else
4417                                         ext4_wait_for_tail_page_commit(inode);
4418                         }
4419                         /*
4420                          * Truncate pagecache after we've waited for commit
4421                          * in data=journal mode to make pages freeable.
4422                          */
4423                         truncate_pagecache(inode, oldsize, inode->i_size);
4424                 }
4425                 ext4_truncate(inode);
4426         }
4427
4428         if (!rc) {
4429                 setattr_copy(inode, attr);
4430                 mark_inode_dirty(inode);
4431         }
4432
4433         /*
4434          * If the call to ext4_truncate failed to get a transaction handle at
4435          * all, we need to clean up the in-core orphan list manually.
4436          */
4437         if (orphan && inode->i_nlink)
4438                 ext4_orphan_del(NULL, inode);
4439
4440         if (!rc && (ia_valid & ATTR_MODE))
4441                 rc = ext4_acl_chmod(inode);
4442
4443 err_out:
4444         ext4_std_error(inode->i_sb, error);
4445         if (!error)
4446                 error = rc;
4447         return error;
4448 }
4449
4450 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4451                  struct kstat *stat)
4452 {
4453         struct inode *inode;
4454         unsigned long delalloc_blocks;
4455
4456         inode = dentry->d_inode;
4457         generic_fillattr(inode, stat);
4458
4459         /*
4460          * We can't update i_blocks if the block allocation is delayed
4461          * otherwise in the case of system crash before the real block
4462          * allocation is done, we will have i_blocks inconsistent with
4463          * on-disk file blocks.
4464          * We always keep i_blocks updated together with real
4465          * allocation. But to not confuse with user, stat
4466          * will return the blocks that include the delayed allocation
4467          * blocks for this file.
4468          */
4469         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4470                                 EXT4_I(inode)->i_reserved_data_blocks);
4471
4472         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4473         return 0;
4474 }
4475
4476 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4477 {
4478         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4479                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4480         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4481 }
4482
4483 /*
4484  * Account for index blocks, block groups bitmaps and block group
4485  * descriptor blocks if modify datablocks and index blocks
4486  * worse case, the indexs blocks spread over different block groups
4487  *
4488  * If datablocks are discontiguous, they are possible to spread over
4489  * different block groups too. If they are contiguous, with flexbg,
4490  * they could still across block group boundary.
4491  *
4492  * Also account for superblock, inode, quota and xattr blocks
4493  */
4494 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4495 {
4496         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4497         int gdpblocks;
4498         int idxblocks;
4499         int ret = 0;
4500
4501         /*
4502          * How many index blocks need to touch to modify nrblocks?
4503          * The "Chunk" flag indicating whether the nrblocks is
4504          * physically contiguous on disk
4505          *
4506          * For Direct IO and fallocate, they calls get_block to allocate
4507          * one single extent at a time, so they could set the "Chunk" flag
4508          */
4509         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4510
4511         ret = idxblocks;
4512
4513         /*
4514          * Now let's see how many group bitmaps and group descriptors need
4515          * to account
4516          */
4517         groups = idxblocks;
4518         if (chunk)
4519                 groups += 1;
4520         else
4521                 groups += nrblocks;
4522
4523         gdpblocks = groups;
4524         if (groups > ngroups)
4525                 groups = ngroups;
4526         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4527                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4528
4529         /* bitmaps and block group descriptor blocks */
4530         ret += groups + gdpblocks;
4531
4532         /* Blocks for super block, inode, quota and xattr blocks */
4533         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4534
4535         return ret;
4536 }
4537
4538 /*
4539  * Calculate the total number of credits to reserve to fit
4540  * the modification of a single pages into a single transaction,
4541  * which may include multiple chunks of block allocations.
4542  *
4543  * This could be called via ext4_write_begin()
4544  *
4545  * We need to consider the worse case, when
4546  * one new block per extent.
4547  */
4548 int ext4_writepage_trans_blocks(struct inode *inode)
4549 {
4550         int bpp = ext4_journal_blocks_per_page(inode);
4551         int ret;
4552
4553         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4554
4555         /* Account for data blocks for journalled mode */
4556         if (ext4_should_journal_data(inode))
4557                 ret += bpp;
4558         return ret;
4559 }
4560
4561 /*
4562  * Calculate the journal credits for a chunk of data modification.
4563  *
4564  * This is called from DIO, fallocate or whoever calling
4565  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4566  *
4567  * journal buffers for data blocks are not included here, as DIO
4568  * and fallocate do no need to journal data buffers.
4569  */
4570 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4571 {
4572         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4573 }
4574
4575 /*
4576  * The caller must have previously called ext4_reserve_inode_write().
4577  * Give this, we know that the caller already has write access to iloc->bh.
4578  */
4579 int ext4_mark_iloc_dirty(handle_t *handle,
4580                          struct inode *inode, struct ext4_iloc *iloc)
4581 {
4582         int err = 0;
4583
4584         if (IS_I_VERSION(inode))
4585                 inode_inc_iversion(inode);
4586
4587         /* the do_update_inode consumes one bh->b_count */
4588         get_bh(iloc->bh);
4589
4590         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4591         err = ext4_do_update_inode(handle, inode, iloc);
4592         put_bh(iloc->bh);
4593         return err;
4594 }
4595
4596 /*
4597  * On success, We end up with an outstanding reference count against
4598  * iloc->bh.  This _must_ be cleaned up later.
4599  */
4600
4601 int
4602 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4603                          struct ext4_iloc *iloc)
4604 {
4605         int err;
4606
4607         err = ext4_get_inode_loc(inode, iloc);
4608         if (!err) {
4609                 BUFFER_TRACE(iloc->bh, "get_write_access");
4610                 err = ext4_journal_get_write_access(handle, iloc->bh);
4611                 if (err) {
4612                         brelse(iloc->bh);
4613                         iloc->bh = NULL;
4614                 }
4615         }
4616         ext4_std_error(inode->i_sb, err);
4617         return err;
4618 }
4619
4620 /*
4621  * Expand an inode by new_extra_isize bytes.
4622  * Returns 0 on success or negative error number on failure.
4623  */
4624 static int ext4_expand_extra_isize(struct inode *inode,
4625                                    unsigned int new_extra_isize,
4626                                    struct ext4_iloc iloc,
4627                                    handle_t *handle)
4628 {
4629         struct ext4_inode *raw_inode;
4630         struct ext4_xattr_ibody_header *header;
4631
4632         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4633                 return 0;
4634
4635         raw_inode = ext4_raw_inode(&iloc);
4636
4637         header = IHDR(inode, raw_inode);
4638
4639         /* No extended attributes present */
4640         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4641             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4642                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4643                         new_extra_isize);
4644                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4645                 return 0;
4646         }
4647
4648         /* try to expand with EAs present */
4649         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4650                                           raw_inode, handle);
4651 }
4652
4653 /*
4654  * What we do here is to mark the in-core inode as clean with respect to inode
4655  * dirtiness (it may still be data-dirty).
4656  * This means that the in-core inode may be reaped by prune_icache
4657  * without having to perform any I/O.  This is a very good thing,
4658  * because *any* task may call prune_icache - even ones which
4659  * have a transaction open against a different journal.
4660  *
4661  * Is this cheating?  Not really.  Sure, we haven't written the
4662  * inode out, but prune_icache isn't a user-visible syncing function.
4663  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4664  * we start and wait on commits.
4665  */
4666 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4667 {
4668         struct ext4_iloc iloc;
4669         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4670         static unsigned int mnt_count;
4671         int err, ret;
4672
4673         might_sleep();
4674         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4675         err = ext4_reserve_inode_write(handle, inode, &iloc);
4676         if (ext4_handle_valid(handle) &&
4677             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4678             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4679                 /*
4680                  * We need extra buffer credits since we may write into EA block
4681                  * with this same handle. If journal_extend fails, then it will
4682                  * only result in a minor loss of functionality for that inode.
4683                  * If this is felt to be critical, then e2fsck should be run to
4684                  * force a large enough s_min_extra_isize.
4685                  */
4686                 if ((jbd2_journal_extend(handle,
4687                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4688                         ret = ext4_expand_extra_isize(inode,
4689                                                       sbi->s_want_extra_isize,
4690                                                       iloc, handle);
4691                         if (ret) {
4692                                 ext4_set_inode_state(inode,
4693                                                      EXT4_STATE_NO_EXPAND);
4694                                 if (mnt_count !=
4695                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4696                                         ext4_warning(inode->i_sb,
4697                                         "Unable to expand inode %lu. Delete"
4698                                         " some EAs or run e2fsck.",
4699                                         inode->i_ino);
4700                                         mnt_count =
4701                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4702                                 }
4703                         }
4704                 }
4705         }
4706         if (!err)
4707                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4708         return err;
4709 }
4710
4711 /*
4712  * ext4_dirty_inode() is called from __mark_inode_dirty()
4713  *
4714  * We're really interested in the case where a file is being extended.
4715  * i_size has been changed by generic_commit_write() and we thus need
4716  * to include the updated inode in the current transaction.
4717  *
4718  * Also, dquot_alloc_block() will always dirty the inode when blocks
4719  * are allocated to the file.
4720  *
4721  * If the inode is marked synchronous, we don't honour that here - doing
4722  * so would cause a commit on atime updates, which we don't bother doing.
4723  * We handle synchronous inodes at the highest possible level.
4724  */
4725 void ext4_dirty_inode(struct inode *inode, int flags)
4726 {
4727         handle_t *handle;
4728
4729         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4730         if (IS_ERR(handle))
4731                 goto out;
4732
4733         ext4_mark_inode_dirty(handle, inode);
4734
4735         ext4_journal_stop(handle);
4736 out:
4737         return;
4738 }
4739
4740 #if 0
4741 /*
4742  * Bind an inode's backing buffer_head into this transaction, to prevent
4743  * it from being flushed to disk early.  Unlike
4744  * ext4_reserve_inode_write, this leaves behind no bh reference and
4745  * returns no iloc structure, so the caller needs to repeat the iloc
4746  * lookup to mark the inode dirty later.
4747  */
4748 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4749 {
4750         struct ext4_iloc iloc;
4751
4752         int err = 0;
4753         if (handle) {
4754                 err = ext4_get_inode_loc(inode, &iloc);
4755                 if (!err) {
4756                         BUFFER_TRACE(iloc.bh, "get_write_access");
4757                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4758                         if (!err)
4759                                 err = ext4_handle_dirty_metadata(handle,
4760                                                                  NULL,
4761                                                                  iloc.bh);
4762                         brelse(iloc.bh);
4763                 }
4764         }
4765         ext4_std_error(inode->i_sb, err);
4766         return err;
4767 }
4768 #endif
4769
4770 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4771 {
4772         journal_t *journal;
4773         handle_t *handle;
4774         int err;
4775
4776         /*
4777          * We have to be very careful here: changing a data block's
4778          * journaling status dynamically is dangerous.  If we write a
4779          * data block to the journal, change the status and then delete
4780          * that block, we risk forgetting to revoke the old log record
4781          * from the journal and so a subsequent replay can corrupt data.
4782          * So, first we make sure that the journal is empty and that
4783          * nobody is changing anything.
4784          */
4785
4786         journal = EXT4_JOURNAL(inode);
4787         if (!journal)
4788                 return 0;
4789         if (is_journal_aborted(journal))
4790                 return -EROFS;
4791         /* We have to allocate physical blocks for delalloc blocks
4792          * before flushing journal. otherwise delalloc blocks can not
4793          * be allocated any more. even more truncate on delalloc blocks
4794          * could trigger BUG by flushing delalloc blocks in journal.
4795          * There is no delalloc block in non-journal data mode.
4796          */
4797         if (val && test_opt(inode->i_sb, DELALLOC)) {
4798                 err = ext4_alloc_da_blocks(inode);
4799                 if (err < 0)
4800                         return err;
4801         }
4802
4803         /* Wait for all existing dio workers */
4804         ext4_inode_block_unlocked_dio(inode);
4805         inode_dio_wait(inode);
4806
4807         jbd2_journal_lock_updates(journal);
4808
4809         /*
4810          * OK, there are no updates running now, and all cached data is
4811          * synced to disk.  We are now in a completely consistent state
4812          * which doesn't have anything in the journal, and we know that
4813          * no filesystem updates are running, so it is safe to modify
4814          * the inode's in-core data-journaling state flag now.
4815          */
4816
4817         if (val)
4818                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4819         else {
4820                 jbd2_journal_flush(journal);
4821                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4822         }
4823         ext4_set_aops(inode);
4824
4825         jbd2_journal_unlock_updates(journal);
4826         ext4_inode_resume_unlocked_dio(inode);
4827
4828         /* Finally we can mark the inode as dirty. */
4829
4830         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4831         if (IS_ERR(handle))
4832                 return PTR_ERR(handle);
4833
4834         err = ext4_mark_inode_dirty(handle, inode);
4835         ext4_handle_sync(handle);
4836         ext4_journal_stop(handle);
4837         ext4_std_error(inode->i_sb, err);
4838
4839         return err;
4840 }
4841
4842 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4843 {
4844         return !buffer_mapped(bh);
4845 }
4846
4847 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4848 {
4849         struct page *page = vmf->page;
4850         loff_t size;
4851         unsigned long len;
4852         int ret;
4853         struct file *file = vma->vm_file;
4854         struct inode *inode = file_inode(file);
4855         struct address_space *mapping = inode->i_mapping;
4856         handle_t *handle;
4857         get_block_t *get_block;
4858         int retries = 0;
4859
4860         sb_start_pagefault(inode->i_sb);
4861         file_update_time(vma->vm_file);
4862         /* Delalloc case is easy... */
4863         if (test_opt(inode->i_sb, DELALLOC) &&
4864             !ext4_should_journal_data(inode) &&
4865             !ext4_nonda_switch(inode->i_sb)) {
4866                 do {
4867                         ret = __block_page_mkwrite(vma, vmf,
4868                                                    ext4_da_get_block_prep);
4869                 } while (ret == -ENOSPC &&
4870                        ext4_should_retry_alloc(inode->i_sb, &retries));
4871                 goto out_ret;
4872         }
4873
4874         lock_page(page);
4875         size = i_size_read(inode);
4876         /* Page got truncated from under us? */
4877         if (page->mapping != mapping || page_offset(page) > size) {
4878                 unlock_page(page);
4879                 ret = VM_FAULT_NOPAGE;
4880                 goto out;
4881         }
4882
4883         if (page->index == size >> PAGE_CACHE_SHIFT)
4884                 len = size & ~PAGE_CACHE_MASK;
4885         else
4886                 len = PAGE_CACHE_SIZE;
4887         /*
4888          * Return if we have all the buffers mapped. This avoids the need to do
4889          * journal_start/journal_stop which can block and take a long time
4890          */
4891         if (page_has_buffers(page)) {
4892                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4893                                             0, len, NULL,
4894                                             ext4_bh_unmapped)) {
4895                         /* Wait so that we don't change page under IO */
4896                         wait_for_stable_page(page);
4897                         ret = VM_FAULT_LOCKED;
4898                         goto out;
4899                 }
4900         }
4901         unlock_page(page);
4902         /* OK, we need to fill the hole... */
4903         if (ext4_should_dioread_nolock(inode))
4904                 get_block = ext4_get_block_write;
4905         else
4906                 get_block = ext4_get_block;
4907 retry_alloc:
4908         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
4909                                     ext4_writepage_trans_blocks(inode));
4910         if (IS_ERR(handle)) {
4911                 ret = VM_FAULT_SIGBUS;
4912                 goto out;
4913         }
4914         ret = __block_page_mkwrite(vma, vmf, get_block);
4915         if (!ret && ext4_should_journal_data(inode)) {
4916                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4917                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4918                         unlock_page(page);
4919                         ret = VM_FAULT_SIGBUS;
4920                         ext4_journal_stop(handle);
4921                         goto out;
4922                 }
4923                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4924         }
4925         ext4_journal_stop(handle);
4926         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4927                 goto retry_alloc;
4928 out_ret:
4929         ret = block_page_mkwrite_return(ret);
4930 out:
4931         sb_end_pagefault(inode->i_sb);
4932         return ret;
4933 }