]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
Merge remote-tracking branch 'regulator/topic/max8997' into regulator-next
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136                                    struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142                 struct inode *inode, struct page *page, loff_t from,
143                 loff_t length, int flags);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 (inode->i_sb->s_blocksize >> 9) : 0;
152
153         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, nblocks);
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189
190         trace_ext4_evict_inode(inode);
191
192         ext4_ioend_wait(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_log_start_commit(journal, commit_tid);
219                         jbd2_log_wait_commit(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages(&inode->i_data, 0);
223                 goto no_delete;
224         }
225
226         if (!is_bad_inode(inode))
227                 dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages(&inode->i_data, 0);
232
233         if (is_bad_inode(inode))
234                 goto no_delete;
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359                          "with only %d reserved metadata blocks\n", __func__,
360                          inode->i_ino, ei->i_allocated_meta_blocks,
361                          ei->i_reserved_meta_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 /*
487  * The ext4_map_blocks() function tries to look up the requested blocks,
488  * and returns if the blocks are already mapped.
489  *
490  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
491  * and store the allocated blocks in the result buffer head and mark it
492  * mapped.
493  *
494  * If file type is extents based, it will call ext4_ext_map_blocks(),
495  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
496  * based files
497  *
498  * On success, it returns the number of blocks being mapped or allocate.
499  * if create==0 and the blocks are pre-allocated and uninitialized block,
500  * the result buffer head is unmapped. If the create ==1, it will make sure
501  * the buffer head is mapped.
502  *
503  * It returns 0 if plain look up failed (blocks have not been allocated), in
504  * that case, buffer head is unmapped
505  *
506  * It returns the error in case of allocation failure.
507  */
508 int ext4_map_blocks(handle_t *handle, struct inode *inode,
509                     struct ext4_map_blocks *map, int flags)
510 {
511         int retval;
512
513         map->m_flags = 0;
514         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
516                   (unsigned long) map->m_lblk);
517         /*
518          * Try to see if we can get the block without requesting a new
519          * file system block.
520          */
521         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
522                 down_read((&EXT4_I(inode)->i_data_sem));
523         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
524                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
525                                              EXT4_GET_BLOCKS_KEEP_SIZE);
526         } else {
527                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
528                                              EXT4_GET_BLOCKS_KEEP_SIZE);
529         }
530         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
531                 up_read((&EXT4_I(inode)->i_data_sem));
532
533         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
534                 int ret;
535                 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
536                         /* delayed alloc may be allocated by fallocate and
537                          * coverted to initialized by directIO.
538                          * we need to handle delayed extent here.
539                          */
540                         down_write((&EXT4_I(inode)->i_data_sem));
541                         goto delayed_mapped;
542                 }
543                 ret = check_block_validity(inode, map);
544                 if (ret != 0)
545                         return ret;
546         }
547
548         /* If it is only a block(s) look up */
549         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
550                 return retval;
551
552         /*
553          * Returns if the blocks have already allocated
554          *
555          * Note that if blocks have been preallocated
556          * ext4_ext_get_block() returns the create = 0
557          * with buffer head unmapped.
558          */
559         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
560                 return retval;
561
562         /*
563          * When we call get_blocks without the create flag, the
564          * BH_Unwritten flag could have gotten set if the blocks
565          * requested were part of a uninitialized extent.  We need to
566          * clear this flag now that we are committed to convert all or
567          * part of the uninitialized extent to be an initialized
568          * extent.  This is because we need to avoid the combination
569          * of BH_Unwritten and BH_Mapped flags being simultaneously
570          * set on the buffer_head.
571          */
572         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
573
574         /*
575          * New blocks allocate and/or writing to uninitialized extent
576          * will possibly result in updating i_data, so we take
577          * the write lock of i_data_sem, and call get_blocks()
578          * with create == 1 flag.
579          */
580         down_write((&EXT4_I(inode)->i_data_sem));
581
582         /*
583          * if the caller is from delayed allocation writeout path
584          * we have already reserved fs blocks for allocation
585          * let the underlying get_block() function know to
586          * avoid double accounting
587          */
588         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
589                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
590         /*
591          * We need to check for EXT4 here because migrate
592          * could have changed the inode type in between
593          */
594         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
595                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
596         } else {
597                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
598
599                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
600                         /*
601                          * We allocated new blocks which will result in
602                          * i_data's format changing.  Force the migrate
603                          * to fail by clearing migrate flags
604                          */
605                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
606                 }
607
608                 /*
609                  * Update reserved blocks/metadata blocks after successful
610                  * block allocation which had been deferred till now. We don't
611                  * support fallocate for non extent files. So we can update
612                  * reserve space here.
613                  */
614                 if ((retval > 0) &&
615                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
616                         ext4_da_update_reserve_space(inode, retval, 1);
617         }
618         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
619                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
620
621                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
622                         int ret;
623 delayed_mapped:
624                         /* delayed allocation blocks has been allocated */
625                         ret = ext4_es_remove_extent(inode, map->m_lblk,
626                                                     map->m_len);
627                         if (ret < 0)
628                                 retval = ret;
629                 }
630         }
631
632         up_write((&EXT4_I(inode)->i_data_sem));
633         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
634                 int ret = check_block_validity(inode, map);
635                 if (ret != 0)
636                         return ret;
637         }
638         return retval;
639 }
640
641 /* Maximum number of blocks we map for direct IO at once. */
642 #define DIO_MAX_BLOCKS 4096
643
644 static int _ext4_get_block(struct inode *inode, sector_t iblock,
645                            struct buffer_head *bh, int flags)
646 {
647         handle_t *handle = ext4_journal_current_handle();
648         struct ext4_map_blocks map;
649         int ret = 0, started = 0;
650         int dio_credits;
651
652         if (ext4_has_inline_data(inode))
653                 return -ERANGE;
654
655         map.m_lblk = iblock;
656         map.m_len = bh->b_size >> inode->i_blkbits;
657
658         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
659                 /* Direct IO write... */
660                 if (map.m_len > DIO_MAX_BLOCKS)
661                         map.m_len = DIO_MAX_BLOCKS;
662                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
663                 handle = ext4_journal_start(inode, dio_credits);
664                 if (IS_ERR(handle)) {
665                         ret = PTR_ERR(handle);
666                         return ret;
667                 }
668                 started = 1;
669         }
670
671         ret = ext4_map_blocks(handle, inode, &map, flags);
672         if (ret > 0) {
673                 map_bh(bh, inode->i_sb, map.m_pblk);
674                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
675                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
676                 ret = 0;
677         }
678         if (started)
679                 ext4_journal_stop(handle);
680         return ret;
681 }
682
683 int ext4_get_block(struct inode *inode, sector_t iblock,
684                    struct buffer_head *bh, int create)
685 {
686         return _ext4_get_block(inode, iblock, bh,
687                                create ? EXT4_GET_BLOCKS_CREATE : 0);
688 }
689
690 /*
691  * `handle' can be NULL if create is zero
692  */
693 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
694                                 ext4_lblk_t block, int create, int *errp)
695 {
696         struct ext4_map_blocks map;
697         struct buffer_head *bh;
698         int fatal = 0, err;
699
700         J_ASSERT(handle != NULL || create == 0);
701
702         map.m_lblk = block;
703         map.m_len = 1;
704         err = ext4_map_blocks(handle, inode, &map,
705                               create ? EXT4_GET_BLOCKS_CREATE : 0);
706
707         /* ensure we send some value back into *errp */
708         *errp = 0;
709
710         if (err < 0)
711                 *errp = err;
712         if (err <= 0)
713                 return NULL;
714
715         bh = sb_getblk(inode->i_sb, map.m_pblk);
716         if (!bh) {
717                 *errp = -EIO;
718                 return NULL;
719         }
720         if (map.m_flags & EXT4_MAP_NEW) {
721                 J_ASSERT(create != 0);
722                 J_ASSERT(handle != NULL);
723
724                 /*
725                  * Now that we do not always journal data, we should
726                  * keep in mind whether this should always journal the
727                  * new buffer as metadata.  For now, regular file
728                  * writes use ext4_get_block instead, so it's not a
729                  * problem.
730                  */
731                 lock_buffer(bh);
732                 BUFFER_TRACE(bh, "call get_create_access");
733                 fatal = ext4_journal_get_create_access(handle, bh);
734                 if (!fatal && !buffer_uptodate(bh)) {
735                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
736                         set_buffer_uptodate(bh);
737                 }
738                 unlock_buffer(bh);
739                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
740                 err = ext4_handle_dirty_metadata(handle, inode, bh);
741                 if (!fatal)
742                         fatal = err;
743         } else {
744                 BUFFER_TRACE(bh, "not a new buffer");
745         }
746         if (fatal) {
747                 *errp = fatal;
748                 brelse(bh);
749                 bh = NULL;
750         }
751         return bh;
752 }
753
754 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
755                                ext4_lblk_t block, int create, int *err)
756 {
757         struct buffer_head *bh;
758
759         bh = ext4_getblk(handle, inode, block, create, err);
760         if (!bh)
761                 return bh;
762         if (buffer_uptodate(bh))
763                 return bh;
764         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
765         wait_on_buffer(bh);
766         if (buffer_uptodate(bh))
767                 return bh;
768         put_bh(bh);
769         *err = -EIO;
770         return NULL;
771 }
772
773 int ext4_walk_page_buffers(handle_t *handle,
774                            struct buffer_head *head,
775                            unsigned from,
776                            unsigned to,
777                            int *partial,
778                            int (*fn)(handle_t *handle,
779                                      struct buffer_head *bh))
780 {
781         struct buffer_head *bh;
782         unsigned block_start, block_end;
783         unsigned blocksize = head->b_size;
784         int err, ret = 0;
785         struct buffer_head *next;
786
787         for (bh = head, block_start = 0;
788              ret == 0 && (bh != head || !block_start);
789              block_start = block_end, bh = next) {
790                 next = bh->b_this_page;
791                 block_end = block_start + blocksize;
792                 if (block_end <= from || block_start >= to) {
793                         if (partial && !buffer_uptodate(bh))
794                                 *partial = 1;
795                         continue;
796                 }
797                 err = (*fn)(handle, bh);
798                 if (!ret)
799                         ret = err;
800         }
801         return ret;
802 }
803
804 /*
805  * To preserve ordering, it is essential that the hole instantiation and
806  * the data write be encapsulated in a single transaction.  We cannot
807  * close off a transaction and start a new one between the ext4_get_block()
808  * and the commit_write().  So doing the jbd2_journal_start at the start of
809  * prepare_write() is the right place.
810  *
811  * Also, this function can nest inside ext4_writepage() ->
812  * block_write_full_page(). In that case, we *know* that ext4_writepage()
813  * has generated enough buffer credits to do the whole page.  So we won't
814  * block on the journal in that case, which is good, because the caller may
815  * be PF_MEMALLOC.
816  *
817  * By accident, ext4 can be reentered when a transaction is open via
818  * quota file writes.  If we were to commit the transaction while thus
819  * reentered, there can be a deadlock - we would be holding a quota
820  * lock, and the commit would never complete if another thread had a
821  * transaction open and was blocking on the quota lock - a ranking
822  * violation.
823  *
824  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
825  * will _not_ run commit under these circumstances because handle->h_ref
826  * is elevated.  We'll still have enough credits for the tiny quotafile
827  * write.
828  */
829 int do_journal_get_write_access(handle_t *handle,
830                                 struct buffer_head *bh)
831 {
832         int dirty = buffer_dirty(bh);
833         int ret;
834
835         if (!buffer_mapped(bh) || buffer_freed(bh))
836                 return 0;
837         /*
838          * __block_write_begin() could have dirtied some buffers. Clean
839          * the dirty bit as jbd2_journal_get_write_access() could complain
840          * otherwise about fs integrity issues. Setting of the dirty bit
841          * by __block_write_begin() isn't a real problem here as we clear
842          * the bit before releasing a page lock and thus writeback cannot
843          * ever write the buffer.
844          */
845         if (dirty)
846                 clear_buffer_dirty(bh);
847         ret = ext4_journal_get_write_access(handle, bh);
848         if (!ret && dirty)
849                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
850         return ret;
851 }
852
853 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
854                    struct buffer_head *bh_result, int create);
855 static int ext4_write_begin(struct file *file, struct address_space *mapping,
856                             loff_t pos, unsigned len, unsigned flags,
857                             struct page **pagep, void **fsdata)
858 {
859         struct inode *inode = mapping->host;
860         int ret, needed_blocks;
861         handle_t *handle;
862         int retries = 0;
863         struct page *page;
864         pgoff_t index;
865         unsigned from, to;
866
867         trace_ext4_write_begin(inode, pos, len, flags);
868         /*
869          * Reserve one block more for addition to orphan list in case
870          * we allocate blocks but write fails for some reason
871          */
872         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
873         index = pos >> PAGE_CACHE_SHIFT;
874         from = pos & (PAGE_CACHE_SIZE - 1);
875         to = from + len;
876
877         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
878                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
879                                                     flags, pagep);
880                 if (ret < 0)
881                         goto out;
882                 if (ret == 1) {
883                         ret = 0;
884                         goto out;
885                 }
886         }
887
888 retry:
889         handle = ext4_journal_start(inode, needed_blocks);
890         if (IS_ERR(handle)) {
891                 ret = PTR_ERR(handle);
892                 goto out;
893         }
894
895         /* We cannot recurse into the filesystem as the transaction is already
896          * started */
897         flags |= AOP_FLAG_NOFS;
898
899         page = grab_cache_page_write_begin(mapping, index, flags);
900         if (!page) {
901                 ext4_journal_stop(handle);
902                 ret = -ENOMEM;
903                 goto out;
904         }
905
906         *pagep = page;
907
908         if (ext4_should_dioread_nolock(inode))
909                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
910         else
911                 ret = __block_write_begin(page, pos, len, ext4_get_block);
912
913         if (!ret && ext4_should_journal_data(inode)) {
914                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
915                                              from, to, NULL,
916                                              do_journal_get_write_access);
917         }
918
919         if (ret) {
920                 unlock_page(page);
921                 page_cache_release(page);
922                 /*
923                  * __block_write_begin may have instantiated a few blocks
924                  * outside i_size.  Trim these off again. Don't need
925                  * i_size_read because we hold i_mutex.
926                  *
927                  * Add inode to orphan list in case we crash before
928                  * truncate finishes
929                  */
930                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
931                         ext4_orphan_add(handle, inode);
932
933                 ext4_journal_stop(handle);
934                 if (pos + len > inode->i_size) {
935                         ext4_truncate_failed_write(inode);
936                         /*
937                          * If truncate failed early the inode might
938                          * still be on the orphan list; we need to
939                          * make sure the inode is removed from the
940                          * orphan list in that case.
941                          */
942                         if (inode->i_nlink)
943                                 ext4_orphan_del(NULL, inode);
944                 }
945         }
946
947         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
948                 goto retry;
949 out:
950         return ret;
951 }
952
953 /* For write_end() in data=journal mode */
954 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
955 {
956         if (!buffer_mapped(bh) || buffer_freed(bh))
957                 return 0;
958         set_buffer_uptodate(bh);
959         return ext4_handle_dirty_metadata(handle, NULL, bh);
960 }
961
962 static int ext4_generic_write_end(struct file *file,
963                                   struct address_space *mapping,
964                                   loff_t pos, unsigned len, unsigned copied,
965                                   struct page *page, void *fsdata)
966 {
967         int i_size_changed = 0;
968         struct inode *inode = mapping->host;
969         handle_t *handle = ext4_journal_current_handle();
970
971         if (ext4_has_inline_data(inode))
972                 copied = ext4_write_inline_data_end(inode, pos, len,
973                                                     copied, page);
974         else
975                 copied = block_write_end(file, mapping, pos,
976                                          len, copied, page, fsdata);
977
978         /*
979          * No need to use i_size_read() here, the i_size
980          * cannot change under us because we hold i_mutex.
981          *
982          * But it's important to update i_size while still holding page lock:
983          * page writeout could otherwise come in and zero beyond i_size.
984          */
985         if (pos + copied > inode->i_size) {
986                 i_size_write(inode, pos + copied);
987                 i_size_changed = 1;
988         }
989
990         if (pos + copied >  EXT4_I(inode)->i_disksize) {
991                 /* We need to mark inode dirty even if
992                  * new_i_size is less that inode->i_size
993                  * bu greater than i_disksize.(hint delalloc)
994                  */
995                 ext4_update_i_disksize(inode, (pos + copied));
996                 i_size_changed = 1;
997         }
998         unlock_page(page);
999         page_cache_release(page);
1000
1001         /*
1002          * Don't mark the inode dirty under page lock. First, it unnecessarily
1003          * makes the holding time of page lock longer. Second, it forces lock
1004          * ordering of page lock and transaction start for journaling
1005          * filesystems.
1006          */
1007         if (i_size_changed)
1008                 ext4_mark_inode_dirty(handle, inode);
1009
1010         return copied;
1011 }
1012
1013 /*
1014  * We need to pick up the new inode size which generic_commit_write gave us
1015  * `file' can be NULL - eg, when called from page_symlink().
1016  *
1017  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1018  * buffers are managed internally.
1019  */
1020 static int ext4_ordered_write_end(struct file *file,
1021                                   struct address_space *mapping,
1022                                   loff_t pos, unsigned len, unsigned copied,
1023                                   struct page *page, void *fsdata)
1024 {
1025         handle_t *handle = ext4_journal_current_handle();
1026         struct inode *inode = mapping->host;
1027         int ret = 0, ret2;
1028
1029         trace_ext4_ordered_write_end(inode, pos, len, copied);
1030         ret = ext4_jbd2_file_inode(handle, inode);
1031
1032         if (ret == 0) {
1033                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1034                                                         page, fsdata);
1035                 copied = ret2;
1036                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1037                         /* if we have allocated more blocks and copied
1038                          * less. We will have blocks allocated outside
1039                          * inode->i_size. So truncate them
1040                          */
1041                         ext4_orphan_add(handle, inode);
1042                 if (ret2 < 0)
1043                         ret = ret2;
1044         } else {
1045                 unlock_page(page);
1046                 page_cache_release(page);
1047         }
1048
1049         ret2 = ext4_journal_stop(handle);
1050         if (!ret)
1051                 ret = ret2;
1052
1053         if (pos + len > inode->i_size) {
1054                 ext4_truncate_failed_write(inode);
1055                 /*
1056                  * If truncate failed early the inode might still be
1057                  * on the orphan list; we need to make sure the inode
1058                  * is removed from the orphan list in that case.
1059                  */
1060                 if (inode->i_nlink)
1061                         ext4_orphan_del(NULL, inode);
1062         }
1063
1064
1065         return ret ? ret : copied;
1066 }
1067
1068 static int ext4_writeback_write_end(struct file *file,
1069                                     struct address_space *mapping,
1070                                     loff_t pos, unsigned len, unsigned copied,
1071                                     struct page *page, void *fsdata)
1072 {
1073         handle_t *handle = ext4_journal_current_handle();
1074         struct inode *inode = mapping->host;
1075         int ret = 0, ret2;
1076
1077         trace_ext4_writeback_write_end(inode, pos, len, copied);
1078         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1079                                                         page, fsdata);
1080         copied = ret2;
1081         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1082                 /* if we have allocated more blocks and copied
1083                  * less. We will have blocks allocated outside
1084                  * inode->i_size. So truncate them
1085                  */
1086                 ext4_orphan_add(handle, inode);
1087
1088         if (ret2 < 0)
1089                 ret = ret2;
1090
1091         ret2 = ext4_journal_stop(handle);
1092         if (!ret)
1093                 ret = ret2;
1094
1095         if (pos + len > inode->i_size) {
1096                 ext4_truncate_failed_write(inode);
1097                 /*
1098                  * If truncate failed early the inode might still be
1099                  * on the orphan list; we need to make sure the inode
1100                  * is removed from the orphan list in that case.
1101                  */
1102                 if (inode->i_nlink)
1103                         ext4_orphan_del(NULL, inode);
1104         }
1105
1106         return ret ? ret : copied;
1107 }
1108
1109 static int ext4_journalled_write_end(struct file *file,
1110                                      struct address_space *mapping,
1111                                      loff_t pos, unsigned len, unsigned copied,
1112                                      struct page *page, void *fsdata)
1113 {
1114         handle_t *handle = ext4_journal_current_handle();
1115         struct inode *inode = mapping->host;
1116         int ret = 0, ret2;
1117         int partial = 0;
1118         unsigned from, to;
1119         loff_t new_i_size;
1120
1121         trace_ext4_journalled_write_end(inode, pos, len, copied);
1122         from = pos & (PAGE_CACHE_SIZE - 1);
1123         to = from + len;
1124
1125         BUG_ON(!ext4_handle_valid(handle));
1126
1127         if (ext4_has_inline_data(inode))
1128                 copied = ext4_write_inline_data_end(inode, pos, len,
1129                                                     copied, page);
1130         else {
1131                 if (copied < len) {
1132                         if (!PageUptodate(page))
1133                                 copied = 0;
1134                         page_zero_new_buffers(page, from+copied, to);
1135                 }
1136
1137                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1138                                              to, &partial, write_end_fn);
1139                 if (!partial)
1140                         SetPageUptodate(page);
1141         }
1142         new_i_size = pos + copied;
1143         if (new_i_size > inode->i_size)
1144                 i_size_write(inode, pos+copied);
1145         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1146         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1147         if (new_i_size > EXT4_I(inode)->i_disksize) {
1148                 ext4_update_i_disksize(inode, new_i_size);
1149                 ret2 = ext4_mark_inode_dirty(handle, inode);
1150                 if (!ret)
1151                         ret = ret2;
1152         }
1153
1154         unlock_page(page);
1155         page_cache_release(page);
1156         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1157                 /* if we have allocated more blocks and copied
1158                  * less. We will have blocks allocated outside
1159                  * inode->i_size. So truncate them
1160                  */
1161                 ext4_orphan_add(handle, inode);
1162
1163         ret2 = ext4_journal_stop(handle);
1164         if (!ret)
1165                 ret = ret2;
1166         if (pos + len > inode->i_size) {
1167                 ext4_truncate_failed_write(inode);
1168                 /*
1169                  * If truncate failed early the inode might still be
1170                  * on the orphan list; we need to make sure the inode
1171                  * is removed from the orphan list in that case.
1172                  */
1173                 if (inode->i_nlink)
1174                         ext4_orphan_del(NULL, inode);
1175         }
1176
1177         return ret ? ret : copied;
1178 }
1179
1180 /*
1181  * Reserve a single cluster located at lblock
1182  */
1183 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1184 {
1185         int retries = 0;
1186         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1187         struct ext4_inode_info *ei = EXT4_I(inode);
1188         unsigned int md_needed;
1189         int ret;
1190         ext4_lblk_t save_last_lblock;
1191         int save_len;
1192
1193         /*
1194          * We will charge metadata quota at writeout time; this saves
1195          * us from metadata over-estimation, though we may go over by
1196          * a small amount in the end.  Here we just reserve for data.
1197          */
1198         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1199         if (ret)
1200                 return ret;
1201
1202         /*
1203          * recalculate the amount of metadata blocks to reserve
1204          * in order to allocate nrblocks
1205          * worse case is one extent per block
1206          */
1207 repeat:
1208         spin_lock(&ei->i_block_reservation_lock);
1209         /*
1210          * ext4_calc_metadata_amount() has side effects, which we have
1211          * to be prepared undo if we fail to claim space.
1212          */
1213         save_len = ei->i_da_metadata_calc_len;
1214         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1215         md_needed = EXT4_NUM_B2C(sbi,
1216                                  ext4_calc_metadata_amount(inode, lblock));
1217         trace_ext4_da_reserve_space(inode, md_needed);
1218
1219         /*
1220          * We do still charge estimated metadata to the sb though;
1221          * we cannot afford to run out of free blocks.
1222          */
1223         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1224                 ei->i_da_metadata_calc_len = save_len;
1225                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1226                 spin_unlock(&ei->i_block_reservation_lock);
1227                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1228                         yield();
1229                         goto repeat;
1230                 }
1231                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1232                 return -ENOSPC;
1233         }
1234         ei->i_reserved_data_blocks++;
1235         ei->i_reserved_meta_blocks += md_needed;
1236         spin_unlock(&ei->i_block_reservation_lock);
1237
1238         return 0;       /* success */
1239 }
1240
1241 static void ext4_da_release_space(struct inode *inode, int to_free)
1242 {
1243         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1244         struct ext4_inode_info *ei = EXT4_I(inode);
1245
1246         if (!to_free)
1247                 return;         /* Nothing to release, exit */
1248
1249         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1250
1251         trace_ext4_da_release_space(inode, to_free);
1252         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1253                 /*
1254                  * if there aren't enough reserved blocks, then the
1255                  * counter is messed up somewhere.  Since this
1256                  * function is called from invalidate page, it's
1257                  * harmless to return without any action.
1258                  */
1259                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1260                          "ino %lu, to_free %d with only %d reserved "
1261                          "data blocks", inode->i_ino, to_free,
1262                          ei->i_reserved_data_blocks);
1263                 WARN_ON(1);
1264                 to_free = ei->i_reserved_data_blocks;
1265         }
1266         ei->i_reserved_data_blocks -= to_free;
1267
1268         if (ei->i_reserved_data_blocks == 0) {
1269                 /*
1270                  * We can release all of the reserved metadata blocks
1271                  * only when we have written all of the delayed
1272                  * allocation blocks.
1273                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1274                  * i_reserved_data_blocks, etc. refer to number of clusters.
1275                  */
1276                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1277                                    ei->i_reserved_meta_blocks);
1278                 ei->i_reserved_meta_blocks = 0;
1279                 ei->i_da_metadata_calc_len = 0;
1280         }
1281
1282         /* update fs dirty data blocks counter */
1283         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1284
1285         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1286
1287         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1288 }
1289
1290 static void ext4_da_page_release_reservation(struct page *page,
1291                                              unsigned long offset)
1292 {
1293         int to_release = 0;
1294         struct buffer_head *head, *bh;
1295         unsigned int curr_off = 0;
1296         struct inode *inode = page->mapping->host;
1297         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1298         int num_clusters;
1299         ext4_fsblk_t lblk;
1300
1301         head = page_buffers(page);
1302         bh = head;
1303         do {
1304                 unsigned int next_off = curr_off + bh->b_size;
1305
1306                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1307                         to_release++;
1308                         clear_buffer_delay(bh);
1309                 }
1310                 curr_off = next_off;
1311         } while ((bh = bh->b_this_page) != head);
1312
1313         if (to_release) {
1314                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1315                 ext4_es_remove_extent(inode, lblk, to_release);
1316         }
1317
1318         /* If we have released all the blocks belonging to a cluster, then we
1319          * need to release the reserved space for that cluster. */
1320         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1321         while (num_clusters > 0) {
1322                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1323                         ((num_clusters - 1) << sbi->s_cluster_bits);
1324                 if (sbi->s_cluster_ratio == 1 ||
1325                     !ext4_find_delalloc_cluster(inode, lblk))
1326                         ext4_da_release_space(inode, 1);
1327
1328                 num_clusters--;
1329         }
1330 }
1331
1332 /*
1333  * Delayed allocation stuff
1334  */
1335
1336 /*
1337  * mpage_da_submit_io - walks through extent of pages and try to write
1338  * them with writepage() call back
1339  *
1340  * @mpd->inode: inode
1341  * @mpd->first_page: first page of the extent
1342  * @mpd->next_page: page after the last page of the extent
1343  *
1344  * By the time mpage_da_submit_io() is called we expect all blocks
1345  * to be allocated. this may be wrong if allocation failed.
1346  *
1347  * As pages are already locked by write_cache_pages(), we can't use it
1348  */
1349 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1350                               struct ext4_map_blocks *map)
1351 {
1352         struct pagevec pvec;
1353         unsigned long index, end;
1354         int ret = 0, err, nr_pages, i;
1355         struct inode *inode = mpd->inode;
1356         struct address_space *mapping = inode->i_mapping;
1357         loff_t size = i_size_read(inode);
1358         unsigned int len, block_start;
1359         struct buffer_head *bh, *page_bufs = NULL;
1360         int journal_data = ext4_should_journal_data(inode);
1361         sector_t pblock = 0, cur_logical = 0;
1362         struct ext4_io_submit io_submit;
1363
1364         BUG_ON(mpd->next_page <= mpd->first_page);
1365         memset(&io_submit, 0, sizeof(io_submit));
1366         /*
1367          * We need to start from the first_page to the next_page - 1
1368          * to make sure we also write the mapped dirty buffer_heads.
1369          * If we look at mpd->b_blocknr we would only be looking
1370          * at the currently mapped buffer_heads.
1371          */
1372         index = mpd->first_page;
1373         end = mpd->next_page - 1;
1374
1375         pagevec_init(&pvec, 0);
1376         while (index <= end) {
1377                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1378                 if (nr_pages == 0)
1379                         break;
1380                 for (i = 0; i < nr_pages; i++) {
1381                         int commit_write = 0, skip_page = 0;
1382                         struct page *page = pvec.pages[i];
1383
1384                         index = page->index;
1385                         if (index > end)
1386                                 break;
1387
1388                         if (index == size >> PAGE_CACHE_SHIFT)
1389                                 len = size & ~PAGE_CACHE_MASK;
1390                         else
1391                                 len = PAGE_CACHE_SIZE;
1392                         if (map) {
1393                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1394                                                         inode->i_blkbits);
1395                                 pblock = map->m_pblk + (cur_logical -
1396                                                         map->m_lblk);
1397                         }
1398                         index++;
1399
1400                         BUG_ON(!PageLocked(page));
1401                         BUG_ON(PageWriteback(page));
1402
1403                         /*
1404                          * If the page does not have buffers (for
1405                          * whatever reason), try to create them using
1406                          * __block_write_begin.  If this fails,
1407                          * skip the page and move on.
1408                          */
1409                         if (!page_has_buffers(page)) {
1410                                 if (__block_write_begin(page, 0, len,
1411                                                 noalloc_get_block_write)) {
1412                                 skip_page:
1413                                         unlock_page(page);
1414                                         continue;
1415                                 }
1416                                 commit_write = 1;
1417                         }
1418
1419                         bh = page_bufs = page_buffers(page);
1420                         block_start = 0;
1421                         do {
1422                                 if (!bh)
1423                                         goto skip_page;
1424                                 if (map && (cur_logical >= map->m_lblk) &&
1425                                     (cur_logical <= (map->m_lblk +
1426                                                      (map->m_len - 1)))) {
1427                                         if (buffer_delay(bh)) {
1428                                                 clear_buffer_delay(bh);
1429                                                 bh->b_blocknr = pblock;
1430                                         }
1431                                         if (buffer_unwritten(bh) ||
1432                                             buffer_mapped(bh))
1433                                                 BUG_ON(bh->b_blocknr != pblock);
1434                                         if (map->m_flags & EXT4_MAP_UNINIT)
1435                                                 set_buffer_uninit(bh);
1436                                         clear_buffer_unwritten(bh);
1437                                 }
1438
1439                                 /*
1440                                  * skip page if block allocation undone and
1441                                  * block is dirty
1442                                  */
1443                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1444                                         skip_page = 1;
1445                                 bh = bh->b_this_page;
1446                                 block_start += bh->b_size;
1447                                 cur_logical++;
1448                                 pblock++;
1449                         } while (bh != page_bufs);
1450
1451                         if (skip_page)
1452                                 goto skip_page;
1453
1454                         if (commit_write)
1455                                 /* mark the buffer_heads as dirty & uptodate */
1456                                 block_commit_write(page, 0, len);
1457
1458                         clear_page_dirty_for_io(page);
1459                         /*
1460                          * Delalloc doesn't support data journalling,
1461                          * but eventually maybe we'll lift this
1462                          * restriction.
1463                          */
1464                         if (unlikely(journal_data && PageChecked(page)))
1465                                 err = __ext4_journalled_writepage(page, len);
1466                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1467                                 err = ext4_bio_write_page(&io_submit, page,
1468                                                           len, mpd->wbc);
1469                         else if (buffer_uninit(page_bufs)) {
1470                                 ext4_set_bh_endio(page_bufs, inode);
1471                                 err = block_write_full_page_endio(page,
1472                                         noalloc_get_block_write,
1473                                         mpd->wbc, ext4_end_io_buffer_write);
1474                         } else
1475                                 err = block_write_full_page(page,
1476                                         noalloc_get_block_write, mpd->wbc);
1477
1478                         if (!err)
1479                                 mpd->pages_written++;
1480                         /*
1481                          * In error case, we have to continue because
1482                          * remaining pages are still locked
1483                          */
1484                         if (ret == 0)
1485                                 ret = err;
1486                 }
1487                 pagevec_release(&pvec);
1488         }
1489         ext4_io_submit(&io_submit);
1490         return ret;
1491 }
1492
1493 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1494 {
1495         int nr_pages, i;
1496         pgoff_t index, end;
1497         struct pagevec pvec;
1498         struct inode *inode = mpd->inode;
1499         struct address_space *mapping = inode->i_mapping;
1500         ext4_lblk_t start, last;
1501
1502         index = mpd->first_page;
1503         end   = mpd->next_page - 1;
1504
1505         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1506         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1507         ext4_es_remove_extent(inode, start, last - start + 1);
1508
1509         pagevec_init(&pvec, 0);
1510         while (index <= end) {
1511                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512                 if (nr_pages == 0)
1513                         break;
1514                 for (i = 0; i < nr_pages; i++) {
1515                         struct page *page = pvec.pages[i];
1516                         if (page->index > end)
1517                                 break;
1518                         BUG_ON(!PageLocked(page));
1519                         BUG_ON(PageWriteback(page));
1520                         block_invalidatepage(page, 0);
1521                         ClearPageUptodate(page);
1522                         unlock_page(page);
1523                 }
1524                 index = pvec.pages[nr_pages - 1]->index + 1;
1525                 pagevec_release(&pvec);
1526         }
1527         return;
1528 }
1529
1530 static void ext4_print_free_blocks(struct inode *inode)
1531 {
1532         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1533         struct super_block *sb = inode->i_sb;
1534
1535         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1536                EXT4_C2B(EXT4_SB(inode->i_sb),
1537                         ext4_count_free_clusters(inode->i_sb)));
1538         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1539         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1540                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1541                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1542         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1543                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1544                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1545         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1546         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1547                  EXT4_I(inode)->i_reserved_data_blocks);
1548         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1549                EXT4_I(inode)->i_reserved_meta_blocks);
1550         return;
1551 }
1552
1553 /*
1554  * mpage_da_map_and_submit - go through given space, map them
1555  *       if necessary, and then submit them for I/O
1556  *
1557  * @mpd - bh describing space
1558  *
1559  * The function skips space we know is already mapped to disk blocks.
1560  *
1561  */
1562 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1563 {
1564         int err, blks, get_blocks_flags;
1565         struct ext4_map_blocks map, *mapp = NULL;
1566         sector_t next = mpd->b_blocknr;
1567         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1568         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1569         handle_t *handle = NULL;
1570
1571         /*
1572          * If the blocks are mapped already, or we couldn't accumulate
1573          * any blocks, then proceed immediately to the submission stage.
1574          */
1575         if ((mpd->b_size == 0) ||
1576             ((mpd->b_state  & (1 << BH_Mapped)) &&
1577              !(mpd->b_state & (1 << BH_Delay)) &&
1578              !(mpd->b_state & (1 << BH_Unwritten))))
1579                 goto submit_io;
1580
1581         handle = ext4_journal_current_handle();
1582         BUG_ON(!handle);
1583
1584         /*
1585          * Call ext4_map_blocks() to allocate any delayed allocation
1586          * blocks, or to convert an uninitialized extent to be
1587          * initialized (in the case where we have written into
1588          * one or more preallocated blocks).
1589          *
1590          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1591          * indicate that we are on the delayed allocation path.  This
1592          * affects functions in many different parts of the allocation
1593          * call path.  This flag exists primarily because we don't
1594          * want to change *many* call functions, so ext4_map_blocks()
1595          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1596          * inode's allocation semaphore is taken.
1597          *
1598          * If the blocks in questions were delalloc blocks, set
1599          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1600          * variables are updated after the blocks have been allocated.
1601          */
1602         map.m_lblk = next;
1603         map.m_len = max_blocks;
1604         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1605         if (ext4_should_dioread_nolock(mpd->inode))
1606                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1607         if (mpd->b_state & (1 << BH_Delay))
1608                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1609
1610         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1611         if (blks < 0) {
1612                 struct super_block *sb = mpd->inode->i_sb;
1613
1614                 err = blks;
1615                 /*
1616                  * If get block returns EAGAIN or ENOSPC and there
1617                  * appears to be free blocks we will just let
1618                  * mpage_da_submit_io() unlock all of the pages.
1619                  */
1620                 if (err == -EAGAIN)
1621                         goto submit_io;
1622
1623                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1624                         mpd->retval = err;
1625                         goto submit_io;
1626                 }
1627
1628                 /*
1629                  * get block failure will cause us to loop in
1630                  * writepages, because a_ops->writepage won't be able
1631                  * to make progress. The page will be redirtied by
1632                  * writepage and writepages will again try to write
1633                  * the same.
1634                  */
1635                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1636                         ext4_msg(sb, KERN_CRIT,
1637                                  "delayed block allocation failed for inode %lu "
1638                                  "at logical offset %llu with max blocks %zd "
1639                                  "with error %d", mpd->inode->i_ino,
1640                                  (unsigned long long) next,
1641                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1642                         ext4_msg(sb, KERN_CRIT,
1643                                 "This should not happen!! Data will be lost\n");
1644                         if (err == -ENOSPC)
1645                                 ext4_print_free_blocks(mpd->inode);
1646                 }
1647                 /* invalidate all the pages */
1648                 ext4_da_block_invalidatepages(mpd);
1649
1650                 /* Mark this page range as having been completed */
1651                 mpd->io_done = 1;
1652                 return;
1653         }
1654         BUG_ON(blks == 0);
1655
1656         mapp = &map;
1657         if (map.m_flags & EXT4_MAP_NEW) {
1658                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1659                 int i;
1660
1661                 for (i = 0; i < map.m_len; i++)
1662                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1663         }
1664
1665         /*
1666          * Update on-disk size along with block allocation.
1667          */
1668         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1669         if (disksize > i_size_read(mpd->inode))
1670                 disksize = i_size_read(mpd->inode);
1671         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1672                 ext4_update_i_disksize(mpd->inode, disksize);
1673                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1674                 if (err)
1675                         ext4_error(mpd->inode->i_sb,
1676                                    "Failed to mark inode %lu dirty",
1677                                    mpd->inode->i_ino);
1678         }
1679
1680 submit_io:
1681         mpage_da_submit_io(mpd, mapp);
1682         mpd->io_done = 1;
1683 }
1684
1685 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1686                 (1 << BH_Delay) | (1 << BH_Unwritten))
1687
1688 /*
1689  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1690  *
1691  * @mpd->lbh - extent of blocks
1692  * @logical - logical number of the block in the file
1693  * @bh - bh of the block (used to access block's state)
1694  *
1695  * the function is used to collect contig. blocks in same state
1696  */
1697 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1698                                    sector_t logical, size_t b_size,
1699                                    unsigned long b_state)
1700 {
1701         sector_t next;
1702         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1703
1704         /*
1705          * XXX Don't go larger than mballoc is willing to allocate
1706          * This is a stopgap solution.  We eventually need to fold
1707          * mpage_da_submit_io() into this function and then call
1708          * ext4_map_blocks() multiple times in a loop
1709          */
1710         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1711                 goto flush_it;
1712
1713         /* check if thereserved journal credits might overflow */
1714         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1715                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1716                         /*
1717                          * With non-extent format we are limited by the journal
1718                          * credit available.  Total credit needed to insert
1719                          * nrblocks contiguous blocks is dependent on the
1720                          * nrblocks.  So limit nrblocks.
1721                          */
1722                         goto flush_it;
1723                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1724                                 EXT4_MAX_TRANS_DATA) {
1725                         /*
1726                          * Adding the new buffer_head would make it cross the
1727                          * allowed limit for which we have journal credit
1728                          * reserved. So limit the new bh->b_size
1729                          */
1730                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1731                                                 mpd->inode->i_blkbits;
1732                         /* we will do mpage_da_submit_io in the next loop */
1733                 }
1734         }
1735         /*
1736          * First block in the extent
1737          */
1738         if (mpd->b_size == 0) {
1739                 mpd->b_blocknr = logical;
1740                 mpd->b_size = b_size;
1741                 mpd->b_state = b_state & BH_FLAGS;
1742                 return;
1743         }
1744
1745         next = mpd->b_blocknr + nrblocks;
1746         /*
1747          * Can we merge the block to our big extent?
1748          */
1749         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1750                 mpd->b_size += b_size;
1751                 return;
1752         }
1753
1754 flush_it:
1755         /*
1756          * We couldn't merge the block to our extent, so we
1757          * need to flush current  extent and start new one
1758          */
1759         mpage_da_map_and_submit(mpd);
1760         return;
1761 }
1762
1763 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1764 {
1765         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1766 }
1767
1768 /*
1769  * This function is grabs code from the very beginning of
1770  * ext4_map_blocks, but assumes that the caller is from delayed write
1771  * time. This function looks up the requested blocks and sets the
1772  * buffer delay bit under the protection of i_data_sem.
1773  */
1774 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1775                               struct ext4_map_blocks *map,
1776                               struct buffer_head *bh)
1777 {
1778         int retval;
1779         sector_t invalid_block = ~((sector_t) 0xffff);
1780
1781         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1782                 invalid_block = ~0;
1783
1784         map->m_flags = 0;
1785         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1786                   "logical block %lu\n", inode->i_ino, map->m_len,
1787                   (unsigned long) map->m_lblk);
1788         /*
1789          * Try to see if we can get the block without requesting a new
1790          * file system block.
1791          */
1792         down_read((&EXT4_I(inode)->i_data_sem));
1793         if (ext4_has_inline_data(inode)) {
1794                 /*
1795                  * We will soon create blocks for this page, and let
1796                  * us pretend as if the blocks aren't allocated yet.
1797                  * In case of clusters, we have to handle the work
1798                  * of mapping from cluster so that the reserved space
1799                  * is calculated properly.
1800                  */
1801                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1802                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1803                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1804                 retval = 0;
1805         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1806                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1807         else
1808                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1809
1810         if (retval == 0) {
1811                 /*
1812                  * XXX: __block_prepare_write() unmaps passed block,
1813                  * is it OK?
1814                  */
1815                 /* If the block was allocated from previously allocated cluster,
1816                  * then we dont need to reserve it again. */
1817                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1818                         retval = ext4_da_reserve_space(inode, iblock);
1819                         if (retval)
1820                                 /* not enough space to reserve */
1821                                 goto out_unlock;
1822                 }
1823
1824                 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1825                 if (retval)
1826                         goto out_unlock;
1827
1828                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1829                  * and it should not appear on the bh->b_state.
1830                  */
1831                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1832
1833                 map_bh(bh, inode->i_sb, invalid_block);
1834                 set_buffer_new(bh);
1835                 set_buffer_delay(bh);
1836         }
1837
1838 out_unlock:
1839         up_read((&EXT4_I(inode)->i_data_sem));
1840
1841         return retval;
1842 }
1843
1844 /*
1845  * This is a special get_blocks_t callback which is used by
1846  * ext4_da_write_begin().  It will either return mapped block or
1847  * reserve space for a single block.
1848  *
1849  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1850  * We also have b_blocknr = -1 and b_bdev initialized properly
1851  *
1852  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1853  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1854  * initialized properly.
1855  */
1856 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1857                            struct buffer_head *bh, int create)
1858 {
1859         struct ext4_map_blocks map;
1860         int ret = 0;
1861
1862         BUG_ON(create == 0);
1863         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1864
1865         map.m_lblk = iblock;
1866         map.m_len = 1;
1867
1868         /*
1869          * first, we need to know whether the block is allocated already
1870          * preallocated blocks are unmapped but should treated
1871          * the same as allocated blocks.
1872          */
1873         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1874         if (ret <= 0)
1875                 return ret;
1876
1877         map_bh(bh, inode->i_sb, map.m_pblk);
1878         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1879
1880         if (buffer_unwritten(bh)) {
1881                 /* A delayed write to unwritten bh should be marked
1882                  * new and mapped.  Mapped ensures that we don't do
1883                  * get_block multiple times when we write to the same
1884                  * offset and new ensures that we do proper zero out
1885                  * for partial write.
1886                  */
1887                 set_buffer_new(bh);
1888                 set_buffer_mapped(bh);
1889         }
1890         return 0;
1891 }
1892
1893 /*
1894  * This function is used as a standard get_block_t calback function
1895  * when there is no desire to allocate any blocks.  It is used as a
1896  * callback function for block_write_begin() and block_write_full_page().
1897  * These functions should only try to map a single block at a time.
1898  *
1899  * Since this function doesn't do block allocations even if the caller
1900  * requests it by passing in create=1, it is critically important that
1901  * any caller checks to make sure that any buffer heads are returned
1902  * by this function are either all already mapped or marked for
1903  * delayed allocation before calling  block_write_full_page().  Otherwise,
1904  * b_blocknr could be left unitialized, and the page write functions will
1905  * be taken by surprise.
1906  */
1907 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1908                                    struct buffer_head *bh_result, int create)
1909 {
1910         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1911         return _ext4_get_block(inode, iblock, bh_result, 0);
1912 }
1913
1914 static int bget_one(handle_t *handle, struct buffer_head *bh)
1915 {
1916         get_bh(bh);
1917         return 0;
1918 }
1919
1920 static int bput_one(handle_t *handle, struct buffer_head *bh)
1921 {
1922         put_bh(bh);
1923         return 0;
1924 }
1925
1926 static int __ext4_journalled_writepage(struct page *page,
1927                                        unsigned int len)
1928 {
1929         struct address_space *mapping = page->mapping;
1930         struct inode *inode = mapping->host;
1931         struct buffer_head *page_bufs = NULL;
1932         handle_t *handle = NULL;
1933         int ret = 0, err = 0;
1934         int inline_data = ext4_has_inline_data(inode);
1935         struct buffer_head *inode_bh = NULL;
1936
1937         ClearPageChecked(page);
1938
1939         if (inline_data) {
1940                 BUG_ON(page->index != 0);
1941                 BUG_ON(len > ext4_get_max_inline_size(inode));
1942                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1943                 if (inode_bh == NULL)
1944                         goto out;
1945         } else {
1946                 page_bufs = page_buffers(page);
1947                 if (!page_bufs) {
1948                         BUG();
1949                         goto out;
1950                 }
1951                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1952                                        NULL, bget_one);
1953         }
1954         /* As soon as we unlock the page, it can go away, but we have
1955          * references to buffers so we are safe */
1956         unlock_page(page);
1957
1958         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1959         if (IS_ERR(handle)) {
1960                 ret = PTR_ERR(handle);
1961                 goto out;
1962         }
1963
1964         BUG_ON(!ext4_handle_valid(handle));
1965
1966         if (inline_data) {
1967                 ret = ext4_journal_get_write_access(handle, inode_bh);
1968
1969                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1970
1971         } else {
1972                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1973                                              do_journal_get_write_access);
1974
1975                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1976                                              write_end_fn);
1977         }
1978         if (ret == 0)
1979                 ret = err;
1980         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1981         err = ext4_journal_stop(handle);
1982         if (!ret)
1983                 ret = err;
1984
1985         if (!ext4_has_inline_data(inode))
1986                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1987                                        NULL, bput_one);
1988         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1989 out:
1990         brelse(inode_bh);
1991         return ret;
1992 }
1993
1994 /*
1995  * Note that we don't need to start a transaction unless we're journaling data
1996  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1997  * need to file the inode to the transaction's list in ordered mode because if
1998  * we are writing back data added by write(), the inode is already there and if
1999  * we are writing back data modified via mmap(), no one guarantees in which
2000  * transaction the data will hit the disk. In case we are journaling data, we
2001  * cannot start transaction directly because transaction start ranks above page
2002  * lock so we have to do some magic.
2003  *
2004  * This function can get called via...
2005  *   - ext4_da_writepages after taking page lock (have journal handle)
2006  *   - journal_submit_inode_data_buffers (no journal handle)
2007  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2008  *   - grab_page_cache when doing write_begin (have journal handle)
2009  *
2010  * We don't do any block allocation in this function. If we have page with
2011  * multiple blocks we need to write those buffer_heads that are mapped. This
2012  * is important for mmaped based write. So if we do with blocksize 1K
2013  * truncate(f, 1024);
2014  * a = mmap(f, 0, 4096);
2015  * a[0] = 'a';
2016  * truncate(f, 4096);
2017  * we have in the page first buffer_head mapped via page_mkwrite call back
2018  * but other buffer_heads would be unmapped but dirty (dirty done via the
2019  * do_wp_page). So writepage should write the first block. If we modify
2020  * the mmap area beyond 1024 we will again get a page_fault and the
2021  * page_mkwrite callback will do the block allocation and mark the
2022  * buffer_heads mapped.
2023  *
2024  * We redirty the page if we have any buffer_heads that is either delay or
2025  * unwritten in the page.
2026  *
2027  * We can get recursively called as show below.
2028  *
2029  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2030  *              ext4_writepage()
2031  *
2032  * But since we don't do any block allocation we should not deadlock.
2033  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2034  */
2035 static int ext4_writepage(struct page *page,
2036                           struct writeback_control *wbc)
2037 {
2038         int ret = 0, commit_write = 0;
2039         loff_t size;
2040         unsigned int len;
2041         struct buffer_head *page_bufs = NULL;
2042         struct inode *inode = page->mapping->host;
2043
2044         trace_ext4_writepage(page);
2045         size = i_size_read(inode);
2046         if (page->index == size >> PAGE_CACHE_SHIFT)
2047                 len = size & ~PAGE_CACHE_MASK;
2048         else
2049                 len = PAGE_CACHE_SIZE;
2050
2051         /*
2052          * If the page does not have buffers (for whatever reason),
2053          * try to create them using __block_write_begin.  If this
2054          * fails, redirty the page and move on.
2055          */
2056         if (!page_has_buffers(page)) {
2057                 if (__block_write_begin(page, 0, len,
2058                                         noalloc_get_block_write)) {
2059                 redirty_page:
2060                         redirty_page_for_writepage(wbc, page);
2061                         unlock_page(page);
2062                         return 0;
2063                 }
2064                 commit_write = 1;
2065         }
2066         page_bufs = page_buffers(page);
2067         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2068                                    ext4_bh_delay_or_unwritten)) {
2069                 /*
2070                  * We don't want to do block allocation, so redirty
2071                  * the page and return.  We may reach here when we do
2072                  * a journal commit via journal_submit_inode_data_buffers.
2073                  * We can also reach here via shrink_page_list but it
2074                  * should never be for direct reclaim so warn if that
2075                  * happens
2076                  */
2077                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2078                                                                 PF_MEMALLOC);
2079                 goto redirty_page;
2080         }
2081         if (commit_write)
2082                 /* now mark the buffer_heads as dirty and uptodate */
2083                 block_commit_write(page, 0, len);
2084
2085         if (PageChecked(page) && ext4_should_journal_data(inode))
2086                 /*
2087                  * It's mmapped pagecache.  Add buffers and journal it.  There
2088                  * doesn't seem much point in redirtying the page here.
2089                  */
2090                 return __ext4_journalled_writepage(page, len);
2091
2092         if (buffer_uninit(page_bufs)) {
2093                 ext4_set_bh_endio(page_bufs, inode);
2094                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2095                                             wbc, ext4_end_io_buffer_write);
2096         } else
2097                 ret = block_write_full_page(page, noalloc_get_block_write,
2098                                             wbc);
2099
2100         return ret;
2101 }
2102
2103 /*
2104  * This is called via ext4_da_writepages() to
2105  * calculate the total number of credits to reserve to fit
2106  * a single extent allocation into a single transaction,
2107  * ext4_da_writpeages() will loop calling this before
2108  * the block allocation.
2109  */
2110
2111 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2112 {
2113         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2114
2115         /*
2116          * With non-extent format the journal credit needed to
2117          * insert nrblocks contiguous block is dependent on
2118          * number of contiguous block. So we will limit
2119          * number of contiguous block to a sane value
2120          */
2121         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2122             (max_blocks > EXT4_MAX_TRANS_DATA))
2123                 max_blocks = EXT4_MAX_TRANS_DATA;
2124
2125         return ext4_chunk_trans_blocks(inode, max_blocks);
2126 }
2127
2128 /*
2129  * write_cache_pages_da - walk the list of dirty pages of the given
2130  * address space and accumulate pages that need writing, and call
2131  * mpage_da_map_and_submit to map a single contiguous memory region
2132  * and then write them.
2133  */
2134 static int write_cache_pages_da(handle_t *handle,
2135                                 struct address_space *mapping,
2136                                 struct writeback_control *wbc,
2137                                 struct mpage_da_data *mpd,
2138                                 pgoff_t *done_index)
2139 {
2140         struct buffer_head      *bh, *head;
2141         struct inode            *inode = mapping->host;
2142         struct pagevec          pvec;
2143         unsigned int            nr_pages;
2144         sector_t                logical;
2145         pgoff_t                 index, end;
2146         long                    nr_to_write = wbc->nr_to_write;
2147         int                     i, tag, ret = 0;
2148
2149         memset(mpd, 0, sizeof(struct mpage_da_data));
2150         mpd->wbc = wbc;
2151         mpd->inode = inode;
2152         pagevec_init(&pvec, 0);
2153         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2154         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2155
2156         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2157                 tag = PAGECACHE_TAG_TOWRITE;
2158         else
2159                 tag = PAGECACHE_TAG_DIRTY;
2160
2161         *done_index = index;
2162         while (index <= end) {
2163                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2164                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2165                 if (nr_pages == 0)
2166                         return 0;
2167
2168                 for (i = 0; i < nr_pages; i++) {
2169                         struct page *page = pvec.pages[i];
2170
2171                         /*
2172                          * At this point, the page may be truncated or
2173                          * invalidated (changing page->mapping to NULL), or
2174                          * even swizzled back from swapper_space to tmpfs file
2175                          * mapping. However, page->index will not change
2176                          * because we have a reference on the page.
2177                          */
2178                         if (page->index > end)
2179                                 goto out;
2180
2181                         *done_index = page->index + 1;
2182
2183                         /*
2184                          * If we can't merge this page, and we have
2185                          * accumulated an contiguous region, write it
2186                          */
2187                         if ((mpd->next_page != page->index) &&
2188                             (mpd->next_page != mpd->first_page)) {
2189                                 mpage_da_map_and_submit(mpd);
2190                                 goto ret_extent_tail;
2191                         }
2192
2193                         lock_page(page);
2194
2195                         /*
2196                          * If the page is no longer dirty, or its
2197                          * mapping no longer corresponds to inode we
2198                          * are writing (which means it has been
2199                          * truncated or invalidated), or the page is
2200                          * already under writeback and we are not
2201                          * doing a data integrity writeback, skip the page
2202                          */
2203                         if (!PageDirty(page) ||
2204                             (PageWriteback(page) &&
2205                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2206                             unlikely(page->mapping != mapping)) {
2207                                 unlock_page(page);
2208                                 continue;
2209                         }
2210
2211                         wait_on_page_writeback(page);
2212                         BUG_ON(PageWriteback(page));
2213
2214                         /*
2215                          * If we have inline data and arrive here, it means that
2216                          * we will soon create the block for the 1st page, so
2217                          * we'd better clear the inline data here.
2218                          */
2219                         if (ext4_has_inline_data(inode)) {
2220                                 BUG_ON(ext4_test_inode_state(inode,
2221                                                 EXT4_STATE_MAY_INLINE_DATA));
2222                                 ext4_destroy_inline_data(handle, inode);
2223                         }
2224
2225                         if (mpd->next_page != page->index)
2226                                 mpd->first_page = page->index;
2227                         mpd->next_page = page->index + 1;
2228                         logical = (sector_t) page->index <<
2229                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2230
2231                         if (!page_has_buffers(page)) {
2232                                 mpage_add_bh_to_extent(mpd, logical,
2233                                                        PAGE_CACHE_SIZE,
2234                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2235                                 if (mpd->io_done)
2236                                         goto ret_extent_tail;
2237                         } else {
2238                                 /*
2239                                  * Page with regular buffer heads,
2240                                  * just add all dirty ones
2241                                  */
2242                                 head = page_buffers(page);
2243                                 bh = head;
2244                                 do {
2245                                         BUG_ON(buffer_locked(bh));
2246                                         /*
2247                                          * We need to try to allocate
2248                                          * unmapped blocks in the same page.
2249                                          * Otherwise we won't make progress
2250                                          * with the page in ext4_writepage
2251                                          */
2252                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2253                                                 mpage_add_bh_to_extent(mpd, logical,
2254                                                                        bh->b_size,
2255                                                                        bh->b_state);
2256                                                 if (mpd->io_done)
2257                                                         goto ret_extent_tail;
2258                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2259                                                 /*
2260                                                  * mapped dirty buffer. We need
2261                                                  * to update the b_state
2262                                                  * because we look at b_state
2263                                                  * in mpage_da_map_blocks.  We
2264                                                  * don't update b_size because
2265                                                  * if we find an unmapped
2266                                                  * buffer_head later we need to
2267                                                  * use the b_state flag of that
2268                                                  * buffer_head.
2269                                                  */
2270                                                 if (mpd->b_size == 0)
2271                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2272                                         }
2273                                         logical++;
2274                                 } while ((bh = bh->b_this_page) != head);
2275                         }
2276
2277                         if (nr_to_write > 0) {
2278                                 nr_to_write--;
2279                                 if (nr_to_write == 0 &&
2280                                     wbc->sync_mode == WB_SYNC_NONE)
2281                                         /*
2282                                          * We stop writing back only if we are
2283                                          * not doing integrity sync. In case of
2284                                          * integrity sync we have to keep going
2285                                          * because someone may be concurrently
2286                                          * dirtying pages, and we might have
2287                                          * synced a lot of newly appeared dirty
2288                                          * pages, but have not synced all of the
2289                                          * old dirty pages.
2290                                          */
2291                                         goto out;
2292                         }
2293                 }
2294                 pagevec_release(&pvec);
2295                 cond_resched();
2296         }
2297         return 0;
2298 ret_extent_tail:
2299         ret = MPAGE_DA_EXTENT_TAIL;
2300 out:
2301         pagevec_release(&pvec);
2302         cond_resched();
2303         return ret;
2304 }
2305
2306
2307 static int ext4_da_writepages(struct address_space *mapping,
2308                               struct writeback_control *wbc)
2309 {
2310         pgoff_t index;
2311         int range_whole = 0;
2312         handle_t *handle = NULL;
2313         struct mpage_da_data mpd;
2314         struct inode *inode = mapping->host;
2315         int pages_written = 0;
2316         unsigned int max_pages;
2317         int range_cyclic, cycled = 1, io_done = 0;
2318         int needed_blocks, ret = 0;
2319         long desired_nr_to_write, nr_to_writebump = 0;
2320         loff_t range_start = wbc->range_start;
2321         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2322         pgoff_t done_index = 0;
2323         pgoff_t end;
2324         struct blk_plug plug;
2325
2326         trace_ext4_da_writepages(inode, wbc);
2327
2328         /*
2329          * No pages to write? This is mainly a kludge to avoid starting
2330          * a transaction for special inodes like journal inode on last iput()
2331          * because that could violate lock ordering on umount
2332          */
2333         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2334                 return 0;
2335
2336         /*
2337          * If the filesystem has aborted, it is read-only, so return
2338          * right away instead of dumping stack traces later on that
2339          * will obscure the real source of the problem.  We test
2340          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2341          * the latter could be true if the filesystem is mounted
2342          * read-only, and in that case, ext4_da_writepages should
2343          * *never* be called, so if that ever happens, we would want
2344          * the stack trace.
2345          */
2346         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2347                 return -EROFS;
2348
2349         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2350                 range_whole = 1;
2351
2352         range_cyclic = wbc->range_cyclic;
2353         if (wbc->range_cyclic) {
2354                 index = mapping->writeback_index;
2355                 if (index)
2356                         cycled = 0;
2357                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2358                 wbc->range_end  = LLONG_MAX;
2359                 wbc->range_cyclic = 0;
2360                 end = -1;
2361         } else {
2362                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2363                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2364         }
2365
2366         /*
2367          * This works around two forms of stupidity.  The first is in
2368          * the writeback code, which caps the maximum number of pages
2369          * written to be 1024 pages.  This is wrong on multiple
2370          * levels; different architectues have a different page size,
2371          * which changes the maximum amount of data which gets
2372          * written.  Secondly, 4 megabytes is way too small.  XFS
2373          * forces this value to be 16 megabytes by multiplying
2374          * nr_to_write parameter by four, and then relies on its
2375          * allocator to allocate larger extents to make them
2376          * contiguous.  Unfortunately this brings us to the second
2377          * stupidity, which is that ext4's mballoc code only allocates
2378          * at most 2048 blocks.  So we force contiguous writes up to
2379          * the number of dirty blocks in the inode, or
2380          * sbi->max_writeback_mb_bump whichever is smaller.
2381          */
2382         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2383         if (!range_cyclic && range_whole) {
2384                 if (wbc->nr_to_write == LONG_MAX)
2385                         desired_nr_to_write = wbc->nr_to_write;
2386                 else
2387                         desired_nr_to_write = wbc->nr_to_write * 8;
2388         } else
2389                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2390                                                            max_pages);
2391         if (desired_nr_to_write > max_pages)
2392                 desired_nr_to_write = max_pages;
2393
2394         if (wbc->nr_to_write < desired_nr_to_write) {
2395                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2396                 wbc->nr_to_write = desired_nr_to_write;
2397         }
2398
2399 retry:
2400         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2401                 tag_pages_for_writeback(mapping, index, end);
2402
2403         blk_start_plug(&plug);
2404         while (!ret && wbc->nr_to_write > 0) {
2405
2406                 /*
2407                  * we  insert one extent at a time. So we need
2408                  * credit needed for single extent allocation.
2409                  * journalled mode is currently not supported
2410                  * by delalloc
2411                  */
2412                 BUG_ON(ext4_should_journal_data(inode));
2413                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2414
2415                 /* start a new transaction*/
2416                 handle = ext4_journal_start(inode, needed_blocks);
2417                 if (IS_ERR(handle)) {
2418                         ret = PTR_ERR(handle);
2419                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2420                                "%ld pages, ino %lu; err %d", __func__,
2421                                 wbc->nr_to_write, inode->i_ino, ret);
2422                         blk_finish_plug(&plug);
2423                         goto out_writepages;
2424                 }
2425
2426                 /*
2427                  * Now call write_cache_pages_da() to find the next
2428                  * contiguous region of logical blocks that need
2429                  * blocks to be allocated by ext4 and submit them.
2430                  */
2431                 ret = write_cache_pages_da(handle, mapping,
2432                                            wbc, &mpd, &done_index);
2433                 /*
2434                  * If we have a contiguous extent of pages and we
2435                  * haven't done the I/O yet, map the blocks and submit
2436                  * them for I/O.
2437                  */
2438                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2439                         mpage_da_map_and_submit(&mpd);
2440                         ret = MPAGE_DA_EXTENT_TAIL;
2441                 }
2442                 trace_ext4_da_write_pages(inode, &mpd);
2443                 wbc->nr_to_write -= mpd.pages_written;
2444
2445                 ext4_journal_stop(handle);
2446
2447                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2448                         /* commit the transaction which would
2449                          * free blocks released in the transaction
2450                          * and try again
2451                          */
2452                         jbd2_journal_force_commit_nested(sbi->s_journal);
2453                         ret = 0;
2454                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2455                         /*
2456                          * Got one extent now try with rest of the pages.
2457                          * If mpd.retval is set -EIO, journal is aborted.
2458                          * So we don't need to write any more.
2459                          */
2460                         pages_written += mpd.pages_written;
2461                         ret = mpd.retval;
2462                         io_done = 1;
2463                 } else if (wbc->nr_to_write)
2464                         /*
2465                          * There is no more writeout needed
2466                          * or we requested for a noblocking writeout
2467                          * and we found the device congested
2468                          */
2469                         break;
2470         }
2471         blk_finish_plug(&plug);
2472         if (!io_done && !cycled) {
2473                 cycled = 1;
2474                 index = 0;
2475                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2476                 wbc->range_end  = mapping->writeback_index - 1;
2477                 goto retry;
2478         }
2479
2480         /* Update index */
2481         wbc->range_cyclic = range_cyclic;
2482         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2483                 /*
2484                  * set the writeback_index so that range_cyclic
2485                  * mode will write it back later
2486                  */
2487                 mapping->writeback_index = done_index;
2488
2489 out_writepages:
2490         wbc->nr_to_write -= nr_to_writebump;
2491         wbc->range_start = range_start;
2492         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2493         return ret;
2494 }
2495
2496 static int ext4_nonda_switch(struct super_block *sb)
2497 {
2498         s64 free_blocks, dirty_blocks;
2499         struct ext4_sb_info *sbi = EXT4_SB(sb);
2500
2501         /*
2502          * switch to non delalloc mode if we are running low
2503          * on free block. The free block accounting via percpu
2504          * counters can get slightly wrong with percpu_counter_batch getting
2505          * accumulated on each CPU without updating global counters
2506          * Delalloc need an accurate free block accounting. So switch
2507          * to non delalloc when we are near to error range.
2508          */
2509         free_blocks  = EXT4_C2B(sbi,
2510                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2511         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2512         /*
2513          * Start pushing delalloc when 1/2 of free blocks are dirty.
2514          */
2515         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2516             !writeback_in_progress(sb->s_bdi) &&
2517             down_read_trylock(&sb->s_umount)) {
2518                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2519                 up_read(&sb->s_umount);
2520         }
2521
2522         if (2 * free_blocks < 3 * dirty_blocks ||
2523                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2524                 /*
2525                  * free block count is less than 150% of dirty blocks
2526                  * or free blocks is less than watermark
2527                  */
2528                 return 1;
2529         }
2530         return 0;
2531 }
2532
2533 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2534                                loff_t pos, unsigned len, unsigned flags,
2535                                struct page **pagep, void **fsdata)
2536 {
2537         int ret, retries = 0;
2538         struct page *page;
2539         pgoff_t index;
2540         struct inode *inode = mapping->host;
2541         handle_t *handle;
2542
2543         index = pos >> PAGE_CACHE_SHIFT;
2544
2545         if (ext4_nonda_switch(inode->i_sb)) {
2546                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2547                 return ext4_write_begin(file, mapping, pos,
2548                                         len, flags, pagep, fsdata);
2549         }
2550         *fsdata = (void *)0;
2551         trace_ext4_da_write_begin(inode, pos, len, flags);
2552
2553         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2554                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2555                                                       pos, len, flags,
2556                                                       pagep, fsdata);
2557                 if (ret < 0)
2558                         goto out;
2559                 if (ret == 1) {
2560                         ret = 0;
2561                         goto out;
2562                 }
2563         }
2564
2565 retry:
2566         /*
2567          * With delayed allocation, we don't log the i_disksize update
2568          * if there is delayed block allocation. But we still need
2569          * to journalling the i_disksize update if writes to the end
2570          * of file which has an already mapped buffer.
2571          */
2572         handle = ext4_journal_start(inode, 1);
2573         if (IS_ERR(handle)) {
2574                 ret = PTR_ERR(handle);
2575                 goto out;
2576         }
2577         /* We cannot recurse into the filesystem as the transaction is already
2578          * started */
2579         flags |= AOP_FLAG_NOFS;
2580
2581         page = grab_cache_page_write_begin(mapping, index, flags);
2582         if (!page) {
2583                 ext4_journal_stop(handle);
2584                 ret = -ENOMEM;
2585                 goto out;
2586         }
2587         *pagep = page;
2588
2589         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2590         if (ret < 0) {
2591                 unlock_page(page);
2592                 ext4_journal_stop(handle);
2593                 page_cache_release(page);
2594                 /*
2595                  * block_write_begin may have instantiated a few blocks
2596                  * outside i_size.  Trim these off again. Don't need
2597                  * i_size_read because we hold i_mutex.
2598                  */
2599                 if (pos + len > inode->i_size)
2600                         ext4_truncate_failed_write(inode);
2601         }
2602
2603         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2604                 goto retry;
2605 out:
2606         return ret;
2607 }
2608
2609 /*
2610  * Check if we should update i_disksize
2611  * when write to the end of file but not require block allocation
2612  */
2613 static int ext4_da_should_update_i_disksize(struct page *page,
2614                                             unsigned long offset)
2615 {
2616         struct buffer_head *bh;
2617         struct inode *inode = page->mapping->host;
2618         unsigned int idx;
2619         int i;
2620
2621         bh = page_buffers(page);
2622         idx = offset >> inode->i_blkbits;
2623
2624         for (i = 0; i < idx; i++)
2625                 bh = bh->b_this_page;
2626
2627         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2628                 return 0;
2629         return 1;
2630 }
2631
2632 static int ext4_da_write_end(struct file *file,
2633                              struct address_space *mapping,
2634                              loff_t pos, unsigned len, unsigned copied,
2635                              struct page *page, void *fsdata)
2636 {
2637         struct inode *inode = mapping->host;
2638         int ret = 0, ret2;
2639         handle_t *handle = ext4_journal_current_handle();
2640         loff_t new_i_size;
2641         unsigned long start, end;
2642         int write_mode = (int)(unsigned long)fsdata;
2643
2644         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2645                 switch (ext4_inode_journal_mode(inode)) {
2646                 case EXT4_INODE_ORDERED_DATA_MODE:
2647                         return ext4_ordered_write_end(file, mapping, pos,
2648                                         len, copied, page, fsdata);
2649                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2650                         return ext4_writeback_write_end(file, mapping, pos,
2651                                         len, copied, page, fsdata);
2652                 default:
2653                         BUG();
2654                 }
2655         }
2656
2657         trace_ext4_da_write_end(inode, pos, len, copied);
2658         start = pos & (PAGE_CACHE_SIZE - 1);
2659         end = start + copied - 1;
2660
2661         /*
2662          * generic_write_end() will run mark_inode_dirty() if i_size
2663          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2664          * into that.
2665          */
2666         new_i_size = pos + copied;
2667         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2668                 if (ext4_has_inline_data(inode) ||
2669                     ext4_da_should_update_i_disksize(page, end)) {
2670                         down_write(&EXT4_I(inode)->i_data_sem);
2671                         if (new_i_size > EXT4_I(inode)->i_disksize)
2672                                 EXT4_I(inode)->i_disksize = new_i_size;
2673                         up_write(&EXT4_I(inode)->i_data_sem);
2674                         /* We need to mark inode dirty even if
2675                          * new_i_size is less that inode->i_size
2676                          * bu greater than i_disksize.(hint delalloc)
2677                          */
2678                         ext4_mark_inode_dirty(handle, inode);
2679                 }
2680         }
2681
2682         if (write_mode != CONVERT_INLINE_DATA &&
2683             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2684             ext4_has_inline_data(inode))
2685                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2686                                                      page);
2687         else
2688                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2689                                                         page, fsdata);
2690
2691         copied = ret2;
2692         if (ret2 < 0)
2693                 ret = ret2;
2694         ret2 = ext4_journal_stop(handle);
2695         if (!ret)
2696                 ret = ret2;
2697
2698         return ret ? ret : copied;
2699 }
2700
2701 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2702 {
2703         /*
2704          * Drop reserved blocks
2705          */
2706         BUG_ON(!PageLocked(page));
2707         if (!page_has_buffers(page))
2708                 goto out;
2709
2710         ext4_da_page_release_reservation(page, offset);
2711
2712 out:
2713         ext4_invalidatepage(page, offset);
2714
2715         return;
2716 }
2717
2718 /*
2719  * Force all delayed allocation blocks to be allocated for a given inode.
2720  */
2721 int ext4_alloc_da_blocks(struct inode *inode)
2722 {
2723         trace_ext4_alloc_da_blocks(inode);
2724
2725         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2726             !EXT4_I(inode)->i_reserved_meta_blocks)
2727                 return 0;
2728
2729         /*
2730          * We do something simple for now.  The filemap_flush() will
2731          * also start triggering a write of the data blocks, which is
2732          * not strictly speaking necessary (and for users of
2733          * laptop_mode, not even desirable).  However, to do otherwise
2734          * would require replicating code paths in:
2735          *
2736          * ext4_da_writepages() ->
2737          *    write_cache_pages() ---> (via passed in callback function)
2738          *        __mpage_da_writepage() -->
2739          *           mpage_add_bh_to_extent()
2740          *           mpage_da_map_blocks()
2741          *
2742          * The problem is that write_cache_pages(), located in
2743          * mm/page-writeback.c, marks pages clean in preparation for
2744          * doing I/O, which is not desirable if we're not planning on
2745          * doing I/O at all.
2746          *
2747          * We could call write_cache_pages(), and then redirty all of
2748          * the pages by calling redirty_page_for_writepage() but that
2749          * would be ugly in the extreme.  So instead we would need to
2750          * replicate parts of the code in the above functions,
2751          * simplifying them because we wouldn't actually intend to
2752          * write out the pages, but rather only collect contiguous
2753          * logical block extents, call the multi-block allocator, and
2754          * then update the buffer heads with the block allocations.
2755          *
2756          * For now, though, we'll cheat by calling filemap_flush(),
2757          * which will map the blocks, and start the I/O, but not
2758          * actually wait for the I/O to complete.
2759          */
2760         return filemap_flush(inode->i_mapping);
2761 }
2762
2763 /*
2764  * bmap() is special.  It gets used by applications such as lilo and by
2765  * the swapper to find the on-disk block of a specific piece of data.
2766  *
2767  * Naturally, this is dangerous if the block concerned is still in the
2768  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2769  * filesystem and enables swap, then they may get a nasty shock when the
2770  * data getting swapped to that swapfile suddenly gets overwritten by
2771  * the original zero's written out previously to the journal and
2772  * awaiting writeback in the kernel's buffer cache.
2773  *
2774  * So, if we see any bmap calls here on a modified, data-journaled file,
2775  * take extra steps to flush any blocks which might be in the cache.
2776  */
2777 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2778 {
2779         struct inode *inode = mapping->host;
2780         journal_t *journal;
2781         int err;
2782
2783         /*
2784          * We can get here for an inline file via the FIBMAP ioctl
2785          */
2786         if (ext4_has_inline_data(inode))
2787                 return 0;
2788
2789         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2790                         test_opt(inode->i_sb, DELALLOC)) {
2791                 /*
2792                  * With delalloc we want to sync the file
2793                  * so that we can make sure we allocate
2794                  * blocks for file
2795                  */
2796                 filemap_write_and_wait(mapping);
2797         }
2798
2799         if (EXT4_JOURNAL(inode) &&
2800             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2801                 /*
2802                  * This is a REALLY heavyweight approach, but the use of
2803                  * bmap on dirty files is expected to be extremely rare:
2804                  * only if we run lilo or swapon on a freshly made file
2805                  * do we expect this to happen.
2806                  *
2807                  * (bmap requires CAP_SYS_RAWIO so this does not
2808                  * represent an unprivileged user DOS attack --- we'd be
2809                  * in trouble if mortal users could trigger this path at
2810                  * will.)
2811                  *
2812                  * NB. EXT4_STATE_JDATA is not set on files other than
2813                  * regular files.  If somebody wants to bmap a directory
2814                  * or symlink and gets confused because the buffer
2815                  * hasn't yet been flushed to disk, they deserve
2816                  * everything they get.
2817                  */
2818
2819                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2820                 journal = EXT4_JOURNAL(inode);
2821                 jbd2_journal_lock_updates(journal);
2822                 err = jbd2_journal_flush(journal);
2823                 jbd2_journal_unlock_updates(journal);
2824
2825                 if (err)
2826                         return 0;
2827         }
2828
2829         return generic_block_bmap(mapping, block, ext4_get_block);
2830 }
2831
2832 static int ext4_readpage(struct file *file, struct page *page)
2833 {
2834         int ret = -EAGAIN;
2835         struct inode *inode = page->mapping->host;
2836
2837         trace_ext4_readpage(page);
2838
2839         if (ext4_has_inline_data(inode))
2840                 ret = ext4_readpage_inline(inode, page);
2841
2842         if (ret == -EAGAIN)
2843                 return mpage_readpage(page, ext4_get_block);
2844
2845         return ret;
2846 }
2847
2848 static int
2849 ext4_readpages(struct file *file, struct address_space *mapping,
2850                 struct list_head *pages, unsigned nr_pages)
2851 {
2852         struct inode *inode = mapping->host;
2853
2854         /* If the file has inline data, no need to do readpages. */
2855         if (ext4_has_inline_data(inode))
2856                 return 0;
2857
2858         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2859 }
2860
2861 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2862 {
2863         struct buffer_head *head, *bh;
2864         unsigned int curr_off = 0;
2865
2866         if (!page_has_buffers(page))
2867                 return;
2868         head = bh = page_buffers(page);
2869         do {
2870                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2871                                         && bh->b_private) {
2872                         ext4_free_io_end(bh->b_private);
2873                         bh->b_private = NULL;
2874                         bh->b_end_io = NULL;
2875                 }
2876                 curr_off = curr_off + bh->b_size;
2877                 bh = bh->b_this_page;
2878         } while (bh != head);
2879 }
2880
2881 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2882 {
2883         trace_ext4_invalidatepage(page, offset);
2884
2885         /*
2886          * free any io_end structure allocated for buffers to be discarded
2887          */
2888         if (ext4_should_dioread_nolock(page->mapping->host))
2889                 ext4_invalidatepage_free_endio(page, offset);
2890
2891         /* No journalling happens on data buffers when this function is used */
2892         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2893
2894         block_invalidatepage(page, offset);
2895 }
2896
2897 static int __ext4_journalled_invalidatepage(struct page *page,
2898                                             unsigned long offset)
2899 {
2900         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2901
2902         trace_ext4_journalled_invalidatepage(page, offset);
2903
2904         /*
2905          * If it's a full truncate we just forget about the pending dirtying
2906          */
2907         if (offset == 0)
2908                 ClearPageChecked(page);
2909
2910         return jbd2_journal_invalidatepage(journal, page, offset);
2911 }
2912
2913 /* Wrapper for aops... */
2914 static void ext4_journalled_invalidatepage(struct page *page,
2915                                            unsigned long offset)
2916 {
2917         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2918 }
2919
2920 static int ext4_releasepage(struct page *page, gfp_t wait)
2921 {
2922         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2923
2924         trace_ext4_releasepage(page);
2925
2926         WARN_ON(PageChecked(page));
2927         if (!page_has_buffers(page))
2928                 return 0;
2929         if (journal)
2930                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2931         else
2932                 return try_to_free_buffers(page);
2933 }
2934
2935 /*
2936  * ext4_get_block used when preparing for a DIO write or buffer write.
2937  * We allocate an uinitialized extent if blocks haven't been allocated.
2938  * The extent will be converted to initialized after the IO is complete.
2939  */
2940 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2941                    struct buffer_head *bh_result, int create)
2942 {
2943         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2944                    inode->i_ino, create);
2945         return _ext4_get_block(inode, iblock, bh_result,
2946                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2947 }
2948
2949 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2950                    struct buffer_head *bh_result, int create)
2951 {
2952         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2953                    inode->i_ino, create);
2954         return _ext4_get_block(inode, iblock, bh_result,
2955                                EXT4_GET_BLOCKS_NO_LOCK);
2956 }
2957
2958 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2959                             ssize_t size, void *private, int ret,
2960                             bool is_async)
2961 {
2962         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2963         ext4_io_end_t *io_end = iocb->private;
2964
2965         /* if not async direct IO or dio with 0 bytes write, just return */
2966         if (!io_end || !size)
2967                 goto out;
2968
2969         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2970                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2971                   iocb->private, io_end->inode->i_ino, iocb, offset,
2972                   size);
2973
2974         iocb->private = NULL;
2975
2976         /* if not aio dio with unwritten extents, just free io and return */
2977         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2978                 ext4_free_io_end(io_end);
2979 out:
2980                 if (is_async)
2981                         aio_complete(iocb, ret, 0);
2982                 inode_dio_done(inode);
2983                 return;
2984         }
2985
2986         io_end->offset = offset;
2987         io_end->size = size;
2988         if (is_async) {
2989                 io_end->iocb = iocb;
2990                 io_end->result = ret;
2991         }
2992
2993         ext4_add_complete_io(io_end);
2994 }
2995
2996 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2997 {
2998         ext4_io_end_t *io_end = bh->b_private;
2999         struct inode *inode;
3000
3001         if (!test_clear_buffer_uninit(bh) || !io_end)
3002                 goto out;
3003
3004         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3005                 ext4_msg(io_end->inode->i_sb, KERN_INFO,
3006                          "sb umounted, discard end_io request for inode %lu",
3007                          io_end->inode->i_ino);
3008                 ext4_free_io_end(io_end);
3009                 goto out;
3010         }
3011
3012         /*
3013          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
3014          * but being more careful is always safe for the future change.
3015          */
3016         inode = io_end->inode;
3017         ext4_set_io_unwritten_flag(inode, io_end);
3018         ext4_add_complete_io(io_end);
3019 out:
3020         bh->b_private = NULL;
3021         bh->b_end_io = NULL;
3022         clear_buffer_uninit(bh);
3023         end_buffer_async_write(bh, uptodate);
3024 }
3025
3026 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3027 {
3028         ext4_io_end_t *io_end;
3029         struct page *page = bh->b_page;
3030         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3031         size_t size = bh->b_size;
3032
3033 retry:
3034         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3035         if (!io_end) {
3036                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
3037                 schedule();
3038                 goto retry;
3039         }
3040         io_end->offset = offset;
3041         io_end->size = size;
3042         /*
3043          * We need to hold a reference to the page to make sure it
3044          * doesn't get evicted before ext4_end_io_work() has a chance
3045          * to convert the extent from written to unwritten.
3046          */
3047         io_end->page = page;
3048         get_page(io_end->page);
3049
3050         bh->b_private = io_end;
3051         bh->b_end_io = ext4_end_io_buffer_write;
3052         return 0;
3053 }
3054
3055 /*
3056  * For ext4 extent files, ext4 will do direct-io write to holes,
3057  * preallocated extents, and those write extend the file, no need to
3058  * fall back to buffered IO.
3059  *
3060  * For holes, we fallocate those blocks, mark them as uninitialized
3061  * If those blocks were preallocated, we mark sure they are split, but
3062  * still keep the range to write as uninitialized.
3063  *
3064  * The unwritten extents will be converted to written when DIO is completed.
3065  * For async direct IO, since the IO may still pending when return, we
3066  * set up an end_io call back function, which will do the conversion
3067  * when async direct IO completed.
3068  *
3069  * If the O_DIRECT write will extend the file then add this inode to the
3070  * orphan list.  So recovery will truncate it back to the original size
3071  * if the machine crashes during the write.
3072  *
3073  */
3074 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3075                               const struct iovec *iov, loff_t offset,
3076                               unsigned long nr_segs)
3077 {
3078         struct file *file = iocb->ki_filp;
3079         struct inode *inode = file->f_mapping->host;
3080         ssize_t ret;
3081         size_t count = iov_length(iov, nr_segs);
3082         int overwrite = 0;
3083         get_block_t *get_block_func = NULL;
3084         int dio_flags = 0;
3085         loff_t final_size = offset + count;
3086
3087         /* Use the old path for reads and writes beyond i_size. */
3088         if (rw != WRITE || final_size > inode->i_size)
3089                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3090
3091         BUG_ON(iocb->private == NULL);
3092
3093         /* If we do a overwrite dio, i_mutex locking can be released */
3094         overwrite = *((int *)iocb->private);
3095
3096         if (overwrite) {
3097                 atomic_inc(&inode->i_dio_count);
3098                 down_read(&EXT4_I(inode)->i_data_sem);
3099                 mutex_unlock(&inode->i_mutex);
3100         }
3101
3102         /*
3103          * We could direct write to holes and fallocate.
3104          *
3105          * Allocated blocks to fill the hole are marked as
3106          * uninitialized to prevent parallel buffered read to expose
3107          * the stale data before DIO complete the data IO.
3108          *
3109          * As to previously fallocated extents, ext4 get_block will
3110          * just simply mark the buffer mapped but still keep the
3111          * extents uninitialized.
3112          *
3113          * For non AIO case, we will convert those unwritten extents
3114          * to written after return back from blockdev_direct_IO.
3115          *
3116          * For async DIO, the conversion needs to be deferred when the
3117          * IO is completed. The ext4 end_io callback function will be
3118          * called to take care of the conversion work.  Here for async
3119          * case, we allocate an io_end structure to hook to the iocb.
3120          */
3121         iocb->private = NULL;
3122         ext4_inode_aio_set(inode, NULL);
3123         if (!is_sync_kiocb(iocb)) {
3124                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3125                 if (!io_end) {
3126                         ret = -ENOMEM;
3127                         goto retake_lock;
3128                 }
3129                 io_end->flag |= EXT4_IO_END_DIRECT;
3130                 iocb->private = io_end;
3131                 /*
3132                  * we save the io structure for current async direct
3133                  * IO, so that later ext4_map_blocks() could flag the
3134                  * io structure whether there is a unwritten extents
3135                  * needs to be converted when IO is completed.
3136                  */
3137                 ext4_inode_aio_set(inode, io_end);
3138         }
3139
3140         if (overwrite) {
3141                 get_block_func = ext4_get_block_write_nolock;
3142         } else {
3143                 get_block_func = ext4_get_block_write;
3144                 dio_flags = DIO_LOCKING;
3145         }
3146         ret = __blockdev_direct_IO(rw, iocb, inode,
3147                                    inode->i_sb->s_bdev, iov,
3148                                    offset, nr_segs,
3149                                    get_block_func,
3150                                    ext4_end_io_dio,
3151                                    NULL,
3152                                    dio_flags);
3153
3154         if (iocb->private)
3155                 ext4_inode_aio_set(inode, NULL);
3156         /*
3157          * The io_end structure takes a reference to the inode, that
3158          * structure needs to be destroyed and the reference to the
3159          * inode need to be dropped, when IO is complete, even with 0
3160          * byte write, or failed.
3161          *
3162          * In the successful AIO DIO case, the io_end structure will
3163          * be destroyed and the reference to the inode will be dropped
3164          * after the end_io call back function is called.
3165          *
3166          * In the case there is 0 byte write, or error case, since VFS
3167          * direct IO won't invoke the end_io call back function, we
3168          * need to free the end_io structure here.
3169          */
3170         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3171                 ext4_free_io_end(iocb->private);
3172                 iocb->private = NULL;
3173         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3174                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3175                 int err;
3176                 /*
3177                  * for non AIO case, since the IO is already
3178                  * completed, we could do the conversion right here
3179                  */
3180                 err = ext4_convert_unwritten_extents(inode,
3181                                                      offset, ret);
3182                 if (err < 0)
3183                         ret = err;
3184                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3185         }
3186
3187 retake_lock:
3188         /* take i_mutex locking again if we do a ovewrite dio */
3189         if (overwrite) {
3190                 inode_dio_done(inode);
3191                 up_read(&EXT4_I(inode)->i_data_sem);
3192                 mutex_lock(&inode->i_mutex);
3193         }
3194
3195         return ret;
3196 }
3197
3198 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3199                               const struct iovec *iov, loff_t offset,
3200                               unsigned long nr_segs)
3201 {
3202         struct file *file = iocb->ki_filp;
3203         struct inode *inode = file->f_mapping->host;
3204         ssize_t ret;
3205
3206         /*
3207          * If we are doing data journalling we don't support O_DIRECT
3208          */
3209         if (ext4_should_journal_data(inode))
3210                 return 0;
3211
3212         /* Let buffer I/O handle the inline data case. */
3213         if (ext4_has_inline_data(inode))
3214                 return 0;
3215
3216         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3217         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3218                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3219         else
3220                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3221         trace_ext4_direct_IO_exit(inode, offset,
3222                                 iov_length(iov, nr_segs), rw, ret);
3223         return ret;
3224 }
3225
3226 /*
3227  * Pages can be marked dirty completely asynchronously from ext4's journalling
3228  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3229  * much here because ->set_page_dirty is called under VFS locks.  The page is
3230  * not necessarily locked.
3231  *
3232  * We cannot just dirty the page and leave attached buffers clean, because the
3233  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3234  * or jbddirty because all the journalling code will explode.
3235  *
3236  * So what we do is to mark the page "pending dirty" and next time writepage
3237  * is called, propagate that into the buffers appropriately.
3238  */
3239 static int ext4_journalled_set_page_dirty(struct page *page)
3240 {
3241         SetPageChecked(page);
3242         return __set_page_dirty_nobuffers(page);
3243 }
3244
3245 static const struct address_space_operations ext4_ordered_aops = {
3246         .readpage               = ext4_readpage,
3247         .readpages              = ext4_readpages,
3248         .writepage              = ext4_writepage,
3249         .write_begin            = ext4_write_begin,
3250         .write_end              = ext4_ordered_write_end,
3251         .bmap                   = ext4_bmap,
3252         .invalidatepage         = ext4_invalidatepage,
3253         .releasepage            = ext4_releasepage,
3254         .direct_IO              = ext4_direct_IO,
3255         .migratepage            = buffer_migrate_page,
3256         .is_partially_uptodate  = block_is_partially_uptodate,
3257         .error_remove_page      = generic_error_remove_page,
3258 };
3259
3260 static const struct address_space_operations ext4_writeback_aops = {
3261         .readpage               = ext4_readpage,
3262         .readpages              = ext4_readpages,
3263         .writepage              = ext4_writepage,
3264         .write_begin            = ext4_write_begin,
3265         .write_end              = ext4_writeback_write_end,
3266         .bmap                   = ext4_bmap,
3267         .invalidatepage         = ext4_invalidatepage,
3268         .releasepage            = ext4_releasepage,
3269         .direct_IO              = ext4_direct_IO,
3270         .migratepage            = buffer_migrate_page,
3271         .is_partially_uptodate  = block_is_partially_uptodate,
3272         .error_remove_page      = generic_error_remove_page,
3273 };
3274
3275 static const struct address_space_operations ext4_journalled_aops = {
3276         .readpage               = ext4_readpage,
3277         .readpages              = ext4_readpages,
3278         .writepage              = ext4_writepage,
3279         .write_begin            = ext4_write_begin,
3280         .write_end              = ext4_journalled_write_end,
3281         .set_page_dirty         = ext4_journalled_set_page_dirty,
3282         .bmap                   = ext4_bmap,
3283         .invalidatepage         = ext4_journalled_invalidatepage,
3284         .releasepage            = ext4_releasepage,
3285         .direct_IO              = ext4_direct_IO,
3286         .is_partially_uptodate  = block_is_partially_uptodate,
3287         .error_remove_page      = generic_error_remove_page,
3288 };
3289
3290 static const struct address_space_operations ext4_da_aops = {
3291         .readpage               = ext4_readpage,
3292         .readpages              = ext4_readpages,
3293         .writepage              = ext4_writepage,
3294         .writepages             = ext4_da_writepages,
3295         .write_begin            = ext4_da_write_begin,
3296         .write_end              = ext4_da_write_end,
3297         .bmap                   = ext4_bmap,
3298         .invalidatepage         = ext4_da_invalidatepage,
3299         .releasepage            = ext4_releasepage,
3300         .direct_IO              = ext4_direct_IO,
3301         .migratepage            = buffer_migrate_page,
3302         .is_partially_uptodate  = block_is_partially_uptodate,
3303         .error_remove_page      = generic_error_remove_page,
3304 };
3305
3306 void ext4_set_aops(struct inode *inode)
3307 {
3308         switch (ext4_inode_journal_mode(inode)) {
3309         case EXT4_INODE_ORDERED_DATA_MODE:
3310                 if (test_opt(inode->i_sb, DELALLOC))
3311                         inode->i_mapping->a_ops = &ext4_da_aops;
3312                 else
3313                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3314                 break;
3315         case EXT4_INODE_WRITEBACK_DATA_MODE:
3316                 if (test_opt(inode->i_sb, DELALLOC))
3317                         inode->i_mapping->a_ops = &ext4_da_aops;
3318                 else
3319                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3320                 break;
3321         case EXT4_INODE_JOURNAL_DATA_MODE:
3322                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3323                 break;
3324         default:
3325                 BUG();
3326         }
3327 }
3328
3329
3330 /*
3331  * ext4_discard_partial_page_buffers()
3332  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3333  * This function finds and locks the page containing the offset
3334  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3335  * Calling functions that already have the page locked should call
3336  * ext4_discard_partial_page_buffers_no_lock directly.
3337  */
3338 int ext4_discard_partial_page_buffers(handle_t *handle,
3339                 struct address_space *mapping, loff_t from,
3340                 loff_t length, int flags)
3341 {
3342         struct inode *inode = mapping->host;
3343         struct page *page;
3344         int err = 0;
3345
3346         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3347                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3348         if (!page)
3349                 return -ENOMEM;
3350
3351         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3352                 from, length, flags);
3353
3354         unlock_page(page);
3355         page_cache_release(page);
3356         return err;
3357 }
3358
3359 /*
3360  * ext4_discard_partial_page_buffers_no_lock()
3361  * Zeros a page range of length 'length' starting from offset 'from'.
3362  * Buffer heads that correspond to the block aligned regions of the
3363  * zeroed range will be unmapped.  Unblock aligned regions
3364  * will have the corresponding buffer head mapped if needed so that
3365  * that region of the page can be updated with the partial zero out.
3366  *
3367  * This function assumes that the page has already been  locked.  The
3368  * The range to be discarded must be contained with in the given page.
3369  * If the specified range exceeds the end of the page it will be shortened
3370  * to the end of the page that corresponds to 'from'.  This function is
3371  * appropriate for updating a page and it buffer heads to be unmapped and
3372  * zeroed for blocks that have been either released, or are going to be
3373  * released.
3374  *
3375  * handle: The journal handle
3376  * inode:  The files inode
3377  * page:   A locked page that contains the offset "from"
3378  * from:   The starting byte offset (from the beginning of the file)
3379  *         to begin discarding
3380  * len:    The length of bytes to discard
3381  * flags:  Optional flags that may be used:
3382  *
3383  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3384  *         Only zero the regions of the page whose buffer heads
3385  *         have already been unmapped.  This flag is appropriate
3386  *         for updating the contents of a page whose blocks may
3387  *         have already been released, and we only want to zero
3388  *         out the regions that correspond to those released blocks.
3389  *
3390  * Returns zero on success or negative on failure.
3391  */
3392 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3393                 struct inode *inode, struct page *page, loff_t from,
3394                 loff_t length, int flags)
3395 {
3396         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3397         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3398         unsigned int blocksize, max, pos;
3399         ext4_lblk_t iblock;
3400         struct buffer_head *bh;
3401         int err = 0;
3402
3403         blocksize = inode->i_sb->s_blocksize;
3404         max = PAGE_CACHE_SIZE - offset;
3405
3406         if (index != page->index)
3407                 return -EINVAL;
3408
3409         /*
3410          * correct length if it does not fall between
3411          * 'from' and the end of the page
3412          */
3413         if (length > max || length < 0)
3414                 length = max;
3415
3416         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3417
3418         if (!page_has_buffers(page))
3419                 create_empty_buffers(page, blocksize, 0);
3420
3421         /* Find the buffer that contains "offset" */
3422         bh = page_buffers(page);
3423         pos = blocksize;
3424         while (offset >= pos) {
3425                 bh = bh->b_this_page;
3426                 iblock++;
3427                 pos += blocksize;
3428         }
3429
3430         pos = offset;
3431         while (pos < offset + length) {
3432                 unsigned int end_of_block, range_to_discard;
3433
3434                 err = 0;
3435
3436                 /* The length of space left to zero and unmap */
3437                 range_to_discard = offset + length - pos;
3438
3439                 /* The length of space until the end of the block */
3440                 end_of_block = blocksize - (pos & (blocksize-1));
3441
3442                 /*
3443                  * Do not unmap or zero past end of block
3444                  * for this buffer head
3445                  */
3446                 if (range_to_discard > end_of_block)
3447                         range_to_discard = end_of_block;
3448
3449
3450                 /*
3451                  * Skip this buffer head if we are only zeroing unampped
3452                  * regions of the page
3453                  */
3454                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3455                         buffer_mapped(bh))
3456                                 goto next;
3457
3458                 /* If the range is block aligned, unmap */
3459                 if (range_to_discard == blocksize) {
3460                         clear_buffer_dirty(bh);
3461                         bh->b_bdev = NULL;
3462                         clear_buffer_mapped(bh);
3463                         clear_buffer_req(bh);
3464                         clear_buffer_new(bh);
3465                         clear_buffer_delay(bh);
3466                         clear_buffer_unwritten(bh);
3467                         clear_buffer_uptodate(bh);
3468                         zero_user(page, pos, range_to_discard);
3469                         BUFFER_TRACE(bh, "Buffer discarded");
3470                         goto next;
3471                 }
3472
3473                 /*
3474                  * If this block is not completely contained in the range
3475                  * to be discarded, then it is not going to be released. Because
3476                  * we need to keep this block, we need to make sure this part
3477                  * of the page is uptodate before we modify it by writeing
3478                  * partial zeros on it.
3479                  */
3480                 if (!buffer_mapped(bh)) {
3481                         /*
3482                          * Buffer head must be mapped before we can read
3483                          * from the block
3484                          */
3485                         BUFFER_TRACE(bh, "unmapped");
3486                         ext4_get_block(inode, iblock, bh, 0);
3487                         /* unmapped? It's a hole - nothing to do */
3488                         if (!buffer_mapped(bh)) {
3489                                 BUFFER_TRACE(bh, "still unmapped");
3490                                 goto next;
3491                         }
3492                 }
3493
3494                 /* Ok, it's mapped. Make sure it's up-to-date */
3495                 if (PageUptodate(page))
3496                         set_buffer_uptodate(bh);
3497
3498                 if (!buffer_uptodate(bh)) {
3499                         err = -EIO;
3500                         ll_rw_block(READ, 1, &bh);
3501                         wait_on_buffer(bh);
3502                         /* Uhhuh. Read error. Complain and punt.*/
3503                         if (!buffer_uptodate(bh))
3504                                 goto next;
3505                 }
3506
3507                 if (ext4_should_journal_data(inode)) {
3508                         BUFFER_TRACE(bh, "get write access");
3509                         err = ext4_journal_get_write_access(handle, bh);
3510                         if (err)
3511                                 goto next;
3512                 }
3513
3514                 zero_user(page, pos, range_to_discard);
3515
3516                 err = 0;
3517                 if (ext4_should_journal_data(inode)) {
3518                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3519                 } else
3520                         mark_buffer_dirty(bh);
3521
3522                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3523 next:
3524                 bh = bh->b_this_page;
3525                 iblock++;
3526                 pos += range_to_discard;
3527         }
3528
3529         return err;
3530 }
3531
3532 int ext4_can_truncate(struct inode *inode)
3533 {
3534         if (S_ISREG(inode->i_mode))
3535                 return 1;
3536         if (S_ISDIR(inode->i_mode))
3537                 return 1;
3538         if (S_ISLNK(inode->i_mode))
3539                 return !ext4_inode_is_fast_symlink(inode);
3540         return 0;
3541 }
3542
3543 /*
3544  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3545  * associated with the given offset and length
3546  *
3547  * @inode:  File inode
3548  * @offset: The offset where the hole will begin
3549  * @len:    The length of the hole
3550  *
3551  * Returns: 0 on success or negative on failure
3552  */
3553
3554 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3555 {
3556         struct inode *inode = file->f_path.dentry->d_inode;
3557         if (!S_ISREG(inode->i_mode))
3558                 return -EOPNOTSUPP;
3559
3560         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3561                 /* TODO: Add support for non extent hole punching */
3562                 return -EOPNOTSUPP;
3563         }
3564
3565         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3566                 /* TODO: Add support for bigalloc file systems */
3567                 return -EOPNOTSUPP;
3568         }
3569
3570         return ext4_ext_punch_hole(file, offset, length);
3571 }
3572
3573 /*
3574  * ext4_truncate()
3575  *
3576  * We block out ext4_get_block() block instantiations across the entire
3577  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3578  * simultaneously on behalf of the same inode.
3579  *
3580  * As we work through the truncate and commit bits of it to the journal there
3581  * is one core, guiding principle: the file's tree must always be consistent on
3582  * disk.  We must be able to restart the truncate after a crash.
3583  *
3584  * The file's tree may be transiently inconsistent in memory (although it
3585  * probably isn't), but whenever we close off and commit a journal transaction,
3586  * the contents of (the filesystem + the journal) must be consistent and
3587  * restartable.  It's pretty simple, really: bottom up, right to left (although
3588  * left-to-right works OK too).
3589  *
3590  * Note that at recovery time, journal replay occurs *before* the restart of
3591  * truncate against the orphan inode list.
3592  *
3593  * The committed inode has the new, desired i_size (which is the same as
3594  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3595  * that this inode's truncate did not complete and it will again call
3596  * ext4_truncate() to have another go.  So there will be instantiated blocks
3597  * to the right of the truncation point in a crashed ext4 filesystem.  But
3598  * that's fine - as long as they are linked from the inode, the post-crash
3599  * ext4_truncate() run will find them and release them.
3600  */
3601 void ext4_truncate(struct inode *inode)
3602 {
3603         trace_ext4_truncate_enter(inode);
3604
3605         if (!ext4_can_truncate(inode))
3606                 return;
3607
3608         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3609
3610         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3611                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3612
3613         if (ext4_has_inline_data(inode)) {
3614                 int has_inline = 1;
3615
3616                 ext4_inline_data_truncate(inode, &has_inline);
3617                 if (has_inline)
3618                         return;
3619         }
3620
3621         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3622                 ext4_ext_truncate(inode);
3623         else
3624                 ext4_ind_truncate(inode);
3625
3626         trace_ext4_truncate_exit(inode);
3627 }
3628
3629 /*
3630  * ext4_get_inode_loc returns with an extra refcount against the inode's
3631  * underlying buffer_head on success. If 'in_mem' is true, we have all
3632  * data in memory that is needed to recreate the on-disk version of this
3633  * inode.
3634  */
3635 static int __ext4_get_inode_loc(struct inode *inode,
3636                                 struct ext4_iloc *iloc, int in_mem)
3637 {
3638         struct ext4_group_desc  *gdp;
3639         struct buffer_head      *bh;
3640         struct super_block      *sb = inode->i_sb;
3641         ext4_fsblk_t            block;
3642         int                     inodes_per_block, inode_offset;
3643
3644         iloc->bh = NULL;
3645         if (!ext4_valid_inum(sb, inode->i_ino))
3646                 return -EIO;
3647
3648         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3649         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3650         if (!gdp)
3651                 return -EIO;
3652
3653         /*
3654          * Figure out the offset within the block group inode table
3655          */
3656         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3657         inode_offset = ((inode->i_ino - 1) %
3658                         EXT4_INODES_PER_GROUP(sb));
3659         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3660         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3661
3662         bh = sb_getblk(sb, block);
3663         if (!bh) {
3664                 EXT4_ERROR_INODE_BLOCK(inode, block,
3665                                        "unable to read itable block");
3666                 return -EIO;
3667         }
3668         if (!buffer_uptodate(bh)) {
3669                 lock_buffer(bh);
3670
3671                 /*
3672                  * If the buffer has the write error flag, we have failed
3673                  * to write out another inode in the same block.  In this
3674                  * case, we don't have to read the block because we may
3675                  * read the old inode data successfully.
3676                  */
3677                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3678                         set_buffer_uptodate(bh);
3679
3680                 if (buffer_uptodate(bh)) {
3681                         /* someone brought it uptodate while we waited */
3682                         unlock_buffer(bh);
3683                         goto has_buffer;
3684                 }
3685
3686                 /*
3687                  * If we have all information of the inode in memory and this
3688                  * is the only valid inode in the block, we need not read the
3689                  * block.
3690                  */
3691                 if (in_mem) {
3692                         struct buffer_head *bitmap_bh;
3693                         int i, start;
3694
3695                         start = inode_offset & ~(inodes_per_block - 1);
3696
3697                         /* Is the inode bitmap in cache? */
3698                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3699                         if (!bitmap_bh)
3700                                 goto make_io;
3701
3702                         /*
3703                          * If the inode bitmap isn't in cache then the
3704                          * optimisation may end up performing two reads instead
3705                          * of one, so skip it.
3706                          */
3707                         if (!buffer_uptodate(bitmap_bh)) {
3708                                 brelse(bitmap_bh);
3709                                 goto make_io;
3710                         }
3711                         for (i = start; i < start + inodes_per_block; i++) {
3712                                 if (i == inode_offset)
3713                                         continue;
3714                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3715                                         break;
3716                         }
3717                         brelse(bitmap_bh);
3718                         if (i == start + inodes_per_block) {
3719                                 /* all other inodes are free, so skip I/O */
3720                                 memset(bh->b_data, 0, bh->b_size);
3721                                 set_buffer_uptodate(bh);
3722                                 unlock_buffer(bh);
3723                                 goto has_buffer;
3724                         }
3725                 }
3726
3727 make_io:
3728                 /*
3729                  * If we need to do any I/O, try to pre-readahead extra
3730                  * blocks from the inode table.
3731                  */
3732                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3733                         ext4_fsblk_t b, end, table;
3734                         unsigned num;
3735
3736                         table = ext4_inode_table(sb, gdp);
3737                         /* s_inode_readahead_blks is always a power of 2 */
3738                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3739                         if (table > b)
3740                                 b = table;
3741                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3742                         num = EXT4_INODES_PER_GROUP(sb);
3743                         if (ext4_has_group_desc_csum(sb))
3744                                 num -= ext4_itable_unused_count(sb, gdp);
3745                         table += num / inodes_per_block;
3746                         if (end > table)
3747                                 end = table;
3748                         while (b <= end)
3749                                 sb_breadahead(sb, b++);
3750                 }
3751
3752                 /*
3753                  * There are other valid inodes in the buffer, this inode
3754                  * has in-inode xattrs, or we don't have this inode in memory.
3755                  * Read the block from disk.
3756                  */
3757                 trace_ext4_load_inode(inode);
3758                 get_bh(bh);
3759                 bh->b_end_io = end_buffer_read_sync;
3760                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3761                 wait_on_buffer(bh);
3762                 if (!buffer_uptodate(bh)) {
3763                         EXT4_ERROR_INODE_BLOCK(inode, block,
3764                                                "unable to read itable block");
3765                         brelse(bh);
3766                         return -EIO;
3767                 }
3768         }
3769 has_buffer:
3770         iloc->bh = bh;
3771         return 0;
3772 }
3773
3774 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3775 {
3776         /* We have all inode data except xattrs in memory here. */
3777         return __ext4_get_inode_loc(inode, iloc,
3778                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3779 }
3780
3781 void ext4_set_inode_flags(struct inode *inode)
3782 {
3783         unsigned int flags = EXT4_I(inode)->i_flags;
3784
3785         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3786         if (flags & EXT4_SYNC_FL)
3787                 inode->i_flags |= S_SYNC;
3788         if (flags & EXT4_APPEND_FL)
3789                 inode->i_flags |= S_APPEND;
3790         if (flags & EXT4_IMMUTABLE_FL)
3791                 inode->i_flags |= S_IMMUTABLE;
3792         if (flags & EXT4_NOATIME_FL)
3793                 inode->i_flags |= S_NOATIME;
3794         if (flags & EXT4_DIRSYNC_FL)
3795                 inode->i_flags |= S_DIRSYNC;
3796 }
3797
3798 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3799 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3800 {
3801         unsigned int vfs_fl;
3802         unsigned long old_fl, new_fl;
3803
3804         do {
3805                 vfs_fl = ei->vfs_inode.i_flags;
3806                 old_fl = ei->i_flags;
3807                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3808                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3809                                 EXT4_DIRSYNC_FL);
3810                 if (vfs_fl & S_SYNC)
3811                         new_fl |= EXT4_SYNC_FL;
3812                 if (vfs_fl & S_APPEND)
3813                         new_fl |= EXT4_APPEND_FL;
3814                 if (vfs_fl & S_IMMUTABLE)
3815                         new_fl |= EXT4_IMMUTABLE_FL;
3816                 if (vfs_fl & S_NOATIME)
3817                         new_fl |= EXT4_NOATIME_FL;
3818                 if (vfs_fl & S_DIRSYNC)
3819                         new_fl |= EXT4_DIRSYNC_FL;
3820         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3821 }
3822
3823 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3824                                   struct ext4_inode_info *ei)
3825 {
3826         blkcnt_t i_blocks ;
3827         struct inode *inode = &(ei->vfs_inode);
3828         struct super_block *sb = inode->i_sb;
3829
3830         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3831                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3832                 /* we are using combined 48 bit field */
3833                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3834                                         le32_to_cpu(raw_inode->i_blocks_lo);
3835                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3836                         /* i_blocks represent file system block size */
3837                         return i_blocks  << (inode->i_blkbits - 9);
3838                 } else {
3839                         return i_blocks;
3840                 }
3841         } else {
3842                 return le32_to_cpu(raw_inode->i_blocks_lo);
3843         }
3844 }
3845
3846 static inline void ext4_iget_extra_inode(struct inode *inode,
3847                                          struct ext4_inode *raw_inode,
3848                                          struct ext4_inode_info *ei)
3849 {
3850         __le32 *magic = (void *)raw_inode +
3851                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3852         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3853                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3854                 ext4_find_inline_data_nolock(inode);
3855         } else
3856                 EXT4_I(inode)->i_inline_off = 0;
3857 }
3858
3859 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3860 {
3861         struct ext4_iloc iloc;
3862         struct ext4_inode *raw_inode;
3863         struct ext4_inode_info *ei;
3864         struct inode *inode;
3865         journal_t *journal = EXT4_SB(sb)->s_journal;
3866         long ret;
3867         int block;
3868         uid_t i_uid;
3869         gid_t i_gid;
3870
3871         inode = iget_locked(sb, ino);
3872         if (!inode)
3873                 return ERR_PTR(-ENOMEM);
3874         if (!(inode->i_state & I_NEW))
3875                 return inode;
3876
3877         ei = EXT4_I(inode);
3878         iloc.bh = NULL;
3879
3880         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3881         if (ret < 0)
3882                 goto bad_inode;
3883         raw_inode = ext4_raw_inode(&iloc);
3884
3885         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3886                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3887                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3888                     EXT4_INODE_SIZE(inode->i_sb)) {
3889                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3890                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3891                                 EXT4_INODE_SIZE(inode->i_sb));
3892                         ret = -EIO;
3893                         goto bad_inode;
3894                 }
3895         } else
3896                 ei->i_extra_isize = 0;
3897
3898         /* Precompute checksum seed for inode metadata */
3899         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3900                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3901                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3902                 __u32 csum;
3903                 __le32 inum = cpu_to_le32(inode->i_ino);
3904                 __le32 gen = raw_inode->i_generation;
3905                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3906                                    sizeof(inum));
3907                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3908                                               sizeof(gen));
3909         }
3910
3911         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3912                 EXT4_ERROR_INODE(inode, "checksum invalid");
3913                 ret = -EIO;
3914                 goto bad_inode;
3915         }
3916
3917         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3918         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3919         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3920         if (!(test_opt(inode->i_sb, NO_UID32))) {
3921                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3922                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3923         }
3924         i_uid_write(inode, i_uid);
3925         i_gid_write(inode, i_gid);
3926         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3927
3928         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3929         ei->i_inline_off = 0;
3930         ei->i_dir_start_lookup = 0;
3931         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3932         /* We now have enough fields to check if the inode was active or not.
3933          * This is needed because nfsd might try to access dead inodes
3934          * the test is that same one that e2fsck uses
3935          * NeilBrown 1999oct15
3936          */
3937         if (inode->i_nlink == 0) {
3938                 if (inode->i_mode == 0 ||
3939                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3940                         /* this inode is deleted */
3941                         ret = -ESTALE;
3942                         goto bad_inode;
3943                 }
3944                 /* The only unlinked inodes we let through here have
3945                  * valid i_mode and are being read by the orphan
3946                  * recovery code: that's fine, we're about to complete
3947                  * the process of deleting those. */
3948         }
3949         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3950         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3951         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3952         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3953                 ei->i_file_acl |=
3954                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3955         inode->i_size = ext4_isize(raw_inode);
3956         ei->i_disksize = inode->i_size;
3957 #ifdef CONFIG_QUOTA
3958         ei->i_reserved_quota = 0;
3959 #endif
3960         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3961         ei->i_block_group = iloc.block_group;
3962         ei->i_last_alloc_group = ~0;
3963         /*
3964          * NOTE! The in-memory inode i_data array is in little-endian order
3965          * even on big-endian machines: we do NOT byteswap the block numbers!
3966          */
3967         for (block = 0; block < EXT4_N_BLOCKS; block++)
3968                 ei->i_data[block] = raw_inode->i_block[block];
3969         INIT_LIST_HEAD(&ei->i_orphan);
3970
3971         /*
3972          * Set transaction id's of transactions that have to be committed
3973          * to finish f[data]sync. We set them to currently running transaction
3974          * as we cannot be sure that the inode or some of its metadata isn't
3975          * part of the transaction - the inode could have been reclaimed and
3976          * now it is reread from disk.
3977          */
3978         if (journal) {
3979                 transaction_t *transaction;
3980                 tid_t tid;
3981
3982                 read_lock(&journal->j_state_lock);
3983                 if (journal->j_running_transaction)
3984                         transaction = journal->j_running_transaction;
3985                 else
3986                         transaction = journal->j_committing_transaction;
3987                 if (transaction)
3988                         tid = transaction->t_tid;
3989                 else
3990                         tid = journal->j_commit_sequence;
3991                 read_unlock(&journal->j_state_lock);
3992                 ei->i_sync_tid = tid;
3993                 ei->i_datasync_tid = tid;
3994         }
3995
3996         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3997                 if (ei->i_extra_isize == 0) {
3998                         /* The extra space is currently unused. Use it. */
3999                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4000                                             EXT4_GOOD_OLD_INODE_SIZE;
4001                 } else {
4002                         ext4_iget_extra_inode(inode, raw_inode, ei);
4003                 }
4004         }
4005
4006         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4007         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4008         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4009         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4010
4011         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4012         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4013                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4014                         inode->i_version |=
4015                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4016         }
4017
4018         ret = 0;
4019         if (ei->i_file_acl &&
4020             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4021                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4022                                  ei->i_file_acl);
4023                 ret = -EIO;
4024                 goto bad_inode;
4025         } else if (!ext4_has_inline_data(inode)) {
4026                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4027                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4028                             (S_ISLNK(inode->i_mode) &&
4029                              !ext4_inode_is_fast_symlink(inode))))
4030                                 /* Validate extent which is part of inode */
4031                                 ret = ext4_ext_check_inode(inode);
4032                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4033                            (S_ISLNK(inode->i_mode) &&
4034                             !ext4_inode_is_fast_symlink(inode))) {
4035                         /* Validate block references which are part of inode */
4036                         ret = ext4_ind_check_inode(inode);
4037                 }
4038         }
4039         if (ret)
4040                 goto bad_inode;
4041
4042         if (S_ISREG(inode->i_mode)) {
4043                 inode->i_op = &ext4_file_inode_operations;
4044                 inode->i_fop = &ext4_file_operations;
4045                 ext4_set_aops(inode);
4046         } else if (S_ISDIR(inode->i_mode)) {
4047                 inode->i_op = &ext4_dir_inode_operations;
4048                 inode->i_fop = &ext4_dir_operations;
4049         } else if (S_ISLNK(inode->i_mode)) {
4050                 if (ext4_inode_is_fast_symlink(inode)) {
4051                         inode->i_op = &ext4_fast_symlink_inode_operations;
4052                         nd_terminate_link(ei->i_data, inode->i_size,
4053                                 sizeof(ei->i_data) - 1);
4054                 } else {
4055                         inode->i_op = &ext4_symlink_inode_operations;
4056                         ext4_set_aops(inode);
4057                 }
4058         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4059               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4060                 inode->i_op = &ext4_special_inode_operations;
4061                 if (raw_inode->i_block[0])
4062                         init_special_inode(inode, inode->i_mode,
4063                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4064                 else
4065                         init_special_inode(inode, inode->i_mode,
4066                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4067         } else {
4068                 ret = -EIO;
4069                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4070                 goto bad_inode;
4071         }
4072         brelse(iloc.bh);
4073         ext4_set_inode_flags(inode);
4074         unlock_new_inode(inode);
4075         return inode;
4076
4077 bad_inode:
4078         brelse(iloc.bh);
4079         iget_failed(inode);
4080         return ERR_PTR(ret);
4081 }
4082
4083 static int ext4_inode_blocks_set(handle_t *handle,
4084                                 struct ext4_inode *raw_inode,
4085                                 struct ext4_inode_info *ei)
4086 {
4087         struct inode *inode = &(ei->vfs_inode);
4088         u64 i_blocks = inode->i_blocks;
4089         struct super_block *sb = inode->i_sb;
4090
4091         if (i_blocks <= ~0U) {
4092                 /*
4093                  * i_blocks can be represented in a 32 bit variable
4094                  * as multiple of 512 bytes
4095                  */
4096                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4097                 raw_inode->i_blocks_high = 0;
4098                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4099                 return 0;
4100         }
4101         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4102                 return -EFBIG;
4103
4104         if (i_blocks <= 0xffffffffffffULL) {
4105                 /*
4106                  * i_blocks can be represented in a 48 bit variable
4107                  * as multiple of 512 bytes
4108                  */
4109                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4110                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4111                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4112         } else {
4113                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4114                 /* i_block is stored in file system block size */
4115                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4116                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4117                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4118         }
4119         return 0;
4120 }
4121
4122 /*
4123  * Post the struct inode info into an on-disk inode location in the
4124  * buffer-cache.  This gobbles the caller's reference to the
4125  * buffer_head in the inode location struct.
4126  *
4127  * The caller must have write access to iloc->bh.
4128  */
4129 static int ext4_do_update_inode(handle_t *handle,
4130                                 struct inode *inode,
4131                                 struct ext4_iloc *iloc)
4132 {
4133         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4134         struct ext4_inode_info *ei = EXT4_I(inode);
4135         struct buffer_head *bh = iloc->bh;
4136         int err = 0, rc, block;
4137         int need_datasync = 0;
4138         uid_t i_uid;
4139         gid_t i_gid;
4140
4141         /* For fields not not tracking in the in-memory inode,
4142          * initialise them to zero for new inodes. */
4143         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4144                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4145
4146         ext4_get_inode_flags(ei);
4147         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4148         i_uid = i_uid_read(inode);
4149         i_gid = i_gid_read(inode);
4150         if (!(test_opt(inode->i_sb, NO_UID32))) {
4151                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4152                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4153 /*
4154  * Fix up interoperability with old kernels. Otherwise, old inodes get
4155  * re-used with the upper 16 bits of the uid/gid intact
4156  */
4157                 if (!ei->i_dtime) {
4158                         raw_inode->i_uid_high =
4159                                 cpu_to_le16(high_16_bits(i_uid));
4160                         raw_inode->i_gid_high =
4161                                 cpu_to_le16(high_16_bits(i_gid));
4162                 } else {
4163                         raw_inode->i_uid_high = 0;
4164                         raw_inode->i_gid_high = 0;
4165                 }
4166         } else {
4167                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4168                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4169                 raw_inode->i_uid_high = 0;
4170                 raw_inode->i_gid_high = 0;
4171         }
4172         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4173
4174         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4175         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4176         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4177         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4178
4179         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4180                 goto out_brelse;
4181         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4182         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4183         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4184             cpu_to_le32(EXT4_OS_HURD))
4185                 raw_inode->i_file_acl_high =
4186                         cpu_to_le16(ei->i_file_acl >> 32);
4187         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4188         if (ei->i_disksize != ext4_isize(raw_inode)) {
4189                 ext4_isize_set(raw_inode, ei->i_disksize);
4190                 need_datasync = 1;
4191         }
4192         if (ei->i_disksize > 0x7fffffffULL) {
4193                 struct super_block *sb = inode->i_sb;
4194                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4195                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4196                                 EXT4_SB(sb)->s_es->s_rev_level ==
4197                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4198                         /* If this is the first large file
4199                          * created, add a flag to the superblock.
4200                          */
4201                         err = ext4_journal_get_write_access(handle,
4202                                         EXT4_SB(sb)->s_sbh);
4203                         if (err)
4204                                 goto out_brelse;
4205                         ext4_update_dynamic_rev(sb);
4206                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4207                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4208                         ext4_handle_sync(handle);
4209                         err = ext4_handle_dirty_super(handle, sb);
4210                 }
4211         }
4212         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4213         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4214                 if (old_valid_dev(inode->i_rdev)) {
4215                         raw_inode->i_block[0] =
4216                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4217                         raw_inode->i_block[1] = 0;
4218                 } else {
4219                         raw_inode->i_block[0] = 0;
4220                         raw_inode->i_block[1] =
4221                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4222                         raw_inode->i_block[2] = 0;
4223                 }
4224         } else if (!ext4_has_inline_data(inode)) {
4225                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4226                         raw_inode->i_block[block] = ei->i_data[block];
4227         }
4228
4229         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4230         if (ei->i_extra_isize) {
4231                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4232                         raw_inode->i_version_hi =
4233                         cpu_to_le32(inode->i_version >> 32);
4234                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4235         }
4236
4237         ext4_inode_csum_set(inode, raw_inode, ei);
4238
4239         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4240         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4241         if (!err)
4242                 err = rc;
4243         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4244
4245         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4246 out_brelse:
4247         brelse(bh);
4248         ext4_std_error(inode->i_sb, err);
4249         return err;
4250 }
4251
4252 /*
4253  * ext4_write_inode()
4254  *
4255  * We are called from a few places:
4256  *
4257  * - Within generic_file_write() for O_SYNC files.
4258  *   Here, there will be no transaction running. We wait for any running
4259  *   transaction to commit.
4260  *
4261  * - Within sys_sync(), kupdate and such.
4262  *   We wait on commit, if tol to.
4263  *
4264  * - Within prune_icache() (PF_MEMALLOC == true)
4265  *   Here we simply return.  We can't afford to block kswapd on the
4266  *   journal commit.
4267  *
4268  * In all cases it is actually safe for us to return without doing anything,
4269  * because the inode has been copied into a raw inode buffer in
4270  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4271  * knfsd.
4272  *
4273  * Note that we are absolutely dependent upon all inode dirtiers doing the
4274  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4275  * which we are interested.
4276  *
4277  * It would be a bug for them to not do this.  The code:
4278  *
4279  *      mark_inode_dirty(inode)
4280  *      stuff();
4281  *      inode->i_size = expr;
4282  *
4283  * is in error because a kswapd-driven write_inode() could occur while
4284  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4285  * will no longer be on the superblock's dirty inode list.
4286  */
4287 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4288 {
4289         int err;
4290
4291         if (current->flags & PF_MEMALLOC)
4292                 return 0;
4293
4294         if (EXT4_SB(inode->i_sb)->s_journal) {
4295                 if (ext4_journal_current_handle()) {
4296                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4297                         dump_stack();
4298                         return -EIO;
4299                 }
4300
4301                 if (wbc->sync_mode != WB_SYNC_ALL)
4302                         return 0;
4303
4304                 err = ext4_force_commit(inode->i_sb);
4305         } else {
4306                 struct ext4_iloc iloc;
4307
4308                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4309                 if (err)
4310                         return err;
4311                 if (wbc->sync_mode == WB_SYNC_ALL)
4312                         sync_dirty_buffer(iloc.bh);
4313                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4314                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4315                                          "IO error syncing inode");
4316                         err = -EIO;
4317                 }
4318                 brelse(iloc.bh);
4319         }
4320         return err;
4321 }
4322
4323 /*
4324  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4325  * buffers that are attached to a page stradding i_size and are undergoing
4326  * commit. In that case we have to wait for commit to finish and try again.
4327  */
4328 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4329 {
4330         struct page *page;
4331         unsigned offset;
4332         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4333         tid_t commit_tid = 0;
4334         int ret;
4335
4336         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4337         /*
4338          * All buffers in the last page remain valid? Then there's nothing to
4339          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4340          * blocksize case
4341          */
4342         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4343                 return;
4344         while (1) {
4345                 page = find_lock_page(inode->i_mapping,
4346                                       inode->i_size >> PAGE_CACHE_SHIFT);
4347                 if (!page)
4348                         return;
4349                 ret = __ext4_journalled_invalidatepage(page, offset);
4350                 unlock_page(page);
4351                 page_cache_release(page);
4352                 if (ret != -EBUSY)
4353                         return;
4354                 commit_tid = 0;
4355                 read_lock(&journal->j_state_lock);
4356                 if (journal->j_committing_transaction)
4357                         commit_tid = journal->j_committing_transaction->t_tid;
4358                 read_unlock(&journal->j_state_lock);
4359                 if (commit_tid)
4360                         jbd2_log_wait_commit(journal, commit_tid);
4361         }
4362 }
4363
4364 /*
4365  * ext4_setattr()
4366  *
4367  * Called from notify_change.
4368  *
4369  * We want to trap VFS attempts to truncate the file as soon as
4370  * possible.  In particular, we want to make sure that when the VFS
4371  * shrinks i_size, we put the inode on the orphan list and modify
4372  * i_disksize immediately, so that during the subsequent flushing of
4373  * dirty pages and freeing of disk blocks, we can guarantee that any
4374  * commit will leave the blocks being flushed in an unused state on
4375  * disk.  (On recovery, the inode will get truncated and the blocks will
4376  * be freed, so we have a strong guarantee that no future commit will
4377  * leave these blocks visible to the user.)
4378  *
4379  * Another thing we have to assure is that if we are in ordered mode
4380  * and inode is still attached to the committing transaction, we must
4381  * we start writeout of all the dirty pages which are being truncated.
4382  * This way we are sure that all the data written in the previous
4383  * transaction are already on disk (truncate waits for pages under
4384  * writeback).
4385  *
4386  * Called with inode->i_mutex down.
4387  */
4388 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4389 {
4390         struct inode *inode = dentry->d_inode;
4391         int error, rc = 0;
4392         int orphan = 0;
4393         const unsigned int ia_valid = attr->ia_valid;
4394
4395         error = inode_change_ok(inode, attr);
4396         if (error)
4397                 return error;
4398
4399         if (is_quota_modification(inode, attr))
4400                 dquot_initialize(inode);
4401         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4402             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4403                 handle_t *handle;
4404
4405                 /* (user+group)*(old+new) structure, inode write (sb,
4406                  * inode block, ? - but truncate inode update has it) */
4407                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4408                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4409                 if (IS_ERR(handle)) {
4410                         error = PTR_ERR(handle);
4411                         goto err_out;
4412                 }
4413                 error = dquot_transfer(inode, attr);
4414                 if (error) {
4415                         ext4_journal_stop(handle);
4416                         return error;
4417                 }
4418                 /* Update corresponding info in inode so that everything is in
4419                  * one transaction */
4420                 if (attr->ia_valid & ATTR_UID)
4421                         inode->i_uid = attr->ia_uid;
4422                 if (attr->ia_valid & ATTR_GID)
4423                         inode->i_gid = attr->ia_gid;
4424                 error = ext4_mark_inode_dirty(handle, inode);
4425                 ext4_journal_stop(handle);
4426         }
4427
4428         if (attr->ia_valid & ATTR_SIZE) {
4429
4430                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4431                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4432
4433                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4434                                 return -EFBIG;
4435                 }
4436         }
4437
4438         if (S_ISREG(inode->i_mode) &&
4439             attr->ia_valid & ATTR_SIZE &&
4440             (attr->ia_size < inode->i_size)) {
4441                 handle_t *handle;
4442
4443                 handle = ext4_journal_start(inode, 3);
4444                 if (IS_ERR(handle)) {
4445                         error = PTR_ERR(handle);
4446                         goto err_out;
4447                 }
4448                 if (ext4_handle_valid(handle)) {
4449                         error = ext4_orphan_add(handle, inode);
4450                         orphan = 1;
4451                 }
4452                 EXT4_I(inode)->i_disksize = attr->ia_size;
4453                 rc = ext4_mark_inode_dirty(handle, inode);
4454                 if (!error)
4455                         error = rc;
4456                 ext4_journal_stop(handle);
4457
4458                 if (ext4_should_order_data(inode)) {
4459                         error = ext4_begin_ordered_truncate(inode,
4460                                                             attr->ia_size);
4461                         if (error) {
4462                                 /* Do as much error cleanup as possible */
4463                                 handle = ext4_journal_start(inode, 3);
4464                                 if (IS_ERR(handle)) {
4465                                         ext4_orphan_del(NULL, inode);
4466                                         goto err_out;
4467                                 }
4468                                 ext4_orphan_del(handle, inode);
4469                                 orphan = 0;
4470                                 ext4_journal_stop(handle);
4471                                 goto err_out;
4472                         }
4473                 }
4474         }
4475
4476         if (attr->ia_valid & ATTR_SIZE) {
4477                 if (attr->ia_size != inode->i_size) {
4478                         loff_t oldsize = inode->i_size;
4479
4480                         i_size_write(inode, attr->ia_size);
4481                         /*
4482                          * Blocks are going to be removed from the inode. Wait
4483                          * for dio in flight.  Temporarily disable
4484                          * dioread_nolock to prevent livelock.
4485                          */
4486                         if (orphan) {
4487                                 if (!ext4_should_journal_data(inode)) {
4488                                         ext4_inode_block_unlocked_dio(inode);
4489                                         inode_dio_wait(inode);
4490                                         ext4_inode_resume_unlocked_dio(inode);
4491                                 } else
4492                                         ext4_wait_for_tail_page_commit(inode);
4493                         }
4494                         /*
4495                          * Truncate pagecache after we've waited for commit
4496                          * in data=journal mode to make pages freeable.
4497                          */
4498                         truncate_pagecache(inode, oldsize, inode->i_size);
4499                 }
4500                 ext4_truncate(inode);
4501         }
4502
4503         if (!rc) {
4504                 setattr_copy(inode, attr);
4505                 mark_inode_dirty(inode);
4506         }
4507
4508         /*
4509          * If the call to ext4_truncate failed to get a transaction handle at
4510          * all, we need to clean up the in-core orphan list manually.
4511          */
4512         if (orphan && inode->i_nlink)
4513                 ext4_orphan_del(NULL, inode);
4514
4515         if (!rc && (ia_valid & ATTR_MODE))
4516                 rc = ext4_acl_chmod(inode);
4517
4518 err_out:
4519         ext4_std_error(inode->i_sb, error);
4520         if (!error)
4521                 error = rc;
4522         return error;
4523 }
4524
4525 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4526                  struct kstat *stat)
4527 {
4528         struct inode *inode;
4529         unsigned long delalloc_blocks;
4530
4531         inode = dentry->d_inode;
4532         generic_fillattr(inode, stat);
4533
4534         /*
4535          * We can't update i_blocks if the block allocation is delayed
4536          * otherwise in the case of system crash before the real block
4537          * allocation is done, we will have i_blocks inconsistent with
4538          * on-disk file blocks.
4539          * We always keep i_blocks updated together with real
4540          * allocation. But to not confuse with user, stat
4541          * will return the blocks that include the delayed allocation
4542          * blocks for this file.
4543          */
4544         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4545                                 EXT4_I(inode)->i_reserved_data_blocks);
4546
4547         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4548         return 0;
4549 }
4550
4551 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4552 {
4553         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4554                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4555         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4556 }
4557
4558 /*
4559  * Account for index blocks, block groups bitmaps and block group
4560  * descriptor blocks if modify datablocks and index blocks
4561  * worse case, the indexs blocks spread over different block groups
4562  *
4563  * If datablocks are discontiguous, they are possible to spread over
4564  * different block groups too. If they are contiguous, with flexbg,
4565  * they could still across block group boundary.
4566  *
4567  * Also account for superblock, inode, quota and xattr blocks
4568  */
4569 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4570 {
4571         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4572         int gdpblocks;
4573         int idxblocks;
4574         int ret = 0;
4575
4576         /*
4577          * How many index blocks need to touch to modify nrblocks?
4578          * The "Chunk" flag indicating whether the nrblocks is
4579          * physically contiguous on disk
4580          *
4581          * For Direct IO and fallocate, they calls get_block to allocate
4582          * one single extent at a time, so they could set the "Chunk" flag
4583          */
4584         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4585
4586         ret = idxblocks;
4587
4588         /*
4589          * Now let's see how many group bitmaps and group descriptors need
4590          * to account
4591          */
4592         groups = idxblocks;
4593         if (chunk)
4594                 groups += 1;
4595         else
4596                 groups += nrblocks;
4597
4598         gdpblocks = groups;
4599         if (groups > ngroups)
4600                 groups = ngroups;
4601         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4602                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4603
4604         /* bitmaps and block group descriptor blocks */
4605         ret += groups + gdpblocks;
4606
4607         /* Blocks for super block, inode, quota and xattr blocks */
4608         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4609
4610         return ret;
4611 }
4612
4613 /*
4614  * Calculate the total number of credits to reserve to fit
4615  * the modification of a single pages into a single transaction,
4616  * which may include multiple chunks of block allocations.
4617  *
4618  * This could be called via ext4_write_begin()
4619  *
4620  * We need to consider the worse case, when
4621  * one new block per extent.
4622  */
4623 int ext4_writepage_trans_blocks(struct inode *inode)
4624 {
4625         int bpp = ext4_journal_blocks_per_page(inode);
4626         int ret;
4627
4628         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4629
4630         /* Account for data blocks for journalled mode */
4631         if (ext4_should_journal_data(inode))
4632                 ret += bpp;
4633         return ret;
4634 }
4635
4636 /*
4637  * Calculate the journal credits for a chunk of data modification.
4638  *
4639  * This is called from DIO, fallocate or whoever calling
4640  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4641  *
4642  * journal buffers for data blocks are not included here, as DIO
4643  * and fallocate do no need to journal data buffers.
4644  */
4645 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4646 {
4647         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4648 }
4649
4650 /*
4651  * The caller must have previously called ext4_reserve_inode_write().
4652  * Give this, we know that the caller already has write access to iloc->bh.
4653  */
4654 int ext4_mark_iloc_dirty(handle_t *handle,
4655                          struct inode *inode, struct ext4_iloc *iloc)
4656 {
4657         int err = 0;
4658
4659         if (IS_I_VERSION(inode))
4660                 inode_inc_iversion(inode);
4661
4662         /* the do_update_inode consumes one bh->b_count */
4663         get_bh(iloc->bh);
4664
4665         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4666         err = ext4_do_update_inode(handle, inode, iloc);
4667         put_bh(iloc->bh);
4668         return err;
4669 }
4670
4671 /*
4672  * On success, We end up with an outstanding reference count against
4673  * iloc->bh.  This _must_ be cleaned up later.
4674  */
4675
4676 int
4677 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4678                          struct ext4_iloc *iloc)
4679 {
4680         int err;
4681
4682         err = ext4_get_inode_loc(inode, iloc);
4683         if (!err) {
4684                 BUFFER_TRACE(iloc->bh, "get_write_access");
4685                 err = ext4_journal_get_write_access(handle, iloc->bh);
4686                 if (err) {
4687                         brelse(iloc->bh);
4688                         iloc->bh = NULL;
4689                 }
4690         }
4691         ext4_std_error(inode->i_sb, err);
4692         return err;
4693 }
4694
4695 /*
4696  * Expand an inode by new_extra_isize bytes.
4697  * Returns 0 on success or negative error number on failure.
4698  */
4699 static int ext4_expand_extra_isize(struct inode *inode,
4700                                    unsigned int new_extra_isize,
4701                                    struct ext4_iloc iloc,
4702                                    handle_t *handle)
4703 {
4704         struct ext4_inode *raw_inode;
4705         struct ext4_xattr_ibody_header *header;
4706
4707         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4708                 return 0;
4709
4710         raw_inode = ext4_raw_inode(&iloc);
4711
4712         header = IHDR(inode, raw_inode);
4713
4714         /* No extended attributes present */
4715         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4716             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4717                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4718                         new_extra_isize);
4719                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4720                 return 0;
4721         }
4722
4723         /* try to expand with EAs present */
4724         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4725                                           raw_inode, handle);
4726 }
4727
4728 /*
4729  * What we do here is to mark the in-core inode as clean with respect to inode
4730  * dirtiness (it may still be data-dirty).
4731  * This means that the in-core inode may be reaped by prune_icache
4732  * without having to perform any I/O.  This is a very good thing,
4733  * because *any* task may call prune_icache - even ones which
4734  * have a transaction open against a different journal.
4735  *
4736  * Is this cheating?  Not really.  Sure, we haven't written the
4737  * inode out, but prune_icache isn't a user-visible syncing function.
4738  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4739  * we start and wait on commits.
4740  */
4741 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4742 {
4743         struct ext4_iloc iloc;
4744         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4745         static unsigned int mnt_count;
4746         int err, ret;
4747
4748         might_sleep();
4749         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4750         err = ext4_reserve_inode_write(handle, inode, &iloc);
4751         if (ext4_handle_valid(handle) &&
4752             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4753             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4754                 /*
4755                  * We need extra buffer credits since we may write into EA block
4756                  * with this same handle. If journal_extend fails, then it will
4757                  * only result in a minor loss of functionality for that inode.
4758                  * If this is felt to be critical, then e2fsck should be run to
4759                  * force a large enough s_min_extra_isize.
4760                  */
4761                 if ((jbd2_journal_extend(handle,
4762                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4763                         ret = ext4_expand_extra_isize(inode,
4764                                                       sbi->s_want_extra_isize,
4765                                                       iloc, handle);
4766                         if (ret) {
4767                                 ext4_set_inode_state(inode,
4768                                                      EXT4_STATE_NO_EXPAND);
4769                                 if (mnt_count !=
4770                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4771                                         ext4_warning(inode->i_sb,
4772                                         "Unable to expand inode %lu. Delete"
4773                                         " some EAs or run e2fsck.",
4774                                         inode->i_ino);
4775                                         mnt_count =
4776                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4777                                 }
4778                         }
4779                 }
4780         }
4781         if (!err)
4782                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4783         return err;
4784 }
4785
4786 /*
4787  * ext4_dirty_inode() is called from __mark_inode_dirty()
4788  *
4789  * We're really interested in the case where a file is being extended.
4790  * i_size has been changed by generic_commit_write() and we thus need
4791  * to include the updated inode in the current transaction.
4792  *
4793  * Also, dquot_alloc_block() will always dirty the inode when blocks
4794  * are allocated to the file.
4795  *
4796  * If the inode is marked synchronous, we don't honour that here - doing
4797  * so would cause a commit on atime updates, which we don't bother doing.
4798  * We handle synchronous inodes at the highest possible level.
4799  */
4800 void ext4_dirty_inode(struct inode *inode, int flags)
4801 {
4802         handle_t *handle;
4803
4804         handle = ext4_journal_start(inode, 2);
4805         if (IS_ERR(handle))
4806                 goto out;
4807
4808         ext4_mark_inode_dirty(handle, inode);
4809
4810         ext4_journal_stop(handle);
4811 out:
4812         return;
4813 }
4814
4815 #if 0
4816 /*
4817  * Bind an inode's backing buffer_head into this transaction, to prevent
4818  * it from being flushed to disk early.  Unlike
4819  * ext4_reserve_inode_write, this leaves behind no bh reference and
4820  * returns no iloc structure, so the caller needs to repeat the iloc
4821  * lookup to mark the inode dirty later.
4822  */
4823 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4824 {
4825         struct ext4_iloc iloc;
4826
4827         int err = 0;
4828         if (handle) {
4829                 err = ext4_get_inode_loc(inode, &iloc);
4830                 if (!err) {
4831                         BUFFER_TRACE(iloc.bh, "get_write_access");
4832                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4833                         if (!err)
4834                                 err = ext4_handle_dirty_metadata(handle,
4835                                                                  NULL,
4836                                                                  iloc.bh);
4837                         brelse(iloc.bh);
4838                 }
4839         }
4840         ext4_std_error(inode->i_sb, err);
4841         return err;
4842 }
4843 #endif
4844
4845 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4846 {
4847         journal_t *journal;
4848         handle_t *handle;
4849         int err;
4850
4851         /*
4852          * We have to be very careful here: changing a data block's
4853          * journaling status dynamically is dangerous.  If we write a
4854          * data block to the journal, change the status and then delete
4855          * that block, we risk forgetting to revoke the old log record
4856          * from the journal and so a subsequent replay can corrupt data.
4857          * So, first we make sure that the journal is empty and that
4858          * nobody is changing anything.
4859          */
4860
4861         journal = EXT4_JOURNAL(inode);
4862         if (!journal)
4863                 return 0;
4864         if (is_journal_aborted(journal))
4865                 return -EROFS;
4866         /* We have to allocate physical blocks for delalloc blocks
4867          * before flushing journal. otherwise delalloc blocks can not
4868          * be allocated any more. even more truncate on delalloc blocks
4869          * could trigger BUG by flushing delalloc blocks in journal.
4870          * There is no delalloc block in non-journal data mode.
4871          */
4872         if (val && test_opt(inode->i_sb, DELALLOC)) {
4873                 err = ext4_alloc_da_blocks(inode);
4874                 if (err < 0)
4875                         return err;
4876         }
4877
4878         /* Wait for all existing dio workers */
4879         ext4_inode_block_unlocked_dio(inode);
4880         inode_dio_wait(inode);
4881
4882         jbd2_journal_lock_updates(journal);
4883
4884         /*
4885          * OK, there are no updates running now, and all cached data is
4886          * synced to disk.  We are now in a completely consistent state
4887          * which doesn't have anything in the journal, and we know that
4888          * no filesystem updates are running, so it is safe to modify
4889          * the inode's in-core data-journaling state flag now.
4890          */
4891
4892         if (val)
4893                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4894         else {
4895                 jbd2_journal_flush(journal);
4896                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4897         }
4898         ext4_set_aops(inode);
4899
4900         jbd2_journal_unlock_updates(journal);
4901         ext4_inode_resume_unlocked_dio(inode);
4902
4903         /* Finally we can mark the inode as dirty. */
4904
4905         handle = ext4_journal_start(inode, 1);
4906         if (IS_ERR(handle))
4907                 return PTR_ERR(handle);
4908
4909         err = ext4_mark_inode_dirty(handle, inode);
4910         ext4_handle_sync(handle);
4911         ext4_journal_stop(handle);
4912         ext4_std_error(inode->i_sb, err);
4913
4914         return err;
4915 }
4916
4917 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4918 {
4919         return !buffer_mapped(bh);
4920 }
4921
4922 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4923 {
4924         struct page *page = vmf->page;
4925         loff_t size;
4926         unsigned long len;
4927         int ret;
4928         struct file *file = vma->vm_file;
4929         struct inode *inode = file->f_path.dentry->d_inode;
4930         struct address_space *mapping = inode->i_mapping;
4931         handle_t *handle;
4932         get_block_t *get_block;
4933         int retries = 0;
4934
4935         sb_start_pagefault(inode->i_sb);
4936         file_update_time(vma->vm_file);
4937         /* Delalloc case is easy... */
4938         if (test_opt(inode->i_sb, DELALLOC) &&
4939             !ext4_should_journal_data(inode) &&
4940             !ext4_nonda_switch(inode->i_sb)) {
4941                 do {
4942                         ret = __block_page_mkwrite(vma, vmf,
4943                                                    ext4_da_get_block_prep);
4944                 } while (ret == -ENOSPC &&
4945                        ext4_should_retry_alloc(inode->i_sb, &retries));
4946                 goto out_ret;
4947         }
4948
4949         lock_page(page);
4950         size = i_size_read(inode);
4951         /* Page got truncated from under us? */
4952         if (page->mapping != mapping || page_offset(page) > size) {
4953                 unlock_page(page);
4954                 ret = VM_FAULT_NOPAGE;
4955                 goto out;
4956         }
4957
4958         if (page->index == size >> PAGE_CACHE_SHIFT)
4959                 len = size & ~PAGE_CACHE_MASK;
4960         else
4961                 len = PAGE_CACHE_SIZE;
4962         /*
4963          * Return if we have all the buffers mapped. This avoids the need to do
4964          * journal_start/journal_stop which can block and take a long time
4965          */
4966         if (page_has_buffers(page)) {
4967                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4968                                             0, len, NULL,
4969                                             ext4_bh_unmapped)) {
4970                         /* Wait so that we don't change page under IO */
4971                         wait_on_page_writeback(page);
4972                         ret = VM_FAULT_LOCKED;
4973                         goto out;
4974                 }
4975         }
4976         unlock_page(page);
4977         /* OK, we need to fill the hole... */
4978         if (ext4_should_dioread_nolock(inode))
4979                 get_block = ext4_get_block_write;
4980         else
4981                 get_block = ext4_get_block;
4982 retry_alloc:
4983         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4984         if (IS_ERR(handle)) {
4985                 ret = VM_FAULT_SIGBUS;
4986                 goto out;
4987         }
4988         ret = __block_page_mkwrite(vma, vmf, get_block);
4989         if (!ret && ext4_should_journal_data(inode)) {
4990                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4991                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4992                         unlock_page(page);
4993                         ret = VM_FAULT_SIGBUS;
4994                         ext4_journal_stop(handle);
4995                         goto out;
4996                 }
4997                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4998         }
4999         ext4_journal_stop(handle);
5000         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5001                 goto retry_alloc;
5002 out_ret:
5003         ret = block_page_mkwrite_return(ret);
5004 out:
5005         sb_end_pagefault(inode->i_sb);
5006         return ret;
5007 }