]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         ext4_ioend_wait(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_log_start_commit(journal, commit_tid);
215                         jbd2_log_wait_commit(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328                 return ext4_ext_calc_metadata_amount(inode, lblock);
329
330         return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356                         "with only %d reserved metadata blocks "
357                         "(releasing %d blocks with reserved %d data blocks)",
358                         inode->i_ino, ei->i_allocated_meta_blocks,
359                              ei->i_reserved_meta_blocks, used,
360                              ei->i_reserved_data_blocks);
361                 WARN_ON(1);
362                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363         }
364
365         /* Update per-inode reservations */
366         ei->i_reserved_data_blocks -= used;
367         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369                            used + ei->i_allocated_meta_blocks);
370         ei->i_allocated_meta_blocks = 0;
371
372         if (ei->i_reserved_data_blocks == 0) {
373                 /*
374                  * We can release all of the reserved metadata blocks
375                  * only when we have written all of the delayed
376                  * allocation blocks.
377                  */
378                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379                                    ei->i_reserved_meta_blocks);
380                 ei->i_reserved_meta_blocks = 0;
381                 ei->i_da_metadata_calc_len = 0;
382         }
383         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385         /* Update quota subsystem for data blocks */
386         if (quota_claim)
387                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388         else {
389                 /*
390                  * We did fallocate with an offset that is already delayed
391                  * allocated. So on delayed allocated writeback we should
392                  * not re-claim the quota for fallocated blocks.
393                  */
394                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395         }
396
397         /*
398          * If we have done all the pending block allocations and if
399          * there aren't any writers on the inode, we can discard the
400          * inode's preallocations.
401          */
402         if ((ei->i_reserved_data_blocks == 0) &&
403             (atomic_read(&inode->i_writecount) == 0))
404                 ext4_discard_preallocations(inode);
405 }
406
407 static int __check_block_validity(struct inode *inode, const char *func,
408                                 unsigned int line,
409                                 struct ext4_map_blocks *map)
410 {
411         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412                                    map->m_len)) {
413                 ext4_error_inode(inode, func, line, map->m_pblk,
414                                  "lblock %lu mapped to illegal pblock "
415                                  "(length %d)", (unsigned long) map->m_lblk,
416                                  map->m_len);
417                 return -EIO;
418         }
419         return 0;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430                                     unsigned int max_pages)
431 {
432         struct address_space *mapping = inode->i_mapping;
433         pgoff_t index;
434         struct pagevec pvec;
435         pgoff_t num = 0;
436         int i, nr_pages, done = 0;
437
438         if (max_pages == 0)
439                 return 0;
440         pagevec_init(&pvec, 0);
441         while (!done) {
442                 index = idx;
443                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444                                               PAGECACHE_TAG_DIRTY,
445                                               (pgoff_t)PAGEVEC_SIZE);
446                 if (nr_pages == 0)
447                         break;
448                 for (i = 0; i < nr_pages; i++) {
449                         struct page *page = pvec.pages[i];
450                         struct buffer_head *bh, *head;
451
452                         lock_page(page);
453                         if (unlikely(page->mapping != mapping) ||
454                             !PageDirty(page) ||
455                             PageWriteback(page) ||
456                             page->index != idx) {
457                                 done = 1;
458                                 unlock_page(page);
459                                 break;
460                         }
461                         if (page_has_buffers(page)) {
462                                 bh = head = page_buffers(page);
463                                 do {
464                                         if (!buffer_delay(bh) &&
465                                             !buffer_unwritten(bh))
466                                                 done = 1;
467                                         bh = bh->b_this_page;
468                                 } while (!done && (bh != head));
469                         }
470                         unlock_page(page);
471                         if (done)
472                                 break;
473                         idx++;
474                         num++;
475                         if (num >= max_pages) {
476                                 done = 1;
477                                 break;
478                         }
479                 }
480                 pagevec_release(&pvec);
481         }
482         return num;
483 }
484
485 /*
486  * The ext4_map_blocks() function tries to look up the requested blocks,
487  * and returns if the blocks are already mapped.
488  *
489  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
490  * and store the allocated blocks in the result buffer head and mark it
491  * mapped.
492  *
493  * If file type is extents based, it will call ext4_ext_map_blocks(),
494  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
495  * based files
496  *
497  * On success, it returns the number of blocks being mapped or allocate.
498  * if create==0 and the blocks are pre-allocated and uninitialized block,
499  * the result buffer head is unmapped. If the create ==1, it will make sure
500  * the buffer head is mapped.
501  *
502  * It returns 0 if plain look up failed (blocks have not been allocated), in
503  * that case, buffer head is unmapped
504  *
505  * It returns the error in case of allocation failure.
506  */
507 int ext4_map_blocks(handle_t *handle, struct inode *inode,
508                     struct ext4_map_blocks *map, int flags)
509 {
510         struct extent_status es;
511         int retval;
512
513         map->m_flags = 0;
514         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
516                   (unsigned long) map->m_lblk);
517
518         /* Lookup extent status tree firstly */
519         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
520                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521                         map->m_pblk = ext4_es_pblock(&es) +
522                                         map->m_lblk - es.es_lblk;
523                         map->m_flags |= ext4_es_is_written(&es) ?
524                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525                         retval = es.es_len - (map->m_lblk - es.es_lblk);
526                         if (retval > map->m_len)
527                                 retval = map->m_len;
528                         map->m_len = retval;
529                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530                         retval = 0;
531                 } else {
532                         BUG_ON(1);
533                 }
534                 goto found;
535         }
536
537         /*
538          * Try to see if we can get the block without requesting a new
539          * file system block.
540          */
541         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
542                 down_read((&EXT4_I(inode)->i_data_sem));
543         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
544                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
545                                              EXT4_GET_BLOCKS_KEEP_SIZE);
546         } else {
547                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
548                                              EXT4_GET_BLOCKS_KEEP_SIZE);
549         }
550         if (retval > 0) {
551                 int ret;
552                 unsigned long long status;
553
554                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
555                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
556                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
557                     ext4_find_delalloc_range(inode, map->m_lblk,
558                                              map->m_lblk + map->m_len - 1))
559                         status |= EXTENT_STATUS_DELAYED;
560                 ret = ext4_es_insert_extent(inode, map->m_lblk,
561                                             map->m_len, map->m_pblk, status);
562                 if (ret < 0)
563                         retval = ret;
564         }
565         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
566                 up_read((&EXT4_I(inode)->i_data_sem));
567
568 found:
569         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
570                 int ret = check_block_validity(inode, map);
571                 if (ret != 0)
572                         return ret;
573         }
574
575         /* If it is only a block(s) look up */
576         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
577                 return retval;
578
579         /*
580          * Returns if the blocks have already allocated
581          *
582          * Note that if blocks have been preallocated
583          * ext4_ext_get_block() returns the create = 0
584          * with buffer head unmapped.
585          */
586         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
587                 return retval;
588
589         /*
590          * Here we clear m_flags because after allocating an new extent,
591          * it will be set again.
592          */
593         map->m_flags &= ~EXT4_MAP_FLAGS;
594
595         /*
596          * New blocks allocate and/or writing to uninitialized extent
597          * will possibly result in updating i_data, so we take
598          * the write lock of i_data_sem, and call get_blocks()
599          * with create == 1 flag.
600          */
601         down_write((&EXT4_I(inode)->i_data_sem));
602
603         /*
604          * if the caller is from delayed allocation writeout path
605          * we have already reserved fs blocks for allocation
606          * let the underlying get_block() function know to
607          * avoid double accounting
608          */
609         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
610                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
611         /*
612          * We need to check for EXT4 here because migrate
613          * could have changed the inode type in between
614          */
615         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
616                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
617         } else {
618                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
619
620                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
621                         /*
622                          * We allocated new blocks which will result in
623                          * i_data's format changing.  Force the migrate
624                          * to fail by clearing migrate flags
625                          */
626                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
627                 }
628
629                 /*
630                  * Update reserved blocks/metadata blocks after successful
631                  * block allocation which had been deferred till now. We don't
632                  * support fallocate for non extent files. So we can update
633                  * reserve space here.
634                  */
635                 if ((retval > 0) &&
636                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
637                         ext4_da_update_reserve_space(inode, retval, 1);
638         }
639         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
640                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
641
642         if (retval > 0) {
643                 int ret;
644                 unsigned long long status;
645
646                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
647                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
648                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
649                     ext4_find_delalloc_range(inode, map->m_lblk,
650                                              map->m_lblk + map->m_len - 1))
651                         status |= EXTENT_STATUS_DELAYED;
652                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
653                                             map->m_pblk, status);
654                 if (ret < 0)
655                         retval = ret;
656         }
657
658         up_write((&EXT4_I(inode)->i_data_sem));
659         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
660                 int ret = check_block_validity(inode, map);
661                 if (ret != 0)
662                         return ret;
663         }
664         return retval;
665 }
666
667 /* Maximum number of blocks we map for direct IO at once. */
668 #define DIO_MAX_BLOCKS 4096
669
670 static int _ext4_get_block(struct inode *inode, sector_t iblock,
671                            struct buffer_head *bh, int flags)
672 {
673         handle_t *handle = ext4_journal_current_handle();
674         struct ext4_map_blocks map;
675         int ret = 0, started = 0;
676         int dio_credits;
677
678         if (ext4_has_inline_data(inode))
679                 return -ERANGE;
680
681         map.m_lblk = iblock;
682         map.m_len = bh->b_size >> inode->i_blkbits;
683
684         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
685                 /* Direct IO write... */
686                 if (map.m_len > DIO_MAX_BLOCKS)
687                         map.m_len = DIO_MAX_BLOCKS;
688                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
689                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
690                                             dio_credits);
691                 if (IS_ERR(handle)) {
692                         ret = PTR_ERR(handle);
693                         return ret;
694                 }
695                 started = 1;
696         }
697
698         ret = ext4_map_blocks(handle, inode, &map, flags);
699         if (ret > 0) {
700                 map_bh(bh, inode->i_sb, map.m_pblk);
701                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
702                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
703                 ret = 0;
704         }
705         if (started)
706                 ext4_journal_stop(handle);
707         return ret;
708 }
709
710 int ext4_get_block(struct inode *inode, sector_t iblock,
711                    struct buffer_head *bh, int create)
712 {
713         return _ext4_get_block(inode, iblock, bh,
714                                create ? EXT4_GET_BLOCKS_CREATE : 0);
715 }
716
717 /*
718  * `handle' can be NULL if create is zero
719  */
720 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
721                                 ext4_lblk_t block, int create, int *errp)
722 {
723         struct ext4_map_blocks map;
724         struct buffer_head *bh;
725         int fatal = 0, err;
726
727         J_ASSERT(handle != NULL || create == 0);
728
729         map.m_lblk = block;
730         map.m_len = 1;
731         err = ext4_map_blocks(handle, inode, &map,
732                               create ? EXT4_GET_BLOCKS_CREATE : 0);
733
734         /* ensure we send some value back into *errp */
735         *errp = 0;
736
737         if (create && err == 0)
738                 err = -ENOSPC;  /* should never happen */
739         if (err < 0)
740                 *errp = err;
741         if (err <= 0)
742                 return NULL;
743
744         bh = sb_getblk(inode->i_sb, map.m_pblk);
745         if (unlikely(!bh)) {
746                 *errp = -ENOMEM;
747                 return NULL;
748         }
749         if (map.m_flags & EXT4_MAP_NEW) {
750                 J_ASSERT(create != 0);
751                 J_ASSERT(handle != NULL);
752
753                 /*
754                  * Now that we do not always journal data, we should
755                  * keep in mind whether this should always journal the
756                  * new buffer as metadata.  For now, regular file
757                  * writes use ext4_get_block instead, so it's not a
758                  * problem.
759                  */
760                 lock_buffer(bh);
761                 BUFFER_TRACE(bh, "call get_create_access");
762                 fatal = ext4_journal_get_create_access(handle, bh);
763                 if (!fatal && !buffer_uptodate(bh)) {
764                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
765                         set_buffer_uptodate(bh);
766                 }
767                 unlock_buffer(bh);
768                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
769                 err = ext4_handle_dirty_metadata(handle, inode, bh);
770                 if (!fatal)
771                         fatal = err;
772         } else {
773                 BUFFER_TRACE(bh, "not a new buffer");
774         }
775         if (fatal) {
776                 *errp = fatal;
777                 brelse(bh);
778                 bh = NULL;
779         }
780         return bh;
781 }
782
783 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
784                                ext4_lblk_t block, int create, int *err)
785 {
786         struct buffer_head *bh;
787
788         bh = ext4_getblk(handle, inode, block, create, err);
789         if (!bh)
790                 return bh;
791         if (buffer_uptodate(bh))
792                 return bh;
793         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
794         wait_on_buffer(bh);
795         if (buffer_uptodate(bh))
796                 return bh;
797         put_bh(bh);
798         *err = -EIO;
799         return NULL;
800 }
801
802 int ext4_walk_page_buffers(handle_t *handle,
803                            struct buffer_head *head,
804                            unsigned from,
805                            unsigned to,
806                            int *partial,
807                            int (*fn)(handle_t *handle,
808                                      struct buffer_head *bh))
809 {
810         struct buffer_head *bh;
811         unsigned block_start, block_end;
812         unsigned blocksize = head->b_size;
813         int err, ret = 0;
814         struct buffer_head *next;
815
816         for (bh = head, block_start = 0;
817              ret == 0 && (bh != head || !block_start);
818              block_start = block_end, bh = next) {
819                 next = bh->b_this_page;
820                 block_end = block_start + blocksize;
821                 if (block_end <= from || block_start >= to) {
822                         if (partial && !buffer_uptodate(bh))
823                                 *partial = 1;
824                         continue;
825                 }
826                 err = (*fn)(handle, bh);
827                 if (!ret)
828                         ret = err;
829         }
830         return ret;
831 }
832
833 /*
834  * To preserve ordering, it is essential that the hole instantiation and
835  * the data write be encapsulated in a single transaction.  We cannot
836  * close off a transaction and start a new one between the ext4_get_block()
837  * and the commit_write().  So doing the jbd2_journal_start at the start of
838  * prepare_write() is the right place.
839  *
840  * Also, this function can nest inside ext4_writepage().  In that case, we
841  * *know* that ext4_writepage() has generated enough buffer credits to do the
842  * whole page.  So we won't block on the journal in that case, which is good,
843  * because the caller may be PF_MEMALLOC.
844  *
845  * By accident, ext4 can be reentered when a transaction is open via
846  * quota file writes.  If we were to commit the transaction while thus
847  * reentered, there can be a deadlock - we would be holding a quota
848  * lock, and the commit would never complete if another thread had a
849  * transaction open and was blocking on the quota lock - a ranking
850  * violation.
851  *
852  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853  * will _not_ run commit under these circumstances because handle->h_ref
854  * is elevated.  We'll still have enough credits for the tiny quotafile
855  * write.
856  */
857 int do_journal_get_write_access(handle_t *handle,
858                                 struct buffer_head *bh)
859 {
860         int dirty = buffer_dirty(bh);
861         int ret;
862
863         if (!buffer_mapped(bh) || buffer_freed(bh))
864                 return 0;
865         /*
866          * __block_write_begin() could have dirtied some buffers. Clean
867          * the dirty bit as jbd2_journal_get_write_access() could complain
868          * otherwise about fs integrity issues. Setting of the dirty bit
869          * by __block_write_begin() isn't a real problem here as we clear
870          * the bit before releasing a page lock and thus writeback cannot
871          * ever write the buffer.
872          */
873         if (dirty)
874                 clear_buffer_dirty(bh);
875         ret = ext4_journal_get_write_access(handle, bh);
876         if (!ret && dirty)
877                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878         return ret;
879 }
880
881 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882                    struct buffer_head *bh_result, int create);
883 static int ext4_write_begin(struct file *file, struct address_space *mapping,
884                             loff_t pos, unsigned len, unsigned flags,
885                             struct page **pagep, void **fsdata)
886 {
887         struct inode *inode = mapping->host;
888         int ret, needed_blocks;
889         handle_t *handle;
890         int retries = 0;
891         struct page *page;
892         pgoff_t index;
893         unsigned from, to;
894
895         trace_ext4_write_begin(inode, pos, len, flags);
896         /*
897          * Reserve one block more for addition to orphan list in case
898          * we allocate blocks but write fails for some reason
899          */
900         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
901         index = pos >> PAGE_CACHE_SHIFT;
902         from = pos & (PAGE_CACHE_SIZE - 1);
903         to = from + len;
904
905         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
906                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
907                                                     flags, pagep);
908                 if (ret < 0)
909                         return ret;
910                 if (ret == 1)
911                         return 0;
912         }
913
914         /*
915          * grab_cache_page_write_begin() can take a long time if the
916          * system is thrashing due to memory pressure, or if the page
917          * is being written back.  So grab it first before we start
918          * the transaction handle.  This also allows us to allocate
919          * the page (if needed) without using GFP_NOFS.
920          */
921 retry_grab:
922         page = grab_cache_page_write_begin(mapping, index, flags);
923         if (!page)
924                 return -ENOMEM;
925         unlock_page(page);
926
927 retry_journal:
928         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
929         if (IS_ERR(handle)) {
930                 page_cache_release(page);
931                 return PTR_ERR(handle);
932         }
933
934         lock_page(page);
935         if (page->mapping != mapping) {
936                 /* The page got truncated from under us */
937                 unlock_page(page);
938                 page_cache_release(page);
939                 ext4_journal_stop(handle);
940                 goto retry_grab;
941         }
942         wait_on_page_writeback(page);
943
944         if (ext4_should_dioread_nolock(inode))
945                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
946         else
947                 ret = __block_write_begin(page, pos, len, ext4_get_block);
948
949         if (!ret && ext4_should_journal_data(inode)) {
950                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
951                                              from, to, NULL,
952                                              do_journal_get_write_access);
953         }
954
955         if (ret) {
956                 unlock_page(page);
957                 /*
958                  * __block_write_begin may have instantiated a few blocks
959                  * outside i_size.  Trim these off again. Don't need
960                  * i_size_read because we hold i_mutex.
961                  *
962                  * Add inode to orphan list in case we crash before
963                  * truncate finishes
964                  */
965                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
966                         ext4_orphan_add(handle, inode);
967
968                 ext4_journal_stop(handle);
969                 if (pos + len > inode->i_size) {
970                         ext4_truncate_failed_write(inode);
971                         /*
972                          * If truncate failed early the inode might
973                          * still be on the orphan list; we need to
974                          * make sure the inode is removed from the
975                          * orphan list in that case.
976                          */
977                         if (inode->i_nlink)
978                                 ext4_orphan_del(NULL, inode);
979                 }
980
981                 if (ret == -ENOSPC &&
982                     ext4_should_retry_alloc(inode->i_sb, &retries))
983                         goto retry_journal;
984                 page_cache_release(page);
985                 return ret;
986         }
987         *pagep = page;
988         return ret;
989 }
990
991 /* For write_end() in data=journal mode */
992 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
993 {
994         if (!buffer_mapped(bh) || buffer_freed(bh))
995                 return 0;
996         set_buffer_uptodate(bh);
997         return ext4_handle_dirty_metadata(handle, NULL, bh);
998 }
999
1000 static int ext4_generic_write_end(struct file *file,
1001                                   struct address_space *mapping,
1002                                   loff_t pos, unsigned len, unsigned copied,
1003                                   struct page *page, void *fsdata)
1004 {
1005         int i_size_changed = 0;
1006         struct inode *inode = mapping->host;
1007         handle_t *handle = ext4_journal_current_handle();
1008
1009         if (ext4_has_inline_data(inode))
1010                 copied = ext4_write_inline_data_end(inode, pos, len,
1011                                                     copied, page);
1012         else
1013                 copied = block_write_end(file, mapping, pos,
1014                                          len, copied, page, fsdata);
1015
1016         /*
1017          * No need to use i_size_read() here, the i_size
1018          * cannot change under us because we hold i_mutex.
1019          *
1020          * But it's important to update i_size while still holding page lock:
1021          * page writeout could otherwise come in and zero beyond i_size.
1022          */
1023         if (pos + copied > inode->i_size) {
1024                 i_size_write(inode, pos + copied);
1025                 i_size_changed = 1;
1026         }
1027
1028         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1029                 /* We need to mark inode dirty even if
1030                  * new_i_size is less that inode->i_size
1031                  * bu greater than i_disksize.(hint delalloc)
1032                  */
1033                 ext4_update_i_disksize(inode, (pos + copied));
1034                 i_size_changed = 1;
1035         }
1036         unlock_page(page);
1037         page_cache_release(page);
1038
1039         /*
1040          * Don't mark the inode dirty under page lock. First, it unnecessarily
1041          * makes the holding time of page lock longer. Second, it forces lock
1042          * ordering of page lock and transaction start for journaling
1043          * filesystems.
1044          */
1045         if (i_size_changed)
1046                 ext4_mark_inode_dirty(handle, inode);
1047
1048         return copied;
1049 }
1050
1051 /*
1052  * We need to pick up the new inode size which generic_commit_write gave us
1053  * `file' can be NULL - eg, when called from page_symlink().
1054  *
1055  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1056  * buffers are managed internally.
1057  */
1058 static int ext4_ordered_write_end(struct file *file,
1059                                   struct address_space *mapping,
1060                                   loff_t pos, unsigned len, unsigned copied,
1061                                   struct page *page, void *fsdata)
1062 {
1063         handle_t *handle = ext4_journal_current_handle();
1064         struct inode *inode = mapping->host;
1065         int ret = 0, ret2;
1066
1067         trace_ext4_ordered_write_end(inode, pos, len, copied);
1068         ret = ext4_jbd2_file_inode(handle, inode);
1069
1070         if (ret == 0) {
1071                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1072                                                         page, fsdata);
1073                 copied = ret2;
1074                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1075                         /* if we have allocated more blocks and copied
1076                          * less. We will have blocks allocated outside
1077                          * inode->i_size. So truncate them
1078                          */
1079                         ext4_orphan_add(handle, inode);
1080                 if (ret2 < 0)
1081                         ret = ret2;
1082         } else {
1083                 unlock_page(page);
1084                 page_cache_release(page);
1085         }
1086
1087         ret2 = ext4_journal_stop(handle);
1088         if (!ret)
1089                 ret = ret2;
1090
1091         if (pos + len > inode->i_size) {
1092                 ext4_truncate_failed_write(inode);
1093                 /*
1094                  * If truncate failed early the inode might still be
1095                  * on the orphan list; we need to make sure the inode
1096                  * is removed from the orphan list in that case.
1097                  */
1098                 if (inode->i_nlink)
1099                         ext4_orphan_del(NULL, inode);
1100         }
1101
1102
1103         return ret ? ret : copied;
1104 }
1105
1106 static int ext4_writeback_write_end(struct file *file,
1107                                     struct address_space *mapping,
1108                                     loff_t pos, unsigned len, unsigned copied,
1109                                     struct page *page, void *fsdata)
1110 {
1111         handle_t *handle = ext4_journal_current_handle();
1112         struct inode *inode = mapping->host;
1113         int ret = 0, ret2;
1114
1115         trace_ext4_writeback_write_end(inode, pos, len, copied);
1116         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1117                                                         page, fsdata);
1118         copied = ret2;
1119         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1120                 /* if we have allocated more blocks and copied
1121                  * less. We will have blocks allocated outside
1122                  * inode->i_size. So truncate them
1123                  */
1124                 ext4_orphan_add(handle, inode);
1125
1126         if (ret2 < 0)
1127                 ret = ret2;
1128
1129         ret2 = ext4_journal_stop(handle);
1130         if (!ret)
1131                 ret = ret2;
1132
1133         if (pos + len > inode->i_size) {
1134                 ext4_truncate_failed_write(inode);
1135                 /*
1136                  * If truncate failed early the inode might still be
1137                  * on the orphan list; we need to make sure the inode
1138                  * is removed from the orphan list in that case.
1139                  */
1140                 if (inode->i_nlink)
1141                         ext4_orphan_del(NULL, inode);
1142         }
1143
1144         return ret ? ret : copied;
1145 }
1146
1147 static int ext4_journalled_write_end(struct file *file,
1148                                      struct address_space *mapping,
1149                                      loff_t pos, unsigned len, unsigned copied,
1150                                      struct page *page, void *fsdata)
1151 {
1152         handle_t *handle = ext4_journal_current_handle();
1153         struct inode *inode = mapping->host;
1154         int ret = 0, ret2;
1155         int partial = 0;
1156         unsigned from, to;
1157         loff_t new_i_size;
1158
1159         trace_ext4_journalled_write_end(inode, pos, len, copied);
1160         from = pos & (PAGE_CACHE_SIZE - 1);
1161         to = from + len;
1162
1163         BUG_ON(!ext4_handle_valid(handle));
1164
1165         if (ext4_has_inline_data(inode))
1166                 copied = ext4_write_inline_data_end(inode, pos, len,
1167                                                     copied, page);
1168         else {
1169                 if (copied < len) {
1170                         if (!PageUptodate(page))
1171                                 copied = 0;
1172                         page_zero_new_buffers(page, from+copied, to);
1173                 }
1174
1175                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1176                                              to, &partial, write_end_fn);
1177                 if (!partial)
1178                         SetPageUptodate(page);
1179         }
1180         new_i_size = pos + copied;
1181         if (new_i_size > inode->i_size)
1182                 i_size_write(inode, pos+copied);
1183         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1184         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1185         if (new_i_size > EXT4_I(inode)->i_disksize) {
1186                 ext4_update_i_disksize(inode, new_i_size);
1187                 ret2 = ext4_mark_inode_dirty(handle, inode);
1188                 if (!ret)
1189                         ret = ret2;
1190         }
1191
1192         unlock_page(page);
1193         page_cache_release(page);
1194         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1195                 /* if we have allocated more blocks and copied
1196                  * less. We will have blocks allocated outside
1197                  * inode->i_size. So truncate them
1198                  */
1199                 ext4_orphan_add(handle, inode);
1200
1201         ret2 = ext4_journal_stop(handle);
1202         if (!ret)
1203                 ret = ret2;
1204         if (pos + len > inode->i_size) {
1205                 ext4_truncate_failed_write(inode);
1206                 /*
1207                  * If truncate failed early the inode might still be
1208                  * on the orphan list; we need to make sure the inode
1209                  * is removed from the orphan list in that case.
1210                  */
1211                 if (inode->i_nlink)
1212                         ext4_orphan_del(NULL, inode);
1213         }
1214
1215         return ret ? ret : copied;
1216 }
1217
1218 /*
1219  * Reserve a single cluster located at lblock
1220  */
1221 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1222 {
1223         int retries = 0;
1224         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1225         struct ext4_inode_info *ei = EXT4_I(inode);
1226         unsigned int md_needed;
1227         int ret;
1228         ext4_lblk_t save_last_lblock;
1229         int save_len;
1230
1231         /*
1232          * We will charge metadata quota at writeout time; this saves
1233          * us from metadata over-estimation, though we may go over by
1234          * a small amount in the end.  Here we just reserve for data.
1235          */
1236         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1237         if (ret)
1238                 return ret;
1239
1240         /*
1241          * recalculate the amount of metadata blocks to reserve
1242          * in order to allocate nrblocks
1243          * worse case is one extent per block
1244          */
1245 repeat:
1246         spin_lock(&ei->i_block_reservation_lock);
1247         /*
1248          * ext4_calc_metadata_amount() has side effects, which we have
1249          * to be prepared undo if we fail to claim space.
1250          */
1251         save_len = ei->i_da_metadata_calc_len;
1252         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1253         md_needed = EXT4_NUM_B2C(sbi,
1254                                  ext4_calc_metadata_amount(inode, lblock));
1255         trace_ext4_da_reserve_space(inode, md_needed);
1256
1257         /*
1258          * We do still charge estimated metadata to the sb though;
1259          * we cannot afford to run out of free blocks.
1260          */
1261         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1262                 ei->i_da_metadata_calc_len = save_len;
1263                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1264                 spin_unlock(&ei->i_block_reservation_lock);
1265                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1266                         yield();
1267                         goto repeat;
1268                 }
1269                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1270                 return -ENOSPC;
1271         }
1272         ei->i_reserved_data_blocks++;
1273         ei->i_reserved_meta_blocks += md_needed;
1274         spin_unlock(&ei->i_block_reservation_lock);
1275
1276         return 0;       /* success */
1277 }
1278
1279 static void ext4_da_release_space(struct inode *inode, int to_free)
1280 {
1281         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1282         struct ext4_inode_info *ei = EXT4_I(inode);
1283
1284         if (!to_free)
1285                 return;         /* Nothing to release, exit */
1286
1287         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1288
1289         trace_ext4_da_release_space(inode, to_free);
1290         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1291                 /*
1292                  * if there aren't enough reserved blocks, then the
1293                  * counter is messed up somewhere.  Since this
1294                  * function is called from invalidate page, it's
1295                  * harmless to return without any action.
1296                  */
1297                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1298                          "ino %lu, to_free %d with only %d reserved "
1299                          "data blocks", inode->i_ino, to_free,
1300                          ei->i_reserved_data_blocks);
1301                 WARN_ON(1);
1302                 to_free = ei->i_reserved_data_blocks;
1303         }
1304         ei->i_reserved_data_blocks -= to_free;
1305
1306         if (ei->i_reserved_data_blocks == 0) {
1307                 /*
1308                  * We can release all of the reserved metadata blocks
1309                  * only when we have written all of the delayed
1310                  * allocation blocks.
1311                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1312                  * i_reserved_data_blocks, etc. refer to number of clusters.
1313                  */
1314                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1315                                    ei->i_reserved_meta_blocks);
1316                 ei->i_reserved_meta_blocks = 0;
1317                 ei->i_da_metadata_calc_len = 0;
1318         }
1319
1320         /* update fs dirty data blocks counter */
1321         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1322
1323         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1324
1325         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1326 }
1327
1328 static void ext4_da_page_release_reservation(struct page *page,
1329                                              unsigned long offset)
1330 {
1331         int to_release = 0;
1332         struct buffer_head *head, *bh;
1333         unsigned int curr_off = 0;
1334         struct inode *inode = page->mapping->host;
1335         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1336         int num_clusters;
1337         ext4_fsblk_t lblk;
1338
1339         head = page_buffers(page);
1340         bh = head;
1341         do {
1342                 unsigned int next_off = curr_off + bh->b_size;
1343
1344                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1345                         to_release++;
1346                         clear_buffer_delay(bh);
1347                 }
1348                 curr_off = next_off;
1349         } while ((bh = bh->b_this_page) != head);
1350
1351         if (to_release) {
1352                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1353                 ext4_es_remove_extent(inode, lblk, to_release);
1354         }
1355
1356         /* If we have released all the blocks belonging to a cluster, then we
1357          * need to release the reserved space for that cluster. */
1358         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1359         while (num_clusters > 0) {
1360                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1361                         ((num_clusters - 1) << sbi->s_cluster_bits);
1362                 if (sbi->s_cluster_ratio == 1 ||
1363                     !ext4_find_delalloc_cluster(inode, lblk))
1364                         ext4_da_release_space(inode, 1);
1365
1366                 num_clusters--;
1367         }
1368 }
1369
1370 /*
1371  * Delayed allocation stuff
1372  */
1373
1374 /*
1375  * mpage_da_submit_io - walks through extent of pages and try to write
1376  * them with writepage() call back
1377  *
1378  * @mpd->inode: inode
1379  * @mpd->first_page: first page of the extent
1380  * @mpd->next_page: page after the last page of the extent
1381  *
1382  * By the time mpage_da_submit_io() is called we expect all blocks
1383  * to be allocated. this may be wrong if allocation failed.
1384  *
1385  * As pages are already locked by write_cache_pages(), we can't use it
1386  */
1387 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1388                               struct ext4_map_blocks *map)
1389 {
1390         struct pagevec pvec;
1391         unsigned long index, end;
1392         int ret = 0, err, nr_pages, i;
1393         struct inode *inode = mpd->inode;
1394         struct address_space *mapping = inode->i_mapping;
1395         loff_t size = i_size_read(inode);
1396         unsigned int len, block_start;
1397         struct buffer_head *bh, *page_bufs = NULL;
1398         sector_t pblock = 0, cur_logical = 0;
1399         struct ext4_io_submit io_submit;
1400
1401         BUG_ON(mpd->next_page <= mpd->first_page);
1402         memset(&io_submit, 0, sizeof(io_submit));
1403         /*
1404          * We need to start from the first_page to the next_page - 1
1405          * to make sure we also write the mapped dirty buffer_heads.
1406          * If we look at mpd->b_blocknr we would only be looking
1407          * at the currently mapped buffer_heads.
1408          */
1409         index = mpd->first_page;
1410         end = mpd->next_page - 1;
1411
1412         pagevec_init(&pvec, 0);
1413         while (index <= end) {
1414                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1415                 if (nr_pages == 0)
1416                         break;
1417                 for (i = 0; i < nr_pages; i++) {
1418                         int skip_page = 0;
1419                         struct page *page = pvec.pages[i];
1420
1421                         index = page->index;
1422                         if (index > end)
1423                                 break;
1424
1425                         if (index == size >> PAGE_CACHE_SHIFT)
1426                                 len = size & ~PAGE_CACHE_MASK;
1427                         else
1428                                 len = PAGE_CACHE_SIZE;
1429                         if (map) {
1430                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1431                                                         inode->i_blkbits);
1432                                 pblock = map->m_pblk + (cur_logical -
1433                                                         map->m_lblk);
1434                         }
1435                         index++;
1436
1437                         BUG_ON(!PageLocked(page));
1438                         BUG_ON(PageWriteback(page));
1439
1440                         bh = page_bufs = page_buffers(page);
1441                         block_start = 0;
1442                         do {
1443                                 if (map && (cur_logical >= map->m_lblk) &&
1444                                     (cur_logical <= (map->m_lblk +
1445                                                      (map->m_len - 1)))) {
1446                                         if (buffer_delay(bh)) {
1447                                                 clear_buffer_delay(bh);
1448                                                 bh->b_blocknr = pblock;
1449                                         }
1450                                         if (buffer_unwritten(bh) ||
1451                                             buffer_mapped(bh))
1452                                                 BUG_ON(bh->b_blocknr != pblock);
1453                                         if (map->m_flags & EXT4_MAP_UNINIT)
1454                                                 set_buffer_uninit(bh);
1455                                         clear_buffer_unwritten(bh);
1456                                 }
1457
1458                                 /*
1459                                  * skip page if block allocation undone and
1460                                  * block is dirty
1461                                  */
1462                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1463                                         skip_page = 1;
1464                                 bh = bh->b_this_page;
1465                                 block_start += bh->b_size;
1466                                 cur_logical++;
1467                                 pblock++;
1468                         } while (bh != page_bufs);
1469
1470                         if (skip_page) {
1471                                 unlock_page(page);
1472                                 continue;
1473                         }
1474
1475                         clear_page_dirty_for_io(page);
1476                         err = ext4_bio_write_page(&io_submit, page, len,
1477                                                   mpd->wbc);
1478                         if (!err)
1479                                 mpd->pages_written++;
1480                         /*
1481                          * In error case, we have to continue because
1482                          * remaining pages are still locked
1483                          */
1484                         if (ret == 0)
1485                                 ret = err;
1486                 }
1487                 pagevec_release(&pvec);
1488         }
1489         ext4_io_submit(&io_submit);
1490         return ret;
1491 }
1492
1493 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1494 {
1495         int nr_pages, i;
1496         pgoff_t index, end;
1497         struct pagevec pvec;
1498         struct inode *inode = mpd->inode;
1499         struct address_space *mapping = inode->i_mapping;
1500         ext4_lblk_t start, last;
1501
1502         index = mpd->first_page;
1503         end   = mpd->next_page - 1;
1504
1505         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1506         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1507         ext4_es_remove_extent(inode, start, last - start + 1);
1508
1509         pagevec_init(&pvec, 0);
1510         while (index <= end) {
1511                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512                 if (nr_pages == 0)
1513                         break;
1514                 for (i = 0; i < nr_pages; i++) {
1515                         struct page *page = pvec.pages[i];
1516                         if (page->index > end)
1517                                 break;
1518                         BUG_ON(!PageLocked(page));
1519                         BUG_ON(PageWriteback(page));
1520                         block_invalidatepage(page, 0);
1521                         ClearPageUptodate(page);
1522                         unlock_page(page);
1523                 }
1524                 index = pvec.pages[nr_pages - 1]->index + 1;
1525                 pagevec_release(&pvec);
1526         }
1527         return;
1528 }
1529
1530 static void ext4_print_free_blocks(struct inode *inode)
1531 {
1532         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1533         struct super_block *sb = inode->i_sb;
1534
1535         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1536                EXT4_C2B(EXT4_SB(inode->i_sb),
1537                         ext4_count_free_clusters(inode->i_sb)));
1538         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1539         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1540                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1541                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1542         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1543                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1544                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1545         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1546         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1547                  EXT4_I(inode)->i_reserved_data_blocks);
1548         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1549                EXT4_I(inode)->i_reserved_meta_blocks);
1550         return;
1551 }
1552
1553 /*
1554  * mpage_da_map_and_submit - go through given space, map them
1555  *       if necessary, and then submit them for I/O
1556  *
1557  * @mpd - bh describing space
1558  *
1559  * The function skips space we know is already mapped to disk blocks.
1560  *
1561  */
1562 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1563 {
1564         int err, blks, get_blocks_flags;
1565         struct ext4_map_blocks map, *mapp = NULL;
1566         sector_t next = mpd->b_blocknr;
1567         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1568         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1569         handle_t *handle = NULL;
1570
1571         /*
1572          * If the blocks are mapped already, or we couldn't accumulate
1573          * any blocks, then proceed immediately to the submission stage.
1574          */
1575         if ((mpd->b_size == 0) ||
1576             ((mpd->b_state  & (1 << BH_Mapped)) &&
1577              !(mpd->b_state & (1 << BH_Delay)) &&
1578              !(mpd->b_state & (1 << BH_Unwritten))))
1579                 goto submit_io;
1580
1581         handle = ext4_journal_current_handle();
1582         BUG_ON(!handle);
1583
1584         /*
1585          * Call ext4_map_blocks() to allocate any delayed allocation
1586          * blocks, or to convert an uninitialized extent to be
1587          * initialized (in the case where we have written into
1588          * one or more preallocated blocks).
1589          *
1590          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1591          * indicate that we are on the delayed allocation path.  This
1592          * affects functions in many different parts of the allocation
1593          * call path.  This flag exists primarily because we don't
1594          * want to change *many* call functions, so ext4_map_blocks()
1595          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1596          * inode's allocation semaphore is taken.
1597          *
1598          * If the blocks in questions were delalloc blocks, set
1599          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1600          * variables are updated after the blocks have been allocated.
1601          */
1602         map.m_lblk = next;
1603         map.m_len = max_blocks;
1604         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1605         if (ext4_should_dioread_nolock(mpd->inode))
1606                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1607         if (mpd->b_state & (1 << BH_Delay))
1608                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1609
1610         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1611         if (blks < 0) {
1612                 struct super_block *sb = mpd->inode->i_sb;
1613
1614                 err = blks;
1615                 /*
1616                  * If get block returns EAGAIN or ENOSPC and there
1617                  * appears to be free blocks we will just let
1618                  * mpage_da_submit_io() unlock all of the pages.
1619                  */
1620                 if (err == -EAGAIN)
1621                         goto submit_io;
1622
1623                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1624                         mpd->retval = err;
1625                         goto submit_io;
1626                 }
1627
1628                 /*
1629                  * get block failure will cause us to loop in
1630                  * writepages, because a_ops->writepage won't be able
1631                  * to make progress. The page will be redirtied by
1632                  * writepage and writepages will again try to write
1633                  * the same.
1634                  */
1635                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1636                         ext4_msg(sb, KERN_CRIT,
1637                                  "delayed block allocation failed for inode %lu "
1638                                  "at logical offset %llu with max blocks %zd "
1639                                  "with error %d", mpd->inode->i_ino,
1640                                  (unsigned long long) next,
1641                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1642                         ext4_msg(sb, KERN_CRIT,
1643                                 "This should not happen!! Data will be lost");
1644                         if (err == -ENOSPC)
1645                                 ext4_print_free_blocks(mpd->inode);
1646                 }
1647                 /* invalidate all the pages */
1648                 ext4_da_block_invalidatepages(mpd);
1649
1650                 /* Mark this page range as having been completed */
1651                 mpd->io_done = 1;
1652                 return;
1653         }
1654         BUG_ON(blks == 0);
1655
1656         mapp = &map;
1657         if (map.m_flags & EXT4_MAP_NEW) {
1658                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1659                 int i;
1660
1661                 for (i = 0; i < map.m_len; i++)
1662                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1663         }
1664
1665         /*
1666          * Update on-disk size along with block allocation.
1667          */
1668         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1669         if (disksize > i_size_read(mpd->inode))
1670                 disksize = i_size_read(mpd->inode);
1671         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1672                 ext4_update_i_disksize(mpd->inode, disksize);
1673                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1674                 if (err)
1675                         ext4_error(mpd->inode->i_sb,
1676                                    "Failed to mark inode %lu dirty",
1677                                    mpd->inode->i_ino);
1678         }
1679
1680 submit_io:
1681         mpage_da_submit_io(mpd, mapp);
1682         mpd->io_done = 1;
1683 }
1684
1685 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1686                 (1 << BH_Delay) | (1 << BH_Unwritten))
1687
1688 /*
1689  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1690  *
1691  * @mpd->lbh - extent of blocks
1692  * @logical - logical number of the block in the file
1693  * @b_state - b_state of the buffer head added
1694  *
1695  * the function is used to collect contig. blocks in same state
1696  */
1697 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1698                                    unsigned long b_state)
1699 {
1700         sector_t next;
1701         int blkbits = mpd->inode->i_blkbits;
1702         int nrblocks = mpd->b_size >> blkbits;
1703
1704         /*
1705          * XXX Don't go larger than mballoc is willing to allocate
1706          * This is a stopgap solution.  We eventually need to fold
1707          * mpage_da_submit_io() into this function and then call
1708          * ext4_map_blocks() multiple times in a loop
1709          */
1710         if (nrblocks >= (8*1024*1024 >> blkbits))
1711                 goto flush_it;
1712
1713         /* check if the reserved journal credits might overflow */
1714         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1715                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1716                         /*
1717                          * With non-extent format we are limited by the journal
1718                          * credit available.  Total credit needed to insert
1719                          * nrblocks contiguous blocks is dependent on the
1720                          * nrblocks.  So limit nrblocks.
1721                          */
1722                         goto flush_it;
1723                 }
1724         }
1725         /*
1726          * First block in the extent
1727          */
1728         if (mpd->b_size == 0) {
1729                 mpd->b_blocknr = logical;
1730                 mpd->b_size = 1 << blkbits;
1731                 mpd->b_state = b_state & BH_FLAGS;
1732                 return;
1733         }
1734
1735         next = mpd->b_blocknr + nrblocks;
1736         /*
1737          * Can we merge the block to our big extent?
1738          */
1739         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1740                 mpd->b_size += 1 << blkbits;
1741                 return;
1742         }
1743
1744 flush_it:
1745         /*
1746          * We couldn't merge the block to our extent, so we
1747          * need to flush current  extent and start new one
1748          */
1749         mpage_da_map_and_submit(mpd);
1750         return;
1751 }
1752
1753 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1754 {
1755         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1756 }
1757
1758 /*
1759  * This function is grabs code from the very beginning of
1760  * ext4_map_blocks, but assumes that the caller is from delayed write
1761  * time. This function looks up the requested blocks and sets the
1762  * buffer delay bit under the protection of i_data_sem.
1763  */
1764 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1765                               struct ext4_map_blocks *map,
1766                               struct buffer_head *bh)
1767 {
1768         struct extent_status es;
1769         int retval;
1770         sector_t invalid_block = ~((sector_t) 0xffff);
1771
1772         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1773                 invalid_block = ~0;
1774
1775         map->m_flags = 0;
1776         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1777                   "logical block %lu\n", inode->i_ino, map->m_len,
1778                   (unsigned long) map->m_lblk);
1779
1780         /* Lookup extent status tree firstly */
1781         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1782
1783                 if (ext4_es_is_hole(&es)) {
1784                         retval = 0;
1785                         down_read((&EXT4_I(inode)->i_data_sem));
1786                         goto add_delayed;
1787                 }
1788
1789                 /*
1790                  * Delayed extent could be allocated by fallocate.
1791                  * So we need to check it.
1792                  */
1793                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1794                         map_bh(bh, inode->i_sb, invalid_block);
1795                         set_buffer_new(bh);
1796                         set_buffer_delay(bh);
1797                         return 0;
1798                 }
1799
1800                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1801                 retval = es.es_len - (iblock - es.es_lblk);
1802                 if (retval > map->m_len)
1803                         retval = map->m_len;
1804                 map->m_len = retval;
1805                 if (ext4_es_is_written(&es))
1806                         map->m_flags |= EXT4_MAP_MAPPED;
1807                 else if (ext4_es_is_unwritten(&es))
1808                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1809                 else
1810                         BUG_ON(1);
1811
1812                 return retval;
1813         }
1814
1815         /*
1816          * Try to see if we can get the block without requesting a new
1817          * file system block.
1818          */
1819         down_read((&EXT4_I(inode)->i_data_sem));
1820         if (ext4_has_inline_data(inode)) {
1821                 /*
1822                  * We will soon create blocks for this page, and let
1823                  * us pretend as if the blocks aren't allocated yet.
1824                  * In case of clusters, we have to handle the work
1825                  * of mapping from cluster so that the reserved space
1826                  * is calculated properly.
1827                  */
1828                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1829                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1830                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1831                 retval = 0;
1832         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1833                 retval = ext4_ext_map_blocks(NULL, inode, map,
1834                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1835         else
1836                 retval = ext4_ind_map_blocks(NULL, inode, map,
1837                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1838
1839 add_delayed:
1840         if (retval == 0) {
1841                 int ret;
1842                 /*
1843                  * XXX: __block_prepare_write() unmaps passed block,
1844                  * is it OK?
1845                  */
1846                 /* If the block was allocated from previously allocated cluster,
1847                  * then we dont need to reserve it again. */
1848                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1849                         ret = ext4_da_reserve_space(inode, iblock);
1850                         if (ret) {
1851                                 /* not enough space to reserve */
1852                                 retval = ret;
1853                                 goto out_unlock;
1854                         }
1855                 }
1856
1857                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1858                                             ~0, EXTENT_STATUS_DELAYED);
1859                 if (ret) {
1860                         retval = ret;
1861                         goto out_unlock;
1862                 }
1863
1864                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1865                  * and it should not appear on the bh->b_state.
1866                  */
1867                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1868
1869                 map_bh(bh, inode->i_sb, invalid_block);
1870                 set_buffer_new(bh);
1871                 set_buffer_delay(bh);
1872         } else if (retval > 0) {
1873                 int ret;
1874                 unsigned long long status;
1875
1876                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1877                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1878                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1879                                             map->m_pblk, status);
1880                 if (ret != 0)
1881                         retval = ret;
1882         }
1883
1884 out_unlock:
1885         up_read((&EXT4_I(inode)->i_data_sem));
1886
1887         return retval;
1888 }
1889
1890 /*
1891  * This is a special get_blocks_t callback which is used by
1892  * ext4_da_write_begin().  It will either return mapped block or
1893  * reserve space for a single block.
1894  *
1895  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1896  * We also have b_blocknr = -1 and b_bdev initialized properly
1897  *
1898  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1899  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1900  * initialized properly.
1901  */
1902 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1903                            struct buffer_head *bh, int create)
1904 {
1905         struct ext4_map_blocks map;
1906         int ret = 0;
1907
1908         BUG_ON(create == 0);
1909         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1910
1911         map.m_lblk = iblock;
1912         map.m_len = 1;
1913
1914         /*
1915          * first, we need to know whether the block is allocated already
1916          * preallocated blocks are unmapped but should treated
1917          * the same as allocated blocks.
1918          */
1919         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1920         if (ret <= 0)
1921                 return ret;
1922
1923         map_bh(bh, inode->i_sb, map.m_pblk);
1924         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1925
1926         if (buffer_unwritten(bh)) {
1927                 /* A delayed write to unwritten bh should be marked
1928                  * new and mapped.  Mapped ensures that we don't do
1929                  * get_block multiple times when we write to the same
1930                  * offset and new ensures that we do proper zero out
1931                  * for partial write.
1932                  */
1933                 set_buffer_new(bh);
1934                 set_buffer_mapped(bh);
1935         }
1936         return 0;
1937 }
1938
1939 static int bget_one(handle_t *handle, struct buffer_head *bh)
1940 {
1941         get_bh(bh);
1942         return 0;
1943 }
1944
1945 static int bput_one(handle_t *handle, struct buffer_head *bh)
1946 {
1947         put_bh(bh);
1948         return 0;
1949 }
1950
1951 static int __ext4_journalled_writepage(struct page *page,
1952                                        unsigned int len)
1953 {
1954         struct address_space *mapping = page->mapping;
1955         struct inode *inode = mapping->host;
1956         struct buffer_head *page_bufs = NULL;
1957         handle_t *handle = NULL;
1958         int ret = 0, err = 0;
1959         int inline_data = ext4_has_inline_data(inode);
1960         struct buffer_head *inode_bh = NULL;
1961
1962         ClearPageChecked(page);
1963
1964         if (inline_data) {
1965                 BUG_ON(page->index != 0);
1966                 BUG_ON(len > ext4_get_max_inline_size(inode));
1967                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1968                 if (inode_bh == NULL)
1969                         goto out;
1970         } else {
1971                 page_bufs = page_buffers(page);
1972                 if (!page_bufs) {
1973                         BUG();
1974                         goto out;
1975                 }
1976                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1977                                        NULL, bget_one);
1978         }
1979         /* As soon as we unlock the page, it can go away, but we have
1980          * references to buffers so we are safe */
1981         unlock_page(page);
1982
1983         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1984                                     ext4_writepage_trans_blocks(inode));
1985         if (IS_ERR(handle)) {
1986                 ret = PTR_ERR(handle);
1987                 goto out;
1988         }
1989
1990         BUG_ON(!ext4_handle_valid(handle));
1991
1992         if (inline_data) {
1993                 ret = ext4_journal_get_write_access(handle, inode_bh);
1994
1995                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1996
1997         } else {
1998                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1999                                              do_journal_get_write_access);
2000
2001                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2002                                              write_end_fn);
2003         }
2004         if (ret == 0)
2005                 ret = err;
2006         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2007         err = ext4_journal_stop(handle);
2008         if (!ret)
2009                 ret = err;
2010
2011         if (!ext4_has_inline_data(inode))
2012                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2013                                        NULL, bput_one);
2014         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2015 out:
2016         brelse(inode_bh);
2017         return ret;
2018 }
2019
2020 /*
2021  * Note that we don't need to start a transaction unless we're journaling data
2022  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2023  * need to file the inode to the transaction's list in ordered mode because if
2024  * we are writing back data added by write(), the inode is already there and if
2025  * we are writing back data modified via mmap(), no one guarantees in which
2026  * transaction the data will hit the disk. In case we are journaling data, we
2027  * cannot start transaction directly because transaction start ranks above page
2028  * lock so we have to do some magic.
2029  *
2030  * This function can get called via...
2031  *   - ext4_da_writepages after taking page lock (have journal handle)
2032  *   - journal_submit_inode_data_buffers (no journal handle)
2033  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2034  *   - grab_page_cache when doing write_begin (have journal handle)
2035  *
2036  * We don't do any block allocation in this function. If we have page with
2037  * multiple blocks we need to write those buffer_heads that are mapped. This
2038  * is important for mmaped based write. So if we do with blocksize 1K
2039  * truncate(f, 1024);
2040  * a = mmap(f, 0, 4096);
2041  * a[0] = 'a';
2042  * truncate(f, 4096);
2043  * we have in the page first buffer_head mapped via page_mkwrite call back
2044  * but other buffer_heads would be unmapped but dirty (dirty done via the
2045  * do_wp_page). So writepage should write the first block. If we modify
2046  * the mmap area beyond 1024 we will again get a page_fault and the
2047  * page_mkwrite callback will do the block allocation and mark the
2048  * buffer_heads mapped.
2049  *
2050  * We redirty the page if we have any buffer_heads that is either delay or
2051  * unwritten in the page.
2052  *
2053  * We can get recursively called as show below.
2054  *
2055  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2056  *              ext4_writepage()
2057  *
2058  * But since we don't do any block allocation we should not deadlock.
2059  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2060  */
2061 static int ext4_writepage(struct page *page,
2062                           struct writeback_control *wbc)
2063 {
2064         int ret = 0;
2065         loff_t size;
2066         unsigned int len;
2067         struct buffer_head *page_bufs = NULL;
2068         struct inode *inode = page->mapping->host;
2069         struct ext4_io_submit io_submit;
2070
2071         trace_ext4_writepage(page);
2072         size = i_size_read(inode);
2073         if (page->index == size >> PAGE_CACHE_SHIFT)
2074                 len = size & ~PAGE_CACHE_MASK;
2075         else
2076                 len = PAGE_CACHE_SIZE;
2077
2078         page_bufs = page_buffers(page);
2079         /*
2080          * We cannot do block allocation or other extent handling in this
2081          * function. If there are buffers needing that, we have to redirty
2082          * the page. But we may reach here when we do a journal commit via
2083          * journal_submit_inode_data_buffers() and in that case we must write
2084          * allocated buffers to achieve data=ordered mode guarantees.
2085          */
2086         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2087                                    ext4_bh_delay_or_unwritten)) {
2088                 redirty_page_for_writepage(wbc, page);
2089                 if (current->flags & PF_MEMALLOC) {
2090                         /*
2091                          * For memory cleaning there's no point in writing only
2092                          * some buffers. So just bail out. Warn if we came here
2093                          * from direct reclaim.
2094                          */
2095                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2096                                                         == PF_MEMALLOC);
2097                         unlock_page(page);
2098                         return 0;
2099                 }
2100         }
2101
2102         if (PageChecked(page) && ext4_should_journal_data(inode))
2103                 /*
2104                  * It's mmapped pagecache.  Add buffers and journal it.  There
2105                  * doesn't seem much point in redirtying the page here.
2106                  */
2107                 return __ext4_journalled_writepage(page, len);
2108
2109         memset(&io_submit, 0, sizeof(io_submit));
2110         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2111         ext4_io_submit(&io_submit);
2112         return ret;
2113 }
2114
2115 /*
2116  * This is called via ext4_da_writepages() to
2117  * calculate the total number of credits to reserve to fit
2118  * a single extent allocation into a single transaction,
2119  * ext4_da_writpeages() will loop calling this before
2120  * the block allocation.
2121  */
2122
2123 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2124 {
2125         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2126
2127         /*
2128          * With non-extent format the journal credit needed to
2129          * insert nrblocks contiguous block is dependent on
2130          * number of contiguous block. So we will limit
2131          * number of contiguous block to a sane value
2132          */
2133         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2134             (max_blocks > EXT4_MAX_TRANS_DATA))
2135                 max_blocks = EXT4_MAX_TRANS_DATA;
2136
2137         return ext4_chunk_trans_blocks(inode, max_blocks);
2138 }
2139
2140 /*
2141  * write_cache_pages_da - walk the list of dirty pages of the given
2142  * address space and accumulate pages that need writing, and call
2143  * mpage_da_map_and_submit to map a single contiguous memory region
2144  * and then write them.
2145  */
2146 static int write_cache_pages_da(handle_t *handle,
2147                                 struct address_space *mapping,
2148                                 struct writeback_control *wbc,
2149                                 struct mpage_da_data *mpd,
2150                                 pgoff_t *done_index)
2151 {
2152         struct buffer_head      *bh, *head;
2153         struct inode            *inode = mapping->host;
2154         struct pagevec          pvec;
2155         unsigned int            nr_pages;
2156         sector_t                logical;
2157         pgoff_t                 index, end;
2158         long                    nr_to_write = wbc->nr_to_write;
2159         int                     i, tag, ret = 0;
2160
2161         memset(mpd, 0, sizeof(struct mpage_da_data));
2162         mpd->wbc = wbc;
2163         mpd->inode = inode;
2164         pagevec_init(&pvec, 0);
2165         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2166         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2167
2168         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2169                 tag = PAGECACHE_TAG_TOWRITE;
2170         else
2171                 tag = PAGECACHE_TAG_DIRTY;
2172
2173         *done_index = index;
2174         while (index <= end) {
2175                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2176                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2177                 if (nr_pages == 0)
2178                         return 0;
2179
2180                 for (i = 0; i < nr_pages; i++) {
2181                         struct page *page = pvec.pages[i];
2182
2183                         /*
2184                          * At this point, the page may be truncated or
2185                          * invalidated (changing page->mapping to NULL), or
2186                          * even swizzled back from swapper_space to tmpfs file
2187                          * mapping. However, page->index will not change
2188                          * because we have a reference on the page.
2189                          */
2190                         if (page->index > end)
2191                                 goto out;
2192
2193                         *done_index = page->index + 1;
2194
2195                         /*
2196                          * If we can't merge this page, and we have
2197                          * accumulated an contiguous region, write it
2198                          */
2199                         if ((mpd->next_page != page->index) &&
2200                             (mpd->next_page != mpd->first_page)) {
2201                                 mpage_da_map_and_submit(mpd);
2202                                 goto ret_extent_tail;
2203                         }
2204
2205                         lock_page(page);
2206
2207                         /*
2208                          * If the page is no longer dirty, or its
2209                          * mapping no longer corresponds to inode we
2210                          * are writing (which means it has been
2211                          * truncated or invalidated), or the page is
2212                          * already under writeback and we are not
2213                          * doing a data integrity writeback, skip the page
2214                          */
2215                         if (!PageDirty(page) ||
2216                             (PageWriteback(page) &&
2217                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2218                             unlikely(page->mapping != mapping)) {
2219                                 unlock_page(page);
2220                                 continue;
2221                         }
2222
2223                         wait_on_page_writeback(page);
2224                         BUG_ON(PageWriteback(page));
2225
2226                         /*
2227                          * If we have inline data and arrive here, it means that
2228                          * we will soon create the block for the 1st page, so
2229                          * we'd better clear the inline data here.
2230                          */
2231                         if (ext4_has_inline_data(inode)) {
2232                                 BUG_ON(ext4_test_inode_state(inode,
2233                                                 EXT4_STATE_MAY_INLINE_DATA));
2234                                 ext4_destroy_inline_data(handle, inode);
2235                         }
2236
2237                         if (mpd->next_page != page->index)
2238                                 mpd->first_page = page->index;
2239                         mpd->next_page = page->index + 1;
2240                         logical = (sector_t) page->index <<
2241                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2242
2243                         /* Add all dirty buffers to mpd */
2244                         head = page_buffers(page);
2245                         bh = head;
2246                         do {
2247                                 BUG_ON(buffer_locked(bh));
2248                                 /*
2249                                  * We need to try to allocate unmapped blocks
2250                                  * in the same page.  Otherwise we won't make
2251                                  * progress with the page in ext4_writepage
2252                                  */
2253                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2254                                         mpage_add_bh_to_extent(mpd, logical,
2255                                                                bh->b_state);
2256                                         if (mpd->io_done)
2257                                                 goto ret_extent_tail;
2258                                 } else if (buffer_dirty(bh) &&
2259                                            buffer_mapped(bh)) {
2260                                         /*
2261                                          * mapped dirty buffer. We need to
2262                                          * update the b_state because we look
2263                                          * at b_state in mpage_da_map_blocks.
2264                                          * We don't update b_size because if we
2265                                          * find an unmapped buffer_head later
2266                                          * we need to use the b_state flag of
2267                                          * that buffer_head.
2268                                          */
2269                                         if (mpd->b_size == 0)
2270                                                 mpd->b_state =
2271                                                         bh->b_state & BH_FLAGS;
2272                                 }
2273                                 logical++;
2274                         } while ((bh = bh->b_this_page) != head);
2275
2276                         if (nr_to_write > 0) {
2277                                 nr_to_write--;
2278                                 if (nr_to_write == 0 &&
2279                                     wbc->sync_mode == WB_SYNC_NONE)
2280                                         /*
2281                                          * We stop writing back only if we are
2282                                          * not doing integrity sync. In case of
2283                                          * integrity sync we have to keep going
2284                                          * because someone may be concurrently
2285                                          * dirtying pages, and we might have
2286                                          * synced a lot of newly appeared dirty
2287                                          * pages, but have not synced all of the
2288                                          * old dirty pages.
2289                                          */
2290                                         goto out;
2291                         }
2292                 }
2293                 pagevec_release(&pvec);
2294                 cond_resched();
2295         }
2296         return 0;
2297 ret_extent_tail:
2298         ret = MPAGE_DA_EXTENT_TAIL;
2299 out:
2300         pagevec_release(&pvec);
2301         cond_resched();
2302         return ret;
2303 }
2304
2305
2306 static int ext4_da_writepages(struct address_space *mapping,
2307                               struct writeback_control *wbc)
2308 {
2309         pgoff_t index;
2310         int range_whole = 0;
2311         handle_t *handle = NULL;
2312         struct mpage_da_data mpd;
2313         struct inode *inode = mapping->host;
2314         int pages_written = 0;
2315         unsigned int max_pages;
2316         int range_cyclic, cycled = 1, io_done = 0;
2317         int needed_blocks, ret = 0;
2318         long desired_nr_to_write, nr_to_writebump = 0;
2319         loff_t range_start = wbc->range_start;
2320         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2321         pgoff_t done_index = 0;
2322         pgoff_t end;
2323         struct blk_plug plug;
2324
2325         trace_ext4_da_writepages(inode, wbc);
2326
2327         /*
2328          * No pages to write? This is mainly a kludge to avoid starting
2329          * a transaction for special inodes like journal inode on last iput()
2330          * because that could violate lock ordering on umount
2331          */
2332         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2333                 return 0;
2334
2335         /*
2336          * If the filesystem has aborted, it is read-only, so return
2337          * right away instead of dumping stack traces later on that
2338          * will obscure the real source of the problem.  We test
2339          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2340          * the latter could be true if the filesystem is mounted
2341          * read-only, and in that case, ext4_da_writepages should
2342          * *never* be called, so if that ever happens, we would want
2343          * the stack trace.
2344          */
2345         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2346                 return -EROFS;
2347
2348         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2349                 range_whole = 1;
2350
2351         range_cyclic = wbc->range_cyclic;
2352         if (wbc->range_cyclic) {
2353                 index = mapping->writeback_index;
2354                 if (index)
2355                         cycled = 0;
2356                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2357                 wbc->range_end  = LLONG_MAX;
2358                 wbc->range_cyclic = 0;
2359                 end = -1;
2360         } else {
2361                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2362                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2363         }
2364
2365         /*
2366          * This works around two forms of stupidity.  The first is in
2367          * the writeback code, which caps the maximum number of pages
2368          * written to be 1024 pages.  This is wrong on multiple
2369          * levels; different architectues have a different page size,
2370          * which changes the maximum amount of data which gets
2371          * written.  Secondly, 4 megabytes is way too small.  XFS
2372          * forces this value to be 16 megabytes by multiplying
2373          * nr_to_write parameter by four, and then relies on its
2374          * allocator to allocate larger extents to make them
2375          * contiguous.  Unfortunately this brings us to the second
2376          * stupidity, which is that ext4's mballoc code only allocates
2377          * at most 2048 blocks.  So we force contiguous writes up to
2378          * the number of dirty blocks in the inode, or
2379          * sbi->max_writeback_mb_bump whichever is smaller.
2380          */
2381         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2382         if (!range_cyclic && range_whole) {
2383                 if (wbc->nr_to_write == LONG_MAX)
2384                         desired_nr_to_write = wbc->nr_to_write;
2385                 else
2386                         desired_nr_to_write = wbc->nr_to_write * 8;
2387         } else
2388                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2389                                                            max_pages);
2390         if (desired_nr_to_write > max_pages)
2391                 desired_nr_to_write = max_pages;
2392
2393         if (wbc->nr_to_write < desired_nr_to_write) {
2394                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2395                 wbc->nr_to_write = desired_nr_to_write;
2396         }
2397
2398 retry:
2399         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2400                 tag_pages_for_writeback(mapping, index, end);
2401
2402         blk_start_plug(&plug);
2403         while (!ret && wbc->nr_to_write > 0) {
2404
2405                 /*
2406                  * we  insert one extent at a time. So we need
2407                  * credit needed for single extent allocation.
2408                  * journalled mode is currently not supported
2409                  * by delalloc
2410                  */
2411                 BUG_ON(ext4_should_journal_data(inode));
2412                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2413
2414                 /* start a new transaction*/
2415                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2416                                             needed_blocks);
2417                 if (IS_ERR(handle)) {
2418                         ret = PTR_ERR(handle);
2419                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2420                                "%ld pages, ino %lu; err %d", __func__,
2421                                 wbc->nr_to_write, inode->i_ino, ret);
2422                         blk_finish_plug(&plug);
2423                         goto out_writepages;
2424                 }
2425
2426                 /*
2427                  * Now call write_cache_pages_da() to find the next
2428                  * contiguous region of logical blocks that need
2429                  * blocks to be allocated by ext4 and submit them.
2430                  */
2431                 ret = write_cache_pages_da(handle, mapping,
2432                                            wbc, &mpd, &done_index);
2433                 /*
2434                  * If we have a contiguous extent of pages and we
2435                  * haven't done the I/O yet, map the blocks and submit
2436                  * them for I/O.
2437                  */
2438                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2439                         mpage_da_map_and_submit(&mpd);
2440                         ret = MPAGE_DA_EXTENT_TAIL;
2441                 }
2442                 trace_ext4_da_write_pages(inode, &mpd);
2443                 wbc->nr_to_write -= mpd.pages_written;
2444
2445                 ext4_journal_stop(handle);
2446
2447                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2448                         /* commit the transaction which would
2449                          * free blocks released in the transaction
2450                          * and try again
2451                          */
2452                         jbd2_journal_force_commit_nested(sbi->s_journal);
2453                         ret = 0;
2454                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2455                         /*
2456                          * Got one extent now try with rest of the pages.
2457                          * If mpd.retval is set -EIO, journal is aborted.
2458                          * So we don't need to write any more.
2459                          */
2460                         pages_written += mpd.pages_written;
2461                         ret = mpd.retval;
2462                         io_done = 1;
2463                 } else if (wbc->nr_to_write)
2464                         /*
2465                          * There is no more writeout needed
2466                          * or we requested for a noblocking writeout
2467                          * and we found the device congested
2468                          */
2469                         break;
2470         }
2471         blk_finish_plug(&plug);
2472         if (!io_done && !cycled) {
2473                 cycled = 1;
2474                 index = 0;
2475                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2476                 wbc->range_end  = mapping->writeback_index - 1;
2477                 goto retry;
2478         }
2479
2480         /* Update index */
2481         wbc->range_cyclic = range_cyclic;
2482         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2483                 /*
2484                  * set the writeback_index so that range_cyclic
2485                  * mode will write it back later
2486                  */
2487                 mapping->writeback_index = done_index;
2488
2489 out_writepages:
2490         wbc->nr_to_write -= nr_to_writebump;
2491         wbc->range_start = range_start;
2492         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2493         return ret;
2494 }
2495
2496 static int ext4_nonda_switch(struct super_block *sb)
2497 {
2498         s64 free_blocks, dirty_blocks;
2499         struct ext4_sb_info *sbi = EXT4_SB(sb);
2500
2501         /*
2502          * switch to non delalloc mode if we are running low
2503          * on free block. The free block accounting via percpu
2504          * counters can get slightly wrong with percpu_counter_batch getting
2505          * accumulated on each CPU without updating global counters
2506          * Delalloc need an accurate free block accounting. So switch
2507          * to non delalloc when we are near to error range.
2508          */
2509         free_blocks  = EXT4_C2B(sbi,
2510                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2511         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2512         /*
2513          * Start pushing delalloc when 1/2 of free blocks are dirty.
2514          */
2515         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2516             !writeback_in_progress(sb->s_bdi) &&
2517             down_read_trylock(&sb->s_umount)) {
2518                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2519                 up_read(&sb->s_umount);
2520         }
2521
2522         if (2 * free_blocks < 3 * dirty_blocks ||
2523                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2524                 /*
2525                  * free block count is less than 150% of dirty blocks
2526                  * or free blocks is less than watermark
2527                  */
2528                 return 1;
2529         }
2530         return 0;
2531 }
2532
2533 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2534                                loff_t pos, unsigned len, unsigned flags,
2535                                struct page **pagep, void **fsdata)
2536 {
2537         int ret, retries = 0;
2538         struct page *page;
2539         pgoff_t index;
2540         struct inode *inode = mapping->host;
2541         handle_t *handle;
2542
2543         index = pos >> PAGE_CACHE_SHIFT;
2544
2545         if (ext4_nonda_switch(inode->i_sb)) {
2546                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2547                 return ext4_write_begin(file, mapping, pos,
2548                                         len, flags, pagep, fsdata);
2549         }
2550         *fsdata = (void *)0;
2551         trace_ext4_da_write_begin(inode, pos, len, flags);
2552
2553         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2554                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2555                                                       pos, len, flags,
2556                                                       pagep, fsdata);
2557                 if (ret < 0)
2558                         return ret;
2559                 if (ret == 1)
2560                         return 0;
2561         }
2562
2563         /*
2564          * grab_cache_page_write_begin() can take a long time if the
2565          * system is thrashing due to memory pressure, or if the page
2566          * is being written back.  So grab it first before we start
2567          * the transaction handle.  This also allows us to allocate
2568          * the page (if needed) without using GFP_NOFS.
2569          */
2570 retry_grab:
2571         page = grab_cache_page_write_begin(mapping, index, flags);
2572         if (!page)
2573                 return -ENOMEM;
2574         unlock_page(page);
2575
2576         /*
2577          * With delayed allocation, we don't log the i_disksize update
2578          * if there is delayed block allocation. But we still need
2579          * to journalling the i_disksize update if writes to the end
2580          * of file which has an already mapped buffer.
2581          */
2582 retry_journal:
2583         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2584         if (IS_ERR(handle)) {
2585                 page_cache_release(page);
2586                 return PTR_ERR(handle);
2587         }
2588
2589         lock_page(page);
2590         if (page->mapping != mapping) {
2591                 /* The page got truncated from under us */
2592                 unlock_page(page);
2593                 page_cache_release(page);
2594                 ext4_journal_stop(handle);
2595                 goto retry_grab;
2596         }
2597         /* In case writeback began while the page was unlocked */
2598         wait_on_page_writeback(page);
2599
2600         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2601         if (ret < 0) {
2602                 unlock_page(page);
2603                 ext4_journal_stop(handle);
2604                 /*
2605                  * block_write_begin may have instantiated a few blocks
2606                  * outside i_size.  Trim these off again. Don't need
2607                  * i_size_read because we hold i_mutex.
2608                  */
2609                 if (pos + len > inode->i_size)
2610                         ext4_truncate_failed_write(inode);
2611
2612                 if (ret == -ENOSPC &&
2613                     ext4_should_retry_alloc(inode->i_sb, &retries))
2614                         goto retry_journal;
2615
2616                 page_cache_release(page);
2617                 return ret;
2618         }
2619
2620         *pagep = page;
2621         return ret;
2622 }
2623
2624 /*
2625  * Check if we should update i_disksize
2626  * when write to the end of file but not require block allocation
2627  */
2628 static int ext4_da_should_update_i_disksize(struct page *page,
2629                                             unsigned long offset)
2630 {
2631         struct buffer_head *bh;
2632         struct inode *inode = page->mapping->host;
2633         unsigned int idx;
2634         int i;
2635
2636         bh = page_buffers(page);
2637         idx = offset >> inode->i_blkbits;
2638
2639         for (i = 0; i < idx; i++)
2640                 bh = bh->b_this_page;
2641
2642         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2643                 return 0;
2644         return 1;
2645 }
2646
2647 static int ext4_da_write_end(struct file *file,
2648                              struct address_space *mapping,
2649                              loff_t pos, unsigned len, unsigned copied,
2650                              struct page *page, void *fsdata)
2651 {
2652         struct inode *inode = mapping->host;
2653         int ret = 0, ret2;
2654         handle_t *handle = ext4_journal_current_handle();
2655         loff_t new_i_size;
2656         unsigned long start, end;
2657         int write_mode = (int)(unsigned long)fsdata;
2658
2659         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2660                 switch (ext4_inode_journal_mode(inode)) {
2661                 case EXT4_INODE_ORDERED_DATA_MODE:
2662                         return ext4_ordered_write_end(file, mapping, pos,
2663                                         len, copied, page, fsdata);
2664                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2665                         return ext4_writeback_write_end(file, mapping, pos,
2666                                         len, copied, page, fsdata);
2667                 default:
2668                         BUG();
2669                 }
2670         }
2671
2672         trace_ext4_da_write_end(inode, pos, len, copied);
2673         start = pos & (PAGE_CACHE_SIZE - 1);
2674         end = start + copied - 1;
2675
2676         /*
2677          * generic_write_end() will run mark_inode_dirty() if i_size
2678          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2679          * into that.
2680          */
2681         new_i_size = pos + copied;
2682         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2683                 if (ext4_has_inline_data(inode) ||
2684                     ext4_da_should_update_i_disksize(page, end)) {
2685                         down_write(&EXT4_I(inode)->i_data_sem);
2686                         if (new_i_size > EXT4_I(inode)->i_disksize)
2687                                 EXT4_I(inode)->i_disksize = new_i_size;
2688                         up_write(&EXT4_I(inode)->i_data_sem);
2689                         /* We need to mark inode dirty even if
2690                          * new_i_size is less that inode->i_size
2691                          * bu greater than i_disksize.(hint delalloc)
2692                          */
2693                         ext4_mark_inode_dirty(handle, inode);
2694                 }
2695         }
2696
2697         if (write_mode != CONVERT_INLINE_DATA &&
2698             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2699             ext4_has_inline_data(inode))
2700                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2701                                                      page);
2702         else
2703                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2704                                                         page, fsdata);
2705
2706         copied = ret2;
2707         if (ret2 < 0)
2708                 ret = ret2;
2709         ret2 = ext4_journal_stop(handle);
2710         if (!ret)
2711                 ret = ret2;
2712
2713         return ret ? ret : copied;
2714 }
2715
2716 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2717 {
2718         /*
2719          * Drop reserved blocks
2720          */
2721         BUG_ON(!PageLocked(page));
2722         if (!page_has_buffers(page))
2723                 goto out;
2724
2725         ext4_da_page_release_reservation(page, offset);
2726
2727 out:
2728         ext4_invalidatepage(page, offset);
2729
2730         return;
2731 }
2732
2733 /*
2734  * Force all delayed allocation blocks to be allocated for a given inode.
2735  */
2736 int ext4_alloc_da_blocks(struct inode *inode)
2737 {
2738         trace_ext4_alloc_da_blocks(inode);
2739
2740         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2741             !EXT4_I(inode)->i_reserved_meta_blocks)
2742                 return 0;
2743
2744         /*
2745          * We do something simple for now.  The filemap_flush() will
2746          * also start triggering a write of the data blocks, which is
2747          * not strictly speaking necessary (and for users of
2748          * laptop_mode, not even desirable).  However, to do otherwise
2749          * would require replicating code paths in:
2750          *
2751          * ext4_da_writepages() ->
2752          *    write_cache_pages() ---> (via passed in callback function)
2753          *        __mpage_da_writepage() -->
2754          *           mpage_add_bh_to_extent()
2755          *           mpage_da_map_blocks()
2756          *
2757          * The problem is that write_cache_pages(), located in
2758          * mm/page-writeback.c, marks pages clean in preparation for
2759          * doing I/O, which is not desirable if we're not planning on
2760          * doing I/O at all.
2761          *
2762          * We could call write_cache_pages(), and then redirty all of
2763          * the pages by calling redirty_page_for_writepage() but that
2764          * would be ugly in the extreme.  So instead we would need to
2765          * replicate parts of the code in the above functions,
2766          * simplifying them because we wouldn't actually intend to
2767          * write out the pages, but rather only collect contiguous
2768          * logical block extents, call the multi-block allocator, and
2769          * then update the buffer heads with the block allocations.
2770          *
2771          * For now, though, we'll cheat by calling filemap_flush(),
2772          * which will map the blocks, and start the I/O, but not
2773          * actually wait for the I/O to complete.
2774          */
2775         return filemap_flush(inode->i_mapping);
2776 }
2777
2778 /*
2779  * bmap() is special.  It gets used by applications such as lilo and by
2780  * the swapper to find the on-disk block of a specific piece of data.
2781  *
2782  * Naturally, this is dangerous if the block concerned is still in the
2783  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2784  * filesystem and enables swap, then they may get a nasty shock when the
2785  * data getting swapped to that swapfile suddenly gets overwritten by
2786  * the original zero's written out previously to the journal and
2787  * awaiting writeback in the kernel's buffer cache.
2788  *
2789  * So, if we see any bmap calls here on a modified, data-journaled file,
2790  * take extra steps to flush any blocks which might be in the cache.
2791  */
2792 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2793 {
2794         struct inode *inode = mapping->host;
2795         journal_t *journal;
2796         int err;
2797
2798         /*
2799          * We can get here for an inline file via the FIBMAP ioctl
2800          */
2801         if (ext4_has_inline_data(inode))
2802                 return 0;
2803
2804         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2805                         test_opt(inode->i_sb, DELALLOC)) {
2806                 /*
2807                  * With delalloc we want to sync the file
2808                  * so that we can make sure we allocate
2809                  * blocks for file
2810                  */
2811                 filemap_write_and_wait(mapping);
2812         }
2813
2814         if (EXT4_JOURNAL(inode) &&
2815             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2816                 /*
2817                  * This is a REALLY heavyweight approach, but the use of
2818                  * bmap on dirty files is expected to be extremely rare:
2819                  * only if we run lilo or swapon on a freshly made file
2820                  * do we expect this to happen.
2821                  *
2822                  * (bmap requires CAP_SYS_RAWIO so this does not
2823                  * represent an unprivileged user DOS attack --- we'd be
2824                  * in trouble if mortal users could trigger this path at
2825                  * will.)
2826                  *
2827                  * NB. EXT4_STATE_JDATA is not set on files other than
2828                  * regular files.  If somebody wants to bmap a directory
2829                  * or symlink and gets confused because the buffer
2830                  * hasn't yet been flushed to disk, they deserve
2831                  * everything they get.
2832                  */
2833
2834                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2835                 journal = EXT4_JOURNAL(inode);
2836                 jbd2_journal_lock_updates(journal);
2837                 err = jbd2_journal_flush(journal);
2838                 jbd2_journal_unlock_updates(journal);
2839
2840                 if (err)
2841                         return 0;
2842         }
2843
2844         return generic_block_bmap(mapping, block, ext4_get_block);
2845 }
2846
2847 static int ext4_readpage(struct file *file, struct page *page)
2848 {
2849         int ret = -EAGAIN;
2850         struct inode *inode = page->mapping->host;
2851
2852         trace_ext4_readpage(page);
2853
2854         if (ext4_has_inline_data(inode))
2855                 ret = ext4_readpage_inline(inode, page);
2856
2857         if (ret == -EAGAIN)
2858                 return mpage_readpage(page, ext4_get_block);
2859
2860         return ret;
2861 }
2862
2863 static int
2864 ext4_readpages(struct file *file, struct address_space *mapping,
2865                 struct list_head *pages, unsigned nr_pages)
2866 {
2867         struct inode *inode = mapping->host;
2868
2869         /* If the file has inline data, no need to do readpages. */
2870         if (ext4_has_inline_data(inode))
2871                 return 0;
2872
2873         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2874 }
2875
2876 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2877 {
2878         trace_ext4_invalidatepage(page, offset);
2879
2880         /* No journalling happens on data buffers when this function is used */
2881         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2882
2883         block_invalidatepage(page, offset);
2884 }
2885
2886 static int __ext4_journalled_invalidatepage(struct page *page,
2887                                             unsigned long offset)
2888 {
2889         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2890
2891         trace_ext4_journalled_invalidatepage(page, offset);
2892
2893         /*
2894          * If it's a full truncate we just forget about the pending dirtying
2895          */
2896         if (offset == 0)
2897                 ClearPageChecked(page);
2898
2899         return jbd2_journal_invalidatepage(journal, page, offset);
2900 }
2901
2902 /* Wrapper for aops... */
2903 static void ext4_journalled_invalidatepage(struct page *page,
2904                                            unsigned long offset)
2905 {
2906         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2907 }
2908
2909 static int ext4_releasepage(struct page *page, gfp_t wait)
2910 {
2911         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2912
2913         trace_ext4_releasepage(page);
2914
2915         WARN_ON(PageChecked(page));
2916         if (!page_has_buffers(page))
2917                 return 0;
2918         if (journal)
2919                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2920         else
2921                 return try_to_free_buffers(page);
2922 }
2923
2924 /*
2925  * ext4_get_block used when preparing for a DIO write or buffer write.
2926  * We allocate an uinitialized extent if blocks haven't been allocated.
2927  * The extent will be converted to initialized after the IO is complete.
2928  */
2929 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2930                    struct buffer_head *bh_result, int create)
2931 {
2932         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2933                    inode->i_ino, create);
2934         return _ext4_get_block(inode, iblock, bh_result,
2935                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2936 }
2937
2938 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2939                    struct buffer_head *bh_result, int create)
2940 {
2941         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2942                    inode->i_ino, create);
2943         return _ext4_get_block(inode, iblock, bh_result,
2944                                EXT4_GET_BLOCKS_NO_LOCK);
2945 }
2946
2947 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2948                             ssize_t size, void *private, int ret,
2949                             bool is_async)
2950 {
2951         struct inode *inode = file_inode(iocb->ki_filp);
2952         ext4_io_end_t *io_end = iocb->private;
2953
2954         /* if not async direct IO or dio with 0 bytes write, just return */
2955         if (!io_end || !size)
2956                 goto out;
2957
2958         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2959                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2960                   iocb->private, io_end->inode->i_ino, iocb, offset,
2961                   size);
2962
2963         iocb->private = NULL;
2964
2965         /* if not aio dio with unwritten extents, just free io and return */
2966         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2967                 ext4_free_io_end(io_end);
2968 out:
2969                 inode_dio_done(inode);
2970                 if (is_async)
2971                         aio_complete(iocb, ret, 0);
2972                 return;
2973         }
2974
2975         io_end->offset = offset;
2976         io_end->size = size;
2977         if (is_async) {
2978                 io_end->iocb = iocb;
2979                 io_end->result = ret;
2980         }
2981
2982         ext4_add_complete_io(io_end);
2983 }
2984
2985 /*
2986  * For ext4 extent files, ext4 will do direct-io write to holes,
2987  * preallocated extents, and those write extend the file, no need to
2988  * fall back to buffered IO.
2989  *
2990  * For holes, we fallocate those blocks, mark them as uninitialized
2991  * If those blocks were preallocated, we mark sure they are split, but
2992  * still keep the range to write as uninitialized.
2993  *
2994  * The unwritten extents will be converted to written when DIO is completed.
2995  * For async direct IO, since the IO may still pending when return, we
2996  * set up an end_io call back function, which will do the conversion
2997  * when async direct IO completed.
2998  *
2999  * If the O_DIRECT write will extend the file then add this inode to the
3000  * orphan list.  So recovery will truncate it back to the original size
3001  * if the machine crashes during the write.
3002  *
3003  */
3004 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3005                               const struct iovec *iov, loff_t offset,
3006                               unsigned long nr_segs)
3007 {
3008         struct file *file = iocb->ki_filp;
3009         struct inode *inode = file->f_mapping->host;
3010         ssize_t ret;
3011         size_t count = iov_length(iov, nr_segs);
3012         int overwrite = 0;
3013         get_block_t *get_block_func = NULL;
3014         int dio_flags = 0;
3015         loff_t final_size = offset + count;
3016
3017         /* Use the old path for reads and writes beyond i_size. */
3018         if (rw != WRITE || final_size > inode->i_size)
3019                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3020
3021         BUG_ON(iocb->private == NULL);
3022
3023         /* If we do a overwrite dio, i_mutex locking can be released */
3024         overwrite = *((int *)iocb->private);
3025
3026         if (overwrite) {
3027                 atomic_inc(&inode->i_dio_count);
3028                 down_read(&EXT4_I(inode)->i_data_sem);
3029                 mutex_unlock(&inode->i_mutex);
3030         }
3031
3032         /*
3033          * We could direct write to holes and fallocate.
3034          *
3035          * Allocated blocks to fill the hole are marked as
3036          * uninitialized to prevent parallel buffered read to expose
3037          * the stale data before DIO complete the data IO.
3038          *
3039          * As to previously fallocated extents, ext4 get_block will
3040          * just simply mark the buffer mapped but still keep the
3041          * extents uninitialized.
3042          *
3043          * For non AIO case, we will convert those unwritten extents
3044          * to written after return back from blockdev_direct_IO.
3045          *
3046          * For async DIO, the conversion needs to be deferred when the
3047          * IO is completed. The ext4 end_io callback function will be
3048          * called to take care of the conversion work.  Here for async
3049          * case, we allocate an io_end structure to hook to the iocb.
3050          */
3051         iocb->private = NULL;
3052         ext4_inode_aio_set(inode, NULL);
3053         if (!is_sync_kiocb(iocb)) {
3054                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3055                 if (!io_end) {
3056                         ret = -ENOMEM;
3057                         goto retake_lock;
3058                 }
3059                 io_end->flag |= EXT4_IO_END_DIRECT;
3060                 iocb->private = io_end;
3061                 /*
3062                  * we save the io structure for current async direct
3063                  * IO, so that later ext4_map_blocks() could flag the
3064                  * io structure whether there is a unwritten extents
3065                  * needs to be converted when IO is completed.
3066                  */
3067                 ext4_inode_aio_set(inode, io_end);
3068         }
3069
3070         if (overwrite) {
3071                 get_block_func = ext4_get_block_write_nolock;
3072         } else {
3073                 get_block_func = ext4_get_block_write;
3074                 dio_flags = DIO_LOCKING;
3075         }
3076         ret = __blockdev_direct_IO(rw, iocb, inode,
3077                                    inode->i_sb->s_bdev, iov,
3078                                    offset, nr_segs,
3079                                    get_block_func,
3080                                    ext4_end_io_dio,
3081                                    NULL,
3082                                    dio_flags);
3083
3084         if (iocb->private)
3085                 ext4_inode_aio_set(inode, NULL);
3086         /*
3087          * The io_end structure takes a reference to the inode, that
3088          * structure needs to be destroyed and the reference to the
3089          * inode need to be dropped, when IO is complete, even with 0
3090          * byte write, or failed.
3091          *
3092          * In the successful AIO DIO case, the io_end structure will
3093          * be destroyed and the reference to the inode will be dropped
3094          * after the end_io call back function is called.
3095          *
3096          * In the case there is 0 byte write, or error case, since VFS
3097          * direct IO won't invoke the end_io call back function, we
3098          * need to free the end_io structure here.
3099          */
3100         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3101                 ext4_free_io_end(iocb->private);
3102                 iocb->private = NULL;
3103         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3104                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3105                 int err;
3106                 /*
3107                  * for non AIO case, since the IO is already
3108                  * completed, we could do the conversion right here
3109                  */
3110                 err = ext4_convert_unwritten_extents(inode,
3111                                                      offset, ret);
3112                 if (err < 0)
3113                         ret = err;
3114                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3115         }
3116
3117 retake_lock:
3118         /* take i_mutex locking again if we do a ovewrite dio */
3119         if (overwrite) {
3120                 inode_dio_done(inode);
3121                 up_read(&EXT4_I(inode)->i_data_sem);
3122                 mutex_lock(&inode->i_mutex);
3123         }
3124
3125         return ret;
3126 }
3127
3128 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3129                               const struct iovec *iov, loff_t offset,
3130                               unsigned long nr_segs)
3131 {
3132         struct file *file = iocb->ki_filp;
3133         struct inode *inode = file->f_mapping->host;
3134         ssize_t ret;
3135
3136         /*
3137          * If we are doing data journalling we don't support O_DIRECT
3138          */
3139         if (ext4_should_journal_data(inode))
3140                 return 0;
3141
3142         /* Let buffer I/O handle the inline data case. */
3143         if (ext4_has_inline_data(inode))
3144                 return 0;
3145
3146         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3147         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3148                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3149         else
3150                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3151         trace_ext4_direct_IO_exit(inode, offset,
3152                                 iov_length(iov, nr_segs), rw, ret);
3153         return ret;
3154 }
3155
3156 /*
3157  * Pages can be marked dirty completely asynchronously from ext4's journalling
3158  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3159  * much here because ->set_page_dirty is called under VFS locks.  The page is
3160  * not necessarily locked.
3161  *
3162  * We cannot just dirty the page and leave attached buffers clean, because the
3163  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3164  * or jbddirty because all the journalling code will explode.
3165  *
3166  * So what we do is to mark the page "pending dirty" and next time writepage
3167  * is called, propagate that into the buffers appropriately.
3168  */
3169 static int ext4_journalled_set_page_dirty(struct page *page)
3170 {
3171         SetPageChecked(page);
3172         return __set_page_dirty_nobuffers(page);
3173 }
3174
3175 static const struct address_space_operations ext4_ordered_aops = {
3176         .readpage               = ext4_readpage,
3177         .readpages              = ext4_readpages,
3178         .writepage              = ext4_writepage,
3179         .write_begin            = ext4_write_begin,
3180         .write_end              = ext4_ordered_write_end,
3181         .bmap                   = ext4_bmap,
3182         .invalidatepage         = ext4_invalidatepage,
3183         .releasepage            = ext4_releasepage,
3184         .direct_IO              = ext4_direct_IO,
3185         .migratepage            = buffer_migrate_page,
3186         .is_partially_uptodate  = block_is_partially_uptodate,
3187         .error_remove_page      = generic_error_remove_page,
3188 };
3189
3190 static const struct address_space_operations ext4_writeback_aops = {
3191         .readpage               = ext4_readpage,
3192         .readpages              = ext4_readpages,
3193         .writepage              = ext4_writepage,
3194         .write_begin            = ext4_write_begin,
3195         .write_end              = ext4_writeback_write_end,
3196         .bmap                   = ext4_bmap,
3197         .invalidatepage         = ext4_invalidatepage,
3198         .releasepage            = ext4_releasepage,
3199         .direct_IO              = ext4_direct_IO,
3200         .migratepage            = buffer_migrate_page,
3201         .is_partially_uptodate  = block_is_partially_uptodate,
3202         .error_remove_page      = generic_error_remove_page,
3203 };
3204
3205 static const struct address_space_operations ext4_journalled_aops = {
3206         .readpage               = ext4_readpage,
3207         .readpages              = ext4_readpages,
3208         .writepage              = ext4_writepage,
3209         .write_begin            = ext4_write_begin,
3210         .write_end              = ext4_journalled_write_end,
3211         .set_page_dirty         = ext4_journalled_set_page_dirty,
3212         .bmap                   = ext4_bmap,
3213         .invalidatepage         = ext4_journalled_invalidatepage,
3214         .releasepage            = ext4_releasepage,
3215         .direct_IO              = ext4_direct_IO,
3216         .is_partially_uptodate  = block_is_partially_uptodate,
3217         .error_remove_page      = generic_error_remove_page,
3218 };
3219
3220 static const struct address_space_operations ext4_da_aops = {
3221         .readpage               = ext4_readpage,
3222         .readpages              = ext4_readpages,
3223         .writepage              = ext4_writepage,
3224         .writepages             = ext4_da_writepages,
3225         .write_begin            = ext4_da_write_begin,
3226         .write_end              = ext4_da_write_end,
3227         .bmap                   = ext4_bmap,
3228         .invalidatepage         = ext4_da_invalidatepage,
3229         .releasepage            = ext4_releasepage,
3230         .direct_IO              = ext4_direct_IO,
3231         .migratepage            = buffer_migrate_page,
3232         .is_partially_uptodate  = block_is_partially_uptodate,
3233         .error_remove_page      = generic_error_remove_page,
3234 };
3235
3236 void ext4_set_aops(struct inode *inode)
3237 {
3238         switch (ext4_inode_journal_mode(inode)) {
3239         case EXT4_INODE_ORDERED_DATA_MODE:
3240                 if (test_opt(inode->i_sb, DELALLOC))
3241                         inode->i_mapping->a_ops = &ext4_da_aops;
3242                 else
3243                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3244                 break;
3245         case EXT4_INODE_WRITEBACK_DATA_MODE:
3246                 if (test_opt(inode->i_sb, DELALLOC))
3247                         inode->i_mapping->a_ops = &ext4_da_aops;
3248                 else
3249                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3250                 break;
3251         case EXT4_INODE_JOURNAL_DATA_MODE:
3252                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3253                 break;
3254         default:
3255                 BUG();
3256         }
3257 }
3258
3259
3260 /*
3261  * ext4_discard_partial_page_buffers()
3262  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3263  * This function finds and locks the page containing the offset
3264  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3265  * Calling functions that already have the page locked should call
3266  * ext4_discard_partial_page_buffers_no_lock directly.
3267  */
3268 int ext4_discard_partial_page_buffers(handle_t *handle,
3269                 struct address_space *mapping, loff_t from,
3270                 loff_t length, int flags)
3271 {
3272         struct inode *inode = mapping->host;
3273         struct page *page;
3274         int err = 0;
3275
3276         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3277                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3278         if (!page)
3279                 return -ENOMEM;
3280
3281         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3282                 from, length, flags);
3283
3284         unlock_page(page);
3285         page_cache_release(page);
3286         return err;
3287 }
3288
3289 /*
3290  * ext4_discard_partial_page_buffers_no_lock()
3291  * Zeros a page range of length 'length' starting from offset 'from'.
3292  * Buffer heads that correspond to the block aligned regions of the
3293  * zeroed range will be unmapped.  Unblock aligned regions
3294  * will have the corresponding buffer head mapped if needed so that
3295  * that region of the page can be updated with the partial zero out.
3296  *
3297  * This function assumes that the page has already been  locked.  The
3298  * The range to be discarded must be contained with in the given page.
3299  * If the specified range exceeds the end of the page it will be shortened
3300  * to the end of the page that corresponds to 'from'.  This function is
3301  * appropriate for updating a page and it buffer heads to be unmapped and
3302  * zeroed for blocks that have been either released, or are going to be
3303  * released.
3304  *
3305  * handle: The journal handle
3306  * inode:  The files inode
3307  * page:   A locked page that contains the offset "from"
3308  * from:   The starting byte offset (from the beginning of the file)
3309  *         to begin discarding
3310  * len:    The length of bytes to discard
3311  * flags:  Optional flags that may be used:
3312  *
3313  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3314  *         Only zero the regions of the page whose buffer heads
3315  *         have already been unmapped.  This flag is appropriate
3316  *         for updating the contents of a page whose blocks may
3317  *         have already been released, and we only want to zero
3318  *         out the regions that correspond to those released blocks.
3319  *
3320  * Returns zero on success or negative on failure.
3321  */
3322 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3323                 struct inode *inode, struct page *page, loff_t from,
3324                 loff_t length, int flags)
3325 {
3326         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3327         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3328         unsigned int blocksize, max, pos;
3329         ext4_lblk_t iblock;
3330         struct buffer_head *bh;
3331         int err = 0;
3332
3333         blocksize = inode->i_sb->s_blocksize;
3334         max = PAGE_CACHE_SIZE - offset;
3335
3336         if (index != page->index)
3337                 return -EINVAL;
3338
3339         /*
3340          * correct length if it does not fall between
3341          * 'from' and the end of the page
3342          */
3343         if (length > max || length < 0)
3344                 length = max;
3345
3346         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3347
3348         if (!page_has_buffers(page))
3349                 create_empty_buffers(page, blocksize, 0);
3350
3351         /* Find the buffer that contains "offset" */
3352         bh = page_buffers(page);
3353         pos = blocksize;
3354         while (offset >= pos) {
3355                 bh = bh->b_this_page;
3356                 iblock++;
3357                 pos += blocksize;
3358         }
3359
3360         pos = offset;
3361         while (pos < offset + length) {
3362                 unsigned int end_of_block, range_to_discard;
3363
3364                 err = 0;
3365
3366                 /* The length of space left to zero and unmap */
3367                 range_to_discard = offset + length - pos;
3368
3369                 /* The length of space until the end of the block */
3370                 end_of_block = blocksize - (pos & (blocksize-1));
3371
3372                 /*
3373                  * Do not unmap or zero past end of block
3374                  * for this buffer head
3375                  */
3376                 if (range_to_discard > end_of_block)
3377                         range_to_discard = end_of_block;
3378
3379
3380                 /*
3381                  * Skip this buffer head if we are only zeroing unampped
3382                  * regions of the page
3383                  */
3384                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3385                         buffer_mapped(bh))
3386                                 goto next;
3387
3388                 /* If the range is block aligned, unmap */
3389                 if (range_to_discard == blocksize) {
3390                         clear_buffer_dirty(bh);
3391                         bh->b_bdev = NULL;
3392                         clear_buffer_mapped(bh);
3393                         clear_buffer_req(bh);
3394                         clear_buffer_new(bh);
3395                         clear_buffer_delay(bh);
3396                         clear_buffer_unwritten(bh);
3397                         clear_buffer_uptodate(bh);
3398                         zero_user(page, pos, range_to_discard);
3399                         BUFFER_TRACE(bh, "Buffer discarded");
3400                         goto next;
3401                 }
3402
3403                 /*
3404                  * If this block is not completely contained in the range
3405                  * to be discarded, then it is not going to be released. Because
3406                  * we need to keep this block, we need to make sure this part
3407                  * of the page is uptodate before we modify it by writeing
3408                  * partial zeros on it.
3409                  */
3410                 if (!buffer_mapped(bh)) {
3411                         /*
3412                          * Buffer head must be mapped before we can read
3413                          * from the block
3414                          */
3415                         BUFFER_TRACE(bh, "unmapped");
3416                         ext4_get_block(inode, iblock, bh, 0);
3417                         /* unmapped? It's a hole - nothing to do */
3418                         if (!buffer_mapped(bh)) {
3419                                 BUFFER_TRACE(bh, "still unmapped");
3420                                 goto next;
3421                         }
3422                 }
3423
3424                 /* Ok, it's mapped. Make sure it's up-to-date */
3425                 if (PageUptodate(page))
3426                         set_buffer_uptodate(bh);
3427
3428                 if (!buffer_uptodate(bh)) {
3429                         err = -EIO;
3430                         ll_rw_block(READ, 1, &bh);
3431                         wait_on_buffer(bh);
3432                         /* Uhhuh. Read error. Complain and punt.*/
3433                         if (!buffer_uptodate(bh))
3434                                 goto next;
3435                 }
3436
3437                 if (ext4_should_journal_data(inode)) {
3438                         BUFFER_TRACE(bh, "get write access");
3439                         err = ext4_journal_get_write_access(handle, bh);
3440                         if (err)
3441                                 goto next;
3442                 }
3443
3444                 zero_user(page, pos, range_to_discard);
3445
3446                 err = 0;
3447                 if (ext4_should_journal_data(inode)) {
3448                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3449                 } else
3450                         mark_buffer_dirty(bh);
3451
3452                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3453 next:
3454                 bh = bh->b_this_page;
3455                 iblock++;
3456                 pos += range_to_discard;
3457         }
3458
3459         return err;
3460 }
3461
3462 int ext4_can_truncate(struct inode *inode)
3463 {
3464         if (S_ISREG(inode->i_mode))
3465                 return 1;
3466         if (S_ISDIR(inode->i_mode))
3467                 return 1;
3468         if (S_ISLNK(inode->i_mode))
3469                 return !ext4_inode_is_fast_symlink(inode);
3470         return 0;
3471 }
3472
3473 /*
3474  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3475  * associated with the given offset and length
3476  *
3477  * @inode:  File inode
3478  * @offset: The offset where the hole will begin
3479  * @len:    The length of the hole
3480  *
3481  * Returns: 0 on success or negative on failure
3482  */
3483
3484 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3485 {
3486         struct inode *inode = file_inode(file);
3487         if (!S_ISREG(inode->i_mode))
3488                 return -EOPNOTSUPP;
3489
3490         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3491                 return ext4_ind_punch_hole(file, offset, length);
3492
3493         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3494                 /* TODO: Add support for bigalloc file systems */
3495                 return -EOPNOTSUPP;
3496         }
3497
3498         trace_ext4_punch_hole(inode, offset, length);
3499
3500         return ext4_ext_punch_hole(file, offset, length);
3501 }
3502
3503 /*
3504  * ext4_truncate()
3505  *
3506  * We block out ext4_get_block() block instantiations across the entire
3507  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3508  * simultaneously on behalf of the same inode.
3509  *
3510  * As we work through the truncate and commit bits of it to the journal there
3511  * is one core, guiding principle: the file's tree must always be consistent on
3512  * disk.  We must be able to restart the truncate after a crash.
3513  *
3514  * The file's tree may be transiently inconsistent in memory (although it
3515  * probably isn't), but whenever we close off and commit a journal transaction,
3516  * the contents of (the filesystem + the journal) must be consistent and
3517  * restartable.  It's pretty simple, really: bottom up, right to left (although
3518  * left-to-right works OK too).
3519  *
3520  * Note that at recovery time, journal replay occurs *before* the restart of
3521  * truncate against the orphan inode list.
3522  *
3523  * The committed inode has the new, desired i_size (which is the same as
3524  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3525  * that this inode's truncate did not complete and it will again call
3526  * ext4_truncate() to have another go.  So there will be instantiated blocks
3527  * to the right of the truncation point in a crashed ext4 filesystem.  But
3528  * that's fine - as long as they are linked from the inode, the post-crash
3529  * ext4_truncate() run will find them and release them.
3530  */
3531 void ext4_truncate(struct inode *inode)
3532 {
3533         trace_ext4_truncate_enter(inode);
3534
3535         if (!ext4_can_truncate(inode))
3536                 return;
3537
3538         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3539
3540         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3541                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3542
3543         if (ext4_has_inline_data(inode)) {
3544                 int has_inline = 1;
3545
3546                 ext4_inline_data_truncate(inode, &has_inline);
3547                 if (has_inline)
3548                         return;
3549         }
3550
3551         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3552                 ext4_ext_truncate(inode);
3553         else
3554                 ext4_ind_truncate(inode);
3555
3556         trace_ext4_truncate_exit(inode);
3557 }
3558
3559 /*
3560  * ext4_get_inode_loc returns with an extra refcount against the inode's
3561  * underlying buffer_head on success. If 'in_mem' is true, we have all
3562  * data in memory that is needed to recreate the on-disk version of this
3563  * inode.
3564  */
3565 static int __ext4_get_inode_loc(struct inode *inode,
3566                                 struct ext4_iloc *iloc, int in_mem)
3567 {
3568         struct ext4_group_desc  *gdp;
3569         struct buffer_head      *bh;
3570         struct super_block      *sb = inode->i_sb;
3571         ext4_fsblk_t            block;
3572         int                     inodes_per_block, inode_offset;
3573
3574         iloc->bh = NULL;
3575         if (!ext4_valid_inum(sb, inode->i_ino))
3576                 return -EIO;
3577
3578         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3579         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3580         if (!gdp)
3581                 return -EIO;
3582
3583         /*
3584          * Figure out the offset within the block group inode table
3585          */
3586         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3587         inode_offset = ((inode->i_ino - 1) %
3588                         EXT4_INODES_PER_GROUP(sb));
3589         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3590         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3591
3592         bh = sb_getblk(sb, block);
3593         if (unlikely(!bh))
3594                 return -ENOMEM;
3595         if (!buffer_uptodate(bh)) {
3596                 lock_buffer(bh);
3597
3598                 /*
3599                  * If the buffer has the write error flag, we have failed
3600                  * to write out another inode in the same block.  In this
3601                  * case, we don't have to read the block because we may
3602                  * read the old inode data successfully.
3603                  */
3604                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3605                         set_buffer_uptodate(bh);
3606
3607                 if (buffer_uptodate(bh)) {
3608                         /* someone brought it uptodate while we waited */
3609                         unlock_buffer(bh);
3610                         goto has_buffer;
3611                 }
3612
3613                 /*
3614                  * If we have all information of the inode in memory and this
3615                  * is the only valid inode in the block, we need not read the
3616                  * block.
3617                  */
3618                 if (in_mem) {
3619                         struct buffer_head *bitmap_bh;
3620                         int i, start;
3621
3622                         start = inode_offset & ~(inodes_per_block - 1);
3623
3624                         /* Is the inode bitmap in cache? */
3625                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3626                         if (unlikely(!bitmap_bh))
3627                                 goto make_io;
3628
3629                         /*
3630                          * If the inode bitmap isn't in cache then the
3631                          * optimisation may end up performing two reads instead
3632                          * of one, so skip it.
3633                          */
3634                         if (!buffer_uptodate(bitmap_bh)) {
3635                                 brelse(bitmap_bh);
3636                                 goto make_io;
3637                         }
3638                         for (i = start; i < start + inodes_per_block; i++) {
3639                                 if (i == inode_offset)
3640                                         continue;
3641                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3642                                         break;
3643                         }
3644                         brelse(bitmap_bh);
3645                         if (i == start + inodes_per_block) {
3646                                 /* all other inodes are free, so skip I/O */
3647                                 memset(bh->b_data, 0, bh->b_size);
3648                                 set_buffer_uptodate(bh);
3649                                 unlock_buffer(bh);
3650                                 goto has_buffer;
3651                         }
3652                 }
3653
3654 make_io:
3655                 /*
3656                  * If we need to do any I/O, try to pre-readahead extra
3657                  * blocks from the inode table.
3658                  */
3659                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3660                         ext4_fsblk_t b, end, table;
3661                         unsigned num;
3662
3663                         table = ext4_inode_table(sb, gdp);
3664                         /* s_inode_readahead_blks is always a power of 2 */
3665                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3666                         if (table > b)
3667                                 b = table;
3668                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3669                         num = EXT4_INODES_PER_GROUP(sb);
3670                         if (ext4_has_group_desc_csum(sb))
3671                                 num -= ext4_itable_unused_count(sb, gdp);
3672                         table += num / inodes_per_block;
3673                         if (end > table)
3674                                 end = table;
3675                         while (b <= end)
3676                                 sb_breadahead(sb, b++);
3677                 }
3678
3679                 /*
3680                  * There are other valid inodes in the buffer, this inode
3681                  * has in-inode xattrs, or we don't have this inode in memory.
3682                  * Read the block from disk.
3683                  */
3684                 trace_ext4_load_inode(inode);
3685                 get_bh(bh);
3686                 bh->b_end_io = end_buffer_read_sync;
3687                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3688                 wait_on_buffer(bh);
3689                 if (!buffer_uptodate(bh)) {
3690                         EXT4_ERROR_INODE_BLOCK(inode, block,
3691                                                "unable to read itable block");
3692                         brelse(bh);
3693                         return -EIO;
3694                 }
3695         }
3696 has_buffer:
3697         iloc->bh = bh;
3698         return 0;
3699 }
3700
3701 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3702 {
3703         /* We have all inode data except xattrs in memory here. */
3704         return __ext4_get_inode_loc(inode, iloc,
3705                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3706 }
3707
3708 void ext4_set_inode_flags(struct inode *inode)
3709 {
3710         unsigned int flags = EXT4_I(inode)->i_flags;
3711
3712         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3713         if (flags & EXT4_SYNC_FL)
3714                 inode->i_flags |= S_SYNC;
3715         if (flags & EXT4_APPEND_FL)
3716                 inode->i_flags |= S_APPEND;
3717         if (flags & EXT4_IMMUTABLE_FL)
3718                 inode->i_flags |= S_IMMUTABLE;
3719         if (flags & EXT4_NOATIME_FL)
3720                 inode->i_flags |= S_NOATIME;
3721         if (flags & EXT4_DIRSYNC_FL)
3722                 inode->i_flags |= S_DIRSYNC;
3723 }
3724
3725 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3726 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3727 {
3728         unsigned int vfs_fl;
3729         unsigned long old_fl, new_fl;
3730
3731         do {
3732                 vfs_fl = ei->vfs_inode.i_flags;
3733                 old_fl = ei->i_flags;
3734                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3735                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3736                                 EXT4_DIRSYNC_FL);
3737                 if (vfs_fl & S_SYNC)
3738                         new_fl |= EXT4_SYNC_FL;
3739                 if (vfs_fl & S_APPEND)
3740                         new_fl |= EXT4_APPEND_FL;
3741                 if (vfs_fl & S_IMMUTABLE)
3742                         new_fl |= EXT4_IMMUTABLE_FL;
3743                 if (vfs_fl & S_NOATIME)
3744                         new_fl |= EXT4_NOATIME_FL;
3745                 if (vfs_fl & S_DIRSYNC)
3746                         new_fl |= EXT4_DIRSYNC_FL;
3747         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3748 }
3749
3750 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3751                                   struct ext4_inode_info *ei)
3752 {
3753         blkcnt_t i_blocks ;
3754         struct inode *inode = &(ei->vfs_inode);
3755         struct super_block *sb = inode->i_sb;
3756
3757         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3758                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3759                 /* we are using combined 48 bit field */
3760                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3761                                         le32_to_cpu(raw_inode->i_blocks_lo);
3762                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3763                         /* i_blocks represent file system block size */
3764                         return i_blocks  << (inode->i_blkbits - 9);
3765                 } else {
3766                         return i_blocks;
3767                 }
3768         } else {
3769                 return le32_to_cpu(raw_inode->i_blocks_lo);
3770         }
3771 }
3772
3773 static inline void ext4_iget_extra_inode(struct inode *inode,
3774                                          struct ext4_inode *raw_inode,
3775                                          struct ext4_inode_info *ei)
3776 {
3777         __le32 *magic = (void *)raw_inode +
3778                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3779         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3780                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3781                 ext4_find_inline_data_nolock(inode);
3782         } else
3783                 EXT4_I(inode)->i_inline_off = 0;
3784 }
3785
3786 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3787 {
3788         struct ext4_iloc iloc;
3789         struct ext4_inode *raw_inode;
3790         struct ext4_inode_info *ei;
3791         struct inode *inode;
3792         journal_t *journal = EXT4_SB(sb)->s_journal;
3793         long ret;
3794         int block;
3795         uid_t i_uid;
3796         gid_t i_gid;
3797
3798         inode = iget_locked(sb, ino);
3799         if (!inode)
3800                 return ERR_PTR(-ENOMEM);
3801         if (!(inode->i_state & I_NEW))
3802                 return inode;
3803
3804         ei = EXT4_I(inode);
3805         iloc.bh = NULL;
3806
3807         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3808         if (ret < 0)
3809                 goto bad_inode;
3810         raw_inode = ext4_raw_inode(&iloc);
3811
3812         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3813                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3814                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3815                     EXT4_INODE_SIZE(inode->i_sb)) {
3816                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3817                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3818                                 EXT4_INODE_SIZE(inode->i_sb));
3819                         ret = -EIO;
3820                         goto bad_inode;
3821                 }
3822         } else
3823                 ei->i_extra_isize = 0;
3824
3825         /* Precompute checksum seed for inode metadata */
3826         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3827                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3828                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3829                 __u32 csum;
3830                 __le32 inum = cpu_to_le32(inode->i_ino);
3831                 __le32 gen = raw_inode->i_generation;
3832                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3833                                    sizeof(inum));
3834                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3835                                               sizeof(gen));
3836         }
3837
3838         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3839                 EXT4_ERROR_INODE(inode, "checksum invalid");
3840                 ret = -EIO;
3841                 goto bad_inode;
3842         }
3843
3844         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3845         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3846         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3847         if (!(test_opt(inode->i_sb, NO_UID32))) {
3848                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3849                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3850         }
3851         i_uid_write(inode, i_uid);
3852         i_gid_write(inode, i_gid);
3853         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3854
3855         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3856         ei->i_inline_off = 0;
3857         ei->i_dir_start_lookup = 0;
3858         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3859         /* We now have enough fields to check if the inode was active or not.
3860          * This is needed because nfsd might try to access dead inodes
3861          * the test is that same one that e2fsck uses
3862          * NeilBrown 1999oct15
3863          */
3864         if (inode->i_nlink == 0) {
3865                 if (inode->i_mode == 0 ||
3866                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3867                         /* this inode is deleted */
3868                         ret = -ESTALE;
3869                         goto bad_inode;
3870                 }
3871                 /* The only unlinked inodes we let through here have
3872                  * valid i_mode and are being read by the orphan
3873                  * recovery code: that's fine, we're about to complete
3874                  * the process of deleting those. */
3875         }
3876         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3877         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3878         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3879         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3880                 ei->i_file_acl |=
3881                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3882         inode->i_size = ext4_isize(raw_inode);
3883         ei->i_disksize = inode->i_size;
3884 #ifdef CONFIG_QUOTA
3885         ei->i_reserved_quota = 0;
3886 #endif
3887         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3888         ei->i_block_group = iloc.block_group;
3889         ei->i_last_alloc_group = ~0;
3890         /*
3891          * NOTE! The in-memory inode i_data array is in little-endian order
3892          * even on big-endian machines: we do NOT byteswap the block numbers!
3893          */
3894         for (block = 0; block < EXT4_N_BLOCKS; block++)
3895                 ei->i_data[block] = raw_inode->i_block[block];
3896         INIT_LIST_HEAD(&ei->i_orphan);
3897
3898         /*
3899          * Set transaction id's of transactions that have to be committed
3900          * to finish f[data]sync. We set them to currently running transaction
3901          * as we cannot be sure that the inode or some of its metadata isn't
3902          * part of the transaction - the inode could have been reclaimed and
3903          * now it is reread from disk.
3904          */
3905         if (journal) {
3906                 transaction_t *transaction;
3907                 tid_t tid;
3908
3909                 read_lock(&journal->j_state_lock);
3910                 if (journal->j_running_transaction)
3911                         transaction = journal->j_running_transaction;
3912                 else
3913                         transaction = journal->j_committing_transaction;
3914                 if (transaction)
3915                         tid = transaction->t_tid;
3916                 else
3917                         tid = journal->j_commit_sequence;
3918                 read_unlock(&journal->j_state_lock);
3919                 ei->i_sync_tid = tid;
3920                 ei->i_datasync_tid = tid;
3921         }
3922
3923         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3924                 if (ei->i_extra_isize == 0) {
3925                         /* The extra space is currently unused. Use it. */
3926                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3927                                             EXT4_GOOD_OLD_INODE_SIZE;
3928                 } else {
3929                         ext4_iget_extra_inode(inode, raw_inode, ei);
3930                 }
3931         }
3932
3933         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3934         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3935         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3936         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3937
3938         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3939         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3940                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3941                         inode->i_version |=
3942                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3943         }
3944
3945         ret = 0;
3946         if (ei->i_file_acl &&
3947             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3948                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3949                                  ei->i_file_acl);
3950                 ret = -EIO;
3951                 goto bad_inode;
3952         } else if (!ext4_has_inline_data(inode)) {
3953                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3954                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3955                             (S_ISLNK(inode->i_mode) &&
3956                              !ext4_inode_is_fast_symlink(inode))))
3957                                 /* Validate extent which is part of inode */
3958                                 ret = ext4_ext_check_inode(inode);
3959                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3960                            (S_ISLNK(inode->i_mode) &&
3961                             !ext4_inode_is_fast_symlink(inode))) {
3962                         /* Validate block references which are part of inode */
3963                         ret = ext4_ind_check_inode(inode);
3964                 }
3965         }
3966         if (ret)
3967                 goto bad_inode;
3968
3969         if (S_ISREG(inode->i_mode)) {
3970                 inode->i_op = &ext4_file_inode_operations;
3971                 inode->i_fop = &ext4_file_operations;
3972                 ext4_set_aops(inode);
3973         } else if (S_ISDIR(inode->i_mode)) {
3974                 inode->i_op = &ext4_dir_inode_operations;
3975                 inode->i_fop = &ext4_dir_operations;
3976         } else if (S_ISLNK(inode->i_mode)) {
3977                 if (ext4_inode_is_fast_symlink(inode)) {
3978                         inode->i_op = &ext4_fast_symlink_inode_operations;
3979                         nd_terminate_link(ei->i_data, inode->i_size,
3980                                 sizeof(ei->i_data) - 1);
3981                 } else {
3982                         inode->i_op = &ext4_symlink_inode_operations;
3983                         ext4_set_aops(inode);
3984                 }
3985         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3986               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3987                 inode->i_op = &ext4_special_inode_operations;
3988                 if (raw_inode->i_block[0])
3989                         init_special_inode(inode, inode->i_mode,
3990                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3991                 else
3992                         init_special_inode(inode, inode->i_mode,
3993                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3994         } else {
3995                 ret = -EIO;
3996                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3997                 goto bad_inode;
3998         }
3999         brelse(iloc.bh);
4000         ext4_set_inode_flags(inode);
4001         unlock_new_inode(inode);
4002         return inode;
4003
4004 bad_inode:
4005         brelse(iloc.bh);
4006         iget_failed(inode);
4007         return ERR_PTR(ret);
4008 }
4009
4010 static int ext4_inode_blocks_set(handle_t *handle,
4011                                 struct ext4_inode *raw_inode,
4012                                 struct ext4_inode_info *ei)
4013 {
4014         struct inode *inode = &(ei->vfs_inode);
4015         u64 i_blocks = inode->i_blocks;
4016         struct super_block *sb = inode->i_sb;
4017
4018         if (i_blocks <= ~0U) {
4019                 /*
4020                  * i_blocks can be represented in a 32 bit variable
4021                  * as multiple of 512 bytes
4022                  */
4023                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4024                 raw_inode->i_blocks_high = 0;
4025                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4026                 return 0;
4027         }
4028         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4029                 return -EFBIG;
4030
4031         if (i_blocks <= 0xffffffffffffULL) {
4032                 /*
4033                  * i_blocks can be represented in a 48 bit variable
4034                  * as multiple of 512 bytes
4035                  */
4036                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4037                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4038                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4039         } else {
4040                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4041                 /* i_block is stored in file system block size */
4042                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4043                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4044                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4045         }
4046         return 0;
4047 }
4048
4049 /*
4050  * Post the struct inode info into an on-disk inode location in the
4051  * buffer-cache.  This gobbles the caller's reference to the
4052  * buffer_head in the inode location struct.
4053  *
4054  * The caller must have write access to iloc->bh.
4055  */
4056 static int ext4_do_update_inode(handle_t *handle,
4057                                 struct inode *inode,
4058                                 struct ext4_iloc *iloc)
4059 {
4060         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4061         struct ext4_inode_info *ei = EXT4_I(inode);
4062         struct buffer_head *bh = iloc->bh;
4063         int err = 0, rc, block;
4064         int need_datasync = 0;
4065         uid_t i_uid;
4066         gid_t i_gid;
4067
4068         /* For fields not not tracking in the in-memory inode,
4069          * initialise them to zero for new inodes. */
4070         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4071                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4072
4073         ext4_get_inode_flags(ei);
4074         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4075         i_uid = i_uid_read(inode);
4076         i_gid = i_gid_read(inode);
4077         if (!(test_opt(inode->i_sb, NO_UID32))) {
4078                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4079                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4080 /*
4081  * Fix up interoperability with old kernels. Otherwise, old inodes get
4082  * re-used with the upper 16 bits of the uid/gid intact
4083  */
4084                 if (!ei->i_dtime) {
4085                         raw_inode->i_uid_high =
4086                                 cpu_to_le16(high_16_bits(i_uid));
4087                         raw_inode->i_gid_high =
4088                                 cpu_to_le16(high_16_bits(i_gid));
4089                 } else {
4090                         raw_inode->i_uid_high = 0;
4091                         raw_inode->i_gid_high = 0;
4092                 }
4093         } else {
4094                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4095                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4096                 raw_inode->i_uid_high = 0;
4097                 raw_inode->i_gid_high = 0;
4098         }
4099         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4100
4101         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4102         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4103         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4104         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4105
4106         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4107                 goto out_brelse;
4108         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4109         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4111             cpu_to_le32(EXT4_OS_HURD))
4112                 raw_inode->i_file_acl_high =
4113                         cpu_to_le16(ei->i_file_acl >> 32);
4114         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4115         if (ei->i_disksize != ext4_isize(raw_inode)) {
4116                 ext4_isize_set(raw_inode, ei->i_disksize);
4117                 need_datasync = 1;
4118         }
4119         if (ei->i_disksize > 0x7fffffffULL) {
4120                 struct super_block *sb = inode->i_sb;
4121                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4122                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4123                                 EXT4_SB(sb)->s_es->s_rev_level ==
4124                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4125                         /* If this is the first large file
4126                          * created, add a flag to the superblock.
4127                          */
4128                         err = ext4_journal_get_write_access(handle,
4129                                         EXT4_SB(sb)->s_sbh);
4130                         if (err)
4131                                 goto out_brelse;
4132                         ext4_update_dynamic_rev(sb);
4133                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4134                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4135                         ext4_handle_sync(handle);
4136                         err = ext4_handle_dirty_super(handle, sb);
4137                 }
4138         }
4139         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4140         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4141                 if (old_valid_dev(inode->i_rdev)) {
4142                         raw_inode->i_block[0] =
4143                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4144                         raw_inode->i_block[1] = 0;
4145                 } else {
4146                         raw_inode->i_block[0] = 0;
4147                         raw_inode->i_block[1] =
4148                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4149                         raw_inode->i_block[2] = 0;
4150                 }
4151         } else if (!ext4_has_inline_data(inode)) {
4152                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4153                         raw_inode->i_block[block] = ei->i_data[block];
4154         }
4155
4156         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4157         if (ei->i_extra_isize) {
4158                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4159                         raw_inode->i_version_hi =
4160                         cpu_to_le32(inode->i_version >> 32);
4161                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4162         }
4163
4164         ext4_inode_csum_set(inode, raw_inode, ei);
4165
4166         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4167         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4168         if (!err)
4169                 err = rc;
4170         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4171
4172         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4173 out_brelse:
4174         brelse(bh);
4175         ext4_std_error(inode->i_sb, err);
4176         return err;
4177 }
4178
4179 /*
4180  * ext4_write_inode()
4181  *
4182  * We are called from a few places:
4183  *
4184  * - Within generic_file_write() for O_SYNC files.
4185  *   Here, there will be no transaction running. We wait for any running
4186  *   transaction to commit.
4187  *
4188  * - Within sys_sync(), kupdate and such.
4189  *   We wait on commit, if tol to.
4190  *
4191  * - Within prune_icache() (PF_MEMALLOC == true)
4192  *   Here we simply return.  We can't afford to block kswapd on the
4193  *   journal commit.
4194  *
4195  * In all cases it is actually safe for us to return without doing anything,
4196  * because the inode has been copied into a raw inode buffer in
4197  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4198  * knfsd.
4199  *
4200  * Note that we are absolutely dependent upon all inode dirtiers doing the
4201  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4202  * which we are interested.
4203  *
4204  * It would be a bug for them to not do this.  The code:
4205  *
4206  *      mark_inode_dirty(inode)
4207  *      stuff();
4208  *      inode->i_size = expr;
4209  *
4210  * is in error because a kswapd-driven write_inode() could occur while
4211  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4212  * will no longer be on the superblock's dirty inode list.
4213  */
4214 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4215 {
4216         int err;
4217
4218         if (current->flags & PF_MEMALLOC)
4219                 return 0;
4220
4221         if (EXT4_SB(inode->i_sb)->s_journal) {
4222                 if (ext4_journal_current_handle()) {
4223                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4224                         dump_stack();
4225                         return -EIO;
4226                 }
4227
4228                 if (wbc->sync_mode != WB_SYNC_ALL)
4229                         return 0;
4230
4231                 err = ext4_force_commit(inode->i_sb);
4232         } else {
4233                 struct ext4_iloc iloc;
4234
4235                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4236                 if (err)
4237                         return err;
4238                 if (wbc->sync_mode == WB_SYNC_ALL)
4239                         sync_dirty_buffer(iloc.bh);
4240                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4241                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4242                                          "IO error syncing inode");
4243                         err = -EIO;
4244                 }
4245                 brelse(iloc.bh);
4246         }
4247         return err;
4248 }
4249
4250 /*
4251  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4252  * buffers that are attached to a page stradding i_size and are undergoing
4253  * commit. In that case we have to wait for commit to finish and try again.
4254  */
4255 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4256 {
4257         struct page *page;
4258         unsigned offset;
4259         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4260         tid_t commit_tid = 0;
4261         int ret;
4262
4263         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4264         /*
4265          * All buffers in the last page remain valid? Then there's nothing to
4266          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4267          * blocksize case
4268          */
4269         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4270                 return;
4271         while (1) {
4272                 page = find_lock_page(inode->i_mapping,
4273                                       inode->i_size >> PAGE_CACHE_SHIFT);
4274                 if (!page)
4275                         return;
4276                 ret = __ext4_journalled_invalidatepage(page, offset);
4277                 unlock_page(page);
4278                 page_cache_release(page);
4279                 if (ret != -EBUSY)
4280                         return;
4281                 commit_tid = 0;
4282                 read_lock(&journal->j_state_lock);
4283                 if (journal->j_committing_transaction)
4284                         commit_tid = journal->j_committing_transaction->t_tid;
4285                 read_unlock(&journal->j_state_lock);
4286                 if (commit_tid)
4287                         jbd2_log_wait_commit(journal, commit_tid);
4288         }
4289 }
4290
4291 /*
4292  * ext4_setattr()
4293  *
4294  * Called from notify_change.
4295  *
4296  * We want to trap VFS attempts to truncate the file as soon as
4297  * possible.  In particular, we want to make sure that when the VFS
4298  * shrinks i_size, we put the inode on the orphan list and modify
4299  * i_disksize immediately, so that during the subsequent flushing of
4300  * dirty pages and freeing of disk blocks, we can guarantee that any
4301  * commit will leave the blocks being flushed in an unused state on
4302  * disk.  (On recovery, the inode will get truncated and the blocks will
4303  * be freed, so we have a strong guarantee that no future commit will
4304  * leave these blocks visible to the user.)
4305  *
4306  * Another thing we have to assure is that if we are in ordered mode
4307  * and inode is still attached to the committing transaction, we must
4308  * we start writeout of all the dirty pages which are being truncated.
4309  * This way we are sure that all the data written in the previous
4310  * transaction are already on disk (truncate waits for pages under
4311  * writeback).
4312  *
4313  * Called with inode->i_mutex down.
4314  */
4315 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4316 {
4317         struct inode *inode = dentry->d_inode;
4318         int error, rc = 0;
4319         int orphan = 0;
4320         const unsigned int ia_valid = attr->ia_valid;
4321
4322         error = inode_change_ok(inode, attr);
4323         if (error)
4324                 return error;
4325
4326         if (is_quota_modification(inode, attr))
4327                 dquot_initialize(inode);
4328         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4329             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4330                 handle_t *handle;
4331
4332                 /* (user+group)*(old+new) structure, inode write (sb,
4333                  * inode block, ? - but truncate inode update has it) */
4334                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4335                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4336                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4337                 if (IS_ERR(handle)) {
4338                         error = PTR_ERR(handle);
4339                         goto err_out;
4340                 }
4341                 error = dquot_transfer(inode, attr);
4342                 if (error) {
4343                         ext4_journal_stop(handle);
4344                         return error;
4345                 }
4346                 /* Update corresponding info in inode so that everything is in
4347                  * one transaction */
4348                 if (attr->ia_valid & ATTR_UID)
4349                         inode->i_uid = attr->ia_uid;
4350                 if (attr->ia_valid & ATTR_GID)
4351                         inode->i_gid = attr->ia_gid;
4352                 error = ext4_mark_inode_dirty(handle, inode);
4353                 ext4_journal_stop(handle);
4354         }
4355
4356         if (attr->ia_valid & ATTR_SIZE) {
4357
4358                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4359                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4360
4361                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4362                                 return -EFBIG;
4363                 }
4364         }
4365
4366         if (S_ISREG(inode->i_mode) &&
4367             attr->ia_valid & ATTR_SIZE &&
4368             (attr->ia_size < inode->i_size)) {
4369                 handle_t *handle;
4370
4371                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4372                 if (IS_ERR(handle)) {
4373                         error = PTR_ERR(handle);
4374                         goto err_out;
4375                 }
4376                 if (ext4_handle_valid(handle)) {
4377                         error = ext4_orphan_add(handle, inode);
4378                         orphan = 1;
4379                 }
4380                 EXT4_I(inode)->i_disksize = attr->ia_size;
4381                 rc = ext4_mark_inode_dirty(handle, inode);
4382                 if (!error)
4383                         error = rc;
4384                 ext4_journal_stop(handle);
4385
4386                 if (ext4_should_order_data(inode)) {
4387                         error = ext4_begin_ordered_truncate(inode,
4388                                                             attr->ia_size);
4389                         if (error) {
4390                                 /* Do as much error cleanup as possible */
4391                                 handle = ext4_journal_start(inode,
4392                                                             EXT4_HT_INODE, 3);
4393                                 if (IS_ERR(handle)) {
4394                                         ext4_orphan_del(NULL, inode);
4395                                         goto err_out;
4396                                 }
4397                                 ext4_orphan_del(handle, inode);
4398                                 orphan = 0;
4399                                 ext4_journal_stop(handle);
4400                                 goto err_out;
4401                         }
4402                 }
4403         }
4404
4405         if (attr->ia_valid & ATTR_SIZE) {
4406                 if (attr->ia_size != inode->i_size) {
4407                         loff_t oldsize = inode->i_size;
4408
4409                         i_size_write(inode, attr->ia_size);
4410                         /*
4411                          * Blocks are going to be removed from the inode. Wait
4412                          * for dio in flight.  Temporarily disable
4413                          * dioread_nolock to prevent livelock.
4414                          */
4415                         if (orphan) {
4416                                 if (!ext4_should_journal_data(inode)) {
4417                                         ext4_inode_block_unlocked_dio(inode);
4418                                         inode_dio_wait(inode);
4419                                         ext4_inode_resume_unlocked_dio(inode);
4420                                 } else
4421                                         ext4_wait_for_tail_page_commit(inode);
4422                         }
4423                         /*
4424                          * Truncate pagecache after we've waited for commit
4425                          * in data=journal mode to make pages freeable.
4426                          */
4427                         truncate_pagecache(inode, oldsize, inode->i_size);
4428                 }
4429                 ext4_truncate(inode);
4430         }
4431
4432         if (!rc) {
4433                 setattr_copy(inode, attr);
4434                 mark_inode_dirty(inode);
4435         }
4436
4437         /*
4438          * If the call to ext4_truncate failed to get a transaction handle at
4439          * all, we need to clean up the in-core orphan list manually.
4440          */
4441         if (orphan && inode->i_nlink)
4442                 ext4_orphan_del(NULL, inode);
4443
4444         if (!rc && (ia_valid & ATTR_MODE))
4445                 rc = ext4_acl_chmod(inode);
4446
4447 err_out:
4448         ext4_std_error(inode->i_sb, error);
4449         if (!error)
4450                 error = rc;
4451         return error;
4452 }
4453
4454 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4455                  struct kstat *stat)
4456 {
4457         struct inode *inode;
4458         unsigned long delalloc_blocks;
4459
4460         inode = dentry->d_inode;
4461         generic_fillattr(inode, stat);
4462
4463         /*
4464          * We can't update i_blocks if the block allocation is delayed
4465          * otherwise in the case of system crash before the real block
4466          * allocation is done, we will have i_blocks inconsistent with
4467          * on-disk file blocks.
4468          * We always keep i_blocks updated together with real
4469          * allocation. But to not confuse with user, stat
4470          * will return the blocks that include the delayed allocation
4471          * blocks for this file.
4472          */
4473         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4474                                 EXT4_I(inode)->i_reserved_data_blocks);
4475
4476         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4477         return 0;
4478 }
4479
4480 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4481 {
4482         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4483                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4484         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4485 }
4486
4487 /*
4488  * Account for index blocks, block groups bitmaps and block group
4489  * descriptor blocks if modify datablocks and index blocks
4490  * worse case, the indexs blocks spread over different block groups
4491  *
4492  * If datablocks are discontiguous, they are possible to spread over
4493  * different block groups too. If they are contiguous, with flexbg,
4494  * they could still across block group boundary.
4495  *
4496  * Also account for superblock, inode, quota and xattr blocks
4497  */
4498 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4499 {
4500         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4501         int gdpblocks;
4502         int idxblocks;
4503         int ret = 0;
4504
4505         /*
4506          * How many index blocks need to touch to modify nrblocks?
4507          * The "Chunk" flag indicating whether the nrblocks is
4508          * physically contiguous on disk
4509          *
4510          * For Direct IO and fallocate, they calls get_block to allocate
4511          * one single extent at a time, so they could set the "Chunk" flag
4512          */
4513         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4514
4515         ret = idxblocks;
4516
4517         /*
4518          * Now let's see how many group bitmaps and group descriptors need
4519          * to account
4520          */
4521         groups = idxblocks;
4522         if (chunk)
4523                 groups += 1;
4524         else
4525                 groups += nrblocks;
4526
4527         gdpblocks = groups;
4528         if (groups > ngroups)
4529                 groups = ngroups;
4530         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4531                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4532
4533         /* bitmaps and block group descriptor blocks */
4534         ret += groups + gdpblocks;
4535
4536         /* Blocks for super block, inode, quota and xattr blocks */
4537         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4538
4539         return ret;
4540 }
4541
4542 /*
4543  * Calculate the total number of credits to reserve to fit
4544  * the modification of a single pages into a single transaction,
4545  * which may include multiple chunks of block allocations.
4546  *
4547  * This could be called via ext4_write_begin()
4548  *
4549  * We need to consider the worse case, when
4550  * one new block per extent.
4551  */
4552 int ext4_writepage_trans_blocks(struct inode *inode)
4553 {
4554         int bpp = ext4_journal_blocks_per_page(inode);
4555         int ret;
4556
4557         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4558
4559         /* Account for data blocks for journalled mode */
4560         if (ext4_should_journal_data(inode))
4561                 ret += bpp;
4562         return ret;
4563 }
4564
4565 /*
4566  * Calculate the journal credits for a chunk of data modification.
4567  *
4568  * This is called from DIO, fallocate or whoever calling
4569  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4570  *
4571  * journal buffers for data blocks are not included here, as DIO
4572  * and fallocate do no need to journal data buffers.
4573  */
4574 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4575 {
4576         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4577 }
4578
4579 /*
4580  * The caller must have previously called ext4_reserve_inode_write().
4581  * Give this, we know that the caller already has write access to iloc->bh.
4582  */
4583 int ext4_mark_iloc_dirty(handle_t *handle,
4584                          struct inode *inode, struct ext4_iloc *iloc)
4585 {
4586         int err = 0;
4587
4588         if (IS_I_VERSION(inode))
4589                 inode_inc_iversion(inode);
4590
4591         /* the do_update_inode consumes one bh->b_count */
4592         get_bh(iloc->bh);
4593
4594         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4595         err = ext4_do_update_inode(handle, inode, iloc);
4596         put_bh(iloc->bh);
4597         return err;
4598 }
4599
4600 /*
4601  * On success, We end up with an outstanding reference count against
4602  * iloc->bh.  This _must_ be cleaned up later.
4603  */
4604
4605 int
4606 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4607                          struct ext4_iloc *iloc)
4608 {
4609         int err;
4610
4611         err = ext4_get_inode_loc(inode, iloc);
4612         if (!err) {
4613                 BUFFER_TRACE(iloc->bh, "get_write_access");
4614                 err = ext4_journal_get_write_access(handle, iloc->bh);
4615                 if (err) {
4616                         brelse(iloc->bh);
4617                         iloc->bh = NULL;
4618                 }
4619         }
4620         ext4_std_error(inode->i_sb, err);
4621         return err;
4622 }
4623
4624 /*
4625  * Expand an inode by new_extra_isize bytes.
4626  * Returns 0 on success or negative error number on failure.
4627  */
4628 static int ext4_expand_extra_isize(struct inode *inode,
4629                                    unsigned int new_extra_isize,
4630                                    struct ext4_iloc iloc,
4631                                    handle_t *handle)
4632 {
4633         struct ext4_inode *raw_inode;
4634         struct ext4_xattr_ibody_header *header;
4635
4636         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4637                 return 0;
4638
4639         raw_inode = ext4_raw_inode(&iloc);
4640
4641         header = IHDR(inode, raw_inode);
4642
4643         /* No extended attributes present */
4644         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4645             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4646                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4647                         new_extra_isize);
4648                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4649                 return 0;
4650         }
4651
4652         /* try to expand with EAs present */
4653         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4654                                           raw_inode, handle);
4655 }
4656
4657 /*
4658  * What we do here is to mark the in-core inode as clean with respect to inode
4659  * dirtiness (it may still be data-dirty).
4660  * This means that the in-core inode may be reaped by prune_icache
4661  * without having to perform any I/O.  This is a very good thing,
4662  * because *any* task may call prune_icache - even ones which
4663  * have a transaction open against a different journal.
4664  *
4665  * Is this cheating?  Not really.  Sure, we haven't written the
4666  * inode out, but prune_icache isn't a user-visible syncing function.
4667  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4668  * we start and wait on commits.
4669  */
4670 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4671 {
4672         struct ext4_iloc iloc;
4673         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4674         static unsigned int mnt_count;
4675         int err, ret;
4676
4677         might_sleep();
4678         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4679         err = ext4_reserve_inode_write(handle, inode, &iloc);
4680         if (ext4_handle_valid(handle) &&
4681             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4682             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4683                 /*
4684                  * We need extra buffer credits since we may write into EA block
4685                  * with this same handle. If journal_extend fails, then it will
4686                  * only result in a minor loss of functionality for that inode.
4687                  * If this is felt to be critical, then e2fsck should be run to
4688                  * force a large enough s_min_extra_isize.
4689                  */
4690                 if ((jbd2_journal_extend(handle,
4691                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4692                         ret = ext4_expand_extra_isize(inode,
4693                                                       sbi->s_want_extra_isize,
4694                                                       iloc, handle);
4695                         if (ret) {
4696                                 ext4_set_inode_state(inode,
4697                                                      EXT4_STATE_NO_EXPAND);
4698                                 if (mnt_count !=
4699                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4700                                         ext4_warning(inode->i_sb,
4701                                         "Unable to expand inode %lu. Delete"
4702                                         " some EAs or run e2fsck.",
4703                                         inode->i_ino);
4704                                         mnt_count =
4705                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4706                                 }
4707                         }
4708                 }
4709         }
4710         if (!err)
4711                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4712         return err;
4713 }
4714
4715 /*
4716  * ext4_dirty_inode() is called from __mark_inode_dirty()
4717  *
4718  * We're really interested in the case where a file is being extended.
4719  * i_size has been changed by generic_commit_write() and we thus need
4720  * to include the updated inode in the current transaction.
4721  *
4722  * Also, dquot_alloc_block() will always dirty the inode when blocks
4723  * are allocated to the file.
4724  *
4725  * If the inode is marked synchronous, we don't honour that here - doing
4726  * so would cause a commit on atime updates, which we don't bother doing.
4727  * We handle synchronous inodes at the highest possible level.
4728  */
4729 void ext4_dirty_inode(struct inode *inode, int flags)
4730 {
4731         handle_t *handle;
4732
4733         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4734         if (IS_ERR(handle))
4735                 goto out;
4736
4737         ext4_mark_inode_dirty(handle, inode);
4738
4739         ext4_journal_stop(handle);
4740 out:
4741         return;
4742 }
4743
4744 #if 0
4745 /*
4746  * Bind an inode's backing buffer_head into this transaction, to prevent
4747  * it from being flushed to disk early.  Unlike
4748  * ext4_reserve_inode_write, this leaves behind no bh reference and
4749  * returns no iloc structure, so the caller needs to repeat the iloc
4750  * lookup to mark the inode dirty later.
4751  */
4752 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4753 {
4754         struct ext4_iloc iloc;
4755
4756         int err = 0;
4757         if (handle) {
4758                 err = ext4_get_inode_loc(inode, &iloc);
4759                 if (!err) {
4760                         BUFFER_TRACE(iloc.bh, "get_write_access");
4761                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4762                         if (!err)
4763                                 err = ext4_handle_dirty_metadata(handle,
4764                                                                  NULL,
4765                                                                  iloc.bh);
4766                         brelse(iloc.bh);
4767                 }
4768         }
4769         ext4_std_error(inode->i_sb, err);
4770         return err;
4771 }
4772 #endif
4773
4774 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4775 {
4776         journal_t *journal;
4777         handle_t *handle;
4778         int err;
4779
4780         /*
4781          * We have to be very careful here: changing a data block's
4782          * journaling status dynamically is dangerous.  If we write a
4783          * data block to the journal, change the status and then delete
4784          * that block, we risk forgetting to revoke the old log record
4785          * from the journal and so a subsequent replay can corrupt data.
4786          * So, first we make sure that the journal is empty and that
4787          * nobody is changing anything.
4788          */
4789
4790         journal = EXT4_JOURNAL(inode);
4791         if (!journal)
4792                 return 0;
4793         if (is_journal_aborted(journal))
4794                 return -EROFS;
4795         /* We have to allocate physical blocks for delalloc blocks
4796          * before flushing journal. otherwise delalloc blocks can not
4797          * be allocated any more. even more truncate on delalloc blocks
4798          * could trigger BUG by flushing delalloc blocks in journal.
4799          * There is no delalloc block in non-journal data mode.
4800          */
4801         if (val && test_opt(inode->i_sb, DELALLOC)) {
4802                 err = ext4_alloc_da_blocks(inode);
4803                 if (err < 0)
4804                         return err;
4805         }
4806
4807         /* Wait for all existing dio workers */
4808         ext4_inode_block_unlocked_dio(inode);
4809         inode_dio_wait(inode);
4810
4811         jbd2_journal_lock_updates(journal);
4812
4813         /*
4814          * OK, there are no updates running now, and all cached data is
4815          * synced to disk.  We are now in a completely consistent state
4816          * which doesn't have anything in the journal, and we know that
4817          * no filesystem updates are running, so it is safe to modify
4818          * the inode's in-core data-journaling state flag now.
4819          */
4820
4821         if (val)
4822                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4823         else {
4824                 jbd2_journal_flush(journal);
4825                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4826         }
4827         ext4_set_aops(inode);
4828
4829         jbd2_journal_unlock_updates(journal);
4830         ext4_inode_resume_unlocked_dio(inode);
4831
4832         /* Finally we can mark the inode as dirty. */
4833
4834         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4835         if (IS_ERR(handle))
4836                 return PTR_ERR(handle);
4837
4838         err = ext4_mark_inode_dirty(handle, inode);
4839         ext4_handle_sync(handle);
4840         ext4_journal_stop(handle);
4841         ext4_std_error(inode->i_sb, err);
4842
4843         return err;
4844 }
4845
4846 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4847 {
4848         return !buffer_mapped(bh);
4849 }
4850
4851 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4852 {
4853         struct page *page = vmf->page;
4854         loff_t size;
4855         unsigned long len;
4856         int ret;
4857         struct file *file = vma->vm_file;
4858         struct inode *inode = file_inode(file);
4859         struct address_space *mapping = inode->i_mapping;
4860         handle_t *handle;
4861         get_block_t *get_block;
4862         int retries = 0;
4863
4864         sb_start_pagefault(inode->i_sb);
4865         file_update_time(vma->vm_file);
4866         /* Delalloc case is easy... */
4867         if (test_opt(inode->i_sb, DELALLOC) &&
4868             !ext4_should_journal_data(inode) &&
4869             !ext4_nonda_switch(inode->i_sb)) {
4870                 do {
4871                         ret = __block_page_mkwrite(vma, vmf,
4872                                                    ext4_da_get_block_prep);
4873                 } while (ret == -ENOSPC &&
4874                        ext4_should_retry_alloc(inode->i_sb, &retries));
4875                 goto out_ret;
4876         }
4877
4878         lock_page(page);
4879         size = i_size_read(inode);
4880         /* Page got truncated from under us? */
4881         if (page->mapping != mapping || page_offset(page) > size) {
4882                 unlock_page(page);
4883                 ret = VM_FAULT_NOPAGE;
4884                 goto out;
4885         }
4886
4887         if (page->index == size >> PAGE_CACHE_SHIFT)
4888                 len = size & ~PAGE_CACHE_MASK;
4889         else
4890                 len = PAGE_CACHE_SIZE;
4891         /*
4892          * Return if we have all the buffers mapped. This avoids the need to do
4893          * journal_start/journal_stop which can block and take a long time
4894          */
4895         if (page_has_buffers(page)) {
4896                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4897                                             0, len, NULL,
4898                                             ext4_bh_unmapped)) {
4899                         /* Wait so that we don't change page under IO */
4900                         wait_for_stable_page(page);
4901                         ret = VM_FAULT_LOCKED;
4902                         goto out;
4903                 }
4904         }
4905         unlock_page(page);
4906         /* OK, we need to fill the hole... */
4907         if (ext4_should_dioread_nolock(inode))
4908                 get_block = ext4_get_block_write;
4909         else
4910                 get_block = ext4_get_block;
4911 retry_alloc:
4912         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
4913                                     ext4_writepage_trans_blocks(inode));
4914         if (IS_ERR(handle)) {
4915                 ret = VM_FAULT_SIGBUS;
4916                 goto out;
4917         }
4918         ret = __block_page_mkwrite(vma, vmf, get_block);
4919         if (!ret && ext4_should_journal_data(inode)) {
4920                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4921                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4922                         unlock_page(page);
4923                         ret = VM_FAULT_SIGBUS;
4924                         ext4_journal_stop(handle);
4925                         goto out;
4926                 }
4927                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4928         }
4929         ext4_journal_stop(handle);
4930         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4931                 goto retry_alloc;
4932 out_ret:
4933         ret = block_page_mkwrite_return(ret);
4934 out:
4935         sb_end_pagefault(inode->i_sb);
4936         return ret;
4937 }