]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
kvm: x86: hyperv: make VP_INDEX managed by userspace
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         sbi->sb->s_flags |= MS_RDONLY;
33         if (!end_io)
34                 f2fs_flush_merged_bios(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page = NULL;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true);
51         if (!PageUptodate(page))
52                 SetPageUptodate(page);
53         return page;
54 }
55
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60                                                         bool is_meta)
61 {
62         struct address_space *mapping = META_MAPPING(sbi);
63         struct page *page;
64         struct f2fs_io_info fio = {
65                 .sbi = sbi,
66                 .type = META,
67                 .op = REQ_OP_READ,
68                 .op_flags = REQ_META | REQ_PRIO,
69                 .old_blkaddr = index,
70                 .new_blkaddr = index,
71                 .encrypted_page = NULL,
72         };
73
74         if (unlikely(!is_meta))
75                 fio.op_flags &= ~REQ_META;
76 repeat:
77         page = f2fs_grab_cache_page(mapping, index, false);
78         if (!page) {
79                 cond_resched();
80                 goto repeat;
81         }
82         if (PageUptodate(page))
83                 goto out;
84
85         fio.page = page;
86
87         if (f2fs_submit_page_bio(&fio)) {
88                 f2fs_put_page(page, 1);
89                 goto repeat;
90         }
91
92         lock_page(page);
93         if (unlikely(page->mapping != mapping)) {
94                 f2fs_put_page(page, 1);
95                 goto repeat;
96         }
97
98         /*
99          * if there is any IO error when accessing device, make our filesystem
100          * readonly and make sure do not write checkpoint with non-uptodate
101          * meta page.
102          */
103         if (unlikely(!PageUptodate(page)))
104                 f2fs_stop_checkpoint(sbi, false);
105 out:
106         return page;
107 }
108
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111         return __get_meta_page(sbi, index, true);
112 }
113
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         return __get_meta_page(sbi, index, false);
118 }
119
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122         switch (type) {
123         case META_NAT:
124                 break;
125         case META_SIT:
126                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127                         return false;
128                 break;
129         case META_SSA:
130                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131                         blkaddr < SM_I(sbi)->ssa_blkaddr))
132                         return false;
133                 break;
134         case META_CP:
135                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136                         blkaddr < __start_cp_addr(sbi)))
137                         return false;
138                 break;
139         case META_POR:
140                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141                         blkaddr < MAIN_BLKADDR(sbi)))
142                         return false;
143                 break;
144         default:
145                 BUG();
146         }
147
148         return true;
149 }
150
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155                                                         int type, bool sync)
156 {
157         struct page *page;
158         block_t blkno = start;
159         struct f2fs_io_info fio = {
160                 .sbi = sbi,
161                 .type = META,
162                 .op = REQ_OP_READ,
163                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164                 .encrypted_page = NULL,
165         };
166         struct blk_plug plug;
167
168         if (unlikely(type == META_POR))
169                 fio.op_flags &= ~REQ_META;
170
171         blk_start_plug(&plug);
172         for (; nrpages-- > 0; blkno++) {
173
174                 if (!is_valid_blkaddr(sbi, blkno, type))
175                         goto out;
176
177                 switch (type) {
178                 case META_NAT:
179                         if (unlikely(blkno >=
180                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181                                 blkno = 0;
182                         /* get nat block addr */
183                         fio.new_blkaddr = current_nat_addr(sbi,
184                                         blkno * NAT_ENTRY_PER_BLOCK);
185                         break;
186                 case META_SIT:
187                         /* get sit block addr */
188                         fio.new_blkaddr = current_sit_addr(sbi,
189                                         blkno * SIT_ENTRY_PER_BLOCK);
190                         break;
191                 case META_SSA:
192                 case META_CP:
193                 case META_POR:
194                         fio.new_blkaddr = blkno;
195                         break;
196                 default:
197                         BUG();
198                 }
199
200                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201                                                 fio.new_blkaddr, false);
202                 if (!page)
203                         continue;
204                 if (PageUptodate(page)) {
205                         f2fs_put_page(page, 1);
206                         continue;
207                 }
208
209                 fio.page = page;
210                 fio.old_blkaddr = fio.new_blkaddr;
211                 f2fs_submit_page_mbio(&fio);
212                 f2fs_put_page(page, 0);
213         }
214 out:
215         f2fs_submit_merged_bio(sbi, META, READ);
216         blk_finish_plug(&plug);
217         return blkno - start;
218 }
219
220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222         struct page *page;
223         bool readahead = false;
224
225         page = find_get_page(META_MAPPING(sbi), index);
226         if (!page || !PageUptodate(page))
227                 readahead = true;
228         f2fs_put_page(page, 0);
229
230         if (readahead)
231                 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
232 }
233
234 static int f2fs_write_meta_page(struct page *page,
235                                 struct writeback_control *wbc)
236 {
237         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238
239         trace_f2fs_writepage(page, META);
240
241         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242                 goto redirty_out;
243         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244                 goto redirty_out;
245         if (unlikely(f2fs_cp_error(sbi)))
246                 goto redirty_out;
247
248         write_meta_page(sbi, page);
249         dec_page_count(sbi, F2FS_DIRTY_META);
250
251         if (wbc->for_reclaim)
252                 f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
253                                                 0, page->index, META, WRITE);
254
255         unlock_page(page);
256
257         if (unlikely(f2fs_cp_error(sbi)))
258                 f2fs_submit_merged_bio(sbi, META, WRITE);
259
260         return 0;
261
262 redirty_out:
263         redirty_page_for_writepage(wbc, page);
264         return AOP_WRITEPAGE_ACTIVATE;
265 }
266
267 static int f2fs_write_meta_pages(struct address_space *mapping,
268                                 struct writeback_control *wbc)
269 {
270         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
271         long diff, written;
272
273         /* collect a number of dirty meta pages and write together */
274         if (wbc->for_kupdate ||
275                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
276                 goto skip_write;
277
278         /* if locked failed, cp will flush dirty pages instead */
279         if (!mutex_trylock(&sbi->cp_mutex))
280                 goto skip_write;
281
282         trace_f2fs_writepages(mapping->host, wbc, META);
283         diff = nr_pages_to_write(sbi, META, wbc);
284         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
285         mutex_unlock(&sbi->cp_mutex);
286         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
287         return 0;
288
289 skip_write:
290         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
291         trace_f2fs_writepages(mapping->host, wbc, META);
292         return 0;
293 }
294
295 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
296                                                 long nr_to_write)
297 {
298         struct address_space *mapping = META_MAPPING(sbi);
299         pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
300         struct pagevec pvec;
301         long nwritten = 0;
302         struct writeback_control wbc = {
303                 .for_reclaim = 0,
304         };
305         struct blk_plug plug;
306
307         pagevec_init(&pvec, 0);
308
309         blk_start_plug(&plug);
310
311         while (index <= end) {
312                 int i, nr_pages;
313                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
314                                 PAGECACHE_TAG_DIRTY,
315                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
316                 if (unlikely(nr_pages == 0))
317                         break;
318
319                 for (i = 0; i < nr_pages; i++) {
320                         struct page *page = pvec.pages[i];
321
322                         if (prev == ULONG_MAX)
323                                 prev = page->index - 1;
324                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
325                                 pagevec_release(&pvec);
326                                 goto stop;
327                         }
328
329                         lock_page(page);
330
331                         if (unlikely(page->mapping != mapping)) {
332 continue_unlock:
333                                 unlock_page(page);
334                                 continue;
335                         }
336                         if (!PageDirty(page)) {
337                                 /* someone wrote it for us */
338                                 goto continue_unlock;
339                         }
340
341                         f2fs_wait_on_page_writeback(page, META, true);
342
343                         BUG_ON(PageWriteback(page));
344                         if (!clear_page_dirty_for_io(page))
345                                 goto continue_unlock;
346
347                         if (mapping->a_ops->writepage(page, &wbc)) {
348                                 unlock_page(page);
349                                 break;
350                         }
351                         nwritten++;
352                         prev = page->index;
353                         if (unlikely(nwritten >= nr_to_write))
354                                 break;
355                 }
356                 pagevec_release(&pvec);
357                 cond_resched();
358         }
359 stop:
360         if (nwritten)
361                 f2fs_submit_merged_bio(sbi, type, WRITE);
362
363         blk_finish_plug(&plug);
364
365         return nwritten;
366 }
367
368 static int f2fs_set_meta_page_dirty(struct page *page)
369 {
370         trace_f2fs_set_page_dirty(page, META);
371
372         if (!PageUptodate(page))
373                 SetPageUptodate(page);
374         if (!PageDirty(page)) {
375                 f2fs_set_page_dirty_nobuffers(page);
376                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
377                 SetPagePrivate(page);
378                 f2fs_trace_pid(page);
379                 return 1;
380         }
381         return 0;
382 }
383
384 const struct address_space_operations f2fs_meta_aops = {
385         .writepage      = f2fs_write_meta_page,
386         .writepages     = f2fs_write_meta_pages,
387         .set_page_dirty = f2fs_set_meta_page_dirty,
388         .invalidatepage = f2fs_invalidate_page,
389         .releasepage    = f2fs_release_page,
390 #ifdef CONFIG_MIGRATION
391         .migratepage    = f2fs_migrate_page,
392 #endif
393 };
394
395 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
396 {
397         struct inode_management *im = &sbi->im[type];
398         struct ino_entry *e, *tmp;
399
400         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
401 retry:
402         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
403
404         spin_lock(&im->ino_lock);
405         e = radix_tree_lookup(&im->ino_root, ino);
406         if (!e) {
407                 e = tmp;
408                 if (radix_tree_insert(&im->ino_root, ino, e)) {
409                         spin_unlock(&im->ino_lock);
410                         radix_tree_preload_end();
411                         goto retry;
412                 }
413                 memset(e, 0, sizeof(struct ino_entry));
414                 e->ino = ino;
415
416                 list_add_tail(&e->list, &im->ino_list);
417                 if (type != ORPHAN_INO)
418                         im->ino_num++;
419         }
420         spin_unlock(&im->ino_lock);
421         radix_tree_preload_end();
422
423         if (e != tmp)
424                 kmem_cache_free(ino_entry_slab, tmp);
425 }
426
427 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
428 {
429         struct inode_management *im = &sbi->im[type];
430         struct ino_entry *e;
431
432         spin_lock(&im->ino_lock);
433         e = radix_tree_lookup(&im->ino_root, ino);
434         if (e) {
435                 list_del(&e->list);
436                 radix_tree_delete(&im->ino_root, ino);
437                 im->ino_num--;
438                 spin_unlock(&im->ino_lock);
439                 kmem_cache_free(ino_entry_slab, e);
440                 return;
441         }
442         spin_unlock(&im->ino_lock);
443 }
444
445 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
446 {
447         /* add new dirty ino entry into list */
448         __add_ino_entry(sbi, ino, type);
449 }
450
451 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
452 {
453         /* remove dirty ino entry from list */
454         __remove_ino_entry(sbi, ino, type);
455 }
456
457 /* mode should be APPEND_INO or UPDATE_INO */
458 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
459 {
460         struct inode_management *im = &sbi->im[mode];
461         struct ino_entry *e;
462
463         spin_lock(&im->ino_lock);
464         e = radix_tree_lookup(&im->ino_root, ino);
465         spin_unlock(&im->ino_lock);
466         return e ? true : false;
467 }
468
469 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
470 {
471         struct ino_entry *e, *tmp;
472         int i;
473
474         for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
475                 struct inode_management *im = &sbi->im[i];
476
477                 spin_lock(&im->ino_lock);
478                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
479                         list_del(&e->list);
480                         radix_tree_delete(&im->ino_root, e->ino);
481                         kmem_cache_free(ino_entry_slab, e);
482                         im->ino_num--;
483                 }
484                 spin_unlock(&im->ino_lock);
485         }
486 }
487
488 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
489 {
490         struct inode_management *im = &sbi->im[ORPHAN_INO];
491         int err = 0;
492
493         spin_lock(&im->ino_lock);
494
495 #ifdef CONFIG_F2FS_FAULT_INJECTION
496         if (time_to_inject(sbi, FAULT_ORPHAN)) {
497                 spin_unlock(&im->ino_lock);
498                 f2fs_show_injection_info(FAULT_ORPHAN);
499                 return -ENOSPC;
500         }
501 #endif
502         if (unlikely(im->ino_num >= sbi->max_orphans))
503                 err = -ENOSPC;
504         else
505                 im->ino_num++;
506         spin_unlock(&im->ino_lock);
507
508         return err;
509 }
510
511 void release_orphan_inode(struct f2fs_sb_info *sbi)
512 {
513         struct inode_management *im = &sbi->im[ORPHAN_INO];
514
515         spin_lock(&im->ino_lock);
516         f2fs_bug_on(sbi, im->ino_num == 0);
517         im->ino_num--;
518         spin_unlock(&im->ino_lock);
519 }
520
521 void add_orphan_inode(struct inode *inode)
522 {
523         /* add new orphan ino entry into list */
524         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
525         update_inode_page(inode);
526 }
527
528 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
529 {
530         /* remove orphan entry from orphan list */
531         __remove_ino_entry(sbi, ino, ORPHAN_INO);
532 }
533
534 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
535 {
536         struct inode *inode;
537         struct node_info ni;
538         int err = acquire_orphan_inode(sbi);
539
540         if (err) {
541                 set_sbi_flag(sbi, SBI_NEED_FSCK);
542                 f2fs_msg(sbi->sb, KERN_WARNING,
543                                 "%s: orphan failed (ino=%x), run fsck to fix.",
544                                 __func__, ino);
545                 return err;
546         }
547
548         __add_ino_entry(sbi, ino, ORPHAN_INO);
549
550         inode = f2fs_iget_retry(sbi->sb, ino);
551         if (IS_ERR(inode)) {
552                 /*
553                  * there should be a bug that we can't find the entry
554                  * to orphan inode.
555                  */
556                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
557                 return PTR_ERR(inode);
558         }
559
560         clear_nlink(inode);
561
562         /* truncate all the data during iput */
563         iput(inode);
564
565         get_node_info(sbi, ino, &ni);
566
567         /* ENOMEM was fully retried in f2fs_evict_inode. */
568         if (ni.blk_addr != NULL_ADDR) {
569                 set_sbi_flag(sbi, SBI_NEED_FSCK);
570                 f2fs_msg(sbi->sb, KERN_WARNING,
571                         "%s: orphan failed (ino=%x) by kernel, retry mount.",
572                                 __func__, ino);
573                 return -EIO;
574         }
575         __remove_ino_entry(sbi, ino, ORPHAN_INO);
576         return 0;
577 }
578
579 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
580 {
581         block_t start_blk, orphan_blocks, i, j;
582         int err;
583
584         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
585                 return 0;
586
587         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
588         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
589
590         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
591
592         for (i = 0; i < orphan_blocks; i++) {
593                 struct page *page = get_meta_page(sbi, start_blk + i);
594                 struct f2fs_orphan_block *orphan_blk;
595
596                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
597                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
598                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
599                         err = recover_orphan_inode(sbi, ino);
600                         if (err) {
601                                 f2fs_put_page(page, 1);
602                                 return err;
603                         }
604                 }
605                 f2fs_put_page(page, 1);
606         }
607         /* clear Orphan Flag */
608         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
609         return 0;
610 }
611
612 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
613 {
614         struct list_head *head;
615         struct f2fs_orphan_block *orphan_blk = NULL;
616         unsigned int nentries = 0;
617         unsigned short index = 1;
618         unsigned short orphan_blocks;
619         struct page *page = NULL;
620         struct ino_entry *orphan = NULL;
621         struct inode_management *im = &sbi->im[ORPHAN_INO];
622
623         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
624
625         /*
626          * we don't need to do spin_lock(&im->ino_lock) here, since all the
627          * orphan inode operations are covered under f2fs_lock_op().
628          * And, spin_lock should be avoided due to page operations below.
629          */
630         head = &im->ino_list;
631
632         /* loop for each orphan inode entry and write them in Jornal block */
633         list_for_each_entry(orphan, head, list) {
634                 if (!page) {
635                         page = grab_meta_page(sbi, start_blk++);
636                         orphan_blk =
637                                 (struct f2fs_orphan_block *)page_address(page);
638                         memset(orphan_blk, 0, sizeof(*orphan_blk));
639                 }
640
641                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
642
643                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
644                         /*
645                          * an orphan block is full of 1020 entries,
646                          * then we need to flush current orphan blocks
647                          * and bring another one in memory
648                          */
649                         orphan_blk->blk_addr = cpu_to_le16(index);
650                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
651                         orphan_blk->entry_count = cpu_to_le32(nentries);
652                         set_page_dirty(page);
653                         f2fs_put_page(page, 1);
654                         index++;
655                         nentries = 0;
656                         page = NULL;
657                 }
658         }
659
660         if (page) {
661                 orphan_blk->blk_addr = cpu_to_le16(index);
662                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
663                 orphan_blk->entry_count = cpu_to_le32(nentries);
664                 set_page_dirty(page);
665                 f2fs_put_page(page, 1);
666         }
667 }
668
669 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
670                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
671                 unsigned long long *version)
672 {
673         unsigned long blk_size = sbi->blocksize;
674         size_t crc_offset = 0;
675         __u32 crc = 0;
676
677         *cp_page = get_meta_page(sbi, cp_addr);
678         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
679
680         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
681         if (crc_offset > (blk_size - sizeof(__le32))) {
682                 f2fs_msg(sbi->sb, KERN_WARNING,
683                         "invalid crc_offset: %zu", crc_offset);
684                 return -EINVAL;
685         }
686
687         crc = cur_cp_crc(*cp_block);
688         if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
689                 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
690                 return -EINVAL;
691         }
692
693         *version = cur_cp_version(*cp_block);
694         return 0;
695 }
696
697 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
698                                 block_t cp_addr, unsigned long long *version)
699 {
700         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
701         struct f2fs_checkpoint *cp_block = NULL;
702         unsigned long long cur_version = 0, pre_version = 0;
703         int err;
704
705         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
706                                         &cp_page_1, version);
707         if (err)
708                 goto invalid_cp1;
709         pre_version = *version;
710
711         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
712         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
713                                         &cp_page_2, version);
714         if (err)
715                 goto invalid_cp2;
716         cur_version = *version;
717
718         if (cur_version == pre_version) {
719                 *version = cur_version;
720                 f2fs_put_page(cp_page_2, 1);
721                 return cp_page_1;
722         }
723 invalid_cp2:
724         f2fs_put_page(cp_page_2, 1);
725 invalid_cp1:
726         f2fs_put_page(cp_page_1, 1);
727         return NULL;
728 }
729
730 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
731 {
732         struct f2fs_checkpoint *cp_block;
733         struct f2fs_super_block *fsb = sbi->raw_super;
734         struct page *cp1, *cp2, *cur_page;
735         unsigned long blk_size = sbi->blocksize;
736         unsigned long long cp1_version = 0, cp2_version = 0;
737         unsigned long long cp_start_blk_no;
738         unsigned int cp_blks = 1 + __cp_payload(sbi);
739         block_t cp_blk_no;
740         int i;
741
742         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
743         if (!sbi->ckpt)
744                 return -ENOMEM;
745         /*
746          * Finding out valid cp block involves read both
747          * sets( cp pack1 and cp pack 2)
748          */
749         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
750         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
751
752         /* The second checkpoint pack should start at the next segment */
753         cp_start_blk_no += ((unsigned long long)1) <<
754                                 le32_to_cpu(fsb->log_blocks_per_seg);
755         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
756
757         if (cp1 && cp2) {
758                 if (ver_after(cp2_version, cp1_version))
759                         cur_page = cp2;
760                 else
761                         cur_page = cp1;
762         } else if (cp1) {
763                 cur_page = cp1;
764         } else if (cp2) {
765                 cur_page = cp2;
766         } else {
767                 goto fail_no_cp;
768         }
769
770         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
771         memcpy(sbi->ckpt, cp_block, blk_size);
772
773         /* Sanity checking of checkpoint */
774         if (sanity_check_ckpt(sbi))
775                 goto free_fail_no_cp;
776
777         if (cur_page == cp1)
778                 sbi->cur_cp_pack = 1;
779         else
780                 sbi->cur_cp_pack = 2;
781
782         if (cp_blks <= 1)
783                 goto done;
784
785         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
786         if (cur_page == cp2)
787                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
788
789         for (i = 1; i < cp_blks; i++) {
790                 void *sit_bitmap_ptr;
791                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
792
793                 cur_page = get_meta_page(sbi, cp_blk_no + i);
794                 sit_bitmap_ptr = page_address(cur_page);
795                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
796                 f2fs_put_page(cur_page, 1);
797         }
798 done:
799         f2fs_put_page(cp1, 1);
800         f2fs_put_page(cp2, 1);
801         return 0;
802
803 free_fail_no_cp:
804         f2fs_put_page(cp1, 1);
805         f2fs_put_page(cp2, 1);
806 fail_no_cp:
807         kfree(sbi->ckpt);
808         return -EINVAL;
809 }
810
811 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
812 {
813         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
814         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
815
816         if (is_inode_flag_set(inode, flag))
817                 return;
818
819         set_inode_flag(inode, flag);
820         if (!f2fs_is_volatile_file(inode))
821                 list_add_tail(&F2FS_I(inode)->dirty_list,
822                                                 &sbi->inode_list[type]);
823         stat_inc_dirty_inode(sbi, type);
824 }
825
826 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
827 {
828         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
829
830         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
831                 return;
832
833         list_del_init(&F2FS_I(inode)->dirty_list);
834         clear_inode_flag(inode, flag);
835         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
836 }
837
838 void update_dirty_page(struct inode *inode, struct page *page)
839 {
840         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
841         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
842
843         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
844                         !S_ISLNK(inode->i_mode))
845                 return;
846
847         spin_lock(&sbi->inode_lock[type]);
848         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
849                 __add_dirty_inode(inode, type);
850         inode_inc_dirty_pages(inode);
851         spin_unlock(&sbi->inode_lock[type]);
852
853         SetPagePrivate(page);
854         f2fs_trace_pid(page);
855 }
856
857 void remove_dirty_inode(struct inode *inode)
858 {
859         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
860         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
861
862         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
863                         !S_ISLNK(inode->i_mode))
864                 return;
865
866         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
867                 return;
868
869         spin_lock(&sbi->inode_lock[type]);
870         __remove_dirty_inode(inode, type);
871         spin_unlock(&sbi->inode_lock[type]);
872 }
873
874 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
875 {
876         struct list_head *head;
877         struct inode *inode;
878         struct f2fs_inode_info *fi;
879         bool is_dir = (type == DIR_INODE);
880
881         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
882                                 get_pages(sbi, is_dir ?
883                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
884 retry:
885         if (unlikely(f2fs_cp_error(sbi)))
886                 return -EIO;
887
888         spin_lock(&sbi->inode_lock[type]);
889
890         head = &sbi->inode_list[type];
891         if (list_empty(head)) {
892                 spin_unlock(&sbi->inode_lock[type]);
893                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
894                                 get_pages(sbi, is_dir ?
895                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
896                 return 0;
897         }
898         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
899         inode = igrab(&fi->vfs_inode);
900         spin_unlock(&sbi->inode_lock[type]);
901         if (inode) {
902                 filemap_fdatawrite(inode->i_mapping);
903                 iput(inode);
904         } else {
905                 /*
906                  * We should submit bio, since it exists several
907                  * wribacking dentry pages in the freeing inode.
908                  */
909                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
910                 cond_resched();
911         }
912         goto retry;
913 }
914
915 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
916 {
917         struct list_head *head = &sbi->inode_list[DIRTY_META];
918         struct inode *inode;
919         struct f2fs_inode_info *fi;
920         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
921
922         while (total--) {
923                 if (unlikely(f2fs_cp_error(sbi)))
924                         return -EIO;
925
926                 spin_lock(&sbi->inode_lock[DIRTY_META]);
927                 if (list_empty(head)) {
928                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
929                         return 0;
930                 }
931                 fi = list_first_entry(head, struct f2fs_inode_info,
932                                                         gdirty_list);
933                 inode = igrab(&fi->vfs_inode);
934                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
935                 if (inode) {
936                         sync_inode_metadata(inode, 0);
937
938                         /* it's on eviction */
939                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
940                                 update_inode_page(inode);
941                         iput(inode);
942                 }
943         };
944         return 0;
945 }
946
947 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
948 {
949         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
950         struct f2fs_nm_info *nm_i = NM_I(sbi);
951         nid_t last_nid = nm_i->next_scan_nid;
952
953         next_free_nid(sbi, &last_nid);
954         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
955         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
956         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
957         ckpt->next_free_nid = cpu_to_le32(last_nid);
958 }
959
960 /*
961  * Freeze all the FS-operations for checkpoint.
962  */
963 static int block_operations(struct f2fs_sb_info *sbi)
964 {
965         struct writeback_control wbc = {
966                 .sync_mode = WB_SYNC_ALL,
967                 .nr_to_write = LONG_MAX,
968                 .for_reclaim = 0,
969         };
970         struct blk_plug plug;
971         int err = 0;
972
973         blk_start_plug(&plug);
974
975 retry_flush_dents:
976         f2fs_lock_all(sbi);
977         /* write all the dirty dentry pages */
978         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
979                 f2fs_unlock_all(sbi);
980                 err = sync_dirty_inodes(sbi, DIR_INODE);
981                 if (err)
982                         goto out;
983                 cond_resched();
984                 goto retry_flush_dents;
985         }
986
987         /*
988          * POR: we should ensure that there are no dirty node pages
989          * until finishing nat/sit flush. inode->i_blocks can be updated.
990          */
991         down_write(&sbi->node_change);
992
993         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
994                 up_write(&sbi->node_change);
995                 f2fs_unlock_all(sbi);
996                 err = f2fs_sync_inode_meta(sbi);
997                 if (err)
998                         goto out;
999                 cond_resched();
1000                 goto retry_flush_dents;
1001         }
1002
1003 retry_flush_nodes:
1004         down_write(&sbi->node_write);
1005
1006         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1007                 up_write(&sbi->node_write);
1008                 err = sync_node_pages(sbi, &wbc);
1009                 if (err) {
1010                         up_write(&sbi->node_change);
1011                         f2fs_unlock_all(sbi);
1012                         goto out;
1013                 }
1014                 cond_resched();
1015                 goto retry_flush_nodes;
1016         }
1017
1018         /*
1019          * sbi->node_change is used only for AIO write_begin path which produces
1020          * dirty node blocks and some checkpoint values by block allocation.
1021          */
1022         __prepare_cp_block(sbi);
1023         up_write(&sbi->node_change);
1024 out:
1025         blk_finish_plug(&plug);
1026         return err;
1027 }
1028
1029 static void unblock_operations(struct f2fs_sb_info *sbi)
1030 {
1031         up_write(&sbi->node_write);
1032         f2fs_unlock_all(sbi);
1033 }
1034
1035 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1036 {
1037         DEFINE_WAIT(wait);
1038
1039         for (;;) {
1040                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1041
1042                 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1043                         break;
1044
1045                 io_schedule_timeout(5*HZ);
1046         }
1047         finish_wait(&sbi->cp_wait, &wait);
1048 }
1049
1050 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1051 {
1052         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1053         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1054
1055         spin_lock(&sbi->cp_lock);
1056
1057         if ((cpc->reason & CP_UMOUNT) &&
1058                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1059                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1060                 disable_nat_bits(sbi, false);
1061
1062         if (cpc->reason & CP_TRIMMED)
1063                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1064
1065         if (cpc->reason & CP_UMOUNT)
1066                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1067         else
1068                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1069
1070         if (cpc->reason & CP_FASTBOOT)
1071                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1072         else
1073                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1074
1075         if (orphan_num)
1076                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1077         else
1078                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1079
1080         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1081                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1082
1083         /* set this flag to activate crc|cp_ver for recovery */
1084         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1085
1086         spin_unlock(&sbi->cp_lock);
1087 }
1088
1089 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1090 {
1091         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1092         struct f2fs_nm_info *nm_i = NM_I(sbi);
1093         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1094         block_t start_blk;
1095         unsigned int data_sum_blocks, orphan_blocks;
1096         __u32 crc32 = 0;
1097         int i;
1098         int cp_payload_blks = __cp_payload(sbi);
1099         struct super_block *sb = sbi->sb;
1100         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1101         u64 kbytes_written;
1102
1103         /* Flush all the NAT/SIT pages */
1104         while (get_pages(sbi, F2FS_DIRTY_META)) {
1105                 sync_meta_pages(sbi, META, LONG_MAX);
1106                 if (unlikely(f2fs_cp_error(sbi)))
1107                         return -EIO;
1108         }
1109
1110         /*
1111          * modify checkpoint
1112          * version number is already updated
1113          */
1114         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1115         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1116         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1117                 ckpt->cur_node_segno[i] =
1118                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1119                 ckpt->cur_node_blkoff[i] =
1120                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1121                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1122                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1123         }
1124         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1125                 ckpt->cur_data_segno[i] =
1126                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1127                 ckpt->cur_data_blkoff[i] =
1128                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1129                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1130                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1131         }
1132
1133         /* 2 cp  + n data seg summary + orphan inode blocks */
1134         data_sum_blocks = npages_for_summary_flush(sbi, false);
1135         spin_lock(&sbi->cp_lock);
1136         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1137                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1138         else
1139                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1140         spin_unlock(&sbi->cp_lock);
1141
1142         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1143         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1144                         orphan_blocks);
1145
1146         if (__remain_node_summaries(cpc->reason))
1147                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1148                                 cp_payload_blks + data_sum_blocks +
1149                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1150         else
1151                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1152                                 cp_payload_blks + data_sum_blocks +
1153                                 orphan_blocks);
1154
1155         /* update ckpt flag for checkpoint */
1156         update_ckpt_flags(sbi, cpc);
1157
1158         /* update SIT/NAT bitmap */
1159         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1160         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1161
1162         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1163         *((__le32 *)((unsigned char *)ckpt +
1164                                 le32_to_cpu(ckpt->checksum_offset)))
1165                                 = cpu_to_le32(crc32);
1166
1167         start_blk = __start_cp_next_addr(sbi);
1168
1169         /* write nat bits */
1170         if (enabled_nat_bits(sbi, cpc)) {
1171                 __u64 cp_ver = cur_cp_version(ckpt);
1172                 block_t blk;
1173
1174                 cp_ver |= ((__u64)crc32 << 32);
1175                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1176
1177                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1178                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1179                         update_meta_page(sbi, nm_i->nat_bits +
1180                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1181
1182                 /* Flush all the NAT BITS pages */
1183                 while (get_pages(sbi, F2FS_DIRTY_META)) {
1184                         sync_meta_pages(sbi, META, LONG_MAX);
1185                         if (unlikely(f2fs_cp_error(sbi)))
1186                                 return -EIO;
1187                 }
1188         }
1189
1190         /* need to wait for end_io results */
1191         wait_on_all_pages_writeback(sbi);
1192         if (unlikely(f2fs_cp_error(sbi)))
1193                 return -EIO;
1194
1195         /* write out checkpoint buffer at block 0 */
1196         update_meta_page(sbi, ckpt, start_blk++);
1197
1198         for (i = 1; i < 1 + cp_payload_blks; i++)
1199                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1200                                                         start_blk++);
1201
1202         if (orphan_num) {
1203                 write_orphan_inodes(sbi, start_blk);
1204                 start_blk += orphan_blocks;
1205         }
1206
1207         write_data_summaries(sbi, start_blk);
1208         start_blk += data_sum_blocks;
1209
1210         /* Record write statistics in the hot node summary */
1211         kbytes_written = sbi->kbytes_written;
1212         if (sb->s_bdev->bd_part)
1213                 kbytes_written += BD_PART_WRITTEN(sbi);
1214
1215         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1216
1217         if (__remain_node_summaries(cpc->reason)) {
1218                 write_node_summaries(sbi, start_blk);
1219                 start_blk += NR_CURSEG_NODE_TYPE;
1220         }
1221
1222         /* writeout checkpoint block */
1223         update_meta_page(sbi, ckpt, start_blk);
1224
1225         /* wait for previous submitted node/meta pages writeback */
1226         wait_on_all_pages_writeback(sbi);
1227
1228         if (unlikely(f2fs_cp_error(sbi)))
1229                 return -EIO;
1230
1231         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1232         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1233
1234         /* update user_block_counts */
1235         sbi->last_valid_block_count = sbi->total_valid_block_count;
1236         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1237
1238         /* Here, we only have one bio having CP pack */
1239         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1240
1241         /* wait for previous submitted meta pages writeback */
1242         wait_on_all_pages_writeback(sbi);
1243
1244         release_ino_entry(sbi, false);
1245
1246         if (unlikely(f2fs_cp_error(sbi)))
1247                 return -EIO;
1248
1249         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1250         clear_sbi_flag(sbi, SBI_NEED_CP);
1251         __set_cp_next_pack(sbi);
1252
1253         /*
1254          * redirty superblock if metadata like node page or inode cache is
1255          * updated during writing checkpoint.
1256          */
1257         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1258                         get_pages(sbi, F2FS_DIRTY_IMETA))
1259                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1260
1261         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1262
1263         return 0;
1264 }
1265
1266 /*
1267  * We guarantee that this checkpoint procedure will not fail.
1268  */
1269 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1270 {
1271         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1272         unsigned long long ckpt_ver;
1273         int err = 0;
1274
1275         mutex_lock(&sbi->cp_mutex);
1276
1277         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1278                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1279                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1280                 goto out;
1281         if (unlikely(f2fs_cp_error(sbi))) {
1282                 err = -EIO;
1283                 goto out;
1284         }
1285         if (f2fs_readonly(sbi->sb)) {
1286                 err = -EROFS;
1287                 goto out;
1288         }
1289
1290         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1291
1292         err = block_operations(sbi);
1293         if (err)
1294                 goto out;
1295
1296         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1297
1298         f2fs_flush_merged_bios(sbi);
1299
1300         /* this is the case of multiple fstrims without any changes */
1301         if (cpc->reason & CP_DISCARD) {
1302                 if (!exist_trim_candidates(sbi, cpc)) {
1303                         unblock_operations(sbi);
1304                         goto out;
1305                 }
1306
1307                 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1308                                 SIT_I(sbi)->dirty_sentries == 0 &&
1309                                 prefree_segments(sbi) == 0) {
1310                         flush_sit_entries(sbi, cpc);
1311                         clear_prefree_segments(sbi, cpc);
1312                         unblock_operations(sbi);
1313                         goto out;
1314                 }
1315         }
1316
1317         /*
1318          * update checkpoint pack index
1319          * Increase the version number so that
1320          * SIT entries and seg summaries are written at correct place
1321          */
1322         ckpt_ver = cur_cp_version(ckpt);
1323         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1324
1325         /* write cached NAT/SIT entries to NAT/SIT area */
1326         flush_nat_entries(sbi, cpc);
1327         flush_sit_entries(sbi, cpc);
1328
1329         /* unlock all the fs_lock[] in do_checkpoint() */
1330         err = do_checkpoint(sbi, cpc);
1331         if (err)
1332                 release_discard_addrs(sbi);
1333         else
1334                 clear_prefree_segments(sbi, cpc);
1335
1336         unblock_operations(sbi);
1337         stat_inc_cp_count(sbi->stat_info);
1338
1339         if (cpc->reason & CP_RECOVERY)
1340                 f2fs_msg(sbi->sb, KERN_NOTICE,
1341                         "checkpoint: version = %llx", ckpt_ver);
1342
1343         /* do checkpoint periodically */
1344         f2fs_update_time(sbi, CP_TIME);
1345         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1346 out:
1347         mutex_unlock(&sbi->cp_mutex);
1348         return err;
1349 }
1350
1351 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1352 {
1353         int i;
1354
1355         for (i = 0; i < MAX_INO_ENTRY; i++) {
1356                 struct inode_management *im = &sbi->im[i];
1357
1358                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1359                 spin_lock_init(&im->ino_lock);
1360                 INIT_LIST_HEAD(&im->ino_list);
1361                 im->ino_num = 0;
1362         }
1363
1364         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1365                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1366                                 F2FS_ORPHANS_PER_BLOCK;
1367 }
1368
1369 int __init create_checkpoint_caches(void)
1370 {
1371         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1372                         sizeof(struct ino_entry));
1373         if (!ino_entry_slab)
1374                 return -ENOMEM;
1375         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1376                         sizeof(struct inode_entry));
1377         if (!inode_entry_slab) {
1378                 kmem_cache_destroy(ino_entry_slab);
1379                 return -ENOMEM;
1380         }
1381         return 0;
1382 }
1383
1384 void destroy_checkpoint_caches(void)
1385 {
1386         kmem_cache_destroy(ino_entry_slab);
1387         kmem_cache_destroy(inode_entry_slab);
1388 }