]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/data.c
f2fs: use correct flag in f2fs_map_blocks()
[karo-tx-linux.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32         struct bio_vec *bvec;
33         int i;
34
35         if (f2fs_bio_encrypted(bio)) {
36                 if (bio->bi_error) {
37                         f2fs_release_crypto_ctx(bio->bi_private);
38                 } else {
39                         f2fs_end_io_crypto_work(bio->bi_private, bio);
40                         return;
41                 }
42         }
43
44         bio_for_each_segment_all(bvec, bio, i) {
45                 struct page *page = bvec->bv_page;
46
47                 if (!bio->bi_error) {
48                         SetPageUptodate(page);
49                 } else {
50                         ClearPageUptodate(page);
51                         SetPageError(page);
52                 }
53                 unlock_page(page);
54         }
55         bio_put(bio);
56 }
57
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60         struct f2fs_sb_info *sbi = bio->bi_private;
61         struct bio_vec *bvec;
62         int i;
63
64         bio_for_each_segment_all(bvec, bio, i) {
65                 struct page *page = bvec->bv_page;
66
67                 f2fs_restore_and_release_control_page(&page);
68
69                 if (unlikely(bio->bi_error)) {
70                         set_page_dirty(page);
71                         set_bit(AS_EIO, &page->mapping->flags);
72                         f2fs_stop_checkpoint(sbi);
73                 }
74                 end_page_writeback(page);
75                 dec_page_count(sbi, F2FS_WRITEBACK);
76         }
77
78         if (!get_pages(sbi, F2FS_WRITEBACK) &&
79                         !list_empty(&sbi->cp_wait.task_list))
80                 wake_up(&sbi->cp_wait);
81
82         bio_put(bio);
83 }
84
85 /*
86  * Low-level block read/write IO operations.
87  */
88 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
89                                 int npages, bool is_read)
90 {
91         struct bio *bio;
92
93         bio = f2fs_bio_alloc(npages);
94
95         bio->bi_bdev = sbi->sb->s_bdev;
96         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
97         bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
98         bio->bi_private = is_read ? NULL : sbi;
99
100         return bio;
101 }
102
103 static void __submit_merged_bio(struct f2fs_bio_info *io)
104 {
105         struct f2fs_io_info *fio = &io->fio;
106
107         if (!io->bio)
108                 return;
109
110         if (is_read_io(fio->rw))
111                 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
112         else
113                 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
114
115         submit_bio(fio->rw, io->bio);
116         io->bio = NULL;
117 }
118
119 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
120                                 enum page_type type, int rw)
121 {
122         enum page_type btype = PAGE_TYPE_OF_BIO(type);
123         struct f2fs_bio_info *io;
124
125         io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
126
127         down_write(&io->io_rwsem);
128
129         /* change META to META_FLUSH in the checkpoint procedure */
130         if (type >= META_FLUSH) {
131                 io->fio.type = META_FLUSH;
132                 if (test_opt(sbi, NOBARRIER))
133                         io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
134                 else
135                         io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
136         }
137         __submit_merged_bio(io);
138         up_write(&io->io_rwsem);
139 }
140
141 /*
142  * Fill the locked page with data located in the block address.
143  * Return unlocked page.
144  */
145 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
146 {
147         struct bio *bio;
148         struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
149
150         trace_f2fs_submit_page_bio(page, fio);
151         f2fs_trace_ios(fio, 0);
152
153         /* Allocate a new bio */
154         bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
155
156         if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
157                 bio_put(bio);
158                 return -EFAULT;
159         }
160
161         submit_bio(fio->rw, bio);
162         return 0;
163 }
164
165 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
166 {
167         struct f2fs_sb_info *sbi = fio->sbi;
168         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
169         struct f2fs_bio_info *io;
170         bool is_read = is_read_io(fio->rw);
171         struct page *bio_page;
172
173         io = is_read ? &sbi->read_io : &sbi->write_io[btype];
174
175         verify_block_addr(sbi, fio->blk_addr);
176
177         down_write(&io->io_rwsem);
178
179         if (!is_read)
180                 inc_page_count(sbi, F2FS_WRITEBACK);
181
182         if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
183                                                 io->fio.rw != fio->rw))
184                 __submit_merged_bio(io);
185 alloc_new:
186         if (io->bio == NULL) {
187                 int bio_blocks = MAX_BIO_BLOCKS(sbi);
188
189                 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
190                 io->fio = *fio;
191         }
192
193         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
194
195         if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
196                                                         PAGE_CACHE_SIZE) {
197                 __submit_merged_bio(io);
198                 goto alloc_new;
199         }
200
201         io->last_block_in_bio = fio->blk_addr;
202         f2fs_trace_ios(fio, 0);
203
204         up_write(&io->io_rwsem);
205         trace_f2fs_submit_page_mbio(fio->page, fio);
206 }
207
208 /*
209  * Lock ordering for the change of data block address:
210  * ->data_page
211  *  ->node_page
212  *    update block addresses in the node page
213  */
214 void set_data_blkaddr(struct dnode_of_data *dn)
215 {
216         struct f2fs_node *rn;
217         __le32 *addr_array;
218         struct page *node_page = dn->node_page;
219         unsigned int ofs_in_node = dn->ofs_in_node;
220
221         f2fs_wait_on_page_writeback(node_page, NODE);
222
223         rn = F2FS_NODE(node_page);
224
225         /* Get physical address of data block */
226         addr_array = blkaddr_in_node(rn);
227         addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
228         set_page_dirty(node_page);
229 }
230
231 int reserve_new_block(struct dnode_of_data *dn)
232 {
233         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
234
235         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
236                 return -EPERM;
237         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
238                 return -ENOSPC;
239
240         trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
241
242         dn->data_blkaddr = NEW_ADDR;
243         set_data_blkaddr(dn);
244         mark_inode_dirty(dn->inode);
245         sync_inode_page(dn);
246         return 0;
247 }
248
249 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
250 {
251         bool need_put = dn->inode_page ? false : true;
252         int err;
253
254         err = get_dnode_of_data(dn, index, ALLOC_NODE);
255         if (err)
256                 return err;
257
258         if (dn->data_blkaddr == NULL_ADDR)
259                 err = reserve_new_block(dn);
260         if (err || need_put)
261                 f2fs_put_dnode(dn);
262         return err;
263 }
264
265 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
266 {
267         struct extent_info ei;
268         struct inode *inode = dn->inode;
269
270         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
271                 dn->data_blkaddr = ei.blk + index - ei.fofs;
272                 return 0;
273         }
274
275         return f2fs_reserve_block(dn, index);
276 }
277
278 struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
279 {
280         struct address_space *mapping = inode->i_mapping;
281         struct dnode_of_data dn;
282         struct page *page;
283         struct extent_info ei;
284         int err;
285         struct f2fs_io_info fio = {
286                 .sbi = F2FS_I_SB(inode),
287                 .type = DATA,
288                 .rw = rw,
289                 .encrypted_page = NULL,
290         };
291
292         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
293                 return read_mapping_page(mapping, index, NULL);
294
295         page = grab_cache_page(mapping, index);
296         if (!page)
297                 return ERR_PTR(-ENOMEM);
298
299         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
300                 dn.data_blkaddr = ei.blk + index - ei.fofs;
301                 goto got_it;
302         }
303
304         set_new_dnode(&dn, inode, NULL, NULL, 0);
305         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
306         if (err)
307                 goto put_err;
308         f2fs_put_dnode(&dn);
309
310         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
311                 err = -ENOENT;
312                 goto put_err;
313         }
314 got_it:
315         if (PageUptodate(page)) {
316                 unlock_page(page);
317                 return page;
318         }
319
320         /*
321          * A new dentry page is allocated but not able to be written, since its
322          * new inode page couldn't be allocated due to -ENOSPC.
323          * In such the case, its blkaddr can be remained as NEW_ADDR.
324          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
325          */
326         if (dn.data_blkaddr == NEW_ADDR) {
327                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
328                 SetPageUptodate(page);
329                 unlock_page(page);
330                 return page;
331         }
332
333         fio.blk_addr = dn.data_blkaddr;
334         fio.page = page;
335         err = f2fs_submit_page_bio(&fio);
336         if (err)
337                 goto put_err;
338         return page;
339
340 put_err:
341         f2fs_put_page(page, 1);
342         return ERR_PTR(err);
343 }
344
345 struct page *find_data_page(struct inode *inode, pgoff_t index)
346 {
347         struct address_space *mapping = inode->i_mapping;
348         struct page *page;
349
350         page = find_get_page(mapping, index);
351         if (page && PageUptodate(page))
352                 return page;
353         f2fs_put_page(page, 0);
354
355         page = get_read_data_page(inode, index, READ_SYNC);
356         if (IS_ERR(page))
357                 return page;
358
359         if (PageUptodate(page))
360                 return page;
361
362         wait_on_page_locked(page);
363         if (unlikely(!PageUptodate(page))) {
364                 f2fs_put_page(page, 0);
365                 return ERR_PTR(-EIO);
366         }
367         return page;
368 }
369
370 /*
371  * If it tries to access a hole, return an error.
372  * Because, the callers, functions in dir.c and GC, should be able to know
373  * whether this page exists or not.
374  */
375 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
376 {
377         struct address_space *mapping = inode->i_mapping;
378         struct page *page;
379 repeat:
380         page = get_read_data_page(inode, index, READ_SYNC);
381         if (IS_ERR(page))
382                 return page;
383
384         /* wait for read completion */
385         lock_page(page);
386         if (unlikely(!PageUptodate(page))) {
387                 f2fs_put_page(page, 1);
388                 return ERR_PTR(-EIO);
389         }
390         if (unlikely(page->mapping != mapping)) {
391                 f2fs_put_page(page, 1);
392                 goto repeat;
393         }
394         return page;
395 }
396
397 /*
398  * Caller ensures that this data page is never allocated.
399  * A new zero-filled data page is allocated in the page cache.
400  *
401  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
402  * f2fs_unlock_op().
403  * Note that, ipage is set only by make_empty_dir, and if any error occur,
404  * ipage should be released by this function.
405  */
406 struct page *get_new_data_page(struct inode *inode,
407                 struct page *ipage, pgoff_t index, bool new_i_size)
408 {
409         struct address_space *mapping = inode->i_mapping;
410         struct page *page;
411         struct dnode_of_data dn;
412         int err;
413 repeat:
414         page = grab_cache_page(mapping, index);
415         if (!page) {
416                 /*
417                  * before exiting, we should make sure ipage will be released
418                  * if any error occur.
419                  */
420                 f2fs_put_page(ipage, 1);
421                 return ERR_PTR(-ENOMEM);
422         }
423
424         set_new_dnode(&dn, inode, ipage, NULL, 0);
425         err = f2fs_reserve_block(&dn, index);
426         if (err) {
427                 f2fs_put_page(page, 1);
428                 return ERR_PTR(err);
429         }
430         if (!ipage)
431                 f2fs_put_dnode(&dn);
432
433         if (PageUptodate(page))
434                 goto got_it;
435
436         if (dn.data_blkaddr == NEW_ADDR) {
437                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
438                 SetPageUptodate(page);
439         } else {
440                 f2fs_put_page(page, 1);
441
442                 page = get_read_data_page(inode, index, READ_SYNC);
443                 if (IS_ERR(page))
444                         goto repeat;
445
446                 /* wait for read completion */
447                 lock_page(page);
448         }
449 got_it:
450         if (new_i_size && i_size_read(inode) <
451                                 ((loff_t)(index + 1) << PAGE_CACHE_SHIFT)) {
452                 i_size_write(inode, ((loff_t)(index + 1) << PAGE_CACHE_SHIFT));
453                 /* Only the directory inode sets new_i_size */
454                 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
455         }
456         return page;
457 }
458
459 static int __allocate_data_block(struct dnode_of_data *dn)
460 {
461         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
462         struct f2fs_inode_info *fi = F2FS_I(dn->inode);
463         struct f2fs_summary sum;
464         struct node_info ni;
465         int seg = CURSEG_WARM_DATA;
466         pgoff_t fofs;
467
468         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
469                 return -EPERM;
470
471         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
472         if (dn->data_blkaddr == NEW_ADDR)
473                 goto alloc;
474
475         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
476                 return -ENOSPC;
477
478 alloc:
479         get_node_info(sbi, dn->nid, &ni);
480         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
481
482         if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
483                 seg = CURSEG_DIRECT_IO;
484
485         allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
486                                                                 &sum, seg);
487         set_data_blkaddr(dn);
488
489         /* update i_size */
490         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
491                                                         dn->ofs_in_node;
492         if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT))
493                 i_size_write(dn->inode,
494                                 ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT));
495
496         /* direct IO doesn't use extent cache to maximize the performance */
497         f2fs_drop_largest_extent(dn->inode, fofs);
498
499         return 0;
500 }
501
502 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
503                                                         size_t count)
504 {
505         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
506         struct dnode_of_data dn;
507         u64 start = F2FS_BYTES_TO_BLK(offset);
508         u64 len = F2FS_BYTES_TO_BLK(count);
509         bool allocated;
510         u64 end_offset;
511
512         while (len) {
513                 f2fs_balance_fs(sbi);
514                 f2fs_lock_op(sbi);
515
516                 /* When reading holes, we need its node page */
517                 set_new_dnode(&dn, inode, NULL, NULL, 0);
518                 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
519                         goto out;
520
521                 allocated = false;
522                 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
523
524                 while (dn.ofs_in_node < end_offset && len) {
525                         block_t blkaddr;
526
527                         if (unlikely(f2fs_cp_error(sbi)))
528                                 goto sync_out;
529
530                         blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
531                         if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
532                                 if (__allocate_data_block(&dn))
533                                         goto sync_out;
534                                 allocated = true;
535                         }
536                         len--;
537                         start++;
538                         dn.ofs_in_node++;
539                 }
540
541                 if (allocated)
542                         sync_inode_page(&dn);
543
544                 f2fs_put_dnode(&dn);
545                 f2fs_unlock_op(sbi);
546         }
547         return;
548
549 sync_out:
550         if (allocated)
551                 sync_inode_page(&dn);
552         f2fs_put_dnode(&dn);
553 out:
554         f2fs_unlock_op(sbi);
555         return;
556 }
557
558 /*
559  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
560  * f2fs_map_blocks structure.
561  * If original data blocks are allocated, then give them to blockdev.
562  * Otherwise,
563  *     a. preallocate requested block addresses
564  *     b. do not use extent cache for better performance
565  *     c. give the block addresses to blockdev
566  */
567 static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
568                                                 int create, int flag)
569 {
570         unsigned int maxblocks = map->m_len;
571         struct dnode_of_data dn;
572         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
573         int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
574         pgoff_t pgofs, end_offset;
575         int err = 0, ofs = 1;
576         struct extent_info ei;
577         bool allocated = false;
578
579         map->m_len = 0;
580         map->m_flags = 0;
581
582         /* it only supports block size == page size */
583         pgofs = (pgoff_t)map->m_lblk;
584
585         if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
586                 map->m_pblk = ei.blk + pgofs - ei.fofs;
587                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
588                 map->m_flags = F2FS_MAP_MAPPED;
589                 goto out;
590         }
591
592         if (create)
593                 f2fs_lock_op(F2FS_I_SB(inode));
594
595         /* When reading holes, we need its node page */
596         set_new_dnode(&dn, inode, NULL, NULL, 0);
597         err = get_dnode_of_data(&dn, pgofs, mode);
598         if (err) {
599                 if (err == -ENOENT)
600                         err = 0;
601                 goto unlock_out;
602         }
603
604         if (dn.data_blkaddr == NEW_ADDR || dn.data_blkaddr == NULL_ADDR) {
605                 if (create) {
606                         if (unlikely(f2fs_cp_error(sbi))) {
607                                 err = -EIO;
608                                 goto put_out;
609                         }
610                         err = __allocate_data_block(&dn);
611                         if (err)
612                                 goto put_out;
613                         allocated = true;
614                         map->m_flags = F2FS_MAP_NEW;
615                 } else {
616                         if (flag != F2FS_GET_BLOCK_FIEMAP ||
617                                                 dn.data_blkaddr != NEW_ADDR) {
618                                 if (flag == F2FS_GET_BLOCK_BMAP)
619                                         err = -ENOENT;
620                                 goto put_out;
621                         }
622
623                         /*
624                          * preallocated unwritten block should be mapped
625                          * for fiemap.
626                          */
627                         if (dn.data_blkaddr == NEW_ADDR)
628                                 map->m_flags = F2FS_MAP_UNWRITTEN;
629                 }
630         }
631
632         map->m_flags |= F2FS_MAP_MAPPED;
633         map->m_pblk = dn.data_blkaddr;
634         map->m_len = 1;
635
636         end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
637         dn.ofs_in_node++;
638         pgofs++;
639
640 get_next:
641         if (dn.ofs_in_node >= end_offset) {
642                 if (allocated)
643                         sync_inode_page(&dn);
644                 allocated = false;
645                 f2fs_put_dnode(&dn);
646
647                 set_new_dnode(&dn, inode, NULL, NULL, 0);
648                 err = get_dnode_of_data(&dn, pgofs, mode);
649                 if (err) {
650                         if (err == -ENOENT)
651                                 err = 0;
652                         goto unlock_out;
653                 }
654
655                 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
656         }
657
658         if (maxblocks > map->m_len) {
659                 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
660
661                 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
662                         if (create) {
663                                 if (unlikely(f2fs_cp_error(sbi))) {
664                                         err = -EIO;
665                                         goto sync_out;
666                                 }
667                                 err = __allocate_data_block(&dn);
668                                 if (err)
669                                         goto sync_out;
670                                 allocated = true;
671                                 map->m_flags |= F2FS_MAP_NEW;
672                                 blkaddr = dn.data_blkaddr;
673                         } else {
674                                 /*
675                                  * we only merge preallocated unwritten blocks
676                                  * for fiemap.
677                                  */
678                                 if (flag != F2FS_GET_BLOCK_FIEMAP ||
679                                                 blkaddr != NEW_ADDR)
680                                         goto sync_out;
681                         }
682                 }
683
684                 /* Give more consecutive addresses for the readahead */
685                 if ((map->m_pblk != NEW_ADDR &&
686                                 blkaddr == (map->m_pblk + ofs)) ||
687                                 (map->m_pblk == NEW_ADDR &&
688                                 blkaddr == NEW_ADDR)) {
689                         ofs++;
690                         dn.ofs_in_node++;
691                         pgofs++;
692                         map->m_len++;
693                         goto get_next;
694                 }
695         }
696 sync_out:
697         if (allocated)
698                 sync_inode_page(&dn);
699 put_out:
700         f2fs_put_dnode(&dn);
701 unlock_out:
702         if (create)
703                 f2fs_unlock_op(F2FS_I_SB(inode));
704 out:
705         trace_f2fs_map_blocks(inode, map, err);
706         return err;
707 }
708
709 static int __get_data_block(struct inode *inode, sector_t iblock,
710                         struct buffer_head *bh, int create, int flag)
711 {
712         struct f2fs_map_blocks map;
713         int ret;
714
715         map.m_lblk = iblock;
716         map.m_len = bh->b_size >> inode->i_blkbits;
717
718         ret = f2fs_map_blocks(inode, &map, create, flag);
719         if (!ret) {
720                 map_bh(bh, inode->i_sb, map.m_pblk);
721                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
722                 bh->b_size = map.m_len << inode->i_blkbits;
723         }
724         return ret;
725 }
726
727 static int get_data_block(struct inode *inode, sector_t iblock,
728                         struct buffer_head *bh_result, int create, int flag)
729 {
730         return __get_data_block(inode, iblock, bh_result, create, flag);
731 }
732
733 static int get_data_block_dio(struct inode *inode, sector_t iblock,
734                         struct buffer_head *bh_result, int create)
735 {
736         return __get_data_block(inode, iblock, bh_result, create,
737                                                 F2FS_GET_BLOCK_DIO);
738 }
739
740 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
741                         struct buffer_head *bh_result, int create)
742 {
743         return __get_data_block(inode, iblock, bh_result, create,
744                                                 F2FS_GET_BLOCK_BMAP);
745 }
746
747 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
748 {
749         return (offset >> inode->i_blkbits);
750 }
751
752 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
753 {
754         return (blk << inode->i_blkbits);
755 }
756
757 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
758                 u64 start, u64 len)
759 {
760         struct buffer_head map_bh;
761         sector_t start_blk, last_blk;
762         loff_t isize = i_size_read(inode);
763         u64 logical = 0, phys = 0, size = 0;
764         u32 flags = 0;
765         bool past_eof = false, whole_file = false;
766         int ret = 0;
767
768         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
769         if (ret)
770                 return ret;
771
772         mutex_lock(&inode->i_mutex);
773
774         if (len >= isize) {
775                 whole_file = true;
776                 len = isize;
777         }
778
779         if (logical_to_blk(inode, len) == 0)
780                 len = blk_to_logical(inode, 1);
781
782         start_blk = logical_to_blk(inode, start);
783         last_blk = logical_to_blk(inode, start + len - 1);
784 next:
785         memset(&map_bh, 0, sizeof(struct buffer_head));
786         map_bh.b_size = len;
787
788         ret = get_data_block(inode, start_blk, &map_bh, 0,
789                                         F2FS_GET_BLOCK_FIEMAP);
790         if (ret)
791                 goto out;
792
793         /* HOLE */
794         if (!buffer_mapped(&map_bh)) {
795                 start_blk++;
796
797                 if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
798                         past_eof = 1;
799
800                 if (past_eof && size) {
801                         flags |= FIEMAP_EXTENT_LAST;
802                         ret = fiemap_fill_next_extent(fieinfo, logical,
803                                         phys, size, flags);
804                 } else if (size) {
805                         ret = fiemap_fill_next_extent(fieinfo, logical,
806                                         phys, size, flags);
807                         size = 0;
808                 }
809
810                 /* if we have holes up to/past EOF then we're done */
811                 if (start_blk > last_blk || past_eof || ret)
812                         goto out;
813         } else {
814                 if (start_blk > last_blk && !whole_file) {
815                         ret = fiemap_fill_next_extent(fieinfo, logical,
816                                         phys, size, flags);
817                         goto out;
818                 }
819
820                 /*
821                  * if size != 0 then we know we already have an extent
822                  * to add, so add it.
823                  */
824                 if (size) {
825                         ret = fiemap_fill_next_extent(fieinfo, logical,
826                                         phys, size, flags);
827                         if (ret)
828                                 goto out;
829                 }
830
831                 logical = blk_to_logical(inode, start_blk);
832                 phys = blk_to_logical(inode, map_bh.b_blocknr);
833                 size = map_bh.b_size;
834                 flags = 0;
835                 if (buffer_unwritten(&map_bh))
836                         flags = FIEMAP_EXTENT_UNWRITTEN;
837
838                 start_blk += logical_to_blk(inode, size);
839
840                 /*
841                  * If we are past the EOF, then we need to make sure as
842                  * soon as we find a hole that the last extent we found
843                  * is marked with FIEMAP_EXTENT_LAST
844                  */
845                 if (!past_eof && logical + size >= isize)
846                         past_eof = true;
847         }
848         cond_resched();
849         if (fatal_signal_pending(current))
850                 ret = -EINTR;
851         else
852                 goto next;
853 out:
854         if (ret == 1)
855                 ret = 0;
856
857         mutex_unlock(&inode->i_mutex);
858         return ret;
859 }
860
861 /*
862  * This function was originally taken from fs/mpage.c, and customized for f2fs.
863  * Major change was from block_size == page_size in f2fs by default.
864  */
865 static int f2fs_mpage_readpages(struct address_space *mapping,
866                         struct list_head *pages, struct page *page,
867                         unsigned nr_pages)
868 {
869         struct bio *bio = NULL;
870         unsigned page_idx;
871         sector_t last_block_in_bio = 0;
872         struct inode *inode = mapping->host;
873         const unsigned blkbits = inode->i_blkbits;
874         const unsigned blocksize = 1 << blkbits;
875         sector_t block_in_file;
876         sector_t last_block;
877         sector_t last_block_in_file;
878         sector_t block_nr;
879         struct block_device *bdev = inode->i_sb->s_bdev;
880         struct f2fs_map_blocks map;
881
882         map.m_pblk = 0;
883         map.m_lblk = 0;
884         map.m_len = 0;
885         map.m_flags = 0;
886
887         for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
888
889                 prefetchw(&page->flags);
890                 if (pages) {
891                         page = list_entry(pages->prev, struct page, lru);
892                         list_del(&page->lru);
893                         if (add_to_page_cache_lru(page, mapping,
894                                                   page->index, GFP_KERNEL))
895                                 goto next_page;
896                 }
897
898                 block_in_file = (sector_t)page->index;
899                 last_block = block_in_file + nr_pages;
900                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
901                                                                 blkbits;
902                 if (last_block > last_block_in_file)
903                         last_block = last_block_in_file;
904
905                 /*
906                  * Map blocks using the previous result first.
907                  */
908                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
909                                 block_in_file > map.m_lblk &&
910                                 block_in_file < (map.m_lblk + map.m_len))
911                         goto got_it;
912
913                 /*
914                  * Then do more f2fs_map_blocks() calls until we are
915                  * done with this page.
916                  */
917                 map.m_flags = 0;
918
919                 if (block_in_file < last_block) {
920                         map.m_lblk = block_in_file;
921                         map.m_len = last_block - block_in_file;
922
923                         if (f2fs_map_blocks(inode, &map, 0,
924                                                         F2FS_GET_BLOCK_READ))
925                                 goto set_error_page;
926                 }
927 got_it:
928                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
929                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
930                         SetPageMappedToDisk(page);
931
932                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
933                                 SetPageUptodate(page);
934                                 goto confused;
935                         }
936                 } else {
937                         zero_user_segment(page, 0, PAGE_CACHE_SIZE);
938                         SetPageUptodate(page);
939                         unlock_page(page);
940                         goto next_page;
941                 }
942
943                 /*
944                  * This page will go to BIO.  Do we need to send this
945                  * BIO off first?
946                  */
947                 if (bio && (last_block_in_bio != block_nr - 1)) {
948 submit_and_realloc:
949                         submit_bio(READ, bio);
950                         bio = NULL;
951                 }
952                 if (bio == NULL) {
953                         struct f2fs_crypto_ctx *ctx = NULL;
954
955                         if (f2fs_encrypted_inode(inode) &&
956                                         S_ISREG(inode->i_mode)) {
957                                 struct page *cpage;
958
959                                 ctx = f2fs_get_crypto_ctx(inode);
960                                 if (IS_ERR(ctx))
961                                         goto set_error_page;
962
963                                 /* wait the page to be moved by cleaning */
964                                 cpage = find_lock_page(
965                                                 META_MAPPING(F2FS_I_SB(inode)),
966                                                 block_nr);
967                                 if (cpage) {
968                                         f2fs_wait_on_page_writeback(cpage,
969                                                                         DATA);
970                                         f2fs_put_page(cpage, 1);
971                                 }
972                         }
973
974                         bio = bio_alloc(GFP_KERNEL,
975                                 min_t(int, nr_pages, BIO_MAX_PAGES));
976                         if (!bio) {
977                                 if (ctx)
978                                         f2fs_release_crypto_ctx(ctx);
979                                 goto set_error_page;
980                         }
981                         bio->bi_bdev = bdev;
982                         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
983                         bio->bi_end_io = f2fs_read_end_io;
984                         bio->bi_private = ctx;
985                 }
986
987                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
988                         goto submit_and_realloc;
989
990                 last_block_in_bio = block_nr;
991                 goto next_page;
992 set_error_page:
993                 SetPageError(page);
994                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
995                 unlock_page(page);
996                 goto next_page;
997 confused:
998                 if (bio) {
999                         submit_bio(READ, bio);
1000                         bio = NULL;
1001                 }
1002                 unlock_page(page);
1003 next_page:
1004                 if (pages)
1005                         page_cache_release(page);
1006         }
1007         BUG_ON(pages && !list_empty(pages));
1008         if (bio)
1009                 submit_bio(READ, bio);
1010         return 0;
1011 }
1012
1013 static int f2fs_read_data_page(struct file *file, struct page *page)
1014 {
1015         struct inode *inode = page->mapping->host;
1016         int ret = -EAGAIN;
1017
1018         trace_f2fs_readpage(page, DATA);
1019
1020         /* If the file has inline data, try to read it directly */
1021         if (f2fs_has_inline_data(inode))
1022                 ret = f2fs_read_inline_data(inode, page);
1023         if (ret == -EAGAIN)
1024                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1025         return ret;
1026 }
1027
1028 static int f2fs_read_data_pages(struct file *file,
1029                         struct address_space *mapping,
1030                         struct list_head *pages, unsigned nr_pages)
1031 {
1032         struct inode *inode = file->f_mapping->host;
1033
1034         /* If the file has inline data, skip readpages */
1035         if (f2fs_has_inline_data(inode))
1036                 return 0;
1037
1038         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1039 }
1040
1041 int do_write_data_page(struct f2fs_io_info *fio)
1042 {
1043         struct page *page = fio->page;
1044         struct inode *inode = page->mapping->host;
1045         struct dnode_of_data dn;
1046         int err = 0;
1047
1048         set_new_dnode(&dn, inode, NULL, NULL, 0);
1049         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1050         if (err)
1051                 return err;
1052
1053         fio->blk_addr = dn.data_blkaddr;
1054
1055         /* This page is already truncated */
1056         if (fio->blk_addr == NULL_ADDR) {
1057                 ClearPageUptodate(page);
1058                 goto out_writepage;
1059         }
1060
1061         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1062                 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1063                 if (IS_ERR(fio->encrypted_page)) {
1064                         err = PTR_ERR(fio->encrypted_page);
1065                         goto out_writepage;
1066                 }
1067         }
1068
1069         set_page_writeback(page);
1070
1071         /*
1072          * If current allocation needs SSR,
1073          * it had better in-place writes for updated data.
1074          */
1075         if (unlikely(fio->blk_addr != NEW_ADDR &&
1076                         !is_cold_data(page) &&
1077                         need_inplace_update(inode))) {
1078                 rewrite_data_page(fio);
1079                 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1080                 trace_f2fs_do_write_data_page(page, IPU);
1081         } else {
1082                 write_data_page(&dn, fio);
1083                 set_data_blkaddr(&dn);
1084                 f2fs_update_extent_cache(&dn);
1085                 trace_f2fs_do_write_data_page(page, OPU);
1086                 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1087                 if (page->index == 0)
1088                         set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1089         }
1090 out_writepage:
1091         f2fs_put_dnode(&dn);
1092         return err;
1093 }
1094
1095 static int f2fs_write_data_page(struct page *page,
1096                                         struct writeback_control *wbc)
1097 {
1098         struct inode *inode = page->mapping->host;
1099         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1100         loff_t i_size = i_size_read(inode);
1101         const pgoff_t end_index = ((unsigned long long) i_size)
1102                                                         >> PAGE_CACHE_SHIFT;
1103         unsigned offset = 0;
1104         bool need_balance_fs = false;
1105         int err = 0;
1106         struct f2fs_io_info fio = {
1107                 .sbi = sbi,
1108                 .type = DATA,
1109                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1110                 .page = page,
1111                 .encrypted_page = NULL,
1112         };
1113
1114         trace_f2fs_writepage(page, DATA);
1115
1116         if (page->index < end_index)
1117                 goto write;
1118
1119         /*
1120          * If the offset is out-of-range of file size,
1121          * this page does not have to be written to disk.
1122          */
1123         offset = i_size & (PAGE_CACHE_SIZE - 1);
1124         if ((page->index >= end_index + 1) || !offset)
1125                 goto out;
1126
1127         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1128 write:
1129         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1130                 goto redirty_out;
1131         if (f2fs_is_drop_cache(inode))
1132                 goto out;
1133         if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1134                         available_free_memory(sbi, BASE_CHECK))
1135                 goto redirty_out;
1136
1137         /* Dentry blocks are controlled by checkpoint */
1138         if (S_ISDIR(inode->i_mode)) {
1139                 if (unlikely(f2fs_cp_error(sbi)))
1140                         goto redirty_out;
1141                 err = do_write_data_page(&fio);
1142                 goto done;
1143         }
1144
1145         /* we should bypass data pages to proceed the kworkder jobs */
1146         if (unlikely(f2fs_cp_error(sbi))) {
1147                 SetPageError(page);
1148                 goto out;
1149         }
1150
1151         if (!wbc->for_reclaim)
1152                 need_balance_fs = true;
1153         else if (has_not_enough_free_secs(sbi, 0))
1154                 goto redirty_out;
1155
1156         err = -EAGAIN;
1157         f2fs_lock_op(sbi);
1158         if (f2fs_has_inline_data(inode))
1159                 err = f2fs_write_inline_data(inode, page);
1160         if (err == -EAGAIN)
1161                 err = do_write_data_page(&fio);
1162         f2fs_unlock_op(sbi);
1163 done:
1164         if (err && err != -ENOENT)
1165                 goto redirty_out;
1166
1167         clear_cold_data(page);
1168 out:
1169         inode_dec_dirty_pages(inode);
1170         if (err)
1171                 ClearPageUptodate(page);
1172         unlock_page(page);
1173         if (need_balance_fs)
1174                 f2fs_balance_fs(sbi);
1175         if (wbc->for_reclaim)
1176                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1177         return 0;
1178
1179 redirty_out:
1180         redirty_page_for_writepage(wbc, page);
1181         return AOP_WRITEPAGE_ACTIVATE;
1182 }
1183
1184 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1185                         void *data)
1186 {
1187         struct address_space *mapping = data;
1188         int ret = mapping->a_ops->writepage(page, wbc);
1189         mapping_set_error(mapping, ret);
1190         return ret;
1191 }
1192
1193 /*
1194  * This function was copied from write_cche_pages from mm/page-writeback.c.
1195  * The major change is making write step of cold data page separately from
1196  * warm/hot data page.
1197  */
1198 static int f2fs_write_cache_pages(struct address_space *mapping,
1199                         struct writeback_control *wbc, writepage_t writepage,
1200                         void *data)
1201 {
1202         int ret = 0;
1203         int done = 0;
1204         struct pagevec pvec;
1205         int nr_pages;
1206         pgoff_t uninitialized_var(writeback_index);
1207         pgoff_t index;
1208         pgoff_t end;            /* Inclusive */
1209         pgoff_t done_index;
1210         int cycled;
1211         int range_whole = 0;
1212         int tag;
1213         int step = 0;
1214
1215         pagevec_init(&pvec, 0);
1216 next:
1217         if (wbc->range_cyclic) {
1218                 writeback_index = mapping->writeback_index; /* prev offset */
1219                 index = writeback_index;
1220                 if (index == 0)
1221                         cycled = 1;
1222                 else
1223                         cycled = 0;
1224                 end = -1;
1225         } else {
1226                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1227                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1228                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1229                         range_whole = 1;
1230                 cycled = 1; /* ignore range_cyclic tests */
1231         }
1232         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1233                 tag = PAGECACHE_TAG_TOWRITE;
1234         else
1235                 tag = PAGECACHE_TAG_DIRTY;
1236 retry:
1237         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1238                 tag_pages_for_writeback(mapping, index, end);
1239         done_index = index;
1240         while (!done && (index <= end)) {
1241                 int i;
1242
1243                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1244                               min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1245                 if (nr_pages == 0)
1246                         break;
1247
1248                 for (i = 0; i < nr_pages; i++) {
1249                         struct page *page = pvec.pages[i];
1250
1251                         if (page->index > end) {
1252                                 done = 1;
1253                                 break;
1254                         }
1255
1256                         done_index = page->index;
1257
1258                         lock_page(page);
1259
1260                         if (unlikely(page->mapping != mapping)) {
1261 continue_unlock:
1262                                 unlock_page(page);
1263                                 continue;
1264                         }
1265
1266                         if (!PageDirty(page)) {
1267                                 /* someone wrote it for us */
1268                                 goto continue_unlock;
1269                         }
1270
1271                         if (step == is_cold_data(page))
1272                                 goto continue_unlock;
1273
1274                         if (PageWriteback(page)) {
1275                                 if (wbc->sync_mode != WB_SYNC_NONE)
1276                                         f2fs_wait_on_page_writeback(page, DATA);
1277                                 else
1278                                         goto continue_unlock;
1279                         }
1280
1281                         BUG_ON(PageWriteback(page));
1282                         if (!clear_page_dirty_for_io(page))
1283                                 goto continue_unlock;
1284
1285                         ret = (*writepage)(page, wbc, data);
1286                         if (unlikely(ret)) {
1287                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1288                                         unlock_page(page);
1289                                         ret = 0;
1290                                 } else {
1291                                         done_index = page->index + 1;
1292                                         done = 1;
1293                                         break;
1294                                 }
1295                         }
1296
1297                         if (--wbc->nr_to_write <= 0 &&
1298                             wbc->sync_mode == WB_SYNC_NONE) {
1299                                 done = 1;
1300                                 break;
1301                         }
1302                 }
1303                 pagevec_release(&pvec);
1304                 cond_resched();
1305         }
1306
1307         if (step < 1) {
1308                 step++;
1309                 goto next;
1310         }
1311
1312         if (!cycled && !done) {
1313                 cycled = 1;
1314                 index = 0;
1315                 end = writeback_index - 1;
1316                 goto retry;
1317         }
1318         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1319                 mapping->writeback_index = done_index;
1320
1321         return ret;
1322 }
1323
1324 static int f2fs_write_data_pages(struct address_space *mapping,
1325                             struct writeback_control *wbc)
1326 {
1327         struct inode *inode = mapping->host;
1328         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1329         bool locked = false;
1330         int ret;
1331         long diff;
1332
1333         trace_f2fs_writepages(mapping->host, wbc, DATA);
1334
1335         /* deal with chardevs and other special file */
1336         if (!mapping->a_ops->writepage)
1337                 return 0;
1338
1339         /* skip writing if there is no dirty page in this inode */
1340         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1341                 return 0;
1342
1343         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1344                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1345                         available_free_memory(sbi, DIRTY_DENTS))
1346                 goto skip_write;
1347
1348         /* during POR, we don't need to trigger writepage at all. */
1349         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1350                 goto skip_write;
1351
1352         diff = nr_pages_to_write(sbi, DATA, wbc);
1353
1354         if (!S_ISDIR(inode->i_mode)) {
1355                 mutex_lock(&sbi->writepages);
1356                 locked = true;
1357         }
1358         ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1359         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1360         if (locked)
1361                 mutex_unlock(&sbi->writepages);
1362
1363         remove_dirty_dir_inode(inode);
1364
1365         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1366         return ret;
1367
1368 skip_write:
1369         wbc->pages_skipped += get_dirty_pages(inode);
1370         return 0;
1371 }
1372
1373 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1374 {
1375         struct inode *inode = mapping->host;
1376
1377         if (to > inode->i_size) {
1378                 truncate_pagecache(inode, inode->i_size);
1379                 truncate_blocks(inode, inode->i_size, true);
1380         }
1381 }
1382
1383 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1384                 loff_t pos, unsigned len, unsigned flags,
1385                 struct page **pagep, void **fsdata)
1386 {
1387         struct inode *inode = mapping->host;
1388         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1389         struct page *page = NULL;
1390         struct page *ipage;
1391         pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1392         struct dnode_of_data dn;
1393         int err = 0;
1394
1395         trace_f2fs_write_begin(inode, pos, len, flags);
1396
1397         f2fs_balance_fs(sbi);
1398
1399         /*
1400          * We should check this at this moment to avoid deadlock on inode page
1401          * and #0 page. The locking rule for inline_data conversion should be:
1402          * lock_page(page #0) -> lock_page(inode_page)
1403          */
1404         if (index != 0) {
1405                 err = f2fs_convert_inline_inode(inode);
1406                 if (err)
1407                         goto fail;
1408         }
1409 repeat:
1410         page = grab_cache_page_write_begin(mapping, index, flags);
1411         if (!page) {
1412                 err = -ENOMEM;
1413                 goto fail;
1414         }
1415
1416         *pagep = page;
1417
1418         f2fs_lock_op(sbi);
1419
1420         /* check inline_data */
1421         ipage = get_node_page(sbi, inode->i_ino);
1422         if (IS_ERR(ipage)) {
1423                 err = PTR_ERR(ipage);
1424                 goto unlock_fail;
1425         }
1426
1427         set_new_dnode(&dn, inode, ipage, ipage, 0);
1428
1429         if (f2fs_has_inline_data(inode)) {
1430                 if (pos + len <= MAX_INLINE_DATA) {
1431                         read_inline_data(page, ipage);
1432                         set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1433                         sync_inode_page(&dn);
1434                         goto put_next;
1435                 }
1436                 err = f2fs_convert_inline_page(&dn, page);
1437                 if (err)
1438                         goto put_fail;
1439         }
1440
1441         err = f2fs_get_block(&dn, index);
1442         if (err)
1443                 goto put_fail;
1444 put_next:
1445         f2fs_put_dnode(&dn);
1446         f2fs_unlock_op(sbi);
1447
1448         f2fs_wait_on_page_writeback(page, DATA);
1449
1450         if (len == PAGE_CACHE_SIZE)
1451                 goto out_update;
1452         if (PageUptodate(page))
1453                 goto out_clear;
1454
1455         if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1456                 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1457                 unsigned end = start + len;
1458
1459                 /* Reading beyond i_size is simple: memset to zero */
1460                 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1461                 goto out_update;
1462         }
1463
1464         if (dn.data_blkaddr == NEW_ADDR) {
1465                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1466         } else {
1467                 struct f2fs_io_info fio = {
1468                         .sbi = sbi,
1469                         .type = DATA,
1470                         .rw = READ_SYNC,
1471                         .blk_addr = dn.data_blkaddr,
1472                         .page = page,
1473                         .encrypted_page = NULL,
1474                 };
1475                 err = f2fs_submit_page_bio(&fio);
1476                 if (err)
1477                         goto fail;
1478
1479                 lock_page(page);
1480                 if (unlikely(!PageUptodate(page))) {
1481                         err = -EIO;
1482                         goto fail;
1483                 }
1484                 if (unlikely(page->mapping != mapping)) {
1485                         f2fs_put_page(page, 1);
1486                         goto repeat;
1487                 }
1488
1489                 /* avoid symlink page */
1490                 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1491                         err = f2fs_decrypt_one(inode, page);
1492                         if (err)
1493                                 goto fail;
1494                 }
1495         }
1496 out_update:
1497         SetPageUptodate(page);
1498 out_clear:
1499         clear_cold_data(page);
1500         return 0;
1501
1502 put_fail:
1503         f2fs_put_dnode(&dn);
1504 unlock_fail:
1505         f2fs_unlock_op(sbi);
1506 fail:
1507         f2fs_put_page(page, 1);
1508         f2fs_write_failed(mapping, pos + len);
1509         return err;
1510 }
1511
1512 static int f2fs_write_end(struct file *file,
1513                         struct address_space *mapping,
1514                         loff_t pos, unsigned len, unsigned copied,
1515                         struct page *page, void *fsdata)
1516 {
1517         struct inode *inode = page->mapping->host;
1518
1519         trace_f2fs_write_end(inode, pos, len, copied);
1520
1521         set_page_dirty(page);
1522
1523         if (pos + copied > i_size_read(inode)) {
1524                 i_size_write(inode, pos + copied);
1525                 mark_inode_dirty(inode);
1526                 update_inode_page(inode);
1527         }
1528
1529         f2fs_put_page(page, 1);
1530         return copied;
1531 }
1532
1533 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1534                            loff_t offset)
1535 {
1536         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1537
1538         if (offset & blocksize_mask)
1539                 return -EINVAL;
1540
1541         if (iov_iter_alignment(iter) & blocksize_mask)
1542                 return -EINVAL;
1543
1544         return 0;
1545 }
1546
1547 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1548                               loff_t offset)
1549 {
1550         struct file *file = iocb->ki_filp;
1551         struct address_space *mapping = file->f_mapping;
1552         struct inode *inode = mapping->host;
1553         size_t count = iov_iter_count(iter);
1554         int err;
1555
1556         /* we don't need to use inline_data strictly */
1557         if (f2fs_has_inline_data(inode)) {
1558                 err = f2fs_convert_inline_inode(inode);
1559                 if (err)
1560                         return err;
1561         }
1562
1563         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1564                 return 0;
1565
1566         err = check_direct_IO(inode, iter, offset);
1567         if (err)
1568                 return err;
1569
1570         trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1571
1572         if (iov_iter_rw(iter) == WRITE) {
1573                 __allocate_data_blocks(inode, offset, count);
1574                 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1575                         err = -EIO;
1576                         goto out;
1577                 }
1578         }
1579
1580         err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
1581 out:
1582         if (err < 0 && iov_iter_rw(iter) == WRITE)
1583                 f2fs_write_failed(mapping, offset + count);
1584
1585         trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1586
1587         return err;
1588 }
1589
1590 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1591                                                         unsigned int length)
1592 {
1593         struct inode *inode = page->mapping->host;
1594         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1595
1596         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1597                 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1598                 return;
1599
1600         if (PageDirty(page)) {
1601                 if (inode->i_ino == F2FS_META_INO(sbi))
1602                         dec_page_count(sbi, F2FS_DIRTY_META);
1603                 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1604                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1605                 else
1606                         inode_dec_dirty_pages(inode);
1607         }
1608
1609         /* This is atomic written page, keep Private */
1610         if (IS_ATOMIC_WRITTEN_PAGE(page))
1611                 return;
1612
1613         ClearPagePrivate(page);
1614 }
1615
1616 int f2fs_release_page(struct page *page, gfp_t wait)
1617 {
1618         /* If this is dirty page, keep PagePrivate */
1619         if (PageDirty(page))
1620                 return 0;
1621
1622         /* This is atomic written page, keep Private */
1623         if (IS_ATOMIC_WRITTEN_PAGE(page))
1624                 return 0;
1625
1626         ClearPagePrivate(page);
1627         return 1;
1628 }
1629
1630 static int f2fs_set_data_page_dirty(struct page *page)
1631 {
1632         struct address_space *mapping = page->mapping;
1633         struct inode *inode = mapping->host;
1634
1635         trace_f2fs_set_page_dirty(page, DATA);
1636
1637         SetPageUptodate(page);
1638
1639         if (f2fs_is_atomic_file(inode)) {
1640                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1641                         register_inmem_page(inode, page);
1642                         return 1;
1643                 }
1644                 /*
1645                  * Previously, this page has been registered, we just
1646                  * return here.
1647                  */
1648                 return 0;
1649         }
1650
1651         if (!PageDirty(page)) {
1652                 __set_page_dirty_nobuffers(page);
1653                 update_dirty_page(inode, page);
1654                 return 1;
1655         }
1656         return 0;
1657 }
1658
1659 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1660 {
1661         struct inode *inode = mapping->host;
1662
1663         /* we don't need to use inline_data strictly */
1664         if (f2fs_has_inline_data(inode)) {
1665                 int err = f2fs_convert_inline_inode(inode);
1666                 if (err)
1667                         return err;
1668         }
1669         return generic_block_bmap(mapping, block, get_data_block_bmap);
1670 }
1671
1672 const struct address_space_operations f2fs_dblock_aops = {
1673         .readpage       = f2fs_read_data_page,
1674         .readpages      = f2fs_read_data_pages,
1675         .writepage      = f2fs_write_data_page,
1676         .writepages     = f2fs_write_data_pages,
1677         .write_begin    = f2fs_write_begin,
1678         .write_end      = f2fs_write_end,
1679         .set_page_dirty = f2fs_set_data_page_dirty,
1680         .invalidatepage = f2fs_invalidate_page,
1681         .releasepage    = f2fs_release_page,
1682         .direct_IO      = f2fs_direct_IO,
1683         .bmap           = f2fs_bmap,
1684 };