]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/data.c
f2fs: fix overflow of size calculation
[karo-tx-linux.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32         struct bio_vec *bvec;
33         int i;
34
35         if (f2fs_bio_encrypted(bio)) {
36                 if (bio->bi_error) {
37                         f2fs_release_crypto_ctx(bio->bi_private);
38                 } else {
39                         f2fs_end_io_crypto_work(bio->bi_private, bio);
40                         return;
41                 }
42         }
43
44         bio_for_each_segment_all(bvec, bio, i) {
45                 struct page *page = bvec->bv_page;
46
47                 if (!bio->bi_error) {
48                         SetPageUptodate(page);
49                 } else {
50                         ClearPageUptodate(page);
51                         SetPageError(page);
52                 }
53                 unlock_page(page);
54         }
55         bio_put(bio);
56 }
57
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60         struct f2fs_sb_info *sbi = bio->bi_private;
61         struct bio_vec *bvec;
62         int i;
63
64         bio_for_each_segment_all(bvec, bio, i) {
65                 struct page *page = bvec->bv_page;
66
67                 f2fs_restore_and_release_control_page(&page);
68
69                 if (unlikely(bio->bi_error)) {
70                         set_page_dirty(page);
71                         set_bit(AS_EIO, &page->mapping->flags);
72                         f2fs_stop_checkpoint(sbi);
73                 }
74                 end_page_writeback(page);
75                 dec_page_count(sbi, F2FS_WRITEBACK);
76         }
77
78         if (!get_pages(sbi, F2FS_WRITEBACK) &&
79                         !list_empty(&sbi->cp_wait.task_list))
80                 wake_up(&sbi->cp_wait);
81
82         bio_put(bio);
83 }
84
85 /*
86  * Low-level block read/write IO operations.
87  */
88 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
89                                 int npages, bool is_read)
90 {
91         struct bio *bio;
92
93         bio = f2fs_bio_alloc(npages);
94
95         bio->bi_bdev = sbi->sb->s_bdev;
96         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
97         bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
98         bio->bi_private = is_read ? NULL : sbi;
99
100         return bio;
101 }
102
103 static void __submit_merged_bio(struct f2fs_bio_info *io)
104 {
105         struct f2fs_io_info *fio = &io->fio;
106
107         if (!io->bio)
108                 return;
109
110         if (is_read_io(fio->rw))
111                 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
112         else
113                 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
114
115         submit_bio(fio->rw, io->bio);
116         io->bio = NULL;
117 }
118
119 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
120                                 enum page_type type, int rw)
121 {
122         enum page_type btype = PAGE_TYPE_OF_BIO(type);
123         struct f2fs_bio_info *io;
124
125         io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
126
127         down_write(&io->io_rwsem);
128
129         /* change META to META_FLUSH in the checkpoint procedure */
130         if (type >= META_FLUSH) {
131                 io->fio.type = META_FLUSH;
132                 if (test_opt(sbi, NOBARRIER))
133                         io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
134                 else
135                         io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
136         }
137         __submit_merged_bio(io);
138         up_write(&io->io_rwsem);
139 }
140
141 /*
142  * Fill the locked page with data located in the block address.
143  * Return unlocked page.
144  */
145 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
146 {
147         struct bio *bio;
148         struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
149
150         trace_f2fs_submit_page_bio(page, fio);
151         f2fs_trace_ios(fio, 0);
152
153         /* Allocate a new bio */
154         bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
155
156         if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
157                 bio_put(bio);
158                 return -EFAULT;
159         }
160
161         submit_bio(fio->rw, bio);
162         return 0;
163 }
164
165 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
166 {
167         struct f2fs_sb_info *sbi = fio->sbi;
168         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
169         struct f2fs_bio_info *io;
170         bool is_read = is_read_io(fio->rw);
171         struct page *bio_page;
172
173         io = is_read ? &sbi->read_io : &sbi->write_io[btype];
174
175         verify_block_addr(sbi, fio->blk_addr);
176
177         down_write(&io->io_rwsem);
178
179         if (!is_read)
180                 inc_page_count(sbi, F2FS_WRITEBACK);
181
182         if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
183                                                 io->fio.rw != fio->rw))
184                 __submit_merged_bio(io);
185 alloc_new:
186         if (io->bio == NULL) {
187                 int bio_blocks = MAX_BIO_BLOCKS(sbi);
188
189                 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
190                 io->fio = *fio;
191         }
192
193         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
194
195         if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
196                                                         PAGE_CACHE_SIZE) {
197                 __submit_merged_bio(io);
198                 goto alloc_new;
199         }
200
201         io->last_block_in_bio = fio->blk_addr;
202         f2fs_trace_ios(fio, 0);
203
204         up_write(&io->io_rwsem);
205         trace_f2fs_submit_page_mbio(fio->page, fio);
206 }
207
208 /*
209  * Lock ordering for the change of data block address:
210  * ->data_page
211  *  ->node_page
212  *    update block addresses in the node page
213  */
214 void set_data_blkaddr(struct dnode_of_data *dn)
215 {
216         struct f2fs_node *rn;
217         __le32 *addr_array;
218         struct page *node_page = dn->node_page;
219         unsigned int ofs_in_node = dn->ofs_in_node;
220
221         f2fs_wait_on_page_writeback(node_page, NODE);
222
223         rn = F2FS_NODE(node_page);
224
225         /* Get physical address of data block */
226         addr_array = blkaddr_in_node(rn);
227         addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
228         set_page_dirty(node_page);
229 }
230
231 int reserve_new_block(struct dnode_of_data *dn)
232 {
233         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
234
235         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
236                 return -EPERM;
237         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
238                 return -ENOSPC;
239
240         trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
241
242         dn->data_blkaddr = NEW_ADDR;
243         set_data_blkaddr(dn);
244         mark_inode_dirty(dn->inode);
245         sync_inode_page(dn);
246         return 0;
247 }
248
249 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
250 {
251         bool need_put = dn->inode_page ? false : true;
252         int err;
253
254         err = get_dnode_of_data(dn, index, ALLOC_NODE);
255         if (err)
256                 return err;
257
258         if (dn->data_blkaddr == NULL_ADDR)
259                 err = reserve_new_block(dn);
260         if (err || need_put)
261                 f2fs_put_dnode(dn);
262         return err;
263 }
264
265 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
266 {
267         struct extent_info ei;
268         struct inode *inode = dn->inode;
269
270         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
271                 dn->data_blkaddr = ei.blk + index - ei.fofs;
272                 return 0;
273         }
274
275         return f2fs_reserve_block(dn, index);
276 }
277
278 struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
279 {
280         struct address_space *mapping = inode->i_mapping;
281         struct dnode_of_data dn;
282         struct page *page;
283         struct extent_info ei;
284         int err;
285         struct f2fs_io_info fio = {
286                 .sbi = F2FS_I_SB(inode),
287                 .type = DATA,
288                 .rw = rw,
289                 .encrypted_page = NULL,
290         };
291
292         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
293                 return read_mapping_page(mapping, index, NULL);
294
295         page = grab_cache_page(mapping, index);
296         if (!page)
297                 return ERR_PTR(-ENOMEM);
298
299         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
300                 dn.data_blkaddr = ei.blk + index - ei.fofs;
301                 goto got_it;
302         }
303
304         set_new_dnode(&dn, inode, NULL, NULL, 0);
305         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
306         if (err)
307                 goto put_err;
308         f2fs_put_dnode(&dn);
309
310         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
311                 err = -ENOENT;
312                 goto put_err;
313         }
314 got_it:
315         if (PageUptodate(page)) {
316                 unlock_page(page);
317                 return page;
318         }
319
320         /*
321          * A new dentry page is allocated but not able to be written, since its
322          * new inode page couldn't be allocated due to -ENOSPC.
323          * In such the case, its blkaddr can be remained as NEW_ADDR.
324          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
325          */
326         if (dn.data_blkaddr == NEW_ADDR) {
327                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
328                 SetPageUptodate(page);
329                 unlock_page(page);
330                 return page;
331         }
332
333         fio.blk_addr = dn.data_blkaddr;
334         fio.page = page;
335         err = f2fs_submit_page_bio(&fio);
336         if (err)
337                 goto put_err;
338         return page;
339
340 put_err:
341         f2fs_put_page(page, 1);
342         return ERR_PTR(err);
343 }
344
345 struct page *find_data_page(struct inode *inode, pgoff_t index)
346 {
347         struct address_space *mapping = inode->i_mapping;
348         struct page *page;
349
350         page = find_get_page(mapping, index);
351         if (page && PageUptodate(page))
352                 return page;
353         f2fs_put_page(page, 0);
354
355         page = get_read_data_page(inode, index, READ_SYNC);
356         if (IS_ERR(page))
357                 return page;
358
359         if (PageUptodate(page))
360                 return page;
361
362         wait_on_page_locked(page);
363         if (unlikely(!PageUptodate(page))) {
364                 f2fs_put_page(page, 0);
365                 return ERR_PTR(-EIO);
366         }
367         return page;
368 }
369
370 /*
371  * If it tries to access a hole, return an error.
372  * Because, the callers, functions in dir.c and GC, should be able to know
373  * whether this page exists or not.
374  */
375 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
376 {
377         struct address_space *mapping = inode->i_mapping;
378         struct page *page;
379 repeat:
380         page = get_read_data_page(inode, index, READ_SYNC);
381         if (IS_ERR(page))
382                 return page;
383
384         /* wait for read completion */
385         lock_page(page);
386         if (unlikely(!PageUptodate(page))) {
387                 f2fs_put_page(page, 1);
388                 return ERR_PTR(-EIO);
389         }
390         if (unlikely(page->mapping != mapping)) {
391                 f2fs_put_page(page, 1);
392                 goto repeat;
393         }
394         return page;
395 }
396
397 /*
398  * Caller ensures that this data page is never allocated.
399  * A new zero-filled data page is allocated in the page cache.
400  *
401  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
402  * f2fs_unlock_op().
403  * Note that, ipage is set only by make_empty_dir, and if any error occur,
404  * ipage should be released by this function.
405  */
406 struct page *get_new_data_page(struct inode *inode,
407                 struct page *ipage, pgoff_t index, bool new_i_size)
408 {
409         struct address_space *mapping = inode->i_mapping;
410         struct page *page;
411         struct dnode_of_data dn;
412         int err;
413 repeat:
414         page = grab_cache_page(mapping, index);
415         if (!page) {
416                 /*
417                  * before exiting, we should make sure ipage will be released
418                  * if any error occur.
419                  */
420                 f2fs_put_page(ipage, 1);
421                 return ERR_PTR(-ENOMEM);
422         }
423
424         set_new_dnode(&dn, inode, ipage, NULL, 0);
425         err = f2fs_reserve_block(&dn, index);
426         if (err) {
427                 f2fs_put_page(page, 1);
428                 return ERR_PTR(err);
429         }
430         if (!ipage)
431                 f2fs_put_dnode(&dn);
432
433         if (PageUptodate(page))
434                 goto got_it;
435
436         if (dn.data_blkaddr == NEW_ADDR) {
437                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
438                 SetPageUptodate(page);
439         } else {
440                 f2fs_put_page(page, 1);
441
442                 page = get_read_data_page(inode, index, READ_SYNC);
443                 if (IS_ERR(page))
444                         goto repeat;
445
446                 /* wait for read completion */
447                 lock_page(page);
448         }
449 got_it:
450         if (new_i_size && i_size_read(inode) <
451                                 ((loff_t)(index + 1) << PAGE_CACHE_SHIFT)) {
452                 i_size_write(inode, ((loff_t)(index + 1) << PAGE_CACHE_SHIFT));
453                 /* Only the directory inode sets new_i_size */
454                 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
455         }
456         return page;
457 }
458
459 static int __allocate_data_block(struct dnode_of_data *dn)
460 {
461         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
462         struct f2fs_inode_info *fi = F2FS_I(dn->inode);
463         struct f2fs_summary sum;
464         struct node_info ni;
465         int seg = CURSEG_WARM_DATA;
466         pgoff_t fofs;
467
468         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
469                 return -EPERM;
470
471         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
472         if (dn->data_blkaddr == NEW_ADDR)
473                 goto alloc;
474
475         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
476                 return -ENOSPC;
477
478 alloc:
479         get_node_info(sbi, dn->nid, &ni);
480         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
481
482         if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
483                 seg = CURSEG_DIRECT_IO;
484
485         allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
486                                                                 &sum, seg);
487         set_data_blkaddr(dn);
488
489         /* update i_size */
490         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
491                                                         dn->ofs_in_node;
492         if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT))
493                 i_size_write(dn->inode,
494                                 ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT));
495
496         /* direct IO doesn't use extent cache to maximize the performance */
497         f2fs_drop_largest_extent(dn->inode, fofs);
498
499         return 0;
500 }
501
502 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
503                                                         size_t count)
504 {
505         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
506         struct dnode_of_data dn;
507         u64 start = F2FS_BYTES_TO_BLK(offset);
508         u64 len = F2FS_BYTES_TO_BLK(count);
509         bool allocated;
510         u64 end_offset;
511
512         while (len) {
513                 f2fs_balance_fs(sbi);
514                 f2fs_lock_op(sbi);
515
516                 /* When reading holes, we need its node page */
517                 set_new_dnode(&dn, inode, NULL, NULL, 0);
518                 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
519                         goto out;
520
521                 allocated = false;
522                 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
523
524                 while (dn.ofs_in_node < end_offset && len) {
525                         block_t blkaddr;
526
527                         blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
528                         if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
529                                 if (__allocate_data_block(&dn))
530                                         goto sync_out;
531                                 allocated = true;
532                         }
533                         len--;
534                         start++;
535                         dn.ofs_in_node++;
536                 }
537
538                 if (allocated)
539                         sync_inode_page(&dn);
540
541                 f2fs_put_dnode(&dn);
542                 f2fs_unlock_op(sbi);
543         }
544         return;
545
546 sync_out:
547         if (allocated)
548                 sync_inode_page(&dn);
549         f2fs_put_dnode(&dn);
550 out:
551         f2fs_unlock_op(sbi);
552         return;
553 }
554
555 /*
556  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
557  * f2fs_map_blocks structure.
558  * If original data blocks are allocated, then give them to blockdev.
559  * Otherwise,
560  *     a. preallocate requested block addresses
561  *     b. do not use extent cache for better performance
562  *     c. give the block addresses to blockdev
563  */
564 static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
565                                                 int create, int flag)
566 {
567         unsigned int maxblocks = map->m_len;
568         struct dnode_of_data dn;
569         int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
570         pgoff_t pgofs, end_offset;
571         int err = 0, ofs = 1;
572         struct extent_info ei;
573         bool allocated = false;
574
575         map->m_len = 0;
576         map->m_flags = 0;
577
578         /* it only supports block size == page size */
579         pgofs = (pgoff_t)map->m_lblk;
580
581         if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
582                 map->m_pblk = ei.blk + pgofs - ei.fofs;
583                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
584                 map->m_flags = F2FS_MAP_MAPPED;
585                 goto out;
586         }
587
588         if (create)
589                 f2fs_lock_op(F2FS_I_SB(inode));
590
591         /* When reading holes, we need its node page */
592         set_new_dnode(&dn, inode, NULL, NULL, 0);
593         err = get_dnode_of_data(&dn, pgofs, mode);
594         if (err) {
595                 if (err == -ENOENT)
596                         err = 0;
597                 goto unlock_out;
598         }
599         if (dn.data_blkaddr == NEW_ADDR) {
600                 if (flag == F2FS_GET_BLOCK_BMAP) {
601                         err = -ENOENT;
602                         goto put_out;
603                 } else if (flag == F2FS_GET_BLOCK_READ ||
604                                 flag == F2FS_GET_BLOCK_DIO) {
605                         goto put_out;
606                 }
607                 /*
608                  * if it is in fiemap call path (flag = F2FS_GET_BLOCK_FIEMAP),
609                  * mark it as mapped and unwritten block.
610                  */
611         }
612
613         if (dn.data_blkaddr != NULL_ADDR) {
614                 map->m_flags = F2FS_MAP_MAPPED;
615                 map->m_pblk = dn.data_blkaddr;
616                 if (dn.data_blkaddr == NEW_ADDR)
617                         map->m_flags |= F2FS_MAP_UNWRITTEN;
618         } else if (create) {
619                 err = __allocate_data_block(&dn);
620                 if (err)
621                         goto put_out;
622                 allocated = true;
623                 map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
624                 map->m_pblk = dn.data_blkaddr;
625         } else {
626                 if (flag == F2FS_GET_BLOCK_BMAP)
627                         err = -ENOENT;
628                 goto put_out;
629         }
630
631         end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
632         map->m_len = 1;
633         dn.ofs_in_node++;
634         pgofs++;
635
636 get_next:
637         if (dn.ofs_in_node >= end_offset) {
638                 if (allocated)
639                         sync_inode_page(&dn);
640                 allocated = false;
641                 f2fs_put_dnode(&dn);
642
643                 set_new_dnode(&dn, inode, NULL, NULL, 0);
644                 err = get_dnode_of_data(&dn, pgofs, mode);
645                 if (err) {
646                         if (err == -ENOENT)
647                                 err = 0;
648                         goto unlock_out;
649                 }
650
651                 if (dn.data_blkaddr == NEW_ADDR &&
652                                 flag != F2FS_GET_BLOCK_FIEMAP)
653                         goto put_out;
654
655                 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
656         }
657
658         if (maxblocks > map->m_len) {
659                 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
660                 if (blkaddr == NULL_ADDR && create) {
661                         err = __allocate_data_block(&dn);
662                         if (err)
663                                 goto sync_out;
664                         allocated = true;
665                         map->m_flags |= F2FS_MAP_NEW;
666                         blkaddr = dn.data_blkaddr;
667                 }
668                 /* Give more consecutive addresses for the readahead */
669                 if ((map->m_pblk != NEW_ADDR &&
670                                 blkaddr == (map->m_pblk + ofs)) ||
671                                 (map->m_pblk == NEW_ADDR &&
672                                 blkaddr == NEW_ADDR)) {
673                         ofs++;
674                         dn.ofs_in_node++;
675                         pgofs++;
676                         map->m_len++;
677                         goto get_next;
678                 }
679         }
680 sync_out:
681         if (allocated)
682                 sync_inode_page(&dn);
683 put_out:
684         f2fs_put_dnode(&dn);
685 unlock_out:
686         if (create)
687                 f2fs_unlock_op(F2FS_I_SB(inode));
688 out:
689         trace_f2fs_map_blocks(inode, map, err);
690         return err;
691 }
692
693 static int __get_data_block(struct inode *inode, sector_t iblock,
694                         struct buffer_head *bh, int create, int flag)
695 {
696         struct f2fs_map_blocks map;
697         int ret;
698
699         map.m_lblk = iblock;
700         map.m_len = bh->b_size >> inode->i_blkbits;
701
702         ret = f2fs_map_blocks(inode, &map, create, flag);
703         if (!ret) {
704                 map_bh(bh, inode->i_sb, map.m_pblk);
705                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
706                 bh->b_size = map.m_len << inode->i_blkbits;
707         }
708         return ret;
709 }
710
711 static int get_data_block(struct inode *inode, sector_t iblock,
712                         struct buffer_head *bh_result, int create, int flag)
713 {
714         return __get_data_block(inode, iblock, bh_result, create, flag);
715 }
716
717 static int get_data_block_dio(struct inode *inode, sector_t iblock,
718                         struct buffer_head *bh_result, int create)
719 {
720         return __get_data_block(inode, iblock, bh_result, create,
721                                                 F2FS_GET_BLOCK_DIO);
722 }
723
724 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
725                         struct buffer_head *bh_result, int create)
726 {
727         return __get_data_block(inode, iblock, bh_result, create,
728                                                 F2FS_GET_BLOCK_BMAP);
729 }
730
731 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
732 {
733         return (offset >> inode->i_blkbits);
734 }
735
736 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
737 {
738         return (blk << inode->i_blkbits);
739 }
740
741 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
742                 u64 start, u64 len)
743 {
744         struct buffer_head map_bh;
745         sector_t start_blk, last_blk;
746         loff_t isize = i_size_read(inode);
747         u64 logical = 0, phys = 0, size = 0;
748         u32 flags = 0;
749         bool past_eof = false, whole_file = false;
750         int ret = 0;
751
752         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
753         if (ret)
754                 return ret;
755
756         mutex_lock(&inode->i_mutex);
757
758         if (len >= isize) {
759                 whole_file = true;
760                 len = isize;
761         }
762
763         if (logical_to_blk(inode, len) == 0)
764                 len = blk_to_logical(inode, 1);
765
766         start_blk = logical_to_blk(inode, start);
767         last_blk = logical_to_blk(inode, start + len - 1);
768 next:
769         memset(&map_bh, 0, sizeof(struct buffer_head));
770         map_bh.b_size = len;
771
772         ret = get_data_block(inode, start_blk, &map_bh, 0,
773                                         F2FS_GET_BLOCK_FIEMAP);
774         if (ret)
775                 goto out;
776
777         /* HOLE */
778         if (!buffer_mapped(&map_bh)) {
779                 start_blk++;
780
781                 if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
782                         past_eof = 1;
783
784                 if (past_eof && size) {
785                         flags |= FIEMAP_EXTENT_LAST;
786                         ret = fiemap_fill_next_extent(fieinfo, logical,
787                                         phys, size, flags);
788                 } else if (size) {
789                         ret = fiemap_fill_next_extent(fieinfo, logical,
790                                         phys, size, flags);
791                         size = 0;
792                 }
793
794                 /* if we have holes up to/past EOF then we're done */
795                 if (start_blk > last_blk || past_eof || ret)
796                         goto out;
797         } else {
798                 if (start_blk > last_blk && !whole_file) {
799                         ret = fiemap_fill_next_extent(fieinfo, logical,
800                                         phys, size, flags);
801                         goto out;
802                 }
803
804                 /*
805                  * if size != 0 then we know we already have an extent
806                  * to add, so add it.
807                  */
808                 if (size) {
809                         ret = fiemap_fill_next_extent(fieinfo, logical,
810                                         phys, size, flags);
811                         if (ret)
812                                 goto out;
813                 }
814
815                 logical = blk_to_logical(inode, start_blk);
816                 phys = blk_to_logical(inode, map_bh.b_blocknr);
817                 size = map_bh.b_size;
818                 flags = 0;
819                 if (buffer_unwritten(&map_bh))
820                         flags = FIEMAP_EXTENT_UNWRITTEN;
821
822                 start_blk += logical_to_blk(inode, size);
823
824                 /*
825                  * If we are past the EOF, then we need to make sure as
826                  * soon as we find a hole that the last extent we found
827                  * is marked with FIEMAP_EXTENT_LAST
828                  */
829                 if (!past_eof && logical + size >= isize)
830                         past_eof = true;
831         }
832         cond_resched();
833         if (fatal_signal_pending(current))
834                 ret = -EINTR;
835         else
836                 goto next;
837 out:
838         if (ret == 1)
839                 ret = 0;
840
841         mutex_unlock(&inode->i_mutex);
842         return ret;
843 }
844
845 /*
846  * This function was originally taken from fs/mpage.c, and customized for f2fs.
847  * Major change was from block_size == page_size in f2fs by default.
848  */
849 static int f2fs_mpage_readpages(struct address_space *mapping,
850                         struct list_head *pages, struct page *page,
851                         unsigned nr_pages)
852 {
853         struct bio *bio = NULL;
854         unsigned page_idx;
855         sector_t last_block_in_bio = 0;
856         struct inode *inode = mapping->host;
857         const unsigned blkbits = inode->i_blkbits;
858         const unsigned blocksize = 1 << blkbits;
859         sector_t block_in_file;
860         sector_t last_block;
861         sector_t last_block_in_file;
862         sector_t block_nr;
863         struct block_device *bdev = inode->i_sb->s_bdev;
864         struct f2fs_map_blocks map;
865
866         map.m_pblk = 0;
867         map.m_lblk = 0;
868         map.m_len = 0;
869         map.m_flags = 0;
870
871         for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
872
873                 prefetchw(&page->flags);
874                 if (pages) {
875                         page = list_entry(pages->prev, struct page, lru);
876                         list_del(&page->lru);
877                         if (add_to_page_cache_lru(page, mapping,
878                                                   page->index, GFP_KERNEL))
879                                 goto next_page;
880                 }
881
882                 block_in_file = (sector_t)page->index;
883                 last_block = block_in_file + nr_pages;
884                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
885                                                                 blkbits;
886                 if (last_block > last_block_in_file)
887                         last_block = last_block_in_file;
888
889                 /*
890                  * Map blocks using the previous result first.
891                  */
892                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
893                                 block_in_file > map.m_lblk &&
894                                 block_in_file < (map.m_lblk + map.m_len))
895                         goto got_it;
896
897                 /*
898                  * Then do more f2fs_map_blocks() calls until we are
899                  * done with this page.
900                  */
901                 map.m_flags = 0;
902
903                 if (block_in_file < last_block) {
904                         map.m_lblk = block_in_file;
905                         map.m_len = last_block - block_in_file;
906
907                         if (f2fs_map_blocks(inode, &map, 0, false))
908                                 goto set_error_page;
909                 }
910 got_it:
911                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
912                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
913                         SetPageMappedToDisk(page);
914
915                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
916                                 SetPageUptodate(page);
917                                 goto confused;
918                         }
919                 } else {
920                         zero_user_segment(page, 0, PAGE_CACHE_SIZE);
921                         SetPageUptodate(page);
922                         unlock_page(page);
923                         goto next_page;
924                 }
925
926                 /*
927                  * This page will go to BIO.  Do we need to send this
928                  * BIO off first?
929                  */
930                 if (bio && (last_block_in_bio != block_nr - 1)) {
931 submit_and_realloc:
932                         submit_bio(READ, bio);
933                         bio = NULL;
934                 }
935                 if (bio == NULL) {
936                         struct f2fs_crypto_ctx *ctx = NULL;
937
938                         if (f2fs_encrypted_inode(inode) &&
939                                         S_ISREG(inode->i_mode)) {
940                                 struct page *cpage;
941
942                                 ctx = f2fs_get_crypto_ctx(inode);
943                                 if (IS_ERR(ctx))
944                                         goto set_error_page;
945
946                                 /* wait the page to be moved by cleaning */
947                                 cpage = find_lock_page(
948                                                 META_MAPPING(F2FS_I_SB(inode)),
949                                                 block_nr);
950                                 if (cpage) {
951                                         f2fs_wait_on_page_writeback(cpage,
952                                                                         DATA);
953                                         f2fs_put_page(cpage, 1);
954                                 }
955                         }
956
957                         bio = bio_alloc(GFP_KERNEL,
958                                 min_t(int, nr_pages, BIO_MAX_PAGES));
959                         if (!bio) {
960                                 if (ctx)
961                                         f2fs_release_crypto_ctx(ctx);
962                                 goto set_error_page;
963                         }
964                         bio->bi_bdev = bdev;
965                         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
966                         bio->bi_end_io = f2fs_read_end_io;
967                         bio->bi_private = ctx;
968                 }
969
970                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
971                         goto submit_and_realloc;
972
973                 last_block_in_bio = block_nr;
974                 goto next_page;
975 set_error_page:
976                 SetPageError(page);
977                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
978                 unlock_page(page);
979                 goto next_page;
980 confused:
981                 if (bio) {
982                         submit_bio(READ, bio);
983                         bio = NULL;
984                 }
985                 unlock_page(page);
986 next_page:
987                 if (pages)
988                         page_cache_release(page);
989         }
990         BUG_ON(pages && !list_empty(pages));
991         if (bio)
992                 submit_bio(READ, bio);
993         return 0;
994 }
995
996 static int f2fs_read_data_page(struct file *file, struct page *page)
997 {
998         struct inode *inode = page->mapping->host;
999         int ret = -EAGAIN;
1000
1001         trace_f2fs_readpage(page, DATA);
1002
1003         /* If the file has inline data, try to read it directly */
1004         if (f2fs_has_inline_data(inode))
1005                 ret = f2fs_read_inline_data(inode, page);
1006         if (ret == -EAGAIN)
1007                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1008         return ret;
1009 }
1010
1011 static int f2fs_read_data_pages(struct file *file,
1012                         struct address_space *mapping,
1013                         struct list_head *pages, unsigned nr_pages)
1014 {
1015         struct inode *inode = file->f_mapping->host;
1016
1017         /* If the file has inline data, skip readpages */
1018         if (f2fs_has_inline_data(inode))
1019                 return 0;
1020
1021         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1022 }
1023
1024 int do_write_data_page(struct f2fs_io_info *fio)
1025 {
1026         struct page *page = fio->page;
1027         struct inode *inode = page->mapping->host;
1028         struct dnode_of_data dn;
1029         int err = 0;
1030
1031         set_new_dnode(&dn, inode, NULL, NULL, 0);
1032         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1033         if (err)
1034                 return err;
1035
1036         fio->blk_addr = dn.data_blkaddr;
1037
1038         /* This page is already truncated */
1039         if (fio->blk_addr == NULL_ADDR) {
1040                 ClearPageUptodate(page);
1041                 goto out_writepage;
1042         }
1043
1044         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1045                 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1046                 if (IS_ERR(fio->encrypted_page)) {
1047                         err = PTR_ERR(fio->encrypted_page);
1048                         goto out_writepage;
1049                 }
1050         }
1051
1052         set_page_writeback(page);
1053
1054         /*
1055          * If current allocation needs SSR,
1056          * it had better in-place writes for updated data.
1057          */
1058         if (unlikely(fio->blk_addr != NEW_ADDR &&
1059                         !is_cold_data(page) &&
1060                         need_inplace_update(inode))) {
1061                 rewrite_data_page(fio);
1062                 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1063                 trace_f2fs_do_write_data_page(page, IPU);
1064         } else {
1065                 write_data_page(&dn, fio);
1066                 set_data_blkaddr(&dn);
1067                 f2fs_update_extent_cache(&dn);
1068                 trace_f2fs_do_write_data_page(page, OPU);
1069                 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1070                 if (page->index == 0)
1071                         set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1072         }
1073 out_writepage:
1074         f2fs_put_dnode(&dn);
1075         return err;
1076 }
1077
1078 static int f2fs_write_data_page(struct page *page,
1079                                         struct writeback_control *wbc)
1080 {
1081         struct inode *inode = page->mapping->host;
1082         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1083         loff_t i_size = i_size_read(inode);
1084         const pgoff_t end_index = ((unsigned long long) i_size)
1085                                                         >> PAGE_CACHE_SHIFT;
1086         unsigned offset = 0;
1087         bool need_balance_fs = false;
1088         int err = 0;
1089         struct f2fs_io_info fio = {
1090                 .sbi = sbi,
1091                 .type = DATA,
1092                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1093                 .page = page,
1094                 .encrypted_page = NULL,
1095         };
1096
1097         trace_f2fs_writepage(page, DATA);
1098
1099         if (page->index < end_index)
1100                 goto write;
1101
1102         /*
1103          * If the offset is out-of-range of file size,
1104          * this page does not have to be written to disk.
1105          */
1106         offset = i_size & (PAGE_CACHE_SIZE - 1);
1107         if ((page->index >= end_index + 1) || !offset)
1108                 goto out;
1109
1110         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1111 write:
1112         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1113                 goto redirty_out;
1114         if (f2fs_is_drop_cache(inode))
1115                 goto out;
1116         if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1117                         available_free_memory(sbi, BASE_CHECK))
1118                 goto redirty_out;
1119
1120         /* Dentry blocks are controlled by checkpoint */
1121         if (S_ISDIR(inode->i_mode)) {
1122                 if (unlikely(f2fs_cp_error(sbi)))
1123                         goto redirty_out;
1124                 err = do_write_data_page(&fio);
1125                 goto done;
1126         }
1127
1128         /* we should bypass data pages to proceed the kworkder jobs */
1129         if (unlikely(f2fs_cp_error(sbi))) {
1130                 SetPageError(page);
1131                 goto out;
1132         }
1133
1134         if (!wbc->for_reclaim)
1135                 need_balance_fs = true;
1136         else if (has_not_enough_free_secs(sbi, 0))
1137                 goto redirty_out;
1138
1139         err = -EAGAIN;
1140         f2fs_lock_op(sbi);
1141         if (f2fs_has_inline_data(inode))
1142                 err = f2fs_write_inline_data(inode, page);
1143         if (err == -EAGAIN)
1144                 err = do_write_data_page(&fio);
1145         f2fs_unlock_op(sbi);
1146 done:
1147         if (err && err != -ENOENT)
1148                 goto redirty_out;
1149
1150         clear_cold_data(page);
1151 out:
1152         inode_dec_dirty_pages(inode);
1153         if (err)
1154                 ClearPageUptodate(page);
1155         unlock_page(page);
1156         if (need_balance_fs)
1157                 f2fs_balance_fs(sbi);
1158         if (wbc->for_reclaim)
1159                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1160         return 0;
1161
1162 redirty_out:
1163         redirty_page_for_writepage(wbc, page);
1164         return AOP_WRITEPAGE_ACTIVATE;
1165 }
1166
1167 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1168                         void *data)
1169 {
1170         struct address_space *mapping = data;
1171         int ret = mapping->a_ops->writepage(page, wbc);
1172         mapping_set_error(mapping, ret);
1173         return ret;
1174 }
1175
1176 /*
1177  * This function was copied from write_cche_pages from mm/page-writeback.c.
1178  * The major change is making write step of cold data page separately from
1179  * warm/hot data page.
1180  */
1181 static int f2fs_write_cache_pages(struct address_space *mapping,
1182                         struct writeback_control *wbc, writepage_t writepage,
1183                         void *data)
1184 {
1185         int ret = 0;
1186         int done = 0;
1187         struct pagevec pvec;
1188         int nr_pages;
1189         pgoff_t uninitialized_var(writeback_index);
1190         pgoff_t index;
1191         pgoff_t end;            /* Inclusive */
1192         pgoff_t done_index;
1193         int cycled;
1194         int range_whole = 0;
1195         int tag;
1196         int step = 0;
1197
1198         pagevec_init(&pvec, 0);
1199 next:
1200         if (wbc->range_cyclic) {
1201                 writeback_index = mapping->writeback_index; /* prev offset */
1202                 index = writeback_index;
1203                 if (index == 0)
1204                         cycled = 1;
1205                 else
1206                         cycled = 0;
1207                 end = -1;
1208         } else {
1209                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1210                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1211                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1212                         range_whole = 1;
1213                 cycled = 1; /* ignore range_cyclic tests */
1214         }
1215         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1216                 tag = PAGECACHE_TAG_TOWRITE;
1217         else
1218                 tag = PAGECACHE_TAG_DIRTY;
1219 retry:
1220         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1221                 tag_pages_for_writeback(mapping, index, end);
1222         done_index = index;
1223         while (!done && (index <= end)) {
1224                 int i;
1225
1226                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1227                               min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1228                 if (nr_pages == 0)
1229                         break;
1230
1231                 for (i = 0; i < nr_pages; i++) {
1232                         struct page *page = pvec.pages[i];
1233
1234                         if (page->index > end) {
1235                                 done = 1;
1236                                 break;
1237                         }
1238
1239                         done_index = page->index;
1240
1241                         lock_page(page);
1242
1243                         if (unlikely(page->mapping != mapping)) {
1244 continue_unlock:
1245                                 unlock_page(page);
1246                                 continue;
1247                         }
1248
1249                         if (!PageDirty(page)) {
1250                                 /* someone wrote it for us */
1251                                 goto continue_unlock;
1252                         }
1253
1254                         if (step == is_cold_data(page))
1255                                 goto continue_unlock;
1256
1257                         if (PageWriteback(page)) {
1258                                 if (wbc->sync_mode != WB_SYNC_NONE)
1259                                         f2fs_wait_on_page_writeback(page, DATA);
1260                                 else
1261                                         goto continue_unlock;
1262                         }
1263
1264                         BUG_ON(PageWriteback(page));
1265                         if (!clear_page_dirty_for_io(page))
1266                                 goto continue_unlock;
1267
1268                         ret = (*writepage)(page, wbc, data);
1269                         if (unlikely(ret)) {
1270                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1271                                         unlock_page(page);
1272                                         ret = 0;
1273                                 } else {
1274                                         done_index = page->index + 1;
1275                                         done = 1;
1276                                         break;
1277                                 }
1278                         }
1279
1280                         if (--wbc->nr_to_write <= 0 &&
1281                             wbc->sync_mode == WB_SYNC_NONE) {
1282                                 done = 1;
1283                                 break;
1284                         }
1285                 }
1286                 pagevec_release(&pvec);
1287                 cond_resched();
1288         }
1289
1290         if (step < 1) {
1291                 step++;
1292                 goto next;
1293         }
1294
1295         if (!cycled && !done) {
1296                 cycled = 1;
1297                 index = 0;
1298                 end = writeback_index - 1;
1299                 goto retry;
1300         }
1301         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1302                 mapping->writeback_index = done_index;
1303
1304         return ret;
1305 }
1306
1307 static int f2fs_write_data_pages(struct address_space *mapping,
1308                             struct writeback_control *wbc)
1309 {
1310         struct inode *inode = mapping->host;
1311         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1312         bool locked = false;
1313         int ret;
1314         long diff;
1315
1316         trace_f2fs_writepages(mapping->host, wbc, DATA);
1317
1318         /* deal with chardevs and other special file */
1319         if (!mapping->a_ops->writepage)
1320                 return 0;
1321
1322         /* skip writing if there is no dirty page in this inode */
1323         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1324                 return 0;
1325
1326         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1327                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1328                         available_free_memory(sbi, DIRTY_DENTS))
1329                 goto skip_write;
1330
1331         /* during POR, we don't need to trigger writepage at all. */
1332         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1333                 goto skip_write;
1334
1335         diff = nr_pages_to_write(sbi, DATA, wbc);
1336
1337         if (!S_ISDIR(inode->i_mode)) {
1338                 mutex_lock(&sbi->writepages);
1339                 locked = true;
1340         }
1341         ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1342         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1343         if (locked)
1344                 mutex_unlock(&sbi->writepages);
1345
1346         remove_dirty_dir_inode(inode);
1347
1348         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1349         return ret;
1350
1351 skip_write:
1352         wbc->pages_skipped += get_dirty_pages(inode);
1353         return 0;
1354 }
1355
1356 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1357 {
1358         struct inode *inode = mapping->host;
1359
1360         if (to > inode->i_size) {
1361                 truncate_pagecache(inode, inode->i_size);
1362                 truncate_blocks(inode, inode->i_size, true);
1363         }
1364 }
1365
1366 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1367                 loff_t pos, unsigned len, unsigned flags,
1368                 struct page **pagep, void **fsdata)
1369 {
1370         struct inode *inode = mapping->host;
1371         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1372         struct page *page = NULL;
1373         struct page *ipage;
1374         pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1375         struct dnode_of_data dn;
1376         int err = 0;
1377
1378         trace_f2fs_write_begin(inode, pos, len, flags);
1379
1380         f2fs_balance_fs(sbi);
1381
1382         /*
1383          * We should check this at this moment to avoid deadlock on inode page
1384          * and #0 page. The locking rule for inline_data conversion should be:
1385          * lock_page(page #0) -> lock_page(inode_page)
1386          */
1387         if (index != 0) {
1388                 err = f2fs_convert_inline_inode(inode);
1389                 if (err)
1390                         goto fail;
1391         }
1392 repeat:
1393         page = grab_cache_page_write_begin(mapping, index, flags);
1394         if (!page) {
1395                 err = -ENOMEM;
1396                 goto fail;
1397         }
1398
1399         *pagep = page;
1400
1401         f2fs_lock_op(sbi);
1402
1403         /* check inline_data */
1404         ipage = get_node_page(sbi, inode->i_ino);
1405         if (IS_ERR(ipage)) {
1406                 err = PTR_ERR(ipage);
1407                 goto unlock_fail;
1408         }
1409
1410         set_new_dnode(&dn, inode, ipage, ipage, 0);
1411
1412         if (f2fs_has_inline_data(inode)) {
1413                 if (pos + len <= MAX_INLINE_DATA) {
1414                         read_inline_data(page, ipage);
1415                         set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1416                         sync_inode_page(&dn);
1417                         goto put_next;
1418                 }
1419                 err = f2fs_convert_inline_page(&dn, page);
1420                 if (err)
1421                         goto put_fail;
1422         }
1423
1424         err = f2fs_get_block(&dn, index);
1425         if (err)
1426                 goto put_fail;
1427 put_next:
1428         f2fs_put_dnode(&dn);
1429         f2fs_unlock_op(sbi);
1430
1431         f2fs_wait_on_page_writeback(page, DATA);
1432
1433         if (len == PAGE_CACHE_SIZE)
1434                 goto out_update;
1435         if (PageUptodate(page))
1436                 goto out_clear;
1437
1438         if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1439                 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1440                 unsigned end = start + len;
1441
1442                 /* Reading beyond i_size is simple: memset to zero */
1443                 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1444                 goto out_update;
1445         }
1446
1447         if (dn.data_blkaddr == NEW_ADDR) {
1448                 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1449         } else {
1450                 struct f2fs_io_info fio = {
1451                         .sbi = sbi,
1452                         .type = DATA,
1453                         .rw = READ_SYNC,
1454                         .blk_addr = dn.data_blkaddr,
1455                         .page = page,
1456                         .encrypted_page = NULL,
1457                 };
1458                 err = f2fs_submit_page_bio(&fio);
1459                 if (err)
1460                         goto fail;
1461
1462                 lock_page(page);
1463                 if (unlikely(!PageUptodate(page))) {
1464                         err = -EIO;
1465                         goto fail;
1466                 }
1467                 if (unlikely(page->mapping != mapping)) {
1468                         f2fs_put_page(page, 1);
1469                         goto repeat;
1470                 }
1471
1472                 /* avoid symlink page */
1473                 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1474                         err = f2fs_decrypt_one(inode, page);
1475                         if (err)
1476                                 goto fail;
1477                 }
1478         }
1479 out_update:
1480         SetPageUptodate(page);
1481 out_clear:
1482         clear_cold_data(page);
1483         return 0;
1484
1485 put_fail:
1486         f2fs_put_dnode(&dn);
1487 unlock_fail:
1488         f2fs_unlock_op(sbi);
1489 fail:
1490         f2fs_put_page(page, 1);
1491         f2fs_write_failed(mapping, pos + len);
1492         return err;
1493 }
1494
1495 static int f2fs_write_end(struct file *file,
1496                         struct address_space *mapping,
1497                         loff_t pos, unsigned len, unsigned copied,
1498                         struct page *page, void *fsdata)
1499 {
1500         struct inode *inode = page->mapping->host;
1501
1502         trace_f2fs_write_end(inode, pos, len, copied);
1503
1504         set_page_dirty(page);
1505
1506         if (pos + copied > i_size_read(inode)) {
1507                 i_size_write(inode, pos + copied);
1508                 mark_inode_dirty(inode);
1509                 update_inode_page(inode);
1510         }
1511
1512         f2fs_put_page(page, 1);
1513         return copied;
1514 }
1515
1516 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1517                            loff_t offset)
1518 {
1519         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1520
1521         if (offset & blocksize_mask)
1522                 return -EINVAL;
1523
1524         if (iov_iter_alignment(iter) & blocksize_mask)
1525                 return -EINVAL;
1526
1527         return 0;
1528 }
1529
1530 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1531                               loff_t offset)
1532 {
1533         struct file *file = iocb->ki_filp;
1534         struct address_space *mapping = file->f_mapping;
1535         struct inode *inode = mapping->host;
1536         size_t count = iov_iter_count(iter);
1537         int err;
1538
1539         /* we don't need to use inline_data strictly */
1540         if (f2fs_has_inline_data(inode)) {
1541                 err = f2fs_convert_inline_inode(inode);
1542                 if (err)
1543                         return err;
1544         }
1545
1546         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1547                 return 0;
1548
1549         err = check_direct_IO(inode, iter, offset);
1550         if (err)
1551                 return err;
1552
1553         trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1554
1555         if (iov_iter_rw(iter) == WRITE)
1556                 __allocate_data_blocks(inode, offset, count);
1557
1558         err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
1559         if (err < 0 && iov_iter_rw(iter) == WRITE)
1560                 f2fs_write_failed(mapping, offset + count);
1561
1562         trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1563
1564         return err;
1565 }
1566
1567 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1568                                                         unsigned int length)
1569 {
1570         struct inode *inode = page->mapping->host;
1571         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1572
1573         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1574                 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1575                 return;
1576
1577         if (PageDirty(page)) {
1578                 if (inode->i_ino == F2FS_META_INO(sbi))
1579                         dec_page_count(sbi, F2FS_DIRTY_META);
1580                 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1581                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1582                 else
1583                         inode_dec_dirty_pages(inode);
1584         }
1585
1586         /* This is atomic written page, keep Private */
1587         if (IS_ATOMIC_WRITTEN_PAGE(page))
1588                 return;
1589
1590         ClearPagePrivate(page);
1591 }
1592
1593 int f2fs_release_page(struct page *page, gfp_t wait)
1594 {
1595         /* If this is dirty page, keep PagePrivate */
1596         if (PageDirty(page))
1597                 return 0;
1598
1599         /* This is atomic written page, keep Private */
1600         if (IS_ATOMIC_WRITTEN_PAGE(page))
1601                 return 0;
1602
1603         ClearPagePrivate(page);
1604         return 1;
1605 }
1606
1607 static int f2fs_set_data_page_dirty(struct page *page)
1608 {
1609         struct address_space *mapping = page->mapping;
1610         struct inode *inode = mapping->host;
1611
1612         trace_f2fs_set_page_dirty(page, DATA);
1613
1614         SetPageUptodate(page);
1615
1616         if (f2fs_is_atomic_file(inode)) {
1617                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1618                         register_inmem_page(inode, page);
1619                         return 1;
1620                 }
1621                 /*
1622                  * Previously, this page has been registered, we just
1623                  * return here.
1624                  */
1625                 return 0;
1626         }
1627
1628         if (!PageDirty(page)) {
1629                 __set_page_dirty_nobuffers(page);
1630                 update_dirty_page(inode, page);
1631                 return 1;
1632         }
1633         return 0;
1634 }
1635
1636 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1637 {
1638         struct inode *inode = mapping->host;
1639
1640         /* we don't need to use inline_data strictly */
1641         if (f2fs_has_inline_data(inode)) {
1642                 int err = f2fs_convert_inline_inode(inode);
1643                 if (err)
1644                         return err;
1645         }
1646         return generic_block_bmap(mapping, block, get_data_block_bmap);
1647 }
1648
1649 const struct address_space_operations f2fs_dblock_aops = {
1650         .readpage       = f2fs_read_data_page,
1651         .readpages      = f2fs_read_data_pages,
1652         .writepage      = f2fs_write_data_page,
1653         .writepages     = f2fs_write_data_pages,
1654         .write_begin    = f2fs_write_begin,
1655         .write_end      = f2fs_write_end,
1656         .set_page_dirty = f2fs_set_data_page_dirty,
1657         .invalidatepage = f2fs_invalidate_page,
1658         .releasepage    = f2fs_release_page,
1659         .direct_IO      = f2fs_direct_IO,
1660         .bmap           = f2fs_bmap,
1661 };