]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/node.c
Merge remote-tracking branch 'ext4/dev'
[karo-tx-linux.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33         struct f2fs_nm_info *nm_i = NM_I(sbi);
34         struct sysinfo val;
35         unsigned long avail_ram;
36         unsigned long mem_size = 0;
37         bool res = false;
38
39         si_meminfo(&val);
40
41         /* only uses low memory */
42         avail_ram = val.totalram - val.totalhigh;
43
44         /*
45          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46          */
47         if (type == FREE_NIDS) {
48                 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49                                                         PAGE_CACHE_SHIFT;
50                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51         } else if (type == NAT_ENTRIES) {
52                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53                                                         PAGE_CACHE_SHIFT;
54                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55         } else if (type == DIRTY_DENTS) {
56                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
57                         return false;
58                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60         } else if (type == INO_ENTRIES) {
61                 int i;
62
63                 for (i = 0; i <= UPDATE_INO; i++)
64                         mem_size += (sbi->im[i].ino_num *
65                                 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
66                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67         } else if (type == EXTENT_CACHE) {
68                 mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) +
69                                 atomic_read(&sbi->total_ext_node) *
70                                 sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
71                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
72         } else {
73                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
74                         return false;
75         }
76         return res;
77 }
78
79 static void clear_node_page_dirty(struct page *page)
80 {
81         struct address_space *mapping = page->mapping;
82         unsigned int long flags;
83
84         if (PageDirty(page)) {
85                 spin_lock_irqsave(&mapping->tree_lock, flags);
86                 radix_tree_tag_clear(&mapping->page_tree,
87                                 page_index(page),
88                                 PAGECACHE_TAG_DIRTY);
89                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
90
91                 clear_page_dirty_for_io(page);
92                 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
93         }
94         ClearPageUptodate(page);
95 }
96
97 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
98 {
99         pgoff_t index = current_nat_addr(sbi, nid);
100         return get_meta_page(sbi, index);
101 }
102
103 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
104 {
105         struct page *src_page;
106         struct page *dst_page;
107         pgoff_t src_off;
108         pgoff_t dst_off;
109         void *src_addr;
110         void *dst_addr;
111         struct f2fs_nm_info *nm_i = NM_I(sbi);
112
113         src_off = current_nat_addr(sbi, nid);
114         dst_off = next_nat_addr(sbi, src_off);
115
116         /* get current nat block page with lock */
117         src_page = get_meta_page(sbi, src_off);
118         dst_page = grab_meta_page(sbi, dst_off);
119         f2fs_bug_on(sbi, PageDirty(src_page));
120
121         src_addr = page_address(src_page);
122         dst_addr = page_address(dst_page);
123         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
124         set_page_dirty(dst_page);
125         f2fs_put_page(src_page, 1);
126
127         set_to_next_nat(nm_i, nid);
128
129         return dst_page;
130 }
131
132 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
133 {
134         return radix_tree_lookup(&nm_i->nat_root, n);
135 }
136
137 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
138                 nid_t start, unsigned int nr, struct nat_entry **ep)
139 {
140         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
141 }
142
143 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
144 {
145         list_del(&e->list);
146         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
147         nm_i->nat_cnt--;
148         kmem_cache_free(nat_entry_slab, e);
149 }
150
151 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
152                                                 struct nat_entry *ne)
153 {
154         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
155         struct nat_entry_set *head;
156
157         if (get_nat_flag(ne, IS_DIRTY))
158                 return;
159
160         head = radix_tree_lookup(&nm_i->nat_set_root, set);
161         if (!head) {
162                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
163
164                 INIT_LIST_HEAD(&head->entry_list);
165                 INIT_LIST_HEAD(&head->set_list);
166                 head->set = set;
167                 head->entry_cnt = 0;
168                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
169         }
170         list_move_tail(&ne->list, &head->entry_list);
171         nm_i->dirty_nat_cnt++;
172         head->entry_cnt++;
173         set_nat_flag(ne, IS_DIRTY, true);
174 }
175
176 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
177                                                 struct nat_entry *ne)
178 {
179         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
180         struct nat_entry_set *head;
181
182         head = radix_tree_lookup(&nm_i->nat_set_root, set);
183         if (head) {
184                 list_move_tail(&ne->list, &nm_i->nat_entries);
185                 set_nat_flag(ne, IS_DIRTY, false);
186                 head->entry_cnt--;
187                 nm_i->dirty_nat_cnt--;
188         }
189 }
190
191 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
192                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
193 {
194         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
195                                                         start, nr);
196 }
197
198 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
199 {
200         struct f2fs_nm_info *nm_i = NM_I(sbi);
201         struct nat_entry *e;
202         bool need = false;
203
204         down_read(&nm_i->nat_tree_lock);
205         e = __lookup_nat_cache(nm_i, nid);
206         if (e) {
207                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
208                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
209                         need = true;
210         }
211         up_read(&nm_i->nat_tree_lock);
212         return need;
213 }
214
215 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
216 {
217         struct f2fs_nm_info *nm_i = NM_I(sbi);
218         struct nat_entry *e;
219         bool is_cp = true;
220
221         down_read(&nm_i->nat_tree_lock);
222         e = __lookup_nat_cache(nm_i, nid);
223         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
224                 is_cp = false;
225         up_read(&nm_i->nat_tree_lock);
226         return is_cp;
227 }
228
229 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
230 {
231         struct f2fs_nm_info *nm_i = NM_I(sbi);
232         struct nat_entry *e;
233         bool need_update = true;
234
235         down_read(&nm_i->nat_tree_lock);
236         e = __lookup_nat_cache(nm_i, ino);
237         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
238                         (get_nat_flag(e, IS_CHECKPOINTED) ||
239                          get_nat_flag(e, HAS_FSYNCED_INODE)))
240                 need_update = false;
241         up_read(&nm_i->nat_tree_lock);
242         return need_update;
243 }
244
245 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
246 {
247         struct nat_entry *new;
248
249         new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
250         f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
251         memset(new, 0, sizeof(struct nat_entry));
252         nat_set_nid(new, nid);
253         nat_reset_flag(new);
254         list_add_tail(&new->list, &nm_i->nat_entries);
255         nm_i->nat_cnt++;
256         return new;
257 }
258
259 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
260                                                 struct f2fs_nat_entry *ne)
261 {
262         struct nat_entry *e;
263
264         down_write(&nm_i->nat_tree_lock);
265         e = __lookup_nat_cache(nm_i, nid);
266         if (!e) {
267                 e = grab_nat_entry(nm_i, nid);
268                 node_info_from_raw_nat(&e->ni, ne);
269         }
270         up_write(&nm_i->nat_tree_lock);
271 }
272
273 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
274                         block_t new_blkaddr, bool fsync_done)
275 {
276         struct f2fs_nm_info *nm_i = NM_I(sbi);
277         struct nat_entry *e;
278
279         down_write(&nm_i->nat_tree_lock);
280         e = __lookup_nat_cache(nm_i, ni->nid);
281         if (!e) {
282                 e = grab_nat_entry(nm_i, ni->nid);
283                 copy_node_info(&e->ni, ni);
284                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
285         } else if (new_blkaddr == NEW_ADDR) {
286                 /*
287                  * when nid is reallocated,
288                  * previous nat entry can be remained in nat cache.
289                  * So, reinitialize it with new information.
290                  */
291                 copy_node_info(&e->ni, ni);
292                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
293         }
294
295         /* sanity check */
296         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
297         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
298                         new_blkaddr == NULL_ADDR);
299         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
300                         new_blkaddr == NEW_ADDR);
301         f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
302                         nat_get_blkaddr(e) != NULL_ADDR &&
303                         new_blkaddr == NEW_ADDR);
304
305         /* increment version no as node is removed */
306         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
307                 unsigned char version = nat_get_version(e);
308                 nat_set_version(e, inc_node_version(version));
309
310                 /* in order to reuse the nid */
311                 if (nm_i->next_scan_nid > ni->nid)
312                         nm_i->next_scan_nid = ni->nid;
313         }
314
315         /* change address */
316         nat_set_blkaddr(e, new_blkaddr);
317         if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
318                 set_nat_flag(e, IS_CHECKPOINTED, false);
319         __set_nat_cache_dirty(nm_i, e);
320
321         /* update fsync_mark if its inode nat entry is still alive */
322         if (ni->nid != ni->ino)
323                 e = __lookup_nat_cache(nm_i, ni->ino);
324         if (e) {
325                 if (fsync_done && ni->nid == ni->ino)
326                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
327                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
328         }
329         up_write(&nm_i->nat_tree_lock);
330 }
331
332 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
333 {
334         struct f2fs_nm_info *nm_i = NM_I(sbi);
335         int nr = nr_shrink;
336
337         if (!down_write_trylock(&nm_i->nat_tree_lock))
338                 return 0;
339
340         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
341                 struct nat_entry *ne;
342                 ne = list_first_entry(&nm_i->nat_entries,
343                                         struct nat_entry, list);
344                 __del_from_nat_cache(nm_i, ne);
345                 nr_shrink--;
346         }
347         up_write(&nm_i->nat_tree_lock);
348         return nr - nr_shrink;
349 }
350
351 /*
352  * This function always returns success
353  */
354 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
355 {
356         struct f2fs_nm_info *nm_i = NM_I(sbi);
357         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
358         struct f2fs_summary_block *sum = curseg->sum_blk;
359         nid_t start_nid = START_NID(nid);
360         struct f2fs_nat_block *nat_blk;
361         struct page *page = NULL;
362         struct f2fs_nat_entry ne;
363         struct nat_entry *e;
364         int i;
365
366         ni->nid = nid;
367
368         /* Check nat cache */
369         down_read(&nm_i->nat_tree_lock);
370         e = __lookup_nat_cache(nm_i, nid);
371         if (e) {
372                 ni->ino = nat_get_ino(e);
373                 ni->blk_addr = nat_get_blkaddr(e);
374                 ni->version = nat_get_version(e);
375         }
376         up_read(&nm_i->nat_tree_lock);
377         if (e)
378                 return;
379
380         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
381
382         /* Check current segment summary */
383         mutex_lock(&curseg->curseg_mutex);
384         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
385         if (i >= 0) {
386                 ne = nat_in_journal(sum, i);
387                 node_info_from_raw_nat(ni, &ne);
388         }
389         mutex_unlock(&curseg->curseg_mutex);
390         if (i >= 0)
391                 goto cache;
392
393         /* Fill node_info from nat page */
394         page = get_current_nat_page(sbi, start_nid);
395         nat_blk = (struct f2fs_nat_block *)page_address(page);
396         ne = nat_blk->entries[nid - start_nid];
397         node_info_from_raw_nat(ni, &ne);
398         f2fs_put_page(page, 1);
399 cache:
400         /* cache nat entry */
401         cache_nat_entry(NM_I(sbi), nid, &ne);
402 }
403
404 /*
405  * The maximum depth is four.
406  * Offset[0] will have raw inode offset.
407  */
408 static int get_node_path(struct f2fs_inode_info *fi, long block,
409                                 int offset[4], unsigned int noffset[4])
410 {
411         const long direct_index = ADDRS_PER_INODE(fi);
412         const long direct_blks = ADDRS_PER_BLOCK;
413         const long dptrs_per_blk = NIDS_PER_BLOCK;
414         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
415         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
416         int n = 0;
417         int level = 0;
418
419         noffset[0] = 0;
420
421         if (block < direct_index) {
422                 offset[n] = block;
423                 goto got;
424         }
425         block -= direct_index;
426         if (block < direct_blks) {
427                 offset[n++] = NODE_DIR1_BLOCK;
428                 noffset[n] = 1;
429                 offset[n] = block;
430                 level = 1;
431                 goto got;
432         }
433         block -= direct_blks;
434         if (block < direct_blks) {
435                 offset[n++] = NODE_DIR2_BLOCK;
436                 noffset[n] = 2;
437                 offset[n] = block;
438                 level = 1;
439                 goto got;
440         }
441         block -= direct_blks;
442         if (block < indirect_blks) {
443                 offset[n++] = NODE_IND1_BLOCK;
444                 noffset[n] = 3;
445                 offset[n++] = block / direct_blks;
446                 noffset[n] = 4 + offset[n - 1];
447                 offset[n] = block % direct_blks;
448                 level = 2;
449                 goto got;
450         }
451         block -= indirect_blks;
452         if (block < indirect_blks) {
453                 offset[n++] = NODE_IND2_BLOCK;
454                 noffset[n] = 4 + dptrs_per_blk;
455                 offset[n++] = block / direct_blks;
456                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
457                 offset[n] = block % direct_blks;
458                 level = 2;
459                 goto got;
460         }
461         block -= indirect_blks;
462         if (block < dindirect_blks) {
463                 offset[n++] = NODE_DIND_BLOCK;
464                 noffset[n] = 5 + (dptrs_per_blk * 2);
465                 offset[n++] = block / indirect_blks;
466                 noffset[n] = 6 + (dptrs_per_blk * 2) +
467                               offset[n - 1] * (dptrs_per_blk + 1);
468                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
469                 noffset[n] = 7 + (dptrs_per_blk * 2) +
470                               offset[n - 2] * (dptrs_per_blk + 1) +
471                               offset[n - 1];
472                 offset[n] = block % direct_blks;
473                 level = 3;
474                 goto got;
475         } else {
476                 BUG();
477         }
478 got:
479         return level;
480 }
481
482 /*
483  * Caller should call f2fs_put_dnode(dn).
484  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
485  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
486  * In the case of RDONLY_NODE, we don't need to care about mutex.
487  */
488 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
489 {
490         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
491         struct page *npage[4];
492         struct page *parent = NULL;
493         int offset[4];
494         unsigned int noffset[4];
495         nid_t nids[4];
496         int level, i;
497         int err = 0;
498
499         level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
500
501         nids[0] = dn->inode->i_ino;
502         npage[0] = dn->inode_page;
503
504         if (!npage[0]) {
505                 npage[0] = get_node_page(sbi, nids[0]);
506                 if (IS_ERR(npage[0]))
507                         return PTR_ERR(npage[0]);
508         }
509
510         /* if inline_data is set, should not report any block indices */
511         if (f2fs_has_inline_data(dn->inode) && index) {
512                 err = -ENOENT;
513                 f2fs_put_page(npage[0], 1);
514                 goto release_out;
515         }
516
517         parent = npage[0];
518         if (level != 0)
519                 nids[1] = get_nid(parent, offset[0], true);
520         dn->inode_page = npage[0];
521         dn->inode_page_locked = true;
522
523         /* get indirect or direct nodes */
524         for (i = 1; i <= level; i++) {
525                 bool done = false;
526
527                 if (!nids[i] && mode == ALLOC_NODE) {
528                         /* alloc new node */
529                         if (!alloc_nid(sbi, &(nids[i]))) {
530                                 err = -ENOSPC;
531                                 goto release_pages;
532                         }
533
534                         dn->nid = nids[i];
535                         npage[i] = new_node_page(dn, noffset[i], NULL);
536                         if (IS_ERR(npage[i])) {
537                                 alloc_nid_failed(sbi, nids[i]);
538                                 err = PTR_ERR(npage[i]);
539                                 goto release_pages;
540                         }
541
542                         set_nid(parent, offset[i - 1], nids[i], i == 1);
543                         alloc_nid_done(sbi, nids[i]);
544                         done = true;
545                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
546                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
547                         if (IS_ERR(npage[i])) {
548                                 err = PTR_ERR(npage[i]);
549                                 goto release_pages;
550                         }
551                         done = true;
552                 }
553                 if (i == 1) {
554                         dn->inode_page_locked = false;
555                         unlock_page(parent);
556                 } else {
557                         f2fs_put_page(parent, 1);
558                 }
559
560                 if (!done) {
561                         npage[i] = get_node_page(sbi, nids[i]);
562                         if (IS_ERR(npage[i])) {
563                                 err = PTR_ERR(npage[i]);
564                                 f2fs_put_page(npage[0], 0);
565                                 goto release_out;
566                         }
567                 }
568                 if (i < level) {
569                         parent = npage[i];
570                         nids[i + 1] = get_nid(parent, offset[i], false);
571                 }
572         }
573         dn->nid = nids[level];
574         dn->ofs_in_node = offset[level];
575         dn->node_page = npage[level];
576         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
577         return 0;
578
579 release_pages:
580         f2fs_put_page(parent, 1);
581         if (i > 1)
582                 f2fs_put_page(npage[0], 0);
583 release_out:
584         dn->inode_page = NULL;
585         dn->node_page = NULL;
586         return err;
587 }
588
589 static void truncate_node(struct dnode_of_data *dn)
590 {
591         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
592         struct node_info ni;
593
594         get_node_info(sbi, dn->nid, &ni);
595         if (dn->inode->i_blocks == 0) {
596                 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
597                 goto invalidate;
598         }
599         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
600
601         /* Deallocate node address */
602         invalidate_blocks(sbi, ni.blk_addr);
603         dec_valid_node_count(sbi, dn->inode);
604         set_node_addr(sbi, &ni, NULL_ADDR, false);
605
606         if (dn->nid == dn->inode->i_ino) {
607                 remove_orphan_inode(sbi, dn->nid);
608                 dec_valid_inode_count(sbi);
609         } else {
610                 sync_inode_page(dn);
611         }
612 invalidate:
613         clear_node_page_dirty(dn->node_page);
614         set_sbi_flag(sbi, SBI_IS_DIRTY);
615
616         f2fs_put_page(dn->node_page, 1);
617
618         invalidate_mapping_pages(NODE_MAPPING(sbi),
619                         dn->node_page->index, dn->node_page->index);
620
621         dn->node_page = NULL;
622         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
623 }
624
625 static int truncate_dnode(struct dnode_of_data *dn)
626 {
627         struct page *page;
628
629         if (dn->nid == 0)
630                 return 1;
631
632         /* get direct node */
633         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
634         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
635                 return 1;
636         else if (IS_ERR(page))
637                 return PTR_ERR(page);
638
639         /* Make dnode_of_data for parameter */
640         dn->node_page = page;
641         dn->ofs_in_node = 0;
642         truncate_data_blocks(dn);
643         truncate_node(dn);
644         return 1;
645 }
646
647 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
648                                                 int ofs, int depth)
649 {
650         struct dnode_of_data rdn = *dn;
651         struct page *page;
652         struct f2fs_node *rn;
653         nid_t child_nid;
654         unsigned int child_nofs;
655         int freed = 0;
656         int i, ret;
657
658         if (dn->nid == 0)
659                 return NIDS_PER_BLOCK + 1;
660
661         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
662
663         page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
664         if (IS_ERR(page)) {
665                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
666                 return PTR_ERR(page);
667         }
668
669         rn = F2FS_NODE(page);
670         if (depth < 3) {
671                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
672                         child_nid = le32_to_cpu(rn->in.nid[i]);
673                         if (child_nid == 0)
674                                 continue;
675                         rdn.nid = child_nid;
676                         ret = truncate_dnode(&rdn);
677                         if (ret < 0)
678                                 goto out_err;
679                         set_nid(page, i, 0, false);
680                 }
681         } else {
682                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
683                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
684                         child_nid = le32_to_cpu(rn->in.nid[i]);
685                         if (child_nid == 0) {
686                                 child_nofs += NIDS_PER_BLOCK + 1;
687                                 continue;
688                         }
689                         rdn.nid = child_nid;
690                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
691                         if (ret == (NIDS_PER_BLOCK + 1)) {
692                                 set_nid(page, i, 0, false);
693                                 child_nofs += ret;
694                         } else if (ret < 0 && ret != -ENOENT) {
695                                 goto out_err;
696                         }
697                 }
698                 freed = child_nofs;
699         }
700
701         if (!ofs) {
702                 /* remove current indirect node */
703                 dn->node_page = page;
704                 truncate_node(dn);
705                 freed++;
706         } else {
707                 f2fs_put_page(page, 1);
708         }
709         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
710         return freed;
711
712 out_err:
713         f2fs_put_page(page, 1);
714         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
715         return ret;
716 }
717
718 static int truncate_partial_nodes(struct dnode_of_data *dn,
719                         struct f2fs_inode *ri, int *offset, int depth)
720 {
721         struct page *pages[2];
722         nid_t nid[3];
723         nid_t child_nid;
724         int err = 0;
725         int i;
726         int idx = depth - 2;
727
728         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
729         if (!nid[0])
730                 return 0;
731
732         /* get indirect nodes in the path */
733         for (i = 0; i < idx + 1; i++) {
734                 /* reference count'll be increased */
735                 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
736                 if (IS_ERR(pages[i])) {
737                         err = PTR_ERR(pages[i]);
738                         idx = i - 1;
739                         goto fail;
740                 }
741                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
742         }
743
744         /* free direct nodes linked to a partial indirect node */
745         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
746                 child_nid = get_nid(pages[idx], i, false);
747                 if (!child_nid)
748                         continue;
749                 dn->nid = child_nid;
750                 err = truncate_dnode(dn);
751                 if (err < 0)
752                         goto fail;
753                 set_nid(pages[idx], i, 0, false);
754         }
755
756         if (offset[idx + 1] == 0) {
757                 dn->node_page = pages[idx];
758                 dn->nid = nid[idx];
759                 truncate_node(dn);
760         } else {
761                 f2fs_put_page(pages[idx], 1);
762         }
763         offset[idx]++;
764         offset[idx + 1] = 0;
765         idx--;
766 fail:
767         for (i = idx; i >= 0; i--)
768                 f2fs_put_page(pages[i], 1);
769
770         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
771
772         return err;
773 }
774
775 /*
776  * All the block addresses of data and nodes should be nullified.
777  */
778 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
779 {
780         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
781         int err = 0, cont = 1;
782         int level, offset[4], noffset[4];
783         unsigned int nofs = 0;
784         struct f2fs_inode *ri;
785         struct dnode_of_data dn;
786         struct page *page;
787
788         trace_f2fs_truncate_inode_blocks_enter(inode, from);
789
790         level = get_node_path(F2FS_I(inode), from, offset, noffset);
791 restart:
792         page = get_node_page(sbi, inode->i_ino);
793         if (IS_ERR(page)) {
794                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
795                 return PTR_ERR(page);
796         }
797
798         set_new_dnode(&dn, inode, page, NULL, 0);
799         unlock_page(page);
800
801         ri = F2FS_INODE(page);
802         switch (level) {
803         case 0:
804         case 1:
805                 nofs = noffset[1];
806                 break;
807         case 2:
808                 nofs = noffset[1];
809                 if (!offset[level - 1])
810                         goto skip_partial;
811                 err = truncate_partial_nodes(&dn, ri, offset, level);
812                 if (err < 0 && err != -ENOENT)
813                         goto fail;
814                 nofs += 1 + NIDS_PER_BLOCK;
815                 break;
816         case 3:
817                 nofs = 5 + 2 * NIDS_PER_BLOCK;
818                 if (!offset[level - 1])
819                         goto skip_partial;
820                 err = truncate_partial_nodes(&dn, ri, offset, level);
821                 if (err < 0 && err != -ENOENT)
822                         goto fail;
823                 break;
824         default:
825                 BUG();
826         }
827
828 skip_partial:
829         while (cont) {
830                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
831                 switch (offset[0]) {
832                 case NODE_DIR1_BLOCK:
833                 case NODE_DIR2_BLOCK:
834                         err = truncate_dnode(&dn);
835                         break;
836
837                 case NODE_IND1_BLOCK:
838                 case NODE_IND2_BLOCK:
839                         err = truncate_nodes(&dn, nofs, offset[1], 2);
840                         break;
841
842                 case NODE_DIND_BLOCK:
843                         err = truncate_nodes(&dn, nofs, offset[1], 3);
844                         cont = 0;
845                         break;
846
847                 default:
848                         BUG();
849                 }
850                 if (err < 0 && err != -ENOENT)
851                         goto fail;
852                 if (offset[1] == 0 &&
853                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
854                         lock_page(page);
855                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
856                                 f2fs_put_page(page, 1);
857                                 goto restart;
858                         }
859                         f2fs_wait_on_page_writeback(page, NODE);
860                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
861                         set_page_dirty(page);
862                         unlock_page(page);
863                 }
864                 offset[1] = 0;
865                 offset[0]++;
866                 nofs += err;
867         }
868 fail:
869         f2fs_put_page(page, 0);
870         trace_f2fs_truncate_inode_blocks_exit(inode, err);
871         return err > 0 ? 0 : err;
872 }
873
874 int truncate_xattr_node(struct inode *inode, struct page *page)
875 {
876         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
877         nid_t nid = F2FS_I(inode)->i_xattr_nid;
878         struct dnode_of_data dn;
879         struct page *npage;
880
881         if (!nid)
882                 return 0;
883
884         npage = get_node_page(sbi, nid);
885         if (IS_ERR(npage))
886                 return PTR_ERR(npage);
887
888         F2FS_I(inode)->i_xattr_nid = 0;
889
890         /* need to do checkpoint during fsync */
891         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
892
893         set_new_dnode(&dn, inode, page, npage, nid);
894
895         if (page)
896                 dn.inode_page_locked = true;
897         truncate_node(&dn);
898         return 0;
899 }
900
901 /*
902  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
903  * f2fs_unlock_op().
904  */
905 int remove_inode_page(struct inode *inode)
906 {
907         struct dnode_of_data dn;
908         int err;
909
910         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
911         err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
912         if (err)
913                 return err;
914
915         err = truncate_xattr_node(inode, dn.inode_page);
916         if (err) {
917                 f2fs_put_dnode(&dn);
918                 return err;
919         }
920
921         /* remove potential inline_data blocks */
922         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
923                                 S_ISLNK(inode->i_mode))
924                 truncate_data_blocks_range(&dn, 1);
925
926         /* 0 is possible, after f2fs_new_inode() has failed */
927         f2fs_bug_on(F2FS_I_SB(inode),
928                         inode->i_blocks != 0 && inode->i_blocks != 1);
929
930         /* will put inode & node pages */
931         truncate_node(&dn);
932         return 0;
933 }
934
935 struct page *new_inode_page(struct inode *inode)
936 {
937         struct dnode_of_data dn;
938
939         /* allocate inode page for new inode */
940         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
941
942         /* caller should f2fs_put_page(page, 1); */
943         return new_node_page(&dn, 0, NULL);
944 }
945
946 struct page *new_node_page(struct dnode_of_data *dn,
947                                 unsigned int ofs, struct page *ipage)
948 {
949         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
950         struct node_info old_ni, new_ni;
951         struct page *page;
952         int err;
953
954         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
955                 return ERR_PTR(-EPERM);
956
957         page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
958         if (!page)
959                 return ERR_PTR(-ENOMEM);
960
961         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
962                 err = -ENOSPC;
963                 goto fail;
964         }
965
966         get_node_info(sbi, dn->nid, &old_ni);
967
968         /* Reinitialize old_ni with new node page */
969         f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
970         new_ni = old_ni;
971         new_ni.ino = dn->inode->i_ino;
972         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
973
974         f2fs_wait_on_page_writeback(page, NODE);
975         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
976         set_cold_node(dn->inode, page);
977         SetPageUptodate(page);
978         set_page_dirty(page);
979
980         if (f2fs_has_xattr_block(ofs))
981                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
982
983         dn->node_page = page;
984         if (ipage)
985                 update_inode(dn->inode, ipage);
986         else
987                 sync_inode_page(dn);
988         if (ofs == 0)
989                 inc_valid_inode_count(sbi);
990
991         return page;
992
993 fail:
994         clear_node_page_dirty(page);
995         f2fs_put_page(page, 1);
996         return ERR_PTR(err);
997 }
998
999 /*
1000  * Caller should do after getting the following values.
1001  * 0: f2fs_put_page(page, 0)
1002  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1003  */
1004 static int read_node_page(struct page *page, int rw)
1005 {
1006         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1007         struct node_info ni;
1008         struct f2fs_io_info fio = {
1009                 .sbi = sbi,
1010                 .type = NODE,
1011                 .rw = rw,
1012                 .page = page,
1013                 .encrypted_page = NULL,
1014         };
1015
1016         get_node_info(sbi, page->index, &ni);
1017
1018         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1019                 ClearPageUptodate(page);
1020                 return -ENOENT;
1021         }
1022
1023         if (PageUptodate(page))
1024                 return LOCKED_PAGE;
1025
1026         fio.blk_addr = ni.blk_addr;
1027         return f2fs_submit_page_bio(&fio);
1028 }
1029
1030 /*
1031  * Readahead a node page
1032  */
1033 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1034 {
1035         struct page *apage;
1036         int err;
1037
1038         apage = find_get_page(NODE_MAPPING(sbi), nid);
1039         if (apage && PageUptodate(apage)) {
1040                 f2fs_put_page(apage, 0);
1041                 return;
1042         }
1043         f2fs_put_page(apage, 0);
1044
1045         apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1046         if (!apage)
1047                 return;
1048
1049         err = read_node_page(apage, READA);
1050         f2fs_put_page(apage, err ? 1 : 0);
1051 }
1052
1053 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1054 {
1055         struct page *page;
1056         int err;
1057 repeat:
1058         page = grab_cache_page(NODE_MAPPING(sbi), nid);
1059         if (!page)
1060                 return ERR_PTR(-ENOMEM);
1061
1062         err = read_node_page(page, READ_SYNC);
1063         if (err < 0) {
1064                 f2fs_put_page(page, 1);
1065                 return ERR_PTR(err);
1066         } else if (err != LOCKED_PAGE) {
1067                 lock_page(page);
1068         }
1069
1070         if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1071                 ClearPageUptodate(page);
1072                 f2fs_put_page(page, 1);
1073                 return ERR_PTR(-EIO);
1074         }
1075         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1076                 f2fs_put_page(page, 1);
1077                 goto repeat;
1078         }
1079         return page;
1080 }
1081
1082 /*
1083  * Return a locked page for the desired node page.
1084  * And, readahead MAX_RA_NODE number of node pages.
1085  */
1086 struct page *get_node_page_ra(struct page *parent, int start)
1087 {
1088         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1089         struct blk_plug plug;
1090         struct page *page;
1091         int err, i, end;
1092         nid_t nid;
1093
1094         /* First, try getting the desired direct node. */
1095         nid = get_nid(parent, start, false);
1096         if (!nid)
1097                 return ERR_PTR(-ENOENT);
1098 repeat:
1099         page = grab_cache_page(NODE_MAPPING(sbi), nid);
1100         if (!page)
1101                 return ERR_PTR(-ENOMEM);
1102
1103         err = read_node_page(page, READ_SYNC);
1104         if (err < 0) {
1105                 f2fs_put_page(page, 1);
1106                 return ERR_PTR(err);
1107         } else if (err == LOCKED_PAGE) {
1108                 goto page_hit;
1109         }
1110
1111         blk_start_plug(&plug);
1112
1113         /* Then, try readahead for siblings of the desired node */
1114         end = start + MAX_RA_NODE;
1115         end = min(end, NIDS_PER_BLOCK);
1116         for (i = start + 1; i < end; i++) {
1117                 nid = get_nid(parent, i, false);
1118                 if (!nid)
1119                         continue;
1120                 ra_node_page(sbi, nid);
1121         }
1122
1123         blk_finish_plug(&plug);
1124
1125         lock_page(page);
1126         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1127                 f2fs_put_page(page, 1);
1128                 goto repeat;
1129         }
1130 page_hit:
1131         if (unlikely(!PageUptodate(page))) {
1132                 f2fs_put_page(page, 1);
1133                 return ERR_PTR(-EIO);
1134         }
1135         return page;
1136 }
1137
1138 void sync_inode_page(struct dnode_of_data *dn)
1139 {
1140         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1141                 update_inode(dn->inode, dn->node_page);
1142         } else if (dn->inode_page) {
1143                 if (!dn->inode_page_locked)
1144                         lock_page(dn->inode_page);
1145                 update_inode(dn->inode, dn->inode_page);
1146                 if (!dn->inode_page_locked)
1147                         unlock_page(dn->inode_page);
1148         } else {
1149                 update_inode_page(dn->inode);
1150         }
1151 }
1152
1153 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1154                                         struct writeback_control *wbc)
1155 {
1156         pgoff_t index, end;
1157         struct pagevec pvec;
1158         int step = ino ? 2 : 0;
1159         int nwritten = 0, wrote = 0;
1160
1161         pagevec_init(&pvec, 0);
1162
1163 next_step:
1164         index = 0;
1165         end = LONG_MAX;
1166
1167         while (index <= end) {
1168                 int i, nr_pages;
1169                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1170                                 PAGECACHE_TAG_DIRTY,
1171                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1172                 if (nr_pages == 0)
1173                         break;
1174
1175                 for (i = 0; i < nr_pages; i++) {
1176                         struct page *page = pvec.pages[i];
1177
1178                         /*
1179                          * flushing sequence with step:
1180                          * 0. indirect nodes
1181                          * 1. dentry dnodes
1182                          * 2. file dnodes
1183                          */
1184                         if (step == 0 && IS_DNODE(page))
1185                                 continue;
1186                         if (step == 1 && (!IS_DNODE(page) ||
1187                                                 is_cold_node(page)))
1188                                 continue;
1189                         if (step == 2 && (!IS_DNODE(page) ||
1190                                                 !is_cold_node(page)))
1191                                 continue;
1192
1193                         /*
1194                          * If an fsync mode,
1195                          * we should not skip writing node pages.
1196                          */
1197                         if (ino && ino_of_node(page) == ino)
1198                                 lock_page(page);
1199                         else if (!trylock_page(page))
1200                                 continue;
1201
1202                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1203 continue_unlock:
1204                                 unlock_page(page);
1205                                 continue;
1206                         }
1207                         if (ino && ino_of_node(page) != ino)
1208                                 goto continue_unlock;
1209
1210                         if (!PageDirty(page)) {
1211                                 /* someone wrote it for us */
1212                                 goto continue_unlock;
1213                         }
1214
1215                         if (!clear_page_dirty_for_io(page))
1216                                 goto continue_unlock;
1217
1218                         /* called by fsync() */
1219                         if (ino && IS_DNODE(page)) {
1220                                 set_fsync_mark(page, 1);
1221                                 if (IS_INODE(page))
1222                                         set_dentry_mark(page,
1223                                                 need_dentry_mark(sbi, ino));
1224                                 nwritten++;
1225                         } else {
1226                                 set_fsync_mark(page, 0);
1227                                 set_dentry_mark(page, 0);
1228                         }
1229
1230                         if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1231                                 unlock_page(page);
1232                         else
1233                                 wrote++;
1234
1235                         if (--wbc->nr_to_write == 0)
1236                                 break;
1237                 }
1238                 pagevec_release(&pvec);
1239                 cond_resched();
1240
1241                 if (wbc->nr_to_write == 0) {
1242                         step = 2;
1243                         break;
1244                 }
1245         }
1246
1247         if (step < 2) {
1248                 step++;
1249                 goto next_step;
1250         }
1251
1252         if (wrote)
1253                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1254         return nwritten;
1255 }
1256
1257 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1258 {
1259         pgoff_t index = 0, end = LONG_MAX;
1260         struct pagevec pvec;
1261         int ret2 = 0, ret = 0;
1262
1263         pagevec_init(&pvec, 0);
1264
1265         while (index <= end) {
1266                 int i, nr_pages;
1267                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1268                                 PAGECACHE_TAG_WRITEBACK,
1269                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1270                 if (nr_pages == 0)
1271                         break;
1272
1273                 for (i = 0; i < nr_pages; i++) {
1274                         struct page *page = pvec.pages[i];
1275
1276                         /* until radix tree lookup accepts end_index */
1277                         if (unlikely(page->index > end))
1278                                 continue;
1279
1280                         if (ino && ino_of_node(page) == ino) {
1281                                 f2fs_wait_on_page_writeback(page, NODE);
1282                                 if (TestClearPageError(page))
1283                                         ret = -EIO;
1284                         }
1285                 }
1286                 pagevec_release(&pvec);
1287                 cond_resched();
1288         }
1289
1290         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1291                 ret2 = -ENOSPC;
1292         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1293                 ret2 = -EIO;
1294         if (!ret)
1295                 ret = ret2;
1296         return ret;
1297 }
1298
1299 static int f2fs_write_node_page(struct page *page,
1300                                 struct writeback_control *wbc)
1301 {
1302         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1303         nid_t nid;
1304         struct node_info ni;
1305         struct f2fs_io_info fio = {
1306                 .sbi = sbi,
1307                 .type = NODE,
1308                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1309                 .page = page,
1310                 .encrypted_page = NULL,
1311         };
1312
1313         trace_f2fs_writepage(page, NODE);
1314
1315         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1316                 goto redirty_out;
1317         if (unlikely(f2fs_cp_error(sbi)))
1318                 goto redirty_out;
1319
1320         f2fs_wait_on_page_writeback(page, NODE);
1321
1322         /* get old block addr of this node page */
1323         nid = nid_of_node(page);
1324         f2fs_bug_on(sbi, page->index != nid);
1325
1326         get_node_info(sbi, nid, &ni);
1327
1328         /* This page is already truncated */
1329         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1330                 ClearPageUptodate(page);
1331                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1332                 unlock_page(page);
1333                 return 0;
1334         }
1335
1336         if (wbc->for_reclaim) {
1337                 if (!down_read_trylock(&sbi->node_write))
1338                         goto redirty_out;
1339         } else {
1340                 down_read(&sbi->node_write);
1341         }
1342
1343         set_page_writeback(page);
1344         fio.blk_addr = ni.blk_addr;
1345         write_node_page(nid, &fio);
1346         set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1347         dec_page_count(sbi, F2FS_DIRTY_NODES);
1348         up_read(&sbi->node_write);
1349         unlock_page(page);
1350
1351         if (wbc->for_reclaim)
1352                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1353
1354         return 0;
1355
1356 redirty_out:
1357         redirty_page_for_writepage(wbc, page);
1358         return AOP_WRITEPAGE_ACTIVATE;
1359 }
1360
1361 static int f2fs_write_node_pages(struct address_space *mapping,
1362                             struct writeback_control *wbc)
1363 {
1364         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1365         long diff;
1366
1367         trace_f2fs_writepages(mapping->host, wbc, NODE);
1368
1369         /* balancing f2fs's metadata in background */
1370         f2fs_balance_fs_bg(sbi);
1371
1372         /* collect a number of dirty node pages and write together */
1373         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1374                 goto skip_write;
1375
1376         diff = nr_pages_to_write(sbi, NODE, wbc);
1377         wbc->sync_mode = WB_SYNC_NONE;
1378         sync_node_pages(sbi, 0, wbc);
1379         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1380         return 0;
1381
1382 skip_write:
1383         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1384         return 0;
1385 }
1386
1387 static int f2fs_set_node_page_dirty(struct page *page)
1388 {
1389         trace_f2fs_set_page_dirty(page, NODE);
1390
1391         SetPageUptodate(page);
1392         if (!PageDirty(page)) {
1393                 __set_page_dirty_nobuffers(page);
1394                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1395                 SetPagePrivate(page);
1396                 f2fs_trace_pid(page);
1397                 return 1;
1398         }
1399         return 0;
1400 }
1401
1402 /*
1403  * Structure of the f2fs node operations
1404  */
1405 const struct address_space_operations f2fs_node_aops = {
1406         .writepage      = f2fs_write_node_page,
1407         .writepages     = f2fs_write_node_pages,
1408         .set_page_dirty = f2fs_set_node_page_dirty,
1409         .invalidatepage = f2fs_invalidate_page,
1410         .releasepage    = f2fs_release_page,
1411 };
1412
1413 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1414                                                 nid_t n)
1415 {
1416         return radix_tree_lookup(&nm_i->free_nid_root, n);
1417 }
1418
1419 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1420                                                 struct free_nid *i)
1421 {
1422         list_del(&i->list);
1423         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1424 }
1425
1426 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1427 {
1428         struct f2fs_nm_info *nm_i = NM_I(sbi);
1429         struct free_nid *i;
1430         struct nat_entry *ne;
1431         bool allocated = false;
1432
1433         if (!available_free_memory(sbi, FREE_NIDS))
1434                 return -1;
1435
1436         /* 0 nid should not be used */
1437         if (unlikely(nid == 0))
1438                 return 0;
1439
1440         if (build) {
1441                 /* do not add allocated nids */
1442                 down_read(&nm_i->nat_tree_lock);
1443                 ne = __lookup_nat_cache(nm_i, nid);
1444                 if (ne &&
1445                         (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1446                                 nat_get_blkaddr(ne) != NULL_ADDR))
1447                         allocated = true;
1448                 up_read(&nm_i->nat_tree_lock);
1449                 if (allocated)
1450                         return 0;
1451         }
1452
1453         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1454         i->nid = nid;
1455         i->state = NID_NEW;
1456
1457         if (radix_tree_preload(GFP_NOFS)) {
1458                 kmem_cache_free(free_nid_slab, i);
1459                 return 0;
1460         }
1461
1462         spin_lock(&nm_i->free_nid_list_lock);
1463         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1464                 spin_unlock(&nm_i->free_nid_list_lock);
1465                 radix_tree_preload_end();
1466                 kmem_cache_free(free_nid_slab, i);
1467                 return 0;
1468         }
1469         list_add_tail(&i->list, &nm_i->free_nid_list);
1470         nm_i->fcnt++;
1471         spin_unlock(&nm_i->free_nid_list_lock);
1472         radix_tree_preload_end();
1473         return 1;
1474 }
1475
1476 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1477 {
1478         struct free_nid *i;
1479         bool need_free = false;
1480
1481         spin_lock(&nm_i->free_nid_list_lock);
1482         i = __lookup_free_nid_list(nm_i, nid);
1483         if (i && i->state == NID_NEW) {
1484                 __del_from_free_nid_list(nm_i, i);
1485                 nm_i->fcnt--;
1486                 need_free = true;
1487         }
1488         spin_unlock(&nm_i->free_nid_list_lock);
1489
1490         if (need_free)
1491                 kmem_cache_free(free_nid_slab, i);
1492 }
1493
1494 static void scan_nat_page(struct f2fs_sb_info *sbi,
1495                         struct page *nat_page, nid_t start_nid)
1496 {
1497         struct f2fs_nm_info *nm_i = NM_I(sbi);
1498         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1499         block_t blk_addr;
1500         int i;
1501
1502         i = start_nid % NAT_ENTRY_PER_BLOCK;
1503
1504         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1505
1506                 if (unlikely(start_nid >= nm_i->max_nid))
1507                         break;
1508
1509                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1510                 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1511                 if (blk_addr == NULL_ADDR) {
1512                         if (add_free_nid(sbi, start_nid, true) < 0)
1513                                 break;
1514                 }
1515         }
1516 }
1517
1518 static void build_free_nids(struct f2fs_sb_info *sbi)
1519 {
1520         struct f2fs_nm_info *nm_i = NM_I(sbi);
1521         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1522         struct f2fs_summary_block *sum = curseg->sum_blk;
1523         int i = 0;
1524         nid_t nid = nm_i->next_scan_nid;
1525
1526         /* Enough entries */
1527         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1528                 return;
1529
1530         /* readahead nat pages to be scanned */
1531         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1532
1533         while (1) {
1534                 struct page *page = get_current_nat_page(sbi, nid);
1535
1536                 scan_nat_page(sbi, page, nid);
1537                 f2fs_put_page(page, 1);
1538
1539                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1540                 if (unlikely(nid >= nm_i->max_nid))
1541                         nid = 0;
1542
1543                 if (++i >= FREE_NID_PAGES)
1544                         break;
1545         }
1546
1547         /* go to the next free nat pages to find free nids abundantly */
1548         nm_i->next_scan_nid = nid;
1549
1550         /* find free nids from current sum_pages */
1551         mutex_lock(&curseg->curseg_mutex);
1552         for (i = 0; i < nats_in_cursum(sum); i++) {
1553                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1554                 nid = le32_to_cpu(nid_in_journal(sum, i));
1555                 if (addr == NULL_ADDR)
1556                         add_free_nid(sbi, nid, true);
1557                 else
1558                         remove_free_nid(nm_i, nid);
1559         }
1560         mutex_unlock(&curseg->curseg_mutex);
1561 }
1562
1563 /*
1564  * If this function returns success, caller can obtain a new nid
1565  * from second parameter of this function.
1566  * The returned nid could be used ino as well as nid when inode is created.
1567  */
1568 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1569 {
1570         struct f2fs_nm_info *nm_i = NM_I(sbi);
1571         struct free_nid *i = NULL;
1572 retry:
1573         if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1574                 return false;
1575
1576         spin_lock(&nm_i->free_nid_list_lock);
1577
1578         /* We should not use stale free nids created by build_free_nids */
1579         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1580                 struct node_info ni;
1581
1582                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1583                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1584                         if (i->state == NID_NEW)
1585                                 break;
1586
1587                 f2fs_bug_on(sbi, i->state != NID_NEW);
1588                 *nid = i->nid;
1589                 i->state = NID_ALLOC;
1590                 nm_i->fcnt--;
1591                 spin_unlock(&nm_i->free_nid_list_lock);
1592
1593                 /* check nid is allocated already */
1594                 get_node_info(sbi, *nid, &ni);
1595                 if (ni.blk_addr != NULL_ADDR) {
1596                         alloc_nid_done(sbi, *nid);
1597                         goto retry;
1598                 }
1599                 return true;
1600         }
1601         spin_unlock(&nm_i->free_nid_list_lock);
1602
1603         /* Let's scan nat pages and its caches to get free nids */
1604         mutex_lock(&nm_i->build_lock);
1605         build_free_nids(sbi);
1606         mutex_unlock(&nm_i->build_lock);
1607         goto retry;
1608 }
1609
1610 /*
1611  * alloc_nid() should be called prior to this function.
1612  */
1613 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1614 {
1615         struct f2fs_nm_info *nm_i = NM_I(sbi);
1616         struct free_nid *i;
1617
1618         spin_lock(&nm_i->free_nid_list_lock);
1619         i = __lookup_free_nid_list(nm_i, nid);
1620         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1621         __del_from_free_nid_list(nm_i, i);
1622         spin_unlock(&nm_i->free_nid_list_lock);
1623
1624         kmem_cache_free(free_nid_slab, i);
1625 }
1626
1627 /*
1628  * alloc_nid() should be called prior to this function.
1629  */
1630 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1631 {
1632         struct f2fs_nm_info *nm_i = NM_I(sbi);
1633         struct free_nid *i;
1634         bool need_free = false;
1635
1636         if (!nid)
1637                 return;
1638
1639         spin_lock(&nm_i->free_nid_list_lock);
1640         i = __lookup_free_nid_list(nm_i, nid);
1641         f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1642         if (!available_free_memory(sbi, FREE_NIDS)) {
1643                 __del_from_free_nid_list(nm_i, i);
1644                 need_free = true;
1645         } else {
1646                 i->state = NID_NEW;
1647                 nm_i->fcnt++;
1648         }
1649         spin_unlock(&nm_i->free_nid_list_lock);
1650
1651         if (need_free)
1652                 kmem_cache_free(free_nid_slab, i);
1653 }
1654
1655 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1656 {
1657         struct f2fs_nm_info *nm_i = NM_I(sbi);
1658         struct free_nid *i, *next;
1659         int nr = nr_shrink;
1660
1661         if (!mutex_trylock(&nm_i->build_lock))
1662                 return 0;
1663
1664         spin_lock(&nm_i->free_nid_list_lock);
1665         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1666                 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1667                         break;
1668                 if (i->state == NID_ALLOC)
1669                         continue;
1670                 __del_from_free_nid_list(nm_i, i);
1671                 kmem_cache_free(free_nid_slab, i);
1672                 nm_i->fcnt--;
1673                 nr_shrink--;
1674         }
1675         spin_unlock(&nm_i->free_nid_list_lock);
1676         mutex_unlock(&nm_i->build_lock);
1677
1678         return nr - nr_shrink;
1679 }
1680
1681 void recover_inline_xattr(struct inode *inode, struct page *page)
1682 {
1683         void *src_addr, *dst_addr;
1684         size_t inline_size;
1685         struct page *ipage;
1686         struct f2fs_inode *ri;
1687
1688         ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1689         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1690
1691         ri = F2FS_INODE(page);
1692         if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1693                 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1694                 goto update_inode;
1695         }
1696
1697         dst_addr = inline_xattr_addr(ipage);
1698         src_addr = inline_xattr_addr(page);
1699         inline_size = inline_xattr_size(inode);
1700
1701         f2fs_wait_on_page_writeback(ipage, NODE);
1702         memcpy(dst_addr, src_addr, inline_size);
1703 update_inode:
1704         update_inode(inode, ipage);
1705         f2fs_put_page(ipage, 1);
1706 }
1707
1708 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1709 {
1710         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1711         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1712         nid_t new_xnid = nid_of_node(page);
1713         struct node_info ni;
1714
1715         /* 1: invalidate the previous xattr nid */
1716         if (!prev_xnid)
1717                 goto recover_xnid;
1718
1719         /* Deallocate node address */
1720         get_node_info(sbi, prev_xnid, &ni);
1721         f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1722         invalidate_blocks(sbi, ni.blk_addr);
1723         dec_valid_node_count(sbi, inode);
1724         set_node_addr(sbi, &ni, NULL_ADDR, false);
1725
1726 recover_xnid:
1727         /* 2: allocate new xattr nid */
1728         if (unlikely(!inc_valid_node_count(sbi, inode)))
1729                 f2fs_bug_on(sbi, 1);
1730
1731         remove_free_nid(NM_I(sbi), new_xnid);
1732         get_node_info(sbi, new_xnid, &ni);
1733         ni.ino = inode->i_ino;
1734         set_node_addr(sbi, &ni, NEW_ADDR, false);
1735         F2FS_I(inode)->i_xattr_nid = new_xnid;
1736
1737         /* 3: update xattr blkaddr */
1738         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1739         set_node_addr(sbi, &ni, blkaddr, false);
1740
1741         update_inode_page(inode);
1742 }
1743
1744 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1745 {
1746         struct f2fs_inode *src, *dst;
1747         nid_t ino = ino_of_node(page);
1748         struct node_info old_ni, new_ni;
1749         struct page *ipage;
1750
1751         get_node_info(sbi, ino, &old_ni);
1752
1753         if (unlikely(old_ni.blk_addr != NULL_ADDR))
1754                 return -EINVAL;
1755
1756         ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1757         if (!ipage)
1758                 return -ENOMEM;
1759
1760         /* Should not use this inode from free nid list */
1761         remove_free_nid(NM_I(sbi), ino);
1762
1763         SetPageUptodate(ipage);
1764         fill_node_footer(ipage, ino, ino, 0, true);
1765
1766         src = F2FS_INODE(page);
1767         dst = F2FS_INODE(ipage);
1768
1769         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1770         dst->i_size = 0;
1771         dst->i_blocks = cpu_to_le64(1);
1772         dst->i_links = cpu_to_le32(1);
1773         dst->i_xattr_nid = 0;
1774         dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1775
1776         new_ni = old_ni;
1777         new_ni.ino = ino;
1778
1779         if (unlikely(!inc_valid_node_count(sbi, NULL)))
1780                 WARN_ON(1);
1781         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1782         inc_valid_inode_count(sbi);
1783         set_page_dirty(ipage);
1784         f2fs_put_page(ipage, 1);
1785         return 0;
1786 }
1787
1788 int restore_node_summary(struct f2fs_sb_info *sbi,
1789                         unsigned int segno, struct f2fs_summary_block *sum)
1790 {
1791         struct f2fs_node *rn;
1792         struct f2fs_summary *sum_entry;
1793         block_t addr;
1794         int bio_blocks = MAX_BIO_BLOCKS(sbi);
1795         int i, idx, last_offset, nrpages;
1796
1797         /* scan the node segment */
1798         last_offset = sbi->blocks_per_seg;
1799         addr = START_BLOCK(sbi, segno);
1800         sum_entry = &sum->entries[0];
1801
1802         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1803                 nrpages = min(last_offset - i, bio_blocks);
1804
1805                 /* readahead node pages */
1806                 ra_meta_pages(sbi, addr, nrpages, META_POR);
1807
1808                 for (idx = addr; idx < addr + nrpages; idx++) {
1809                         struct page *page = get_meta_page(sbi, idx);
1810
1811                         rn = F2FS_NODE(page);
1812                         sum_entry->nid = rn->footer.nid;
1813                         sum_entry->version = 0;
1814                         sum_entry->ofs_in_node = 0;
1815                         sum_entry++;
1816                         f2fs_put_page(page, 1);
1817                 }
1818
1819                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
1820                                                         addr + nrpages);
1821         }
1822         return 0;
1823 }
1824
1825 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1826 {
1827         struct f2fs_nm_info *nm_i = NM_I(sbi);
1828         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1829         struct f2fs_summary_block *sum = curseg->sum_blk;
1830         int i;
1831
1832         mutex_lock(&curseg->curseg_mutex);
1833         for (i = 0; i < nats_in_cursum(sum); i++) {
1834                 struct nat_entry *ne;
1835                 struct f2fs_nat_entry raw_ne;
1836                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1837
1838                 raw_ne = nat_in_journal(sum, i);
1839
1840                 down_write(&nm_i->nat_tree_lock);
1841                 ne = __lookup_nat_cache(nm_i, nid);
1842                 if (!ne) {
1843                         ne = grab_nat_entry(nm_i, nid);
1844                         node_info_from_raw_nat(&ne->ni, &raw_ne);
1845                 }
1846                 __set_nat_cache_dirty(nm_i, ne);
1847                 up_write(&nm_i->nat_tree_lock);
1848         }
1849         update_nats_in_cursum(sum, -i);
1850         mutex_unlock(&curseg->curseg_mutex);
1851 }
1852
1853 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1854                                                 struct list_head *head, int max)
1855 {
1856         struct nat_entry_set *cur;
1857
1858         if (nes->entry_cnt >= max)
1859                 goto add_out;
1860
1861         list_for_each_entry(cur, head, set_list) {
1862                 if (cur->entry_cnt >= nes->entry_cnt) {
1863                         list_add(&nes->set_list, cur->set_list.prev);
1864                         return;
1865                 }
1866         }
1867 add_out:
1868         list_add_tail(&nes->set_list, head);
1869 }
1870
1871 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1872                                         struct nat_entry_set *set)
1873 {
1874         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1875         struct f2fs_summary_block *sum = curseg->sum_blk;
1876         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1877         bool to_journal = true;
1878         struct f2fs_nat_block *nat_blk;
1879         struct nat_entry *ne, *cur;
1880         struct page *page = NULL;
1881         struct f2fs_nm_info *nm_i = NM_I(sbi);
1882
1883         /*
1884          * there are two steps to flush nat entries:
1885          * #1, flush nat entries to journal in current hot data summary block.
1886          * #2, flush nat entries to nat page.
1887          */
1888         if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1889                 to_journal = false;
1890
1891         if (to_journal) {
1892                 mutex_lock(&curseg->curseg_mutex);
1893         } else {
1894                 page = get_next_nat_page(sbi, start_nid);
1895                 nat_blk = page_address(page);
1896                 f2fs_bug_on(sbi, !nat_blk);
1897         }
1898
1899         /* flush dirty nats in nat entry set */
1900         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1901                 struct f2fs_nat_entry *raw_ne;
1902                 nid_t nid = nat_get_nid(ne);
1903                 int offset;
1904
1905                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1906                         continue;
1907
1908                 if (to_journal) {
1909                         offset = lookup_journal_in_cursum(sum,
1910                                                         NAT_JOURNAL, nid, 1);
1911                         f2fs_bug_on(sbi, offset < 0);
1912                         raw_ne = &nat_in_journal(sum, offset);
1913                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1914                 } else {
1915                         raw_ne = &nat_blk->entries[nid - start_nid];
1916                 }
1917                 raw_nat_from_node_info(raw_ne, &ne->ni);
1918
1919                 down_write(&NM_I(sbi)->nat_tree_lock);
1920                 nat_reset_flag(ne);
1921                 __clear_nat_cache_dirty(NM_I(sbi), ne);
1922                 up_write(&NM_I(sbi)->nat_tree_lock);
1923
1924                 if (nat_get_blkaddr(ne) == NULL_ADDR)
1925                         add_free_nid(sbi, nid, false);
1926         }
1927
1928         if (to_journal)
1929                 mutex_unlock(&curseg->curseg_mutex);
1930         else
1931                 f2fs_put_page(page, 1);
1932
1933         f2fs_bug_on(sbi, set->entry_cnt);
1934
1935         down_write(&nm_i->nat_tree_lock);
1936         radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1937         up_write(&nm_i->nat_tree_lock);
1938         kmem_cache_free(nat_entry_set_slab, set);
1939 }
1940
1941 /*
1942  * This function is called during the checkpointing process.
1943  */
1944 void flush_nat_entries(struct f2fs_sb_info *sbi)
1945 {
1946         struct f2fs_nm_info *nm_i = NM_I(sbi);
1947         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1948         struct f2fs_summary_block *sum = curseg->sum_blk;
1949         struct nat_entry_set *setvec[SETVEC_SIZE];
1950         struct nat_entry_set *set, *tmp;
1951         unsigned int found;
1952         nid_t set_idx = 0;
1953         LIST_HEAD(sets);
1954
1955         if (!nm_i->dirty_nat_cnt)
1956                 return;
1957         /*
1958          * if there are no enough space in journal to store dirty nat
1959          * entries, remove all entries from journal and merge them
1960          * into nat entry set.
1961          */
1962         if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1963                 remove_nats_in_journal(sbi);
1964
1965         down_write(&nm_i->nat_tree_lock);
1966         while ((found = __gang_lookup_nat_set(nm_i,
1967                                         set_idx, SETVEC_SIZE, setvec))) {
1968                 unsigned idx;
1969                 set_idx = setvec[found - 1]->set + 1;
1970                 for (idx = 0; idx < found; idx++)
1971                         __adjust_nat_entry_set(setvec[idx], &sets,
1972                                                         MAX_NAT_JENTRIES(sum));
1973         }
1974         up_write(&nm_i->nat_tree_lock);
1975
1976         /* flush dirty nats in nat entry set */
1977         list_for_each_entry_safe(set, tmp, &sets, set_list)
1978                 __flush_nat_entry_set(sbi, set);
1979
1980         f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1981 }
1982
1983 static int init_node_manager(struct f2fs_sb_info *sbi)
1984 {
1985         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1986         struct f2fs_nm_info *nm_i = NM_I(sbi);
1987         unsigned char *version_bitmap;
1988         unsigned int nat_segs, nat_blocks;
1989
1990         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1991
1992         /* segment_count_nat includes pair segment so divide to 2. */
1993         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1994         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1995
1996         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1997
1998         /* not used nids: 0, node, meta, (and root counted as valid node) */
1999         nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2000         nm_i->fcnt = 0;
2001         nm_i->nat_cnt = 0;
2002         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2003
2004         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2005         INIT_LIST_HEAD(&nm_i->free_nid_list);
2006         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2007         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2008         INIT_LIST_HEAD(&nm_i->nat_entries);
2009
2010         mutex_init(&nm_i->build_lock);
2011         spin_lock_init(&nm_i->free_nid_list_lock);
2012         init_rwsem(&nm_i->nat_tree_lock);
2013
2014         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2015         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2016         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2017         if (!version_bitmap)
2018                 return -EFAULT;
2019
2020         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2021                                         GFP_KERNEL);
2022         if (!nm_i->nat_bitmap)
2023                 return -ENOMEM;
2024         return 0;
2025 }
2026
2027 int build_node_manager(struct f2fs_sb_info *sbi)
2028 {
2029         int err;
2030
2031         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2032         if (!sbi->nm_info)
2033                 return -ENOMEM;
2034
2035         err = init_node_manager(sbi);
2036         if (err)
2037                 return err;
2038
2039         build_free_nids(sbi);
2040         return 0;
2041 }
2042
2043 void destroy_node_manager(struct f2fs_sb_info *sbi)
2044 {
2045         struct f2fs_nm_info *nm_i = NM_I(sbi);
2046         struct free_nid *i, *next_i;
2047         struct nat_entry *natvec[NATVEC_SIZE];
2048         struct nat_entry_set *setvec[SETVEC_SIZE];
2049         nid_t nid = 0;
2050         unsigned int found;
2051
2052         if (!nm_i)
2053                 return;
2054
2055         /* destroy free nid list */
2056         spin_lock(&nm_i->free_nid_list_lock);
2057         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2058                 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2059                 __del_from_free_nid_list(nm_i, i);
2060                 nm_i->fcnt--;
2061                 spin_unlock(&nm_i->free_nid_list_lock);
2062                 kmem_cache_free(free_nid_slab, i);
2063                 spin_lock(&nm_i->free_nid_list_lock);
2064         }
2065         f2fs_bug_on(sbi, nm_i->fcnt);
2066         spin_unlock(&nm_i->free_nid_list_lock);
2067
2068         /* destroy nat cache */
2069         down_write(&nm_i->nat_tree_lock);
2070         while ((found = __gang_lookup_nat_cache(nm_i,
2071                                         nid, NATVEC_SIZE, natvec))) {
2072                 unsigned idx;
2073
2074                 nid = nat_get_nid(natvec[found - 1]) + 1;
2075                 for (idx = 0; idx < found; idx++)
2076                         __del_from_nat_cache(nm_i, natvec[idx]);
2077         }
2078         f2fs_bug_on(sbi, nm_i->nat_cnt);
2079
2080         /* destroy nat set cache */
2081         nid = 0;
2082         while ((found = __gang_lookup_nat_set(nm_i,
2083                                         nid, SETVEC_SIZE, setvec))) {
2084                 unsigned idx;
2085
2086                 nid = setvec[found - 1]->set + 1;
2087                 for (idx = 0; idx < found; idx++) {
2088                         /* entry_cnt is not zero, when cp_error was occurred */
2089                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2090                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2091                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2092                 }
2093         }
2094         up_write(&nm_i->nat_tree_lock);
2095
2096         kfree(nm_i->nat_bitmap);
2097         sbi->nm_info = NULL;
2098         kfree(nm_i);
2099 }
2100
2101 int __init create_node_manager_caches(void)
2102 {
2103         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2104                         sizeof(struct nat_entry));
2105         if (!nat_entry_slab)
2106                 goto fail;
2107
2108         free_nid_slab = f2fs_kmem_cache_create("free_nid",
2109                         sizeof(struct free_nid));
2110         if (!free_nid_slab)
2111                 goto destroy_nat_entry;
2112
2113         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2114                         sizeof(struct nat_entry_set));
2115         if (!nat_entry_set_slab)
2116                 goto destroy_free_nid;
2117         return 0;
2118
2119 destroy_free_nid:
2120         kmem_cache_destroy(free_nid_slab);
2121 destroy_nat_entry:
2122         kmem_cache_destroy(nat_entry_slab);
2123 fail:
2124         return -ENOMEM;
2125 }
2126
2127 void destroy_node_manager_caches(void)
2128 {
2129         kmem_cache_destroy(nat_entry_set_slab);
2130         kmem_cache_destroy(free_nid_slab);
2131         kmem_cache_destroy(nat_entry_slab);
2132 }