]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/jbd/journal.c
Merge remote-tracking branch 'asoc/topic/wm8985' into asoc-next
[karo-tx-linux.git] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/page.h>
46
47 EXPORT_SYMBOL(journal_start);
48 EXPORT_SYMBOL(journal_restart);
49 EXPORT_SYMBOL(journal_extend);
50 EXPORT_SYMBOL(journal_stop);
51 EXPORT_SYMBOL(journal_lock_updates);
52 EXPORT_SYMBOL(journal_unlock_updates);
53 EXPORT_SYMBOL(journal_get_write_access);
54 EXPORT_SYMBOL(journal_get_create_access);
55 EXPORT_SYMBOL(journal_get_undo_access);
56 EXPORT_SYMBOL(journal_dirty_data);
57 EXPORT_SYMBOL(journal_dirty_metadata);
58 EXPORT_SYMBOL(journal_release_buffer);
59 EXPORT_SYMBOL(journal_forget);
60 #if 0
61 EXPORT_SYMBOL(journal_sync_buffer);
62 #endif
63 EXPORT_SYMBOL(journal_flush);
64 EXPORT_SYMBOL(journal_revoke);
65
66 EXPORT_SYMBOL(journal_init_dev);
67 EXPORT_SYMBOL(journal_init_inode);
68 EXPORT_SYMBOL(journal_update_format);
69 EXPORT_SYMBOL(journal_check_used_features);
70 EXPORT_SYMBOL(journal_check_available_features);
71 EXPORT_SYMBOL(journal_set_features);
72 EXPORT_SYMBOL(journal_create);
73 EXPORT_SYMBOL(journal_load);
74 EXPORT_SYMBOL(journal_destroy);
75 EXPORT_SYMBOL(journal_abort);
76 EXPORT_SYMBOL(journal_errno);
77 EXPORT_SYMBOL(journal_ack_err);
78 EXPORT_SYMBOL(journal_clear_err);
79 EXPORT_SYMBOL(log_wait_commit);
80 EXPORT_SYMBOL(log_start_commit);
81 EXPORT_SYMBOL(journal_start_commit);
82 EXPORT_SYMBOL(journal_force_commit_nested);
83 EXPORT_SYMBOL(journal_wipe);
84 EXPORT_SYMBOL(journal_blocks_per_page);
85 EXPORT_SYMBOL(journal_invalidatepage);
86 EXPORT_SYMBOL(journal_try_to_free_buffers);
87 EXPORT_SYMBOL(journal_force_commit);
88
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 static const char *journal_dev_name(journal_t *journal, char *buffer);
92
93 /*
94  * Helper function used to manage commit timeouts
95  */
96
97 static void commit_timeout(unsigned long __data)
98 {
99         struct task_struct * p = (struct task_struct *) __data;
100
101         wake_up_process(p);
102 }
103
104 /*
105  * kjournald: The main thread function used to manage a logging device
106  * journal.
107  *
108  * This kernel thread is responsible for two things:
109  *
110  * 1) COMMIT:  Every so often we need to commit the current state of the
111  *    filesystem to disk.  The journal thread is responsible for writing
112  *    all of the metadata buffers to disk.
113  *
114  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
115  *    of the data in that part of the log has been rewritten elsewhere on
116  *    the disk.  Flushing these old buffers to reclaim space in the log is
117  *    known as checkpointing, and this thread is responsible for that job.
118  */
119
120 static int kjournald(void *arg)
121 {
122         journal_t *journal = arg;
123         transaction_t *transaction;
124
125         /*
126          * Set up an interval timer which can be used to trigger a commit wakeup
127          * after the commit interval expires
128          */
129         setup_timer(&journal->j_commit_timer, commit_timeout,
130                         (unsigned long)current);
131
132         set_freezable();
133
134         /* Record that the journal thread is running */
135         journal->j_task = current;
136         wake_up(&journal->j_wait_done_commit);
137
138         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
139                         journal->j_commit_interval / HZ);
140
141         /*
142          * And now, wait forever for commit wakeup events.
143          */
144         spin_lock(&journal->j_state_lock);
145
146 loop:
147         if (journal->j_flags & JFS_UNMOUNT)
148                 goto end_loop;
149
150         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
151                 journal->j_commit_sequence, journal->j_commit_request);
152
153         if (journal->j_commit_sequence != journal->j_commit_request) {
154                 jbd_debug(1, "OK, requests differ\n");
155                 spin_unlock(&journal->j_state_lock);
156                 del_timer_sync(&journal->j_commit_timer);
157                 journal_commit_transaction(journal);
158                 spin_lock(&journal->j_state_lock);
159                 goto loop;
160         }
161
162         wake_up(&journal->j_wait_done_commit);
163         if (freezing(current)) {
164                 /*
165                  * The simpler the better. Flushing journal isn't a
166                  * good idea, because that depends on threads that may
167                  * be already stopped.
168                  */
169                 jbd_debug(1, "Now suspending kjournald\n");
170                 spin_unlock(&journal->j_state_lock);
171                 try_to_freeze();
172                 spin_lock(&journal->j_state_lock);
173         } else {
174                 /*
175                  * We assume on resume that commits are already there,
176                  * so we don't sleep
177                  */
178                 DEFINE_WAIT(wait);
179                 int should_sleep = 1;
180
181                 prepare_to_wait(&journal->j_wait_commit, &wait,
182                                 TASK_INTERRUPTIBLE);
183                 if (journal->j_commit_sequence != journal->j_commit_request)
184                         should_sleep = 0;
185                 transaction = journal->j_running_transaction;
186                 if (transaction && time_after_eq(jiffies,
187                                                 transaction->t_expires))
188                         should_sleep = 0;
189                 if (journal->j_flags & JFS_UNMOUNT)
190                         should_sleep = 0;
191                 if (should_sleep) {
192                         spin_unlock(&journal->j_state_lock);
193                         schedule();
194                         spin_lock(&journal->j_state_lock);
195                 }
196                 finish_wait(&journal->j_wait_commit, &wait);
197         }
198
199         jbd_debug(1, "kjournald wakes\n");
200
201         /*
202          * Were we woken up by a commit wakeup event?
203          */
204         transaction = journal->j_running_transaction;
205         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
206                 journal->j_commit_request = transaction->t_tid;
207                 jbd_debug(1, "woke because of timeout\n");
208         }
209         goto loop;
210
211 end_loop:
212         spin_unlock(&journal->j_state_lock);
213         del_timer_sync(&journal->j_commit_timer);
214         journal->j_task = NULL;
215         wake_up(&journal->j_wait_done_commit);
216         jbd_debug(1, "Journal thread exiting.\n");
217         return 0;
218 }
219
220 static int journal_start_thread(journal_t *journal)
221 {
222         struct task_struct *t;
223
224         t = kthread_run(kjournald, journal, "kjournald");
225         if (IS_ERR(t))
226                 return PTR_ERR(t);
227
228         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
229         return 0;
230 }
231
232 static void journal_kill_thread(journal_t *journal)
233 {
234         spin_lock(&journal->j_state_lock);
235         journal->j_flags |= JFS_UNMOUNT;
236
237         while (journal->j_task) {
238                 wake_up(&journal->j_wait_commit);
239                 spin_unlock(&journal->j_state_lock);
240                 wait_event(journal->j_wait_done_commit,
241                                 journal->j_task == NULL);
242                 spin_lock(&journal->j_state_lock);
243         }
244         spin_unlock(&journal->j_state_lock);
245 }
246
247 /*
248  * journal_write_metadata_buffer: write a metadata buffer to the journal.
249  *
250  * Writes a metadata buffer to a given disk block.  The actual IO is not
251  * performed but a new buffer_head is constructed which labels the data
252  * to be written with the correct destination disk block.
253  *
254  * Any magic-number escaping which needs to be done will cause a
255  * copy-out here.  If the buffer happens to start with the
256  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
257  * magic number is only written to the log for descripter blocks.  In
258  * this case, we copy the data and replace the first word with 0, and we
259  * return a result code which indicates that this buffer needs to be
260  * marked as an escaped buffer in the corresponding log descriptor
261  * block.  The missing word can then be restored when the block is read
262  * during recovery.
263  *
264  * If the source buffer has already been modified by a new transaction
265  * since we took the last commit snapshot, we use the frozen copy of
266  * that data for IO.  If we end up using the existing buffer_head's data
267  * for the write, then we *have* to lock the buffer to prevent anyone
268  * else from using and possibly modifying it while the IO is in
269  * progress.
270  *
271  * The function returns a pointer to the buffer_heads to be used for IO.
272  *
273  * We assume that the journal has already been locked in this function.
274  *
275  * Return value:
276  *  <0: Error
277  * >=0: Finished OK
278  *
279  * On success:
280  * Bit 0 set == escape performed on the data
281  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
282  */
283
284 int journal_write_metadata_buffer(transaction_t *transaction,
285                                   struct journal_head  *jh_in,
286                                   struct journal_head **jh_out,
287                                   unsigned int blocknr)
288 {
289         int need_copy_out = 0;
290         int done_copy_out = 0;
291         int do_escape = 0;
292         char *mapped_data;
293         struct buffer_head *new_bh;
294         struct journal_head *new_jh;
295         struct page *new_page;
296         unsigned int new_offset;
297         struct buffer_head *bh_in = jh2bh(jh_in);
298         journal_t *journal = transaction->t_journal;
299
300         /*
301          * The buffer really shouldn't be locked: only the current committing
302          * transaction is allowed to write it, so nobody else is allowed
303          * to do any IO.
304          *
305          * akpm: except if we're journalling data, and write() output is
306          * also part of a shared mapping, and another thread has
307          * decided to launch a writepage() against this buffer.
308          */
309         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
310
311         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
312         /* keep subsequent assertions sane */
313         new_bh->b_state = 0;
314         init_buffer(new_bh, NULL, NULL);
315         atomic_set(&new_bh->b_count, 1);
316         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
317
318         /*
319          * If a new transaction has already done a buffer copy-out, then
320          * we use that version of the data for the commit.
321          */
322         jbd_lock_bh_state(bh_in);
323 repeat:
324         if (jh_in->b_frozen_data) {
325                 done_copy_out = 1;
326                 new_page = virt_to_page(jh_in->b_frozen_data);
327                 new_offset = offset_in_page(jh_in->b_frozen_data);
328         } else {
329                 new_page = jh2bh(jh_in)->b_page;
330                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
331         }
332
333         mapped_data = kmap_atomic(new_page);
334         /*
335          * Check for escaping
336          */
337         if (*((__be32 *)(mapped_data + new_offset)) ==
338                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
339                 need_copy_out = 1;
340                 do_escape = 1;
341         }
342         kunmap_atomic(mapped_data);
343
344         /*
345          * Do we need to do a data copy?
346          */
347         if (need_copy_out && !done_copy_out) {
348                 char *tmp;
349
350                 jbd_unlock_bh_state(bh_in);
351                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
352                 jbd_lock_bh_state(bh_in);
353                 if (jh_in->b_frozen_data) {
354                         jbd_free(tmp, bh_in->b_size);
355                         goto repeat;
356                 }
357
358                 jh_in->b_frozen_data = tmp;
359                 mapped_data = kmap_atomic(new_page);
360                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
361                 kunmap_atomic(mapped_data);
362
363                 new_page = virt_to_page(tmp);
364                 new_offset = offset_in_page(tmp);
365                 done_copy_out = 1;
366         }
367
368         /*
369          * Did we need to do an escaping?  Now we've done all the
370          * copying, we can finally do so.
371          */
372         if (do_escape) {
373                 mapped_data = kmap_atomic(new_page);
374                 *((unsigned int *)(mapped_data + new_offset)) = 0;
375                 kunmap_atomic(mapped_data);
376         }
377
378         set_bh_page(new_bh, new_page, new_offset);
379         new_jh->b_transaction = NULL;
380         new_bh->b_size = jh2bh(jh_in)->b_size;
381         new_bh->b_bdev = transaction->t_journal->j_dev;
382         new_bh->b_blocknr = blocknr;
383         set_buffer_mapped(new_bh);
384         set_buffer_dirty(new_bh);
385
386         *jh_out = new_jh;
387
388         /*
389          * The to-be-written buffer needs to get moved to the io queue,
390          * and the original buffer whose contents we are shadowing or
391          * copying is moved to the transaction's shadow queue.
392          */
393         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
394         spin_lock(&journal->j_list_lock);
395         __journal_file_buffer(jh_in, transaction, BJ_Shadow);
396         spin_unlock(&journal->j_list_lock);
397         jbd_unlock_bh_state(bh_in);
398
399         JBUFFER_TRACE(new_jh, "file as BJ_IO");
400         journal_file_buffer(new_jh, transaction, BJ_IO);
401
402         return do_escape | (done_copy_out << 1);
403 }
404
405 /*
406  * Allocation code for the journal file.  Manage the space left in the
407  * journal, so that we can begin checkpointing when appropriate.
408  */
409
410 /*
411  * __log_space_left: Return the number of free blocks left in the journal.
412  *
413  * Called with the journal already locked.
414  *
415  * Called under j_state_lock
416  */
417
418 int __log_space_left(journal_t *journal)
419 {
420         int left = journal->j_free;
421
422         assert_spin_locked(&journal->j_state_lock);
423
424         /*
425          * Be pessimistic here about the number of those free blocks which
426          * might be required for log descriptor control blocks.
427          */
428
429 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
430
431         left -= MIN_LOG_RESERVED_BLOCKS;
432
433         if (left <= 0)
434                 return 0;
435         left -= (left >> 3);
436         return left;
437 }
438
439 /*
440  * Called under j_state_lock.  Returns true if a transaction commit was started.
441  */
442 int __log_start_commit(journal_t *journal, tid_t target)
443 {
444         /*
445          * The only transaction we can possibly wait upon is the
446          * currently running transaction (if it exists).  Otherwise,
447          * the target tid must be an old one.
448          */
449         if (journal->j_commit_request != target &&
450             journal->j_running_transaction &&
451             journal->j_running_transaction->t_tid == target) {
452                 /*
453                  * We want a new commit: OK, mark the request and wakeup the
454                  * commit thread.  We do _not_ do the commit ourselves.
455                  */
456
457                 journal->j_commit_request = target;
458                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
459                           journal->j_commit_request,
460                           journal->j_commit_sequence);
461                 wake_up(&journal->j_wait_commit);
462                 return 1;
463         } else if (!tid_geq(journal->j_commit_request, target))
464                 /* This should never happen, but if it does, preserve
465                    the evidence before kjournald goes into a loop and
466                    increments j_commit_sequence beyond all recognition. */
467                 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
468                     journal->j_commit_request, journal->j_commit_sequence,
469                     target, journal->j_running_transaction ?
470                     journal->j_running_transaction->t_tid : 0);
471         return 0;
472 }
473
474 int log_start_commit(journal_t *journal, tid_t tid)
475 {
476         int ret;
477
478         spin_lock(&journal->j_state_lock);
479         ret = __log_start_commit(journal, tid);
480         spin_unlock(&journal->j_state_lock);
481         return ret;
482 }
483
484 /*
485  * Force and wait upon a commit if the calling process is not within
486  * transaction.  This is used for forcing out undo-protected data which contains
487  * bitmaps, when the fs is running out of space.
488  *
489  * We can only force the running transaction if we don't have an active handle;
490  * otherwise, we will deadlock.
491  *
492  * Returns true if a transaction was started.
493  */
494 int journal_force_commit_nested(journal_t *journal)
495 {
496         transaction_t *transaction = NULL;
497         tid_t tid;
498
499         spin_lock(&journal->j_state_lock);
500         if (journal->j_running_transaction && !current->journal_info) {
501                 transaction = journal->j_running_transaction;
502                 __log_start_commit(journal, transaction->t_tid);
503         } else if (journal->j_committing_transaction)
504                 transaction = journal->j_committing_transaction;
505
506         if (!transaction) {
507                 spin_unlock(&journal->j_state_lock);
508                 return 0;       /* Nothing to retry */
509         }
510
511         tid = transaction->t_tid;
512         spin_unlock(&journal->j_state_lock);
513         log_wait_commit(journal, tid);
514         return 1;
515 }
516
517 /*
518  * Start a commit of the current running transaction (if any).  Returns true
519  * if a transaction is going to be committed (or is currently already
520  * committing), and fills its tid in at *ptid
521  */
522 int journal_start_commit(journal_t *journal, tid_t *ptid)
523 {
524         int ret = 0;
525
526         spin_lock(&journal->j_state_lock);
527         if (journal->j_running_transaction) {
528                 tid_t tid = journal->j_running_transaction->t_tid;
529
530                 __log_start_commit(journal, tid);
531                 /* There's a running transaction and we've just made sure
532                  * it's commit has been scheduled. */
533                 if (ptid)
534                         *ptid = tid;
535                 ret = 1;
536         } else if (journal->j_committing_transaction) {
537                 /*
538                  * If commit has been started, then we have to wait for
539                  * completion of that transaction.
540                  */
541                 if (ptid)
542                         *ptid = journal->j_committing_transaction->t_tid;
543                 ret = 1;
544         }
545         spin_unlock(&journal->j_state_lock);
546         return ret;
547 }
548
549 /*
550  * Wait for a specified commit to complete.
551  * The caller may not hold the journal lock.
552  */
553 int log_wait_commit(journal_t *journal, tid_t tid)
554 {
555         int err = 0;
556
557 #ifdef CONFIG_JBD_DEBUG
558         spin_lock(&journal->j_state_lock);
559         if (!tid_geq(journal->j_commit_request, tid)) {
560                 printk(KERN_EMERG
561                        "%s: error: j_commit_request=%d, tid=%d\n",
562                        __func__, journal->j_commit_request, tid);
563         }
564         spin_unlock(&journal->j_state_lock);
565 #endif
566         spin_lock(&journal->j_state_lock);
567         if (!tid_geq(journal->j_commit_waited, tid))
568                 journal->j_commit_waited = tid;
569         while (tid_gt(tid, journal->j_commit_sequence)) {
570                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
571                                   tid, journal->j_commit_sequence);
572                 wake_up(&journal->j_wait_commit);
573                 spin_unlock(&journal->j_state_lock);
574                 wait_event(journal->j_wait_done_commit,
575                                 !tid_gt(tid, journal->j_commit_sequence));
576                 spin_lock(&journal->j_state_lock);
577         }
578         spin_unlock(&journal->j_state_lock);
579
580         if (unlikely(is_journal_aborted(journal))) {
581                 printk(KERN_EMERG "journal commit I/O error\n");
582                 err = -EIO;
583         }
584         return err;
585 }
586
587 /*
588  * Return 1 if a given transaction has not yet sent barrier request
589  * connected with a transaction commit. If 0 is returned, transaction
590  * may or may not have sent the barrier. Used to avoid sending barrier
591  * twice in common cases.
592  */
593 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
594 {
595         int ret = 0;
596         transaction_t *commit_trans;
597
598         if (!(journal->j_flags & JFS_BARRIER))
599                 return 0;
600         spin_lock(&journal->j_state_lock);
601         /* Transaction already committed? */
602         if (tid_geq(journal->j_commit_sequence, tid))
603                 goto out;
604         /*
605          * Transaction is being committed and we already proceeded to
606          * writing commit record?
607          */
608         commit_trans = journal->j_committing_transaction;
609         if (commit_trans && commit_trans->t_tid == tid &&
610             commit_trans->t_state >= T_COMMIT_RECORD)
611                 goto out;
612         ret = 1;
613 out:
614         spin_unlock(&journal->j_state_lock);
615         return ret;
616 }
617 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
618
619 /*
620  * Log buffer allocation routines:
621  */
622
623 int journal_next_log_block(journal_t *journal, unsigned int *retp)
624 {
625         unsigned int blocknr;
626
627         spin_lock(&journal->j_state_lock);
628         J_ASSERT(journal->j_free > 1);
629
630         blocknr = journal->j_head;
631         journal->j_head++;
632         journal->j_free--;
633         if (journal->j_head == journal->j_last)
634                 journal->j_head = journal->j_first;
635         spin_unlock(&journal->j_state_lock);
636         return journal_bmap(journal, blocknr, retp);
637 }
638
639 /*
640  * Conversion of logical to physical block numbers for the journal
641  *
642  * On external journals the journal blocks are identity-mapped, so
643  * this is a no-op.  If needed, we can use j_blk_offset - everything is
644  * ready.
645  */
646 int journal_bmap(journal_t *journal, unsigned int blocknr,
647                  unsigned int *retp)
648 {
649         int err = 0;
650         unsigned int ret;
651
652         if (journal->j_inode) {
653                 ret = bmap(journal->j_inode, blocknr);
654                 if (ret)
655                         *retp = ret;
656                 else {
657                         char b[BDEVNAME_SIZE];
658
659                         printk(KERN_ALERT "%s: journal block not found "
660                                         "at offset %u on %s\n",
661                                 __func__,
662                                 blocknr,
663                                 bdevname(journal->j_dev, b));
664                         err = -EIO;
665                         __journal_abort_soft(journal, err);
666                 }
667         } else {
668                 *retp = blocknr; /* +journal->j_blk_offset */
669         }
670         return err;
671 }
672
673 /*
674  * We play buffer_head aliasing tricks to write data/metadata blocks to
675  * the journal without copying their contents, but for journal
676  * descriptor blocks we do need to generate bona fide buffers.
677  *
678  * After the caller of journal_get_descriptor_buffer() has finished modifying
679  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
680  * But we don't bother doing that, so there will be coherency problems with
681  * mmaps of blockdevs which hold live JBD-controlled filesystems.
682  */
683 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
684 {
685         struct buffer_head *bh;
686         unsigned int blocknr;
687         int err;
688
689         err = journal_next_log_block(journal, &blocknr);
690
691         if (err)
692                 return NULL;
693
694         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
695         if (!bh)
696                 return NULL;
697         lock_buffer(bh);
698         memset(bh->b_data, 0, journal->j_blocksize);
699         set_buffer_uptodate(bh);
700         unlock_buffer(bh);
701         BUFFER_TRACE(bh, "return this buffer");
702         return journal_add_journal_head(bh);
703 }
704
705 /*
706  * Management for journal control blocks: functions to create and
707  * destroy journal_t structures, and to initialise and read existing
708  * journal blocks from disk.  */
709
710 /* First: create and setup a journal_t object in memory.  We initialise
711  * very few fields yet: that has to wait until we have created the
712  * journal structures from from scratch, or loaded them from disk. */
713
714 static journal_t * journal_init_common (void)
715 {
716         journal_t *journal;
717         int err;
718
719         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
720         if (!journal)
721                 goto fail;
722
723         init_waitqueue_head(&journal->j_wait_transaction_locked);
724         init_waitqueue_head(&journal->j_wait_logspace);
725         init_waitqueue_head(&journal->j_wait_done_commit);
726         init_waitqueue_head(&journal->j_wait_checkpoint);
727         init_waitqueue_head(&journal->j_wait_commit);
728         init_waitqueue_head(&journal->j_wait_updates);
729         mutex_init(&journal->j_checkpoint_mutex);
730         spin_lock_init(&journal->j_revoke_lock);
731         spin_lock_init(&journal->j_list_lock);
732         spin_lock_init(&journal->j_state_lock);
733
734         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
735
736         /* The journal is marked for error until we succeed with recovery! */
737         journal->j_flags = JFS_ABORT;
738
739         /* Set up a default-sized revoke table for the new mount. */
740         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
741         if (err) {
742                 kfree(journal);
743                 goto fail;
744         }
745         return journal;
746 fail:
747         return NULL;
748 }
749
750 /* journal_init_dev and journal_init_inode:
751  *
752  * Create a journal structure assigned some fixed set of disk blocks to
753  * the journal.  We don't actually touch those disk blocks yet, but we
754  * need to set up all of the mapping information to tell the journaling
755  * system where the journal blocks are.
756  *
757  */
758
759 /**
760  *  journal_t * journal_init_dev() - creates and initialises a journal structure
761  *  @bdev: Block device on which to create the journal
762  *  @fs_dev: Device which hold journalled filesystem for this journal.
763  *  @start: Block nr Start of journal.
764  *  @len:  Length of the journal in blocks.
765  *  @blocksize: blocksize of journalling device
766  *
767  *  Returns: a newly created journal_t *
768  *
769  *  journal_init_dev creates a journal which maps a fixed contiguous
770  *  range of blocks on an arbitrary block device.
771  *
772  */
773 journal_t * journal_init_dev(struct block_device *bdev,
774                         struct block_device *fs_dev,
775                         int start, int len, int blocksize)
776 {
777         journal_t *journal = journal_init_common();
778         struct buffer_head *bh;
779         int n;
780
781         if (!journal)
782                 return NULL;
783
784         /* journal descriptor can store up to n blocks -bzzz */
785         journal->j_blocksize = blocksize;
786         n = journal->j_blocksize / sizeof(journal_block_tag_t);
787         journal->j_wbufsize = n;
788         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
789         if (!journal->j_wbuf) {
790                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
791                         __func__);
792                 goto out_err;
793         }
794         journal->j_dev = bdev;
795         journal->j_fs_dev = fs_dev;
796         journal->j_blk_offset = start;
797         journal->j_maxlen = len;
798
799         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
800         if (!bh) {
801                 printk(KERN_ERR
802                        "%s: Cannot get buffer for journal superblock\n",
803                        __func__);
804                 goto out_err;
805         }
806         journal->j_sb_buffer = bh;
807         journal->j_superblock = (journal_superblock_t *)bh->b_data;
808
809         return journal;
810 out_err:
811         kfree(journal->j_wbuf);
812         kfree(journal);
813         return NULL;
814 }
815
816 /**
817  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
818  *  @inode: An inode to create the journal in
819  *
820  * journal_init_inode creates a journal which maps an on-disk inode as
821  * the journal.  The inode must exist already, must support bmap() and
822  * must have all data blocks preallocated.
823  */
824 journal_t * journal_init_inode (struct inode *inode)
825 {
826         struct buffer_head *bh;
827         journal_t *journal = journal_init_common();
828         int err;
829         int n;
830         unsigned int blocknr;
831
832         if (!journal)
833                 return NULL;
834
835         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
836         journal->j_inode = inode;
837         jbd_debug(1,
838                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
839                   journal, inode->i_sb->s_id, inode->i_ino,
840                   (long long) inode->i_size,
841                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
842
843         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
844         journal->j_blocksize = inode->i_sb->s_blocksize;
845
846         /* journal descriptor can store up to n blocks -bzzz */
847         n = journal->j_blocksize / sizeof(journal_block_tag_t);
848         journal->j_wbufsize = n;
849         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
850         if (!journal->j_wbuf) {
851                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
852                         __func__);
853                 goto out_err;
854         }
855
856         err = journal_bmap(journal, 0, &blocknr);
857         /* If that failed, give up */
858         if (err) {
859                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
860                        __func__);
861                 goto out_err;
862         }
863
864         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
865         if (!bh) {
866                 printk(KERN_ERR
867                        "%s: Cannot get buffer for journal superblock\n",
868                        __func__);
869                 goto out_err;
870         }
871         journal->j_sb_buffer = bh;
872         journal->j_superblock = (journal_superblock_t *)bh->b_data;
873
874         return journal;
875 out_err:
876         kfree(journal->j_wbuf);
877         kfree(journal);
878         return NULL;
879 }
880
881 /*
882  * If the journal init or create aborts, we need to mark the journal
883  * superblock as being NULL to prevent the journal destroy from writing
884  * back a bogus superblock.
885  */
886 static void journal_fail_superblock (journal_t *journal)
887 {
888         struct buffer_head *bh = journal->j_sb_buffer;
889         brelse(bh);
890         journal->j_sb_buffer = NULL;
891 }
892
893 /*
894  * Given a journal_t structure, initialise the various fields for
895  * startup of a new journaling session.  We use this both when creating
896  * a journal, and after recovering an old journal to reset it for
897  * subsequent use.
898  */
899
900 static int journal_reset(journal_t *journal)
901 {
902         journal_superblock_t *sb = journal->j_superblock;
903         unsigned int first, last;
904
905         first = be32_to_cpu(sb->s_first);
906         last = be32_to_cpu(sb->s_maxlen);
907         if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
908                 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
909                        first, last);
910                 journal_fail_superblock(journal);
911                 return -EINVAL;
912         }
913
914         journal->j_first = first;
915         journal->j_last = last;
916
917         journal->j_head = first;
918         journal->j_tail = first;
919         journal->j_free = last - first;
920
921         journal->j_tail_sequence = journal->j_transaction_sequence;
922         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
923         journal->j_commit_request = journal->j_commit_sequence;
924
925         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
926
927         /*
928          * As a special case, if the on-disk copy is already marked as needing
929          * no recovery (s_start == 0), then we can safely defer the superblock
930          * update until the next commit by setting JFS_FLUSHED.  This avoids
931          * attempting a write to a potential-readonly device.
932          */
933         if (sb->s_start == 0) {
934                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
935                         "(start %u, seq %d, errno %d)\n",
936                         journal->j_tail, journal->j_tail_sequence,
937                         journal->j_errno);
938                 journal->j_flags |= JFS_FLUSHED;
939         } else {
940                 /* Lock here to make assertions happy... */
941                 mutex_lock(&journal->j_checkpoint_mutex);
942                 /*
943                  * Update log tail information. We use WRITE_FUA since new
944                  * transaction will start reusing journal space and so we
945                  * must make sure information about current log tail is on
946                  * disk before that.
947                  */
948                 journal_update_sb_log_tail(journal,
949                                            journal->j_tail_sequence,
950                                            journal->j_tail,
951                                            WRITE_FUA);
952                 mutex_unlock(&journal->j_checkpoint_mutex);
953         }
954         return journal_start_thread(journal);
955 }
956
957 /**
958  * int journal_create() - Initialise the new journal file
959  * @journal: Journal to create. This structure must have been initialised
960  *
961  * Given a journal_t structure which tells us which disk blocks we can
962  * use, create a new journal superblock and initialise all of the
963  * journal fields from scratch.
964  **/
965 int journal_create(journal_t *journal)
966 {
967         unsigned int blocknr;
968         struct buffer_head *bh;
969         journal_superblock_t *sb;
970         int i, err;
971
972         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
973                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
974                         journal->j_maxlen);
975                 journal_fail_superblock(journal);
976                 return -EINVAL;
977         }
978
979         if (journal->j_inode == NULL) {
980                 /*
981                  * We don't know what block to start at!
982                  */
983                 printk(KERN_EMERG
984                        "%s: creation of journal on external device!\n",
985                        __func__);
986                 BUG();
987         }
988
989         /* Zero out the entire journal on disk.  We cannot afford to
990            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
991         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
992         for (i = 0; i < journal->j_maxlen; i++) {
993                 err = journal_bmap(journal, i, &blocknr);
994                 if (err)
995                         return err;
996                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
997                 if (unlikely(!bh))
998                         return -ENOMEM;
999                 lock_buffer(bh);
1000                 memset (bh->b_data, 0, journal->j_blocksize);
1001                 BUFFER_TRACE(bh, "marking dirty");
1002                 mark_buffer_dirty(bh);
1003                 BUFFER_TRACE(bh, "marking uptodate");
1004                 set_buffer_uptodate(bh);
1005                 unlock_buffer(bh);
1006                 __brelse(bh);
1007         }
1008
1009         sync_blockdev(journal->j_dev);
1010         jbd_debug(1, "JBD: journal cleared.\n");
1011
1012         /* OK, fill in the initial static fields in the new superblock */
1013         sb = journal->j_superblock;
1014
1015         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
1016         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1017
1018         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
1019         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
1020         sb->s_first     = cpu_to_be32(1);
1021
1022         journal->j_transaction_sequence = 1;
1023
1024         journal->j_flags &= ~JFS_ABORT;
1025         journal->j_format_version = 2;
1026
1027         return journal_reset(journal);
1028 }
1029
1030 static void journal_write_superblock(journal_t *journal, int write_op)
1031 {
1032         struct buffer_head *bh = journal->j_sb_buffer;
1033         int ret;
1034
1035         trace_journal_write_superblock(journal, write_op);
1036         if (!(journal->j_flags & JFS_BARRIER))
1037                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1038         lock_buffer(bh);
1039         if (buffer_write_io_error(bh)) {
1040                 char b[BDEVNAME_SIZE];
1041                 /*
1042                  * Oh, dear.  A previous attempt to write the journal
1043                  * superblock failed.  This could happen because the
1044                  * USB device was yanked out.  Or it could happen to
1045                  * be a transient write error and maybe the block will
1046                  * be remapped.  Nothing we can do but to retry the
1047                  * write and hope for the best.
1048                  */
1049                 printk(KERN_ERR "JBD: previous I/O error detected "
1050                        "for journal superblock update for %s.\n",
1051                        journal_dev_name(journal, b));
1052                 clear_buffer_write_io_error(bh);
1053                 set_buffer_uptodate(bh);
1054         }
1055
1056         get_bh(bh);
1057         bh->b_end_io = end_buffer_write_sync;
1058         ret = submit_bh(write_op, bh);
1059         wait_on_buffer(bh);
1060         if (buffer_write_io_error(bh)) {
1061                 clear_buffer_write_io_error(bh);
1062                 set_buffer_uptodate(bh);
1063                 ret = -EIO;
1064         }
1065         if (ret) {
1066                 char b[BDEVNAME_SIZE];
1067                 printk(KERN_ERR "JBD: Error %d detected "
1068                        "when updating journal superblock for %s.\n",
1069                        ret, journal_dev_name(journal, b));
1070         }
1071 }
1072
1073 /**
1074  * journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1075  * @journal: The journal to update.
1076  * @tail_tid: TID of the new transaction at the tail of the log
1077  * @tail_block: The first block of the transaction at the tail of the log
1078  * @write_op: With which operation should we write the journal sb
1079  *
1080  * Update a journal's superblock information about log tail and write it to
1081  * disk, waiting for the IO to complete.
1082  */
1083 void journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1084                                 unsigned int tail_block, int write_op)
1085 {
1086         journal_superblock_t *sb = journal->j_superblock;
1087
1088         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1089         jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n",
1090                   tail_block, tail_tid);
1091
1092         sb->s_sequence = cpu_to_be32(tail_tid);
1093         sb->s_start    = cpu_to_be32(tail_block);
1094
1095         journal_write_superblock(journal, write_op);
1096
1097         /* Log is no longer empty */
1098         spin_lock(&journal->j_state_lock);
1099         WARN_ON(!sb->s_sequence);
1100         journal->j_flags &= ~JFS_FLUSHED;
1101         spin_unlock(&journal->j_state_lock);
1102 }
1103
1104 /**
1105  * mark_journal_empty() - Mark on disk journal as empty.
1106  * @journal: The journal to update.
1107  *
1108  * Update a journal's dynamic superblock fields to show that journal is empty.
1109  * Write updated superblock to disk waiting for IO to complete.
1110  */
1111 static void mark_journal_empty(journal_t *journal)
1112 {
1113         journal_superblock_t *sb = journal->j_superblock;
1114
1115         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1116         spin_lock(&journal->j_state_lock);
1117         /* Is it already empty? */
1118         if (sb->s_start == 0) {
1119                 spin_unlock(&journal->j_state_lock);
1120                 return;
1121         }
1122         jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n",
1123                   journal->j_tail_sequence);
1124
1125         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1126         sb->s_start    = cpu_to_be32(0);
1127         spin_unlock(&journal->j_state_lock);
1128
1129         journal_write_superblock(journal, WRITE_FUA);
1130
1131         spin_lock(&journal->j_state_lock);
1132         /* Log is empty */
1133         journal->j_flags |= JFS_FLUSHED;
1134         spin_unlock(&journal->j_state_lock);
1135 }
1136
1137 /**
1138  * journal_update_sb_errno() - Update error in the journal.
1139  * @journal: The journal to update.
1140  *
1141  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1142  * to complete.
1143  */
1144 static void journal_update_sb_errno(journal_t *journal)
1145 {
1146         journal_superblock_t *sb = journal->j_superblock;
1147
1148         spin_lock(&journal->j_state_lock);
1149         jbd_debug(1, "JBD: updating superblock error (errno %d)\n",
1150                   journal->j_errno);
1151         sb->s_errno = cpu_to_be32(journal->j_errno);
1152         spin_unlock(&journal->j_state_lock);
1153
1154         journal_write_superblock(journal, WRITE_SYNC);
1155 }
1156
1157 /*
1158  * Read the superblock for a given journal, performing initial
1159  * validation of the format.
1160  */
1161
1162 static int journal_get_superblock(journal_t *journal)
1163 {
1164         struct buffer_head *bh;
1165         journal_superblock_t *sb;
1166         int err = -EIO;
1167
1168         bh = journal->j_sb_buffer;
1169
1170         J_ASSERT(bh != NULL);
1171         if (!buffer_uptodate(bh)) {
1172                 ll_rw_block(READ, 1, &bh);
1173                 wait_on_buffer(bh);
1174                 if (!buffer_uptodate(bh)) {
1175                         printk (KERN_ERR
1176                                 "JBD: IO error reading journal superblock\n");
1177                         goto out;
1178                 }
1179         }
1180
1181         sb = journal->j_superblock;
1182
1183         err = -EINVAL;
1184
1185         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1186             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1187                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1188                 goto out;
1189         }
1190
1191         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1192         case JFS_SUPERBLOCK_V1:
1193                 journal->j_format_version = 1;
1194                 break;
1195         case JFS_SUPERBLOCK_V2:
1196                 journal->j_format_version = 2;
1197                 break;
1198         default:
1199                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1200                 goto out;
1201         }
1202
1203         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1204                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1205         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1206                 printk (KERN_WARNING "JBD: journal file too short\n");
1207                 goto out;
1208         }
1209
1210         if (be32_to_cpu(sb->s_first) == 0 ||
1211             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1212                 printk(KERN_WARNING
1213                         "JBD: Invalid start block of journal: %u\n",
1214                         be32_to_cpu(sb->s_first));
1215                 goto out;
1216         }
1217
1218         return 0;
1219
1220 out:
1221         journal_fail_superblock(journal);
1222         return err;
1223 }
1224
1225 /*
1226  * Load the on-disk journal superblock and read the key fields into the
1227  * journal_t.
1228  */
1229
1230 static int load_superblock(journal_t *journal)
1231 {
1232         int err;
1233         journal_superblock_t *sb;
1234
1235         err = journal_get_superblock(journal);
1236         if (err)
1237                 return err;
1238
1239         sb = journal->j_superblock;
1240
1241         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1242         journal->j_tail = be32_to_cpu(sb->s_start);
1243         journal->j_first = be32_to_cpu(sb->s_first);
1244         journal->j_last = be32_to_cpu(sb->s_maxlen);
1245         journal->j_errno = be32_to_cpu(sb->s_errno);
1246
1247         return 0;
1248 }
1249
1250
1251 /**
1252  * int journal_load() - Read journal from disk.
1253  * @journal: Journal to act on.
1254  *
1255  * Given a journal_t structure which tells us which disk blocks contain
1256  * a journal, read the journal from disk to initialise the in-memory
1257  * structures.
1258  */
1259 int journal_load(journal_t *journal)
1260 {
1261         int err;
1262         journal_superblock_t *sb;
1263
1264         err = load_superblock(journal);
1265         if (err)
1266                 return err;
1267
1268         sb = journal->j_superblock;
1269         /* If this is a V2 superblock, then we have to check the
1270          * features flags on it. */
1271
1272         if (journal->j_format_version >= 2) {
1273                 if ((sb->s_feature_ro_compat &
1274                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1275                     (sb->s_feature_incompat &
1276                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1277                         printk (KERN_WARNING
1278                                 "JBD: Unrecognised features on journal\n");
1279                         return -EINVAL;
1280                 }
1281         }
1282
1283         /* Let the recovery code check whether it needs to recover any
1284          * data from the journal. */
1285         if (journal_recover(journal))
1286                 goto recovery_error;
1287
1288         /* OK, we've finished with the dynamic journal bits:
1289          * reinitialise the dynamic contents of the superblock in memory
1290          * and reset them on disk. */
1291         if (journal_reset(journal))
1292                 goto recovery_error;
1293
1294         journal->j_flags &= ~JFS_ABORT;
1295         journal->j_flags |= JFS_LOADED;
1296         return 0;
1297
1298 recovery_error:
1299         printk (KERN_WARNING "JBD: recovery failed\n");
1300         return -EIO;
1301 }
1302
1303 /**
1304  * void journal_destroy() - Release a journal_t structure.
1305  * @journal: Journal to act on.
1306  *
1307  * Release a journal_t structure once it is no longer in use by the
1308  * journaled object.
1309  * Return <0 if we couldn't clean up the journal.
1310  */
1311 int journal_destroy(journal_t *journal)
1312 {
1313         int err = 0;
1314
1315         
1316         /* Wait for the commit thread to wake up and die. */
1317         journal_kill_thread(journal);
1318
1319         /* Force a final log commit */
1320         if (journal->j_running_transaction)
1321                 journal_commit_transaction(journal);
1322
1323         /* Force any old transactions to disk */
1324
1325         /* We cannot race with anybody but must keep assertions happy */
1326         mutex_lock(&journal->j_checkpoint_mutex);
1327         /* Totally anal locking here... */
1328         spin_lock(&journal->j_list_lock);
1329         while (journal->j_checkpoint_transactions != NULL) {
1330                 spin_unlock(&journal->j_list_lock);
1331                 log_do_checkpoint(journal);
1332                 spin_lock(&journal->j_list_lock);
1333         }
1334
1335         J_ASSERT(journal->j_running_transaction == NULL);
1336         J_ASSERT(journal->j_committing_transaction == NULL);
1337         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1338         spin_unlock(&journal->j_list_lock);
1339
1340         if (journal->j_sb_buffer) {
1341                 if (!is_journal_aborted(journal)) {
1342                         journal->j_tail_sequence =
1343                                 ++journal->j_transaction_sequence;
1344                         mark_journal_empty(journal);
1345                 } else
1346                         err = -EIO;
1347                 brelse(journal->j_sb_buffer);
1348         }
1349         mutex_unlock(&journal->j_checkpoint_mutex);
1350
1351         if (journal->j_inode)
1352                 iput(journal->j_inode);
1353         if (journal->j_revoke)
1354                 journal_destroy_revoke(journal);
1355         kfree(journal->j_wbuf);
1356         kfree(journal);
1357
1358         return err;
1359 }
1360
1361
1362 /**
1363  *int journal_check_used_features () - Check if features specified are used.
1364  * @journal: Journal to check.
1365  * @compat: bitmask of compatible features
1366  * @ro: bitmask of features that force read-only mount
1367  * @incompat: bitmask of incompatible features
1368  *
1369  * Check whether the journal uses all of a given set of
1370  * features.  Return true (non-zero) if it does.
1371  **/
1372
1373 int journal_check_used_features (journal_t *journal, unsigned long compat,
1374                                  unsigned long ro, unsigned long incompat)
1375 {
1376         journal_superblock_t *sb;
1377
1378         if (!compat && !ro && !incompat)
1379                 return 1;
1380         if (journal->j_format_version == 1)
1381                 return 0;
1382
1383         sb = journal->j_superblock;
1384
1385         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1386             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1387             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1388                 return 1;
1389
1390         return 0;
1391 }
1392
1393 /**
1394  * int journal_check_available_features() - Check feature set in journalling layer
1395  * @journal: Journal to check.
1396  * @compat: bitmask of compatible features
1397  * @ro: bitmask of features that force read-only mount
1398  * @incompat: bitmask of incompatible features
1399  *
1400  * Check whether the journaling code supports the use of
1401  * all of a given set of features on this journal.  Return true
1402  * (non-zero) if it can. */
1403
1404 int journal_check_available_features (journal_t *journal, unsigned long compat,
1405                                       unsigned long ro, unsigned long incompat)
1406 {
1407         if (!compat && !ro && !incompat)
1408                 return 1;
1409
1410         /* We can support any known requested features iff the
1411          * superblock is in version 2.  Otherwise we fail to support any
1412          * extended sb features. */
1413
1414         if (journal->j_format_version != 2)
1415                 return 0;
1416
1417         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1418             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1419             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1420                 return 1;
1421
1422         return 0;
1423 }
1424
1425 /**
1426  * int journal_set_features () - Mark a given journal feature in the superblock
1427  * @journal: Journal to act on.
1428  * @compat: bitmask of compatible features
1429  * @ro: bitmask of features that force read-only mount
1430  * @incompat: bitmask of incompatible features
1431  *
1432  * Mark a given journal feature as present on the
1433  * superblock.  Returns true if the requested features could be set.
1434  *
1435  */
1436
1437 int journal_set_features (journal_t *journal, unsigned long compat,
1438                           unsigned long ro, unsigned long incompat)
1439 {
1440         journal_superblock_t *sb;
1441
1442         if (journal_check_used_features(journal, compat, ro, incompat))
1443                 return 1;
1444
1445         if (!journal_check_available_features(journal, compat, ro, incompat))
1446                 return 0;
1447
1448         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1449                   compat, ro, incompat);
1450
1451         sb = journal->j_superblock;
1452
1453         sb->s_feature_compat    |= cpu_to_be32(compat);
1454         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1455         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1456
1457         return 1;
1458 }
1459
1460
1461 /**
1462  * int journal_update_format () - Update on-disk journal structure.
1463  * @journal: Journal to act on.
1464  *
1465  * Given an initialised but unloaded journal struct, poke about in the
1466  * on-disk structure to update it to the most recent supported version.
1467  */
1468 int journal_update_format (journal_t *journal)
1469 {
1470         journal_superblock_t *sb;
1471         int err;
1472
1473         err = journal_get_superblock(journal);
1474         if (err)
1475                 return err;
1476
1477         sb = journal->j_superblock;
1478
1479         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1480         case JFS_SUPERBLOCK_V2:
1481                 return 0;
1482         case JFS_SUPERBLOCK_V1:
1483                 return journal_convert_superblock_v1(journal, sb);
1484         default:
1485                 break;
1486         }
1487         return -EINVAL;
1488 }
1489
1490 static int journal_convert_superblock_v1(journal_t *journal,
1491                                          journal_superblock_t *sb)
1492 {
1493         int offset, blocksize;
1494         struct buffer_head *bh;
1495
1496         printk(KERN_WARNING
1497                 "JBD: Converting superblock from version 1 to 2.\n");
1498
1499         /* Pre-initialise new fields to zero */
1500         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1501         blocksize = be32_to_cpu(sb->s_blocksize);
1502         memset(&sb->s_feature_compat, 0, blocksize-offset);
1503
1504         sb->s_nr_users = cpu_to_be32(1);
1505         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1506         journal->j_format_version = 2;
1507
1508         bh = journal->j_sb_buffer;
1509         BUFFER_TRACE(bh, "marking dirty");
1510         mark_buffer_dirty(bh);
1511         sync_dirty_buffer(bh);
1512         return 0;
1513 }
1514
1515
1516 /**
1517  * int journal_flush () - Flush journal
1518  * @journal: Journal to act on.
1519  *
1520  * Flush all data for a given journal to disk and empty the journal.
1521  * Filesystems can use this when remounting readonly to ensure that
1522  * recovery does not need to happen on remount.
1523  */
1524
1525 int journal_flush(journal_t *journal)
1526 {
1527         int err = 0;
1528         transaction_t *transaction = NULL;
1529
1530         spin_lock(&journal->j_state_lock);
1531
1532         /* Force everything buffered to the log... */
1533         if (journal->j_running_transaction) {
1534                 transaction = journal->j_running_transaction;
1535                 __log_start_commit(journal, transaction->t_tid);
1536         } else if (journal->j_committing_transaction)
1537                 transaction = journal->j_committing_transaction;
1538
1539         /* Wait for the log commit to complete... */
1540         if (transaction) {
1541                 tid_t tid = transaction->t_tid;
1542
1543                 spin_unlock(&journal->j_state_lock);
1544                 log_wait_commit(journal, tid);
1545         } else {
1546                 spin_unlock(&journal->j_state_lock);
1547         }
1548
1549         /* ...and flush everything in the log out to disk. */
1550         spin_lock(&journal->j_list_lock);
1551         while (!err && journal->j_checkpoint_transactions != NULL) {
1552                 spin_unlock(&journal->j_list_lock);
1553                 mutex_lock(&journal->j_checkpoint_mutex);
1554                 err = log_do_checkpoint(journal);
1555                 mutex_unlock(&journal->j_checkpoint_mutex);
1556                 spin_lock(&journal->j_list_lock);
1557         }
1558         spin_unlock(&journal->j_list_lock);
1559
1560         if (is_journal_aborted(journal))
1561                 return -EIO;
1562
1563         mutex_lock(&journal->j_checkpoint_mutex);
1564         cleanup_journal_tail(journal);
1565
1566         /* Finally, mark the journal as really needing no recovery.
1567          * This sets s_start==0 in the underlying superblock, which is
1568          * the magic code for a fully-recovered superblock.  Any future
1569          * commits of data to the journal will restore the current
1570          * s_start value. */
1571         mark_journal_empty(journal);
1572         mutex_unlock(&journal->j_checkpoint_mutex);
1573         spin_lock(&journal->j_state_lock);
1574         J_ASSERT(!journal->j_running_transaction);
1575         J_ASSERT(!journal->j_committing_transaction);
1576         J_ASSERT(!journal->j_checkpoint_transactions);
1577         J_ASSERT(journal->j_head == journal->j_tail);
1578         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1579         spin_unlock(&journal->j_state_lock);
1580         return 0;
1581 }
1582
1583 /**
1584  * int journal_wipe() - Wipe journal contents
1585  * @journal: Journal to act on.
1586  * @write: flag (see below)
1587  *
1588  * Wipe out all of the contents of a journal, safely.  This will produce
1589  * a warning if the journal contains any valid recovery information.
1590  * Must be called between journal_init_*() and journal_load().
1591  *
1592  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1593  * we merely suppress recovery.
1594  */
1595
1596 int journal_wipe(journal_t *journal, int write)
1597 {
1598         int err = 0;
1599
1600         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1601
1602         err = load_superblock(journal);
1603         if (err)
1604                 return err;
1605
1606         if (!journal->j_tail)
1607                 goto no_recovery;
1608
1609         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1610                 write ? "Clearing" : "Ignoring");
1611
1612         err = journal_skip_recovery(journal);
1613         if (write) {
1614                 /* Lock to make assertions happy... */
1615                 mutex_lock(&journal->j_checkpoint_mutex);
1616                 mark_journal_empty(journal);
1617                 mutex_unlock(&journal->j_checkpoint_mutex);
1618         }
1619
1620  no_recovery:
1621         return err;
1622 }
1623
1624 /*
1625  * journal_dev_name: format a character string to describe on what
1626  * device this journal is present.
1627  */
1628
1629 static const char *journal_dev_name(journal_t *journal, char *buffer)
1630 {
1631         struct block_device *bdev;
1632
1633         if (journal->j_inode)
1634                 bdev = journal->j_inode->i_sb->s_bdev;
1635         else
1636                 bdev = journal->j_dev;
1637
1638         return bdevname(bdev, buffer);
1639 }
1640
1641 /*
1642  * Journal abort has very specific semantics, which we describe
1643  * for journal abort.
1644  *
1645  * Two internal function, which provide abort to te jbd layer
1646  * itself are here.
1647  */
1648
1649 /*
1650  * Quick version for internal journal use (doesn't lock the journal).
1651  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1652  * and don't attempt to make any other journal updates.
1653  */
1654 static void __journal_abort_hard(journal_t *journal)
1655 {
1656         transaction_t *transaction;
1657         char b[BDEVNAME_SIZE];
1658
1659         if (journal->j_flags & JFS_ABORT)
1660                 return;
1661
1662         printk(KERN_ERR "Aborting journal on device %s.\n",
1663                 journal_dev_name(journal, b));
1664
1665         spin_lock(&journal->j_state_lock);
1666         journal->j_flags |= JFS_ABORT;
1667         transaction = journal->j_running_transaction;
1668         if (transaction)
1669                 __log_start_commit(journal, transaction->t_tid);
1670         spin_unlock(&journal->j_state_lock);
1671 }
1672
1673 /* Soft abort: record the abort error status in the journal superblock,
1674  * but don't do any other IO. */
1675 static void __journal_abort_soft (journal_t *journal, int errno)
1676 {
1677         if (journal->j_flags & JFS_ABORT)
1678                 return;
1679
1680         if (!journal->j_errno)
1681                 journal->j_errno = errno;
1682
1683         __journal_abort_hard(journal);
1684
1685         if (errno)
1686                 journal_update_sb_errno(journal);
1687 }
1688
1689 /**
1690  * void journal_abort () - Shutdown the journal immediately.
1691  * @journal: the journal to shutdown.
1692  * @errno:   an error number to record in the journal indicating
1693  *           the reason for the shutdown.
1694  *
1695  * Perform a complete, immediate shutdown of the ENTIRE
1696  * journal (not of a single transaction).  This operation cannot be
1697  * undone without closing and reopening the journal.
1698  *
1699  * The journal_abort function is intended to support higher level error
1700  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1701  * mode.
1702  *
1703  * Journal abort has very specific semantics.  Any existing dirty,
1704  * unjournaled buffers in the main filesystem will still be written to
1705  * disk by bdflush, but the journaling mechanism will be suspended
1706  * immediately and no further transaction commits will be honoured.
1707  *
1708  * Any dirty, journaled buffers will be written back to disk without
1709  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1710  * filesystem, but we _do_ attempt to leave as much data as possible
1711  * behind for fsck to use for cleanup.
1712  *
1713  * Any attempt to get a new transaction handle on a journal which is in
1714  * ABORT state will just result in an -EROFS error return.  A
1715  * journal_stop on an existing handle will return -EIO if we have
1716  * entered abort state during the update.
1717  *
1718  * Recursive transactions are not disturbed by journal abort until the
1719  * final journal_stop, which will receive the -EIO error.
1720  *
1721  * Finally, the journal_abort call allows the caller to supply an errno
1722  * which will be recorded (if possible) in the journal superblock.  This
1723  * allows a client to record failure conditions in the middle of a
1724  * transaction without having to complete the transaction to record the
1725  * failure to disk.  ext3_error, for example, now uses this
1726  * functionality.
1727  *
1728  * Errors which originate from within the journaling layer will NOT
1729  * supply an errno; a null errno implies that absolutely no further
1730  * writes are done to the journal (unless there are any already in
1731  * progress).
1732  *
1733  */
1734
1735 void journal_abort(journal_t *journal, int errno)
1736 {
1737         __journal_abort_soft(journal, errno);
1738 }
1739
1740 /**
1741  * int journal_errno () - returns the journal's error state.
1742  * @journal: journal to examine.
1743  *
1744  * This is the errno numbet set with journal_abort(), the last
1745  * time the journal was mounted - if the journal was stopped
1746  * without calling abort this will be 0.
1747  *
1748  * If the journal has been aborted on this mount time -EROFS will
1749  * be returned.
1750  */
1751 int journal_errno(journal_t *journal)
1752 {
1753         int err;
1754
1755         spin_lock(&journal->j_state_lock);
1756         if (journal->j_flags & JFS_ABORT)
1757                 err = -EROFS;
1758         else
1759                 err = journal->j_errno;
1760         spin_unlock(&journal->j_state_lock);
1761         return err;
1762 }
1763
1764 /**
1765  * int journal_clear_err () - clears the journal's error state
1766  * @journal: journal to act on.
1767  *
1768  * An error must be cleared or Acked to take a FS out of readonly
1769  * mode.
1770  */
1771 int journal_clear_err(journal_t *journal)
1772 {
1773         int err = 0;
1774
1775         spin_lock(&journal->j_state_lock);
1776         if (journal->j_flags & JFS_ABORT)
1777                 err = -EROFS;
1778         else
1779                 journal->j_errno = 0;
1780         spin_unlock(&journal->j_state_lock);
1781         return err;
1782 }
1783
1784 /**
1785  * void journal_ack_err() - Ack journal err.
1786  * @journal: journal to act on.
1787  *
1788  * An error must be cleared or Acked to take a FS out of readonly
1789  * mode.
1790  */
1791 void journal_ack_err(journal_t *journal)
1792 {
1793         spin_lock(&journal->j_state_lock);
1794         if (journal->j_errno)
1795                 journal->j_flags |= JFS_ACK_ERR;
1796         spin_unlock(&journal->j_state_lock);
1797 }
1798
1799 int journal_blocks_per_page(struct inode *inode)
1800 {
1801         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1802 }
1803
1804 /*
1805  * Journal_head storage management
1806  */
1807 static struct kmem_cache *journal_head_cache;
1808 #ifdef CONFIG_JBD_DEBUG
1809 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1810 #endif
1811
1812 static int journal_init_journal_head_cache(void)
1813 {
1814         int retval;
1815
1816         J_ASSERT(journal_head_cache == NULL);
1817         journal_head_cache = kmem_cache_create("journal_head",
1818                                 sizeof(struct journal_head),
1819                                 0,              /* offset */
1820                                 SLAB_TEMPORARY, /* flags */
1821                                 NULL);          /* ctor */
1822         retval = 0;
1823         if (!journal_head_cache) {
1824                 retval = -ENOMEM;
1825                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1826         }
1827         return retval;
1828 }
1829
1830 static void journal_destroy_journal_head_cache(void)
1831 {
1832         if (journal_head_cache) {
1833                 kmem_cache_destroy(journal_head_cache);
1834                 journal_head_cache = NULL;
1835         }
1836 }
1837
1838 /*
1839  * journal_head splicing and dicing
1840  */
1841 static struct journal_head *journal_alloc_journal_head(void)
1842 {
1843         struct journal_head *ret;
1844
1845 #ifdef CONFIG_JBD_DEBUG
1846         atomic_inc(&nr_journal_heads);
1847 #endif
1848         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1849         if (ret == NULL) {
1850                 jbd_debug(1, "out of memory for journal_head\n");
1851                 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1852                                    __func__);
1853
1854                 while (ret == NULL) {
1855                         yield();
1856                         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1857                 }
1858         }
1859         return ret;
1860 }
1861
1862 static void journal_free_journal_head(struct journal_head *jh)
1863 {
1864 #ifdef CONFIG_JBD_DEBUG
1865         atomic_dec(&nr_journal_heads);
1866         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1867 #endif
1868         kmem_cache_free(journal_head_cache, jh);
1869 }
1870
1871 /*
1872  * A journal_head is attached to a buffer_head whenever JBD has an
1873  * interest in the buffer.
1874  *
1875  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1876  * is set.  This bit is tested in core kernel code where we need to take
1877  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1878  * there.
1879  *
1880  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1881  *
1882  * When a buffer has its BH_JBD bit set it is immune from being released by
1883  * core kernel code, mainly via ->b_count.
1884  *
1885  * A journal_head is detached from its buffer_head when the journal_head's
1886  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1887  * transaction (b_cp_transaction) hold their references to b_jcount.
1888  *
1889  * Various places in the kernel want to attach a journal_head to a buffer_head
1890  * _before_ attaching the journal_head to a transaction.  To protect the
1891  * journal_head in this situation, journal_add_journal_head elevates the
1892  * journal_head's b_jcount refcount by one.  The caller must call
1893  * journal_put_journal_head() to undo this.
1894  *
1895  * So the typical usage would be:
1896  *
1897  *      (Attach a journal_head if needed.  Increments b_jcount)
1898  *      struct journal_head *jh = journal_add_journal_head(bh);
1899  *      ...
1900  *      (Get another reference for transaction)
1901  *      journal_grab_journal_head(bh);
1902  *      jh->b_transaction = xxx;
1903  *      (Put original reference)
1904  *      journal_put_journal_head(jh);
1905  */
1906
1907 /*
1908  * Give a buffer_head a journal_head.
1909  *
1910  * May sleep.
1911  */
1912 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1913 {
1914         struct journal_head *jh;
1915         struct journal_head *new_jh = NULL;
1916
1917 repeat:
1918         if (!buffer_jbd(bh)) {
1919                 new_jh = journal_alloc_journal_head();
1920                 memset(new_jh, 0, sizeof(*new_jh));
1921         }
1922
1923         jbd_lock_bh_journal_head(bh);
1924         if (buffer_jbd(bh)) {
1925                 jh = bh2jh(bh);
1926         } else {
1927                 J_ASSERT_BH(bh,
1928                         (atomic_read(&bh->b_count) > 0) ||
1929                         (bh->b_page && bh->b_page->mapping));
1930
1931                 if (!new_jh) {
1932                         jbd_unlock_bh_journal_head(bh);
1933                         goto repeat;
1934                 }
1935
1936                 jh = new_jh;
1937                 new_jh = NULL;          /* We consumed it */
1938                 set_buffer_jbd(bh);
1939                 bh->b_private = jh;
1940                 jh->b_bh = bh;
1941                 get_bh(bh);
1942                 BUFFER_TRACE(bh, "added journal_head");
1943         }
1944         jh->b_jcount++;
1945         jbd_unlock_bh_journal_head(bh);
1946         if (new_jh)
1947                 journal_free_journal_head(new_jh);
1948         return bh->b_private;
1949 }
1950
1951 /*
1952  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1953  * having a journal_head, return NULL
1954  */
1955 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1956 {
1957         struct journal_head *jh = NULL;
1958
1959         jbd_lock_bh_journal_head(bh);
1960         if (buffer_jbd(bh)) {
1961                 jh = bh2jh(bh);
1962                 jh->b_jcount++;
1963         }
1964         jbd_unlock_bh_journal_head(bh);
1965         return jh;
1966 }
1967
1968 static void __journal_remove_journal_head(struct buffer_head *bh)
1969 {
1970         struct journal_head *jh = bh2jh(bh);
1971
1972         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1973         J_ASSERT_JH(jh, jh->b_transaction == NULL);
1974         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1975         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1976         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1977         J_ASSERT_BH(bh, buffer_jbd(bh));
1978         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1979         BUFFER_TRACE(bh, "remove journal_head");
1980         if (jh->b_frozen_data) {
1981                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
1982                 jbd_free(jh->b_frozen_data, bh->b_size);
1983         }
1984         if (jh->b_committed_data) {
1985                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
1986                 jbd_free(jh->b_committed_data, bh->b_size);
1987         }
1988         bh->b_private = NULL;
1989         jh->b_bh = NULL;        /* debug, really */
1990         clear_buffer_jbd(bh);
1991         journal_free_journal_head(jh);
1992 }
1993
1994 /*
1995  * Drop a reference on the passed journal_head.  If it fell to zero then
1996  * release the journal_head from the buffer_head.
1997  */
1998 void journal_put_journal_head(struct journal_head *jh)
1999 {
2000         struct buffer_head *bh = jh2bh(jh);
2001
2002         jbd_lock_bh_journal_head(bh);
2003         J_ASSERT_JH(jh, jh->b_jcount > 0);
2004         --jh->b_jcount;
2005         if (!jh->b_jcount) {
2006                 __journal_remove_journal_head(bh);
2007                 jbd_unlock_bh_journal_head(bh);
2008                 __brelse(bh);
2009         } else
2010                 jbd_unlock_bh_journal_head(bh);
2011 }
2012
2013 /*
2014  * debugfs tunables
2015  */
2016 #ifdef CONFIG_JBD_DEBUG
2017
2018 u8 journal_enable_debug __read_mostly;
2019 EXPORT_SYMBOL(journal_enable_debug);
2020
2021 static struct dentry *jbd_debugfs_dir;
2022 static struct dentry *jbd_debug;
2023
2024 static void __init jbd_create_debugfs_entry(void)
2025 {
2026         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
2027         if (jbd_debugfs_dir)
2028                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
2029                                                jbd_debugfs_dir,
2030                                                &journal_enable_debug);
2031 }
2032
2033 static void __exit jbd_remove_debugfs_entry(void)
2034 {
2035         debugfs_remove(jbd_debug);
2036         debugfs_remove(jbd_debugfs_dir);
2037 }
2038
2039 #else
2040
2041 static inline void jbd_create_debugfs_entry(void)
2042 {
2043 }
2044
2045 static inline void jbd_remove_debugfs_entry(void)
2046 {
2047 }
2048
2049 #endif
2050
2051 struct kmem_cache *jbd_handle_cache;
2052
2053 static int __init journal_init_handle_cache(void)
2054 {
2055         jbd_handle_cache = kmem_cache_create("journal_handle",
2056                                 sizeof(handle_t),
2057                                 0,              /* offset */
2058                                 SLAB_TEMPORARY, /* flags */
2059                                 NULL);          /* ctor */
2060         if (jbd_handle_cache == NULL) {
2061                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2062                 return -ENOMEM;
2063         }
2064         return 0;
2065 }
2066
2067 static void journal_destroy_handle_cache(void)
2068 {
2069         if (jbd_handle_cache)
2070                 kmem_cache_destroy(jbd_handle_cache);
2071 }
2072
2073 /*
2074  * Module startup and shutdown
2075  */
2076
2077 static int __init journal_init_caches(void)
2078 {
2079         int ret;
2080
2081         ret = journal_init_revoke_caches();
2082         if (ret == 0)
2083                 ret = journal_init_journal_head_cache();
2084         if (ret == 0)
2085                 ret = journal_init_handle_cache();
2086         return ret;
2087 }
2088
2089 static void journal_destroy_caches(void)
2090 {
2091         journal_destroy_revoke_caches();
2092         journal_destroy_journal_head_cache();
2093         journal_destroy_handle_cache();
2094 }
2095
2096 static int __init journal_init(void)
2097 {
2098         int ret;
2099
2100         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2101
2102         ret = journal_init_caches();
2103         if (ret != 0)
2104                 journal_destroy_caches();
2105         jbd_create_debugfs_entry();
2106         return ret;
2107 }
2108
2109 static void __exit journal_exit(void)
2110 {
2111 #ifdef CONFIG_JBD_DEBUG
2112         int n = atomic_read(&nr_journal_heads);
2113         if (n)
2114                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2115 #endif
2116         jbd_remove_debugfs_entry();
2117         journal_destroy_caches();
2118 }
2119
2120 MODULE_LICENSE("GPL");
2121 module_init(journal_init);
2122 module_exit(journal_exit);
2123