]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/jbd/journal.c
ARM: OMAP2: Fix H4 matrix keyboard warning
[karo-tx-linux.git] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/page.h>
46
47 EXPORT_SYMBOL(journal_start);
48 EXPORT_SYMBOL(journal_restart);
49 EXPORT_SYMBOL(journal_extend);
50 EXPORT_SYMBOL(journal_stop);
51 EXPORT_SYMBOL(journal_lock_updates);
52 EXPORT_SYMBOL(journal_unlock_updates);
53 EXPORT_SYMBOL(journal_get_write_access);
54 EXPORT_SYMBOL(journal_get_create_access);
55 EXPORT_SYMBOL(journal_get_undo_access);
56 EXPORT_SYMBOL(journal_dirty_data);
57 EXPORT_SYMBOL(journal_dirty_metadata);
58 EXPORT_SYMBOL(journal_release_buffer);
59 EXPORT_SYMBOL(journal_forget);
60 #if 0
61 EXPORT_SYMBOL(journal_sync_buffer);
62 #endif
63 EXPORT_SYMBOL(journal_flush);
64 EXPORT_SYMBOL(journal_revoke);
65
66 EXPORT_SYMBOL(journal_init_dev);
67 EXPORT_SYMBOL(journal_init_inode);
68 EXPORT_SYMBOL(journal_update_format);
69 EXPORT_SYMBOL(journal_check_used_features);
70 EXPORT_SYMBOL(journal_check_available_features);
71 EXPORT_SYMBOL(journal_set_features);
72 EXPORT_SYMBOL(journal_create);
73 EXPORT_SYMBOL(journal_load);
74 EXPORT_SYMBOL(journal_destroy);
75 EXPORT_SYMBOL(journal_abort);
76 EXPORT_SYMBOL(journal_errno);
77 EXPORT_SYMBOL(journal_ack_err);
78 EXPORT_SYMBOL(journal_clear_err);
79 EXPORT_SYMBOL(log_wait_commit);
80 EXPORT_SYMBOL(log_start_commit);
81 EXPORT_SYMBOL(journal_start_commit);
82 EXPORT_SYMBOL(journal_force_commit_nested);
83 EXPORT_SYMBOL(journal_wipe);
84 EXPORT_SYMBOL(journal_blocks_per_page);
85 EXPORT_SYMBOL(journal_invalidatepage);
86 EXPORT_SYMBOL(journal_try_to_free_buffers);
87 EXPORT_SYMBOL(journal_force_commit);
88
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 static const char *journal_dev_name(journal_t *journal, char *buffer);
92
93 /*
94  * Helper function used to manage commit timeouts
95  */
96
97 static void commit_timeout(unsigned long __data)
98 {
99         struct task_struct * p = (struct task_struct *) __data;
100
101         wake_up_process(p);
102 }
103
104 /*
105  * kjournald: The main thread function used to manage a logging device
106  * journal.
107  *
108  * This kernel thread is responsible for two things:
109  *
110  * 1) COMMIT:  Every so often we need to commit the current state of the
111  *    filesystem to disk.  The journal thread is responsible for writing
112  *    all of the metadata buffers to disk.
113  *
114  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
115  *    of the data in that part of the log has been rewritten elsewhere on
116  *    the disk.  Flushing these old buffers to reclaim space in the log is
117  *    known as checkpointing, and this thread is responsible for that job.
118  */
119
120 static int kjournald(void *arg)
121 {
122         journal_t *journal = arg;
123         transaction_t *transaction;
124
125         /*
126          * Set up an interval timer which can be used to trigger a commit wakeup
127          * after the commit interval expires
128          */
129         setup_timer(&journal->j_commit_timer, commit_timeout,
130                         (unsigned long)current);
131
132         /* Record that the journal thread is running */
133         journal->j_task = current;
134         wake_up(&journal->j_wait_done_commit);
135
136         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
137                         journal->j_commit_interval / HZ);
138
139         /*
140          * And now, wait forever for commit wakeup events.
141          */
142         spin_lock(&journal->j_state_lock);
143
144 loop:
145         if (journal->j_flags & JFS_UNMOUNT)
146                 goto end_loop;
147
148         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
149                 journal->j_commit_sequence, journal->j_commit_request);
150
151         if (journal->j_commit_sequence != journal->j_commit_request) {
152                 jbd_debug(1, "OK, requests differ\n");
153                 spin_unlock(&journal->j_state_lock);
154                 del_timer_sync(&journal->j_commit_timer);
155                 journal_commit_transaction(journal);
156                 spin_lock(&journal->j_state_lock);
157                 goto loop;
158         }
159
160         wake_up(&journal->j_wait_done_commit);
161         if (freezing(current)) {
162                 /*
163                  * The simpler the better. Flushing journal isn't a
164                  * good idea, because that depends on threads that may
165                  * be already stopped.
166                  */
167                 jbd_debug(1, "Now suspending kjournald\n");
168                 spin_unlock(&journal->j_state_lock);
169                 refrigerator();
170                 spin_lock(&journal->j_state_lock);
171         } else {
172                 /*
173                  * We assume on resume that commits are already there,
174                  * so we don't sleep
175                  */
176                 DEFINE_WAIT(wait);
177                 int should_sleep = 1;
178
179                 prepare_to_wait(&journal->j_wait_commit, &wait,
180                                 TASK_INTERRUPTIBLE);
181                 if (journal->j_commit_sequence != journal->j_commit_request)
182                         should_sleep = 0;
183                 transaction = journal->j_running_transaction;
184                 if (transaction && time_after_eq(jiffies,
185                                                 transaction->t_expires))
186                         should_sleep = 0;
187                 if (journal->j_flags & JFS_UNMOUNT)
188                         should_sleep = 0;
189                 if (should_sleep) {
190                         spin_unlock(&journal->j_state_lock);
191                         schedule();
192                         spin_lock(&journal->j_state_lock);
193                 }
194                 finish_wait(&journal->j_wait_commit, &wait);
195         }
196
197         jbd_debug(1, "kjournald wakes\n");
198
199         /*
200          * Were we woken up by a commit wakeup event?
201          */
202         transaction = journal->j_running_transaction;
203         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
204                 journal->j_commit_request = transaction->t_tid;
205                 jbd_debug(1, "woke because of timeout\n");
206         }
207         goto loop;
208
209 end_loop:
210         spin_unlock(&journal->j_state_lock);
211         del_timer_sync(&journal->j_commit_timer);
212         journal->j_task = NULL;
213         wake_up(&journal->j_wait_done_commit);
214         jbd_debug(1, "Journal thread exiting.\n");
215         return 0;
216 }
217
218 static int journal_start_thread(journal_t *journal)
219 {
220         struct task_struct *t;
221
222         t = kthread_run(kjournald, journal, "kjournald");
223         if (IS_ERR(t))
224                 return PTR_ERR(t);
225
226         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
227         return 0;
228 }
229
230 static void journal_kill_thread(journal_t *journal)
231 {
232         spin_lock(&journal->j_state_lock);
233         journal->j_flags |= JFS_UNMOUNT;
234
235         while (journal->j_task) {
236                 wake_up(&journal->j_wait_commit);
237                 spin_unlock(&journal->j_state_lock);
238                 wait_event(journal->j_wait_done_commit,
239                                 journal->j_task == NULL);
240                 spin_lock(&journal->j_state_lock);
241         }
242         spin_unlock(&journal->j_state_lock);
243 }
244
245 /*
246  * journal_write_metadata_buffer: write a metadata buffer to the journal.
247  *
248  * Writes a metadata buffer to a given disk block.  The actual IO is not
249  * performed but a new buffer_head is constructed which labels the data
250  * to be written with the correct destination disk block.
251  *
252  * Any magic-number escaping which needs to be done will cause a
253  * copy-out here.  If the buffer happens to start with the
254  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
255  * magic number is only written to the log for descripter blocks.  In
256  * this case, we copy the data and replace the first word with 0, and we
257  * return a result code which indicates that this buffer needs to be
258  * marked as an escaped buffer in the corresponding log descriptor
259  * block.  The missing word can then be restored when the block is read
260  * during recovery.
261  *
262  * If the source buffer has already been modified by a new transaction
263  * since we took the last commit snapshot, we use the frozen copy of
264  * that data for IO.  If we end up using the existing buffer_head's data
265  * for the write, then we *have* to lock the buffer to prevent anyone
266  * else from using and possibly modifying it while the IO is in
267  * progress.
268  *
269  * The function returns a pointer to the buffer_heads to be used for IO.
270  *
271  * We assume that the journal has already been locked in this function.
272  *
273  * Return value:
274  *  <0: Error
275  * >=0: Finished OK
276  *
277  * On success:
278  * Bit 0 set == escape performed on the data
279  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
280  */
281
282 int journal_write_metadata_buffer(transaction_t *transaction,
283                                   struct journal_head  *jh_in,
284                                   struct journal_head **jh_out,
285                                   unsigned int blocknr)
286 {
287         int need_copy_out = 0;
288         int done_copy_out = 0;
289         int do_escape = 0;
290         char *mapped_data;
291         struct buffer_head *new_bh;
292         struct journal_head *new_jh;
293         struct page *new_page;
294         unsigned int new_offset;
295         struct buffer_head *bh_in = jh2bh(jh_in);
296         journal_t *journal = transaction->t_journal;
297
298         /*
299          * The buffer really shouldn't be locked: only the current committing
300          * transaction is allowed to write it, so nobody else is allowed
301          * to do any IO.
302          *
303          * akpm: except if we're journalling data, and write() output is
304          * also part of a shared mapping, and another thread has
305          * decided to launch a writepage() against this buffer.
306          */
307         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
308
309         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
310         /* keep subsequent assertions sane */
311         new_bh->b_state = 0;
312         init_buffer(new_bh, NULL, NULL);
313         atomic_set(&new_bh->b_count, 1);
314         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
315
316         /*
317          * If a new transaction has already done a buffer copy-out, then
318          * we use that version of the data for the commit.
319          */
320         jbd_lock_bh_state(bh_in);
321 repeat:
322         if (jh_in->b_frozen_data) {
323                 done_copy_out = 1;
324                 new_page = virt_to_page(jh_in->b_frozen_data);
325                 new_offset = offset_in_page(jh_in->b_frozen_data);
326         } else {
327                 new_page = jh2bh(jh_in)->b_page;
328                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
329         }
330
331         mapped_data = kmap_atomic(new_page, KM_USER0);
332         /*
333          * Check for escaping
334          */
335         if (*((__be32 *)(mapped_data + new_offset)) ==
336                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
337                 need_copy_out = 1;
338                 do_escape = 1;
339         }
340         kunmap_atomic(mapped_data, KM_USER0);
341
342         /*
343          * Do we need to do a data copy?
344          */
345         if (need_copy_out && !done_copy_out) {
346                 char *tmp;
347
348                 jbd_unlock_bh_state(bh_in);
349                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
350                 jbd_lock_bh_state(bh_in);
351                 if (jh_in->b_frozen_data) {
352                         jbd_free(tmp, bh_in->b_size);
353                         goto repeat;
354                 }
355
356                 jh_in->b_frozen_data = tmp;
357                 mapped_data = kmap_atomic(new_page, KM_USER0);
358                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
359                 kunmap_atomic(mapped_data, KM_USER0);
360
361                 new_page = virt_to_page(tmp);
362                 new_offset = offset_in_page(tmp);
363                 done_copy_out = 1;
364         }
365
366         /*
367          * Did we need to do an escaping?  Now we've done all the
368          * copying, we can finally do so.
369          */
370         if (do_escape) {
371                 mapped_data = kmap_atomic(new_page, KM_USER0);
372                 *((unsigned int *)(mapped_data + new_offset)) = 0;
373                 kunmap_atomic(mapped_data, KM_USER0);
374         }
375
376         set_bh_page(new_bh, new_page, new_offset);
377         new_jh->b_transaction = NULL;
378         new_bh->b_size = jh2bh(jh_in)->b_size;
379         new_bh->b_bdev = transaction->t_journal->j_dev;
380         new_bh->b_blocknr = blocknr;
381         set_buffer_mapped(new_bh);
382         set_buffer_dirty(new_bh);
383
384         *jh_out = new_jh;
385
386         /*
387          * The to-be-written buffer needs to get moved to the io queue,
388          * and the original buffer whose contents we are shadowing or
389          * copying is moved to the transaction's shadow queue.
390          */
391         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
392         spin_lock(&journal->j_list_lock);
393         __journal_file_buffer(jh_in, transaction, BJ_Shadow);
394         spin_unlock(&journal->j_list_lock);
395         jbd_unlock_bh_state(bh_in);
396
397         JBUFFER_TRACE(new_jh, "file as BJ_IO");
398         journal_file_buffer(new_jh, transaction, BJ_IO);
399
400         return do_escape | (done_copy_out << 1);
401 }
402
403 /*
404  * Allocation code for the journal file.  Manage the space left in the
405  * journal, so that we can begin checkpointing when appropriate.
406  */
407
408 /*
409  * __log_space_left: Return the number of free blocks left in the journal.
410  *
411  * Called with the journal already locked.
412  *
413  * Called under j_state_lock
414  */
415
416 int __log_space_left(journal_t *journal)
417 {
418         int left = journal->j_free;
419
420         assert_spin_locked(&journal->j_state_lock);
421
422         /*
423          * Be pessimistic here about the number of those free blocks which
424          * might be required for log descriptor control blocks.
425          */
426
427 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
428
429         left -= MIN_LOG_RESERVED_BLOCKS;
430
431         if (left <= 0)
432                 return 0;
433         left -= (left >> 3);
434         return left;
435 }
436
437 /*
438  * Called under j_state_lock.  Returns true if a transaction commit was started.
439  */
440 int __log_start_commit(journal_t *journal, tid_t target)
441 {
442         /*
443          * The only transaction we can possibly wait upon is the
444          * currently running transaction (if it exists).  Otherwise,
445          * the target tid must be an old one.
446          */
447         if (journal->j_running_transaction &&
448             journal->j_running_transaction->t_tid == target) {
449                 /*
450                  * We want a new commit: OK, mark the request and wakeup the
451                  * commit thread.  We do _not_ do the commit ourselves.
452                  */
453
454                 journal->j_commit_request = target;
455                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
456                           journal->j_commit_request,
457                           journal->j_commit_sequence);
458                 wake_up(&journal->j_wait_commit);
459                 return 1;
460         } else if (!tid_geq(journal->j_commit_request, target))
461                 /* This should never happen, but if it does, preserve
462                    the evidence before kjournald goes into a loop and
463                    increments j_commit_sequence beyond all recognition. */
464                 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
465                     journal->j_commit_request, journal->j_commit_sequence,
466                     target, journal->j_running_transaction ?
467                     journal->j_running_transaction->t_tid : 0);
468         return 0;
469 }
470
471 int log_start_commit(journal_t *journal, tid_t tid)
472 {
473         int ret;
474
475         spin_lock(&journal->j_state_lock);
476         ret = __log_start_commit(journal, tid);
477         spin_unlock(&journal->j_state_lock);
478         return ret;
479 }
480
481 /*
482  * Force and wait upon a commit if the calling process is not within
483  * transaction.  This is used for forcing out undo-protected data which contains
484  * bitmaps, when the fs is running out of space.
485  *
486  * We can only force the running transaction if we don't have an active handle;
487  * otherwise, we will deadlock.
488  *
489  * Returns true if a transaction was started.
490  */
491 int journal_force_commit_nested(journal_t *journal)
492 {
493         transaction_t *transaction = NULL;
494         tid_t tid;
495
496         spin_lock(&journal->j_state_lock);
497         if (journal->j_running_transaction && !current->journal_info) {
498                 transaction = journal->j_running_transaction;
499                 __log_start_commit(journal, transaction->t_tid);
500         } else if (journal->j_committing_transaction)
501                 transaction = journal->j_committing_transaction;
502
503         if (!transaction) {
504                 spin_unlock(&journal->j_state_lock);
505                 return 0;       /* Nothing to retry */
506         }
507
508         tid = transaction->t_tid;
509         spin_unlock(&journal->j_state_lock);
510         log_wait_commit(journal, tid);
511         return 1;
512 }
513
514 /*
515  * Start a commit of the current running transaction (if any).  Returns true
516  * if a transaction is going to be committed (or is currently already
517  * committing), and fills its tid in at *ptid
518  */
519 int journal_start_commit(journal_t *journal, tid_t *ptid)
520 {
521         int ret = 0;
522
523         spin_lock(&journal->j_state_lock);
524         if (journal->j_running_transaction) {
525                 tid_t tid = journal->j_running_transaction->t_tid;
526
527                 __log_start_commit(journal, tid);
528                 /* There's a running transaction and we've just made sure
529                  * it's commit has been scheduled. */
530                 if (ptid)
531                         *ptid = tid;
532                 ret = 1;
533         } else if (journal->j_committing_transaction) {
534                 /*
535                  * If ext3_write_super() recently started a commit, then we
536                  * have to wait for completion of that transaction
537                  */
538                 if (ptid)
539                         *ptid = journal->j_committing_transaction->t_tid;
540                 ret = 1;
541         }
542         spin_unlock(&journal->j_state_lock);
543         return ret;
544 }
545
546 /*
547  * Wait for a specified commit to complete.
548  * The caller may not hold the journal lock.
549  */
550 int log_wait_commit(journal_t *journal, tid_t tid)
551 {
552         int err = 0;
553
554 #ifdef CONFIG_JBD_DEBUG
555         spin_lock(&journal->j_state_lock);
556         if (!tid_geq(journal->j_commit_request, tid)) {
557                 printk(KERN_EMERG
558                        "%s: error: j_commit_request=%d, tid=%d\n",
559                        __func__, journal->j_commit_request, tid);
560         }
561         spin_unlock(&journal->j_state_lock);
562 #endif
563         spin_lock(&journal->j_state_lock);
564         while (tid_gt(tid, journal->j_commit_sequence)) {
565                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
566                                   tid, journal->j_commit_sequence);
567                 wake_up(&journal->j_wait_commit);
568                 spin_unlock(&journal->j_state_lock);
569                 wait_event(journal->j_wait_done_commit,
570                                 !tid_gt(tid, journal->j_commit_sequence));
571                 spin_lock(&journal->j_state_lock);
572         }
573         spin_unlock(&journal->j_state_lock);
574
575         if (unlikely(is_journal_aborted(journal))) {
576                 printk(KERN_EMERG "journal commit I/O error\n");
577                 err = -EIO;
578         }
579         return err;
580 }
581
582 /*
583  * Return 1 if a given transaction has not yet sent barrier request
584  * connected with a transaction commit. If 0 is returned, transaction
585  * may or may not have sent the barrier. Used to avoid sending barrier
586  * twice in common cases.
587  */
588 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
589 {
590         int ret = 0;
591         transaction_t *commit_trans;
592
593         if (!(journal->j_flags & JFS_BARRIER))
594                 return 0;
595         spin_lock(&journal->j_state_lock);
596         /* Transaction already committed? */
597         if (tid_geq(journal->j_commit_sequence, tid))
598                 goto out;
599         /*
600          * Transaction is being committed and we already proceeded to
601          * writing commit record?
602          */
603         commit_trans = journal->j_committing_transaction;
604         if (commit_trans && commit_trans->t_tid == tid &&
605             commit_trans->t_state >= T_COMMIT_RECORD)
606                 goto out;
607         ret = 1;
608 out:
609         spin_unlock(&journal->j_state_lock);
610         return ret;
611 }
612 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
613
614 /*
615  * Log buffer allocation routines:
616  */
617
618 int journal_next_log_block(journal_t *journal, unsigned int *retp)
619 {
620         unsigned int blocknr;
621
622         spin_lock(&journal->j_state_lock);
623         J_ASSERT(journal->j_free > 1);
624
625         blocknr = journal->j_head;
626         journal->j_head++;
627         journal->j_free--;
628         if (journal->j_head == journal->j_last)
629                 journal->j_head = journal->j_first;
630         spin_unlock(&journal->j_state_lock);
631         return journal_bmap(journal, blocknr, retp);
632 }
633
634 /*
635  * Conversion of logical to physical block numbers for the journal
636  *
637  * On external journals the journal blocks are identity-mapped, so
638  * this is a no-op.  If needed, we can use j_blk_offset - everything is
639  * ready.
640  */
641 int journal_bmap(journal_t *journal, unsigned int blocknr,
642                  unsigned int *retp)
643 {
644         int err = 0;
645         unsigned int ret;
646
647         if (journal->j_inode) {
648                 ret = bmap(journal->j_inode, blocknr);
649                 if (ret)
650                         *retp = ret;
651                 else {
652                         char b[BDEVNAME_SIZE];
653
654                         printk(KERN_ALERT "%s: journal block not found "
655                                         "at offset %u on %s\n",
656                                 __func__,
657                                 blocknr,
658                                 bdevname(journal->j_dev, b));
659                         err = -EIO;
660                         __journal_abort_soft(journal, err);
661                 }
662         } else {
663                 *retp = blocknr; /* +journal->j_blk_offset */
664         }
665         return err;
666 }
667
668 /*
669  * We play buffer_head aliasing tricks to write data/metadata blocks to
670  * the journal without copying their contents, but for journal
671  * descriptor blocks we do need to generate bona fide buffers.
672  *
673  * After the caller of journal_get_descriptor_buffer() has finished modifying
674  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
675  * But we don't bother doing that, so there will be coherency problems with
676  * mmaps of blockdevs which hold live JBD-controlled filesystems.
677  */
678 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
679 {
680         struct buffer_head *bh;
681         unsigned int blocknr;
682         int err;
683
684         err = journal_next_log_block(journal, &blocknr);
685
686         if (err)
687                 return NULL;
688
689         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
690         if (!bh)
691                 return NULL;
692         lock_buffer(bh);
693         memset(bh->b_data, 0, journal->j_blocksize);
694         set_buffer_uptodate(bh);
695         unlock_buffer(bh);
696         BUFFER_TRACE(bh, "return this buffer");
697         return journal_add_journal_head(bh);
698 }
699
700 /*
701  * Management for journal control blocks: functions to create and
702  * destroy journal_t structures, and to initialise and read existing
703  * journal blocks from disk.  */
704
705 /* First: create and setup a journal_t object in memory.  We initialise
706  * very few fields yet: that has to wait until we have created the
707  * journal structures from from scratch, or loaded them from disk. */
708
709 static journal_t * journal_init_common (void)
710 {
711         journal_t *journal;
712         int err;
713
714         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
715         if (!journal)
716                 goto fail;
717
718         init_waitqueue_head(&journal->j_wait_transaction_locked);
719         init_waitqueue_head(&journal->j_wait_logspace);
720         init_waitqueue_head(&journal->j_wait_done_commit);
721         init_waitqueue_head(&journal->j_wait_checkpoint);
722         init_waitqueue_head(&journal->j_wait_commit);
723         init_waitqueue_head(&journal->j_wait_updates);
724         mutex_init(&journal->j_barrier);
725         mutex_init(&journal->j_checkpoint_mutex);
726         spin_lock_init(&journal->j_revoke_lock);
727         spin_lock_init(&journal->j_list_lock);
728         spin_lock_init(&journal->j_state_lock);
729
730         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
731
732         /* The journal is marked for error until we succeed with recovery! */
733         journal->j_flags = JFS_ABORT;
734
735         /* Set up a default-sized revoke table for the new mount. */
736         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
737         if (err) {
738                 kfree(journal);
739                 goto fail;
740         }
741         return journal;
742 fail:
743         return NULL;
744 }
745
746 /* journal_init_dev and journal_init_inode:
747  *
748  * Create a journal structure assigned some fixed set of disk blocks to
749  * the journal.  We don't actually touch those disk blocks yet, but we
750  * need to set up all of the mapping information to tell the journaling
751  * system where the journal blocks are.
752  *
753  */
754
755 /**
756  *  journal_t * journal_init_dev() - creates and initialises a journal structure
757  *  @bdev: Block device on which to create the journal
758  *  @fs_dev: Device which hold journalled filesystem for this journal.
759  *  @start: Block nr Start of journal.
760  *  @len:  Length of the journal in blocks.
761  *  @blocksize: blocksize of journalling device
762  *
763  *  Returns: a newly created journal_t *
764  *
765  *  journal_init_dev creates a journal which maps a fixed contiguous
766  *  range of blocks on an arbitrary block device.
767  *
768  */
769 journal_t * journal_init_dev(struct block_device *bdev,
770                         struct block_device *fs_dev,
771                         int start, int len, int blocksize)
772 {
773         journal_t *journal = journal_init_common();
774         struct buffer_head *bh;
775         int n;
776
777         if (!journal)
778                 return NULL;
779
780         /* journal descriptor can store up to n blocks -bzzz */
781         journal->j_blocksize = blocksize;
782         n = journal->j_blocksize / sizeof(journal_block_tag_t);
783         journal->j_wbufsize = n;
784         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
785         if (!journal->j_wbuf) {
786                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
787                         __func__);
788                 goto out_err;
789         }
790         journal->j_dev = bdev;
791         journal->j_fs_dev = fs_dev;
792         journal->j_blk_offset = start;
793         journal->j_maxlen = len;
794
795         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
796         if (!bh) {
797                 printk(KERN_ERR
798                        "%s: Cannot get buffer for journal superblock\n",
799                        __func__);
800                 goto out_err;
801         }
802         journal->j_sb_buffer = bh;
803         journal->j_superblock = (journal_superblock_t *)bh->b_data;
804
805         return journal;
806 out_err:
807         kfree(journal->j_wbuf);
808         kfree(journal);
809         return NULL;
810 }
811
812 /**
813  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
814  *  @inode: An inode to create the journal in
815  *
816  * journal_init_inode creates a journal which maps an on-disk inode as
817  * the journal.  The inode must exist already, must support bmap() and
818  * must have all data blocks preallocated.
819  */
820 journal_t * journal_init_inode (struct inode *inode)
821 {
822         struct buffer_head *bh;
823         journal_t *journal = journal_init_common();
824         int err;
825         int n;
826         unsigned int blocknr;
827
828         if (!journal)
829                 return NULL;
830
831         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
832         journal->j_inode = inode;
833         jbd_debug(1,
834                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
835                   journal, inode->i_sb->s_id, inode->i_ino,
836                   (long long) inode->i_size,
837                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
838
839         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
840         journal->j_blocksize = inode->i_sb->s_blocksize;
841
842         /* journal descriptor can store up to n blocks -bzzz */
843         n = journal->j_blocksize / sizeof(journal_block_tag_t);
844         journal->j_wbufsize = n;
845         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
846         if (!journal->j_wbuf) {
847                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
848                         __func__);
849                 goto out_err;
850         }
851
852         err = journal_bmap(journal, 0, &blocknr);
853         /* If that failed, give up */
854         if (err) {
855                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
856                        __func__);
857                 goto out_err;
858         }
859
860         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
861         if (!bh) {
862                 printk(KERN_ERR
863                        "%s: Cannot get buffer for journal superblock\n",
864                        __func__);
865                 goto out_err;
866         }
867         journal->j_sb_buffer = bh;
868         journal->j_superblock = (journal_superblock_t *)bh->b_data;
869
870         return journal;
871 out_err:
872         kfree(journal->j_wbuf);
873         kfree(journal);
874         return NULL;
875 }
876
877 /*
878  * If the journal init or create aborts, we need to mark the journal
879  * superblock as being NULL to prevent the journal destroy from writing
880  * back a bogus superblock.
881  */
882 static void journal_fail_superblock (journal_t *journal)
883 {
884         struct buffer_head *bh = journal->j_sb_buffer;
885         brelse(bh);
886         journal->j_sb_buffer = NULL;
887 }
888
889 /*
890  * Given a journal_t structure, initialise the various fields for
891  * startup of a new journaling session.  We use this both when creating
892  * a journal, and after recovering an old journal to reset it for
893  * subsequent use.
894  */
895
896 static int journal_reset(journal_t *journal)
897 {
898         journal_superblock_t *sb = journal->j_superblock;
899         unsigned int first, last;
900
901         first = be32_to_cpu(sb->s_first);
902         last = be32_to_cpu(sb->s_maxlen);
903         if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
904                 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
905                        first, last);
906                 journal_fail_superblock(journal);
907                 return -EINVAL;
908         }
909
910         journal->j_first = first;
911         journal->j_last = last;
912
913         journal->j_head = first;
914         journal->j_tail = first;
915         journal->j_free = last - first;
916
917         journal->j_tail_sequence = journal->j_transaction_sequence;
918         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
919         journal->j_commit_request = journal->j_commit_sequence;
920
921         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
922
923         /* Add the dynamic fields and write it to disk. */
924         journal_update_superblock(journal, 1);
925         return journal_start_thread(journal);
926 }
927
928 /**
929  * int journal_create() - Initialise the new journal file
930  * @journal: Journal to create. This structure must have been initialised
931  *
932  * Given a journal_t structure which tells us which disk blocks we can
933  * use, create a new journal superblock and initialise all of the
934  * journal fields from scratch.
935  **/
936 int journal_create(journal_t *journal)
937 {
938         unsigned int blocknr;
939         struct buffer_head *bh;
940         journal_superblock_t *sb;
941         int i, err;
942
943         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
944                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
945                         journal->j_maxlen);
946                 journal_fail_superblock(journal);
947                 return -EINVAL;
948         }
949
950         if (journal->j_inode == NULL) {
951                 /*
952                  * We don't know what block to start at!
953                  */
954                 printk(KERN_EMERG
955                        "%s: creation of journal on external device!\n",
956                        __func__);
957                 BUG();
958         }
959
960         /* Zero out the entire journal on disk.  We cannot afford to
961            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
962         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
963         for (i = 0; i < journal->j_maxlen; i++) {
964                 err = journal_bmap(journal, i, &blocknr);
965                 if (err)
966                         return err;
967                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
968                 if (unlikely(!bh))
969                         return -ENOMEM;
970                 lock_buffer(bh);
971                 memset (bh->b_data, 0, journal->j_blocksize);
972                 BUFFER_TRACE(bh, "marking dirty");
973                 mark_buffer_dirty(bh);
974                 BUFFER_TRACE(bh, "marking uptodate");
975                 set_buffer_uptodate(bh);
976                 unlock_buffer(bh);
977                 __brelse(bh);
978         }
979
980         sync_blockdev(journal->j_dev);
981         jbd_debug(1, "JBD: journal cleared.\n");
982
983         /* OK, fill in the initial static fields in the new superblock */
984         sb = journal->j_superblock;
985
986         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
987         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
988
989         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
990         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
991         sb->s_first     = cpu_to_be32(1);
992
993         journal->j_transaction_sequence = 1;
994
995         journal->j_flags &= ~JFS_ABORT;
996         journal->j_format_version = 2;
997
998         return journal_reset(journal);
999 }
1000
1001 /**
1002  * void journal_update_superblock() - Update journal sb on disk.
1003  * @journal: The journal to update.
1004  * @wait: Set to '0' if you don't want to wait for IO completion.
1005  *
1006  * Update a journal's dynamic superblock fields and write it to disk,
1007  * optionally waiting for the IO to complete.
1008  */
1009 void journal_update_superblock(journal_t *journal, int wait)
1010 {
1011         journal_superblock_t *sb = journal->j_superblock;
1012         struct buffer_head *bh = journal->j_sb_buffer;
1013
1014         /*
1015          * As a special case, if the on-disk copy is already marked as needing
1016          * no recovery (s_start == 0) and there are no outstanding transactions
1017          * in the filesystem, then we can safely defer the superblock update
1018          * until the next commit by setting JFS_FLUSHED.  This avoids
1019          * attempting a write to a potential-readonly device.
1020          */
1021         if (sb->s_start == 0 && journal->j_tail_sequence ==
1022                                 journal->j_transaction_sequence) {
1023                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1024                         "(start %u, seq %d, errno %d)\n",
1025                         journal->j_tail, journal->j_tail_sequence,
1026                         journal->j_errno);
1027                 goto out;
1028         }
1029
1030         if (buffer_write_io_error(bh)) {
1031                 char b[BDEVNAME_SIZE];
1032                 /*
1033                  * Oh, dear.  A previous attempt to write the journal
1034                  * superblock failed.  This could happen because the
1035                  * USB device was yanked out.  Or it could happen to
1036                  * be a transient write error and maybe the block will
1037                  * be remapped.  Nothing we can do but to retry the
1038                  * write and hope for the best.
1039                  */
1040                 printk(KERN_ERR "JBD: previous I/O error detected "
1041                        "for journal superblock update for %s.\n",
1042                        journal_dev_name(journal, b));
1043                 clear_buffer_write_io_error(bh);
1044                 set_buffer_uptodate(bh);
1045         }
1046
1047         spin_lock(&journal->j_state_lock);
1048         jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
1049                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1050
1051         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1052         sb->s_start    = cpu_to_be32(journal->j_tail);
1053         sb->s_errno    = cpu_to_be32(journal->j_errno);
1054         spin_unlock(&journal->j_state_lock);
1055
1056         BUFFER_TRACE(bh, "marking dirty");
1057         mark_buffer_dirty(bh);
1058         if (wait) {
1059                 sync_dirty_buffer(bh);
1060                 if (buffer_write_io_error(bh)) {
1061                         char b[BDEVNAME_SIZE];
1062                         printk(KERN_ERR "JBD: I/O error detected "
1063                                "when updating journal superblock for %s.\n",
1064                                journal_dev_name(journal, b));
1065                         clear_buffer_write_io_error(bh);
1066                         set_buffer_uptodate(bh);
1067                 }
1068         } else
1069                 write_dirty_buffer(bh, WRITE);
1070
1071         trace_jbd_update_superblock_end(journal, wait);
1072 out:
1073         /* If we have just flushed the log (by marking s_start==0), then
1074          * any future commit will have to be careful to update the
1075          * superblock again to re-record the true start of the log. */
1076
1077         spin_lock(&journal->j_state_lock);
1078         if (sb->s_start)
1079                 journal->j_flags &= ~JFS_FLUSHED;
1080         else
1081                 journal->j_flags |= JFS_FLUSHED;
1082         spin_unlock(&journal->j_state_lock);
1083 }
1084
1085 /*
1086  * Read the superblock for a given journal, performing initial
1087  * validation of the format.
1088  */
1089
1090 static int journal_get_superblock(journal_t *journal)
1091 {
1092         struct buffer_head *bh;
1093         journal_superblock_t *sb;
1094         int err = -EIO;
1095
1096         bh = journal->j_sb_buffer;
1097
1098         J_ASSERT(bh != NULL);
1099         if (!buffer_uptodate(bh)) {
1100                 ll_rw_block(READ, 1, &bh);
1101                 wait_on_buffer(bh);
1102                 if (!buffer_uptodate(bh)) {
1103                         printk (KERN_ERR
1104                                 "JBD: IO error reading journal superblock\n");
1105                         goto out;
1106                 }
1107         }
1108
1109         sb = journal->j_superblock;
1110
1111         err = -EINVAL;
1112
1113         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1114             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1115                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1116                 goto out;
1117         }
1118
1119         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1120         case JFS_SUPERBLOCK_V1:
1121                 journal->j_format_version = 1;
1122                 break;
1123         case JFS_SUPERBLOCK_V2:
1124                 journal->j_format_version = 2;
1125                 break;
1126         default:
1127                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1128                 goto out;
1129         }
1130
1131         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1132                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1133         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1134                 printk (KERN_WARNING "JBD: journal file too short\n");
1135                 goto out;
1136         }
1137
1138         return 0;
1139
1140 out:
1141         journal_fail_superblock(journal);
1142         return err;
1143 }
1144
1145 /*
1146  * Load the on-disk journal superblock and read the key fields into the
1147  * journal_t.
1148  */
1149
1150 static int load_superblock(journal_t *journal)
1151 {
1152         int err;
1153         journal_superblock_t *sb;
1154
1155         err = journal_get_superblock(journal);
1156         if (err)
1157                 return err;
1158
1159         sb = journal->j_superblock;
1160
1161         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1162         journal->j_tail = be32_to_cpu(sb->s_start);
1163         journal->j_first = be32_to_cpu(sb->s_first);
1164         journal->j_last = be32_to_cpu(sb->s_maxlen);
1165         journal->j_errno = be32_to_cpu(sb->s_errno);
1166
1167         return 0;
1168 }
1169
1170
1171 /**
1172  * int journal_load() - Read journal from disk.
1173  * @journal: Journal to act on.
1174  *
1175  * Given a journal_t structure which tells us which disk blocks contain
1176  * a journal, read the journal from disk to initialise the in-memory
1177  * structures.
1178  */
1179 int journal_load(journal_t *journal)
1180 {
1181         int err;
1182         journal_superblock_t *sb;
1183
1184         err = load_superblock(journal);
1185         if (err)
1186                 return err;
1187
1188         sb = journal->j_superblock;
1189         /* If this is a V2 superblock, then we have to check the
1190          * features flags on it. */
1191
1192         if (journal->j_format_version >= 2) {
1193                 if ((sb->s_feature_ro_compat &
1194                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1195                     (sb->s_feature_incompat &
1196                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1197                         printk (KERN_WARNING
1198                                 "JBD: Unrecognised features on journal\n");
1199                         return -EINVAL;
1200                 }
1201         }
1202
1203         /* Let the recovery code check whether it needs to recover any
1204          * data from the journal. */
1205         if (journal_recover(journal))
1206                 goto recovery_error;
1207
1208         /* OK, we've finished with the dynamic journal bits:
1209          * reinitialise the dynamic contents of the superblock in memory
1210          * and reset them on disk. */
1211         if (journal_reset(journal))
1212                 goto recovery_error;
1213
1214         journal->j_flags &= ~JFS_ABORT;
1215         journal->j_flags |= JFS_LOADED;
1216         return 0;
1217
1218 recovery_error:
1219         printk (KERN_WARNING "JBD: recovery failed\n");
1220         return -EIO;
1221 }
1222
1223 /**
1224  * void journal_destroy() - Release a journal_t structure.
1225  * @journal: Journal to act on.
1226  *
1227  * Release a journal_t structure once it is no longer in use by the
1228  * journaled object.
1229  * Return <0 if we couldn't clean up the journal.
1230  */
1231 int journal_destroy(journal_t *journal)
1232 {
1233         int err = 0;
1234
1235         
1236         /* Wait for the commit thread to wake up and die. */
1237         journal_kill_thread(journal);
1238
1239         /* Force a final log commit */
1240         if (journal->j_running_transaction)
1241                 journal_commit_transaction(journal);
1242
1243         /* Force any old transactions to disk */
1244
1245         /* Totally anal locking here... */
1246         spin_lock(&journal->j_list_lock);
1247         while (journal->j_checkpoint_transactions != NULL) {
1248                 spin_unlock(&journal->j_list_lock);
1249                 log_do_checkpoint(journal);
1250                 spin_lock(&journal->j_list_lock);
1251         }
1252
1253         J_ASSERT(journal->j_running_transaction == NULL);
1254         J_ASSERT(journal->j_committing_transaction == NULL);
1255         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1256         spin_unlock(&journal->j_list_lock);
1257
1258         if (journal->j_sb_buffer) {
1259                 if (!is_journal_aborted(journal)) {
1260                         /* We can now mark the journal as empty. */
1261                         journal->j_tail = 0;
1262                         journal->j_tail_sequence =
1263                                 ++journal->j_transaction_sequence;
1264                         journal_update_superblock(journal, 1);
1265                 } else {
1266                         err = -EIO;
1267                 }
1268                 brelse(journal->j_sb_buffer);
1269         }
1270
1271         if (journal->j_inode)
1272                 iput(journal->j_inode);
1273         if (journal->j_revoke)
1274                 journal_destroy_revoke(journal);
1275         kfree(journal->j_wbuf);
1276         kfree(journal);
1277
1278         return err;
1279 }
1280
1281
1282 /**
1283  *int journal_check_used_features () - Check if features specified are used.
1284  * @journal: Journal to check.
1285  * @compat: bitmask of compatible features
1286  * @ro: bitmask of features that force read-only mount
1287  * @incompat: bitmask of incompatible features
1288  *
1289  * Check whether the journal uses all of a given set of
1290  * features.  Return true (non-zero) if it does.
1291  **/
1292
1293 int journal_check_used_features (journal_t *journal, unsigned long compat,
1294                                  unsigned long ro, unsigned long incompat)
1295 {
1296         journal_superblock_t *sb;
1297
1298         if (!compat && !ro && !incompat)
1299                 return 1;
1300         if (journal->j_format_version == 1)
1301                 return 0;
1302
1303         sb = journal->j_superblock;
1304
1305         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1306             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1307             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1308                 return 1;
1309
1310         return 0;
1311 }
1312
1313 /**
1314  * int journal_check_available_features() - Check feature set in journalling layer
1315  * @journal: Journal to check.
1316  * @compat: bitmask of compatible features
1317  * @ro: bitmask of features that force read-only mount
1318  * @incompat: bitmask of incompatible features
1319  *
1320  * Check whether the journaling code supports the use of
1321  * all of a given set of features on this journal.  Return true
1322  * (non-zero) if it can. */
1323
1324 int journal_check_available_features (journal_t *journal, unsigned long compat,
1325                                       unsigned long ro, unsigned long incompat)
1326 {
1327         if (!compat && !ro && !incompat)
1328                 return 1;
1329
1330         /* We can support any known requested features iff the
1331          * superblock is in version 2.  Otherwise we fail to support any
1332          * extended sb features. */
1333
1334         if (journal->j_format_version != 2)
1335                 return 0;
1336
1337         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1338             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1339             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1340                 return 1;
1341
1342         return 0;
1343 }
1344
1345 /**
1346  * int journal_set_features () - Mark a given journal feature in the superblock
1347  * @journal: Journal to act on.
1348  * @compat: bitmask of compatible features
1349  * @ro: bitmask of features that force read-only mount
1350  * @incompat: bitmask of incompatible features
1351  *
1352  * Mark a given journal feature as present on the
1353  * superblock.  Returns true if the requested features could be set.
1354  *
1355  */
1356
1357 int journal_set_features (journal_t *journal, unsigned long compat,
1358                           unsigned long ro, unsigned long incompat)
1359 {
1360         journal_superblock_t *sb;
1361
1362         if (journal_check_used_features(journal, compat, ro, incompat))
1363                 return 1;
1364
1365         if (!journal_check_available_features(journal, compat, ro, incompat))
1366                 return 0;
1367
1368         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1369                   compat, ro, incompat);
1370
1371         sb = journal->j_superblock;
1372
1373         sb->s_feature_compat    |= cpu_to_be32(compat);
1374         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1375         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1376
1377         return 1;
1378 }
1379
1380
1381 /**
1382  * int journal_update_format () - Update on-disk journal structure.
1383  * @journal: Journal to act on.
1384  *
1385  * Given an initialised but unloaded journal struct, poke about in the
1386  * on-disk structure to update it to the most recent supported version.
1387  */
1388 int journal_update_format (journal_t *journal)
1389 {
1390         journal_superblock_t *sb;
1391         int err;
1392
1393         err = journal_get_superblock(journal);
1394         if (err)
1395                 return err;
1396
1397         sb = journal->j_superblock;
1398
1399         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1400         case JFS_SUPERBLOCK_V2:
1401                 return 0;
1402         case JFS_SUPERBLOCK_V1:
1403                 return journal_convert_superblock_v1(journal, sb);
1404         default:
1405                 break;
1406         }
1407         return -EINVAL;
1408 }
1409
1410 static int journal_convert_superblock_v1(journal_t *journal,
1411                                          journal_superblock_t *sb)
1412 {
1413         int offset, blocksize;
1414         struct buffer_head *bh;
1415
1416         printk(KERN_WARNING
1417                 "JBD: Converting superblock from version 1 to 2.\n");
1418
1419         /* Pre-initialise new fields to zero */
1420         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1421         blocksize = be32_to_cpu(sb->s_blocksize);
1422         memset(&sb->s_feature_compat, 0, blocksize-offset);
1423
1424         sb->s_nr_users = cpu_to_be32(1);
1425         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1426         journal->j_format_version = 2;
1427
1428         bh = journal->j_sb_buffer;
1429         BUFFER_TRACE(bh, "marking dirty");
1430         mark_buffer_dirty(bh);
1431         sync_dirty_buffer(bh);
1432         return 0;
1433 }
1434
1435
1436 /**
1437  * int journal_flush () - Flush journal
1438  * @journal: Journal to act on.
1439  *
1440  * Flush all data for a given journal to disk and empty the journal.
1441  * Filesystems can use this when remounting readonly to ensure that
1442  * recovery does not need to happen on remount.
1443  */
1444
1445 int journal_flush(journal_t *journal)
1446 {
1447         int err = 0;
1448         transaction_t *transaction = NULL;
1449         unsigned int old_tail;
1450
1451         spin_lock(&journal->j_state_lock);
1452
1453         /* Force everything buffered to the log... */
1454         if (journal->j_running_transaction) {
1455                 transaction = journal->j_running_transaction;
1456                 __log_start_commit(journal, transaction->t_tid);
1457         } else if (journal->j_committing_transaction)
1458                 transaction = journal->j_committing_transaction;
1459
1460         /* Wait for the log commit to complete... */
1461         if (transaction) {
1462                 tid_t tid = transaction->t_tid;
1463
1464                 spin_unlock(&journal->j_state_lock);
1465                 log_wait_commit(journal, tid);
1466         } else {
1467                 spin_unlock(&journal->j_state_lock);
1468         }
1469
1470         /* ...and flush everything in the log out to disk. */
1471         spin_lock(&journal->j_list_lock);
1472         while (!err && journal->j_checkpoint_transactions != NULL) {
1473                 spin_unlock(&journal->j_list_lock);
1474                 mutex_lock(&journal->j_checkpoint_mutex);
1475                 err = log_do_checkpoint(journal);
1476                 mutex_unlock(&journal->j_checkpoint_mutex);
1477                 spin_lock(&journal->j_list_lock);
1478         }
1479         spin_unlock(&journal->j_list_lock);
1480
1481         if (is_journal_aborted(journal))
1482                 return -EIO;
1483
1484         cleanup_journal_tail(journal);
1485
1486         /* Finally, mark the journal as really needing no recovery.
1487          * This sets s_start==0 in the underlying superblock, which is
1488          * the magic code for a fully-recovered superblock.  Any future
1489          * commits of data to the journal will restore the current
1490          * s_start value. */
1491         spin_lock(&journal->j_state_lock);
1492         old_tail = journal->j_tail;
1493         journal->j_tail = 0;
1494         spin_unlock(&journal->j_state_lock);
1495         journal_update_superblock(journal, 1);
1496         spin_lock(&journal->j_state_lock);
1497         journal->j_tail = old_tail;
1498
1499         J_ASSERT(!journal->j_running_transaction);
1500         J_ASSERT(!journal->j_committing_transaction);
1501         J_ASSERT(!journal->j_checkpoint_transactions);
1502         J_ASSERT(journal->j_head == journal->j_tail);
1503         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1504         spin_unlock(&journal->j_state_lock);
1505         return 0;
1506 }
1507
1508 /**
1509  * int journal_wipe() - Wipe journal contents
1510  * @journal: Journal to act on.
1511  * @write: flag (see below)
1512  *
1513  * Wipe out all of the contents of a journal, safely.  This will produce
1514  * a warning if the journal contains any valid recovery information.
1515  * Must be called between journal_init_*() and journal_load().
1516  *
1517  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1518  * we merely suppress recovery.
1519  */
1520
1521 int journal_wipe(journal_t *journal, int write)
1522 {
1523         int err = 0;
1524
1525         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1526
1527         err = load_superblock(journal);
1528         if (err)
1529                 return err;
1530
1531         if (!journal->j_tail)
1532                 goto no_recovery;
1533
1534         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1535                 write ? "Clearing" : "Ignoring");
1536
1537         err = journal_skip_recovery(journal);
1538         if (write)
1539                 journal_update_superblock(journal, 1);
1540
1541  no_recovery:
1542         return err;
1543 }
1544
1545 /*
1546  * journal_dev_name: format a character string to describe on what
1547  * device this journal is present.
1548  */
1549
1550 static const char *journal_dev_name(journal_t *journal, char *buffer)
1551 {
1552         struct block_device *bdev;
1553
1554         if (journal->j_inode)
1555                 bdev = journal->j_inode->i_sb->s_bdev;
1556         else
1557                 bdev = journal->j_dev;
1558
1559         return bdevname(bdev, buffer);
1560 }
1561
1562 /*
1563  * Journal abort has very specific semantics, which we describe
1564  * for journal abort.
1565  *
1566  * Two internal function, which provide abort to te jbd layer
1567  * itself are here.
1568  */
1569
1570 /*
1571  * Quick version for internal journal use (doesn't lock the journal).
1572  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1573  * and don't attempt to make any other journal updates.
1574  */
1575 static void __journal_abort_hard(journal_t *journal)
1576 {
1577         transaction_t *transaction;
1578         char b[BDEVNAME_SIZE];
1579
1580         if (journal->j_flags & JFS_ABORT)
1581                 return;
1582
1583         printk(KERN_ERR "Aborting journal on device %s.\n",
1584                 journal_dev_name(journal, b));
1585
1586         spin_lock(&journal->j_state_lock);
1587         journal->j_flags |= JFS_ABORT;
1588         transaction = journal->j_running_transaction;
1589         if (transaction)
1590                 __log_start_commit(journal, transaction->t_tid);
1591         spin_unlock(&journal->j_state_lock);
1592 }
1593
1594 /* Soft abort: record the abort error status in the journal superblock,
1595  * but don't do any other IO. */
1596 static void __journal_abort_soft (journal_t *journal, int errno)
1597 {
1598         if (journal->j_flags & JFS_ABORT)
1599                 return;
1600
1601         if (!journal->j_errno)
1602                 journal->j_errno = errno;
1603
1604         __journal_abort_hard(journal);
1605
1606         if (errno)
1607                 journal_update_superblock(journal, 1);
1608 }
1609
1610 /**
1611  * void journal_abort () - Shutdown the journal immediately.
1612  * @journal: the journal to shutdown.
1613  * @errno:   an error number to record in the journal indicating
1614  *           the reason for the shutdown.
1615  *
1616  * Perform a complete, immediate shutdown of the ENTIRE
1617  * journal (not of a single transaction).  This operation cannot be
1618  * undone without closing and reopening the journal.
1619  *
1620  * The journal_abort function is intended to support higher level error
1621  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1622  * mode.
1623  *
1624  * Journal abort has very specific semantics.  Any existing dirty,
1625  * unjournaled buffers in the main filesystem will still be written to
1626  * disk by bdflush, but the journaling mechanism will be suspended
1627  * immediately and no further transaction commits will be honoured.
1628  *
1629  * Any dirty, journaled buffers will be written back to disk without
1630  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1631  * filesystem, but we _do_ attempt to leave as much data as possible
1632  * behind for fsck to use for cleanup.
1633  *
1634  * Any attempt to get a new transaction handle on a journal which is in
1635  * ABORT state will just result in an -EROFS error return.  A
1636  * journal_stop on an existing handle will return -EIO if we have
1637  * entered abort state during the update.
1638  *
1639  * Recursive transactions are not disturbed by journal abort until the
1640  * final journal_stop, which will receive the -EIO error.
1641  *
1642  * Finally, the journal_abort call allows the caller to supply an errno
1643  * which will be recorded (if possible) in the journal superblock.  This
1644  * allows a client to record failure conditions in the middle of a
1645  * transaction without having to complete the transaction to record the
1646  * failure to disk.  ext3_error, for example, now uses this
1647  * functionality.
1648  *
1649  * Errors which originate from within the journaling layer will NOT
1650  * supply an errno; a null errno implies that absolutely no further
1651  * writes are done to the journal (unless there are any already in
1652  * progress).
1653  *
1654  */
1655
1656 void journal_abort(journal_t *journal, int errno)
1657 {
1658         __journal_abort_soft(journal, errno);
1659 }
1660
1661 /**
1662  * int journal_errno () - returns the journal's error state.
1663  * @journal: journal to examine.
1664  *
1665  * This is the errno numbet set with journal_abort(), the last
1666  * time the journal was mounted - if the journal was stopped
1667  * without calling abort this will be 0.
1668  *
1669  * If the journal has been aborted on this mount time -EROFS will
1670  * be returned.
1671  */
1672 int journal_errno(journal_t *journal)
1673 {
1674         int err;
1675
1676         spin_lock(&journal->j_state_lock);
1677         if (journal->j_flags & JFS_ABORT)
1678                 err = -EROFS;
1679         else
1680                 err = journal->j_errno;
1681         spin_unlock(&journal->j_state_lock);
1682         return err;
1683 }
1684
1685 /**
1686  * int journal_clear_err () - clears the journal's error state
1687  * @journal: journal to act on.
1688  *
1689  * An error must be cleared or Acked to take a FS out of readonly
1690  * mode.
1691  */
1692 int journal_clear_err(journal_t *journal)
1693 {
1694         int err = 0;
1695
1696         spin_lock(&journal->j_state_lock);
1697         if (journal->j_flags & JFS_ABORT)
1698                 err = -EROFS;
1699         else
1700                 journal->j_errno = 0;
1701         spin_unlock(&journal->j_state_lock);
1702         return err;
1703 }
1704
1705 /**
1706  * void journal_ack_err() - Ack journal err.
1707  * @journal: journal to act on.
1708  *
1709  * An error must be cleared or Acked to take a FS out of readonly
1710  * mode.
1711  */
1712 void journal_ack_err(journal_t *journal)
1713 {
1714         spin_lock(&journal->j_state_lock);
1715         if (journal->j_errno)
1716                 journal->j_flags |= JFS_ACK_ERR;
1717         spin_unlock(&journal->j_state_lock);
1718 }
1719
1720 int journal_blocks_per_page(struct inode *inode)
1721 {
1722         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1723 }
1724
1725 /*
1726  * Journal_head storage management
1727  */
1728 static struct kmem_cache *journal_head_cache;
1729 #ifdef CONFIG_JBD_DEBUG
1730 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1731 #endif
1732
1733 static int journal_init_journal_head_cache(void)
1734 {
1735         int retval;
1736
1737         J_ASSERT(journal_head_cache == NULL);
1738         journal_head_cache = kmem_cache_create("journal_head",
1739                                 sizeof(struct journal_head),
1740                                 0,              /* offset */
1741                                 SLAB_TEMPORARY, /* flags */
1742                                 NULL);          /* ctor */
1743         retval = 0;
1744         if (!journal_head_cache) {
1745                 retval = -ENOMEM;
1746                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1747         }
1748         return retval;
1749 }
1750
1751 static void journal_destroy_journal_head_cache(void)
1752 {
1753         if (journal_head_cache) {
1754                 kmem_cache_destroy(journal_head_cache);
1755                 journal_head_cache = NULL;
1756         }
1757 }
1758
1759 /*
1760  * journal_head splicing and dicing
1761  */
1762 static struct journal_head *journal_alloc_journal_head(void)
1763 {
1764         struct journal_head *ret;
1765
1766 #ifdef CONFIG_JBD_DEBUG
1767         atomic_inc(&nr_journal_heads);
1768 #endif
1769         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1770         if (ret == NULL) {
1771                 jbd_debug(1, "out of memory for journal_head\n");
1772                 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1773                                    __func__);
1774
1775                 while (ret == NULL) {
1776                         yield();
1777                         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1778                 }
1779         }
1780         return ret;
1781 }
1782
1783 static void journal_free_journal_head(struct journal_head *jh)
1784 {
1785 #ifdef CONFIG_JBD_DEBUG
1786         atomic_dec(&nr_journal_heads);
1787         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1788 #endif
1789         kmem_cache_free(journal_head_cache, jh);
1790 }
1791
1792 /*
1793  * A journal_head is attached to a buffer_head whenever JBD has an
1794  * interest in the buffer.
1795  *
1796  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1797  * is set.  This bit is tested in core kernel code where we need to take
1798  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1799  * there.
1800  *
1801  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1802  *
1803  * When a buffer has its BH_JBD bit set it is immune from being released by
1804  * core kernel code, mainly via ->b_count.
1805  *
1806  * A journal_head is detached from its buffer_head when the journal_head's
1807  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1808  * transaction (b_cp_transaction) hold their references to b_jcount.
1809  *
1810  * Various places in the kernel want to attach a journal_head to a buffer_head
1811  * _before_ attaching the journal_head to a transaction.  To protect the
1812  * journal_head in this situation, journal_add_journal_head elevates the
1813  * journal_head's b_jcount refcount by one.  The caller must call
1814  * journal_put_journal_head() to undo this.
1815  *
1816  * So the typical usage would be:
1817  *
1818  *      (Attach a journal_head if needed.  Increments b_jcount)
1819  *      struct journal_head *jh = journal_add_journal_head(bh);
1820  *      ...
1821  *      (Get another reference for transaction)
1822  *      journal_grab_journal_head(bh);
1823  *      jh->b_transaction = xxx;
1824  *      (Put original reference)
1825  *      journal_put_journal_head(jh);
1826  */
1827
1828 /*
1829  * Give a buffer_head a journal_head.
1830  *
1831  * May sleep.
1832  */
1833 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1834 {
1835         struct journal_head *jh;
1836         struct journal_head *new_jh = NULL;
1837
1838 repeat:
1839         if (!buffer_jbd(bh)) {
1840                 new_jh = journal_alloc_journal_head();
1841                 memset(new_jh, 0, sizeof(*new_jh));
1842         }
1843
1844         jbd_lock_bh_journal_head(bh);
1845         if (buffer_jbd(bh)) {
1846                 jh = bh2jh(bh);
1847         } else {
1848                 J_ASSERT_BH(bh,
1849                         (atomic_read(&bh->b_count) > 0) ||
1850                         (bh->b_page && bh->b_page->mapping));
1851
1852                 if (!new_jh) {
1853                         jbd_unlock_bh_journal_head(bh);
1854                         goto repeat;
1855                 }
1856
1857                 jh = new_jh;
1858                 new_jh = NULL;          /* We consumed it */
1859                 set_buffer_jbd(bh);
1860                 bh->b_private = jh;
1861                 jh->b_bh = bh;
1862                 get_bh(bh);
1863                 BUFFER_TRACE(bh, "added journal_head");
1864         }
1865         jh->b_jcount++;
1866         jbd_unlock_bh_journal_head(bh);
1867         if (new_jh)
1868                 journal_free_journal_head(new_jh);
1869         return bh->b_private;
1870 }
1871
1872 /*
1873  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1874  * having a journal_head, return NULL
1875  */
1876 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1877 {
1878         struct journal_head *jh = NULL;
1879
1880         jbd_lock_bh_journal_head(bh);
1881         if (buffer_jbd(bh)) {
1882                 jh = bh2jh(bh);
1883                 jh->b_jcount++;
1884         }
1885         jbd_unlock_bh_journal_head(bh);
1886         return jh;
1887 }
1888
1889 static void __journal_remove_journal_head(struct buffer_head *bh)
1890 {
1891         struct journal_head *jh = bh2jh(bh);
1892
1893         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1894         J_ASSERT_JH(jh, jh->b_transaction == NULL);
1895         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1896         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1897         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1898         J_ASSERT_BH(bh, buffer_jbd(bh));
1899         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1900         BUFFER_TRACE(bh, "remove journal_head");
1901         if (jh->b_frozen_data) {
1902                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
1903                 jbd_free(jh->b_frozen_data, bh->b_size);
1904         }
1905         if (jh->b_committed_data) {
1906                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
1907                 jbd_free(jh->b_committed_data, bh->b_size);
1908         }
1909         bh->b_private = NULL;
1910         jh->b_bh = NULL;        /* debug, really */
1911         clear_buffer_jbd(bh);
1912         journal_free_journal_head(jh);
1913 }
1914
1915 /*
1916  * Drop a reference on the passed journal_head.  If it fell to zero then
1917  * release the journal_head from the buffer_head.
1918  */
1919 void journal_put_journal_head(struct journal_head *jh)
1920 {
1921         struct buffer_head *bh = jh2bh(jh);
1922
1923         jbd_lock_bh_journal_head(bh);
1924         J_ASSERT_JH(jh, jh->b_jcount > 0);
1925         --jh->b_jcount;
1926         if (!jh->b_jcount) {
1927                 __journal_remove_journal_head(bh);
1928                 jbd_unlock_bh_journal_head(bh);
1929                 __brelse(bh);
1930         } else
1931                 jbd_unlock_bh_journal_head(bh);
1932 }
1933
1934 /*
1935  * debugfs tunables
1936  */
1937 #ifdef CONFIG_JBD_DEBUG
1938
1939 u8 journal_enable_debug __read_mostly;
1940 EXPORT_SYMBOL(journal_enable_debug);
1941
1942 static struct dentry *jbd_debugfs_dir;
1943 static struct dentry *jbd_debug;
1944
1945 static void __init jbd_create_debugfs_entry(void)
1946 {
1947         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1948         if (jbd_debugfs_dir)
1949                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
1950                                                jbd_debugfs_dir,
1951                                                &journal_enable_debug);
1952 }
1953
1954 static void __exit jbd_remove_debugfs_entry(void)
1955 {
1956         debugfs_remove(jbd_debug);
1957         debugfs_remove(jbd_debugfs_dir);
1958 }
1959
1960 #else
1961
1962 static inline void jbd_create_debugfs_entry(void)
1963 {
1964 }
1965
1966 static inline void jbd_remove_debugfs_entry(void)
1967 {
1968 }
1969
1970 #endif
1971
1972 struct kmem_cache *jbd_handle_cache;
1973
1974 static int __init journal_init_handle_cache(void)
1975 {
1976         jbd_handle_cache = kmem_cache_create("journal_handle",
1977                                 sizeof(handle_t),
1978                                 0,              /* offset */
1979                                 SLAB_TEMPORARY, /* flags */
1980                                 NULL);          /* ctor */
1981         if (jbd_handle_cache == NULL) {
1982                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
1983                 return -ENOMEM;
1984         }
1985         return 0;
1986 }
1987
1988 static void journal_destroy_handle_cache(void)
1989 {
1990         if (jbd_handle_cache)
1991                 kmem_cache_destroy(jbd_handle_cache);
1992 }
1993
1994 /*
1995  * Module startup and shutdown
1996  */
1997
1998 static int __init journal_init_caches(void)
1999 {
2000         int ret;
2001
2002         ret = journal_init_revoke_caches();
2003         if (ret == 0)
2004                 ret = journal_init_journal_head_cache();
2005         if (ret == 0)
2006                 ret = journal_init_handle_cache();
2007         return ret;
2008 }
2009
2010 static void journal_destroy_caches(void)
2011 {
2012         journal_destroy_revoke_caches();
2013         journal_destroy_journal_head_cache();
2014         journal_destroy_handle_cache();
2015 }
2016
2017 static int __init journal_init(void)
2018 {
2019         int ret;
2020
2021         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2022
2023         ret = journal_init_caches();
2024         if (ret != 0)
2025                 journal_destroy_caches();
2026         jbd_create_debugfs_entry();
2027         return ret;
2028 }
2029
2030 static void __exit journal_exit(void)
2031 {
2032 #ifdef CONFIG_JBD_DEBUG
2033         int n = atomic_read(&nr_journal_heads);
2034         if (n)
2035                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2036 #endif
2037         jbd_remove_debugfs_entry();
2038         journal_destroy_caches();
2039 }
2040
2041 MODULE_LICENSE("GPL");
2042 module_init(journal_init);
2043 module_exit(journal_exit);
2044