]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/udf/super.c
ac8a348dcb693bb10a24a930346b82bc7db799f9
[karo-tx-linux.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <asm/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC        0
68 #define VDS_POS_UNALLOC_SPACE_DESC      1
69 #define VDS_POS_LOGICAL_VOL_DESC        2
70 #define VDS_POS_PARTITION_DESC          3
71 #define VDS_POS_IMP_USE_VOL_DESC        4
72 #define VDS_POS_VOL_DESC_PTR            5
73 #define VDS_POS_TERMINATING_DESC        6
74 #define VDS_POS_LENGTH                  7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 enum { UDF_MAX_LINKS = 0xffff };
79
80 /* These are the "meat" - everything else is stuffing */
81 static int udf_fill_super(struct super_block *, void *, int);
82 static void udf_put_super(struct super_block *);
83 static int udf_sync_fs(struct super_block *, int);
84 static int udf_remount_fs(struct super_block *, int *, char *);
85 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
86 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
87                             struct kernel_lb_addr *);
88 static void udf_load_fileset(struct super_block *, struct buffer_head *,
89                              struct kernel_lb_addr *);
90 static void udf_open_lvid(struct super_block *);
91 static void udf_close_lvid(struct super_block *);
92 static unsigned int udf_count_free(struct super_block *);
93 static int udf_statfs(struct dentry *, struct kstatfs *);
94 static int udf_show_options(struct seq_file *, struct dentry *);
95
96 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
97 {
98         struct logicalVolIntegrityDesc *lvid =
99                 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
100         __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
101         __u32 offset = number_of_partitions * 2 *
102                                 sizeof(uint32_t)/sizeof(uint8_t);
103         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
104 }
105
106 /* UDF filesystem type */
107 static struct dentry *udf_mount(struct file_system_type *fs_type,
108                       int flags, const char *dev_name, void *data)
109 {
110         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
111 }
112
113 static struct file_system_type udf_fstype = {
114         .owner          = THIS_MODULE,
115         .name           = "udf",
116         .mount          = udf_mount,
117         .kill_sb        = kill_block_super,
118         .fs_flags       = FS_REQUIRES_DEV,
119 };
120
121 static struct kmem_cache *udf_inode_cachep;
122
123 static struct inode *udf_alloc_inode(struct super_block *sb)
124 {
125         struct udf_inode_info *ei;
126         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
127         if (!ei)
128                 return NULL;
129
130         ei->i_unique = 0;
131         ei->i_lenExtents = 0;
132         ei->i_next_alloc_block = 0;
133         ei->i_next_alloc_goal = 0;
134         ei->i_strat4096 = 0;
135         init_rwsem(&ei->i_data_sem);
136
137         return &ei->vfs_inode;
138 }
139
140 static void udf_i_callback(struct rcu_head *head)
141 {
142         struct inode *inode = container_of(head, struct inode, i_rcu);
143         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
144 }
145
146 static void udf_destroy_inode(struct inode *inode)
147 {
148         call_rcu(&inode->i_rcu, udf_i_callback);
149 }
150
151 static void init_once(void *foo)
152 {
153         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
154
155         ei->i_ext.i_data = NULL;
156         inode_init_once(&ei->vfs_inode);
157 }
158
159 static int init_inodecache(void)
160 {
161         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
162                                              sizeof(struct udf_inode_info),
163                                              0, (SLAB_RECLAIM_ACCOUNT |
164                                                  SLAB_MEM_SPREAD),
165                                              init_once);
166         if (!udf_inode_cachep)
167                 return -ENOMEM;
168         return 0;
169 }
170
171 static void destroy_inodecache(void)
172 {
173         kmem_cache_destroy(udf_inode_cachep);
174 }
175
176 /* Superblock operations */
177 static const struct super_operations udf_sb_ops = {
178         .alloc_inode    = udf_alloc_inode,
179         .destroy_inode  = udf_destroy_inode,
180         .write_inode    = udf_write_inode,
181         .evict_inode    = udf_evict_inode,
182         .put_super      = udf_put_super,
183         .sync_fs        = udf_sync_fs,
184         .statfs         = udf_statfs,
185         .remount_fs     = udf_remount_fs,
186         .show_options   = udf_show_options,
187 };
188
189 struct udf_options {
190         unsigned char novrs;
191         unsigned int blocksize;
192         unsigned int session;
193         unsigned int lastblock;
194         unsigned int anchor;
195         unsigned int volume;
196         unsigned short partition;
197         unsigned int fileset;
198         unsigned int rootdir;
199         unsigned int flags;
200         umode_t umask;
201         gid_t gid;
202         uid_t uid;
203         umode_t fmode;
204         umode_t dmode;
205         struct nls_table *nls_map;
206 };
207
208 static int __init init_udf_fs(void)
209 {
210         int err;
211
212         err = init_inodecache();
213         if (err)
214                 goto out1;
215         err = register_filesystem(&udf_fstype);
216         if (err)
217                 goto out;
218
219         return 0;
220
221 out:
222         destroy_inodecache();
223
224 out1:
225         return err;
226 }
227
228 static void __exit exit_udf_fs(void)
229 {
230         unregister_filesystem(&udf_fstype);
231         destroy_inodecache();
232 }
233
234 module_init(init_udf_fs)
235 module_exit(exit_udf_fs)
236
237 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
238 {
239         struct udf_sb_info *sbi = UDF_SB(sb);
240
241         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
242                                   GFP_KERNEL);
243         if (!sbi->s_partmaps) {
244                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
245                         count);
246                 sbi->s_partitions = 0;
247                 return -ENOMEM;
248         }
249
250         sbi->s_partitions = count;
251         return 0;
252 }
253
254 static int udf_show_options(struct seq_file *seq, struct dentry *root)
255 {
256         struct super_block *sb = root->d_sb;
257         struct udf_sb_info *sbi = UDF_SB(sb);
258
259         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
260                 seq_puts(seq, ",nostrict");
261         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
262                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
263         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
264                 seq_puts(seq, ",unhide");
265         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
266                 seq_puts(seq, ",undelete");
267         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
268                 seq_puts(seq, ",noadinicb");
269         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
270                 seq_puts(seq, ",shortad");
271         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
272                 seq_puts(seq, ",uid=forget");
273         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
274                 seq_puts(seq, ",uid=ignore");
275         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
276                 seq_puts(seq, ",gid=forget");
277         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
278                 seq_puts(seq, ",gid=ignore");
279         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
280                 seq_printf(seq, ",uid=%u", sbi->s_uid);
281         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
282                 seq_printf(seq, ",gid=%u", sbi->s_gid);
283         if (sbi->s_umask != 0)
284                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
285         if (sbi->s_fmode != UDF_INVALID_MODE)
286                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
287         if (sbi->s_dmode != UDF_INVALID_MODE)
288                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
289         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
290                 seq_printf(seq, ",session=%u", sbi->s_session);
291         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
292                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
293         if (sbi->s_anchor != 0)
294                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
295         /*
296          * volume, partition, fileset and rootdir seem to be ignored
297          * currently
298          */
299         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
300                 seq_puts(seq, ",utf8");
301         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
302                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
303
304         return 0;
305 }
306
307 /*
308  * udf_parse_options
309  *
310  * PURPOSE
311  *      Parse mount options.
312  *
313  * DESCRIPTION
314  *      The following mount options are supported:
315  *
316  *      gid=            Set the default group.
317  *      umask=          Set the default umask.
318  *      mode=           Set the default file permissions.
319  *      dmode=          Set the default directory permissions.
320  *      uid=            Set the default user.
321  *      bs=             Set the block size.
322  *      unhide          Show otherwise hidden files.
323  *      undelete        Show deleted files in lists.
324  *      adinicb         Embed data in the inode (default)
325  *      noadinicb       Don't embed data in the inode
326  *      shortad         Use short ad's
327  *      longad          Use long ad's (default)
328  *      nostrict        Unset strict conformance
329  *      iocharset=      Set the NLS character set
330  *
331  *      The remaining are for debugging and disaster recovery:
332  *
333  *      novrs           Skip volume sequence recognition
334  *
335  *      The following expect a offset from 0.
336  *
337  *      session=        Set the CDROM session (default= last session)
338  *      anchor=         Override standard anchor location. (default= 256)
339  *      volume=         Override the VolumeDesc location. (unused)
340  *      partition=      Override the PartitionDesc location. (unused)
341  *      lastblock=      Set the last block of the filesystem/
342  *
343  *      The following expect a offset from the partition root.
344  *
345  *      fileset=        Override the fileset block location. (unused)
346  *      rootdir=        Override the root directory location. (unused)
347  *              WARNING: overriding the rootdir to a non-directory may
348  *              yield highly unpredictable results.
349  *
350  * PRE-CONDITIONS
351  *      options         Pointer to mount options string.
352  *      uopts           Pointer to mount options variable.
353  *
354  * POST-CONDITIONS
355  *      <return>        1       Mount options parsed okay.
356  *      <return>        0       Error parsing mount options.
357  *
358  * HISTORY
359  *      July 1, 1997 - Andrew E. Mileski
360  *      Written, tested, and released.
361  */
362
363 enum {
364         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
365         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
366         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
367         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
368         Opt_rootdir, Opt_utf8, Opt_iocharset,
369         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
370         Opt_fmode, Opt_dmode
371 };
372
373 static const match_table_t tokens = {
374         {Opt_novrs,     "novrs"},
375         {Opt_nostrict,  "nostrict"},
376         {Opt_bs,        "bs=%u"},
377         {Opt_unhide,    "unhide"},
378         {Opt_undelete,  "undelete"},
379         {Opt_noadinicb, "noadinicb"},
380         {Opt_adinicb,   "adinicb"},
381         {Opt_shortad,   "shortad"},
382         {Opt_longad,    "longad"},
383         {Opt_uforget,   "uid=forget"},
384         {Opt_uignore,   "uid=ignore"},
385         {Opt_gforget,   "gid=forget"},
386         {Opt_gignore,   "gid=ignore"},
387         {Opt_gid,       "gid=%u"},
388         {Opt_uid,       "uid=%u"},
389         {Opt_umask,     "umask=%o"},
390         {Opt_session,   "session=%u"},
391         {Opt_lastblock, "lastblock=%u"},
392         {Opt_anchor,    "anchor=%u"},
393         {Opt_volume,    "volume=%u"},
394         {Opt_partition, "partition=%u"},
395         {Opt_fileset,   "fileset=%u"},
396         {Opt_rootdir,   "rootdir=%u"},
397         {Opt_utf8,      "utf8"},
398         {Opt_iocharset, "iocharset=%s"},
399         {Opt_fmode,     "mode=%o"},
400         {Opt_dmode,     "dmode=%o"},
401         {Opt_err,       NULL}
402 };
403
404 static int udf_parse_options(char *options, struct udf_options *uopt,
405                              bool remount)
406 {
407         char *p;
408         int option;
409
410         uopt->novrs = 0;
411         uopt->partition = 0xFFFF;
412         uopt->session = 0xFFFFFFFF;
413         uopt->lastblock = 0;
414         uopt->anchor = 0;
415         uopt->volume = 0xFFFFFFFF;
416         uopt->rootdir = 0xFFFFFFFF;
417         uopt->fileset = 0xFFFFFFFF;
418         uopt->nls_map = NULL;
419
420         if (!options)
421                 return 1;
422
423         while ((p = strsep(&options, ",")) != NULL) {
424                 substring_t args[MAX_OPT_ARGS];
425                 int token;
426                 if (!*p)
427                         continue;
428
429                 token = match_token(p, tokens, args);
430                 switch (token) {
431                 case Opt_novrs:
432                         uopt->novrs = 1;
433                         break;
434                 case Opt_bs:
435                         if (match_int(&args[0], &option))
436                                 return 0;
437                         uopt->blocksize = option;
438                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
439                         break;
440                 case Opt_unhide:
441                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
442                         break;
443                 case Opt_undelete:
444                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
445                         break;
446                 case Opt_noadinicb:
447                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
448                         break;
449                 case Opt_adinicb:
450                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
451                         break;
452                 case Opt_shortad:
453                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
454                         break;
455                 case Opt_longad:
456                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
457                         break;
458                 case Opt_gid:
459                         if (match_int(args, &option))
460                                 return 0;
461                         uopt->gid = option;
462                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
463                         break;
464                 case Opt_uid:
465                         if (match_int(args, &option))
466                                 return 0;
467                         uopt->uid = option;
468                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
469                         break;
470                 case Opt_umask:
471                         if (match_octal(args, &option))
472                                 return 0;
473                         uopt->umask = option;
474                         break;
475                 case Opt_nostrict:
476                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
477                         break;
478                 case Opt_session:
479                         if (match_int(args, &option))
480                                 return 0;
481                         uopt->session = option;
482                         if (!remount)
483                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
484                         break;
485                 case Opt_lastblock:
486                         if (match_int(args, &option))
487                                 return 0;
488                         uopt->lastblock = option;
489                         if (!remount)
490                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
491                         break;
492                 case Opt_anchor:
493                         if (match_int(args, &option))
494                                 return 0;
495                         uopt->anchor = option;
496                         break;
497                 case Opt_volume:
498                         if (match_int(args, &option))
499                                 return 0;
500                         uopt->volume = option;
501                         break;
502                 case Opt_partition:
503                         if (match_int(args, &option))
504                                 return 0;
505                         uopt->partition = option;
506                         break;
507                 case Opt_fileset:
508                         if (match_int(args, &option))
509                                 return 0;
510                         uopt->fileset = option;
511                         break;
512                 case Opt_rootdir:
513                         if (match_int(args, &option))
514                                 return 0;
515                         uopt->rootdir = option;
516                         break;
517                 case Opt_utf8:
518                         uopt->flags |= (1 << UDF_FLAG_UTF8);
519                         break;
520 #ifdef CONFIG_UDF_NLS
521                 case Opt_iocharset:
522                         uopt->nls_map = load_nls(args[0].from);
523                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
524                         break;
525 #endif
526                 case Opt_uignore:
527                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
528                         break;
529                 case Opt_uforget:
530                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
531                         break;
532                 case Opt_gignore:
533                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
534                         break;
535                 case Opt_gforget:
536                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
537                         break;
538                 case Opt_fmode:
539                         if (match_octal(args, &option))
540                                 return 0;
541                         uopt->fmode = option & 0777;
542                         break;
543                 case Opt_dmode:
544                         if (match_octal(args, &option))
545                                 return 0;
546                         uopt->dmode = option & 0777;
547                         break;
548                 default:
549                         pr_err("bad mount option \"%s\" or missing value\n", p);
550                         return 0;
551                 }
552         }
553         return 1;
554 }
555
556 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
557 {
558         struct udf_options uopt;
559         struct udf_sb_info *sbi = UDF_SB(sb);
560         int error = 0;
561
562         uopt.flags = sbi->s_flags;
563         uopt.uid   = sbi->s_uid;
564         uopt.gid   = sbi->s_gid;
565         uopt.umask = sbi->s_umask;
566         uopt.fmode = sbi->s_fmode;
567         uopt.dmode = sbi->s_dmode;
568
569         if (!udf_parse_options(options, &uopt, true))
570                 return -EINVAL;
571
572         write_lock(&sbi->s_cred_lock);
573         sbi->s_flags = uopt.flags;
574         sbi->s_uid   = uopt.uid;
575         sbi->s_gid   = uopt.gid;
576         sbi->s_umask = uopt.umask;
577         sbi->s_fmode = uopt.fmode;
578         sbi->s_dmode = uopt.dmode;
579         write_unlock(&sbi->s_cred_lock);
580
581         if (sbi->s_lvid_bh) {
582                 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
583                 if (write_rev > UDF_MAX_WRITE_VERSION)
584                         *flags |= MS_RDONLY;
585         }
586
587         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
588                 goto out_unlock;
589
590         if (*flags & MS_RDONLY)
591                 udf_close_lvid(sb);
592         else
593                 udf_open_lvid(sb);
594
595 out_unlock:
596         return error;
597 }
598
599 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
600 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
601 static loff_t udf_check_vsd(struct super_block *sb)
602 {
603         struct volStructDesc *vsd = NULL;
604         loff_t sector = 32768;
605         int sectorsize;
606         struct buffer_head *bh = NULL;
607         int nsr02 = 0;
608         int nsr03 = 0;
609         struct udf_sb_info *sbi;
610
611         sbi = UDF_SB(sb);
612         if (sb->s_blocksize < sizeof(struct volStructDesc))
613                 sectorsize = sizeof(struct volStructDesc);
614         else
615                 sectorsize = sb->s_blocksize;
616
617         sector += (sbi->s_session << sb->s_blocksize_bits);
618
619         udf_debug("Starting at sector %u (%ld byte sectors)\n",
620                   (unsigned int)(sector >> sb->s_blocksize_bits),
621                   sb->s_blocksize);
622         /* Process the sequence (if applicable) */
623         for (; !nsr02 && !nsr03; sector += sectorsize) {
624                 /* Read a block */
625                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
626                 if (!bh)
627                         break;
628
629                 /* Look for ISO  descriptors */
630                 vsd = (struct volStructDesc *)(bh->b_data +
631                                               (sector & (sb->s_blocksize - 1)));
632
633                 if (vsd->stdIdent[0] == 0) {
634                         brelse(bh);
635                         break;
636                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
637                                     VSD_STD_ID_LEN)) {
638                         switch (vsd->structType) {
639                         case 0:
640                                 udf_debug("ISO9660 Boot Record found\n");
641                                 break;
642                         case 1:
643                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
644                                 break;
645                         case 2:
646                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
647                                 break;
648                         case 3:
649                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
650                                 break;
651                         case 255:
652                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
653                                 break;
654                         default:
655                                 udf_debug("ISO9660 VRS (%u) found\n",
656                                           vsd->structType);
657                                 break;
658                         }
659                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
660                                     VSD_STD_ID_LEN))
661                         ; /* nothing */
662                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
663                                     VSD_STD_ID_LEN)) {
664                         brelse(bh);
665                         break;
666                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
667                                     VSD_STD_ID_LEN))
668                         nsr02 = sector;
669                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
670                                     VSD_STD_ID_LEN))
671                         nsr03 = sector;
672                 brelse(bh);
673         }
674
675         if (nsr03)
676                 return nsr03;
677         else if (nsr02)
678                 return nsr02;
679         else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
680                 return -1;
681         else
682                 return 0;
683 }
684
685 static int udf_find_fileset(struct super_block *sb,
686                             struct kernel_lb_addr *fileset,
687                             struct kernel_lb_addr *root)
688 {
689         struct buffer_head *bh = NULL;
690         long lastblock;
691         uint16_t ident;
692         struct udf_sb_info *sbi;
693
694         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
695             fileset->partitionReferenceNum != 0xFFFF) {
696                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
697
698                 if (!bh) {
699                         return 1;
700                 } else if (ident != TAG_IDENT_FSD) {
701                         brelse(bh);
702                         return 1;
703                 }
704
705         }
706
707         sbi = UDF_SB(sb);
708         if (!bh) {
709                 /* Search backwards through the partitions */
710                 struct kernel_lb_addr newfileset;
711
712 /* --> cvg: FIXME - is it reasonable? */
713                 return 1;
714
715                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
716                      (newfileset.partitionReferenceNum != 0xFFFF &&
717                       fileset->logicalBlockNum == 0xFFFFFFFF &&
718                       fileset->partitionReferenceNum == 0xFFFF);
719                      newfileset.partitionReferenceNum--) {
720                         lastblock = sbi->s_partmaps
721                                         [newfileset.partitionReferenceNum]
722                                                 .s_partition_len;
723                         newfileset.logicalBlockNum = 0;
724
725                         do {
726                                 bh = udf_read_ptagged(sb, &newfileset, 0,
727                                                       &ident);
728                                 if (!bh) {
729                                         newfileset.logicalBlockNum++;
730                                         continue;
731                                 }
732
733                                 switch (ident) {
734                                 case TAG_IDENT_SBD:
735                                 {
736                                         struct spaceBitmapDesc *sp;
737                                         sp = (struct spaceBitmapDesc *)
738                                                                 bh->b_data;
739                                         newfileset.logicalBlockNum += 1 +
740                                                 ((le32_to_cpu(sp->numOfBytes) +
741                                                   sizeof(struct spaceBitmapDesc)
742                                                   - 1) >> sb->s_blocksize_bits);
743                                         brelse(bh);
744                                         break;
745                                 }
746                                 case TAG_IDENT_FSD:
747                                         *fileset = newfileset;
748                                         break;
749                                 default:
750                                         newfileset.logicalBlockNum++;
751                                         brelse(bh);
752                                         bh = NULL;
753                                         break;
754                                 }
755                         } while (newfileset.logicalBlockNum < lastblock &&
756                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
757                                  fileset->partitionReferenceNum == 0xFFFF);
758                 }
759         }
760
761         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
762              fileset->partitionReferenceNum != 0xFFFF) && bh) {
763                 udf_debug("Fileset at block=%d, partition=%d\n",
764                           fileset->logicalBlockNum,
765                           fileset->partitionReferenceNum);
766
767                 sbi->s_partition = fileset->partitionReferenceNum;
768                 udf_load_fileset(sb, bh, root);
769                 brelse(bh);
770                 return 0;
771         }
772         return 1;
773 }
774
775 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
776 {
777         struct primaryVolDesc *pvoldesc;
778         struct ustr *instr, *outstr;
779         struct buffer_head *bh;
780         uint16_t ident;
781         int ret = 1;
782
783         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
784         if (!instr)
785                 return 1;
786
787         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
788         if (!outstr)
789                 goto out1;
790
791         bh = udf_read_tagged(sb, block, block, &ident);
792         if (!bh)
793                 goto out2;
794
795         BUG_ON(ident != TAG_IDENT_PVD);
796
797         pvoldesc = (struct primaryVolDesc *)bh->b_data;
798
799         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
800                               pvoldesc->recordingDateAndTime)) {
801 #ifdef UDFFS_DEBUG
802                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
803                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
804                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
805                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
806 #endif
807         }
808
809         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
810                 if (udf_CS0toUTF8(outstr, instr)) {
811                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
812                                 outstr->u_len > 31 ? 31 : outstr->u_len);
813                         udf_debug("volIdent[] = '%s'\n",
814                                   UDF_SB(sb)->s_volume_ident);
815                 }
816
817         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
818                 if (udf_CS0toUTF8(outstr, instr))
819                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
820
821         brelse(bh);
822         ret = 0;
823 out2:
824         kfree(outstr);
825 out1:
826         kfree(instr);
827         return ret;
828 }
829
830 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
831                                         u32 meta_file_loc, u32 partition_num)
832 {
833         struct kernel_lb_addr addr;
834         struct inode *metadata_fe;
835
836         addr.logicalBlockNum = meta_file_loc;
837         addr.partitionReferenceNum = partition_num;
838
839         metadata_fe = udf_iget(sb, &addr);
840
841         if (metadata_fe == NULL)
842                 udf_warn(sb, "metadata inode efe not found\n");
843         else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
844                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
845                 iput(metadata_fe);
846                 metadata_fe = NULL;
847         }
848
849         return metadata_fe;
850 }
851
852 static int udf_load_metadata_files(struct super_block *sb, int partition)
853 {
854         struct udf_sb_info *sbi = UDF_SB(sb);
855         struct udf_part_map *map;
856         struct udf_meta_data *mdata;
857         struct kernel_lb_addr addr;
858
859         map = &sbi->s_partmaps[partition];
860         mdata = &map->s_type_specific.s_metadata;
861
862         /* metadata address */
863         udf_debug("Metadata file location: block = %d part = %d\n",
864                   mdata->s_meta_file_loc, map->s_partition_num);
865
866         mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
867                 mdata->s_meta_file_loc, map->s_partition_num);
868
869         if (mdata->s_metadata_fe == NULL) {
870                 /* mirror file entry */
871                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
872                           mdata->s_mirror_file_loc, map->s_partition_num);
873
874                 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
875                         mdata->s_mirror_file_loc, map->s_partition_num);
876
877                 if (mdata->s_mirror_fe == NULL) {
878                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
879                         goto error_exit;
880                 }
881         }
882
883         /*
884          * bitmap file entry
885          * Note:
886          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
887         */
888         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
889                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
890                 addr.partitionReferenceNum = map->s_partition_num;
891
892                 udf_debug("Bitmap file location: block = %d part = %d\n",
893                           addr.logicalBlockNum, addr.partitionReferenceNum);
894
895                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
896
897                 if (mdata->s_bitmap_fe == NULL) {
898                         if (sb->s_flags & MS_RDONLY)
899                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
900                         else {
901                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
902                                 goto error_exit;
903                         }
904                 }
905         }
906
907         udf_debug("udf_load_metadata_files Ok\n");
908
909         return 0;
910
911 error_exit:
912         return 1;
913 }
914
915 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
916                              struct kernel_lb_addr *root)
917 {
918         struct fileSetDesc *fset;
919
920         fset = (struct fileSetDesc *)bh->b_data;
921
922         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
923
924         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
925
926         udf_debug("Rootdir at block=%d, partition=%d\n",
927                   root->logicalBlockNum, root->partitionReferenceNum);
928 }
929
930 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
931 {
932         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
933         return DIV_ROUND_UP(map->s_partition_len +
934                             (sizeof(struct spaceBitmapDesc) << 3),
935                             sb->s_blocksize * 8);
936 }
937
938 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
939 {
940         struct udf_bitmap *bitmap;
941         int nr_groups;
942         int size;
943
944         nr_groups = udf_compute_nr_groups(sb, index);
945         size = sizeof(struct udf_bitmap) +
946                 (sizeof(struct buffer_head *) * nr_groups);
947
948         if (size <= PAGE_SIZE)
949                 bitmap = kzalloc(size, GFP_KERNEL);
950         else
951                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
952
953         if (bitmap == NULL)
954                 return NULL;
955
956         bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
957         bitmap->s_nr_groups = nr_groups;
958         return bitmap;
959 }
960
961 static int udf_fill_partdesc_info(struct super_block *sb,
962                 struct partitionDesc *p, int p_index)
963 {
964         struct udf_part_map *map;
965         struct udf_sb_info *sbi = UDF_SB(sb);
966         struct partitionHeaderDesc *phd;
967
968         map = &sbi->s_partmaps[p_index];
969
970         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
971         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
972
973         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
974                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
975         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
976                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
977         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
978                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
979         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
980                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
981
982         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
983                   p_index, map->s_partition_type,
984                   map->s_partition_root, map->s_partition_len);
985
986         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
987             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
988                 return 0;
989
990         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
991         if (phd->unallocSpaceTable.extLength) {
992                 struct kernel_lb_addr loc = {
993                         .logicalBlockNum = le32_to_cpu(
994                                 phd->unallocSpaceTable.extPosition),
995                         .partitionReferenceNum = p_index,
996                 };
997
998                 map->s_uspace.s_table = udf_iget(sb, &loc);
999                 if (!map->s_uspace.s_table) {
1000                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1001                                   p_index);
1002                         return 1;
1003                 }
1004                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1005                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1006                           p_index, map->s_uspace.s_table->i_ino);
1007         }
1008
1009         if (phd->unallocSpaceBitmap.extLength) {
1010                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1011                 if (!bitmap)
1012                         return 1;
1013                 map->s_uspace.s_bitmap = bitmap;
1014                 bitmap->s_extLength = le32_to_cpu(
1015                                 phd->unallocSpaceBitmap.extLength);
1016                 bitmap->s_extPosition = le32_to_cpu(
1017                                 phd->unallocSpaceBitmap.extPosition);
1018                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1019                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1020                           p_index, bitmap->s_extPosition);
1021         }
1022
1023         if (phd->partitionIntegrityTable.extLength)
1024                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1025
1026         if (phd->freedSpaceTable.extLength) {
1027                 struct kernel_lb_addr loc = {
1028                         .logicalBlockNum = le32_to_cpu(
1029                                 phd->freedSpaceTable.extPosition),
1030                         .partitionReferenceNum = p_index,
1031                 };
1032
1033                 map->s_fspace.s_table = udf_iget(sb, &loc);
1034                 if (!map->s_fspace.s_table) {
1035                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1036                                   p_index);
1037                         return 1;
1038                 }
1039
1040                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1041                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1042                           p_index, map->s_fspace.s_table->i_ino);
1043         }
1044
1045         if (phd->freedSpaceBitmap.extLength) {
1046                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1047                 if (!bitmap)
1048                         return 1;
1049                 map->s_fspace.s_bitmap = bitmap;
1050                 bitmap->s_extLength = le32_to_cpu(
1051                                 phd->freedSpaceBitmap.extLength);
1052                 bitmap->s_extPosition = le32_to_cpu(
1053                                 phd->freedSpaceBitmap.extPosition);
1054                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1055                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1056                           p_index, bitmap->s_extPosition);
1057         }
1058         return 0;
1059 }
1060
1061 static void udf_find_vat_block(struct super_block *sb, int p_index,
1062                                int type1_index, sector_t start_block)
1063 {
1064         struct udf_sb_info *sbi = UDF_SB(sb);
1065         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1066         sector_t vat_block;
1067         struct kernel_lb_addr ino;
1068
1069         /*
1070          * VAT file entry is in the last recorded block. Some broken disks have
1071          * it a few blocks before so try a bit harder...
1072          */
1073         ino.partitionReferenceNum = type1_index;
1074         for (vat_block = start_block;
1075              vat_block >= map->s_partition_root &&
1076              vat_block >= start_block - 3 &&
1077              !sbi->s_vat_inode; vat_block--) {
1078                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1079                 sbi->s_vat_inode = udf_iget(sb, &ino);
1080         }
1081 }
1082
1083 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1084 {
1085         struct udf_sb_info *sbi = UDF_SB(sb);
1086         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1087         struct buffer_head *bh = NULL;
1088         struct udf_inode_info *vati;
1089         uint32_t pos;
1090         struct virtualAllocationTable20 *vat20;
1091         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1092
1093         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1094         if (!sbi->s_vat_inode &&
1095             sbi->s_last_block != blocks - 1) {
1096                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1097                           (unsigned long)sbi->s_last_block,
1098                           (unsigned long)blocks - 1);
1099                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1100         }
1101         if (!sbi->s_vat_inode)
1102                 return 1;
1103
1104         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1105                 map->s_type_specific.s_virtual.s_start_offset = 0;
1106                 map->s_type_specific.s_virtual.s_num_entries =
1107                         (sbi->s_vat_inode->i_size - 36) >> 2;
1108         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1109                 vati = UDF_I(sbi->s_vat_inode);
1110                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1111                         pos = udf_block_map(sbi->s_vat_inode, 0);
1112                         bh = sb_bread(sb, pos);
1113                         if (!bh)
1114                                 return 1;
1115                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1116                 } else {
1117                         vat20 = (struct virtualAllocationTable20 *)
1118                                                         vati->i_ext.i_data;
1119                 }
1120
1121                 map->s_type_specific.s_virtual.s_start_offset =
1122                         le16_to_cpu(vat20->lengthHeader);
1123                 map->s_type_specific.s_virtual.s_num_entries =
1124                         (sbi->s_vat_inode->i_size -
1125                                 map->s_type_specific.s_virtual.
1126                                         s_start_offset) >> 2;
1127                 brelse(bh);
1128         }
1129         return 0;
1130 }
1131
1132 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1133 {
1134         struct buffer_head *bh;
1135         struct partitionDesc *p;
1136         struct udf_part_map *map;
1137         struct udf_sb_info *sbi = UDF_SB(sb);
1138         int i, type1_idx;
1139         uint16_t partitionNumber;
1140         uint16_t ident;
1141         int ret = 0;
1142
1143         bh = udf_read_tagged(sb, block, block, &ident);
1144         if (!bh)
1145                 return 1;
1146         if (ident != TAG_IDENT_PD)
1147                 goto out_bh;
1148
1149         p = (struct partitionDesc *)bh->b_data;
1150         partitionNumber = le16_to_cpu(p->partitionNumber);
1151
1152         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1153         for (i = 0; i < sbi->s_partitions; i++) {
1154                 map = &sbi->s_partmaps[i];
1155                 udf_debug("Searching map: (%d == %d)\n",
1156                           map->s_partition_num, partitionNumber);
1157                 if (map->s_partition_num == partitionNumber &&
1158                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1159                      map->s_partition_type == UDF_SPARABLE_MAP15))
1160                         break;
1161         }
1162
1163         if (i >= sbi->s_partitions) {
1164                 udf_debug("Partition (%d) not found in partition map\n",
1165                           partitionNumber);
1166                 goto out_bh;
1167         }
1168
1169         ret = udf_fill_partdesc_info(sb, p, i);
1170
1171         /*
1172          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1173          * PHYSICAL partitions are already set up
1174          */
1175         type1_idx = i;
1176         for (i = 0; i < sbi->s_partitions; i++) {
1177                 map = &sbi->s_partmaps[i];
1178
1179                 if (map->s_partition_num == partitionNumber &&
1180                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1181                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1182                      map->s_partition_type == UDF_METADATA_MAP25))
1183                         break;
1184         }
1185
1186         if (i >= sbi->s_partitions)
1187                 goto out_bh;
1188
1189         ret = udf_fill_partdesc_info(sb, p, i);
1190         if (ret)
1191                 goto out_bh;
1192
1193         if (map->s_partition_type == UDF_METADATA_MAP25) {
1194                 ret = udf_load_metadata_files(sb, i);
1195                 if (ret) {
1196                         udf_err(sb, "error loading MetaData partition map %d\n",
1197                                 i);
1198                         goto out_bh;
1199                 }
1200         } else {
1201                 ret = udf_load_vat(sb, i, type1_idx);
1202                 if (ret)
1203                         goto out_bh;
1204                 /*
1205                  * Mark filesystem read-only if we have a partition with
1206                  * virtual map since we don't handle writing to it (we
1207                  * overwrite blocks instead of relocating them).
1208                  */
1209                 sb->s_flags |= MS_RDONLY;
1210                 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1211         }
1212 out_bh:
1213         /* In case loading failed, we handle cleanup in udf_fill_super */
1214         brelse(bh);
1215         return ret;
1216 }
1217
1218 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1219                                struct kernel_lb_addr *fileset)
1220 {
1221         struct logicalVolDesc *lvd;
1222         int i, j, offset;
1223         uint8_t type;
1224         struct udf_sb_info *sbi = UDF_SB(sb);
1225         struct genericPartitionMap *gpm;
1226         uint16_t ident;
1227         struct buffer_head *bh;
1228         int ret = 0;
1229
1230         bh = udf_read_tagged(sb, block, block, &ident);
1231         if (!bh)
1232                 return 1;
1233         BUG_ON(ident != TAG_IDENT_LVD);
1234         lvd = (struct logicalVolDesc *)bh->b_data;
1235
1236         i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1237         if (i != 0) {
1238                 ret = i;
1239                 goto out_bh;
1240         }
1241
1242         for (i = 0, offset = 0;
1243              i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1244              i++, offset += gpm->partitionMapLength) {
1245                 struct udf_part_map *map = &sbi->s_partmaps[i];
1246                 gpm = (struct genericPartitionMap *)
1247                                 &(lvd->partitionMaps[offset]);
1248                 type = gpm->partitionMapType;
1249                 if (type == 1) {
1250                         struct genericPartitionMap1 *gpm1 =
1251                                 (struct genericPartitionMap1 *)gpm;
1252                         map->s_partition_type = UDF_TYPE1_MAP15;
1253                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1254                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1255                         map->s_partition_func = NULL;
1256                 } else if (type == 2) {
1257                         struct udfPartitionMap2 *upm2 =
1258                                                 (struct udfPartitionMap2 *)gpm;
1259                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1260                                                 strlen(UDF_ID_VIRTUAL))) {
1261                                 u16 suf =
1262                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1263                                                         identSuffix)[0]);
1264                                 if (suf < 0x0200) {
1265                                         map->s_partition_type =
1266                                                         UDF_VIRTUAL_MAP15;
1267                                         map->s_partition_func =
1268                                                         udf_get_pblock_virt15;
1269                                 } else {
1270                                         map->s_partition_type =
1271                                                         UDF_VIRTUAL_MAP20;
1272                                         map->s_partition_func =
1273                                                         udf_get_pblock_virt20;
1274                                 }
1275                         } else if (!strncmp(upm2->partIdent.ident,
1276                                                 UDF_ID_SPARABLE,
1277                                                 strlen(UDF_ID_SPARABLE))) {
1278                                 uint32_t loc;
1279                                 struct sparingTable *st;
1280                                 struct sparablePartitionMap *spm =
1281                                         (struct sparablePartitionMap *)gpm;
1282
1283                                 map->s_partition_type = UDF_SPARABLE_MAP15;
1284                                 map->s_type_specific.s_sparing.s_packet_len =
1285                                                 le16_to_cpu(spm->packetLength);
1286                                 for (j = 0; j < spm->numSparingTables; j++) {
1287                                         struct buffer_head *bh2;
1288
1289                                         loc = le32_to_cpu(
1290                                                 spm->locSparingTable[j]);
1291                                         bh2 = udf_read_tagged(sb, loc, loc,
1292                                                              &ident);
1293                                         map->s_type_specific.s_sparing.
1294                                                         s_spar_map[j] = bh2;
1295
1296                                         if (bh2 == NULL)
1297                                                 continue;
1298
1299                                         st = (struct sparingTable *)bh2->b_data;
1300                                         if (ident != 0 || strncmp(
1301                                                 st->sparingIdent.ident,
1302                                                 UDF_ID_SPARING,
1303                                                 strlen(UDF_ID_SPARING))) {
1304                                                 brelse(bh2);
1305                                                 map->s_type_specific.s_sparing.
1306                                                         s_spar_map[j] = NULL;
1307                                         }
1308                                 }
1309                                 map->s_partition_func = udf_get_pblock_spar15;
1310                         } else if (!strncmp(upm2->partIdent.ident,
1311                                                 UDF_ID_METADATA,
1312                                                 strlen(UDF_ID_METADATA))) {
1313                                 struct udf_meta_data *mdata =
1314                                         &map->s_type_specific.s_metadata;
1315                                 struct metadataPartitionMap *mdm =
1316                                                 (struct metadataPartitionMap *)
1317                                                 &(lvd->partitionMaps[offset]);
1318                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1319                                           i, type, UDF_ID_METADATA);
1320
1321                                 map->s_partition_type = UDF_METADATA_MAP25;
1322                                 map->s_partition_func = udf_get_pblock_meta25;
1323
1324                                 mdata->s_meta_file_loc   =
1325                                         le32_to_cpu(mdm->metadataFileLoc);
1326                                 mdata->s_mirror_file_loc =
1327                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1328                                 mdata->s_bitmap_file_loc =
1329                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1330                                 mdata->s_alloc_unit_size =
1331                                         le32_to_cpu(mdm->allocUnitSize);
1332                                 mdata->s_align_unit_size =
1333                                         le16_to_cpu(mdm->alignUnitSize);
1334                                 if (mdm->flags & 0x01)
1335                                         mdata->s_flags |= MF_DUPLICATE_MD;
1336
1337                                 udf_debug("Metadata Ident suffix=0x%x\n",
1338                                           le16_to_cpu(*(__le16 *)
1339                                                       mdm->partIdent.identSuffix));
1340                                 udf_debug("Metadata part num=%d\n",
1341                                           le16_to_cpu(mdm->partitionNum));
1342                                 udf_debug("Metadata part alloc unit size=%d\n",
1343                                           le32_to_cpu(mdm->allocUnitSize));
1344                                 udf_debug("Metadata file loc=%d\n",
1345                                           le32_to_cpu(mdm->metadataFileLoc));
1346                                 udf_debug("Mirror file loc=%d\n",
1347                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1348                                 udf_debug("Bitmap file loc=%d\n",
1349                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1350                                 udf_debug("Flags: %d %d\n",
1351                                           mdata->s_flags, mdm->flags);
1352                         } else {
1353                                 udf_debug("Unknown ident: %s\n",
1354                                           upm2->partIdent.ident);
1355                                 continue;
1356                         }
1357                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1358                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1359                 }
1360                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1361                           i, map->s_partition_num, type, map->s_volumeseqnum);
1362         }
1363
1364         if (fileset) {
1365                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1366
1367                 *fileset = lelb_to_cpu(la->extLocation);
1368                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1369                           fileset->logicalBlockNum,
1370                           fileset->partitionReferenceNum);
1371         }
1372         if (lvd->integritySeqExt.extLength)
1373                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1374
1375 out_bh:
1376         brelse(bh);
1377         return ret;
1378 }
1379
1380 /*
1381  * udf_load_logicalvolint
1382  *
1383  */
1384 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1385 {
1386         struct buffer_head *bh = NULL;
1387         uint16_t ident;
1388         struct udf_sb_info *sbi = UDF_SB(sb);
1389         struct logicalVolIntegrityDesc *lvid;
1390
1391         while (loc.extLength > 0 &&
1392                (bh = udf_read_tagged(sb, loc.extLocation,
1393                                      loc.extLocation, &ident)) &&
1394                ident == TAG_IDENT_LVID) {
1395                 sbi->s_lvid_bh = bh;
1396                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1397
1398                 if (lvid->nextIntegrityExt.extLength)
1399                         udf_load_logicalvolint(sb,
1400                                 leea_to_cpu(lvid->nextIntegrityExt));
1401
1402                 if (sbi->s_lvid_bh != bh)
1403                         brelse(bh);
1404                 loc.extLength -= sb->s_blocksize;
1405                 loc.extLocation++;
1406         }
1407         if (sbi->s_lvid_bh != bh)
1408                 brelse(bh);
1409 }
1410
1411 /*
1412  * udf_process_sequence
1413  *
1414  * PURPOSE
1415  *      Process a main/reserve volume descriptor sequence.
1416  *
1417  * PRE-CONDITIONS
1418  *      sb                      Pointer to _locked_ superblock.
1419  *      block                   First block of first extent of the sequence.
1420  *      lastblock               Lastblock of first extent of the sequence.
1421  *
1422  * HISTORY
1423  *      July 1, 1997 - Andrew E. Mileski
1424  *      Written, tested, and released.
1425  */
1426 static noinline int udf_process_sequence(struct super_block *sb, long block,
1427                                 long lastblock, struct kernel_lb_addr *fileset)
1428 {
1429         struct buffer_head *bh = NULL;
1430         struct udf_vds_record vds[VDS_POS_LENGTH];
1431         struct udf_vds_record *curr;
1432         struct generic_desc *gd;
1433         struct volDescPtr *vdp;
1434         int done = 0;
1435         uint32_t vdsn;
1436         uint16_t ident;
1437         long next_s = 0, next_e = 0;
1438
1439         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1440
1441         /*
1442          * Read the main descriptor sequence and find which descriptors
1443          * are in it.
1444          */
1445         for (; (!done && block <= lastblock); block++) {
1446
1447                 bh = udf_read_tagged(sb, block, block, &ident);
1448                 if (!bh) {
1449                         udf_err(sb,
1450                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1451                                 (unsigned long long)block);
1452                         return 1;
1453                 }
1454
1455                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1456                 gd = (struct generic_desc *)bh->b_data;
1457                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1458                 switch (ident) {
1459                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1460                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1461                         if (vdsn >= curr->volDescSeqNum) {
1462                                 curr->volDescSeqNum = vdsn;
1463                                 curr->block = block;
1464                         }
1465                         break;
1466                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1467                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1468                         if (vdsn >= curr->volDescSeqNum) {
1469                                 curr->volDescSeqNum = vdsn;
1470                                 curr->block = block;
1471
1472                                 vdp = (struct volDescPtr *)bh->b_data;
1473                                 next_s = le32_to_cpu(
1474                                         vdp->nextVolDescSeqExt.extLocation);
1475                                 next_e = le32_to_cpu(
1476                                         vdp->nextVolDescSeqExt.extLength);
1477                                 next_e = next_e >> sb->s_blocksize_bits;
1478                                 next_e += next_s;
1479                         }
1480                         break;
1481                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1482                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1483                         if (vdsn >= curr->volDescSeqNum) {
1484                                 curr->volDescSeqNum = vdsn;
1485                                 curr->block = block;
1486                         }
1487                         break;
1488                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1489                         curr = &vds[VDS_POS_PARTITION_DESC];
1490                         if (!curr->block)
1491                                 curr->block = block;
1492                         break;
1493                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1494                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1495                         if (vdsn >= curr->volDescSeqNum) {
1496                                 curr->volDescSeqNum = vdsn;
1497                                 curr->block = block;
1498                         }
1499                         break;
1500                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1501                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1502                         if (vdsn >= curr->volDescSeqNum) {
1503                                 curr->volDescSeqNum = vdsn;
1504                                 curr->block = block;
1505                         }
1506                         break;
1507                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1508                         vds[VDS_POS_TERMINATING_DESC].block = block;
1509                         if (next_e) {
1510                                 block = next_s;
1511                                 lastblock = next_e;
1512                                 next_s = next_e = 0;
1513                         } else
1514                                 done = 1;
1515                         break;
1516                 }
1517                 brelse(bh);
1518         }
1519         /*
1520          * Now read interesting descriptors again and process them
1521          * in a suitable order
1522          */
1523         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1524                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1525                 return 1;
1526         }
1527         if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1528                 return 1;
1529
1530         if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1531             vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1532                 return 1;
1533
1534         if (vds[VDS_POS_PARTITION_DESC].block) {
1535                 /*
1536                  * We rescan the whole descriptor sequence to find
1537                  * partition descriptor blocks and process them.
1538                  */
1539                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1540                      block < vds[VDS_POS_TERMINATING_DESC].block;
1541                      block++)
1542                         if (udf_load_partdesc(sb, block))
1543                                 return 1;
1544         }
1545
1546         return 0;
1547 }
1548
1549 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1550                              struct kernel_lb_addr *fileset)
1551 {
1552         struct anchorVolDescPtr *anchor;
1553         long main_s, main_e, reserve_s, reserve_e;
1554
1555         anchor = (struct anchorVolDescPtr *)bh->b_data;
1556
1557         /* Locate the main sequence */
1558         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1559         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1560         main_e = main_e >> sb->s_blocksize_bits;
1561         main_e += main_s;
1562
1563         /* Locate the reserve sequence */
1564         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1565         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1566         reserve_e = reserve_e >> sb->s_blocksize_bits;
1567         reserve_e += reserve_s;
1568
1569         /* Process the main & reserve sequences */
1570         /* responsible for finding the PartitionDesc(s) */
1571         if (!udf_process_sequence(sb, main_s, main_e, fileset))
1572                 return 1;
1573         return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1574 }
1575
1576 /*
1577  * Check whether there is an anchor block in the given block and
1578  * load Volume Descriptor Sequence if so.
1579  */
1580 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1581                                   struct kernel_lb_addr *fileset)
1582 {
1583         struct buffer_head *bh;
1584         uint16_t ident;
1585         int ret;
1586
1587         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1588             udf_fixed_to_variable(block) >=
1589             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1590                 return 0;
1591
1592         bh = udf_read_tagged(sb, block, block, &ident);
1593         if (!bh)
1594                 return 0;
1595         if (ident != TAG_IDENT_AVDP) {
1596                 brelse(bh);
1597                 return 0;
1598         }
1599         ret = udf_load_sequence(sb, bh, fileset);
1600         brelse(bh);
1601         return ret;
1602 }
1603
1604 /* Search for an anchor volume descriptor pointer */
1605 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1606                                  struct kernel_lb_addr *fileset)
1607 {
1608         sector_t last[6];
1609         int i;
1610         struct udf_sb_info *sbi = UDF_SB(sb);
1611         int last_count = 0;
1612
1613         /* First try user provided anchor */
1614         if (sbi->s_anchor) {
1615                 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1616                         return lastblock;
1617         }
1618         /*
1619          * according to spec, anchor is in either:
1620          *     block 256
1621          *     lastblock-256
1622          *     lastblock
1623          *  however, if the disc isn't closed, it could be 512.
1624          */
1625         if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1626                 return lastblock;
1627         /*
1628          * The trouble is which block is the last one. Drives often misreport
1629          * this so we try various possibilities.
1630          */
1631         last[last_count++] = lastblock;
1632         if (lastblock >= 1)
1633                 last[last_count++] = lastblock - 1;
1634         last[last_count++] = lastblock + 1;
1635         if (lastblock >= 2)
1636                 last[last_count++] = lastblock - 2;
1637         if (lastblock >= 150)
1638                 last[last_count++] = lastblock - 150;
1639         if (lastblock >= 152)
1640                 last[last_count++] = lastblock - 152;
1641
1642         for (i = 0; i < last_count; i++) {
1643                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1644                                 sb->s_blocksize_bits)
1645                         continue;
1646                 if (udf_check_anchor_block(sb, last[i], fileset))
1647                         return last[i];
1648                 if (last[i] < 256)
1649                         continue;
1650                 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1651                         return last[i];
1652         }
1653
1654         /* Finally try block 512 in case media is open */
1655         if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1656                 return last[0];
1657         return 0;
1658 }
1659
1660 /*
1661  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1662  * area specified by it. The function expects sbi->s_lastblock to be the last
1663  * block on the media.
1664  *
1665  * Return 1 if ok, 0 if not found.
1666  *
1667  */
1668 static int udf_find_anchor(struct super_block *sb,
1669                            struct kernel_lb_addr *fileset)
1670 {
1671         sector_t lastblock;
1672         struct udf_sb_info *sbi = UDF_SB(sb);
1673
1674         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1675         if (lastblock)
1676                 goto out;
1677
1678         /* No anchor found? Try VARCONV conversion of block numbers */
1679         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1680         /* Firstly, we try to not convert number of the last block */
1681         lastblock = udf_scan_anchors(sb,
1682                                 udf_variable_to_fixed(sbi->s_last_block),
1683                                 fileset);
1684         if (lastblock)
1685                 goto out;
1686
1687         /* Secondly, we try with converted number of the last block */
1688         lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1689         if (!lastblock) {
1690                 /* VARCONV didn't help. Clear it. */
1691                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1692                 return 0;
1693         }
1694 out:
1695         sbi->s_last_block = lastblock;
1696         return 1;
1697 }
1698
1699 /*
1700  * Check Volume Structure Descriptor, find Anchor block and load Volume
1701  * Descriptor Sequence
1702  */
1703 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1704                         int silent, struct kernel_lb_addr *fileset)
1705 {
1706         struct udf_sb_info *sbi = UDF_SB(sb);
1707         loff_t nsr_off;
1708
1709         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1710                 if (!silent)
1711                         udf_warn(sb, "Bad block size\n");
1712                 return 0;
1713         }
1714         sbi->s_last_block = uopt->lastblock;
1715         if (!uopt->novrs) {
1716                 /* Check that it is NSR02 compliant */
1717                 nsr_off = udf_check_vsd(sb);
1718                 if (!nsr_off) {
1719                         if (!silent)
1720                                 udf_warn(sb, "No VRS found\n");
1721                         return 0;
1722                 }
1723                 if (nsr_off == -1)
1724                         udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1725                 if (!sbi->s_last_block)
1726                         sbi->s_last_block = udf_get_last_block(sb);
1727         } else {
1728                 udf_debug("Validity check skipped because of novrs option\n");
1729         }
1730
1731         /* Look for anchor block and load Volume Descriptor Sequence */
1732         sbi->s_anchor = uopt->anchor;
1733         if (!udf_find_anchor(sb, fileset)) {
1734                 if (!silent)
1735                         udf_warn(sb, "No anchor found\n");
1736                 return 0;
1737         }
1738         return 1;
1739 }
1740
1741 static void udf_open_lvid(struct super_block *sb)
1742 {
1743         struct udf_sb_info *sbi = UDF_SB(sb);
1744         struct buffer_head *bh = sbi->s_lvid_bh;
1745         struct logicalVolIntegrityDesc *lvid;
1746         struct logicalVolIntegrityDescImpUse *lvidiu;
1747
1748         if (!bh)
1749                 return;
1750
1751         mutex_lock(&sbi->s_alloc_mutex);
1752         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1753         lvidiu = udf_sb_lvidiu(sbi);
1754
1755         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1756         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1757         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1758                                 CURRENT_TIME);
1759         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1760
1761         lvid->descTag.descCRC = cpu_to_le16(
1762                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1763                         le16_to_cpu(lvid->descTag.descCRCLength)));
1764
1765         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1766         mark_buffer_dirty(bh);
1767         sbi->s_lvid_dirty = 0;
1768         mutex_unlock(&sbi->s_alloc_mutex);
1769 }
1770
1771 static void udf_close_lvid(struct super_block *sb)
1772 {
1773         struct udf_sb_info *sbi = UDF_SB(sb);
1774         struct buffer_head *bh = sbi->s_lvid_bh;
1775         struct logicalVolIntegrityDesc *lvid;
1776         struct logicalVolIntegrityDescImpUse *lvidiu;
1777
1778         if (!bh)
1779                 return;
1780
1781         mutex_lock(&sbi->s_alloc_mutex);
1782         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1783         lvidiu = udf_sb_lvidiu(sbi);
1784         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1787         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1788                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1789         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1790                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1791         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1792                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1793         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1794
1795         lvid->descTag.descCRC = cpu_to_le16(
1796                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1797                                 le16_to_cpu(lvid->descTag.descCRCLength)));
1798
1799         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1800         /*
1801          * We set buffer uptodate unconditionally here to avoid spurious
1802          * warnings from mark_buffer_dirty() when previous EIO has marked
1803          * the buffer as !uptodate
1804          */
1805         set_buffer_uptodate(bh);
1806         mark_buffer_dirty(bh);
1807         sbi->s_lvid_dirty = 0;
1808         mutex_unlock(&sbi->s_alloc_mutex);
1809 }
1810
1811 u64 lvid_get_unique_id(struct super_block *sb)
1812 {
1813         struct buffer_head *bh;
1814         struct udf_sb_info *sbi = UDF_SB(sb);
1815         struct logicalVolIntegrityDesc *lvid;
1816         struct logicalVolHeaderDesc *lvhd;
1817         u64 uniqueID;
1818         u64 ret;
1819
1820         bh = sbi->s_lvid_bh;
1821         if (!bh)
1822                 return 0;
1823
1824         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1825         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1826
1827         mutex_lock(&sbi->s_alloc_mutex);
1828         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1829         if (!(++uniqueID & 0xFFFFFFFF))
1830                 uniqueID += 16;
1831         lvhd->uniqueID = cpu_to_le64(uniqueID);
1832         mutex_unlock(&sbi->s_alloc_mutex);
1833         mark_buffer_dirty(bh);
1834
1835         return ret;
1836 }
1837
1838 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1839 {
1840         int i;
1841         int nr_groups = bitmap->s_nr_groups;
1842         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1843                                                 nr_groups);
1844
1845         for (i = 0; i < nr_groups; i++)
1846                 if (bitmap->s_block_bitmap[i])
1847                         brelse(bitmap->s_block_bitmap[i]);
1848
1849         if (size <= PAGE_SIZE)
1850                 kfree(bitmap);
1851         else
1852                 vfree(bitmap);
1853 }
1854
1855 static void udf_free_partition(struct udf_part_map *map)
1856 {
1857         int i;
1858         struct udf_meta_data *mdata;
1859
1860         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1861                 iput(map->s_uspace.s_table);
1862         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1863                 iput(map->s_fspace.s_table);
1864         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1865                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1866         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1867                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1868         if (map->s_partition_type == UDF_SPARABLE_MAP15)
1869                 for (i = 0; i < 4; i++)
1870                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1871         else if (map->s_partition_type == UDF_METADATA_MAP25) {
1872                 mdata = &map->s_type_specific.s_metadata;
1873                 iput(mdata->s_metadata_fe);
1874                 mdata->s_metadata_fe = NULL;
1875
1876                 iput(mdata->s_mirror_fe);
1877                 mdata->s_mirror_fe = NULL;
1878
1879                 iput(mdata->s_bitmap_fe);
1880                 mdata->s_bitmap_fe = NULL;
1881         }
1882 }
1883
1884 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1885 {
1886         int i;
1887         int ret;
1888         struct inode *inode = NULL;
1889         struct udf_options uopt;
1890         struct kernel_lb_addr rootdir, fileset;
1891         struct udf_sb_info *sbi;
1892
1893         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1894         uopt.uid = -1;
1895         uopt.gid = -1;
1896         uopt.umask = 0;
1897         uopt.fmode = UDF_INVALID_MODE;
1898         uopt.dmode = UDF_INVALID_MODE;
1899
1900         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1901         if (!sbi)
1902                 return -ENOMEM;
1903
1904         sb->s_fs_info = sbi;
1905
1906         mutex_init(&sbi->s_alloc_mutex);
1907
1908         if (!udf_parse_options((char *)options, &uopt, false))
1909                 goto error_out;
1910
1911         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1912             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1913                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
1914                 goto error_out;
1915         }
1916 #ifdef CONFIG_UDF_NLS
1917         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1918                 uopt.nls_map = load_nls_default();
1919                 if (!uopt.nls_map)
1920                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1921                 else
1922                         udf_debug("Using default NLS map\n");
1923         }
1924 #endif
1925         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1926                 uopt.flags |= (1 << UDF_FLAG_UTF8);
1927
1928         fileset.logicalBlockNum = 0xFFFFFFFF;
1929         fileset.partitionReferenceNum = 0xFFFF;
1930
1931         sbi->s_flags = uopt.flags;
1932         sbi->s_uid = uopt.uid;
1933         sbi->s_gid = uopt.gid;
1934         sbi->s_umask = uopt.umask;
1935         sbi->s_fmode = uopt.fmode;
1936         sbi->s_dmode = uopt.dmode;
1937         sbi->s_nls_map = uopt.nls_map;
1938         rwlock_init(&sbi->s_cred_lock);
1939
1940         if (uopt.session == 0xFFFFFFFF)
1941                 sbi->s_session = udf_get_last_session(sb);
1942         else
1943                 sbi->s_session = uopt.session;
1944
1945         udf_debug("Multi-session=%d\n", sbi->s_session);
1946
1947         /* Fill in the rest of the superblock */
1948         sb->s_op = &udf_sb_ops;
1949         sb->s_export_op = &udf_export_ops;
1950
1951         sb->s_dirt = 0;
1952         sb->s_magic = UDF_SUPER_MAGIC;
1953         sb->s_time_gran = 1000;
1954
1955         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1956                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1957         } else {
1958                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1959                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1960                 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1961                         if (!silent)
1962                                 pr_notice("Rescanning with blocksize %d\n",
1963                                           UDF_DEFAULT_BLOCKSIZE);
1964                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1965                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1966                 }
1967         }
1968         if (!ret) {
1969                 udf_warn(sb, "No partition found (1)\n");
1970                 goto error_out;
1971         }
1972
1973         udf_debug("Lastblock=%d\n", sbi->s_last_block);
1974
1975         if (sbi->s_lvid_bh) {
1976                 struct logicalVolIntegrityDescImpUse *lvidiu =
1977                                                         udf_sb_lvidiu(sbi);
1978                 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1979                 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1980                 /* uint16_t maxUDFWriteRev =
1981                                 le16_to_cpu(lvidiu->maxUDFWriteRev); */
1982
1983                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1984                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
1985                                 le16_to_cpu(lvidiu->minUDFReadRev),
1986                                 UDF_MAX_READ_VERSION);
1987                         goto error_out;
1988                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1989                         sb->s_flags |= MS_RDONLY;
1990
1991                 sbi->s_udfrev = minUDFWriteRev;
1992
1993                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
1994                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
1995                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
1996                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
1997         }
1998
1999         if (!sbi->s_partitions) {
2000                 udf_warn(sb, "No partition found (2)\n");
2001                 goto error_out;
2002         }
2003
2004         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2005                         UDF_PART_FLAG_READ_ONLY) {
2006                 pr_notice("Partition marked readonly; forcing readonly mount\n");
2007                 sb->s_flags |= MS_RDONLY;
2008         }
2009
2010         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2011                 udf_warn(sb, "No fileset found\n");
2012                 goto error_out;
2013         }
2014
2015         if (!silent) {
2016                 struct timestamp ts;
2017                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2018                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2019                          sbi->s_volume_ident,
2020                          le16_to_cpu(ts.year), ts.month, ts.day,
2021                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2022         }
2023         if (!(sb->s_flags & MS_RDONLY))
2024                 udf_open_lvid(sb);
2025
2026         /* Assign the root inode */
2027         /* assign inodes by physical block number */
2028         /* perhaps it's not extensible enough, but for now ... */
2029         inode = udf_iget(sb, &rootdir);
2030         if (!inode) {
2031                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2032                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2033                 goto error_out;
2034         }
2035
2036         /* Allocate a dentry for the root inode */
2037         sb->s_root = d_make_root(inode);
2038         if (!sb->s_root) {
2039                 udf_err(sb, "Couldn't allocate root dentry\n");
2040                 goto error_out;
2041         }
2042         sb->s_maxbytes = MAX_LFS_FILESIZE;
2043         sb->s_max_links = UDF_MAX_LINKS;
2044         return 0;
2045
2046 error_out:
2047         if (sbi->s_vat_inode)
2048                 iput(sbi->s_vat_inode);
2049         if (sbi->s_partitions)
2050                 for (i = 0; i < sbi->s_partitions; i++)
2051                         udf_free_partition(&sbi->s_partmaps[i]);
2052 #ifdef CONFIG_UDF_NLS
2053         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2054                 unload_nls(sbi->s_nls_map);
2055 #endif
2056         if (!(sb->s_flags & MS_RDONLY))
2057                 udf_close_lvid(sb);
2058         brelse(sbi->s_lvid_bh);
2059
2060         kfree(sbi->s_partmaps);
2061         kfree(sbi);
2062         sb->s_fs_info = NULL;
2063
2064         return -EINVAL;
2065 }
2066
2067 void _udf_err(struct super_block *sb, const char *function,
2068               const char *fmt, ...)
2069 {
2070         struct va_format vaf;
2071         va_list args;
2072
2073         /* mark sb error */
2074         if (!(sb->s_flags & MS_RDONLY))
2075                 sb->s_dirt = 1;
2076
2077         va_start(args, fmt);
2078
2079         vaf.fmt = fmt;
2080         vaf.va = &args;
2081
2082         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2083
2084         va_end(args);
2085 }
2086
2087 void _udf_warn(struct super_block *sb, const char *function,
2088                const char *fmt, ...)
2089 {
2090         struct va_format vaf;
2091         va_list args;
2092
2093         va_start(args, fmt);
2094
2095         vaf.fmt = fmt;
2096         vaf.va = &args;
2097
2098         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2099
2100         va_end(args);
2101 }
2102
2103 static void udf_put_super(struct super_block *sb)
2104 {
2105         int i;
2106         struct udf_sb_info *sbi;
2107
2108         sbi = UDF_SB(sb);
2109
2110         if (sbi->s_vat_inode)
2111                 iput(sbi->s_vat_inode);
2112         if (sbi->s_partitions)
2113                 for (i = 0; i < sbi->s_partitions; i++)
2114                         udf_free_partition(&sbi->s_partmaps[i]);
2115 #ifdef CONFIG_UDF_NLS
2116         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2117                 unload_nls(sbi->s_nls_map);
2118 #endif
2119         if (!(sb->s_flags & MS_RDONLY))
2120                 udf_close_lvid(sb);
2121         brelse(sbi->s_lvid_bh);
2122         kfree(sbi->s_partmaps);
2123         kfree(sb->s_fs_info);
2124         sb->s_fs_info = NULL;
2125 }
2126
2127 static int udf_sync_fs(struct super_block *sb, int wait)
2128 {
2129         struct udf_sb_info *sbi = UDF_SB(sb);
2130
2131         mutex_lock(&sbi->s_alloc_mutex);
2132         if (sbi->s_lvid_dirty) {
2133                 /*
2134                  * Blockdevice will be synced later so we don't have to submit
2135                  * the buffer for IO
2136                  */
2137                 mark_buffer_dirty(sbi->s_lvid_bh);
2138                 sb->s_dirt = 0;
2139                 sbi->s_lvid_dirty = 0;
2140         }
2141         mutex_unlock(&sbi->s_alloc_mutex);
2142
2143         return 0;
2144 }
2145
2146 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2147 {
2148         struct super_block *sb = dentry->d_sb;
2149         struct udf_sb_info *sbi = UDF_SB(sb);
2150         struct logicalVolIntegrityDescImpUse *lvidiu;
2151         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2152
2153         if (sbi->s_lvid_bh != NULL)
2154                 lvidiu = udf_sb_lvidiu(sbi);
2155         else
2156                 lvidiu = NULL;
2157
2158         buf->f_type = UDF_SUPER_MAGIC;
2159         buf->f_bsize = sb->s_blocksize;
2160         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2161         buf->f_bfree = udf_count_free(sb);
2162         buf->f_bavail = buf->f_bfree;
2163         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2164                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2165                         + buf->f_bfree;
2166         buf->f_ffree = buf->f_bfree;
2167         buf->f_namelen = UDF_NAME_LEN - 2;
2168         buf->f_fsid.val[0] = (u32)id;
2169         buf->f_fsid.val[1] = (u32)(id >> 32);
2170
2171         return 0;
2172 }
2173
2174 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2175                                           struct udf_bitmap *bitmap)
2176 {
2177         struct buffer_head *bh = NULL;
2178         unsigned int accum = 0;
2179         int index;
2180         int block = 0, newblock;
2181         struct kernel_lb_addr loc;
2182         uint32_t bytes;
2183         uint8_t *ptr;
2184         uint16_t ident;
2185         struct spaceBitmapDesc *bm;
2186
2187         loc.logicalBlockNum = bitmap->s_extPosition;
2188         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2189         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2190
2191         if (!bh) {
2192                 udf_err(sb, "udf_count_free failed\n");
2193                 goto out;
2194         } else if (ident != TAG_IDENT_SBD) {
2195                 brelse(bh);
2196                 udf_err(sb, "udf_count_free failed\n");
2197                 goto out;
2198         }
2199
2200         bm = (struct spaceBitmapDesc *)bh->b_data;
2201         bytes = le32_to_cpu(bm->numOfBytes);
2202         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2203         ptr = (uint8_t *)bh->b_data;
2204
2205         while (bytes > 0) {
2206                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2207                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2208                                         cur_bytes * 8);
2209                 bytes -= cur_bytes;
2210                 if (bytes) {
2211                         brelse(bh);
2212                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2213                         bh = udf_tread(sb, newblock);
2214                         if (!bh) {
2215                                 udf_debug("read failed\n");
2216                                 goto out;
2217                         }
2218                         index = 0;
2219                         ptr = (uint8_t *)bh->b_data;
2220                 }
2221         }
2222         brelse(bh);
2223 out:
2224         return accum;
2225 }
2226
2227 static unsigned int udf_count_free_table(struct super_block *sb,
2228                                          struct inode *table)
2229 {
2230         unsigned int accum = 0;
2231         uint32_t elen;
2232         struct kernel_lb_addr eloc;
2233         int8_t etype;
2234         struct extent_position epos;
2235
2236         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2237         epos.block = UDF_I(table)->i_location;
2238         epos.offset = sizeof(struct unallocSpaceEntry);
2239         epos.bh = NULL;
2240
2241         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2242                 accum += (elen >> table->i_sb->s_blocksize_bits);
2243
2244         brelse(epos.bh);
2245         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2246
2247         return accum;
2248 }
2249
2250 static unsigned int udf_count_free(struct super_block *sb)
2251 {
2252         unsigned int accum = 0;
2253         struct udf_sb_info *sbi;
2254         struct udf_part_map *map;
2255
2256         sbi = UDF_SB(sb);
2257         if (sbi->s_lvid_bh) {
2258                 struct logicalVolIntegrityDesc *lvid =
2259                         (struct logicalVolIntegrityDesc *)
2260                         sbi->s_lvid_bh->b_data;
2261                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2262                         accum = le32_to_cpu(
2263                                         lvid->freeSpaceTable[sbi->s_partition]);
2264                         if (accum == 0xFFFFFFFF)
2265                                 accum = 0;
2266                 }
2267         }
2268
2269         if (accum)
2270                 return accum;
2271
2272         map = &sbi->s_partmaps[sbi->s_partition];
2273         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2274                 accum += udf_count_free_bitmap(sb,
2275                                                map->s_uspace.s_bitmap);
2276         }
2277         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2278                 accum += udf_count_free_bitmap(sb,
2279                                                map->s_fspace.s_bitmap);
2280         }
2281         if (accum)
2282                 return accum;
2283
2284         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2285                 accum += udf_count_free_table(sb,
2286                                               map->s_uspace.s_table);
2287         }
2288         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2289                 accum += udf_count_free_table(sb,
2290                                               map->s_fspace.s_table);
2291         }
2292
2293         return accum;
2294 }