]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/bpf/core.c
xfrm: dst_entries_init() per-net dst_ops
[karo-tx-linux.git] / kernel / bpf / core.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30
31 #include <asm/unaligned.h>
32
33 /* Registers */
34 #define BPF_R0  regs[BPF_REG_0]
35 #define BPF_R1  regs[BPF_REG_1]
36 #define BPF_R2  regs[BPF_REG_2]
37 #define BPF_R3  regs[BPF_REG_3]
38 #define BPF_R4  regs[BPF_REG_4]
39 #define BPF_R5  regs[BPF_REG_5]
40 #define BPF_R6  regs[BPF_REG_6]
41 #define BPF_R7  regs[BPF_REG_7]
42 #define BPF_R8  regs[BPF_REG_8]
43 #define BPF_R9  regs[BPF_REG_9]
44 #define BPF_R10 regs[BPF_REG_10]
45
46 /* Named registers */
47 #define DST     regs[insn->dst_reg]
48 #define SRC     regs[insn->src_reg]
49 #define FP      regs[BPF_REG_FP]
50 #define ARG1    regs[BPF_REG_ARG1]
51 #define CTX     regs[BPF_REG_CTX]
52 #define IMM     insn->imm
53
54 /* No hurry in this branch
55  *
56  * Exported for the bpf jit load helper.
57  */
58 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
59 {
60         u8 *ptr = NULL;
61
62         if (k >= SKF_NET_OFF)
63                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
64         else if (k >= SKF_LL_OFF)
65                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
66
67         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
68                 return ptr;
69
70         return NULL;
71 }
72
73 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
74 {
75         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
76                           gfp_extra_flags;
77         struct bpf_prog_aux *aux;
78         struct bpf_prog *fp;
79
80         size = round_up(size, PAGE_SIZE);
81         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
82         if (fp == NULL)
83                 return NULL;
84
85         aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
86         if (aux == NULL) {
87                 vfree(fp);
88                 return NULL;
89         }
90
91         fp->pages = size / PAGE_SIZE;
92         fp->aux = aux;
93
94         return fp;
95 }
96 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
97
98 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
99                                   gfp_t gfp_extra_flags)
100 {
101         gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
102                           gfp_extra_flags;
103         struct bpf_prog *fp;
104
105         BUG_ON(fp_old == NULL);
106
107         size = round_up(size, PAGE_SIZE);
108         if (size <= fp_old->pages * PAGE_SIZE)
109                 return fp_old;
110
111         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
112         if (fp != NULL) {
113                 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
114                 fp->pages = size / PAGE_SIZE;
115
116                 /* We keep fp->aux from fp_old around in the new
117                  * reallocated structure.
118                  */
119                 fp_old->aux = NULL;
120                 __bpf_prog_free(fp_old);
121         }
122
123         return fp;
124 }
125 EXPORT_SYMBOL_GPL(bpf_prog_realloc);
126
127 void __bpf_prog_free(struct bpf_prog *fp)
128 {
129         kfree(fp->aux);
130         vfree(fp);
131 }
132 EXPORT_SYMBOL_GPL(__bpf_prog_free);
133
134 #ifdef CONFIG_BPF_JIT
135 struct bpf_binary_header *
136 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
137                      unsigned int alignment,
138                      bpf_jit_fill_hole_t bpf_fill_ill_insns)
139 {
140         struct bpf_binary_header *hdr;
141         unsigned int size, hole, start;
142
143         /* Most of BPF filters are really small, but if some of them
144          * fill a page, allow at least 128 extra bytes to insert a
145          * random section of illegal instructions.
146          */
147         size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
148         hdr = module_alloc(size);
149         if (hdr == NULL)
150                 return NULL;
151
152         /* Fill space with illegal/arch-dep instructions. */
153         bpf_fill_ill_insns(hdr, size);
154
155         hdr->pages = size / PAGE_SIZE;
156         hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
157                      PAGE_SIZE - sizeof(*hdr));
158         start = (prandom_u32() % hole) & ~(alignment - 1);
159
160         /* Leave a random number of instructions before BPF code. */
161         *image_ptr = &hdr->image[start];
162
163         return hdr;
164 }
165
166 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
167 {
168         module_memfree(hdr);
169 }
170 #endif /* CONFIG_BPF_JIT */
171
172 /* Base function for offset calculation. Needs to go into .text section,
173  * therefore keeping it non-static as well; will also be used by JITs
174  * anyway later on, so do not let the compiler omit it.
175  */
176 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
177 {
178         return 0;
179 }
180 EXPORT_SYMBOL_GPL(__bpf_call_base);
181
182 /**
183  *      __bpf_prog_run - run eBPF program on a given context
184  *      @ctx: is the data we are operating on
185  *      @insn: is the array of eBPF instructions
186  *
187  * Decode and execute eBPF instructions.
188  */
189 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
190 {
191         u64 stack[MAX_BPF_STACK / sizeof(u64)];
192         u64 regs[MAX_BPF_REG], tmp;
193         static const void *jumptable[256] = {
194                 [0 ... 255] = &&default_label,
195                 /* Now overwrite non-defaults ... */
196                 /* 32 bit ALU operations */
197                 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
198                 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
199                 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
200                 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
201                 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
202                 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
203                 [BPF_ALU | BPF_OR | BPF_X]  = &&ALU_OR_X,
204                 [BPF_ALU | BPF_OR | BPF_K]  = &&ALU_OR_K,
205                 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
206                 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
207                 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
208                 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
209                 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
210                 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
211                 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
212                 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
213                 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
214                 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
215                 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
216                 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
217                 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
218                 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
219                 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
220                 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
221                 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
222                 /* 64 bit ALU operations */
223                 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
224                 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
225                 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
226                 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
227                 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
228                 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
229                 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
230                 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
231                 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
232                 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
233                 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
234                 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
235                 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
236                 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
237                 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
238                 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
239                 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
240                 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
241                 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
242                 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
243                 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
244                 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
245                 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
246                 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
247                 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
248                 /* Call instruction */
249                 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
250                 [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
251                 /* Jumps */
252                 [BPF_JMP | BPF_JA] = &&JMP_JA,
253                 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
254                 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
255                 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
256                 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
257                 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
258                 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
259                 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
260                 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
261                 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
262                 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
263                 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
264                 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
265                 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
266                 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
267                 /* Program return */
268                 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
269                 /* Store instructions */
270                 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
271                 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
272                 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
273                 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
274                 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
275                 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
276                 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
277                 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
278                 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
279                 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
280                 /* Load instructions */
281                 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
282                 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
283                 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
284                 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
285                 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
286                 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
287                 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
288                 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
289                 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
290                 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
291                 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
292         };
293         u32 tail_call_cnt = 0;
294         void *ptr;
295         int off;
296
297 #define CONT     ({ insn++; goto select_insn; })
298 #define CONT_JMP ({ insn++; goto select_insn; })
299
300         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
301         ARG1 = (u64) (unsigned long) ctx;
302
303         /* Registers used in classic BPF programs need to be reset first. */
304         regs[BPF_REG_A] = 0;
305         regs[BPF_REG_X] = 0;
306
307 select_insn:
308         goto *jumptable[insn->code];
309
310         /* ALU */
311 #define ALU(OPCODE, OP)                 \
312         ALU64_##OPCODE##_X:             \
313                 DST = DST OP SRC;       \
314                 CONT;                   \
315         ALU_##OPCODE##_X:               \
316                 DST = (u32) DST OP (u32) SRC;   \
317                 CONT;                   \
318         ALU64_##OPCODE##_K:             \
319                 DST = DST OP IMM;               \
320                 CONT;                   \
321         ALU_##OPCODE##_K:               \
322                 DST = (u32) DST OP (u32) IMM;   \
323                 CONT;
324
325         ALU(ADD,  +)
326         ALU(SUB,  -)
327         ALU(AND,  &)
328         ALU(OR,   |)
329         ALU(LSH, <<)
330         ALU(RSH, >>)
331         ALU(XOR,  ^)
332         ALU(MUL,  *)
333 #undef ALU
334         ALU_NEG:
335                 DST = (u32) -DST;
336                 CONT;
337         ALU64_NEG:
338                 DST = -DST;
339                 CONT;
340         ALU_MOV_X:
341                 DST = (u32) SRC;
342                 CONT;
343         ALU_MOV_K:
344                 DST = (u32) IMM;
345                 CONT;
346         ALU64_MOV_X:
347                 DST = SRC;
348                 CONT;
349         ALU64_MOV_K:
350                 DST = IMM;
351                 CONT;
352         LD_IMM_DW:
353                 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
354                 insn++;
355                 CONT;
356         ALU64_ARSH_X:
357                 (*(s64 *) &DST) >>= SRC;
358                 CONT;
359         ALU64_ARSH_K:
360                 (*(s64 *) &DST) >>= IMM;
361                 CONT;
362         ALU64_MOD_X:
363                 if (unlikely(SRC == 0))
364                         return 0;
365                 div64_u64_rem(DST, SRC, &tmp);
366                 DST = tmp;
367                 CONT;
368         ALU_MOD_X:
369                 if (unlikely(SRC == 0))
370                         return 0;
371                 tmp = (u32) DST;
372                 DST = do_div(tmp, (u32) SRC);
373                 CONT;
374         ALU64_MOD_K:
375                 div64_u64_rem(DST, IMM, &tmp);
376                 DST = tmp;
377                 CONT;
378         ALU_MOD_K:
379                 tmp = (u32) DST;
380                 DST = do_div(tmp, (u32) IMM);
381                 CONT;
382         ALU64_DIV_X:
383                 if (unlikely(SRC == 0))
384                         return 0;
385                 DST = div64_u64(DST, SRC);
386                 CONT;
387         ALU_DIV_X:
388                 if (unlikely(SRC == 0))
389                         return 0;
390                 tmp = (u32) DST;
391                 do_div(tmp, (u32) SRC);
392                 DST = (u32) tmp;
393                 CONT;
394         ALU64_DIV_K:
395                 DST = div64_u64(DST, IMM);
396                 CONT;
397         ALU_DIV_K:
398                 tmp = (u32) DST;
399                 do_div(tmp, (u32) IMM);
400                 DST = (u32) tmp;
401                 CONT;
402         ALU_END_TO_BE:
403                 switch (IMM) {
404                 case 16:
405                         DST = (__force u16) cpu_to_be16(DST);
406                         break;
407                 case 32:
408                         DST = (__force u32) cpu_to_be32(DST);
409                         break;
410                 case 64:
411                         DST = (__force u64) cpu_to_be64(DST);
412                         break;
413                 }
414                 CONT;
415         ALU_END_TO_LE:
416                 switch (IMM) {
417                 case 16:
418                         DST = (__force u16) cpu_to_le16(DST);
419                         break;
420                 case 32:
421                         DST = (__force u32) cpu_to_le32(DST);
422                         break;
423                 case 64:
424                         DST = (__force u64) cpu_to_le64(DST);
425                         break;
426                 }
427                 CONT;
428
429         /* CALL */
430         JMP_CALL:
431                 /* Function call scratches BPF_R1-BPF_R5 registers,
432                  * preserves BPF_R6-BPF_R9, and stores return value
433                  * into BPF_R0.
434                  */
435                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
436                                                        BPF_R4, BPF_R5);
437                 CONT;
438
439         JMP_TAIL_CALL: {
440                 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
441                 struct bpf_array *array = container_of(map, struct bpf_array, map);
442                 struct bpf_prog *prog;
443                 u64 index = BPF_R3;
444
445                 if (unlikely(index >= array->map.max_entries))
446                         goto out;
447
448                 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
449                         goto out;
450
451                 tail_call_cnt++;
452
453                 prog = READ_ONCE(array->ptrs[index]);
454                 if (unlikely(!prog))
455                         goto out;
456
457                 /* ARG1 at this point is guaranteed to point to CTX from
458                  * the verifier side due to the fact that the tail call is
459                  * handeled like a helper, that is, bpf_tail_call_proto,
460                  * where arg1_type is ARG_PTR_TO_CTX.
461                  */
462                 insn = prog->insnsi;
463                 goto select_insn;
464 out:
465                 CONT;
466         }
467         /* JMP */
468         JMP_JA:
469                 insn += insn->off;
470                 CONT;
471         JMP_JEQ_X:
472                 if (DST == SRC) {
473                         insn += insn->off;
474                         CONT_JMP;
475                 }
476                 CONT;
477         JMP_JEQ_K:
478                 if (DST == IMM) {
479                         insn += insn->off;
480                         CONT_JMP;
481                 }
482                 CONT;
483         JMP_JNE_X:
484                 if (DST != SRC) {
485                         insn += insn->off;
486                         CONT_JMP;
487                 }
488                 CONT;
489         JMP_JNE_K:
490                 if (DST != IMM) {
491                         insn += insn->off;
492                         CONT_JMP;
493                 }
494                 CONT;
495         JMP_JGT_X:
496                 if (DST > SRC) {
497                         insn += insn->off;
498                         CONT_JMP;
499                 }
500                 CONT;
501         JMP_JGT_K:
502                 if (DST > IMM) {
503                         insn += insn->off;
504                         CONT_JMP;
505                 }
506                 CONT;
507         JMP_JGE_X:
508                 if (DST >= SRC) {
509                         insn += insn->off;
510                         CONT_JMP;
511                 }
512                 CONT;
513         JMP_JGE_K:
514                 if (DST >= IMM) {
515                         insn += insn->off;
516                         CONT_JMP;
517                 }
518                 CONT;
519         JMP_JSGT_X:
520                 if (((s64) DST) > ((s64) SRC)) {
521                         insn += insn->off;
522                         CONT_JMP;
523                 }
524                 CONT;
525         JMP_JSGT_K:
526                 if (((s64) DST) > ((s64) IMM)) {
527                         insn += insn->off;
528                         CONT_JMP;
529                 }
530                 CONT;
531         JMP_JSGE_X:
532                 if (((s64) DST) >= ((s64) SRC)) {
533                         insn += insn->off;
534                         CONT_JMP;
535                 }
536                 CONT;
537         JMP_JSGE_K:
538                 if (((s64) DST) >= ((s64) IMM)) {
539                         insn += insn->off;
540                         CONT_JMP;
541                 }
542                 CONT;
543         JMP_JSET_X:
544                 if (DST & SRC) {
545                         insn += insn->off;
546                         CONT_JMP;
547                 }
548                 CONT;
549         JMP_JSET_K:
550                 if (DST & IMM) {
551                         insn += insn->off;
552                         CONT_JMP;
553                 }
554                 CONT;
555         JMP_EXIT:
556                 return BPF_R0;
557
558         /* STX and ST and LDX*/
559 #define LDST(SIZEOP, SIZE)                                              \
560         STX_MEM_##SIZEOP:                                               \
561                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
562                 CONT;                                                   \
563         ST_MEM_##SIZEOP:                                                \
564                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
565                 CONT;                                                   \
566         LDX_MEM_##SIZEOP:                                               \
567                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
568                 CONT;
569
570         LDST(B,   u8)
571         LDST(H,  u16)
572         LDST(W,  u32)
573         LDST(DW, u64)
574 #undef LDST
575         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
576                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
577                            (DST + insn->off));
578                 CONT;
579         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
580                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
581                              (DST + insn->off));
582                 CONT;
583         LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
584                 off = IMM;
585 load_word:
586                 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
587                  * only appearing in the programs where ctx ==
588                  * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
589                  * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
590                  * internal BPF verifier will check that BPF_R6 ==
591                  * ctx.
592                  *
593                  * BPF_ABS and BPF_IND are wrappers of function calls,
594                  * so they scratch BPF_R1-BPF_R5 registers, preserve
595                  * BPF_R6-BPF_R9, and store return value into BPF_R0.
596                  *
597                  * Implicit input:
598                  *   ctx == skb == BPF_R6 == CTX
599                  *
600                  * Explicit input:
601                  *   SRC == any register
602                  *   IMM == 32-bit immediate
603                  *
604                  * Output:
605                  *   BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
606                  */
607
608                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
609                 if (likely(ptr != NULL)) {
610                         BPF_R0 = get_unaligned_be32(ptr);
611                         CONT;
612                 }
613
614                 return 0;
615         LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
616                 off = IMM;
617 load_half:
618                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
619                 if (likely(ptr != NULL)) {
620                         BPF_R0 = get_unaligned_be16(ptr);
621                         CONT;
622                 }
623
624                 return 0;
625         LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
626                 off = IMM;
627 load_byte:
628                 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
629                 if (likely(ptr != NULL)) {
630                         BPF_R0 = *(u8 *)ptr;
631                         CONT;
632                 }
633
634                 return 0;
635         LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
636                 off = IMM + SRC;
637                 goto load_word;
638         LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
639                 off = IMM + SRC;
640                 goto load_half;
641         LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
642                 off = IMM + SRC;
643                 goto load_byte;
644
645         default_label:
646                 /* If we ever reach this, we have a bug somewhere. */
647                 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
648                 return 0;
649 }
650
651 bool bpf_prog_array_compatible(struct bpf_array *array,
652                                const struct bpf_prog *fp)
653 {
654         if (!array->owner_prog_type) {
655                 /* There's no owner yet where we could check for
656                  * compatibility.
657                  */
658                 array->owner_prog_type = fp->type;
659                 array->owner_jited = fp->jited;
660
661                 return true;
662         }
663
664         return array->owner_prog_type == fp->type &&
665                array->owner_jited == fp->jited;
666 }
667
668 static int bpf_check_tail_call(const struct bpf_prog *fp)
669 {
670         struct bpf_prog_aux *aux = fp->aux;
671         int i;
672
673         for (i = 0; i < aux->used_map_cnt; i++) {
674                 struct bpf_map *map = aux->used_maps[i];
675                 struct bpf_array *array;
676
677                 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
678                         continue;
679
680                 array = container_of(map, struct bpf_array, map);
681                 if (!bpf_prog_array_compatible(array, fp))
682                         return -EINVAL;
683         }
684
685         return 0;
686 }
687
688 /**
689  *      bpf_prog_select_runtime - select exec runtime for BPF program
690  *      @fp: bpf_prog populated with internal BPF program
691  *
692  * Try to JIT eBPF program, if JIT is not available, use interpreter.
693  * The BPF program will be executed via BPF_PROG_RUN() macro.
694  */
695 int bpf_prog_select_runtime(struct bpf_prog *fp)
696 {
697         fp->bpf_func = (void *) __bpf_prog_run;
698
699         bpf_int_jit_compile(fp);
700         bpf_prog_lock_ro(fp);
701
702         /* The tail call compatibility check can only be done at
703          * this late stage as we need to determine, if we deal
704          * with JITed or non JITed program concatenations and not
705          * all eBPF JITs might immediately support all features.
706          */
707         return bpf_check_tail_call(fp);
708 }
709 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
710
711 static void bpf_prog_free_deferred(struct work_struct *work)
712 {
713         struct bpf_prog_aux *aux;
714
715         aux = container_of(work, struct bpf_prog_aux, work);
716         bpf_jit_free(aux->prog);
717 }
718
719 /* Free internal BPF program */
720 void bpf_prog_free(struct bpf_prog *fp)
721 {
722         struct bpf_prog_aux *aux = fp->aux;
723
724         INIT_WORK(&aux->work, bpf_prog_free_deferred);
725         aux->prog = fp;
726         schedule_work(&aux->work);
727 }
728 EXPORT_SYMBOL_GPL(bpf_prog_free);
729
730 /* Weak definitions of helper functions in case we don't have bpf syscall. */
731 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
732 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
733 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
734
735 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
736 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
737 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
738 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
739 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
740 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
741 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
742 {
743         return NULL;
744 }
745
746 /* Always built-in helper functions. */
747 const struct bpf_func_proto bpf_tail_call_proto = {
748         .func           = NULL,
749         .gpl_only       = false,
750         .ret_type       = RET_VOID,
751         .arg1_type      = ARG_PTR_TO_CTX,
752         .arg2_type      = ARG_CONST_MAP_PTR,
753         .arg3_type      = ARG_ANYTHING,
754 };
755
756 /* For classic BPF JITs that don't implement bpf_int_jit_compile(). */
757 void __weak bpf_int_jit_compile(struct bpf_prog *prog)
758 {
759 }
760
761 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
762  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
763  */
764 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
765                          int len)
766 {
767         return -EFAULT;
768 }