]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/fork.c
Merge branch 'master' of git://1984.lsi.us.es/nf
[karo-tx-linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80
81 #include <trace/events/sched.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85
86 /*
87  * Protected counters by write_lock_irq(&tasklist_lock)
88  */
89 unsigned long total_forks;      /* Handle normal Linux uptimes. */
90 int nr_threads;                 /* The idle threads do not count.. */
91
92 int max_threads;                /* tunable limit on nr_threads */
93
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
97
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101         return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105
106 int nr_processes(void)
107 {
108         int cpu;
109         int total = 0;
110
111         for_each_possible_cpu(cpu)
112                 total += per_cpu(process_counts, cpu);
113
114         return total;
115 }
116
117 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
118 static struct kmem_cache *task_struct_cachep;
119
120 static inline struct task_struct *alloc_task_struct_node(int node)
121 {
122         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
123 }
124
125 void __weak arch_release_task_struct(struct task_struct *tsk) { }
126
127 static inline void free_task_struct(struct task_struct *tsk)
128 {
129         arch_release_task_struct(tsk);
130         kmem_cache_free(task_struct_cachep, tsk);
131 }
132 #endif
133
134 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
135 void __weak arch_release_thread_info(struct thread_info *ti) { }
136
137 /*
138  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
139  * kmemcache based allocator.
140  */
141 # if THREAD_SIZE >= PAGE_SIZE
142 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
143                                                   int node)
144 {
145         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
146                                              THREAD_SIZE_ORDER);
147
148         return page ? page_address(page) : NULL;
149 }
150
151 static inline void free_thread_info(struct thread_info *ti)
152 {
153         arch_release_thread_info(ti);
154         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
155 }
156 # else
157 static struct kmem_cache *thread_info_cache;
158
159 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
160                                                   int node)
161 {
162         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
163 }
164
165 static void free_thread_info(struct thread_info *ti)
166 {
167         arch_release_thread_info(ti);
168         kmem_cache_free(thread_info_cache, ti);
169 }
170
171 void thread_info_cache_init(void)
172 {
173         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
174                                               THREAD_SIZE, 0, NULL);
175         BUG_ON(thread_info_cache == NULL);
176 }
177 # endif
178 #endif
179
180 /* SLAB cache for signal_struct structures (tsk->signal) */
181 static struct kmem_cache *signal_cachep;
182
183 /* SLAB cache for sighand_struct structures (tsk->sighand) */
184 struct kmem_cache *sighand_cachep;
185
186 /* SLAB cache for files_struct structures (tsk->files) */
187 struct kmem_cache *files_cachep;
188
189 /* SLAB cache for fs_struct structures (tsk->fs) */
190 struct kmem_cache *fs_cachep;
191
192 /* SLAB cache for vm_area_struct structures */
193 struct kmem_cache *vm_area_cachep;
194
195 /* SLAB cache for mm_struct structures (tsk->mm) */
196 static struct kmem_cache *mm_cachep;
197
198 static void account_kernel_stack(struct thread_info *ti, int account)
199 {
200         struct zone *zone = page_zone(virt_to_page(ti));
201
202         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
203 }
204
205 void free_task(struct task_struct *tsk)
206 {
207         account_kernel_stack(tsk->stack, -1);
208         free_thread_info(tsk->stack);
209         rt_mutex_debug_task_free(tsk);
210         ftrace_graph_exit_task(tsk);
211         put_seccomp_filter(tsk);
212         free_task_struct(tsk);
213 }
214 EXPORT_SYMBOL(free_task);
215
216 static inline void free_signal_struct(struct signal_struct *sig)
217 {
218         taskstats_tgid_free(sig);
219         sched_autogroup_exit(sig);
220         kmem_cache_free(signal_cachep, sig);
221 }
222
223 static inline void put_signal_struct(struct signal_struct *sig)
224 {
225         if (atomic_dec_and_test(&sig->sigcnt))
226                 free_signal_struct(sig);
227 }
228
229 void __put_task_struct(struct task_struct *tsk)
230 {
231         WARN_ON(!tsk->exit_state);
232         WARN_ON(atomic_read(&tsk->usage));
233         WARN_ON(tsk == current);
234
235         security_task_free(tsk);
236         exit_creds(tsk);
237         delayacct_tsk_free(tsk);
238         put_signal_struct(tsk->signal);
239
240         if (!profile_handoff_task(tsk))
241                 free_task(tsk);
242 }
243 EXPORT_SYMBOL_GPL(__put_task_struct);
244
245 void __init __weak arch_task_cache_init(void) { }
246
247 void __init fork_init(unsigned long mempages)
248 {
249 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
250 #ifndef ARCH_MIN_TASKALIGN
251 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
252 #endif
253         /* create a slab on which task_structs can be allocated */
254         task_struct_cachep =
255                 kmem_cache_create("task_struct", sizeof(struct task_struct),
256                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
257 #endif
258
259         /* do the arch specific task caches init */
260         arch_task_cache_init();
261
262         /*
263          * The default maximum number of threads is set to a safe
264          * value: the thread structures can take up at most half
265          * of memory.
266          */
267         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
268
269         /*
270          * we need to allow at least 20 threads to boot a system
271          */
272         if (max_threads < 20)
273                 max_threads = 20;
274
275         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
276         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
277         init_task.signal->rlim[RLIMIT_SIGPENDING] =
278                 init_task.signal->rlim[RLIMIT_NPROC];
279 }
280
281 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
282                                                struct task_struct *src)
283 {
284         *dst = *src;
285         return 0;
286 }
287
288 static struct task_struct *dup_task_struct(struct task_struct *orig)
289 {
290         struct task_struct *tsk;
291         struct thread_info *ti;
292         unsigned long *stackend;
293         int node = tsk_fork_get_node(orig);
294         int err;
295
296         tsk = alloc_task_struct_node(node);
297         if (!tsk)
298                 return NULL;
299
300         ti = alloc_thread_info_node(tsk, node);
301         if (!ti) {
302                 free_task_struct(tsk);
303                 return NULL;
304         }
305
306         err = arch_dup_task_struct(tsk, orig);
307         if (err)
308                 goto out;
309
310         tsk->stack = ti;
311
312         setup_thread_stack(tsk, orig);
313         clear_user_return_notifier(tsk);
314         clear_tsk_need_resched(tsk);
315         stackend = end_of_stack(tsk);
316         *stackend = STACK_END_MAGIC;    /* for overflow detection */
317
318 #ifdef CONFIG_CC_STACKPROTECTOR
319         tsk->stack_canary = get_random_int();
320 #endif
321
322         /*
323          * One for us, one for whoever does the "release_task()" (usually
324          * parent)
325          */
326         atomic_set(&tsk->usage, 2);
327 #ifdef CONFIG_BLK_DEV_IO_TRACE
328         tsk->btrace_seq = 0;
329 #endif
330         tsk->splice_pipe = NULL;
331
332         account_kernel_stack(ti, 1);
333
334         return tsk;
335
336 out:
337         free_thread_info(ti);
338         free_task_struct(tsk);
339         return NULL;
340 }
341
342 #ifdef CONFIG_MMU
343 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
344 {
345         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
346         struct rb_node **rb_link, *rb_parent;
347         int retval;
348         unsigned long charge;
349         struct mempolicy *pol;
350
351         down_write(&oldmm->mmap_sem);
352         flush_cache_dup_mm(oldmm);
353         /*
354          * Not linked in yet - no deadlock potential:
355          */
356         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
357
358         mm->locked_vm = 0;
359         mm->mmap = NULL;
360         mm->mmap_cache = NULL;
361         mm->free_area_cache = oldmm->mmap_base;
362         mm->cached_hole_size = ~0UL;
363         mm->map_count = 0;
364         cpumask_clear(mm_cpumask(mm));
365         mm->mm_rb = RB_ROOT;
366         rb_link = &mm->mm_rb.rb_node;
367         rb_parent = NULL;
368         pprev = &mm->mmap;
369         retval = ksm_fork(mm, oldmm);
370         if (retval)
371                 goto out;
372         retval = khugepaged_fork(mm, oldmm);
373         if (retval)
374                 goto out;
375
376         prev = NULL;
377         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
378                 struct file *file;
379
380                 if (mpnt->vm_flags & VM_DONTCOPY) {
381                         long pages = vma_pages(mpnt);
382                         mm->total_vm -= pages;
383                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
384                                                                 -pages);
385                         continue;
386                 }
387                 charge = 0;
388                 if (mpnt->vm_flags & VM_ACCOUNT) {
389                         unsigned long len;
390                         len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
391                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
392                                 goto fail_nomem;
393                         charge = len;
394                 }
395                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
396                 if (!tmp)
397                         goto fail_nomem;
398                 *tmp = *mpnt;
399                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
400                 pol = mpol_dup(vma_policy(mpnt));
401                 retval = PTR_ERR(pol);
402                 if (IS_ERR(pol))
403                         goto fail_nomem_policy;
404                 vma_set_policy(tmp, pol);
405                 tmp->vm_mm = mm;
406                 if (anon_vma_fork(tmp, mpnt))
407                         goto fail_nomem_anon_vma_fork;
408                 tmp->vm_flags &= ~VM_LOCKED;
409                 tmp->vm_next = tmp->vm_prev = NULL;
410                 file = tmp->vm_file;
411                 if (file) {
412                         struct inode *inode = file->f_path.dentry->d_inode;
413                         struct address_space *mapping = file->f_mapping;
414
415                         get_file(file);
416                         if (tmp->vm_flags & VM_DENYWRITE)
417                                 atomic_dec(&inode->i_writecount);
418                         mutex_lock(&mapping->i_mmap_mutex);
419                         if (tmp->vm_flags & VM_SHARED)
420                                 mapping->i_mmap_writable++;
421                         flush_dcache_mmap_lock(mapping);
422                         /* insert tmp into the share list, just after mpnt */
423                         vma_prio_tree_add(tmp, mpnt);
424                         flush_dcache_mmap_unlock(mapping);
425                         mutex_unlock(&mapping->i_mmap_mutex);
426                 }
427
428                 /*
429                  * Clear hugetlb-related page reserves for children. This only
430                  * affects MAP_PRIVATE mappings. Faults generated by the child
431                  * are not guaranteed to succeed, even if read-only
432                  */
433                 if (is_vm_hugetlb_page(tmp))
434                         reset_vma_resv_huge_pages(tmp);
435
436                 /*
437                  * Link in the new vma and copy the page table entries.
438                  */
439                 *pprev = tmp;
440                 pprev = &tmp->vm_next;
441                 tmp->vm_prev = prev;
442                 prev = tmp;
443
444                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
445                 rb_link = &tmp->vm_rb.rb_right;
446                 rb_parent = &tmp->vm_rb;
447
448                 mm->map_count++;
449                 retval = copy_page_range(mm, oldmm, mpnt);
450
451                 if (tmp->vm_ops && tmp->vm_ops->open)
452                         tmp->vm_ops->open(tmp);
453
454                 if (retval)
455                         goto out;
456
457                 if (file && uprobe_mmap(tmp))
458                         goto out;
459         }
460         /* a new mm has just been created */
461         arch_dup_mmap(oldmm, mm);
462         retval = 0;
463 out:
464         up_write(&mm->mmap_sem);
465         flush_tlb_mm(oldmm);
466         up_write(&oldmm->mmap_sem);
467         return retval;
468 fail_nomem_anon_vma_fork:
469         mpol_put(pol);
470 fail_nomem_policy:
471         kmem_cache_free(vm_area_cachep, tmp);
472 fail_nomem:
473         retval = -ENOMEM;
474         vm_unacct_memory(charge);
475         goto out;
476 }
477
478 static inline int mm_alloc_pgd(struct mm_struct *mm)
479 {
480         mm->pgd = pgd_alloc(mm);
481         if (unlikely(!mm->pgd))
482                 return -ENOMEM;
483         return 0;
484 }
485
486 static inline void mm_free_pgd(struct mm_struct *mm)
487 {
488         pgd_free(mm, mm->pgd);
489 }
490 #else
491 #define dup_mmap(mm, oldmm)     (0)
492 #define mm_alloc_pgd(mm)        (0)
493 #define mm_free_pgd(mm)
494 #endif /* CONFIG_MMU */
495
496 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
497
498 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
499 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
500
501 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
502
503 static int __init coredump_filter_setup(char *s)
504 {
505         default_dump_filter =
506                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
507                 MMF_DUMP_FILTER_MASK;
508         return 1;
509 }
510
511 __setup("coredump_filter=", coredump_filter_setup);
512
513 #include <linux/init_task.h>
514
515 static void mm_init_aio(struct mm_struct *mm)
516 {
517 #ifdef CONFIG_AIO
518         spin_lock_init(&mm->ioctx_lock);
519         INIT_HLIST_HEAD(&mm->ioctx_list);
520 #endif
521 }
522
523 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
524 {
525         atomic_set(&mm->mm_users, 1);
526         atomic_set(&mm->mm_count, 1);
527         init_rwsem(&mm->mmap_sem);
528         INIT_LIST_HEAD(&mm->mmlist);
529         mm->flags = (current->mm) ?
530                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
531         mm->core_state = NULL;
532         mm->nr_ptes = 0;
533         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
534         spin_lock_init(&mm->page_table_lock);
535         mm->free_area_cache = TASK_UNMAPPED_BASE;
536         mm->cached_hole_size = ~0UL;
537         mm_init_aio(mm);
538         mm_init_owner(mm, p);
539
540         if (likely(!mm_alloc_pgd(mm))) {
541                 mm->def_flags = 0;
542                 mmu_notifier_mm_init(mm);
543                 return mm;
544         }
545
546         free_mm(mm);
547         return NULL;
548 }
549
550 static void check_mm(struct mm_struct *mm)
551 {
552         int i;
553
554         for (i = 0; i < NR_MM_COUNTERS; i++) {
555                 long x = atomic_long_read(&mm->rss_stat.count[i]);
556
557                 if (unlikely(x))
558                         printk(KERN_ALERT "BUG: Bad rss-counter state "
559                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
560         }
561
562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
563         VM_BUG_ON(mm->pmd_huge_pte);
564 #endif
565 }
566
567 /*
568  * Allocate and initialize an mm_struct.
569  */
570 struct mm_struct *mm_alloc(void)
571 {
572         struct mm_struct *mm;
573
574         mm = allocate_mm();
575         if (!mm)
576                 return NULL;
577
578         memset(mm, 0, sizeof(*mm));
579         mm_init_cpumask(mm);
580         return mm_init(mm, current);
581 }
582
583 /*
584  * Called when the last reference to the mm
585  * is dropped: either by a lazy thread or by
586  * mmput. Free the page directory and the mm.
587  */
588 void __mmdrop(struct mm_struct *mm)
589 {
590         BUG_ON(mm == &init_mm);
591         mm_free_pgd(mm);
592         destroy_context(mm);
593         mmu_notifier_mm_destroy(mm);
594         check_mm(mm);
595         free_mm(mm);
596 }
597 EXPORT_SYMBOL_GPL(__mmdrop);
598
599 /*
600  * Decrement the use count and release all resources for an mm.
601  */
602 void mmput(struct mm_struct *mm)
603 {
604         might_sleep();
605
606         if (atomic_dec_and_test(&mm->mm_users)) {
607                 uprobe_clear_state(mm);
608                 exit_aio(mm);
609                 ksm_exit(mm);
610                 khugepaged_exit(mm); /* must run before exit_mmap */
611                 exit_mmap(mm);
612                 set_mm_exe_file(mm, NULL);
613                 if (!list_empty(&mm->mmlist)) {
614                         spin_lock(&mmlist_lock);
615                         list_del(&mm->mmlist);
616                         spin_unlock(&mmlist_lock);
617                 }
618                 if (mm->binfmt)
619                         module_put(mm->binfmt->module);
620                 mmdrop(mm);
621         }
622 }
623 EXPORT_SYMBOL_GPL(mmput);
624
625 /*
626  * We added or removed a vma mapping the executable. The vmas are only mapped
627  * during exec and are not mapped with the mmap system call.
628  * Callers must hold down_write() on the mm's mmap_sem for these
629  */
630 void added_exe_file_vma(struct mm_struct *mm)
631 {
632         mm->num_exe_file_vmas++;
633 }
634
635 void removed_exe_file_vma(struct mm_struct *mm)
636 {
637         mm->num_exe_file_vmas--;
638         if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
639                 fput(mm->exe_file);
640                 mm->exe_file = NULL;
641         }
642
643 }
644
645 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
646 {
647         if (new_exe_file)
648                 get_file(new_exe_file);
649         if (mm->exe_file)
650                 fput(mm->exe_file);
651         mm->exe_file = new_exe_file;
652         mm->num_exe_file_vmas = 0;
653 }
654
655 struct file *get_mm_exe_file(struct mm_struct *mm)
656 {
657         struct file *exe_file;
658
659         /* We need mmap_sem to protect against races with removal of
660          * VM_EXECUTABLE vmas */
661         down_read(&mm->mmap_sem);
662         exe_file = mm->exe_file;
663         if (exe_file)
664                 get_file(exe_file);
665         up_read(&mm->mmap_sem);
666         return exe_file;
667 }
668
669 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
670 {
671         /* It's safe to write the exe_file pointer without exe_file_lock because
672          * this is called during fork when the task is not yet in /proc */
673         newmm->exe_file = get_mm_exe_file(oldmm);
674 }
675
676 /**
677  * get_task_mm - acquire a reference to the task's mm
678  *
679  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
680  * this kernel workthread has transiently adopted a user mm with use_mm,
681  * to do its AIO) is not set and if so returns a reference to it, after
682  * bumping up the use count.  User must release the mm via mmput()
683  * after use.  Typically used by /proc and ptrace.
684  */
685 struct mm_struct *get_task_mm(struct task_struct *task)
686 {
687         struct mm_struct *mm;
688
689         task_lock(task);
690         mm = task->mm;
691         if (mm) {
692                 if (task->flags & PF_KTHREAD)
693                         mm = NULL;
694                 else
695                         atomic_inc(&mm->mm_users);
696         }
697         task_unlock(task);
698         return mm;
699 }
700 EXPORT_SYMBOL_GPL(get_task_mm);
701
702 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
703 {
704         struct mm_struct *mm;
705         int err;
706
707         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
708         if (err)
709                 return ERR_PTR(err);
710
711         mm = get_task_mm(task);
712         if (mm && mm != current->mm &&
713                         !ptrace_may_access(task, mode)) {
714                 mmput(mm);
715                 mm = ERR_PTR(-EACCES);
716         }
717         mutex_unlock(&task->signal->cred_guard_mutex);
718
719         return mm;
720 }
721
722 static void complete_vfork_done(struct task_struct *tsk)
723 {
724         struct completion *vfork;
725
726         task_lock(tsk);
727         vfork = tsk->vfork_done;
728         if (likely(vfork)) {
729                 tsk->vfork_done = NULL;
730                 complete(vfork);
731         }
732         task_unlock(tsk);
733 }
734
735 static int wait_for_vfork_done(struct task_struct *child,
736                                 struct completion *vfork)
737 {
738         int killed;
739
740         freezer_do_not_count();
741         killed = wait_for_completion_killable(vfork);
742         freezer_count();
743
744         if (killed) {
745                 task_lock(child);
746                 child->vfork_done = NULL;
747                 task_unlock(child);
748         }
749
750         put_task_struct(child);
751         return killed;
752 }
753
754 /* Please note the differences between mmput and mm_release.
755  * mmput is called whenever we stop holding onto a mm_struct,
756  * error success whatever.
757  *
758  * mm_release is called after a mm_struct has been removed
759  * from the current process.
760  *
761  * This difference is important for error handling, when we
762  * only half set up a mm_struct for a new process and need to restore
763  * the old one.  Because we mmput the new mm_struct before
764  * restoring the old one. . .
765  * Eric Biederman 10 January 1998
766  */
767 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
768 {
769         /* Get rid of any futexes when releasing the mm */
770 #ifdef CONFIG_FUTEX
771         if (unlikely(tsk->robust_list)) {
772                 exit_robust_list(tsk);
773                 tsk->robust_list = NULL;
774         }
775 #ifdef CONFIG_COMPAT
776         if (unlikely(tsk->compat_robust_list)) {
777                 compat_exit_robust_list(tsk);
778                 tsk->compat_robust_list = NULL;
779         }
780 #endif
781         if (unlikely(!list_empty(&tsk->pi_state_list)))
782                 exit_pi_state_list(tsk);
783 #endif
784
785         uprobe_free_utask(tsk);
786
787         /* Get rid of any cached register state */
788         deactivate_mm(tsk, mm);
789
790         /*
791          * If we're exiting normally, clear a user-space tid field if
792          * requested.  We leave this alone when dying by signal, to leave
793          * the value intact in a core dump, and to save the unnecessary
794          * trouble, say, a killed vfork parent shouldn't touch this mm.
795          * Userland only wants this done for a sys_exit.
796          */
797         if (tsk->clear_child_tid) {
798                 if (!(tsk->flags & PF_SIGNALED) &&
799                     atomic_read(&mm->mm_users) > 1) {
800                         /*
801                          * We don't check the error code - if userspace has
802                          * not set up a proper pointer then tough luck.
803                          */
804                         put_user(0, tsk->clear_child_tid);
805                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
806                                         1, NULL, NULL, 0);
807                 }
808                 tsk->clear_child_tid = NULL;
809         }
810
811         /*
812          * All done, finally we can wake up parent and return this mm to him.
813          * Also kthread_stop() uses this completion for synchronization.
814          */
815         if (tsk->vfork_done)
816                 complete_vfork_done(tsk);
817 }
818
819 /*
820  * Allocate a new mm structure and copy contents from the
821  * mm structure of the passed in task structure.
822  */
823 struct mm_struct *dup_mm(struct task_struct *tsk)
824 {
825         struct mm_struct *mm, *oldmm = current->mm;
826         int err;
827
828         if (!oldmm)
829                 return NULL;
830
831         mm = allocate_mm();
832         if (!mm)
833                 goto fail_nomem;
834
835         memcpy(mm, oldmm, sizeof(*mm));
836         mm_init_cpumask(mm);
837
838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
839         mm->pmd_huge_pte = NULL;
840 #endif
841         uprobe_reset_state(mm);
842
843         if (!mm_init(mm, tsk))
844                 goto fail_nomem;
845
846         if (init_new_context(tsk, mm))
847                 goto fail_nocontext;
848
849         dup_mm_exe_file(oldmm, mm);
850
851         err = dup_mmap(mm, oldmm);
852         if (err)
853                 goto free_pt;
854
855         mm->hiwater_rss = get_mm_rss(mm);
856         mm->hiwater_vm = mm->total_vm;
857
858         if (mm->binfmt && !try_module_get(mm->binfmt->module))
859                 goto free_pt;
860
861         return mm;
862
863 free_pt:
864         /* don't put binfmt in mmput, we haven't got module yet */
865         mm->binfmt = NULL;
866         mmput(mm);
867
868 fail_nomem:
869         return NULL;
870
871 fail_nocontext:
872         /*
873          * If init_new_context() failed, we cannot use mmput() to free the mm
874          * because it calls destroy_context()
875          */
876         mm_free_pgd(mm);
877         free_mm(mm);
878         return NULL;
879 }
880
881 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
882 {
883         struct mm_struct *mm, *oldmm;
884         int retval;
885
886         tsk->min_flt = tsk->maj_flt = 0;
887         tsk->nvcsw = tsk->nivcsw = 0;
888 #ifdef CONFIG_DETECT_HUNG_TASK
889         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
890 #endif
891
892         tsk->mm = NULL;
893         tsk->active_mm = NULL;
894
895         /*
896          * Are we cloning a kernel thread?
897          *
898          * We need to steal a active VM for that..
899          */
900         oldmm = current->mm;
901         if (!oldmm)
902                 return 0;
903
904         if (clone_flags & CLONE_VM) {
905                 atomic_inc(&oldmm->mm_users);
906                 mm = oldmm;
907                 goto good_mm;
908         }
909
910         retval = -ENOMEM;
911         mm = dup_mm(tsk);
912         if (!mm)
913                 goto fail_nomem;
914
915 good_mm:
916         tsk->mm = mm;
917         tsk->active_mm = mm;
918         return 0;
919
920 fail_nomem:
921         return retval;
922 }
923
924 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
925 {
926         struct fs_struct *fs = current->fs;
927         if (clone_flags & CLONE_FS) {
928                 /* tsk->fs is already what we want */
929                 spin_lock(&fs->lock);
930                 if (fs->in_exec) {
931                         spin_unlock(&fs->lock);
932                         return -EAGAIN;
933                 }
934                 fs->users++;
935                 spin_unlock(&fs->lock);
936                 return 0;
937         }
938         tsk->fs = copy_fs_struct(fs);
939         if (!tsk->fs)
940                 return -ENOMEM;
941         return 0;
942 }
943
944 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
945 {
946         struct files_struct *oldf, *newf;
947         int error = 0;
948
949         /*
950          * A background process may not have any files ...
951          */
952         oldf = current->files;
953         if (!oldf)
954                 goto out;
955
956         if (clone_flags & CLONE_FILES) {
957                 atomic_inc(&oldf->count);
958                 goto out;
959         }
960
961         newf = dup_fd(oldf, &error);
962         if (!newf)
963                 goto out;
964
965         tsk->files = newf;
966         error = 0;
967 out:
968         return error;
969 }
970
971 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
972 {
973 #ifdef CONFIG_BLOCK
974         struct io_context *ioc = current->io_context;
975         struct io_context *new_ioc;
976
977         if (!ioc)
978                 return 0;
979         /*
980          * Share io context with parent, if CLONE_IO is set
981          */
982         if (clone_flags & CLONE_IO) {
983                 ioc_task_link(ioc);
984                 tsk->io_context = ioc;
985         } else if (ioprio_valid(ioc->ioprio)) {
986                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
987                 if (unlikely(!new_ioc))
988                         return -ENOMEM;
989
990                 new_ioc->ioprio = ioc->ioprio;
991                 put_io_context(new_ioc);
992         }
993 #endif
994         return 0;
995 }
996
997 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
998 {
999         struct sighand_struct *sig;
1000
1001         if (clone_flags & CLONE_SIGHAND) {
1002                 atomic_inc(&current->sighand->count);
1003                 return 0;
1004         }
1005         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1006         rcu_assign_pointer(tsk->sighand, sig);
1007         if (!sig)
1008                 return -ENOMEM;
1009         atomic_set(&sig->count, 1);
1010         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1011         return 0;
1012 }
1013
1014 void __cleanup_sighand(struct sighand_struct *sighand)
1015 {
1016         if (atomic_dec_and_test(&sighand->count)) {
1017                 signalfd_cleanup(sighand);
1018                 kmem_cache_free(sighand_cachep, sighand);
1019         }
1020 }
1021
1022
1023 /*
1024  * Initialize POSIX timer handling for a thread group.
1025  */
1026 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1027 {
1028         unsigned long cpu_limit;
1029
1030         /* Thread group counters. */
1031         thread_group_cputime_init(sig);
1032
1033         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1034         if (cpu_limit != RLIM_INFINITY) {
1035                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1036                 sig->cputimer.running = 1;
1037         }
1038
1039         /* The timer lists. */
1040         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1041         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1042         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1043 }
1044
1045 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1046 {
1047         struct signal_struct *sig;
1048
1049         if (clone_flags & CLONE_THREAD)
1050                 return 0;
1051
1052         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1053         tsk->signal = sig;
1054         if (!sig)
1055                 return -ENOMEM;
1056
1057         sig->nr_threads = 1;
1058         atomic_set(&sig->live, 1);
1059         atomic_set(&sig->sigcnt, 1);
1060         init_waitqueue_head(&sig->wait_chldexit);
1061         if (clone_flags & CLONE_NEWPID)
1062                 sig->flags |= SIGNAL_UNKILLABLE;
1063         sig->curr_target = tsk;
1064         init_sigpending(&sig->shared_pending);
1065         INIT_LIST_HEAD(&sig->posix_timers);
1066
1067         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1068         sig->real_timer.function = it_real_fn;
1069
1070         task_lock(current->group_leader);
1071         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1072         task_unlock(current->group_leader);
1073
1074         posix_cpu_timers_init_group(sig);
1075
1076         tty_audit_fork(sig);
1077         sched_autogroup_fork(sig);
1078
1079 #ifdef CONFIG_CGROUPS
1080         init_rwsem(&sig->group_rwsem);
1081 #endif
1082
1083         sig->oom_adj = current->signal->oom_adj;
1084         sig->oom_score_adj = current->signal->oom_score_adj;
1085         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1086
1087         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1088                                    current->signal->is_child_subreaper;
1089
1090         mutex_init(&sig->cred_guard_mutex);
1091
1092         return 0;
1093 }
1094
1095 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1096 {
1097         unsigned long new_flags = p->flags;
1098
1099         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1100         new_flags |= PF_FORKNOEXEC;
1101         p->flags = new_flags;
1102 }
1103
1104 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1105 {
1106         current->clear_child_tid = tidptr;
1107
1108         return task_pid_vnr(current);
1109 }
1110
1111 static void rt_mutex_init_task(struct task_struct *p)
1112 {
1113         raw_spin_lock_init(&p->pi_lock);
1114 #ifdef CONFIG_RT_MUTEXES
1115         plist_head_init(&p->pi_waiters);
1116         p->pi_blocked_on = NULL;
1117 #endif
1118 }
1119
1120 #ifdef CONFIG_MM_OWNER
1121 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1122 {
1123         mm->owner = p;
1124 }
1125 #endif /* CONFIG_MM_OWNER */
1126
1127 /*
1128  * Initialize POSIX timer handling for a single task.
1129  */
1130 static void posix_cpu_timers_init(struct task_struct *tsk)
1131 {
1132         tsk->cputime_expires.prof_exp = 0;
1133         tsk->cputime_expires.virt_exp = 0;
1134         tsk->cputime_expires.sched_exp = 0;
1135         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1136         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1137         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1138 }
1139
1140 /*
1141  * This creates a new process as a copy of the old one,
1142  * but does not actually start it yet.
1143  *
1144  * It copies the registers, and all the appropriate
1145  * parts of the process environment (as per the clone
1146  * flags). The actual kick-off is left to the caller.
1147  */
1148 static struct task_struct *copy_process(unsigned long clone_flags,
1149                                         unsigned long stack_start,
1150                                         struct pt_regs *regs,
1151                                         unsigned long stack_size,
1152                                         int __user *child_tidptr,
1153                                         struct pid *pid,
1154                                         int trace)
1155 {
1156         int retval;
1157         struct task_struct *p;
1158         int cgroup_callbacks_done = 0;
1159
1160         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1161                 return ERR_PTR(-EINVAL);
1162
1163         /*
1164          * Thread groups must share signals as well, and detached threads
1165          * can only be started up within the thread group.
1166          */
1167         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1168                 return ERR_PTR(-EINVAL);
1169
1170         /*
1171          * Shared signal handlers imply shared VM. By way of the above,
1172          * thread groups also imply shared VM. Blocking this case allows
1173          * for various simplifications in other code.
1174          */
1175         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1176                 return ERR_PTR(-EINVAL);
1177
1178         /*
1179          * Siblings of global init remain as zombies on exit since they are
1180          * not reaped by their parent (swapper). To solve this and to avoid
1181          * multi-rooted process trees, prevent global and container-inits
1182          * from creating siblings.
1183          */
1184         if ((clone_flags & CLONE_PARENT) &&
1185                                 current->signal->flags & SIGNAL_UNKILLABLE)
1186                 return ERR_PTR(-EINVAL);
1187
1188         retval = security_task_create(clone_flags);
1189         if (retval)
1190                 goto fork_out;
1191
1192         retval = -ENOMEM;
1193         p = dup_task_struct(current);
1194         if (!p)
1195                 goto fork_out;
1196
1197         ftrace_graph_init_task(p);
1198         get_seccomp_filter(p);
1199
1200         rt_mutex_init_task(p);
1201
1202 #ifdef CONFIG_PROVE_LOCKING
1203         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1204         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1205 #endif
1206         retval = -EAGAIN;
1207         if (atomic_read(&p->real_cred->user->processes) >=
1208                         task_rlimit(p, RLIMIT_NPROC)) {
1209                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1210                     p->real_cred->user != INIT_USER)
1211                         goto bad_fork_free;
1212         }
1213         current->flags &= ~PF_NPROC_EXCEEDED;
1214
1215         retval = copy_creds(p, clone_flags);
1216         if (retval < 0)
1217                 goto bad_fork_free;
1218
1219         /*
1220          * If multiple threads are within copy_process(), then this check
1221          * triggers too late. This doesn't hurt, the check is only there
1222          * to stop root fork bombs.
1223          */
1224         retval = -EAGAIN;
1225         if (nr_threads >= max_threads)
1226                 goto bad_fork_cleanup_count;
1227
1228         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1229                 goto bad_fork_cleanup_count;
1230
1231         p->did_exec = 0;
1232         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1233         copy_flags(clone_flags, p);
1234         INIT_LIST_HEAD(&p->children);
1235         INIT_LIST_HEAD(&p->sibling);
1236         rcu_copy_process(p);
1237         p->vfork_done = NULL;
1238         spin_lock_init(&p->alloc_lock);
1239
1240         init_sigpending(&p->pending);
1241
1242         p->utime = p->stime = p->gtime = 0;
1243         p->utimescaled = p->stimescaled = 0;
1244 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1245         p->prev_utime = p->prev_stime = 0;
1246 #endif
1247 #if defined(SPLIT_RSS_COUNTING)
1248         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1249 #endif
1250
1251         p->default_timer_slack_ns = current->timer_slack_ns;
1252
1253         task_io_accounting_init(&p->ioac);
1254         acct_clear_integrals(p);
1255
1256         posix_cpu_timers_init(p);
1257
1258         do_posix_clock_monotonic_gettime(&p->start_time);
1259         p->real_start_time = p->start_time;
1260         monotonic_to_bootbased(&p->real_start_time);
1261         p->io_context = NULL;
1262         p->audit_context = NULL;
1263         if (clone_flags & CLONE_THREAD)
1264                 threadgroup_change_begin(current);
1265         cgroup_fork(p);
1266 #ifdef CONFIG_NUMA
1267         p->mempolicy = mpol_dup(p->mempolicy);
1268         if (IS_ERR(p->mempolicy)) {
1269                 retval = PTR_ERR(p->mempolicy);
1270                 p->mempolicy = NULL;
1271                 goto bad_fork_cleanup_cgroup;
1272         }
1273         mpol_fix_fork_child_flag(p);
1274 #endif
1275 #ifdef CONFIG_CPUSETS
1276         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1277         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1278         seqcount_init(&p->mems_allowed_seq);
1279 #endif
1280 #ifdef CONFIG_TRACE_IRQFLAGS
1281         p->irq_events = 0;
1282 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1283         p->hardirqs_enabled = 1;
1284 #else
1285         p->hardirqs_enabled = 0;
1286 #endif
1287         p->hardirq_enable_ip = 0;
1288         p->hardirq_enable_event = 0;
1289         p->hardirq_disable_ip = _THIS_IP_;
1290         p->hardirq_disable_event = 0;
1291         p->softirqs_enabled = 1;
1292         p->softirq_enable_ip = _THIS_IP_;
1293         p->softirq_enable_event = 0;
1294         p->softirq_disable_ip = 0;
1295         p->softirq_disable_event = 0;
1296         p->hardirq_context = 0;
1297         p->softirq_context = 0;
1298 #endif
1299 #ifdef CONFIG_LOCKDEP
1300         p->lockdep_depth = 0; /* no locks held yet */
1301         p->curr_chain_key = 0;
1302         p->lockdep_recursion = 0;
1303 #endif
1304
1305 #ifdef CONFIG_DEBUG_MUTEXES
1306         p->blocked_on = NULL; /* not blocked yet */
1307 #endif
1308 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1309         p->memcg_batch.do_batch = 0;
1310         p->memcg_batch.memcg = NULL;
1311 #endif
1312
1313         /* Perform scheduler related setup. Assign this task to a CPU. */
1314         sched_fork(p);
1315
1316         retval = perf_event_init_task(p);
1317         if (retval)
1318                 goto bad_fork_cleanup_policy;
1319         retval = audit_alloc(p);
1320         if (retval)
1321                 goto bad_fork_cleanup_policy;
1322         /* copy all the process information */
1323         retval = copy_semundo(clone_flags, p);
1324         if (retval)
1325                 goto bad_fork_cleanup_audit;
1326         retval = copy_files(clone_flags, p);
1327         if (retval)
1328                 goto bad_fork_cleanup_semundo;
1329         retval = copy_fs(clone_flags, p);
1330         if (retval)
1331                 goto bad_fork_cleanup_files;
1332         retval = copy_sighand(clone_flags, p);
1333         if (retval)
1334                 goto bad_fork_cleanup_fs;
1335         retval = copy_signal(clone_flags, p);
1336         if (retval)
1337                 goto bad_fork_cleanup_sighand;
1338         retval = copy_mm(clone_flags, p);
1339         if (retval)
1340                 goto bad_fork_cleanup_signal;
1341         retval = copy_namespaces(clone_flags, p);
1342         if (retval)
1343                 goto bad_fork_cleanup_mm;
1344         retval = copy_io(clone_flags, p);
1345         if (retval)
1346                 goto bad_fork_cleanup_namespaces;
1347         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1348         if (retval)
1349                 goto bad_fork_cleanup_io;
1350
1351         if (pid != &init_struct_pid) {
1352                 retval = -ENOMEM;
1353                 pid = alloc_pid(p->nsproxy->pid_ns);
1354                 if (!pid)
1355                         goto bad_fork_cleanup_io;
1356         }
1357
1358         p->pid = pid_nr(pid);
1359         p->tgid = p->pid;
1360         if (clone_flags & CLONE_THREAD)
1361                 p->tgid = current->tgid;
1362
1363         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1364         /*
1365          * Clear TID on mm_release()?
1366          */
1367         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1368 #ifdef CONFIG_BLOCK
1369         p->plug = NULL;
1370 #endif
1371 #ifdef CONFIG_FUTEX
1372         p->robust_list = NULL;
1373 #ifdef CONFIG_COMPAT
1374         p->compat_robust_list = NULL;
1375 #endif
1376         INIT_LIST_HEAD(&p->pi_state_list);
1377         p->pi_state_cache = NULL;
1378 #endif
1379         uprobe_copy_process(p);
1380         /*
1381          * sigaltstack should be cleared when sharing the same VM
1382          */
1383         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1384                 p->sas_ss_sp = p->sas_ss_size = 0;
1385
1386         /*
1387          * Syscall tracing and stepping should be turned off in the
1388          * child regardless of CLONE_PTRACE.
1389          */
1390         user_disable_single_step(p);
1391         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1392 #ifdef TIF_SYSCALL_EMU
1393         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1394 #endif
1395         clear_all_latency_tracing(p);
1396
1397         /* ok, now we should be set up.. */
1398         if (clone_flags & CLONE_THREAD)
1399                 p->exit_signal = -1;
1400         else if (clone_flags & CLONE_PARENT)
1401                 p->exit_signal = current->group_leader->exit_signal;
1402         else
1403                 p->exit_signal = (clone_flags & CSIGNAL);
1404
1405         p->pdeath_signal = 0;
1406         p->exit_state = 0;
1407
1408         p->nr_dirtied = 0;
1409         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1410         p->dirty_paused_when = 0;
1411
1412         /*
1413          * Ok, make it visible to the rest of the system.
1414          * We dont wake it up yet.
1415          */
1416         p->group_leader = p;
1417         INIT_LIST_HEAD(&p->thread_group);
1418         INIT_HLIST_HEAD(&p->task_works);
1419
1420         /* Now that the task is set up, run cgroup callbacks if
1421          * necessary. We need to run them before the task is visible
1422          * on the tasklist. */
1423         cgroup_fork_callbacks(p);
1424         cgroup_callbacks_done = 1;
1425
1426         /* Need tasklist lock for parent etc handling! */
1427         write_lock_irq(&tasklist_lock);
1428
1429         /* CLONE_PARENT re-uses the old parent */
1430         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1431                 p->real_parent = current->real_parent;
1432                 p->parent_exec_id = current->parent_exec_id;
1433         } else {
1434                 p->real_parent = current;
1435                 p->parent_exec_id = current->self_exec_id;
1436         }
1437
1438         spin_lock(&current->sighand->siglock);
1439
1440         /*
1441          * Process group and session signals need to be delivered to just the
1442          * parent before the fork or both the parent and the child after the
1443          * fork. Restart if a signal comes in before we add the new process to
1444          * it's process group.
1445          * A fatal signal pending means that current will exit, so the new
1446          * thread can't slip out of an OOM kill (or normal SIGKILL).
1447         */
1448         recalc_sigpending();
1449         if (signal_pending(current)) {
1450                 spin_unlock(&current->sighand->siglock);
1451                 write_unlock_irq(&tasklist_lock);
1452                 retval = -ERESTARTNOINTR;
1453                 goto bad_fork_free_pid;
1454         }
1455
1456         if (clone_flags & CLONE_THREAD) {
1457                 current->signal->nr_threads++;
1458                 atomic_inc(&current->signal->live);
1459                 atomic_inc(&current->signal->sigcnt);
1460                 p->group_leader = current->group_leader;
1461                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1462         }
1463
1464         if (likely(p->pid)) {
1465                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1466
1467                 if (thread_group_leader(p)) {
1468                         if (is_child_reaper(pid))
1469                                 p->nsproxy->pid_ns->child_reaper = p;
1470
1471                         p->signal->leader_pid = pid;
1472                         p->signal->tty = tty_kref_get(current->signal->tty);
1473                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1474                         attach_pid(p, PIDTYPE_SID, task_session(current));
1475                         list_add_tail(&p->sibling, &p->real_parent->children);
1476                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1477                         __this_cpu_inc(process_counts);
1478                 }
1479                 attach_pid(p, PIDTYPE_PID, pid);
1480                 nr_threads++;
1481         }
1482
1483         total_forks++;
1484         spin_unlock(&current->sighand->siglock);
1485         write_unlock_irq(&tasklist_lock);
1486         proc_fork_connector(p);
1487         cgroup_post_fork(p);
1488         if (clone_flags & CLONE_THREAD)
1489                 threadgroup_change_end(current);
1490         perf_event_fork(p);
1491
1492         trace_task_newtask(p, clone_flags);
1493
1494         return p;
1495
1496 bad_fork_free_pid:
1497         if (pid != &init_struct_pid)
1498                 free_pid(pid);
1499 bad_fork_cleanup_io:
1500         if (p->io_context)
1501                 exit_io_context(p);
1502 bad_fork_cleanup_namespaces:
1503         if (unlikely(clone_flags & CLONE_NEWPID))
1504                 pid_ns_release_proc(p->nsproxy->pid_ns);
1505         exit_task_namespaces(p);
1506 bad_fork_cleanup_mm:
1507         if (p->mm)
1508                 mmput(p->mm);
1509 bad_fork_cleanup_signal:
1510         if (!(clone_flags & CLONE_THREAD))
1511                 free_signal_struct(p->signal);
1512 bad_fork_cleanup_sighand:
1513         __cleanup_sighand(p->sighand);
1514 bad_fork_cleanup_fs:
1515         exit_fs(p); /* blocking */
1516 bad_fork_cleanup_files:
1517         exit_files(p); /* blocking */
1518 bad_fork_cleanup_semundo:
1519         exit_sem(p);
1520 bad_fork_cleanup_audit:
1521         audit_free(p);
1522 bad_fork_cleanup_policy:
1523         perf_event_free_task(p);
1524 #ifdef CONFIG_NUMA
1525         mpol_put(p->mempolicy);
1526 bad_fork_cleanup_cgroup:
1527 #endif
1528         if (clone_flags & CLONE_THREAD)
1529                 threadgroup_change_end(current);
1530         cgroup_exit(p, cgroup_callbacks_done);
1531         delayacct_tsk_free(p);
1532         module_put(task_thread_info(p)->exec_domain->module);
1533 bad_fork_cleanup_count:
1534         atomic_dec(&p->cred->user->processes);
1535         exit_creds(p);
1536 bad_fork_free:
1537         free_task(p);
1538 fork_out:
1539         return ERR_PTR(retval);
1540 }
1541
1542 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1543 {
1544         memset(regs, 0, sizeof(struct pt_regs));
1545         return regs;
1546 }
1547
1548 static inline void init_idle_pids(struct pid_link *links)
1549 {
1550         enum pid_type type;
1551
1552         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1553                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1554                 links[type].pid = &init_struct_pid;
1555         }
1556 }
1557
1558 struct task_struct * __cpuinit fork_idle(int cpu)
1559 {
1560         struct task_struct *task;
1561         struct pt_regs regs;
1562
1563         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1564                             &init_struct_pid, 0);
1565         if (!IS_ERR(task)) {
1566                 init_idle_pids(task->pids);
1567                 init_idle(task, cpu);
1568         }
1569
1570         return task;
1571 }
1572
1573 /*
1574  *  Ok, this is the main fork-routine.
1575  *
1576  * It copies the process, and if successful kick-starts
1577  * it and waits for it to finish using the VM if required.
1578  */
1579 long do_fork(unsigned long clone_flags,
1580               unsigned long stack_start,
1581               struct pt_regs *regs,
1582               unsigned long stack_size,
1583               int __user *parent_tidptr,
1584               int __user *child_tidptr)
1585 {
1586         struct task_struct *p;
1587         int trace = 0;
1588         long nr;
1589
1590         /*
1591          * Do some preliminary argument and permissions checking before we
1592          * actually start allocating stuff
1593          */
1594         if (clone_flags & CLONE_NEWUSER) {
1595                 if (clone_flags & CLONE_THREAD)
1596                         return -EINVAL;
1597                 /* hopefully this check will go away when userns support is
1598                  * complete
1599                  */
1600                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1601                                 !capable(CAP_SETGID))
1602                         return -EPERM;
1603         }
1604
1605         /*
1606          * Determine whether and which event to report to ptracer.  When
1607          * called from kernel_thread or CLONE_UNTRACED is explicitly
1608          * requested, no event is reported; otherwise, report if the event
1609          * for the type of forking is enabled.
1610          */
1611         if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1612                 if (clone_flags & CLONE_VFORK)
1613                         trace = PTRACE_EVENT_VFORK;
1614                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1615                         trace = PTRACE_EVENT_CLONE;
1616                 else
1617                         trace = PTRACE_EVENT_FORK;
1618
1619                 if (likely(!ptrace_event_enabled(current, trace)))
1620                         trace = 0;
1621         }
1622
1623         p = copy_process(clone_flags, stack_start, regs, stack_size,
1624                          child_tidptr, NULL, trace);
1625         /*
1626          * Do this prior waking up the new thread - the thread pointer
1627          * might get invalid after that point, if the thread exits quickly.
1628          */
1629         if (!IS_ERR(p)) {
1630                 struct completion vfork;
1631
1632                 trace_sched_process_fork(current, p);
1633
1634                 nr = task_pid_vnr(p);
1635
1636                 if (clone_flags & CLONE_PARENT_SETTID)
1637                         put_user(nr, parent_tidptr);
1638
1639                 if (clone_flags & CLONE_VFORK) {
1640                         p->vfork_done = &vfork;
1641                         init_completion(&vfork);
1642                         get_task_struct(p);
1643                 }
1644
1645                 wake_up_new_task(p);
1646
1647                 /* forking complete and child started to run, tell ptracer */
1648                 if (unlikely(trace))
1649                         ptrace_event(trace, nr);
1650
1651                 if (clone_flags & CLONE_VFORK) {
1652                         if (!wait_for_vfork_done(p, &vfork))
1653                                 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1654                 }
1655         } else {
1656                 nr = PTR_ERR(p);
1657         }
1658         return nr;
1659 }
1660
1661 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1662 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1663 #endif
1664
1665 static void sighand_ctor(void *data)
1666 {
1667         struct sighand_struct *sighand = data;
1668
1669         spin_lock_init(&sighand->siglock);
1670         init_waitqueue_head(&sighand->signalfd_wqh);
1671 }
1672
1673 void __init proc_caches_init(void)
1674 {
1675         sighand_cachep = kmem_cache_create("sighand_cache",
1676                         sizeof(struct sighand_struct), 0,
1677                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1678                         SLAB_NOTRACK, sighand_ctor);
1679         signal_cachep = kmem_cache_create("signal_cache",
1680                         sizeof(struct signal_struct), 0,
1681                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1682         files_cachep = kmem_cache_create("files_cache",
1683                         sizeof(struct files_struct), 0,
1684                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1685         fs_cachep = kmem_cache_create("fs_cache",
1686                         sizeof(struct fs_struct), 0,
1687                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1688         /*
1689          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1690          * whole struct cpumask for the OFFSTACK case. We could change
1691          * this to *only* allocate as much of it as required by the
1692          * maximum number of CPU's we can ever have.  The cpumask_allocation
1693          * is at the end of the structure, exactly for that reason.
1694          */
1695         mm_cachep = kmem_cache_create("mm_struct",
1696                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1697                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1698         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1699         mmap_init();
1700         nsproxy_cache_init();
1701 }
1702
1703 /*
1704  * Check constraints on flags passed to the unshare system call.
1705  */
1706 static int check_unshare_flags(unsigned long unshare_flags)
1707 {
1708         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1709                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1710                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1711                 return -EINVAL;
1712         /*
1713          * Not implemented, but pretend it works if there is nothing to
1714          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1715          * needs to unshare vm.
1716          */
1717         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1718                 /* FIXME: get_task_mm() increments ->mm_users */
1719                 if (atomic_read(&current->mm->mm_users) > 1)
1720                         return -EINVAL;
1721         }
1722
1723         return 0;
1724 }
1725
1726 /*
1727  * Unshare the filesystem structure if it is being shared
1728  */
1729 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1730 {
1731         struct fs_struct *fs = current->fs;
1732
1733         if (!(unshare_flags & CLONE_FS) || !fs)
1734                 return 0;
1735
1736         /* don't need lock here; in the worst case we'll do useless copy */
1737         if (fs->users == 1)
1738                 return 0;
1739
1740         *new_fsp = copy_fs_struct(fs);
1741         if (!*new_fsp)
1742                 return -ENOMEM;
1743
1744         return 0;
1745 }
1746
1747 /*
1748  * Unshare file descriptor table if it is being shared
1749  */
1750 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1751 {
1752         struct files_struct *fd = current->files;
1753         int error = 0;
1754
1755         if ((unshare_flags & CLONE_FILES) &&
1756             (fd && atomic_read(&fd->count) > 1)) {
1757                 *new_fdp = dup_fd(fd, &error);
1758                 if (!*new_fdp)
1759                         return error;
1760         }
1761
1762         return 0;
1763 }
1764
1765 /*
1766  * unshare allows a process to 'unshare' part of the process
1767  * context which was originally shared using clone.  copy_*
1768  * functions used by do_fork() cannot be used here directly
1769  * because they modify an inactive task_struct that is being
1770  * constructed. Here we are modifying the current, active,
1771  * task_struct.
1772  */
1773 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1774 {
1775         struct fs_struct *fs, *new_fs = NULL;
1776         struct files_struct *fd, *new_fd = NULL;
1777         struct nsproxy *new_nsproxy = NULL;
1778         int do_sysvsem = 0;
1779         int err;
1780
1781         err = check_unshare_flags(unshare_flags);
1782         if (err)
1783                 goto bad_unshare_out;
1784
1785         /*
1786          * If unsharing namespace, must also unshare filesystem information.
1787          */
1788         if (unshare_flags & CLONE_NEWNS)
1789                 unshare_flags |= CLONE_FS;
1790         /*
1791          * CLONE_NEWIPC must also detach from the undolist: after switching
1792          * to a new ipc namespace, the semaphore arrays from the old
1793          * namespace are unreachable.
1794          */
1795         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1796                 do_sysvsem = 1;
1797         err = unshare_fs(unshare_flags, &new_fs);
1798         if (err)
1799                 goto bad_unshare_out;
1800         err = unshare_fd(unshare_flags, &new_fd);
1801         if (err)
1802                 goto bad_unshare_cleanup_fs;
1803         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1804         if (err)
1805                 goto bad_unshare_cleanup_fd;
1806
1807         if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1808                 if (do_sysvsem) {
1809                         /*
1810                          * CLONE_SYSVSEM is equivalent to sys_exit().
1811                          */
1812                         exit_sem(current);
1813                 }
1814
1815                 if (new_nsproxy) {
1816                         switch_task_namespaces(current, new_nsproxy);
1817                         new_nsproxy = NULL;
1818                 }
1819
1820                 task_lock(current);
1821
1822                 if (new_fs) {
1823                         fs = current->fs;
1824                         spin_lock(&fs->lock);
1825                         current->fs = new_fs;
1826                         if (--fs->users)
1827                                 new_fs = NULL;
1828                         else
1829                                 new_fs = fs;
1830                         spin_unlock(&fs->lock);
1831                 }
1832
1833                 if (new_fd) {
1834                         fd = current->files;
1835                         current->files = new_fd;
1836                         new_fd = fd;
1837                 }
1838
1839                 task_unlock(current);
1840         }
1841
1842         if (new_nsproxy)
1843                 put_nsproxy(new_nsproxy);
1844
1845 bad_unshare_cleanup_fd:
1846         if (new_fd)
1847                 put_files_struct(new_fd);
1848
1849 bad_unshare_cleanup_fs:
1850         if (new_fs)
1851                 free_fs_struct(new_fs);
1852
1853 bad_unshare_out:
1854         return err;
1855 }
1856
1857 /*
1858  *      Helper to unshare the files of the current task.
1859  *      We don't want to expose copy_files internals to
1860  *      the exec layer of the kernel.
1861  */
1862
1863 int unshare_files(struct files_struct **displaced)
1864 {
1865         struct task_struct *task = current;
1866         struct files_struct *copy = NULL;
1867         int error;
1868
1869         error = unshare_fd(CLONE_FILES, &copy);
1870         if (error || !copy) {
1871                 *displaced = NULL;
1872                 return error;
1873         }
1874         *displaced = task->files;
1875         task_lock(task);
1876         task->files = copy;
1877         task_unlock(task);
1878         return 0;
1879 }