]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/kprobes.c
550294d58a02ef67c76b17440cdaee3675690047
[karo-tx-linux.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67         addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81         raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86         return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /*
90  * Normally, functions that we'd want to prohibit kprobes in, are marked
91  * __kprobes. But, there are cases where such functions already belong to
92  * a different section (__sched for preempt_schedule)
93  *
94  * For such cases, we now have a blacklist
95  */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97         {"preempt_schedule",},
98         {"native_get_debugreg",},
99         {"irq_entries_start",},
100         {"common_interrupt",},
101         {"mcount",},    /* mcount can be called from everywhere */
102         {NULL}    /* Terminator */
103 };
104
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107  * kprobe->ainsn.insn points to the copy of the instruction to be
108  * single-stepped. x86_64, POWER4 and above have no-exec support and
109  * stepping on the instruction on a vmalloced/kmalloced/data page
110  * is a recipe for disaster
111  */
112 struct kprobe_insn_page {
113         struct list_head list;
114         kprobe_opcode_t *insns;         /* Page of instruction slots */
115         int nused;
116         int ngarbage;
117         char slot_used[];
118 };
119
120 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
121         (offsetof(struct kprobe_insn_page, slot_used) + \
122          (sizeof(char) * (slots)))
123
124 struct kprobe_insn_cache {
125         struct list_head pages; /* list of kprobe_insn_page */
126         size_t insn_size;       /* size of instruction slot */
127         int nr_garbage;
128 };
129
130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134
135 enum kprobe_slot_state {
136         SLOT_CLEAN = 0,
137         SLOT_DIRTY = 1,
138         SLOT_USED = 2,
139 };
140
141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144         .insn_size = MAX_INSN_SIZE,
145         .nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148
149 /**
150  * __get_insn_slot() - Find a slot on an executable page for an instruction.
151  * We allocate an executable page if there's no room on existing ones.
152  */
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155         struct kprobe_insn_page *kip;
156
157  retry:
158         list_for_each_entry(kip, &c->pages, list) {
159                 if (kip->nused < slots_per_page(c)) {
160                         int i;
161                         for (i = 0; i < slots_per_page(c); i++) {
162                                 if (kip->slot_used[i] == SLOT_CLEAN) {
163                                         kip->slot_used[i] = SLOT_USED;
164                                         kip->nused++;
165                                         return kip->insns + (i * c->insn_size);
166                                 }
167                         }
168                         /* kip->nused is broken. Fix it. */
169                         kip->nused = slots_per_page(c);
170                         WARN_ON(1);
171                 }
172         }
173
174         /* If there are any garbage slots, collect it and try again. */
175         if (c->nr_garbage && collect_garbage_slots(c) == 0)
176                 goto retry;
177
178         /* All out of space.  Need to allocate a new page. */
179         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180         if (!kip)
181                 return NULL;
182
183         /*
184          * Use module_alloc so this page is within +/- 2GB of where the
185          * kernel image and loaded module images reside. This is required
186          * so x86_64 can correctly handle the %rip-relative fixups.
187          */
188         kip->insns = module_alloc(PAGE_SIZE);
189         if (!kip->insns) {
190                 kfree(kip);
191                 return NULL;
192         }
193         INIT_LIST_HEAD(&kip->list);
194         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195         kip->slot_used[0] = SLOT_USED;
196         kip->nused = 1;
197         kip->ngarbage = 0;
198         list_add(&kip->list, &c->pages);
199         return kip->insns;
200 }
201
202
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205         kprobe_opcode_t *ret = NULL;
206
207         mutex_lock(&kprobe_insn_mutex);
208         ret = __get_insn_slot(&kprobe_insn_slots);
209         mutex_unlock(&kprobe_insn_mutex);
210
211         return ret;
212 }
213
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217         kip->slot_used[idx] = SLOT_CLEAN;
218         kip->nused--;
219         if (kip->nused == 0) {
220                 /*
221                  * Page is no longer in use.  Free it unless
222                  * it's the last one.  We keep the last one
223                  * so as not to have to set it up again the
224                  * next time somebody inserts a probe.
225                  */
226                 if (!list_is_singular(&kip->list)) {
227                         list_del(&kip->list);
228                         module_free(NULL, kip->insns);
229                         kfree(kip);
230                 }
231                 return 1;
232         }
233         return 0;
234 }
235
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238         struct kprobe_insn_page *kip, *next;
239
240         /* Ensure no-one is interrupted on the garbages */
241         synchronize_sched();
242
243         list_for_each_entry_safe(kip, next, &c->pages, list) {
244                 int i;
245                 if (kip->ngarbage == 0)
246                         continue;
247                 kip->ngarbage = 0;      /* we will collect all garbages */
248                 for (i = 0; i < slots_per_page(c); i++) {
249                         if (kip->slot_used[i] == SLOT_DIRTY &&
250                             collect_one_slot(kip, i))
251                                 break;
252                 }
253         }
254         c->nr_garbage = 0;
255         return 0;
256 }
257
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259                                        kprobe_opcode_t *slot, int dirty)
260 {
261         struct kprobe_insn_page *kip;
262
263         list_for_each_entry(kip, &c->pages, list) {
264                 long idx = ((long)slot - (long)kip->insns) /
265                                 (c->insn_size * sizeof(kprobe_opcode_t));
266                 if (idx >= 0 && idx < slots_per_page(c)) {
267                         WARN_ON(kip->slot_used[idx] != SLOT_USED);
268                         if (dirty) {
269                                 kip->slot_used[idx] = SLOT_DIRTY;
270                                 kip->ngarbage++;
271                                 if (++c->nr_garbage > slots_per_page(c))
272                                         collect_garbage_slots(c);
273                         } else
274                                 collect_one_slot(kip, idx);
275                         return;
276                 }
277         }
278         /* Could not free this slot. */
279         WARN_ON(1);
280 }
281
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284         mutex_lock(&kprobe_insn_mutex);
285         __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286         mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293         /* .insn_size is initialized later */
294         .nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
299         kprobe_opcode_t *ret = NULL;
300
301         mutex_lock(&kprobe_optinsn_mutex);
302         ret = __get_insn_slot(&kprobe_optinsn_slots);
303         mutex_unlock(&kprobe_optinsn_mutex);
304
305         return ret;
306 }
307
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310         mutex_lock(&kprobe_optinsn_mutex);
311         __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312         mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320         __this_cpu_write(kprobe_instance, kp);
321 }
322
323 static inline void reset_kprobe_instance(void)
324 {
325         __this_cpu_write(kprobe_instance, NULL);
326 }
327
328 /*
329  * This routine is called either:
330  *      - under the kprobe_mutex - during kprobe_[un]register()
331  *                              OR
332  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
333  */
334 struct kprobe __kprobes *get_kprobe(void *addr)
335 {
336         struct hlist_head *head;
337         struct hlist_node *node;
338         struct kprobe *p;
339
340         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341         hlist_for_each_entry_rcu(p, node, head, hlist) {
342                 if (p->addr == addr)
343                         return p;
344         }
345
346         return NULL;
347 }
348
349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350
351 /* Return true if the kprobe is an aggregator */
352 static inline int kprobe_aggrprobe(struct kprobe *p)
353 {
354         return p->pre_handler == aggr_pre_handler;
355 }
356
357 /* Return true(!0) if the kprobe is unused */
358 static inline int kprobe_unused(struct kprobe *p)
359 {
360         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
361                list_empty(&p->list);
362 }
363
364 /*
365  * Keep all fields in the kprobe consistent
366  */
367 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
368 {
369         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
370         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
371 }
372
373 #ifdef CONFIG_OPTPROBES
374 /* NOTE: change this value only with kprobe_mutex held */
375 static bool kprobes_allow_optimization;
376
377 /*
378  * Call all pre_handler on the list, but ignores its return value.
379  * This must be called from arch-dep optimized caller.
380  */
381 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
382 {
383         struct kprobe *kp;
384
385         list_for_each_entry_rcu(kp, &p->list, list) {
386                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
387                         set_kprobe_instance(kp);
388                         kp->pre_handler(kp, regs);
389                 }
390                 reset_kprobe_instance();
391         }
392 }
393
394 /* Free optimized instructions and optimized_kprobe */
395 static __kprobes void free_aggr_kprobe(struct kprobe *p)
396 {
397         struct optimized_kprobe *op;
398
399         op = container_of(p, struct optimized_kprobe, kp);
400         arch_remove_optimized_kprobe(op);
401         arch_remove_kprobe(p);
402         kfree(op);
403 }
404
405 /* Return true(!0) if the kprobe is ready for optimization. */
406 static inline int kprobe_optready(struct kprobe *p)
407 {
408         struct optimized_kprobe *op;
409
410         if (kprobe_aggrprobe(p)) {
411                 op = container_of(p, struct optimized_kprobe, kp);
412                 return arch_prepared_optinsn(&op->optinsn);
413         }
414
415         return 0;
416 }
417
418 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
419 static inline int kprobe_disarmed(struct kprobe *p)
420 {
421         struct optimized_kprobe *op;
422
423         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
424         if (!kprobe_aggrprobe(p))
425                 return kprobe_disabled(p);
426
427         op = container_of(p, struct optimized_kprobe, kp);
428
429         return kprobe_disabled(p) && list_empty(&op->list);
430 }
431
432 /* Return true(!0) if the probe is queued on (un)optimizing lists */
433 static int __kprobes kprobe_queued(struct kprobe *p)
434 {
435         struct optimized_kprobe *op;
436
437         if (kprobe_aggrprobe(p)) {
438                 op = container_of(p, struct optimized_kprobe, kp);
439                 if (!list_empty(&op->list))
440                         return 1;
441         }
442         return 0;
443 }
444
445 /*
446  * Return an optimized kprobe whose optimizing code replaces
447  * instructions including addr (exclude breakpoint).
448  */
449 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
450 {
451         int i;
452         struct kprobe *p = NULL;
453         struct optimized_kprobe *op;
454
455         /* Don't check i == 0, since that is a breakpoint case. */
456         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
457                 p = get_kprobe((void *)(addr - i));
458
459         if (p && kprobe_optready(p)) {
460                 op = container_of(p, struct optimized_kprobe, kp);
461                 if (arch_within_optimized_kprobe(op, addr))
462                         return p;
463         }
464
465         return NULL;
466 }
467
468 /* Optimization staging list, protected by kprobe_mutex */
469 static LIST_HEAD(optimizing_list);
470 static LIST_HEAD(unoptimizing_list);
471
472 static void kprobe_optimizer(struct work_struct *work);
473 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
474 #define OPTIMIZE_DELAY 5
475
476 /*
477  * Optimize (replace a breakpoint with a jump) kprobes listed on
478  * optimizing_list.
479  */
480 static __kprobes void do_optimize_kprobes(void)
481 {
482         /* Optimization never be done when disarmed */
483         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
484             list_empty(&optimizing_list))
485                 return;
486
487         /*
488          * The optimization/unoptimization refers online_cpus via
489          * stop_machine() and cpu-hotplug modifies online_cpus.
490          * And same time, text_mutex will be held in cpu-hotplug and here.
491          * This combination can cause a deadlock (cpu-hotplug try to lock
492          * text_mutex but stop_machine can not be done because online_cpus
493          * has been changed)
494          * To avoid this deadlock, we need to call get_online_cpus()
495          * for preventing cpu-hotplug outside of text_mutex locking.
496          */
497         get_online_cpus();
498         mutex_lock(&text_mutex);
499         arch_optimize_kprobes(&optimizing_list);
500         mutex_unlock(&text_mutex);
501         put_online_cpus();
502 }
503
504 /*
505  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
506  * if need) kprobes listed on unoptimizing_list.
507  */
508 static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
509 {
510         struct optimized_kprobe *op, *tmp;
511
512         /* Unoptimization must be done anytime */
513         if (list_empty(&unoptimizing_list))
514                 return;
515
516         /* Ditto to do_optimize_kprobes */
517         get_online_cpus();
518         mutex_lock(&text_mutex);
519         arch_unoptimize_kprobes(&unoptimizing_list, free_list);
520         /* Loop free_list for disarming */
521         list_for_each_entry_safe(op, tmp, free_list, list) {
522                 /* Disarm probes if marked disabled */
523                 if (kprobe_disabled(&op->kp))
524                         arch_disarm_kprobe(&op->kp);
525                 if (kprobe_unused(&op->kp)) {
526                         /*
527                          * Remove unused probes from hash list. After waiting
528                          * for synchronization, these probes are reclaimed.
529                          * (reclaiming is done by do_free_cleaned_kprobes.)
530                          */
531                         hlist_del_rcu(&op->kp.hlist);
532                 } else
533                         list_del_init(&op->list);
534         }
535         mutex_unlock(&text_mutex);
536         put_online_cpus();
537 }
538
539 /* Reclaim all kprobes on the free_list */
540 static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
541 {
542         struct optimized_kprobe *op, *tmp;
543
544         list_for_each_entry_safe(op, tmp, free_list, list) {
545                 BUG_ON(!kprobe_unused(&op->kp));
546                 list_del_init(&op->list);
547                 free_aggr_kprobe(&op->kp);
548         }
549 }
550
551 /* Start optimizer after OPTIMIZE_DELAY passed */
552 static __kprobes void kick_kprobe_optimizer(void)
553 {
554         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
555 }
556
557 /* Kprobe jump optimizer */
558 static __kprobes void kprobe_optimizer(struct work_struct *work)
559 {
560         LIST_HEAD(free_list);
561
562         mutex_lock(&kprobe_mutex);
563         /* Lock modules while optimizing kprobes */
564         mutex_lock(&module_mutex);
565
566         /*
567          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
568          * kprobes before waiting for quiesence period.
569          */
570         do_unoptimize_kprobes(&free_list);
571
572         /*
573          * Step 2: Wait for quiesence period to ensure all running interrupts
574          * are done. Because optprobe may modify multiple instructions
575          * there is a chance that Nth instruction is interrupted. In that
576          * case, running interrupt can return to 2nd-Nth byte of jump
577          * instruction. This wait is for avoiding it.
578          */
579         synchronize_sched();
580
581         /* Step 3: Optimize kprobes after quiesence period */
582         do_optimize_kprobes();
583
584         /* Step 4: Free cleaned kprobes after quiesence period */
585         do_free_cleaned_kprobes(&free_list);
586
587         mutex_unlock(&module_mutex);
588         mutex_unlock(&kprobe_mutex);
589
590         /* Step 5: Kick optimizer again if needed */
591         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
592                 kick_kprobe_optimizer();
593 }
594
595 /* Wait for completing optimization and unoptimization */
596 static __kprobes void wait_for_kprobe_optimizer(void)
597 {
598         mutex_lock(&kprobe_mutex);
599
600         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
601                 mutex_unlock(&kprobe_mutex);
602
603                 /* this will also make optimizing_work execute immmediately */
604                 flush_delayed_work(&optimizing_work);
605                 /* @optimizing_work might not have been queued yet, relax */
606                 cpu_relax();
607
608                 mutex_lock(&kprobe_mutex);
609         }
610
611         mutex_unlock(&kprobe_mutex);
612 }
613
614 /* Optimize kprobe if p is ready to be optimized */
615 static __kprobes void optimize_kprobe(struct kprobe *p)
616 {
617         struct optimized_kprobe *op;
618
619         /* Check if the kprobe is disabled or not ready for optimization. */
620         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
621             (kprobe_disabled(p) || kprobes_all_disarmed))
622                 return;
623
624         /* Both of break_handler and post_handler are not supported. */
625         if (p->break_handler || p->post_handler)
626                 return;
627
628         op = container_of(p, struct optimized_kprobe, kp);
629
630         /* Check there is no other kprobes at the optimized instructions */
631         if (arch_check_optimized_kprobe(op) < 0)
632                 return;
633
634         /* Check if it is already optimized. */
635         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
636                 return;
637         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
638
639         if (!list_empty(&op->list))
640                 /* This is under unoptimizing. Just dequeue the probe */
641                 list_del_init(&op->list);
642         else {
643                 list_add(&op->list, &optimizing_list);
644                 kick_kprobe_optimizer();
645         }
646 }
647
648 /* Short cut to direct unoptimizing */
649 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
650 {
651         get_online_cpus();
652         arch_unoptimize_kprobe(op);
653         put_online_cpus();
654         if (kprobe_disabled(&op->kp))
655                 arch_disarm_kprobe(&op->kp);
656 }
657
658 /* Unoptimize a kprobe if p is optimized */
659 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
660 {
661         struct optimized_kprobe *op;
662
663         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
664                 return; /* This is not an optprobe nor optimized */
665
666         op = container_of(p, struct optimized_kprobe, kp);
667         if (!kprobe_optimized(p)) {
668                 /* Unoptimized or unoptimizing case */
669                 if (force && !list_empty(&op->list)) {
670                         /*
671                          * Only if this is unoptimizing kprobe and forced,
672                          * forcibly unoptimize it. (No need to unoptimize
673                          * unoptimized kprobe again :)
674                          */
675                         list_del_init(&op->list);
676                         force_unoptimize_kprobe(op);
677                 }
678                 return;
679         }
680
681         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
682         if (!list_empty(&op->list)) {
683                 /* Dequeue from the optimization queue */
684                 list_del_init(&op->list);
685                 return;
686         }
687         /* Optimized kprobe case */
688         if (force)
689                 /* Forcibly update the code: this is a special case */
690                 force_unoptimize_kprobe(op);
691         else {
692                 list_add(&op->list, &unoptimizing_list);
693                 kick_kprobe_optimizer();
694         }
695 }
696
697 /* Cancel unoptimizing for reusing */
698 static void reuse_unused_kprobe(struct kprobe *ap)
699 {
700         struct optimized_kprobe *op;
701
702         BUG_ON(!kprobe_unused(ap));
703         /*
704          * Unused kprobe MUST be on the way of delayed unoptimizing (means
705          * there is still a relative jump) and disabled.
706          */
707         op = container_of(ap, struct optimized_kprobe, kp);
708         if (unlikely(list_empty(&op->list)))
709                 printk(KERN_WARNING "Warning: found a stray unused "
710                         "aggrprobe@%p\n", ap->addr);
711         /* Enable the probe again */
712         ap->flags &= ~KPROBE_FLAG_DISABLED;
713         /* Optimize it again (remove from op->list) */
714         BUG_ON(!kprobe_optready(ap));
715         optimize_kprobe(ap);
716 }
717
718 /* Remove optimized instructions */
719 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
720 {
721         struct optimized_kprobe *op;
722
723         op = container_of(p, struct optimized_kprobe, kp);
724         if (!list_empty(&op->list))
725                 /* Dequeue from the (un)optimization queue */
726                 list_del_init(&op->list);
727
728         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
729         /* Don't touch the code, because it is already freed. */
730         arch_remove_optimized_kprobe(op);
731 }
732
733 /* Try to prepare optimized instructions */
734 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
735 {
736         struct optimized_kprobe *op;
737
738         op = container_of(p, struct optimized_kprobe, kp);
739         arch_prepare_optimized_kprobe(op);
740 }
741
742 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
743 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
744 {
745         struct optimized_kprobe *op;
746
747         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
748         if (!op)
749                 return NULL;
750
751         INIT_LIST_HEAD(&op->list);
752         op->kp.addr = p->addr;
753         arch_prepare_optimized_kprobe(op);
754
755         return &op->kp;
756 }
757
758 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
759
760 /*
761  * Prepare an optimized_kprobe and optimize it
762  * NOTE: p must be a normal registered kprobe
763  */
764 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
765 {
766         struct kprobe *ap;
767         struct optimized_kprobe *op;
768
769         /* Impossible to optimize ftrace-based kprobe */
770         if (kprobe_ftrace(p))
771                 return;
772
773         /* For preparing optimization, jump_label_text_reserved() is called */
774         jump_label_lock();
775         mutex_lock(&text_mutex);
776
777         ap = alloc_aggr_kprobe(p);
778         if (!ap)
779                 goto out;
780
781         op = container_of(ap, struct optimized_kprobe, kp);
782         if (!arch_prepared_optinsn(&op->optinsn)) {
783                 /* If failed to setup optimizing, fallback to kprobe */
784                 arch_remove_optimized_kprobe(op);
785                 kfree(op);
786                 goto out;
787         }
788
789         init_aggr_kprobe(ap, p);
790         optimize_kprobe(ap);    /* This just kicks optimizer thread */
791
792 out:
793         mutex_unlock(&text_mutex);
794         jump_label_unlock();
795 }
796
797 #ifdef CONFIG_SYSCTL
798 /* This should be called with kprobe_mutex locked */
799 static void __kprobes optimize_all_kprobes(void)
800 {
801         struct hlist_head *head;
802         struct hlist_node *node;
803         struct kprobe *p;
804         unsigned int i;
805
806         /* If optimization is already allowed, just return */
807         if (kprobes_allow_optimization)
808                 return;
809
810         kprobes_allow_optimization = true;
811         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
812                 head = &kprobe_table[i];
813                 hlist_for_each_entry_rcu(p, node, head, hlist)
814                         if (!kprobe_disabled(p))
815                                 optimize_kprobe(p);
816         }
817         printk(KERN_INFO "Kprobes globally optimized\n");
818 }
819
820 /* This should be called with kprobe_mutex locked */
821 static void __kprobes unoptimize_all_kprobes(void)
822 {
823         struct hlist_head *head;
824         struct hlist_node *node;
825         struct kprobe *p;
826         unsigned int i;
827
828         /* If optimization is already prohibited, just return */
829         if (!kprobes_allow_optimization)
830                 return;
831
832         kprobes_allow_optimization = false;
833         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
834                 head = &kprobe_table[i];
835                 hlist_for_each_entry_rcu(p, node, head, hlist) {
836                         if (!kprobe_disabled(p))
837                                 unoptimize_kprobe(p, false);
838                 }
839         }
840         /* Wait for unoptimizing completion */
841         wait_for_kprobe_optimizer();
842         printk(KERN_INFO "Kprobes globally unoptimized\n");
843 }
844
845 int sysctl_kprobes_optimization;
846 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
847                                       void __user *buffer, size_t *length,
848                                       loff_t *ppos)
849 {
850         int ret;
851
852         mutex_lock(&kprobe_mutex);
853         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
854         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
855
856         if (sysctl_kprobes_optimization)
857                 optimize_all_kprobes();
858         else
859                 unoptimize_all_kprobes();
860         mutex_unlock(&kprobe_mutex);
861
862         return ret;
863 }
864 #endif /* CONFIG_SYSCTL */
865
866 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
867 static void __kprobes __arm_kprobe(struct kprobe *p)
868 {
869         struct kprobe *_p;
870
871         /* Check collision with other optimized kprobes */
872         _p = get_optimized_kprobe((unsigned long)p->addr);
873         if (unlikely(_p))
874                 /* Fallback to unoptimized kprobe */
875                 unoptimize_kprobe(_p, true);
876
877         arch_arm_kprobe(p);
878         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
879 }
880
881 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
882 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
883 {
884         struct kprobe *_p;
885
886         unoptimize_kprobe(p, false);    /* Try to unoptimize */
887
888         if (!kprobe_queued(p)) {
889                 arch_disarm_kprobe(p);
890                 /* If another kprobe was blocked, optimize it. */
891                 _p = get_optimized_kprobe((unsigned long)p->addr);
892                 if (unlikely(_p) && reopt)
893                         optimize_kprobe(_p);
894         }
895         /* TODO: reoptimize others after unoptimized this probe */
896 }
897
898 #else /* !CONFIG_OPTPROBES */
899
900 #define optimize_kprobe(p)                      do {} while (0)
901 #define unoptimize_kprobe(p, f)                 do {} while (0)
902 #define kill_optimized_kprobe(p)                do {} while (0)
903 #define prepare_optimized_kprobe(p)             do {} while (0)
904 #define try_to_optimize_kprobe(p)               do {} while (0)
905 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
906 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
907 #define kprobe_disarmed(p)                      kprobe_disabled(p)
908 #define wait_for_kprobe_optimizer()             do {} while (0)
909
910 /* There should be no unused kprobes can be reused without optimization */
911 static void reuse_unused_kprobe(struct kprobe *ap)
912 {
913         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
914         BUG_ON(kprobe_unused(ap));
915 }
916
917 static __kprobes void free_aggr_kprobe(struct kprobe *p)
918 {
919         arch_remove_kprobe(p);
920         kfree(p);
921 }
922
923 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
924 {
925         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
926 }
927 #endif /* CONFIG_OPTPROBES */
928
929 #ifdef CONFIG_KPROBES_ON_FTRACE
930 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
931         .func = kprobe_ftrace_handler,
932         .flags = FTRACE_OPS_FL_SAVE_REGS,
933 };
934 static int kprobe_ftrace_enabled;
935
936 /* Must ensure p->addr is really on ftrace */
937 static int __kprobes prepare_kprobe(struct kprobe *p)
938 {
939         if (!kprobe_ftrace(p))
940                 return arch_prepare_kprobe(p);
941
942         return arch_prepare_kprobe_ftrace(p);
943 }
944
945 /* Caller must lock kprobe_mutex */
946 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
947 {
948         int ret;
949
950         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
951                                    (unsigned long)p->addr, 0, 0);
952         WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
953         kprobe_ftrace_enabled++;
954         if (kprobe_ftrace_enabled == 1) {
955                 ret = register_ftrace_function(&kprobe_ftrace_ops);
956                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
957         }
958 }
959
960 /* Caller must lock kprobe_mutex */
961 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
962 {
963         int ret;
964
965         kprobe_ftrace_enabled--;
966         if (kprobe_ftrace_enabled == 0) {
967                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
968                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
969         }
970         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
971                            (unsigned long)p->addr, 1, 0);
972         WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
973 }
974 #else   /* !CONFIG_KPROBES_ON_FTRACE */
975 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
976 #define arm_kprobe_ftrace(p)    do {} while (0)
977 #define disarm_kprobe_ftrace(p) do {} while (0)
978 #endif
979
980 /* Arm a kprobe with text_mutex */
981 static void __kprobes arm_kprobe(struct kprobe *kp)
982 {
983         if (unlikely(kprobe_ftrace(kp))) {
984                 arm_kprobe_ftrace(kp);
985                 return;
986         }
987         /*
988          * Here, since __arm_kprobe() doesn't use stop_machine(),
989          * this doesn't cause deadlock on text_mutex. So, we don't
990          * need get_online_cpus().
991          */
992         mutex_lock(&text_mutex);
993         __arm_kprobe(kp);
994         mutex_unlock(&text_mutex);
995 }
996
997 /* Disarm a kprobe with text_mutex */
998 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
999 {
1000         if (unlikely(kprobe_ftrace(kp))) {
1001                 disarm_kprobe_ftrace(kp);
1002                 return;
1003         }
1004         /* Ditto */
1005         mutex_lock(&text_mutex);
1006         __disarm_kprobe(kp, reopt);
1007         mutex_unlock(&text_mutex);
1008 }
1009
1010 /*
1011  * Aggregate handlers for multiple kprobes support - these handlers
1012  * take care of invoking the individual kprobe handlers on p->list
1013  */
1014 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1015 {
1016         struct kprobe *kp;
1017
1018         list_for_each_entry_rcu(kp, &p->list, list) {
1019                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1020                         set_kprobe_instance(kp);
1021                         if (kp->pre_handler(kp, regs))
1022                                 return 1;
1023                 }
1024                 reset_kprobe_instance();
1025         }
1026         return 0;
1027 }
1028
1029 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1030                                         unsigned long flags)
1031 {
1032         struct kprobe *kp;
1033
1034         list_for_each_entry_rcu(kp, &p->list, list) {
1035                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1036                         set_kprobe_instance(kp);
1037                         kp->post_handler(kp, regs, flags);
1038                         reset_kprobe_instance();
1039                 }
1040         }
1041 }
1042
1043 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1044                                         int trapnr)
1045 {
1046         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1047
1048         /*
1049          * if we faulted "during" the execution of a user specified
1050          * probe handler, invoke just that probe's fault handler
1051          */
1052         if (cur && cur->fault_handler) {
1053                 if (cur->fault_handler(cur, regs, trapnr))
1054                         return 1;
1055         }
1056         return 0;
1057 }
1058
1059 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1060 {
1061         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1062         int ret = 0;
1063
1064         if (cur && cur->break_handler) {
1065                 if (cur->break_handler(cur, regs))
1066                         ret = 1;
1067         }
1068         reset_kprobe_instance();
1069         return ret;
1070 }
1071
1072 /* Walks the list and increments nmissed count for multiprobe case */
1073 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1074 {
1075         struct kprobe *kp;
1076         if (!kprobe_aggrprobe(p)) {
1077                 p->nmissed++;
1078         } else {
1079                 list_for_each_entry_rcu(kp, &p->list, list)
1080                         kp->nmissed++;
1081         }
1082         return;
1083 }
1084
1085 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1086                                 struct hlist_head *head)
1087 {
1088         struct kretprobe *rp = ri->rp;
1089
1090         /* remove rp inst off the rprobe_inst_table */
1091         hlist_del(&ri->hlist);
1092         INIT_HLIST_NODE(&ri->hlist);
1093         if (likely(rp)) {
1094                 raw_spin_lock(&rp->lock);
1095                 hlist_add_head(&ri->hlist, &rp->free_instances);
1096                 raw_spin_unlock(&rp->lock);
1097         } else
1098                 /* Unregistering */
1099                 hlist_add_head(&ri->hlist, head);
1100 }
1101
1102 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1103                          struct hlist_head **head, unsigned long *flags)
1104 __acquires(hlist_lock)
1105 {
1106         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1107         raw_spinlock_t *hlist_lock;
1108
1109         *head = &kretprobe_inst_table[hash];
1110         hlist_lock = kretprobe_table_lock_ptr(hash);
1111         raw_spin_lock_irqsave(hlist_lock, *flags);
1112 }
1113
1114 static void __kprobes kretprobe_table_lock(unsigned long hash,
1115         unsigned long *flags)
1116 __acquires(hlist_lock)
1117 {
1118         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1119         raw_spin_lock_irqsave(hlist_lock, *flags);
1120 }
1121
1122 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1123         unsigned long *flags)
1124 __releases(hlist_lock)
1125 {
1126         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1127         raw_spinlock_t *hlist_lock;
1128
1129         hlist_lock = kretprobe_table_lock_ptr(hash);
1130         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1131 }
1132
1133 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1134        unsigned long *flags)
1135 __releases(hlist_lock)
1136 {
1137         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1138         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1139 }
1140
1141 /*
1142  * This function is called from finish_task_switch when task tk becomes dead,
1143  * so that we can recycle any function-return probe instances associated
1144  * with this task. These left over instances represent probed functions
1145  * that have been called but will never return.
1146  */
1147 void __kprobes kprobe_flush_task(struct task_struct *tk)
1148 {
1149         struct kretprobe_instance *ri;
1150         struct hlist_head *head, empty_rp;
1151         struct hlist_node *node, *tmp;
1152         unsigned long hash, flags = 0;
1153
1154         if (unlikely(!kprobes_initialized))
1155                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1156                 return;
1157
1158         INIT_HLIST_HEAD(&empty_rp);
1159         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1160         head = &kretprobe_inst_table[hash];
1161         kretprobe_table_lock(hash, &flags);
1162         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1163                 if (ri->task == tk)
1164                         recycle_rp_inst(ri, &empty_rp);
1165         }
1166         kretprobe_table_unlock(hash, &flags);
1167         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1168                 hlist_del(&ri->hlist);
1169                 kfree(ri);
1170         }
1171 }
1172
1173 static inline void free_rp_inst(struct kretprobe *rp)
1174 {
1175         struct kretprobe_instance *ri;
1176         struct hlist_node *pos, *next;
1177
1178         hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1179                 hlist_del(&ri->hlist);
1180                 kfree(ri);
1181         }
1182 }
1183
1184 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1185 {
1186         unsigned long flags, hash;
1187         struct kretprobe_instance *ri;
1188         struct hlist_node *pos, *next;
1189         struct hlist_head *head;
1190
1191         /* No race here */
1192         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1193                 kretprobe_table_lock(hash, &flags);
1194                 head = &kretprobe_inst_table[hash];
1195                 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1196                         if (ri->rp == rp)
1197                                 ri->rp = NULL;
1198                 }
1199                 kretprobe_table_unlock(hash, &flags);
1200         }
1201         free_rp_inst(rp);
1202 }
1203
1204 /*
1205 * Add the new probe to ap->list. Fail if this is the
1206 * second jprobe at the address - two jprobes can't coexist
1207 */
1208 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1209 {
1210         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1211
1212         if (p->break_handler || p->post_handler)
1213                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1214
1215         if (p->break_handler) {
1216                 if (ap->break_handler)
1217                         return -EEXIST;
1218                 list_add_tail_rcu(&p->list, &ap->list);
1219                 ap->break_handler = aggr_break_handler;
1220         } else
1221                 list_add_rcu(&p->list, &ap->list);
1222         if (p->post_handler && !ap->post_handler)
1223                 ap->post_handler = aggr_post_handler;
1224
1225         return 0;
1226 }
1227
1228 /*
1229  * Fill in the required fields of the "manager kprobe". Replace the
1230  * earlier kprobe in the hlist with the manager kprobe
1231  */
1232 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1233 {
1234         /* Copy p's insn slot to ap */
1235         copy_kprobe(p, ap);
1236         flush_insn_slot(ap);
1237         ap->addr = p->addr;
1238         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1239         ap->pre_handler = aggr_pre_handler;
1240         ap->fault_handler = aggr_fault_handler;
1241         /* We don't care the kprobe which has gone. */
1242         if (p->post_handler && !kprobe_gone(p))
1243                 ap->post_handler = aggr_post_handler;
1244         if (p->break_handler && !kprobe_gone(p))
1245                 ap->break_handler = aggr_break_handler;
1246
1247         INIT_LIST_HEAD(&ap->list);
1248         INIT_HLIST_NODE(&ap->hlist);
1249
1250         list_add_rcu(&p->list, &ap->list);
1251         hlist_replace_rcu(&p->hlist, &ap->hlist);
1252 }
1253
1254 /*
1255  * This is the second or subsequent kprobe at the address - handle
1256  * the intricacies
1257  */
1258 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1259                                           struct kprobe *p)
1260 {
1261         int ret = 0;
1262         struct kprobe *ap = orig_p;
1263
1264         /* For preparing optimization, jump_label_text_reserved() is called */
1265         jump_label_lock();
1266         /*
1267          * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1268          * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1269          */
1270         get_online_cpus();
1271         mutex_lock(&text_mutex);
1272
1273         if (!kprobe_aggrprobe(orig_p)) {
1274                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1275                 ap = alloc_aggr_kprobe(orig_p);
1276                 if (!ap) {
1277                         ret = -ENOMEM;
1278                         goto out;
1279                 }
1280                 init_aggr_kprobe(ap, orig_p);
1281         } else if (kprobe_unused(ap))
1282                 /* This probe is going to die. Rescue it */
1283                 reuse_unused_kprobe(ap);
1284
1285         if (kprobe_gone(ap)) {
1286                 /*
1287                  * Attempting to insert new probe at the same location that
1288                  * had a probe in the module vaddr area which already
1289                  * freed. So, the instruction slot has already been
1290                  * released. We need a new slot for the new probe.
1291                  */
1292                 ret = arch_prepare_kprobe(ap);
1293                 if (ret)
1294                         /*
1295                          * Even if fail to allocate new slot, don't need to
1296                          * free aggr_probe. It will be used next time, or
1297                          * freed by unregister_kprobe.
1298                          */
1299                         goto out;
1300
1301                 /* Prepare optimized instructions if possible. */
1302                 prepare_optimized_kprobe(ap);
1303
1304                 /*
1305                  * Clear gone flag to prevent allocating new slot again, and
1306                  * set disabled flag because it is not armed yet.
1307                  */
1308                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1309                             | KPROBE_FLAG_DISABLED;
1310         }
1311
1312         /* Copy ap's insn slot to p */
1313         copy_kprobe(ap, p);
1314         ret = add_new_kprobe(ap, p);
1315
1316 out:
1317         mutex_unlock(&text_mutex);
1318         put_online_cpus();
1319         jump_label_unlock();
1320
1321         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1322                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1323                 if (!kprobes_all_disarmed)
1324                         /* Arm the breakpoint again. */
1325                         arm_kprobe(ap);
1326         }
1327         return ret;
1328 }
1329
1330 static int __kprobes in_kprobes_functions(unsigned long addr)
1331 {
1332         struct kprobe_blackpoint *kb;
1333
1334         if (addr >= (unsigned long)__kprobes_text_start &&
1335             addr < (unsigned long)__kprobes_text_end)
1336                 return -EINVAL;
1337         /*
1338          * If there exists a kprobe_blacklist, verify and
1339          * fail any probe registration in the prohibited area
1340          */
1341         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1342                 if (kb->start_addr) {
1343                         if (addr >= kb->start_addr &&
1344                             addr < (kb->start_addr + kb->range))
1345                                 return -EINVAL;
1346                 }
1347         }
1348         return 0;
1349 }
1350
1351 /*
1352  * If we have a symbol_name argument, look it up and add the offset field
1353  * to it. This way, we can specify a relative address to a symbol.
1354  * This returns encoded errors if it fails to look up symbol or invalid
1355  * combination of parameters.
1356  */
1357 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1358 {
1359         kprobe_opcode_t *addr = p->addr;
1360
1361         if ((p->symbol_name && p->addr) ||
1362             (!p->symbol_name && !p->addr))
1363                 goto invalid;
1364
1365         if (p->symbol_name) {
1366                 kprobe_lookup_name(p->symbol_name, addr);
1367                 if (!addr)
1368                         return ERR_PTR(-ENOENT);
1369         }
1370
1371         addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1372         if (addr)
1373                 return addr;
1374
1375 invalid:
1376         return ERR_PTR(-EINVAL);
1377 }
1378
1379 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1380 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1381 {
1382         struct kprobe *ap, *list_p;
1383
1384         ap = get_kprobe(p->addr);
1385         if (unlikely(!ap))
1386                 return NULL;
1387
1388         if (p != ap) {
1389                 list_for_each_entry_rcu(list_p, &ap->list, list)
1390                         if (list_p == p)
1391                         /* kprobe p is a valid probe */
1392                                 goto valid;
1393                 return NULL;
1394         }
1395 valid:
1396         return ap;
1397 }
1398
1399 /* Return error if the kprobe is being re-registered */
1400 static inline int check_kprobe_rereg(struct kprobe *p)
1401 {
1402         int ret = 0;
1403
1404         mutex_lock(&kprobe_mutex);
1405         if (__get_valid_kprobe(p))
1406                 ret = -EINVAL;
1407         mutex_unlock(&kprobe_mutex);
1408
1409         return ret;
1410 }
1411
1412 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1413                                                struct module **probed_mod)
1414 {
1415         int ret = 0;
1416         unsigned long ftrace_addr;
1417
1418         /*
1419          * If the address is located on a ftrace nop, set the
1420          * breakpoint to the following instruction.
1421          */
1422         ftrace_addr = ftrace_location((unsigned long)p->addr);
1423         if (ftrace_addr) {
1424 #ifdef CONFIG_KPROBES_ON_FTRACE
1425                 /* Given address is not on the instruction boundary */
1426                 if ((unsigned long)p->addr != ftrace_addr)
1427                         return -EILSEQ;
1428                 p->flags |= KPROBE_FLAG_FTRACE;
1429 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1430                 return -EINVAL;
1431 #endif
1432         }
1433
1434         jump_label_lock();
1435         preempt_disable();
1436
1437         /* Ensure it is not in reserved area nor out of text */
1438         if (!kernel_text_address((unsigned long) p->addr) ||
1439             in_kprobes_functions((unsigned long) p->addr) ||
1440             jump_label_text_reserved(p->addr, p->addr)) {
1441                 ret = -EINVAL;
1442                 goto out;
1443         }
1444
1445         /* Check if are we probing a module */
1446         *probed_mod = __module_text_address((unsigned long) p->addr);
1447         if (*probed_mod) {
1448                 /*
1449                  * We must hold a refcount of the probed module while updating
1450                  * its code to prohibit unexpected unloading.
1451                  */
1452                 if (unlikely(!try_module_get(*probed_mod))) {
1453                         ret = -ENOENT;
1454                         goto out;
1455                 }
1456
1457                 /*
1458                  * If the module freed .init.text, we couldn't insert
1459                  * kprobes in there.
1460                  */
1461                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1462                     (*probed_mod)->state != MODULE_STATE_COMING) {
1463                         module_put(*probed_mod);
1464                         *probed_mod = NULL;
1465                         ret = -ENOENT;
1466                 }
1467         }
1468 out:
1469         preempt_enable();
1470         jump_label_unlock();
1471
1472         return ret;
1473 }
1474
1475 int __kprobes register_kprobe(struct kprobe *p)
1476 {
1477         int ret;
1478         struct kprobe *old_p;
1479         struct module *probed_mod;
1480         kprobe_opcode_t *addr;
1481
1482         /* Adjust probe address from symbol */
1483         addr = kprobe_addr(p);
1484         if (IS_ERR(addr))
1485                 return PTR_ERR(addr);
1486         p->addr = addr;
1487
1488         ret = check_kprobe_rereg(p);
1489         if (ret)
1490                 return ret;
1491
1492         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1493         p->flags &= KPROBE_FLAG_DISABLED;
1494         p->nmissed = 0;
1495         INIT_LIST_HEAD(&p->list);
1496
1497         ret = check_kprobe_address_safe(p, &probed_mod);
1498         if (ret)
1499                 return ret;
1500
1501         mutex_lock(&kprobe_mutex);
1502
1503         old_p = get_kprobe(p->addr);
1504         if (old_p) {
1505                 /* Since this may unoptimize old_p, locking text_mutex. */
1506                 ret = register_aggr_kprobe(old_p, p);
1507                 goto out;
1508         }
1509
1510         mutex_lock(&text_mutex);        /* Avoiding text modification */
1511         ret = prepare_kprobe(p);
1512         mutex_unlock(&text_mutex);
1513         if (ret)
1514                 goto out;
1515
1516         INIT_HLIST_NODE(&p->hlist);
1517         hlist_add_head_rcu(&p->hlist,
1518                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1519
1520         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1521                 arm_kprobe(p);
1522
1523         /* Try to optimize kprobe */
1524         try_to_optimize_kprobe(p);
1525
1526 out:
1527         mutex_unlock(&kprobe_mutex);
1528
1529         if (probed_mod)
1530                 module_put(probed_mod);
1531
1532         return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(register_kprobe);
1535
1536 /* Check if all probes on the aggrprobe are disabled */
1537 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1538 {
1539         struct kprobe *kp;
1540
1541         list_for_each_entry_rcu(kp, &ap->list, list)
1542                 if (!kprobe_disabled(kp))
1543                         /*
1544                          * There is an active probe on the list.
1545                          * We can't disable this ap.
1546                          */
1547                         return 0;
1548
1549         return 1;
1550 }
1551
1552 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1553 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1554 {
1555         struct kprobe *orig_p;
1556
1557         /* Get an original kprobe for return */
1558         orig_p = __get_valid_kprobe(p);
1559         if (unlikely(orig_p == NULL))
1560                 return NULL;
1561
1562         if (!kprobe_disabled(p)) {
1563                 /* Disable probe if it is a child probe */
1564                 if (p != orig_p)
1565                         p->flags |= KPROBE_FLAG_DISABLED;
1566
1567                 /* Try to disarm and disable this/parent probe */
1568                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1569                         disarm_kprobe(orig_p, true);
1570                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1571                 }
1572         }
1573
1574         return orig_p;
1575 }
1576
1577 /*
1578  * Unregister a kprobe without a scheduler synchronization.
1579  */
1580 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1581 {
1582         struct kprobe *ap, *list_p;
1583
1584         /* Disable kprobe. This will disarm it if needed. */
1585         ap = __disable_kprobe(p);
1586         if (ap == NULL)
1587                 return -EINVAL;
1588
1589         if (ap == p)
1590                 /*
1591                  * This probe is an independent(and non-optimized) kprobe
1592                  * (not an aggrprobe). Remove from the hash list.
1593                  */
1594                 goto disarmed;
1595
1596         /* Following process expects this probe is an aggrprobe */
1597         WARN_ON(!kprobe_aggrprobe(ap));
1598
1599         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1600                 /*
1601                  * !disarmed could be happen if the probe is under delayed
1602                  * unoptimizing.
1603                  */
1604                 goto disarmed;
1605         else {
1606                 /* If disabling probe has special handlers, update aggrprobe */
1607                 if (p->break_handler && !kprobe_gone(p))
1608                         ap->break_handler = NULL;
1609                 if (p->post_handler && !kprobe_gone(p)) {
1610                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1611                                 if ((list_p != p) && (list_p->post_handler))
1612                                         goto noclean;
1613                         }
1614                         ap->post_handler = NULL;
1615                 }
1616 noclean:
1617                 /*
1618                  * Remove from the aggrprobe: this path will do nothing in
1619                  * __unregister_kprobe_bottom().
1620                  */
1621                 list_del_rcu(&p->list);
1622                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1623                         /*
1624                          * Try to optimize this probe again, because post
1625                          * handler may have been changed.
1626                          */
1627                         optimize_kprobe(ap);
1628         }
1629         return 0;
1630
1631 disarmed:
1632         BUG_ON(!kprobe_disarmed(ap));
1633         hlist_del_rcu(&ap->hlist);
1634         return 0;
1635 }
1636
1637 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1638 {
1639         struct kprobe *ap;
1640
1641         if (list_empty(&p->list))
1642                 /* This is an independent kprobe */
1643                 arch_remove_kprobe(p);
1644         else if (list_is_singular(&p->list)) {
1645                 /* This is the last child of an aggrprobe */
1646                 ap = list_entry(p->list.next, struct kprobe, list);
1647                 list_del(&p->list);
1648                 free_aggr_kprobe(ap);
1649         }
1650         /* Otherwise, do nothing. */
1651 }
1652
1653 int __kprobes register_kprobes(struct kprobe **kps, int num)
1654 {
1655         int i, ret = 0;
1656
1657         if (num <= 0)
1658                 return -EINVAL;
1659         for (i = 0; i < num; i++) {
1660                 ret = register_kprobe(kps[i]);
1661                 if (ret < 0) {
1662                         if (i > 0)
1663                                 unregister_kprobes(kps, i);
1664                         break;
1665                 }
1666         }
1667         return ret;
1668 }
1669 EXPORT_SYMBOL_GPL(register_kprobes);
1670
1671 void __kprobes unregister_kprobe(struct kprobe *p)
1672 {
1673         unregister_kprobes(&p, 1);
1674 }
1675 EXPORT_SYMBOL_GPL(unregister_kprobe);
1676
1677 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1678 {
1679         int i;
1680
1681         if (num <= 0)
1682                 return;
1683         mutex_lock(&kprobe_mutex);
1684         for (i = 0; i < num; i++)
1685                 if (__unregister_kprobe_top(kps[i]) < 0)
1686                         kps[i]->addr = NULL;
1687         mutex_unlock(&kprobe_mutex);
1688
1689         synchronize_sched();
1690         for (i = 0; i < num; i++)
1691                 if (kps[i]->addr)
1692                         __unregister_kprobe_bottom(kps[i]);
1693 }
1694 EXPORT_SYMBOL_GPL(unregister_kprobes);
1695
1696 static struct notifier_block kprobe_exceptions_nb = {
1697         .notifier_call = kprobe_exceptions_notify,
1698         .priority = 0x7fffffff /* we need to be notified first */
1699 };
1700
1701 unsigned long __weak arch_deref_entry_point(void *entry)
1702 {
1703         return (unsigned long)entry;
1704 }
1705
1706 int __kprobes register_jprobes(struct jprobe **jps, int num)
1707 {
1708         struct jprobe *jp;
1709         int ret = 0, i;
1710
1711         if (num <= 0)
1712                 return -EINVAL;
1713         for (i = 0; i < num; i++) {
1714                 unsigned long addr, offset;
1715                 jp = jps[i];
1716                 addr = arch_deref_entry_point(jp->entry);
1717
1718                 /* Verify probepoint is a function entry point */
1719                 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1720                     offset == 0) {
1721                         jp->kp.pre_handler = setjmp_pre_handler;
1722                         jp->kp.break_handler = longjmp_break_handler;
1723                         ret = register_kprobe(&jp->kp);
1724                 } else
1725                         ret = -EINVAL;
1726
1727                 if (ret < 0) {
1728                         if (i > 0)
1729                                 unregister_jprobes(jps, i);
1730                         break;
1731                 }
1732         }
1733         return ret;
1734 }
1735 EXPORT_SYMBOL_GPL(register_jprobes);
1736
1737 int __kprobes register_jprobe(struct jprobe *jp)
1738 {
1739         return register_jprobes(&jp, 1);
1740 }
1741 EXPORT_SYMBOL_GPL(register_jprobe);
1742
1743 void __kprobes unregister_jprobe(struct jprobe *jp)
1744 {
1745         unregister_jprobes(&jp, 1);
1746 }
1747 EXPORT_SYMBOL_GPL(unregister_jprobe);
1748
1749 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1750 {
1751         int i;
1752
1753         if (num <= 0)
1754                 return;
1755         mutex_lock(&kprobe_mutex);
1756         for (i = 0; i < num; i++)
1757                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1758                         jps[i]->kp.addr = NULL;
1759         mutex_unlock(&kprobe_mutex);
1760
1761         synchronize_sched();
1762         for (i = 0; i < num; i++) {
1763                 if (jps[i]->kp.addr)
1764                         __unregister_kprobe_bottom(&jps[i]->kp);
1765         }
1766 }
1767 EXPORT_SYMBOL_GPL(unregister_jprobes);
1768
1769 #ifdef CONFIG_KRETPROBES
1770 /*
1771  * This kprobe pre_handler is registered with every kretprobe. When probe
1772  * hits it will set up the return probe.
1773  */
1774 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1775                                            struct pt_regs *regs)
1776 {
1777         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1778         unsigned long hash, flags = 0;
1779         struct kretprobe_instance *ri;
1780
1781         /*TODO: consider to only swap the RA after the last pre_handler fired */
1782         hash = hash_ptr(current, KPROBE_HASH_BITS);
1783         raw_spin_lock_irqsave(&rp->lock, flags);
1784         if (!hlist_empty(&rp->free_instances)) {
1785                 ri = hlist_entry(rp->free_instances.first,
1786                                 struct kretprobe_instance, hlist);
1787                 hlist_del(&ri->hlist);
1788                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1789
1790                 ri->rp = rp;
1791                 ri->task = current;
1792
1793                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1794                         raw_spin_lock_irqsave(&rp->lock, flags);
1795                         hlist_add_head(&ri->hlist, &rp->free_instances);
1796                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1797                         return 0;
1798                 }
1799
1800                 arch_prepare_kretprobe(ri, regs);
1801
1802                 /* XXX(hch): why is there no hlist_move_head? */
1803                 INIT_HLIST_NODE(&ri->hlist);
1804                 kretprobe_table_lock(hash, &flags);
1805                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1806                 kretprobe_table_unlock(hash, &flags);
1807         } else {
1808                 rp->nmissed++;
1809                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1810         }
1811         return 0;
1812 }
1813
1814 int __kprobes register_kretprobe(struct kretprobe *rp)
1815 {
1816         int ret = 0;
1817         struct kretprobe_instance *inst;
1818         int i;
1819         void *addr;
1820
1821         if (kretprobe_blacklist_size) {
1822                 addr = kprobe_addr(&rp->kp);
1823                 if (IS_ERR(addr))
1824                         return PTR_ERR(addr);
1825
1826                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1827                         if (kretprobe_blacklist[i].addr == addr)
1828                                 return -EINVAL;
1829                 }
1830         }
1831
1832         rp->kp.pre_handler = pre_handler_kretprobe;
1833         rp->kp.post_handler = NULL;
1834         rp->kp.fault_handler = NULL;
1835         rp->kp.break_handler = NULL;
1836
1837         /* Pre-allocate memory for max kretprobe instances */
1838         if (rp->maxactive <= 0) {
1839 #ifdef CONFIG_PREEMPT
1840                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1841 #else
1842                 rp->maxactive = num_possible_cpus();
1843 #endif
1844         }
1845         raw_spin_lock_init(&rp->lock);
1846         INIT_HLIST_HEAD(&rp->free_instances);
1847         for (i = 0; i < rp->maxactive; i++) {
1848                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1849                                rp->data_size, GFP_KERNEL);
1850                 if (inst == NULL) {
1851                         free_rp_inst(rp);
1852                         return -ENOMEM;
1853                 }
1854                 INIT_HLIST_NODE(&inst->hlist);
1855                 hlist_add_head(&inst->hlist, &rp->free_instances);
1856         }
1857
1858         rp->nmissed = 0;
1859         /* Establish function entry probe point */
1860         ret = register_kprobe(&rp->kp);
1861         if (ret != 0)
1862                 free_rp_inst(rp);
1863         return ret;
1864 }
1865 EXPORT_SYMBOL_GPL(register_kretprobe);
1866
1867 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1868 {
1869         int ret = 0, i;
1870
1871         if (num <= 0)
1872                 return -EINVAL;
1873         for (i = 0; i < num; i++) {
1874                 ret = register_kretprobe(rps[i]);
1875                 if (ret < 0) {
1876                         if (i > 0)
1877                                 unregister_kretprobes(rps, i);
1878                         break;
1879                 }
1880         }
1881         return ret;
1882 }
1883 EXPORT_SYMBOL_GPL(register_kretprobes);
1884
1885 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1886 {
1887         unregister_kretprobes(&rp, 1);
1888 }
1889 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1890
1891 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1892 {
1893         int i;
1894
1895         if (num <= 0)
1896                 return;
1897         mutex_lock(&kprobe_mutex);
1898         for (i = 0; i < num; i++)
1899                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1900                         rps[i]->kp.addr = NULL;
1901         mutex_unlock(&kprobe_mutex);
1902
1903         synchronize_sched();
1904         for (i = 0; i < num; i++) {
1905                 if (rps[i]->kp.addr) {
1906                         __unregister_kprobe_bottom(&rps[i]->kp);
1907                         cleanup_rp_inst(rps[i]);
1908                 }
1909         }
1910 }
1911 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1912
1913 #else /* CONFIG_KRETPROBES */
1914 int __kprobes register_kretprobe(struct kretprobe *rp)
1915 {
1916         return -ENOSYS;
1917 }
1918 EXPORT_SYMBOL_GPL(register_kretprobe);
1919
1920 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1921 {
1922         return -ENOSYS;
1923 }
1924 EXPORT_SYMBOL_GPL(register_kretprobes);
1925
1926 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1927 {
1928 }
1929 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1930
1931 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1932 {
1933 }
1934 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1935
1936 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1937                                            struct pt_regs *regs)
1938 {
1939         return 0;
1940 }
1941
1942 #endif /* CONFIG_KRETPROBES */
1943
1944 /* Set the kprobe gone and remove its instruction buffer. */
1945 static void __kprobes kill_kprobe(struct kprobe *p)
1946 {
1947         struct kprobe *kp;
1948
1949         p->flags |= KPROBE_FLAG_GONE;
1950         if (kprobe_aggrprobe(p)) {
1951                 /*
1952                  * If this is an aggr_kprobe, we have to list all the
1953                  * chained probes and mark them GONE.
1954                  */
1955                 list_for_each_entry_rcu(kp, &p->list, list)
1956                         kp->flags |= KPROBE_FLAG_GONE;
1957                 p->post_handler = NULL;
1958                 p->break_handler = NULL;
1959                 kill_optimized_kprobe(p);
1960         }
1961         /*
1962          * Here, we can remove insn_slot safely, because no thread calls
1963          * the original probed function (which will be freed soon) any more.
1964          */
1965         arch_remove_kprobe(p);
1966 }
1967
1968 /* Disable one kprobe */
1969 int __kprobes disable_kprobe(struct kprobe *kp)
1970 {
1971         int ret = 0;
1972
1973         mutex_lock(&kprobe_mutex);
1974
1975         /* Disable this kprobe */
1976         if (__disable_kprobe(kp) == NULL)
1977                 ret = -EINVAL;
1978
1979         mutex_unlock(&kprobe_mutex);
1980         return ret;
1981 }
1982 EXPORT_SYMBOL_GPL(disable_kprobe);
1983
1984 /* Enable one kprobe */
1985 int __kprobes enable_kprobe(struct kprobe *kp)
1986 {
1987         int ret = 0;
1988         struct kprobe *p;
1989
1990         mutex_lock(&kprobe_mutex);
1991
1992         /* Check whether specified probe is valid. */
1993         p = __get_valid_kprobe(kp);
1994         if (unlikely(p == NULL)) {
1995                 ret = -EINVAL;
1996                 goto out;
1997         }
1998
1999         if (kprobe_gone(kp)) {
2000                 /* This kprobe has gone, we couldn't enable it. */
2001                 ret = -EINVAL;
2002                 goto out;
2003         }
2004
2005         if (p != kp)
2006                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2007
2008         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2009                 p->flags &= ~KPROBE_FLAG_DISABLED;
2010                 arm_kprobe(p);
2011         }
2012 out:
2013         mutex_unlock(&kprobe_mutex);
2014         return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(enable_kprobe);
2017
2018 void __kprobes dump_kprobe(struct kprobe *kp)
2019 {
2020         printk(KERN_WARNING "Dumping kprobe:\n");
2021         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2022                kp->symbol_name, kp->addr, kp->offset);
2023 }
2024
2025 /* Module notifier call back, checking kprobes on the module */
2026 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2027                                              unsigned long val, void *data)
2028 {
2029         struct module *mod = data;
2030         struct hlist_head *head;
2031         struct hlist_node *node;
2032         struct kprobe *p;
2033         unsigned int i;
2034         int checkcore = (val == MODULE_STATE_GOING);
2035
2036         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2037                 return NOTIFY_DONE;
2038
2039         /*
2040          * When MODULE_STATE_GOING was notified, both of module .text and
2041          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2042          * notified, only .init.text section would be freed. We need to
2043          * disable kprobes which have been inserted in the sections.
2044          */
2045         mutex_lock(&kprobe_mutex);
2046         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2047                 head = &kprobe_table[i];
2048                 hlist_for_each_entry_rcu(p, node, head, hlist)
2049                         if (within_module_init((unsigned long)p->addr, mod) ||
2050                             (checkcore &&
2051                              within_module_core((unsigned long)p->addr, mod))) {
2052                                 /*
2053                                  * The vaddr this probe is installed will soon
2054                                  * be vfreed buy not synced to disk. Hence,
2055                                  * disarming the breakpoint isn't needed.
2056                                  */
2057                                 kill_kprobe(p);
2058                         }
2059         }
2060         mutex_unlock(&kprobe_mutex);
2061         return NOTIFY_DONE;
2062 }
2063
2064 static struct notifier_block kprobe_module_nb = {
2065         .notifier_call = kprobes_module_callback,
2066         .priority = 0
2067 };
2068
2069 static int __init init_kprobes(void)
2070 {
2071         int i, err = 0;
2072         unsigned long offset = 0, size = 0;
2073         char *modname, namebuf[128];
2074         const char *symbol_name;
2075         void *addr;
2076         struct kprobe_blackpoint *kb;
2077
2078         /* FIXME allocate the probe table, currently defined statically */
2079         /* initialize all list heads */
2080         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2081                 INIT_HLIST_HEAD(&kprobe_table[i]);
2082                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2083                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2084         }
2085
2086         /*
2087          * Lookup and populate the kprobe_blacklist.
2088          *
2089          * Unlike the kretprobe blacklist, we'll need to determine
2090          * the range of addresses that belong to the said functions,
2091          * since a kprobe need not necessarily be at the beginning
2092          * of a function.
2093          */
2094         for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2095                 kprobe_lookup_name(kb->name, addr);
2096                 if (!addr)
2097                         continue;
2098
2099                 kb->start_addr = (unsigned long)addr;
2100                 symbol_name = kallsyms_lookup(kb->start_addr,
2101                                 &size, &offset, &modname, namebuf);
2102                 if (!symbol_name)
2103                         kb->range = 0;
2104                 else
2105                         kb->range = size;
2106         }
2107
2108         if (kretprobe_blacklist_size) {
2109                 /* lookup the function address from its name */
2110                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2111                         kprobe_lookup_name(kretprobe_blacklist[i].name,
2112                                            kretprobe_blacklist[i].addr);
2113                         if (!kretprobe_blacklist[i].addr)
2114                                 printk("kretprobe: lookup failed: %s\n",
2115                                        kretprobe_blacklist[i].name);
2116                 }
2117         }
2118
2119 #if defined(CONFIG_OPTPROBES)
2120 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2121         /* Init kprobe_optinsn_slots */
2122         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2123 #endif
2124         /* By default, kprobes can be optimized */
2125         kprobes_allow_optimization = true;
2126 #endif
2127
2128         /* By default, kprobes are armed */
2129         kprobes_all_disarmed = false;
2130
2131         err = arch_init_kprobes();
2132         if (!err)
2133                 err = register_die_notifier(&kprobe_exceptions_nb);
2134         if (!err)
2135                 err = register_module_notifier(&kprobe_module_nb);
2136
2137         kprobes_initialized = (err == 0);
2138
2139         if (!err)
2140                 init_test_probes();
2141         return err;
2142 }
2143
2144 #ifdef CONFIG_DEBUG_FS
2145 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2146                 const char *sym, int offset, char *modname, struct kprobe *pp)
2147 {
2148         char *kprobe_type;
2149
2150         if (p->pre_handler == pre_handler_kretprobe)
2151                 kprobe_type = "r";
2152         else if (p->pre_handler == setjmp_pre_handler)
2153                 kprobe_type = "j";
2154         else
2155                 kprobe_type = "k";
2156
2157         if (sym)
2158                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2159                         p->addr, kprobe_type, sym, offset,
2160                         (modname ? modname : " "));
2161         else
2162                 seq_printf(pi, "%p  %s  %p ",
2163                         p->addr, kprobe_type, p->addr);
2164
2165         if (!pp)
2166                 pp = p;
2167         seq_printf(pi, "%s%s%s%s\n",
2168                 (kprobe_gone(p) ? "[GONE]" : ""),
2169                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2170                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2171                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2172 }
2173
2174 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2175 {
2176         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2177 }
2178
2179 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2180 {
2181         (*pos)++;
2182         if (*pos >= KPROBE_TABLE_SIZE)
2183                 return NULL;
2184         return pos;
2185 }
2186
2187 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2188 {
2189         /* Nothing to do */
2190 }
2191
2192 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2193 {
2194         struct hlist_head *head;
2195         struct hlist_node *node;
2196         struct kprobe *p, *kp;
2197         const char *sym = NULL;
2198         unsigned int i = *(loff_t *) v;
2199         unsigned long offset = 0;
2200         char *modname, namebuf[128];
2201
2202         head = &kprobe_table[i];
2203         preempt_disable();
2204         hlist_for_each_entry_rcu(p, node, head, hlist) {
2205                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2206                                         &offset, &modname, namebuf);
2207                 if (kprobe_aggrprobe(p)) {
2208                         list_for_each_entry_rcu(kp, &p->list, list)
2209                                 report_probe(pi, kp, sym, offset, modname, p);
2210                 } else
2211                         report_probe(pi, p, sym, offset, modname, NULL);
2212         }
2213         preempt_enable();
2214         return 0;
2215 }
2216
2217 static const struct seq_operations kprobes_seq_ops = {
2218         .start = kprobe_seq_start,
2219         .next  = kprobe_seq_next,
2220         .stop  = kprobe_seq_stop,
2221         .show  = show_kprobe_addr
2222 };
2223
2224 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2225 {
2226         return seq_open(filp, &kprobes_seq_ops);
2227 }
2228
2229 static const struct file_operations debugfs_kprobes_operations = {
2230         .open           = kprobes_open,
2231         .read           = seq_read,
2232         .llseek         = seq_lseek,
2233         .release        = seq_release,
2234 };
2235
2236 static void __kprobes arm_all_kprobes(void)
2237 {
2238         struct hlist_head *head;
2239         struct hlist_node *node;
2240         struct kprobe *p;
2241         unsigned int i;
2242
2243         mutex_lock(&kprobe_mutex);
2244
2245         /* If kprobes are armed, just return */
2246         if (!kprobes_all_disarmed)
2247                 goto already_enabled;
2248
2249         /* Arming kprobes doesn't optimize kprobe itself */
2250         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2251                 head = &kprobe_table[i];
2252                 hlist_for_each_entry_rcu(p, node, head, hlist)
2253                         if (!kprobe_disabled(p))
2254                                 arm_kprobe(p);
2255         }
2256
2257         kprobes_all_disarmed = false;
2258         printk(KERN_INFO "Kprobes globally enabled\n");
2259
2260 already_enabled:
2261         mutex_unlock(&kprobe_mutex);
2262         return;
2263 }
2264
2265 static void __kprobes disarm_all_kprobes(void)
2266 {
2267         struct hlist_head *head;
2268         struct hlist_node *node;
2269         struct kprobe *p;
2270         unsigned int i;
2271
2272         mutex_lock(&kprobe_mutex);
2273
2274         /* If kprobes are already disarmed, just return */
2275         if (kprobes_all_disarmed) {
2276                 mutex_unlock(&kprobe_mutex);
2277                 return;
2278         }
2279
2280         kprobes_all_disarmed = true;
2281         printk(KERN_INFO "Kprobes globally disabled\n");
2282
2283         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2284                 head = &kprobe_table[i];
2285                 hlist_for_each_entry_rcu(p, node, head, hlist) {
2286                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2287                                 disarm_kprobe(p, false);
2288                 }
2289         }
2290         mutex_unlock(&kprobe_mutex);
2291
2292         /* Wait for disarming all kprobes by optimizer */
2293         wait_for_kprobe_optimizer();
2294 }
2295
2296 /*
2297  * XXX: The debugfs bool file interface doesn't allow for callbacks
2298  * when the bool state is switched. We can reuse that facility when
2299  * available
2300  */
2301 static ssize_t read_enabled_file_bool(struct file *file,
2302                char __user *user_buf, size_t count, loff_t *ppos)
2303 {
2304         char buf[3];
2305
2306         if (!kprobes_all_disarmed)
2307                 buf[0] = '1';
2308         else
2309                 buf[0] = '0';
2310         buf[1] = '\n';
2311         buf[2] = 0x00;
2312         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2313 }
2314
2315 static ssize_t write_enabled_file_bool(struct file *file,
2316                const char __user *user_buf, size_t count, loff_t *ppos)
2317 {
2318         char buf[32];
2319         size_t buf_size;
2320
2321         buf_size = min(count, (sizeof(buf)-1));
2322         if (copy_from_user(buf, user_buf, buf_size))
2323                 return -EFAULT;
2324
2325         switch (buf[0]) {
2326         case 'y':
2327         case 'Y':
2328         case '1':
2329                 arm_all_kprobes();
2330                 break;
2331         case 'n':
2332         case 'N':
2333         case '0':
2334                 disarm_all_kprobes();
2335                 break;
2336         }
2337
2338         return count;
2339 }
2340
2341 static const struct file_operations fops_kp = {
2342         .read =         read_enabled_file_bool,
2343         .write =        write_enabled_file_bool,
2344         .llseek =       default_llseek,
2345 };
2346
2347 static int __kprobes debugfs_kprobe_init(void)
2348 {
2349         struct dentry *dir, *file;
2350         unsigned int value = 1;
2351
2352         dir = debugfs_create_dir("kprobes", NULL);
2353         if (!dir)
2354                 return -ENOMEM;
2355
2356         file = debugfs_create_file("list", 0444, dir, NULL,
2357                                 &debugfs_kprobes_operations);
2358         if (!file) {
2359                 debugfs_remove(dir);
2360                 return -ENOMEM;
2361         }
2362
2363         file = debugfs_create_file("enabled", 0600, dir,
2364                                         &value, &fops_kp);
2365         if (!file) {
2366                 debugfs_remove(dir);
2367                 return -ENOMEM;
2368         }
2369
2370         return 0;
2371 }
2372
2373 late_initcall(debugfs_kprobe_init);
2374 #endif /* CONFIG_DEBUG_FS */
2375
2376 module_init(init_kprobes);
2377
2378 /* defined in arch/.../kernel/kprobes.c */
2379 EXPORT_SYMBOL_GPL(jprobe_return);