]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/locking/osq_lock.c
Merge branch 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / kernel / locking / osq_lock.c
1 #include <linux/percpu.h>
2 #include <linux/sched.h>
3 #include <linux/osq_lock.h>
4
5 /*
6  * An MCS like lock especially tailored for optimistic spinning for sleeping
7  * lock implementations (mutex, rwsem, etc).
8  *
9  * Using a single mcs node per CPU is safe because sleeping locks should not be
10  * called from interrupt context and we have preemption disabled while
11  * spinning.
12  */
13 static DEFINE_PER_CPU_SHARED_ALIGNED(struct optimistic_spin_node, osq_node);
14
15 /*
16  * We use the value 0 to represent "no CPU", thus the encoded value
17  * will be the CPU number incremented by 1.
18  */
19 static inline int encode_cpu(int cpu_nr)
20 {
21         return cpu_nr + 1;
22 }
23
24 static inline struct optimistic_spin_node *decode_cpu(int encoded_cpu_val)
25 {
26         int cpu_nr = encoded_cpu_val - 1;
27
28         return per_cpu_ptr(&osq_node, cpu_nr);
29 }
30
31 /*
32  * Get a stable @node->next pointer, either for unlock() or unqueue() purposes.
33  * Can return NULL in case we were the last queued and we updated @lock instead.
34  */
35 static inline struct optimistic_spin_node *
36 osq_wait_next(struct optimistic_spin_queue *lock,
37               struct optimistic_spin_node *node,
38               struct optimistic_spin_node *prev)
39 {
40         struct optimistic_spin_node *next = NULL;
41         int curr = encode_cpu(smp_processor_id());
42         int old;
43
44         /*
45          * If there is a prev node in queue, then the 'old' value will be
46          * the prev node's CPU #, else it's set to OSQ_UNLOCKED_VAL since if
47          * we're currently last in queue, then the queue will then become empty.
48          */
49         old = prev ? prev->cpu : OSQ_UNLOCKED_VAL;
50
51         for (;;) {
52                 if (atomic_read(&lock->tail) == curr &&
53                     atomic_cmpxchg_acquire(&lock->tail, curr, old) == curr) {
54                         /*
55                          * We were the last queued, we moved @lock back. @prev
56                          * will now observe @lock and will complete its
57                          * unlock()/unqueue().
58                          */
59                         break;
60                 }
61
62                 /*
63                  * We must xchg() the @node->next value, because if we were to
64                  * leave it in, a concurrent unlock()/unqueue() from
65                  * @node->next might complete Step-A and think its @prev is
66                  * still valid.
67                  *
68                  * If the concurrent unlock()/unqueue() wins the race, we'll
69                  * wait for either @lock to point to us, through its Step-B, or
70                  * wait for a new @node->next from its Step-C.
71                  */
72                 if (node->next) {
73                         next = xchg(&node->next, NULL);
74                         if (next)
75                                 break;
76                 }
77
78                 cpu_relax_lowlatency();
79         }
80
81         return next;
82 }
83
84 bool osq_lock(struct optimistic_spin_queue *lock)
85 {
86         struct optimistic_spin_node *node = this_cpu_ptr(&osq_node);
87         struct optimistic_spin_node *prev, *next;
88         int curr = encode_cpu(smp_processor_id());
89         int old;
90
91         node->locked = 0;
92         node->next = NULL;
93         node->cpu = curr;
94
95         /*
96          * ACQUIRE semantics, pairs with corresponding RELEASE
97          * in unlock() uncontended, or fastpath.
98          */
99         old = atomic_xchg_acquire(&lock->tail, curr);
100         if (old == OSQ_UNLOCKED_VAL)
101                 return true;
102
103         prev = decode_cpu(old);
104         node->prev = prev;
105         WRITE_ONCE(prev->next, node);
106
107         /*
108          * Normally @prev is untouchable after the above store; because at that
109          * moment unlock can proceed and wipe the node element from stack.
110          *
111          * However, since our nodes are static per-cpu storage, we're
112          * guaranteed their existence -- this allows us to apply
113          * cmpxchg in an attempt to undo our queueing.
114          */
115
116         while (!READ_ONCE(node->locked)) {
117                 /*
118                  * If we need to reschedule bail... so we can block.
119                  */
120                 if (need_resched())
121                         goto unqueue;
122
123                 cpu_relax_lowlatency();
124         }
125         return true;
126
127 unqueue:
128         /*
129          * Step - A  -- stabilize @prev
130          *
131          * Undo our @prev->next assignment; this will make @prev's
132          * unlock()/unqueue() wait for a next pointer since @lock points to us
133          * (or later).
134          */
135
136         for (;;) {
137                 if (prev->next == node &&
138                     cmpxchg(&prev->next, node, NULL) == node)
139                         break;
140
141                 /*
142                  * We can only fail the cmpxchg() racing against an unlock(),
143                  * in which case we should observe @node->locked becomming
144                  * true.
145                  */
146                 if (smp_load_acquire(&node->locked))
147                         return true;
148
149                 cpu_relax_lowlatency();
150
151                 /*
152                  * Or we race against a concurrent unqueue()'s step-B, in which
153                  * case its step-C will write us a new @node->prev pointer.
154                  */
155                 prev = READ_ONCE(node->prev);
156         }
157
158         /*
159          * Step - B -- stabilize @next
160          *
161          * Similar to unlock(), wait for @node->next or move @lock from @node
162          * back to @prev.
163          */
164
165         next = osq_wait_next(lock, node, prev);
166         if (!next)
167                 return false;
168
169         /*
170          * Step - C -- unlink
171          *
172          * @prev is stable because its still waiting for a new @prev->next
173          * pointer, @next is stable because our @node->next pointer is NULL and
174          * it will wait in Step-A.
175          */
176
177         WRITE_ONCE(next->prev, prev);
178         WRITE_ONCE(prev->next, next);
179
180         return false;
181 }
182
183 void osq_unlock(struct optimistic_spin_queue *lock)
184 {
185         struct optimistic_spin_node *node, *next;
186         int curr = encode_cpu(smp_processor_id());
187
188         /*
189          * Fast path for the uncontended case.
190          */
191         if (likely(atomic_cmpxchg_release(&lock->tail, curr,
192                                           OSQ_UNLOCKED_VAL) == curr))
193                 return;
194
195         /*
196          * Second most likely case.
197          */
198         node = this_cpu_ptr(&osq_node);
199         next = xchg(&node->next, NULL);
200         if (next) {
201                 WRITE_ONCE(next->locked, 1);
202                 return;
203         }
204
205         next = osq_wait_next(lock, node, NULL);
206         if (next)
207                 WRITE_ONCE(next->locked, 1);
208 }