]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/locking/rwsem-xadd.c
sched: Don't scan all-offline ->cpus_allowed twice if !CONFIG_CPUSETS
[karo-tx-linux.git] / kernel / locking / rwsem-xadd.c
1 /* rwsem.c: R/W semaphores: contention handling functions
2  *
3  * Written by David Howells (dhowells@redhat.com).
4  * Derived from arch/i386/kernel/semaphore.c
5  *
6  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
7  * and Michel Lespinasse <walken@google.com>
8  *
9  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
10  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
11  */
12 #include <linux/rwsem.h>
13 #include <linux/sched.h>
14 #include <linux/init.h>
15 #include <linux/export.h>
16 #include <linux/sched/rt.h>
17 #include <linux/osq_lock.h>
18
19 #include "rwsem.h"
20
21 /*
22  * Guide to the rw_semaphore's count field for common values.
23  * (32-bit case illustrated, similar for 64-bit)
24  *
25  * 0x0000000X   (1) X readers active or attempting lock, no writer waiting
26  *                  X = #active_readers + #readers attempting to lock
27  *                  (X*ACTIVE_BIAS)
28  *
29  * 0x00000000   rwsem is unlocked, and no one is waiting for the lock or
30  *              attempting to read lock or write lock.
31  *
32  * 0xffff000X   (1) X readers active or attempting lock, with waiters for lock
33  *                  X = #active readers + # readers attempting lock
34  *                  (X*ACTIVE_BIAS + WAITING_BIAS)
35  *              (2) 1 writer attempting lock, no waiters for lock
36  *                  X-1 = #active readers + #readers attempting lock
37  *                  ((X-1)*ACTIVE_BIAS + ACTIVE_WRITE_BIAS)
38  *              (3) 1 writer active, no waiters for lock
39  *                  X-1 = #active readers + #readers attempting lock
40  *                  ((X-1)*ACTIVE_BIAS + ACTIVE_WRITE_BIAS)
41  *
42  * 0xffff0001   (1) 1 reader active or attempting lock, waiters for lock
43  *                  (WAITING_BIAS + ACTIVE_BIAS)
44  *              (2) 1 writer active or attempting lock, no waiters for lock
45  *                  (ACTIVE_WRITE_BIAS)
46  *
47  * 0xffff0000   (1) There are writers or readers queued but none active
48  *                  or in the process of attempting lock.
49  *                  (WAITING_BIAS)
50  *              Note: writer can attempt to steal lock for this count by adding
51  *              ACTIVE_WRITE_BIAS in cmpxchg and checking the old count
52  *
53  * 0xfffe0001   (1) 1 writer active, or attempting lock. Waiters on queue.
54  *                  (ACTIVE_WRITE_BIAS + WAITING_BIAS)
55  *
56  * Note: Readers attempt to lock by adding ACTIVE_BIAS in down_read and checking
57  *       the count becomes more than 0 for successful lock acquisition,
58  *       i.e. the case where there are only readers or nobody has lock.
59  *       (1st and 2nd case above).
60  *
61  *       Writers attempt to lock by adding ACTIVE_WRITE_BIAS in down_write and
62  *       checking the count becomes ACTIVE_WRITE_BIAS for successful lock
63  *       acquisition (i.e. nobody else has lock or attempts lock).  If
64  *       unsuccessful, in rwsem_down_write_failed, we'll check to see if there
65  *       are only waiters but none active (5th case above), and attempt to
66  *       steal the lock.
67  *
68  */
69
70 /*
71  * Initialize an rwsem:
72  */
73 void __init_rwsem(struct rw_semaphore *sem, const char *name,
74                   struct lock_class_key *key)
75 {
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77         /*
78          * Make sure we are not reinitializing a held semaphore:
79          */
80         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
81         lockdep_init_map(&sem->dep_map, name, key, 0);
82 #endif
83         sem->count = RWSEM_UNLOCKED_VALUE;
84         raw_spin_lock_init(&sem->wait_lock);
85         INIT_LIST_HEAD(&sem->wait_list);
86 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
87         sem->owner = NULL;
88         osq_lock_init(&sem->osq);
89 #endif
90 }
91
92 EXPORT_SYMBOL(__init_rwsem);
93
94 enum rwsem_waiter_type {
95         RWSEM_WAITING_FOR_WRITE,
96         RWSEM_WAITING_FOR_READ
97 };
98
99 struct rwsem_waiter {
100         struct list_head list;
101         struct task_struct *task;
102         enum rwsem_waiter_type type;
103 };
104
105 enum rwsem_wake_type {
106         RWSEM_WAKE_ANY,         /* Wake whatever's at head of wait list */
107         RWSEM_WAKE_READERS,     /* Wake readers only */
108         RWSEM_WAKE_READ_OWNED   /* Waker thread holds the read lock */
109 };
110
111 /*
112  * handle the lock release when processes blocked on it that can now run
113  * - if we come here from up_xxxx(), then:
114  *   - the 'active part' of count (&0x0000ffff) reached 0 (but may have changed)
115  *   - the 'waiting part' of count (&0xffff0000) is -ve (and will still be so)
116  * - there must be someone on the queue
117  * - the spinlock must be held by the caller
118  * - woken process blocks are discarded from the list after having task zeroed
119  * - writers are only woken if downgrading is false
120  */
121 static struct rw_semaphore *
122 __rwsem_do_wake(struct rw_semaphore *sem, enum rwsem_wake_type wake_type)
123 {
124         struct rwsem_waiter *waiter;
125         struct task_struct *tsk;
126         struct list_head *next;
127         long oldcount, woken, loop, adjustment;
128
129         waiter = list_entry(sem->wait_list.next, struct rwsem_waiter, list);
130         if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
131                 if (wake_type == RWSEM_WAKE_ANY)
132                         /* Wake writer at the front of the queue, but do not
133                          * grant it the lock yet as we want other writers
134                          * to be able to steal it.  Readers, on the other hand,
135                          * will block as they will notice the queued writer.
136                          */
137                         wake_up_process(waiter->task);
138                 goto out;
139         }
140
141         /* Writers might steal the lock before we grant it to the next reader.
142          * We prefer to do the first reader grant before counting readers
143          * so we can bail out early if a writer stole the lock.
144          */
145         adjustment = 0;
146         if (wake_type != RWSEM_WAKE_READ_OWNED) {
147                 adjustment = RWSEM_ACTIVE_READ_BIAS;
148  try_reader_grant:
149                 oldcount = rwsem_atomic_update(adjustment, sem) - adjustment;
150                 if (unlikely(oldcount < RWSEM_WAITING_BIAS)) {
151                         /* A writer stole the lock. Undo our reader grant. */
152                         if (rwsem_atomic_update(-adjustment, sem) &
153                                                 RWSEM_ACTIVE_MASK)
154                                 goto out;
155                         /* Last active locker left. Retry waking readers. */
156                         goto try_reader_grant;
157                 }
158         }
159
160         /* Grant an infinite number of read locks to the readers at the front
161          * of the queue.  Note we increment the 'active part' of the count by
162          * the number of readers before waking any processes up.
163          */
164         woken = 0;
165         do {
166                 woken++;
167
168                 if (waiter->list.next == &sem->wait_list)
169                         break;
170
171                 waiter = list_entry(waiter->list.next,
172                                         struct rwsem_waiter, list);
173
174         } while (waiter->type != RWSEM_WAITING_FOR_WRITE);
175
176         adjustment = woken * RWSEM_ACTIVE_READ_BIAS - adjustment;
177         if (waiter->type != RWSEM_WAITING_FOR_WRITE)
178                 /* hit end of list above */
179                 adjustment -= RWSEM_WAITING_BIAS;
180
181         if (adjustment)
182                 rwsem_atomic_add(adjustment, sem);
183
184         next = sem->wait_list.next;
185         loop = woken;
186         do {
187                 waiter = list_entry(next, struct rwsem_waiter, list);
188                 next = waiter->list.next;
189                 tsk = waiter->task;
190                 /*
191                  * Make sure we do not wakeup the next reader before
192                  * setting the nil condition to grant the next reader;
193                  * otherwise we could miss the wakeup on the other
194                  * side and end up sleeping again. See the pairing
195                  * in rwsem_down_read_failed().
196                  */
197                 smp_mb();
198                 waiter->task = NULL;
199                 wake_up_process(tsk);
200                 put_task_struct(tsk);
201         } while (--loop);
202
203         sem->wait_list.next = next;
204         next->prev = &sem->wait_list;
205
206  out:
207         return sem;
208 }
209
210 /*
211  * Wait for the read lock to be granted
212  */
213 __visible
214 struct rw_semaphore __sched *rwsem_down_read_failed(struct rw_semaphore *sem)
215 {
216         long count, adjustment = -RWSEM_ACTIVE_READ_BIAS;
217         struct rwsem_waiter waiter;
218         struct task_struct *tsk = current;
219
220         /* set up my own style of waitqueue */
221         waiter.task = tsk;
222         waiter.type = RWSEM_WAITING_FOR_READ;
223         get_task_struct(tsk);
224
225         raw_spin_lock_irq(&sem->wait_lock);
226         if (list_empty(&sem->wait_list))
227                 adjustment += RWSEM_WAITING_BIAS;
228         list_add_tail(&waiter.list, &sem->wait_list);
229
230         /* we're now waiting on the lock, but no longer actively locking */
231         count = rwsem_atomic_update(adjustment, sem);
232
233         /* If there are no active locks, wake the front queued process(es).
234          *
235          * If there are no writers and we are first in the queue,
236          * wake our own waiter to join the existing active readers !
237          */
238         if (count == RWSEM_WAITING_BIAS ||
239             (count > RWSEM_WAITING_BIAS &&
240              adjustment != -RWSEM_ACTIVE_READ_BIAS))
241                 sem = __rwsem_do_wake(sem, RWSEM_WAKE_ANY);
242
243         raw_spin_unlock_irq(&sem->wait_lock);
244
245         /* wait to be given the lock */
246         while (true) {
247                 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
248                 if (!waiter.task)
249                         break;
250                 schedule();
251         }
252
253         __set_task_state(tsk, TASK_RUNNING);
254         return sem;
255 }
256 EXPORT_SYMBOL(rwsem_down_read_failed);
257
258 static inline bool rwsem_try_write_lock(long count, struct rw_semaphore *sem)
259 {
260         /*
261          * Try acquiring the write lock. Check count first in order
262          * to reduce unnecessary expensive cmpxchg() operations.
263          */
264         if (count == RWSEM_WAITING_BIAS &&
265             cmpxchg(&sem->count, RWSEM_WAITING_BIAS,
266                     RWSEM_ACTIVE_WRITE_BIAS) == RWSEM_WAITING_BIAS) {
267                 if (!list_is_singular(&sem->wait_list))
268                         rwsem_atomic_update(RWSEM_WAITING_BIAS, sem);
269                 rwsem_set_owner(sem);
270                 return true;
271         }
272
273         return false;
274 }
275
276 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
277 /*
278  * Try to acquire write lock before the writer has been put on wait queue.
279  */
280 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
281 {
282         long old, count = READ_ONCE(sem->count);
283
284         while (true) {
285                 if (!(count == 0 || count == RWSEM_WAITING_BIAS))
286                         return false;
287
288                 old = cmpxchg(&sem->count, count, count + RWSEM_ACTIVE_WRITE_BIAS);
289                 if (old == count) {
290                         rwsem_set_owner(sem);
291                         return true;
292                 }
293
294                 count = old;
295         }
296 }
297
298 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
299 {
300         struct task_struct *owner;
301         bool ret = true;
302
303         if (need_resched())
304                 return false;
305
306         rcu_read_lock();
307         owner = READ_ONCE(sem->owner);
308         if (!owner) {
309                 long count = READ_ONCE(sem->count);
310                 /*
311                  * If sem->owner is not set, yet we have just recently entered the
312                  * slowpath with the lock being active, then there is a possibility
313                  * reader(s) may have the lock. To be safe, bail spinning in these
314                  * situations.
315                  */
316                 if (count & RWSEM_ACTIVE_MASK)
317                         ret = false;
318                 goto done;
319         }
320
321         ret = owner->on_cpu;
322 done:
323         rcu_read_unlock();
324         return ret;
325 }
326
327 static noinline
328 bool rwsem_spin_on_owner(struct rw_semaphore *sem, struct task_struct *owner)
329 {
330         long count;
331
332         rcu_read_lock();
333         while (sem->owner == owner) {
334                 /*
335                  * Ensure we emit the owner->on_cpu, dereference _after_
336                  * checking sem->owner still matches owner, if that fails,
337                  * owner might point to free()d memory, if it still matches,
338                  * the rcu_read_lock() ensures the memory stays valid.
339                  */
340                 barrier();
341
342                 /* abort spinning when need_resched or owner is not running */
343                 if (!owner->on_cpu || need_resched()) {
344                         rcu_read_unlock();
345                         return false;
346                 }
347
348                 cpu_relax_lowlatency();
349         }
350         rcu_read_unlock();
351
352         if (READ_ONCE(sem->owner))
353                 return true; /* new owner, continue spinning */
354
355         /*
356          * When the owner is not set, the lock could be free or
357          * held by readers. Check the counter to verify the
358          * state.
359          */
360         count = READ_ONCE(sem->count);
361         return (count == 0 || count == RWSEM_WAITING_BIAS);
362 }
363
364 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
365 {
366         struct task_struct *owner;
367         bool taken = false;
368
369         preempt_disable();
370
371         /* sem->wait_lock should not be held when doing optimistic spinning */
372         if (!rwsem_can_spin_on_owner(sem))
373                 goto done;
374
375         if (!osq_lock(&sem->osq))
376                 goto done;
377
378         while (true) {
379                 owner = READ_ONCE(sem->owner);
380                 if (owner && !rwsem_spin_on_owner(sem, owner))
381                         break;
382
383                 /* wait_lock will be acquired if write_lock is obtained */
384                 if (rwsem_try_write_lock_unqueued(sem)) {
385                         taken = true;
386                         break;
387                 }
388
389                 /*
390                  * When there's no owner, we might have preempted between the
391                  * owner acquiring the lock and setting the owner field. If
392                  * we're an RT task that will live-lock because we won't let
393                  * the owner complete.
394                  */
395                 if (!owner && (need_resched() || rt_task(current)))
396                         break;
397
398                 /*
399                  * The cpu_relax() call is a compiler barrier which forces
400                  * everything in this loop to be re-loaded. We don't need
401                  * memory barriers as we'll eventually observe the right
402                  * values at the cost of a few extra spins.
403                  */
404                 cpu_relax_lowlatency();
405         }
406         osq_unlock(&sem->osq);
407 done:
408         preempt_enable();
409         return taken;
410 }
411
412 /*
413  * Return true if the rwsem has active spinner
414  */
415 static inline bool rwsem_has_spinner(struct rw_semaphore *sem)
416 {
417         return osq_is_locked(&sem->osq);
418 }
419
420 #else
421 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
422 {
423         return false;
424 }
425
426 static inline bool rwsem_has_spinner(struct rw_semaphore *sem)
427 {
428         return false;
429 }
430 #endif
431
432 /*
433  * Wait until we successfully acquire the write lock
434  */
435 __visible
436 struct rw_semaphore __sched *rwsem_down_write_failed(struct rw_semaphore *sem)
437 {
438         long count;
439         bool waiting = true; /* any queued threads before us */
440         struct rwsem_waiter waiter;
441
442         /* undo write bias from down_write operation, stop active locking */
443         count = rwsem_atomic_update(-RWSEM_ACTIVE_WRITE_BIAS, sem);
444
445         /* do optimistic spinning and steal lock if possible */
446         if (rwsem_optimistic_spin(sem))
447                 return sem;
448
449         /*
450          * Optimistic spinning failed, proceed to the slowpath
451          * and block until we can acquire the sem.
452          */
453         waiter.task = current;
454         waiter.type = RWSEM_WAITING_FOR_WRITE;
455
456         raw_spin_lock_irq(&sem->wait_lock);
457
458         /* account for this before adding a new element to the list */
459         if (list_empty(&sem->wait_list))
460                 waiting = false;
461
462         list_add_tail(&waiter.list, &sem->wait_list);
463
464         /* we're now waiting on the lock, but no longer actively locking */
465         if (waiting) {
466                 count = READ_ONCE(sem->count);
467
468                 /*
469                  * If there were already threads queued before us and there are
470                  * no active writers, the lock must be read owned; so we try to
471                  * wake any read locks that were queued ahead of us.
472                  */
473                 if (count > RWSEM_WAITING_BIAS)
474                         sem = __rwsem_do_wake(sem, RWSEM_WAKE_READERS);
475
476         } else
477                 count = rwsem_atomic_update(RWSEM_WAITING_BIAS, sem);
478
479         /* wait until we successfully acquire the lock */
480         set_current_state(TASK_UNINTERRUPTIBLE);
481         while (true) {
482                 if (rwsem_try_write_lock(count, sem))
483                         break;
484                 raw_spin_unlock_irq(&sem->wait_lock);
485
486                 /* Block until there are no active lockers. */
487                 do {
488                         schedule();
489                         set_current_state(TASK_UNINTERRUPTIBLE);
490                 } while ((count = sem->count) & RWSEM_ACTIVE_MASK);
491
492                 raw_spin_lock_irq(&sem->wait_lock);
493         }
494         __set_current_state(TASK_RUNNING);
495
496         list_del(&waiter.list);
497         raw_spin_unlock_irq(&sem->wait_lock);
498
499         return sem;
500 }
501 EXPORT_SYMBOL(rwsem_down_write_failed);
502
503 /*
504  * handle waking up a waiter on the semaphore
505  * - up_read/up_write has decremented the active part of count if we come here
506  */
507 __visible
508 struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
509 {
510         unsigned long flags;
511
512         /*
513          * If a spinner is present, it is not necessary to do the wakeup.
514          * Try to do wakeup only if the trylock succeeds to minimize
515          * spinlock contention which may introduce too much delay in the
516          * unlock operation.
517          *
518          *    spinning writer           up_write/up_read caller
519          *    ---------------           -----------------------
520          * [S]   osq_unlock()           [L]   osq
521          *       MB                           RMB
522          * [RmW] rwsem_try_write_lock() [RmW] spin_trylock(wait_lock)
523          *
524          * Here, it is important to make sure that there won't be a missed
525          * wakeup while the rwsem is free and the only spinning writer goes
526          * to sleep without taking the rwsem. Even when the spinning writer
527          * is just going to break out of the waiting loop, it will still do
528          * a trylock in rwsem_down_write_failed() before sleeping. IOW, if
529          * rwsem_has_spinner() is true, it will guarantee at least one
530          * trylock attempt on the rwsem later on.
531          */
532         if (rwsem_has_spinner(sem)) {
533                 /*
534                  * The smp_rmb() here is to make sure that the spinner
535                  * state is consulted before reading the wait_lock.
536                  */
537                 smp_rmb();
538                 if (!raw_spin_trylock_irqsave(&sem->wait_lock, flags))
539                         return sem;
540                 goto locked;
541         }
542         raw_spin_lock_irqsave(&sem->wait_lock, flags);
543 locked:
544
545         /* do nothing if list empty */
546         if (!list_empty(&sem->wait_list))
547                 sem = __rwsem_do_wake(sem, RWSEM_WAKE_ANY);
548
549         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
550
551         return sem;
552 }
553 EXPORT_SYMBOL(rwsem_wake);
554
555 /*
556  * downgrade a write lock into a read lock
557  * - caller incremented waiting part of count and discovered it still negative
558  * - just wake up any readers at the front of the queue
559  */
560 __visible
561 struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
562 {
563         unsigned long flags;
564
565         raw_spin_lock_irqsave(&sem->wait_lock, flags);
566
567         /* do nothing if list empty */
568         if (!list_empty(&sem->wait_list))
569                 sem = __rwsem_do_wake(sem, RWSEM_WAKE_READ_OWNED);
570
571         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
572
573         return sem;
574 }
575 EXPORT_SYMBOL(rwsem_downgrade_wake);