]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/rcu/tree_plugin.h
rcu: Move rcu_report_exp_rnp() to allow consolidation
[karo-tx-linux.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #else /* #ifdef CONFIG_RCU_BOOST */
47
48 /*
49  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50  * all uses are in dead code.  Provide a definition to keep the compiler
51  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52  * This probably needs to be excluded from -rt builds.
53  */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
64 /*
65  * Check the RCU kernel configuration parameters and print informative
66  * messages about anything out of the ordinary.  If you like #ifdef, you
67  * will love this function.
68  */
69 static void __init rcu_bootup_announce_oddness(void)
70 {
71         if (IS_ENABLED(CONFIG_RCU_TRACE))
72                 pr_info("\tRCU debugfs-based tracing is enabled.\n");
73         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76                        RCU_FANOUT);
77         if (rcu_fanout_exact)
78                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81         if (IS_ENABLED(CONFIG_PROVE_RCU))
82                 pr_info("\tRCU lockdep checking is enabled.\n");
83         if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84                 pr_info("\tRCU torture testing starts during boot.\n");
85         if (RCU_NUM_LVLS >= 4)
86                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87         if (RCU_FANOUT_LEAF != 16)
88                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89                         RCU_FANOUT_LEAF);
90         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92         if (nr_cpu_ids != NR_CPUS)
93                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
94         if (IS_ENABLED(CONFIG_RCU_BOOST))
95                 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
96 }
97
98 #ifdef CONFIG_PREEMPT_RCU
99
100 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
101 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
102 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
103
104 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
105 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
106                                bool wake);
107
108 /*
109  * Tell them what RCU they are running.
110  */
111 static void __init rcu_bootup_announce(void)
112 {
113         pr_info("Preemptible hierarchical RCU implementation.\n");
114         rcu_bootup_announce_oddness();
115 }
116
117 /*
118  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
119  * that this just means that the task currently running on the CPU is
120  * not in a quiescent state.  There might be any number of tasks blocked
121  * while in an RCU read-side critical section.
122  *
123  * As with the other rcu_*_qs() functions, callers to this function
124  * must disable preemption.
125  */
126 static void rcu_preempt_qs(void)
127 {
128         if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
129                 trace_rcu_grace_period(TPS("rcu_preempt"),
130                                        __this_cpu_read(rcu_data_p->gpnum),
131                                        TPS("cpuqs"));
132                 __this_cpu_write(rcu_data_p->passed_quiesce, 1);
133                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
134                 current->rcu_read_unlock_special.b.need_qs = false;
135         }
136 }
137
138 /*
139  * We have entered the scheduler, and the current task might soon be
140  * context-switched away from.  If this task is in an RCU read-side
141  * critical section, we will no longer be able to rely on the CPU to
142  * record that fact, so we enqueue the task on the blkd_tasks list.
143  * The task will dequeue itself when it exits the outermost enclosing
144  * RCU read-side critical section.  Therefore, the current grace period
145  * cannot be permitted to complete until the blkd_tasks list entries
146  * predating the current grace period drain, in other words, until
147  * rnp->gp_tasks becomes NULL.
148  *
149  * Caller must disable preemption.
150  */
151 static void rcu_preempt_note_context_switch(void)
152 {
153         struct task_struct *t = current;
154         unsigned long flags;
155         struct rcu_data *rdp;
156         struct rcu_node *rnp;
157
158         if (t->rcu_read_lock_nesting > 0 &&
159             !t->rcu_read_unlock_special.b.blocked) {
160
161                 /* Possibly blocking in an RCU read-side critical section. */
162                 rdp = this_cpu_ptr(rcu_state_p->rda);
163                 rnp = rdp->mynode;
164                 raw_spin_lock_irqsave(&rnp->lock, flags);
165                 smp_mb__after_unlock_lock();
166                 t->rcu_read_unlock_special.b.blocked = true;
167                 t->rcu_blocked_node = rnp;
168
169                 /*
170                  * If this CPU has already checked in, then this task
171                  * will hold up the next grace period rather than the
172                  * current grace period.  Queue the task accordingly.
173                  * If the task is queued for the current grace period
174                  * (i.e., this CPU has not yet passed through a quiescent
175                  * state for the current grace period), then as long
176                  * as that task remains queued, the current grace period
177                  * cannot end.  Note that there is some uncertainty as
178                  * to exactly when the current grace period started.
179                  * We take a conservative approach, which can result
180                  * in unnecessarily waiting on tasks that started very
181                  * slightly after the current grace period began.  C'est
182                  * la vie!!!
183                  *
184                  * But first, note that the current CPU must still be
185                  * on line!
186                  */
187                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
188                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
189                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
190                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
191                         rnp->gp_tasks = &t->rcu_node_entry;
192                         if (IS_ENABLED(CONFIG_RCU_BOOST) &&
193                             rnp->boost_tasks != NULL)
194                                 rnp->boost_tasks = rnp->gp_tasks;
195                 } else {
196                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
197                         if (rnp->qsmask & rdp->grpmask)
198                                 rnp->gp_tasks = &t->rcu_node_entry;
199                 }
200                 trace_rcu_preempt_task(rdp->rsp->name,
201                                        t->pid,
202                                        (rnp->qsmask & rdp->grpmask)
203                                        ? rnp->gpnum
204                                        : rnp->gpnum + 1);
205                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
206         } else if (t->rcu_read_lock_nesting < 0 &&
207                    t->rcu_read_unlock_special.s) {
208
209                 /*
210                  * Complete exit from RCU read-side critical section on
211                  * behalf of preempted instance of __rcu_read_unlock().
212                  */
213                 rcu_read_unlock_special(t);
214         }
215
216         /*
217          * Either we were not in an RCU read-side critical section to
218          * begin with, or we have now recorded that critical section
219          * globally.  Either way, we can now note a quiescent state
220          * for this CPU.  Again, if we were in an RCU read-side critical
221          * section, and if that critical section was blocking the current
222          * grace period, then the fact that the task has been enqueued
223          * means that we continue to block the current grace period.
224          */
225         rcu_preempt_qs();
226 }
227
228 /*
229  * Check for preempted RCU readers blocking the current grace period
230  * for the specified rcu_node structure.  If the caller needs a reliable
231  * answer, it must hold the rcu_node's ->lock.
232  */
233 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
234 {
235         return rnp->gp_tasks != NULL;
236 }
237
238 /*
239  * Advance a ->blkd_tasks-list pointer to the next entry, instead
240  * returning NULL if at the end of the list.
241  */
242 static struct list_head *rcu_next_node_entry(struct task_struct *t,
243                                              struct rcu_node *rnp)
244 {
245         struct list_head *np;
246
247         np = t->rcu_node_entry.next;
248         if (np == &rnp->blkd_tasks)
249                 np = NULL;
250         return np;
251 }
252
253 /*
254  * Return true if the specified rcu_node structure has tasks that were
255  * preempted within an RCU read-side critical section.
256  */
257 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
258 {
259         return !list_empty(&rnp->blkd_tasks);
260 }
261
262 /*
263  * Handle special cases during rcu_read_unlock(), such as needing to
264  * notify RCU core processing or task having blocked during the RCU
265  * read-side critical section.
266  */
267 void rcu_read_unlock_special(struct task_struct *t)
268 {
269         bool empty_exp;
270         bool empty_norm;
271         bool empty_exp_now;
272         unsigned long flags;
273         struct list_head *np;
274         bool drop_boost_mutex = false;
275         struct rcu_node *rnp;
276         union rcu_special special;
277
278         /* NMI handlers cannot block and cannot safely manipulate state. */
279         if (in_nmi())
280                 return;
281
282         local_irq_save(flags);
283
284         /*
285          * If RCU core is waiting for this CPU to exit critical section,
286          * let it know that we have done so.  Because irqs are disabled,
287          * t->rcu_read_unlock_special cannot change.
288          */
289         special = t->rcu_read_unlock_special;
290         if (special.b.need_qs) {
291                 rcu_preempt_qs();
292                 t->rcu_read_unlock_special.b.need_qs = false;
293                 if (!t->rcu_read_unlock_special.s) {
294                         local_irq_restore(flags);
295                         return;
296                 }
297         }
298
299         /* Hardware IRQ handlers cannot block, complain if they get here. */
300         if (in_irq() || in_serving_softirq()) {
301                 lockdep_rcu_suspicious(__FILE__, __LINE__,
302                                        "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
303                 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
304                          t->rcu_read_unlock_special.s,
305                          t->rcu_read_unlock_special.b.blocked,
306                          t->rcu_read_unlock_special.b.need_qs);
307                 local_irq_restore(flags);
308                 return;
309         }
310
311         /* Clean up if blocked during RCU read-side critical section. */
312         if (special.b.blocked) {
313                 t->rcu_read_unlock_special.b.blocked = false;
314
315                 /*
316                  * Remove this task from the list it blocked on.  The task
317                  * now remains queued on the rcu_node corresponding to
318                  * the CPU it first blocked on, so the first attempt to
319                  * acquire the task's rcu_node's ->lock will succeed.
320                  * Keep the loop and add a WARN_ON() out of sheer paranoia.
321                  */
322                 for (;;) {
323                         rnp = t->rcu_blocked_node;
324                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
325                         smp_mb__after_unlock_lock();
326                         if (rnp == t->rcu_blocked_node)
327                                 break;
328                         WARN_ON_ONCE(1);
329                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
330                 }
331                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
332                 empty_exp = !rcu_preempted_readers_exp(rnp);
333                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
334                 np = rcu_next_node_entry(t, rnp);
335                 list_del_init(&t->rcu_node_entry);
336                 t->rcu_blocked_node = NULL;
337                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
338                                                 rnp->gpnum, t->pid);
339                 if (&t->rcu_node_entry == rnp->gp_tasks)
340                         rnp->gp_tasks = np;
341                 if (&t->rcu_node_entry == rnp->exp_tasks)
342                         rnp->exp_tasks = np;
343                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
344                         if (&t->rcu_node_entry == rnp->boost_tasks)
345                                 rnp->boost_tasks = np;
346                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
347                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
348                 }
349
350                 /*
351                  * If this was the last task on the current list, and if
352                  * we aren't waiting on any CPUs, report the quiescent state.
353                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
354                  * so we must take a snapshot of the expedited state.
355                  */
356                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
357                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
358                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
359                                                          rnp->gpnum,
360                                                          0, rnp->qsmask,
361                                                          rnp->level,
362                                                          rnp->grplo,
363                                                          rnp->grphi,
364                                                          !!rnp->gp_tasks);
365                         rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
366                 } else {
367                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
368                 }
369
370                 /* Unboost if we were boosted. */
371                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
372                         rt_mutex_unlock(&rnp->boost_mtx);
373
374                 /*
375                  * If this was the last task on the expedited lists,
376                  * then we need to report up the rcu_node hierarchy.
377                  */
378                 if (!empty_exp && empty_exp_now)
379                         rcu_report_exp_rnp(rcu_state_p, rnp, true);
380         } else {
381                 local_irq_restore(flags);
382         }
383 }
384
385 /*
386  * Dump detailed information for all tasks blocking the current RCU
387  * grace period on the specified rcu_node structure.
388  */
389 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
390 {
391         unsigned long flags;
392         struct task_struct *t;
393
394         raw_spin_lock_irqsave(&rnp->lock, flags);
395         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
396                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
397                 return;
398         }
399         t = list_entry(rnp->gp_tasks->prev,
400                        struct task_struct, rcu_node_entry);
401         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
402                 sched_show_task(t);
403         raw_spin_unlock_irqrestore(&rnp->lock, flags);
404 }
405
406 /*
407  * Dump detailed information for all tasks blocking the current RCU
408  * grace period.
409  */
410 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
411 {
412         struct rcu_node *rnp = rcu_get_root(rsp);
413
414         rcu_print_detail_task_stall_rnp(rnp);
415         rcu_for_each_leaf_node(rsp, rnp)
416                 rcu_print_detail_task_stall_rnp(rnp);
417 }
418
419 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
420 {
421         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
422                rnp->level, rnp->grplo, rnp->grphi);
423 }
424
425 static void rcu_print_task_stall_end(void)
426 {
427         pr_cont("\n");
428 }
429
430 /*
431  * Scan the current list of tasks blocked within RCU read-side critical
432  * sections, printing out the tid of each.
433  */
434 static int rcu_print_task_stall(struct rcu_node *rnp)
435 {
436         struct task_struct *t;
437         int ndetected = 0;
438
439         if (!rcu_preempt_blocked_readers_cgp(rnp))
440                 return 0;
441         rcu_print_task_stall_begin(rnp);
442         t = list_entry(rnp->gp_tasks->prev,
443                        struct task_struct, rcu_node_entry);
444         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
445                 pr_cont(" P%d", t->pid);
446                 ndetected++;
447         }
448         rcu_print_task_stall_end();
449         return ndetected;
450 }
451
452 /*
453  * Check that the list of blocked tasks for the newly completed grace
454  * period is in fact empty.  It is a serious bug to complete a grace
455  * period that still has RCU readers blocked!  This function must be
456  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
457  * must be held by the caller.
458  *
459  * Also, if there are blocked tasks on the list, they automatically
460  * block the newly created grace period, so set up ->gp_tasks accordingly.
461  */
462 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
463 {
464         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
465         if (rcu_preempt_has_tasks(rnp))
466                 rnp->gp_tasks = rnp->blkd_tasks.next;
467         WARN_ON_ONCE(rnp->qsmask);
468 }
469
470 /*
471  * Check for a quiescent state from the current CPU.  When a task blocks,
472  * the task is recorded in the corresponding CPU's rcu_node structure,
473  * which is checked elsewhere.
474  *
475  * Caller must disable hard irqs.
476  */
477 static void rcu_preempt_check_callbacks(void)
478 {
479         struct task_struct *t = current;
480
481         if (t->rcu_read_lock_nesting == 0) {
482                 rcu_preempt_qs();
483                 return;
484         }
485         if (t->rcu_read_lock_nesting > 0 &&
486             __this_cpu_read(rcu_data_p->qs_pending) &&
487             !__this_cpu_read(rcu_data_p->passed_quiesce))
488                 t->rcu_read_unlock_special.b.need_qs = true;
489 }
490
491 #ifdef CONFIG_RCU_BOOST
492
493 static void rcu_preempt_do_callbacks(void)
494 {
495         rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
496 }
497
498 #endif /* #ifdef CONFIG_RCU_BOOST */
499
500 /*
501  * Queue a preemptible-RCU callback for invocation after a grace period.
502  */
503 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
504 {
505         __call_rcu(head, func, rcu_state_p, -1, 0);
506 }
507 EXPORT_SYMBOL_GPL(call_rcu);
508
509 /**
510  * synchronize_rcu - wait until a grace period has elapsed.
511  *
512  * Control will return to the caller some time after a full grace
513  * period has elapsed, in other words after all currently executing RCU
514  * read-side critical sections have completed.  Note, however, that
515  * upon return from synchronize_rcu(), the caller might well be executing
516  * concurrently with new RCU read-side critical sections that began while
517  * synchronize_rcu() was waiting.  RCU read-side critical sections are
518  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
519  *
520  * See the description of synchronize_sched() for more detailed information
521  * on memory ordering guarantees.
522  */
523 void synchronize_rcu(void)
524 {
525         RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
526                          lock_is_held(&rcu_lock_map) ||
527                          lock_is_held(&rcu_sched_lock_map),
528                          "Illegal synchronize_rcu() in RCU read-side critical section");
529         if (!rcu_scheduler_active)
530                 return;
531         if (rcu_gp_is_expedited())
532                 synchronize_rcu_expedited();
533         else
534                 wait_rcu_gp(call_rcu);
535 }
536 EXPORT_SYMBOL_GPL(synchronize_rcu);
537
538 /*
539  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
540  * grace period for the specified rcu_node structure, phase 1.  If there
541  * are such tasks, set the ->expmask bits up the rcu_node tree and also
542  * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
543  * that work is needed here.
544  *
545  * Caller must hold the root rcu_node's exp_funnel_mutex.
546  */
547 static void
548 sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
549 {
550         unsigned long flags;
551         unsigned long mask;
552         struct rcu_node *rnp_up;
553
554         raw_spin_lock_irqsave(&rnp->lock, flags);
555         smp_mb__after_unlock_lock();
556         WARN_ON_ONCE(rnp->expmask);
557         WARN_ON_ONCE(rnp->exp_tasks);
558         if (!rcu_preempt_has_tasks(rnp)) {
559                 /* No blocked tasks, nothing to do. */
560                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
561                 return;
562         }
563         /* Call for Phase 2 and propagate ->expmask bits up the tree. */
564         rnp->expmask = 1;
565         rnp_up = rnp;
566         while (rnp_up->parent) {
567                 mask = rnp_up->grpmask;
568                 rnp_up = rnp_up->parent;
569                 if (rnp_up->expmask & mask)
570                         break;
571                 raw_spin_lock(&rnp_up->lock); /* irqs already off */
572                 smp_mb__after_unlock_lock();
573                 rnp_up->expmask |= mask;
574                 raw_spin_unlock(&rnp_up->lock); /* irqs still off */
575         }
576         raw_spin_unlock_irqrestore(&rnp->lock, flags);
577 }
578
579 /*
580  * Snapshot the tasks blocking the newly started preemptible-RCU expedited
581  * grace period for the specified rcu_node structure, phase 2.  If the
582  * leaf rcu_node structure has its ->expmask field set, check for tasks.
583  * If there are some, clear ->expmask and set ->exp_tasks accordingly,
584  * then initiate RCU priority boosting.  Otherwise, clear ->expmask and
585  * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
586  * enabling rcu_read_unlock_special() to do the bit-clearing.
587  *
588  * Caller must hold the root rcu_node's exp_funnel_mutex.
589  */
590 static void
591 sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
592 {
593         unsigned long flags;
594
595         raw_spin_lock_irqsave(&rnp->lock, flags);
596         smp_mb__after_unlock_lock();
597         if (!rnp->expmask) {
598                 /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
599                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
600                 return;
601         }
602
603         /* Phase 1 is over. */
604         rnp->expmask = 0;
605
606         /*
607          * If there are still blocked tasks, set up ->exp_tasks so that
608          * rcu_read_unlock_special() will wake us and then boost them.
609          */
610         if (rcu_preempt_has_tasks(rnp)) {
611                 rnp->exp_tasks = rnp->blkd_tasks.next;
612                 rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
613                 return;
614         }
615
616         /* No longer any blocked tasks, so undo bit setting. */
617         raw_spin_unlock_irqrestore(&rnp->lock, flags);
618         rcu_report_exp_rnp(rsp, rnp, false);
619 }
620
621 /**
622  * synchronize_rcu_expedited - Brute-force RCU grace period
623  *
624  * Wait for an RCU-preempt grace period, but expedite it.  The basic
625  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
626  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
627  * significant time on all CPUs and is unfriendly to real-time workloads,
628  * so is thus not recommended for any sort of common-case code.
629  * In fact, if you are using synchronize_rcu_expedited() in a loop,
630  * please restructure your code to batch your updates, and then Use a
631  * single synchronize_rcu() instead.
632  */
633 void synchronize_rcu_expedited(void)
634 {
635         struct rcu_node *rnp;
636         struct rcu_node *rnp_unlock;
637         struct rcu_state *rsp = rcu_state_p;
638         unsigned long s;
639
640         s = rcu_exp_gp_seq_snap(rsp);
641
642         rnp_unlock = exp_funnel_lock(rsp, s);
643         if (rnp_unlock == NULL)
644                 return;  /* Someone else did our work for us. */
645
646         rcu_exp_gp_seq_start(rsp);
647
648         /* force all RCU readers onto ->blkd_tasks lists. */
649         synchronize_sched_expedited();
650
651         /*
652          * Snapshot current state of ->blkd_tasks lists into ->expmask.
653          * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
654          * to start clearing them.  Doing this in one phase leads to
655          * strange races between setting and clearing bits, so just say "no"!
656          */
657         rcu_for_each_leaf_node(rsp, rnp)
658                 sync_rcu_preempt_exp_init1(rsp, rnp);
659         rcu_for_each_leaf_node(rsp, rnp)
660                 sync_rcu_preempt_exp_init2(rsp, rnp);
661
662         /* Wait for snapshotted ->blkd_tasks lists to drain. */
663         rnp = rcu_get_root(rsp);
664         wait_event(rsp->expedited_wq,
665                    sync_rcu_preempt_exp_done(rnp));
666
667         /* Clean up and exit. */
668         rcu_exp_gp_seq_end(rsp);
669         mutex_unlock(&rnp_unlock->exp_funnel_mutex);
670 }
671 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
672
673 /**
674  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
675  *
676  * Note that this primitive does not necessarily wait for an RCU grace period
677  * to complete.  For example, if there are no RCU callbacks queued anywhere
678  * in the system, then rcu_barrier() is within its rights to return
679  * immediately, without waiting for anything, much less an RCU grace period.
680  */
681 void rcu_barrier(void)
682 {
683         _rcu_barrier(rcu_state_p);
684 }
685 EXPORT_SYMBOL_GPL(rcu_barrier);
686
687 /*
688  * Initialize preemptible RCU's state structures.
689  */
690 static void __init __rcu_init_preempt(void)
691 {
692         rcu_init_one(rcu_state_p, rcu_data_p);
693 }
694
695 /*
696  * Check for a task exiting while in a preemptible-RCU read-side
697  * critical section, clean up if so.  No need to issue warnings,
698  * as debug_check_no_locks_held() already does this if lockdep
699  * is enabled.
700  */
701 void exit_rcu(void)
702 {
703         struct task_struct *t = current;
704
705         if (likely(list_empty(&current->rcu_node_entry)))
706                 return;
707         t->rcu_read_lock_nesting = 1;
708         barrier();
709         t->rcu_read_unlock_special.b.blocked = true;
710         __rcu_read_unlock();
711 }
712
713 #else /* #ifdef CONFIG_PREEMPT_RCU */
714
715 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
716 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
717
718 /*
719  * Tell them what RCU they are running.
720  */
721 static void __init rcu_bootup_announce(void)
722 {
723         pr_info("Hierarchical RCU implementation.\n");
724         rcu_bootup_announce_oddness();
725 }
726
727 /*
728  * Because preemptible RCU does not exist, we never have to check for
729  * CPUs being in quiescent states.
730  */
731 static void rcu_preempt_note_context_switch(void)
732 {
733 }
734
735 /*
736  * Because preemptible RCU does not exist, there are never any preempted
737  * RCU readers.
738  */
739 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
740 {
741         return 0;
742 }
743
744 /*
745  * Because there is no preemptible RCU, there can be no readers blocked.
746  */
747 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
748 {
749         return false;
750 }
751
752 /*
753  * Because preemptible RCU does not exist, we never have to check for
754  * tasks blocked within RCU read-side critical sections.
755  */
756 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
757 {
758 }
759
760 /*
761  * Because preemptible RCU does not exist, we never have to check for
762  * tasks blocked within RCU read-side critical sections.
763  */
764 static int rcu_print_task_stall(struct rcu_node *rnp)
765 {
766         return 0;
767 }
768
769 /*
770  * Because there is no preemptible RCU, there can be no readers blocked,
771  * so there is no need to check for blocked tasks.  So check only for
772  * bogus qsmask values.
773  */
774 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
775 {
776         WARN_ON_ONCE(rnp->qsmask);
777 }
778
779 /*
780  * Because preemptible RCU does not exist, it never has any callbacks
781  * to check.
782  */
783 static void rcu_preempt_check_callbacks(void)
784 {
785 }
786
787 /*
788  * Wait for an rcu-preempt grace period, but make it happen quickly.
789  * But because preemptible RCU does not exist, map to rcu-sched.
790  */
791 void synchronize_rcu_expedited(void)
792 {
793         synchronize_sched_expedited();
794 }
795 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
796
797 /*
798  * Because preemptible RCU does not exist, rcu_barrier() is just
799  * another name for rcu_barrier_sched().
800  */
801 void rcu_barrier(void)
802 {
803         rcu_barrier_sched();
804 }
805 EXPORT_SYMBOL_GPL(rcu_barrier);
806
807 /*
808  * Because preemptible RCU does not exist, it need not be initialized.
809  */
810 static void __init __rcu_init_preempt(void)
811 {
812 }
813
814 /*
815  * Because preemptible RCU does not exist, tasks cannot possibly exit
816  * while in preemptible RCU read-side critical sections.
817  */
818 void exit_rcu(void)
819 {
820 }
821
822 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
823
824 #ifdef CONFIG_RCU_BOOST
825
826 #include "../locking/rtmutex_common.h"
827
828 #ifdef CONFIG_RCU_TRACE
829
830 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
831 {
832         if (!rcu_preempt_has_tasks(rnp))
833                 rnp->n_balk_blkd_tasks++;
834         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
835                 rnp->n_balk_exp_gp_tasks++;
836         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
837                 rnp->n_balk_boost_tasks++;
838         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
839                 rnp->n_balk_notblocked++;
840         else if (rnp->gp_tasks != NULL &&
841                  ULONG_CMP_LT(jiffies, rnp->boost_time))
842                 rnp->n_balk_notyet++;
843         else
844                 rnp->n_balk_nos++;
845 }
846
847 #else /* #ifdef CONFIG_RCU_TRACE */
848
849 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
850 {
851 }
852
853 #endif /* #else #ifdef CONFIG_RCU_TRACE */
854
855 static void rcu_wake_cond(struct task_struct *t, int status)
856 {
857         /*
858          * If the thread is yielding, only wake it when this
859          * is invoked from idle
860          */
861         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
862                 wake_up_process(t);
863 }
864
865 /*
866  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
867  * or ->boost_tasks, advancing the pointer to the next task in the
868  * ->blkd_tasks list.
869  *
870  * Note that irqs must be enabled: boosting the task can block.
871  * Returns 1 if there are more tasks needing to be boosted.
872  */
873 static int rcu_boost(struct rcu_node *rnp)
874 {
875         unsigned long flags;
876         struct task_struct *t;
877         struct list_head *tb;
878
879         if (READ_ONCE(rnp->exp_tasks) == NULL &&
880             READ_ONCE(rnp->boost_tasks) == NULL)
881                 return 0;  /* Nothing left to boost. */
882
883         raw_spin_lock_irqsave(&rnp->lock, flags);
884         smp_mb__after_unlock_lock();
885
886         /*
887          * Recheck under the lock: all tasks in need of boosting
888          * might exit their RCU read-side critical sections on their own.
889          */
890         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
891                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
892                 return 0;
893         }
894
895         /*
896          * Preferentially boost tasks blocking expedited grace periods.
897          * This cannot starve the normal grace periods because a second
898          * expedited grace period must boost all blocked tasks, including
899          * those blocking the pre-existing normal grace period.
900          */
901         if (rnp->exp_tasks != NULL) {
902                 tb = rnp->exp_tasks;
903                 rnp->n_exp_boosts++;
904         } else {
905                 tb = rnp->boost_tasks;
906                 rnp->n_normal_boosts++;
907         }
908         rnp->n_tasks_boosted++;
909
910         /*
911          * We boost task t by manufacturing an rt_mutex that appears to
912          * be held by task t.  We leave a pointer to that rt_mutex where
913          * task t can find it, and task t will release the mutex when it
914          * exits its outermost RCU read-side critical section.  Then
915          * simply acquiring this artificial rt_mutex will boost task
916          * t's priority.  (Thanks to tglx for suggesting this approach!)
917          *
918          * Note that task t must acquire rnp->lock to remove itself from
919          * the ->blkd_tasks list, which it will do from exit() if from
920          * nowhere else.  We therefore are guaranteed that task t will
921          * stay around at least until we drop rnp->lock.  Note that
922          * rnp->lock also resolves races between our priority boosting
923          * and task t's exiting its outermost RCU read-side critical
924          * section.
925          */
926         t = container_of(tb, struct task_struct, rcu_node_entry);
927         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
928         raw_spin_unlock_irqrestore(&rnp->lock, flags);
929         /* Lock only for side effect: boosts task t's priority. */
930         rt_mutex_lock(&rnp->boost_mtx);
931         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
932
933         return READ_ONCE(rnp->exp_tasks) != NULL ||
934                READ_ONCE(rnp->boost_tasks) != NULL;
935 }
936
937 /*
938  * Priority-boosting kthread, one per leaf rcu_node.
939  */
940 static int rcu_boost_kthread(void *arg)
941 {
942         struct rcu_node *rnp = (struct rcu_node *)arg;
943         int spincnt = 0;
944         int more2boost;
945
946         trace_rcu_utilization(TPS("Start boost kthread@init"));
947         for (;;) {
948                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
949                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
950                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
951                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
952                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
953                 more2boost = rcu_boost(rnp);
954                 if (more2boost)
955                         spincnt++;
956                 else
957                         spincnt = 0;
958                 if (spincnt > 10) {
959                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
960                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
961                         schedule_timeout_interruptible(2);
962                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
963                         spincnt = 0;
964                 }
965         }
966         /* NOTREACHED */
967         trace_rcu_utilization(TPS("End boost kthread@notreached"));
968         return 0;
969 }
970
971 /*
972  * Check to see if it is time to start boosting RCU readers that are
973  * blocking the current grace period, and, if so, tell the per-rcu_node
974  * kthread to start boosting them.  If there is an expedited grace
975  * period in progress, it is always time to boost.
976  *
977  * The caller must hold rnp->lock, which this function releases.
978  * The ->boost_kthread_task is immortal, so we don't need to worry
979  * about it going away.
980  */
981 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
982         __releases(rnp->lock)
983 {
984         struct task_struct *t;
985
986         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
987                 rnp->n_balk_exp_gp_tasks++;
988                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
989                 return;
990         }
991         if (rnp->exp_tasks != NULL ||
992             (rnp->gp_tasks != NULL &&
993              rnp->boost_tasks == NULL &&
994              rnp->qsmask == 0 &&
995              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
996                 if (rnp->exp_tasks == NULL)
997                         rnp->boost_tasks = rnp->gp_tasks;
998                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
999                 t = rnp->boost_kthread_task;
1000                 if (t)
1001                         rcu_wake_cond(t, rnp->boost_kthread_status);
1002         } else {
1003                 rcu_initiate_boost_trace(rnp);
1004                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1005         }
1006 }
1007
1008 /*
1009  * Wake up the per-CPU kthread to invoke RCU callbacks.
1010  */
1011 static void invoke_rcu_callbacks_kthread(void)
1012 {
1013         unsigned long flags;
1014
1015         local_irq_save(flags);
1016         __this_cpu_write(rcu_cpu_has_work, 1);
1017         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1018             current != __this_cpu_read(rcu_cpu_kthread_task)) {
1019                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1020                               __this_cpu_read(rcu_cpu_kthread_status));
1021         }
1022         local_irq_restore(flags);
1023 }
1024
1025 /*
1026  * Is the current CPU running the RCU-callbacks kthread?
1027  * Caller must have preemption disabled.
1028  */
1029 static bool rcu_is_callbacks_kthread(void)
1030 {
1031         return __this_cpu_read(rcu_cpu_kthread_task) == current;
1032 }
1033
1034 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1035
1036 /*
1037  * Do priority-boost accounting for the start of a new grace period.
1038  */
1039 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1040 {
1041         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1042 }
1043
1044 /*
1045  * Create an RCU-boost kthread for the specified node if one does not
1046  * already exist.  We only create this kthread for preemptible RCU.
1047  * Returns zero if all is well, a negated errno otherwise.
1048  */
1049 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1050                                        struct rcu_node *rnp)
1051 {
1052         int rnp_index = rnp - &rsp->node[0];
1053         unsigned long flags;
1054         struct sched_param sp;
1055         struct task_struct *t;
1056
1057         if (rcu_state_p != rsp)
1058                 return 0;
1059
1060         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1061                 return 0;
1062
1063         rsp->boost = 1;
1064         if (rnp->boost_kthread_task != NULL)
1065                 return 0;
1066         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1067                            "rcub/%d", rnp_index);
1068         if (IS_ERR(t))
1069                 return PTR_ERR(t);
1070         raw_spin_lock_irqsave(&rnp->lock, flags);
1071         smp_mb__after_unlock_lock();
1072         rnp->boost_kthread_task = t;
1073         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1074         sp.sched_priority = kthread_prio;
1075         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1076         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1077         return 0;
1078 }
1079
1080 static void rcu_kthread_do_work(void)
1081 {
1082         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1083         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1084         rcu_preempt_do_callbacks();
1085 }
1086
1087 static void rcu_cpu_kthread_setup(unsigned int cpu)
1088 {
1089         struct sched_param sp;
1090
1091         sp.sched_priority = kthread_prio;
1092         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1093 }
1094
1095 static void rcu_cpu_kthread_park(unsigned int cpu)
1096 {
1097         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1098 }
1099
1100 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1101 {
1102         return __this_cpu_read(rcu_cpu_has_work);
1103 }
1104
1105 /*
1106  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1107  * RCU softirq used in flavors and configurations of RCU that do not
1108  * support RCU priority boosting.
1109  */
1110 static void rcu_cpu_kthread(unsigned int cpu)
1111 {
1112         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1113         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1114         int spincnt;
1115
1116         for (spincnt = 0; spincnt < 10; spincnt++) {
1117                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1118                 local_bh_disable();
1119                 *statusp = RCU_KTHREAD_RUNNING;
1120                 this_cpu_inc(rcu_cpu_kthread_loops);
1121                 local_irq_disable();
1122                 work = *workp;
1123                 *workp = 0;
1124                 local_irq_enable();
1125                 if (work)
1126                         rcu_kthread_do_work();
1127                 local_bh_enable();
1128                 if (*workp == 0) {
1129                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1130                         *statusp = RCU_KTHREAD_WAITING;
1131                         return;
1132                 }
1133         }
1134         *statusp = RCU_KTHREAD_YIELDING;
1135         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1136         schedule_timeout_interruptible(2);
1137         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1138         *statusp = RCU_KTHREAD_WAITING;
1139 }
1140
1141 /*
1142  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1143  * served by the rcu_node in question.  The CPU hotplug lock is still
1144  * held, so the value of rnp->qsmaskinit will be stable.
1145  *
1146  * We don't include outgoingcpu in the affinity set, use -1 if there is
1147  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1148  * this function allows the kthread to execute on any CPU.
1149  */
1150 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1151 {
1152         struct task_struct *t = rnp->boost_kthread_task;
1153         unsigned long mask = rcu_rnp_online_cpus(rnp);
1154         cpumask_var_t cm;
1155         int cpu;
1156
1157         if (!t)
1158                 return;
1159         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1160                 return;
1161         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1162                 if ((mask & 0x1) && cpu != outgoingcpu)
1163                         cpumask_set_cpu(cpu, cm);
1164         if (cpumask_weight(cm) == 0)
1165                 cpumask_setall(cm);
1166         set_cpus_allowed_ptr(t, cm);
1167         free_cpumask_var(cm);
1168 }
1169
1170 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1171         .store                  = &rcu_cpu_kthread_task,
1172         .thread_should_run      = rcu_cpu_kthread_should_run,
1173         .thread_fn              = rcu_cpu_kthread,
1174         .thread_comm            = "rcuc/%u",
1175         .setup                  = rcu_cpu_kthread_setup,
1176         .park                   = rcu_cpu_kthread_park,
1177 };
1178
1179 /*
1180  * Spawn boost kthreads -- called as soon as the scheduler is running.
1181  */
1182 static void __init rcu_spawn_boost_kthreads(void)
1183 {
1184         struct rcu_node *rnp;
1185         int cpu;
1186
1187         for_each_possible_cpu(cpu)
1188                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1189         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1190         rcu_for_each_leaf_node(rcu_state_p, rnp)
1191                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1192 }
1193
1194 static void rcu_prepare_kthreads(int cpu)
1195 {
1196         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1197         struct rcu_node *rnp = rdp->mynode;
1198
1199         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1200         if (rcu_scheduler_fully_active)
1201                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1202 }
1203
1204 #else /* #ifdef CONFIG_RCU_BOOST */
1205
1206 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1207         __releases(rnp->lock)
1208 {
1209         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1210 }
1211
1212 static void invoke_rcu_callbacks_kthread(void)
1213 {
1214         WARN_ON_ONCE(1);
1215 }
1216
1217 static bool rcu_is_callbacks_kthread(void)
1218 {
1219         return false;
1220 }
1221
1222 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1223 {
1224 }
1225
1226 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1227 {
1228 }
1229
1230 static void __init rcu_spawn_boost_kthreads(void)
1231 {
1232 }
1233
1234 static void rcu_prepare_kthreads(int cpu)
1235 {
1236 }
1237
1238 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1239
1240 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1241
1242 /*
1243  * Check to see if any future RCU-related work will need to be done
1244  * by the current CPU, even if none need be done immediately, returning
1245  * 1 if so.  This function is part of the RCU implementation; it is -not-
1246  * an exported member of the RCU API.
1247  *
1248  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1249  * any flavor of RCU.
1250  */
1251 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1252 {
1253         *nextevt = KTIME_MAX;
1254         return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1255                ? 0 : rcu_cpu_has_callbacks(NULL);
1256 }
1257
1258 /*
1259  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1260  * after it.
1261  */
1262 static void rcu_cleanup_after_idle(void)
1263 {
1264 }
1265
1266 /*
1267  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1268  * is nothing.
1269  */
1270 static void rcu_prepare_for_idle(void)
1271 {
1272 }
1273
1274 /*
1275  * Don't bother keeping a running count of the number of RCU callbacks
1276  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1277  */
1278 static void rcu_idle_count_callbacks_posted(void)
1279 {
1280 }
1281
1282 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1283
1284 /*
1285  * This code is invoked when a CPU goes idle, at which point we want
1286  * to have the CPU do everything required for RCU so that it can enter
1287  * the energy-efficient dyntick-idle mode.  This is handled by a
1288  * state machine implemented by rcu_prepare_for_idle() below.
1289  *
1290  * The following three proprocessor symbols control this state machine:
1291  *
1292  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1293  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1294  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1295  *      benchmarkers who might otherwise be tempted to set this to a large
1296  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1297  *      system.  And if you are -that- concerned about energy efficiency,
1298  *      just power the system down and be done with it!
1299  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1300  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1301  *      callbacks pending.  Setting this too high can OOM your system.
1302  *
1303  * The values below work well in practice.  If future workloads require
1304  * adjustment, they can be converted into kernel config parameters, though
1305  * making the state machine smarter might be a better option.
1306  */
1307 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1308 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1309
1310 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1311 module_param(rcu_idle_gp_delay, int, 0644);
1312 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1313 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1314
1315 /*
1316  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1317  * only if it has been awhile since the last time we did so.  Afterwards,
1318  * if there are any callbacks ready for immediate invocation, return true.
1319  */
1320 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1321 {
1322         bool cbs_ready = false;
1323         struct rcu_data *rdp;
1324         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1325         struct rcu_node *rnp;
1326         struct rcu_state *rsp;
1327
1328         /* Exit early if we advanced recently. */
1329         if (jiffies == rdtp->last_advance_all)
1330                 return false;
1331         rdtp->last_advance_all = jiffies;
1332
1333         for_each_rcu_flavor(rsp) {
1334                 rdp = this_cpu_ptr(rsp->rda);
1335                 rnp = rdp->mynode;
1336
1337                 /*
1338                  * Don't bother checking unless a grace period has
1339                  * completed since we last checked and there are
1340                  * callbacks not yet ready to invoke.
1341                  */
1342                 if ((rdp->completed != rnp->completed ||
1343                      unlikely(READ_ONCE(rdp->gpwrap))) &&
1344                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1345                         note_gp_changes(rsp, rdp);
1346
1347                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1348                         cbs_ready = true;
1349         }
1350         return cbs_ready;
1351 }
1352
1353 /*
1354  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1355  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1356  * caller to set the timeout based on whether or not there are non-lazy
1357  * callbacks.
1358  *
1359  * The caller must have disabled interrupts.
1360  */
1361 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1362 {
1363         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1364         unsigned long dj;
1365
1366         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1367                 *nextevt = KTIME_MAX;
1368                 return 0;
1369         }
1370
1371         /* Snapshot to detect later posting of non-lazy callback. */
1372         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1373
1374         /* If no callbacks, RCU doesn't need the CPU. */
1375         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1376                 *nextevt = KTIME_MAX;
1377                 return 0;
1378         }
1379
1380         /* Attempt to advance callbacks. */
1381         if (rcu_try_advance_all_cbs()) {
1382                 /* Some ready to invoke, so initiate later invocation. */
1383                 invoke_rcu_core();
1384                 return 1;
1385         }
1386         rdtp->last_accelerate = jiffies;
1387
1388         /* Request timer delay depending on laziness, and round. */
1389         if (!rdtp->all_lazy) {
1390                 dj = round_up(rcu_idle_gp_delay + jiffies,
1391                                rcu_idle_gp_delay) - jiffies;
1392         } else {
1393                 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1394         }
1395         *nextevt = basemono + dj * TICK_NSEC;
1396         return 0;
1397 }
1398
1399 /*
1400  * Prepare a CPU for idle from an RCU perspective.  The first major task
1401  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1402  * The second major task is to check to see if a non-lazy callback has
1403  * arrived at a CPU that previously had only lazy callbacks.  The third
1404  * major task is to accelerate (that is, assign grace-period numbers to)
1405  * any recently arrived callbacks.
1406  *
1407  * The caller must have disabled interrupts.
1408  */
1409 static void rcu_prepare_for_idle(void)
1410 {
1411         bool needwake;
1412         struct rcu_data *rdp;
1413         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1414         struct rcu_node *rnp;
1415         struct rcu_state *rsp;
1416         int tne;
1417
1418         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1419                 return;
1420
1421         /* Handle nohz enablement switches conservatively. */
1422         tne = READ_ONCE(tick_nohz_active);
1423         if (tne != rdtp->tick_nohz_enabled_snap) {
1424                 if (rcu_cpu_has_callbacks(NULL))
1425                         invoke_rcu_core(); /* force nohz to see update. */
1426                 rdtp->tick_nohz_enabled_snap = tne;
1427                 return;
1428         }
1429         if (!tne)
1430                 return;
1431
1432         /* If this is a no-CBs CPU, no callbacks, just return. */
1433         if (rcu_is_nocb_cpu(smp_processor_id()))
1434                 return;
1435
1436         /*
1437          * If a non-lazy callback arrived at a CPU having only lazy
1438          * callbacks, invoke RCU core for the side-effect of recalculating
1439          * idle duration on re-entry to idle.
1440          */
1441         if (rdtp->all_lazy &&
1442             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1443                 rdtp->all_lazy = false;
1444                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1445                 invoke_rcu_core();
1446                 return;
1447         }
1448
1449         /*
1450          * If we have not yet accelerated this jiffy, accelerate all
1451          * callbacks on this CPU.
1452          */
1453         if (rdtp->last_accelerate == jiffies)
1454                 return;
1455         rdtp->last_accelerate = jiffies;
1456         for_each_rcu_flavor(rsp) {
1457                 rdp = this_cpu_ptr(rsp->rda);
1458                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1459                         continue;
1460                 rnp = rdp->mynode;
1461                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1462                 smp_mb__after_unlock_lock();
1463                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1464                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1465                 if (needwake)
1466                         rcu_gp_kthread_wake(rsp);
1467         }
1468 }
1469
1470 /*
1471  * Clean up for exit from idle.  Attempt to advance callbacks based on
1472  * any grace periods that elapsed while the CPU was idle, and if any
1473  * callbacks are now ready to invoke, initiate invocation.
1474  */
1475 static void rcu_cleanup_after_idle(void)
1476 {
1477         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1478             rcu_is_nocb_cpu(smp_processor_id()))
1479                 return;
1480         if (rcu_try_advance_all_cbs())
1481                 invoke_rcu_core();
1482 }
1483
1484 /*
1485  * Keep a running count of the number of non-lazy callbacks posted
1486  * on this CPU.  This running counter (which is never decremented) allows
1487  * rcu_prepare_for_idle() to detect when something out of the idle loop
1488  * posts a callback, even if an equal number of callbacks are invoked.
1489  * Of course, callbacks should only be posted from within a trace event
1490  * designed to be called from idle or from within RCU_NONIDLE().
1491  */
1492 static void rcu_idle_count_callbacks_posted(void)
1493 {
1494         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1495 }
1496
1497 /*
1498  * Data for flushing lazy RCU callbacks at OOM time.
1499  */
1500 static atomic_t oom_callback_count;
1501 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1502
1503 /*
1504  * RCU OOM callback -- decrement the outstanding count and deliver the
1505  * wake-up if we are the last one.
1506  */
1507 static void rcu_oom_callback(struct rcu_head *rhp)
1508 {
1509         if (atomic_dec_and_test(&oom_callback_count))
1510                 wake_up(&oom_callback_wq);
1511 }
1512
1513 /*
1514  * Post an rcu_oom_notify callback on the current CPU if it has at
1515  * least one lazy callback.  This will unnecessarily post callbacks
1516  * to CPUs that already have a non-lazy callback at the end of their
1517  * callback list, but this is an infrequent operation, so accept some
1518  * extra overhead to keep things simple.
1519  */
1520 static void rcu_oom_notify_cpu(void *unused)
1521 {
1522         struct rcu_state *rsp;
1523         struct rcu_data *rdp;
1524
1525         for_each_rcu_flavor(rsp) {
1526                 rdp = raw_cpu_ptr(rsp->rda);
1527                 if (rdp->qlen_lazy != 0) {
1528                         atomic_inc(&oom_callback_count);
1529                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1530                 }
1531         }
1532 }
1533
1534 /*
1535  * If low on memory, ensure that each CPU has a non-lazy callback.
1536  * This will wake up CPUs that have only lazy callbacks, in turn
1537  * ensuring that they free up the corresponding memory in a timely manner.
1538  * Because an uncertain amount of memory will be freed in some uncertain
1539  * timeframe, we do not claim to have freed anything.
1540  */
1541 static int rcu_oom_notify(struct notifier_block *self,
1542                           unsigned long notused, void *nfreed)
1543 {
1544         int cpu;
1545
1546         /* Wait for callbacks from earlier instance to complete. */
1547         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1548         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1549
1550         /*
1551          * Prevent premature wakeup: ensure that all increments happen
1552          * before there is a chance of the counter reaching zero.
1553          */
1554         atomic_set(&oom_callback_count, 1);
1555
1556         for_each_online_cpu(cpu) {
1557                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1558                 cond_resched_rcu_qs();
1559         }
1560
1561         /* Unconditionally decrement: no need to wake ourselves up. */
1562         atomic_dec(&oom_callback_count);
1563
1564         return NOTIFY_OK;
1565 }
1566
1567 static struct notifier_block rcu_oom_nb = {
1568         .notifier_call = rcu_oom_notify
1569 };
1570
1571 static int __init rcu_register_oom_notifier(void)
1572 {
1573         register_oom_notifier(&rcu_oom_nb);
1574         return 0;
1575 }
1576 early_initcall(rcu_register_oom_notifier);
1577
1578 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1579
1580 #ifdef CONFIG_RCU_FAST_NO_HZ
1581
1582 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1583 {
1584         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1585         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1586
1587         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1588                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1589                 ulong2long(nlpd),
1590                 rdtp->all_lazy ? 'L' : '.',
1591                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1592 }
1593
1594 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1595
1596 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1597 {
1598         *cp = '\0';
1599 }
1600
1601 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1602
1603 /* Initiate the stall-info list. */
1604 static void print_cpu_stall_info_begin(void)
1605 {
1606         pr_cont("\n");
1607 }
1608
1609 /*
1610  * Print out diagnostic information for the specified stalled CPU.
1611  *
1612  * If the specified CPU is aware of the current RCU grace period
1613  * (flavor specified by rsp), then print the number of scheduling
1614  * clock interrupts the CPU has taken during the time that it has
1615  * been aware.  Otherwise, print the number of RCU grace periods
1616  * that this CPU is ignorant of, for example, "1" if the CPU was
1617  * aware of the previous grace period.
1618  *
1619  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1620  */
1621 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1622 {
1623         char fast_no_hz[72];
1624         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1625         struct rcu_dynticks *rdtp = rdp->dynticks;
1626         char *ticks_title;
1627         unsigned long ticks_value;
1628
1629         if (rsp->gpnum == rdp->gpnum) {
1630                 ticks_title = "ticks this GP";
1631                 ticks_value = rdp->ticks_this_gp;
1632         } else {
1633                 ticks_title = "GPs behind";
1634                 ticks_value = rsp->gpnum - rdp->gpnum;
1635         }
1636         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1637         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1638                cpu, ticks_value, ticks_title,
1639                atomic_read(&rdtp->dynticks) & 0xfff,
1640                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1641                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1642                READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1643                fast_no_hz);
1644 }
1645
1646 /* Terminate the stall-info list. */
1647 static void print_cpu_stall_info_end(void)
1648 {
1649         pr_err("\t");
1650 }
1651
1652 /* Zero ->ticks_this_gp for all flavors of RCU. */
1653 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1654 {
1655         rdp->ticks_this_gp = 0;
1656         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1657 }
1658
1659 /* Increment ->ticks_this_gp for all flavors of RCU. */
1660 static void increment_cpu_stall_ticks(void)
1661 {
1662         struct rcu_state *rsp;
1663
1664         for_each_rcu_flavor(rsp)
1665                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1666 }
1667
1668 #ifdef CONFIG_RCU_NOCB_CPU
1669
1670 /*
1671  * Offload callback processing from the boot-time-specified set of CPUs
1672  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1673  * kthread created that pulls the callbacks from the corresponding CPU,
1674  * waits for a grace period to elapse, and invokes the callbacks.
1675  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1676  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1677  * has been specified, in which case each kthread actively polls its
1678  * CPU.  (Which isn't so great for energy efficiency, but which does
1679  * reduce RCU's overhead on that CPU.)
1680  *
1681  * This is intended to be used in conjunction with Frederic Weisbecker's
1682  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1683  * running CPU-bound user-mode computations.
1684  *
1685  * Offloading of callback processing could also in theory be used as
1686  * an energy-efficiency measure because CPUs with no RCU callbacks
1687  * queued are more aggressive about entering dyntick-idle mode.
1688  */
1689
1690
1691 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1692 static int __init rcu_nocb_setup(char *str)
1693 {
1694         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1695         have_rcu_nocb_mask = true;
1696         cpulist_parse(str, rcu_nocb_mask);
1697         return 1;
1698 }
1699 __setup("rcu_nocbs=", rcu_nocb_setup);
1700
1701 static int __init parse_rcu_nocb_poll(char *arg)
1702 {
1703         rcu_nocb_poll = 1;
1704         return 0;
1705 }
1706 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1707
1708 /*
1709  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1710  * grace period.
1711  */
1712 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1713 {
1714         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1715 }
1716
1717 /*
1718  * Set the root rcu_node structure's ->need_future_gp field
1719  * based on the sum of those of all rcu_node structures.  This does
1720  * double-count the root rcu_node structure's requests, but this
1721  * is necessary to handle the possibility of a rcu_nocb_kthread()
1722  * having awakened during the time that the rcu_node structures
1723  * were being updated for the end of the previous grace period.
1724  */
1725 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1726 {
1727         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1728 }
1729
1730 static void rcu_init_one_nocb(struct rcu_node *rnp)
1731 {
1732         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1733         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1734 }
1735
1736 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1737 /* Is the specified CPU a no-CBs CPU? */
1738 bool rcu_is_nocb_cpu(int cpu)
1739 {
1740         if (have_rcu_nocb_mask)
1741                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1742         return false;
1743 }
1744 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1745
1746 /*
1747  * Kick the leader kthread for this NOCB group.
1748  */
1749 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1750 {
1751         struct rcu_data *rdp_leader = rdp->nocb_leader;
1752
1753         if (!READ_ONCE(rdp_leader->nocb_kthread))
1754                 return;
1755         if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1756                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1757                 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1758                 wake_up(&rdp_leader->nocb_wq);
1759         }
1760 }
1761
1762 /*
1763  * Does the specified CPU need an RCU callback for the specified flavor
1764  * of rcu_barrier()?
1765  */
1766 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1767 {
1768         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1769         unsigned long ret;
1770 #ifdef CONFIG_PROVE_RCU
1771         struct rcu_head *rhp;
1772 #endif /* #ifdef CONFIG_PROVE_RCU */
1773
1774         /*
1775          * Check count of all no-CBs callbacks awaiting invocation.
1776          * There needs to be a barrier before this function is called,
1777          * but associated with a prior determination that no more
1778          * callbacks would be posted.  In the worst case, the first
1779          * barrier in _rcu_barrier() suffices (but the caller cannot
1780          * necessarily rely on this, not a substitute for the caller
1781          * getting the concurrency design right!).  There must also be
1782          * a barrier between the following load an posting of a callback
1783          * (if a callback is in fact needed).  This is associated with an
1784          * atomic_inc() in the caller.
1785          */
1786         ret = atomic_long_read(&rdp->nocb_q_count);
1787
1788 #ifdef CONFIG_PROVE_RCU
1789         rhp = READ_ONCE(rdp->nocb_head);
1790         if (!rhp)
1791                 rhp = READ_ONCE(rdp->nocb_gp_head);
1792         if (!rhp)
1793                 rhp = READ_ONCE(rdp->nocb_follower_head);
1794
1795         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1796         if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1797             rcu_scheduler_fully_active) {
1798                 /* RCU callback enqueued before CPU first came online??? */
1799                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1800                        cpu, rhp->func);
1801                 WARN_ON_ONCE(1);
1802         }
1803 #endif /* #ifdef CONFIG_PROVE_RCU */
1804
1805         return !!ret;
1806 }
1807
1808 /*
1809  * Enqueue the specified string of rcu_head structures onto the specified
1810  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1811  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1812  * counts are supplied by rhcount and rhcount_lazy.
1813  *
1814  * If warranted, also wake up the kthread servicing this CPUs queues.
1815  */
1816 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1817                                     struct rcu_head *rhp,
1818                                     struct rcu_head **rhtp,
1819                                     int rhcount, int rhcount_lazy,
1820                                     unsigned long flags)
1821 {
1822         int len;
1823         struct rcu_head **old_rhpp;
1824         struct task_struct *t;
1825
1826         /* Enqueue the callback on the nocb list and update counts. */
1827         atomic_long_add(rhcount, &rdp->nocb_q_count);
1828         /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1829         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1830         WRITE_ONCE(*old_rhpp, rhp);
1831         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1832         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1833
1834         /* If we are not being polled and there is a kthread, awaken it ... */
1835         t = READ_ONCE(rdp->nocb_kthread);
1836         if (rcu_nocb_poll || !t) {
1837                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1838                                     TPS("WakeNotPoll"));
1839                 return;
1840         }
1841         len = atomic_long_read(&rdp->nocb_q_count);
1842         if (old_rhpp == &rdp->nocb_head) {
1843                 if (!irqs_disabled_flags(flags)) {
1844                         /* ... if queue was empty ... */
1845                         wake_nocb_leader(rdp, false);
1846                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1847                                             TPS("WakeEmpty"));
1848                 } else {
1849                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1850                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1851                                             TPS("WakeEmptyIsDeferred"));
1852                 }
1853                 rdp->qlen_last_fqs_check = 0;
1854         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1855                 /* ... or if many callbacks queued. */
1856                 if (!irqs_disabled_flags(flags)) {
1857                         wake_nocb_leader(rdp, true);
1858                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1859                                             TPS("WakeOvf"));
1860                 } else {
1861                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1862                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1863                                             TPS("WakeOvfIsDeferred"));
1864                 }
1865                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1866         } else {
1867                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1868         }
1869         return;
1870 }
1871
1872 /*
1873  * This is a helper for __call_rcu(), which invokes this when the normal
1874  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1875  * function returns failure back to __call_rcu(), which can complain
1876  * appropriately.
1877  *
1878  * Otherwise, this function queues the callback where the corresponding
1879  * "rcuo" kthread can find it.
1880  */
1881 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1882                             bool lazy, unsigned long flags)
1883 {
1884
1885         if (!rcu_is_nocb_cpu(rdp->cpu))
1886                 return false;
1887         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1888         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1889                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1890                                          (unsigned long)rhp->func,
1891                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
1892                                          -atomic_long_read(&rdp->nocb_q_count));
1893         else
1894                 trace_rcu_callback(rdp->rsp->name, rhp,
1895                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
1896                                    -atomic_long_read(&rdp->nocb_q_count));
1897
1898         /*
1899          * If called from an extended quiescent state with interrupts
1900          * disabled, invoke the RCU core in order to allow the idle-entry
1901          * deferred-wakeup check to function.
1902          */
1903         if (irqs_disabled_flags(flags) &&
1904             !rcu_is_watching() &&
1905             cpu_online(smp_processor_id()))
1906                 invoke_rcu_core();
1907
1908         return true;
1909 }
1910
1911 /*
1912  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1913  * not a no-CBs CPU.
1914  */
1915 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1916                                                      struct rcu_data *rdp,
1917                                                      unsigned long flags)
1918 {
1919         long ql = rsp->qlen;
1920         long qll = rsp->qlen_lazy;
1921
1922         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1923         if (!rcu_is_nocb_cpu(smp_processor_id()))
1924                 return false;
1925         rsp->qlen = 0;
1926         rsp->qlen_lazy = 0;
1927
1928         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
1929         if (rsp->orphan_donelist != NULL) {
1930                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1931                                         rsp->orphan_donetail, ql, qll, flags);
1932                 ql = qll = 0;
1933                 rsp->orphan_donelist = NULL;
1934                 rsp->orphan_donetail = &rsp->orphan_donelist;
1935         }
1936         if (rsp->orphan_nxtlist != NULL) {
1937                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
1938                                         rsp->orphan_nxttail, ql, qll, flags);
1939                 ql = qll = 0;
1940                 rsp->orphan_nxtlist = NULL;
1941                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1942         }
1943         return true;
1944 }
1945
1946 /*
1947  * If necessary, kick off a new grace period, and either way wait
1948  * for a subsequent grace period to complete.
1949  */
1950 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1951 {
1952         unsigned long c;
1953         bool d;
1954         unsigned long flags;
1955         bool needwake;
1956         struct rcu_node *rnp = rdp->mynode;
1957
1958         raw_spin_lock_irqsave(&rnp->lock, flags);
1959         smp_mb__after_unlock_lock();
1960         needwake = rcu_start_future_gp(rnp, rdp, &c);
1961         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1962         if (needwake)
1963                 rcu_gp_kthread_wake(rdp->rsp);
1964
1965         /*
1966          * Wait for the grace period.  Do so interruptibly to avoid messing
1967          * up the load average.
1968          */
1969         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1970         for (;;) {
1971                 wait_event_interruptible(
1972                         rnp->nocb_gp_wq[c & 0x1],
1973                         (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1974                 if (likely(d))
1975                         break;
1976                 WARN_ON(signal_pending(current));
1977                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
1978         }
1979         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
1980         smp_mb(); /* Ensure that CB invocation happens after GP end. */
1981 }
1982
1983 /*
1984  * Leaders come here to wait for additional callbacks to show up.
1985  * This function does not return until callbacks appear.
1986  */
1987 static void nocb_leader_wait(struct rcu_data *my_rdp)
1988 {
1989         bool firsttime = true;
1990         bool gotcbs;
1991         struct rcu_data *rdp;
1992         struct rcu_head **tail;
1993
1994 wait_again:
1995
1996         /* Wait for callbacks to appear. */
1997         if (!rcu_nocb_poll) {
1998                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
1999                 wait_event_interruptible(my_rdp->nocb_wq,
2000                                 !READ_ONCE(my_rdp->nocb_leader_sleep));
2001                 /* Memory barrier handled by smp_mb() calls below and repoll. */
2002         } else if (firsttime) {
2003                 firsttime = false; /* Don't drown trace log with "Poll"! */
2004                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2005         }
2006
2007         /*
2008          * Each pass through the following loop checks a follower for CBs.
2009          * We are our own first follower.  Any CBs found are moved to
2010          * nocb_gp_head, where they await a grace period.
2011          */
2012         gotcbs = false;
2013         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2014                 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2015                 if (!rdp->nocb_gp_head)
2016                         continue;  /* No CBs here, try next follower. */
2017
2018                 /* Move callbacks to wait-for-GP list, which is empty. */
2019                 WRITE_ONCE(rdp->nocb_head, NULL);
2020                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2021                 gotcbs = true;
2022         }
2023
2024         /*
2025          * If there were no callbacks, sleep a bit, rescan after a
2026          * memory barrier, and go retry.
2027          */
2028         if (unlikely(!gotcbs)) {
2029                 if (!rcu_nocb_poll)
2030                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2031                                             "WokeEmpty");
2032                 WARN_ON(signal_pending(current));
2033                 schedule_timeout_interruptible(1);
2034
2035                 /* Rescan in case we were a victim of memory ordering. */
2036                 my_rdp->nocb_leader_sleep = true;
2037                 smp_mb();  /* Ensure _sleep true before scan. */
2038                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2039                         if (READ_ONCE(rdp->nocb_head)) {
2040                                 /* Found CB, so short-circuit next wait. */
2041                                 my_rdp->nocb_leader_sleep = false;
2042                                 break;
2043                         }
2044                 goto wait_again;
2045         }
2046
2047         /* Wait for one grace period. */
2048         rcu_nocb_wait_gp(my_rdp);
2049
2050         /*
2051          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2052          * We set it now, but recheck for new callbacks while
2053          * traversing our follower list.
2054          */
2055         my_rdp->nocb_leader_sleep = true;
2056         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2057
2058         /* Each pass through the following loop wakes a follower, if needed. */
2059         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2060                 if (READ_ONCE(rdp->nocb_head))
2061                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2062                 if (!rdp->nocb_gp_head)
2063                         continue; /* No CBs, so no need to wake follower. */
2064
2065                 /* Append callbacks to follower's "done" list. */
2066                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2067                 *tail = rdp->nocb_gp_head;
2068                 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2069                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2070                         /*
2071                          * List was empty, wake up the follower.
2072                          * Memory barriers supplied by atomic_long_add().
2073                          */
2074                         wake_up(&rdp->nocb_wq);
2075                 }
2076         }
2077
2078         /* If we (the leader) don't have CBs, go wait some more. */
2079         if (!my_rdp->nocb_follower_head)
2080                 goto wait_again;
2081 }
2082
2083 /*
2084  * Followers come here to wait for additional callbacks to show up.
2085  * This function does not return until callbacks appear.
2086  */
2087 static void nocb_follower_wait(struct rcu_data *rdp)
2088 {
2089         bool firsttime = true;
2090
2091         for (;;) {
2092                 if (!rcu_nocb_poll) {
2093                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2094                                             "FollowerSleep");
2095                         wait_event_interruptible(rdp->nocb_wq,
2096                                                  READ_ONCE(rdp->nocb_follower_head));
2097                 } else if (firsttime) {
2098                         /* Don't drown trace log with "Poll"! */
2099                         firsttime = false;
2100                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2101                 }
2102                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2103                         /* ^^^ Ensure CB invocation follows _head test. */
2104                         return;
2105                 }
2106                 if (!rcu_nocb_poll)
2107                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2108                                             "WokeEmpty");
2109                 WARN_ON(signal_pending(current));
2110                 schedule_timeout_interruptible(1);
2111         }
2112 }
2113
2114 /*
2115  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2116  * callbacks queued by the corresponding no-CBs CPU, however, there is
2117  * an optional leader-follower relationship so that the grace-period
2118  * kthreads don't have to do quite so many wakeups.
2119  */
2120 static int rcu_nocb_kthread(void *arg)
2121 {
2122         int c, cl;
2123         struct rcu_head *list;
2124         struct rcu_head *next;
2125         struct rcu_head **tail;
2126         struct rcu_data *rdp = arg;
2127
2128         /* Each pass through this loop invokes one batch of callbacks */
2129         for (;;) {
2130                 /* Wait for callbacks. */
2131                 if (rdp->nocb_leader == rdp)
2132                         nocb_leader_wait(rdp);
2133                 else
2134                         nocb_follower_wait(rdp);
2135
2136                 /* Pull the ready-to-invoke callbacks onto local list. */
2137                 list = READ_ONCE(rdp->nocb_follower_head);
2138                 BUG_ON(!list);
2139                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2140                 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2141                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2142
2143                 /* Each pass through the following loop invokes a callback. */
2144                 trace_rcu_batch_start(rdp->rsp->name,
2145                                       atomic_long_read(&rdp->nocb_q_count_lazy),
2146                                       atomic_long_read(&rdp->nocb_q_count), -1);
2147                 c = cl = 0;
2148                 while (list) {
2149                         next = list->next;
2150                         /* Wait for enqueuing to complete, if needed. */
2151                         while (next == NULL && &list->next != tail) {
2152                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2153                                                     TPS("WaitQueue"));
2154                                 schedule_timeout_interruptible(1);
2155                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2156                                                     TPS("WokeQueue"));
2157                                 next = list->next;
2158                         }
2159                         debug_rcu_head_unqueue(list);
2160                         local_bh_disable();
2161                         if (__rcu_reclaim(rdp->rsp->name, list))
2162                                 cl++;
2163                         c++;
2164                         local_bh_enable();
2165                         list = next;
2166                 }
2167                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2168                 smp_mb__before_atomic();  /* _add after CB invocation. */
2169                 atomic_long_add(-c, &rdp->nocb_q_count);
2170                 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2171                 rdp->n_nocbs_invoked += c;
2172         }
2173         return 0;
2174 }
2175
2176 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2177 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2178 {
2179         return READ_ONCE(rdp->nocb_defer_wakeup);
2180 }
2181
2182 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2183 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2184 {
2185         int ndw;
2186
2187         if (!rcu_nocb_need_deferred_wakeup(rdp))
2188                 return;
2189         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2190         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2191         wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2192         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2193 }
2194
2195 void __init rcu_init_nohz(void)
2196 {
2197         int cpu;
2198         bool need_rcu_nocb_mask = true;
2199         struct rcu_state *rsp;
2200
2201 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2202         need_rcu_nocb_mask = false;
2203 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2204
2205 #if defined(CONFIG_NO_HZ_FULL)
2206         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2207                 need_rcu_nocb_mask = true;
2208 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2209
2210         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2211                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2212                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2213                         return;
2214                 }
2215                 have_rcu_nocb_mask = true;
2216         }
2217         if (!have_rcu_nocb_mask)
2218                 return;
2219
2220 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2221         pr_info("\tOffload RCU callbacks from CPU 0\n");
2222         cpumask_set_cpu(0, rcu_nocb_mask);
2223 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2224 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2225         pr_info("\tOffload RCU callbacks from all CPUs\n");
2226         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2227 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2228 #if defined(CONFIG_NO_HZ_FULL)
2229         if (tick_nohz_full_running)
2230                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2231 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2232
2233         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2234                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2235                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2236                             rcu_nocb_mask);
2237         }
2238         pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2239                 cpumask_pr_args(rcu_nocb_mask));
2240         if (rcu_nocb_poll)
2241                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2242
2243         for_each_rcu_flavor(rsp) {
2244                 for_each_cpu(cpu, rcu_nocb_mask)
2245                         init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2246                 rcu_organize_nocb_kthreads(rsp);
2247         }
2248 }
2249
2250 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2251 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2252 {
2253         rdp->nocb_tail = &rdp->nocb_head;
2254         init_waitqueue_head(&rdp->nocb_wq);
2255         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2256 }
2257
2258 /*
2259  * If the specified CPU is a no-CBs CPU that does not already have its
2260  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2261  * brought online out of order, this can require re-organizing the
2262  * leader-follower relationships.
2263  */
2264 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2265 {
2266         struct rcu_data *rdp;
2267         struct rcu_data *rdp_last;
2268         struct rcu_data *rdp_old_leader;
2269         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2270         struct task_struct *t;
2271
2272         /*
2273          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2274          * then nothing to do.
2275          */
2276         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2277                 return;
2278
2279         /* If we didn't spawn the leader first, reorganize! */
2280         rdp_old_leader = rdp_spawn->nocb_leader;
2281         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2282                 rdp_last = NULL;
2283                 rdp = rdp_old_leader;
2284                 do {
2285                         rdp->nocb_leader = rdp_spawn;
2286                         if (rdp_last && rdp != rdp_spawn)
2287                                 rdp_last->nocb_next_follower = rdp;
2288                         if (rdp == rdp_spawn) {
2289                                 rdp = rdp->nocb_next_follower;
2290                         } else {
2291                                 rdp_last = rdp;
2292                                 rdp = rdp->nocb_next_follower;
2293                                 rdp_last->nocb_next_follower = NULL;
2294                         }
2295                 } while (rdp);
2296                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2297         }
2298
2299         /* Spawn the kthread for this CPU and RCU flavor. */
2300         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2301                         "rcuo%c/%d", rsp->abbr, cpu);
2302         BUG_ON(IS_ERR(t));
2303         WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2304 }
2305
2306 /*
2307  * If the specified CPU is a no-CBs CPU that does not already have its
2308  * rcuo kthreads, spawn them.
2309  */
2310 static void rcu_spawn_all_nocb_kthreads(int cpu)
2311 {
2312         struct rcu_state *rsp;
2313
2314         if (rcu_scheduler_fully_active)
2315                 for_each_rcu_flavor(rsp)
2316                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2317 }
2318
2319 /*
2320  * Once the scheduler is running, spawn rcuo kthreads for all online
2321  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2322  * non-boot CPUs come online -- if this changes, we will need to add
2323  * some mutual exclusion.
2324  */
2325 static void __init rcu_spawn_nocb_kthreads(void)
2326 {
2327         int cpu;
2328
2329         for_each_online_cpu(cpu)
2330                 rcu_spawn_all_nocb_kthreads(cpu);
2331 }
2332
2333 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2334 static int rcu_nocb_leader_stride = -1;
2335 module_param(rcu_nocb_leader_stride, int, 0444);
2336
2337 /*
2338  * Initialize leader-follower relationships for all no-CBs CPU.
2339  */
2340 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2341 {
2342         int cpu;
2343         int ls = rcu_nocb_leader_stride;
2344         int nl = 0;  /* Next leader. */
2345         struct rcu_data *rdp;
2346         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2347         struct rcu_data *rdp_prev = NULL;
2348
2349         if (!have_rcu_nocb_mask)
2350                 return;
2351         if (ls == -1) {
2352                 ls = int_sqrt(nr_cpu_ids);
2353                 rcu_nocb_leader_stride = ls;
2354         }
2355
2356         /*
2357          * Each pass through this loop sets up one rcu_data structure and
2358          * spawns one rcu_nocb_kthread().
2359          */
2360         for_each_cpu(cpu, rcu_nocb_mask) {
2361                 rdp = per_cpu_ptr(rsp->rda, cpu);
2362                 if (rdp->cpu >= nl) {
2363                         /* New leader, set up for followers & next leader. */
2364                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2365                         rdp->nocb_leader = rdp;
2366                         rdp_leader = rdp;
2367                 } else {
2368                         /* Another follower, link to previous leader. */
2369                         rdp->nocb_leader = rdp_leader;
2370                         rdp_prev->nocb_next_follower = rdp;
2371                 }
2372                 rdp_prev = rdp;
2373         }
2374 }
2375
2376 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2377 static bool init_nocb_callback_list(struct rcu_data *rdp)
2378 {
2379         if (!rcu_is_nocb_cpu(rdp->cpu))
2380                 return false;
2381
2382         /* If there are early-boot callbacks, move them to nocb lists. */
2383         if (rdp->nxtlist) {
2384                 rdp->nocb_head = rdp->nxtlist;
2385                 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2386                 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2387                 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2388                 rdp->nxtlist = NULL;
2389                 rdp->qlen = 0;
2390                 rdp->qlen_lazy = 0;
2391         }
2392         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2393         return true;
2394 }
2395
2396 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2397
2398 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2399 {
2400         WARN_ON_ONCE(1); /* Should be dead code. */
2401         return false;
2402 }
2403
2404 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2405 {
2406 }
2407
2408 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2409 {
2410 }
2411
2412 static void rcu_init_one_nocb(struct rcu_node *rnp)
2413 {
2414 }
2415
2416 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2417                             bool lazy, unsigned long flags)
2418 {
2419         return false;
2420 }
2421
2422 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2423                                                      struct rcu_data *rdp,
2424                                                      unsigned long flags)
2425 {
2426         return false;
2427 }
2428
2429 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2430 {
2431 }
2432
2433 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2434 {
2435         return false;
2436 }
2437
2438 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2439 {
2440 }
2441
2442 static void rcu_spawn_all_nocb_kthreads(int cpu)
2443 {
2444 }
2445
2446 static void __init rcu_spawn_nocb_kthreads(void)
2447 {
2448 }
2449
2450 static bool init_nocb_callback_list(struct rcu_data *rdp)
2451 {
2452         return false;
2453 }
2454
2455 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2456
2457 /*
2458  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2459  * arbitrarily long period of time with the scheduling-clock tick turned
2460  * off.  RCU will be paying attention to this CPU because it is in the
2461  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2462  * machine because the scheduling-clock tick has been disabled.  Therefore,
2463  * if an adaptive-ticks CPU is failing to respond to the current grace
2464  * period and has not be idle from an RCU perspective, kick it.
2465  */
2466 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2467 {
2468 #ifdef CONFIG_NO_HZ_FULL
2469         if (tick_nohz_full_cpu(cpu))
2470                 smp_send_reschedule(cpu);
2471 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2472 }
2473
2474
2475 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2476
2477 static int full_sysidle_state;          /* Current system-idle state. */
2478 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2479 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2480 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2481 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2482 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2483
2484 /*
2485  * Invoked to note exit from irq or task transition to idle.  Note that
2486  * usermode execution does -not- count as idle here!  After all, we want
2487  * to detect full-system idle states, not RCU quiescent states and grace
2488  * periods.  The caller must have disabled interrupts.
2489  */
2490 static void rcu_sysidle_enter(int irq)
2491 {
2492         unsigned long j;
2493         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2494
2495         /* If there are no nohz_full= CPUs, no need to track this. */
2496         if (!tick_nohz_full_enabled())
2497                 return;
2498
2499         /* Adjust nesting, check for fully idle. */
2500         if (irq) {
2501                 rdtp->dynticks_idle_nesting--;
2502                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2503                 if (rdtp->dynticks_idle_nesting != 0)
2504                         return;  /* Still not fully idle. */
2505         } else {
2506                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2507                     DYNTICK_TASK_NEST_VALUE) {
2508                         rdtp->dynticks_idle_nesting = 0;
2509                 } else {
2510                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2511                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2512                         return;  /* Still not fully idle. */
2513                 }
2514         }
2515
2516         /* Record start of fully idle period. */
2517         j = jiffies;
2518         WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2519         smp_mb__before_atomic();
2520         atomic_inc(&rdtp->dynticks_idle);
2521         smp_mb__after_atomic();
2522         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2523 }
2524
2525 /*
2526  * Unconditionally force exit from full system-idle state.  This is
2527  * invoked when a normal CPU exits idle, but must be called separately
2528  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2529  * is that the timekeeping CPU is permitted to take scheduling-clock
2530  * interrupts while the system is in system-idle state, and of course
2531  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2532  * interrupt from any other type of interrupt.
2533  */
2534 void rcu_sysidle_force_exit(void)
2535 {
2536         int oldstate = READ_ONCE(full_sysidle_state);
2537         int newoldstate;
2538
2539         /*
2540          * Each pass through the following loop attempts to exit full
2541          * system-idle state.  If contention proves to be a problem,
2542          * a trylock-based contention tree could be used here.
2543          */
2544         while (oldstate > RCU_SYSIDLE_SHORT) {
2545                 newoldstate = cmpxchg(&full_sysidle_state,
2546                                       oldstate, RCU_SYSIDLE_NOT);
2547                 if (oldstate == newoldstate &&
2548                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2549                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2550                         return; /* We cleared it, done! */
2551                 }
2552                 oldstate = newoldstate;
2553         }
2554         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2555 }
2556
2557 /*
2558  * Invoked to note entry to irq or task transition from idle.  Note that
2559  * usermode execution does -not- count as idle here!  The caller must
2560  * have disabled interrupts.
2561  */
2562 static void rcu_sysidle_exit(int irq)
2563 {
2564         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2565
2566         /* If there are no nohz_full= CPUs, no need to track this. */
2567         if (!tick_nohz_full_enabled())
2568                 return;
2569
2570         /* Adjust nesting, check for already non-idle. */
2571         if (irq) {
2572                 rdtp->dynticks_idle_nesting++;
2573                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2574                 if (rdtp->dynticks_idle_nesting != 1)
2575                         return; /* Already non-idle. */
2576         } else {
2577                 /*
2578                  * Allow for irq misnesting.  Yes, it really is possible
2579                  * to enter an irq handler then never leave it, and maybe
2580                  * also vice versa.  Handle both possibilities.
2581                  */
2582                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2583                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2584                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2585                         return; /* Already non-idle. */
2586                 } else {
2587                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2588                 }
2589         }
2590
2591         /* Record end of idle period. */
2592         smp_mb__before_atomic();
2593         atomic_inc(&rdtp->dynticks_idle);
2594         smp_mb__after_atomic();
2595         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2596
2597         /*
2598          * If we are the timekeeping CPU, we are permitted to be non-idle
2599          * during a system-idle state.  This must be the case, because
2600          * the timekeeping CPU has to take scheduling-clock interrupts
2601          * during the time that the system is transitioning to full
2602          * system-idle state.  This means that the timekeeping CPU must
2603          * invoke rcu_sysidle_force_exit() directly if it does anything
2604          * more than take a scheduling-clock interrupt.
2605          */
2606         if (smp_processor_id() == tick_do_timer_cpu)
2607                 return;
2608
2609         /* Update system-idle state: We are clearly no longer fully idle! */
2610         rcu_sysidle_force_exit();
2611 }
2612
2613 /*
2614  * Check to see if the current CPU is idle.  Note that usermode execution
2615  * does not count as idle.  The caller must have disabled interrupts,
2616  * and must be running on tick_do_timer_cpu.
2617  */
2618 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2619                                   unsigned long *maxj)
2620 {
2621         int cur;
2622         unsigned long j;
2623         struct rcu_dynticks *rdtp = rdp->dynticks;
2624
2625         /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2626         if (!tick_nohz_full_enabled())
2627                 return;
2628
2629         /*
2630          * If some other CPU has already reported non-idle, if this is
2631          * not the flavor of RCU that tracks sysidle state, or if this
2632          * is an offline or the timekeeping CPU, nothing to do.
2633          */
2634         if (!*isidle || rdp->rsp != rcu_state_p ||
2635             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2636                 return;
2637         /* Verify affinity of current kthread. */
2638         WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2639
2640         /* Pick up current idle and NMI-nesting counter and check. */
2641         cur = atomic_read(&rdtp->dynticks_idle);
2642         if (cur & 0x1) {
2643                 *isidle = false; /* We are not idle! */
2644                 return;
2645         }
2646         smp_mb(); /* Read counters before timestamps. */
2647
2648         /* Pick up timestamps. */
2649         j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2650         /* If this CPU entered idle more recently, update maxj timestamp. */
2651         if (ULONG_CMP_LT(*maxj, j))
2652                 *maxj = j;
2653 }
2654
2655 /*
2656  * Is this the flavor of RCU that is handling full-system idle?
2657  */
2658 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2659 {
2660         return rsp == rcu_state_p;
2661 }
2662
2663 /*
2664  * Return a delay in jiffies based on the number of CPUs, rcu_node
2665  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2666  * systems more time to transition to full-idle state in order to
2667  * avoid the cache thrashing that otherwise occur on the state variable.
2668  * Really small systems (less than a couple of tens of CPUs) should
2669  * instead use a single global atomically incremented counter, and later
2670  * versions of this will automatically reconfigure themselves accordingly.
2671  */
2672 static unsigned long rcu_sysidle_delay(void)
2673 {
2674         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2675                 return 0;
2676         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2677 }
2678
2679 /*
2680  * Advance the full-system-idle state.  This is invoked when all of
2681  * the non-timekeeping CPUs are idle.
2682  */
2683 static void rcu_sysidle(unsigned long j)
2684 {
2685         /* Check the current state. */
2686         switch (READ_ONCE(full_sysidle_state)) {
2687         case RCU_SYSIDLE_NOT:
2688
2689                 /* First time all are idle, so note a short idle period. */
2690                 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2691                 break;
2692
2693         case RCU_SYSIDLE_SHORT:
2694
2695                 /*
2696                  * Idle for a bit, time to advance to next state?
2697                  * cmpxchg failure means race with non-idle, let them win.
2698                  */
2699                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2700                         (void)cmpxchg(&full_sysidle_state,
2701                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2702                 break;
2703
2704         case RCU_SYSIDLE_LONG:
2705
2706                 /*
2707                  * Do an additional check pass before advancing to full.
2708                  * cmpxchg failure means race with non-idle, let them win.
2709                  */
2710                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2711                         (void)cmpxchg(&full_sysidle_state,
2712                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2713                 break;
2714
2715         default:
2716                 break;
2717         }
2718 }
2719
2720 /*
2721  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2722  * back to the beginning.
2723  */
2724 static void rcu_sysidle_cancel(void)
2725 {
2726         smp_mb();
2727         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2728                 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2729 }
2730
2731 /*
2732  * Update the sysidle state based on the results of a force-quiescent-state
2733  * scan of the CPUs' dyntick-idle state.
2734  */
2735 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2736                                unsigned long maxj, bool gpkt)
2737 {
2738         if (rsp != rcu_state_p)
2739                 return;  /* Wrong flavor, ignore. */
2740         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2741                 return;  /* Running state machine from timekeeping CPU. */
2742         if (isidle)
2743                 rcu_sysidle(maxj);    /* More idle! */
2744         else
2745                 rcu_sysidle_cancel(); /* Idle is over. */
2746 }
2747
2748 /*
2749  * Wrapper for rcu_sysidle_report() when called from the grace-period
2750  * kthread's context.
2751  */
2752 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2753                                   unsigned long maxj)
2754 {
2755         /* If there are no nohz_full= CPUs, no need to track this. */
2756         if (!tick_nohz_full_enabled())
2757                 return;
2758
2759         rcu_sysidle_report(rsp, isidle, maxj, true);
2760 }
2761
2762 /* Callback and function for forcing an RCU grace period. */
2763 struct rcu_sysidle_head {
2764         struct rcu_head rh;
2765         int inuse;
2766 };
2767
2768 static void rcu_sysidle_cb(struct rcu_head *rhp)
2769 {
2770         struct rcu_sysidle_head *rshp;
2771
2772         /*
2773          * The following memory barrier is needed to replace the
2774          * memory barriers that would normally be in the memory
2775          * allocator.
2776          */
2777         smp_mb();  /* grace period precedes setting inuse. */
2778
2779         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2780         WRITE_ONCE(rshp->inuse, 0);
2781 }
2782
2783 /*
2784  * Check to see if the system is fully idle, other than the timekeeping CPU.
2785  * The caller must have disabled interrupts.  This is not intended to be
2786  * called unless tick_nohz_full_enabled().
2787  */
2788 bool rcu_sys_is_idle(void)
2789 {
2790         static struct rcu_sysidle_head rsh;
2791         int rss = READ_ONCE(full_sysidle_state);
2792
2793         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2794                 return false;
2795
2796         /* Handle small-system case by doing a full scan of CPUs. */
2797         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2798                 int oldrss = rss - 1;
2799
2800                 /*
2801                  * One pass to advance to each state up to _FULL.
2802                  * Give up if any pass fails to advance the state.
2803                  */
2804                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2805                         int cpu;
2806                         bool isidle = true;
2807                         unsigned long maxj = jiffies - ULONG_MAX / 4;
2808                         struct rcu_data *rdp;
2809
2810                         /* Scan all the CPUs looking for nonidle CPUs. */
2811                         for_each_possible_cpu(cpu) {
2812                                 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2813                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2814                                 if (!isidle)
2815                                         break;
2816                         }
2817                         rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2818                         oldrss = rss;
2819                         rss = READ_ONCE(full_sysidle_state);
2820                 }
2821         }
2822
2823         /* If this is the first observation of an idle period, record it. */
2824         if (rss == RCU_SYSIDLE_FULL) {
2825                 rss = cmpxchg(&full_sysidle_state,
2826                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2827                 return rss == RCU_SYSIDLE_FULL;
2828         }
2829
2830         smp_mb(); /* ensure rss load happens before later caller actions. */
2831
2832         /* If already fully idle, tell the caller (in case of races). */
2833         if (rss == RCU_SYSIDLE_FULL_NOTED)
2834                 return true;
2835
2836         /*
2837          * If we aren't there yet, and a grace period is not in flight,
2838          * initiate a grace period.  Either way, tell the caller that
2839          * we are not there yet.  We use an xchg() rather than an assignment
2840          * to make up for the memory barriers that would otherwise be
2841          * provided by the memory allocator.
2842          */
2843         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2844             !rcu_gp_in_progress(rcu_state_p) &&
2845             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2846                 call_rcu(&rsh.rh, rcu_sysidle_cb);
2847         return false;
2848 }
2849
2850 /*
2851  * Initialize dynticks sysidle state for CPUs coming online.
2852  */
2853 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2854 {
2855         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2856 }
2857
2858 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2859
2860 static void rcu_sysidle_enter(int irq)
2861 {
2862 }
2863
2864 static void rcu_sysidle_exit(int irq)
2865 {
2866 }
2867
2868 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2869                                   unsigned long *maxj)
2870 {
2871 }
2872
2873 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2874 {
2875         return false;
2876 }
2877
2878 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2879                                   unsigned long maxj)
2880 {
2881 }
2882
2883 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2884 {
2885 }
2886
2887 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2888
2889 /*
2890  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2891  * grace-period kthread will do force_quiescent_state() processing?
2892  * The idea is to avoid waking up RCU core processing on such a
2893  * CPU unless the grace period has extended for too long.
2894  *
2895  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2896  * CONFIG_RCU_NOCB_CPU CPUs.
2897  */
2898 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2899 {
2900 #ifdef CONFIG_NO_HZ_FULL
2901         if (tick_nohz_full_cpu(smp_processor_id()) &&
2902             (!rcu_gp_in_progress(rsp) ||
2903              ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2904                 return true;
2905 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2906         return false;
2907 }
2908
2909 /*
2910  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2911  * timekeeping CPU.
2912  */
2913 static void rcu_bind_gp_kthread(void)
2914 {
2915         int __maybe_unused cpu;
2916
2917         if (!tick_nohz_full_enabled())
2918                 return;
2919 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2920         cpu = tick_do_timer_cpu;
2921         if (cpu >= 0 && cpu < nr_cpu_ids)
2922                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
2923 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2924         housekeeping_affine(current);
2925 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2926 }
2927
2928 /* Record the current task on dyntick-idle entry. */
2929 static void rcu_dynticks_task_enter(void)
2930 {
2931 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2932         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2933 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2934 }
2935
2936 /* Record no current task on dyntick-idle exit. */
2937 static void rcu_dynticks_task_exit(void)
2938 {
2939 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2940         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2941 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2942 }