]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/rcu/tree_plugin.h
rcu: Consolidate tree setup for synchronize_rcu_expedited()
[karo-tx-linux.git] / kernel / rcu / tree_plugin.h
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *         Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
32
33 #ifdef CONFIG_RCU_BOOST
34
35 #include "../locking/rtmutex_common.h"
36
37 /*
38  * Control variables for per-CPU and per-rcu_node kthreads.  These
39  * handle all flavors of RCU.
40  */
41 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44 DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
46 #else /* #ifdef CONFIG_RCU_BOOST */
47
48 /*
49  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
50  * all uses are in dead code.  Provide a definition to keep the compiler
51  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
52  * This probably needs to be excluded from -rt builds.
53  */
54 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
55
56 #endif /* #else #ifdef CONFIG_RCU_BOOST */
57
58 #ifdef CONFIG_RCU_NOCB_CPU
59 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
60 static bool have_rcu_nocb_mask;     /* Was rcu_nocb_mask allocated? */
61 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
62 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
63
64 /*
65  * Check the RCU kernel configuration parameters and print informative
66  * messages about anything out of the ordinary.  If you like #ifdef, you
67  * will love this function.
68  */
69 static void __init rcu_bootup_announce_oddness(void)
70 {
71         if (IS_ENABLED(CONFIG_RCU_TRACE))
72                 pr_info("\tRCU debugfs-based tracing is enabled.\n");
73         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
74             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
75                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
76                        RCU_FANOUT);
77         if (rcu_fanout_exact)
78                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
79         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
80                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
81         if (IS_ENABLED(CONFIG_PROVE_RCU))
82                 pr_info("\tRCU lockdep checking is enabled.\n");
83         if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
84                 pr_info("\tRCU torture testing starts during boot.\n");
85         if (RCU_NUM_LVLS >= 4)
86                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
87         if (RCU_FANOUT_LEAF != 16)
88                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89                         RCU_FANOUT_LEAF);
90         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
91                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
92         if (nr_cpu_ids != NR_CPUS)
93                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
94         if (IS_ENABLED(CONFIG_RCU_BOOST))
95                 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
96 }
97
98 #ifdef CONFIG_PREEMPT_RCU
99
100 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
101 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
102 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
103
104 static int rcu_preempted_readers_exp(struct rcu_node *rnp);
105 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
106                                bool wake);
107
108 /*
109  * Tell them what RCU they are running.
110  */
111 static void __init rcu_bootup_announce(void)
112 {
113         pr_info("Preemptible hierarchical RCU implementation.\n");
114         rcu_bootup_announce_oddness();
115 }
116
117 /*
118  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
119  * that this just means that the task currently running on the CPU is
120  * not in a quiescent state.  There might be any number of tasks blocked
121  * while in an RCU read-side critical section.
122  *
123  * As with the other rcu_*_qs() functions, callers to this function
124  * must disable preemption.
125  */
126 static void rcu_preempt_qs(void)
127 {
128         if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
129                 trace_rcu_grace_period(TPS("rcu_preempt"),
130                                        __this_cpu_read(rcu_data_p->gpnum),
131                                        TPS("cpuqs"));
132                 __this_cpu_write(rcu_data_p->passed_quiesce, 1);
133                 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
134                 current->rcu_read_unlock_special.b.need_qs = false;
135         }
136 }
137
138 /*
139  * We have entered the scheduler, and the current task might soon be
140  * context-switched away from.  If this task is in an RCU read-side
141  * critical section, we will no longer be able to rely on the CPU to
142  * record that fact, so we enqueue the task on the blkd_tasks list.
143  * The task will dequeue itself when it exits the outermost enclosing
144  * RCU read-side critical section.  Therefore, the current grace period
145  * cannot be permitted to complete until the blkd_tasks list entries
146  * predating the current grace period drain, in other words, until
147  * rnp->gp_tasks becomes NULL.
148  *
149  * Caller must disable preemption.
150  */
151 static void rcu_preempt_note_context_switch(void)
152 {
153         struct task_struct *t = current;
154         unsigned long flags;
155         struct rcu_data *rdp;
156         struct rcu_node *rnp;
157
158         if (t->rcu_read_lock_nesting > 0 &&
159             !t->rcu_read_unlock_special.b.blocked) {
160
161                 /* Possibly blocking in an RCU read-side critical section. */
162                 rdp = this_cpu_ptr(rcu_state_p->rda);
163                 rnp = rdp->mynode;
164                 raw_spin_lock_irqsave(&rnp->lock, flags);
165                 smp_mb__after_unlock_lock();
166                 t->rcu_read_unlock_special.b.blocked = true;
167                 t->rcu_blocked_node = rnp;
168
169                 /*
170                  * If this CPU has already checked in, then this task
171                  * will hold up the next grace period rather than the
172                  * current grace period.  Queue the task accordingly.
173                  * If the task is queued for the current grace period
174                  * (i.e., this CPU has not yet passed through a quiescent
175                  * state for the current grace period), then as long
176                  * as that task remains queued, the current grace period
177                  * cannot end.  Note that there is some uncertainty as
178                  * to exactly when the current grace period started.
179                  * We take a conservative approach, which can result
180                  * in unnecessarily waiting on tasks that started very
181                  * slightly after the current grace period began.  C'est
182                  * la vie!!!
183                  *
184                  * But first, note that the current CPU must still be
185                  * on line!
186                  */
187                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
188                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
189                 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
190                         list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
191                         rnp->gp_tasks = &t->rcu_node_entry;
192                         if (IS_ENABLED(CONFIG_RCU_BOOST) &&
193                             rnp->boost_tasks != NULL)
194                                 rnp->boost_tasks = rnp->gp_tasks;
195                 } else {
196                         list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
197                         if (rnp->qsmask & rdp->grpmask)
198                                 rnp->gp_tasks = &t->rcu_node_entry;
199                 }
200                 trace_rcu_preempt_task(rdp->rsp->name,
201                                        t->pid,
202                                        (rnp->qsmask & rdp->grpmask)
203                                        ? rnp->gpnum
204                                        : rnp->gpnum + 1);
205                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
206         } else if (t->rcu_read_lock_nesting < 0 &&
207                    t->rcu_read_unlock_special.s) {
208
209                 /*
210                  * Complete exit from RCU read-side critical section on
211                  * behalf of preempted instance of __rcu_read_unlock().
212                  */
213                 rcu_read_unlock_special(t);
214         }
215
216         /*
217          * Either we were not in an RCU read-side critical section to
218          * begin with, or we have now recorded that critical section
219          * globally.  Either way, we can now note a quiescent state
220          * for this CPU.  Again, if we were in an RCU read-side critical
221          * section, and if that critical section was blocking the current
222          * grace period, then the fact that the task has been enqueued
223          * means that we continue to block the current grace period.
224          */
225         rcu_preempt_qs();
226 }
227
228 /*
229  * Check for preempted RCU readers blocking the current grace period
230  * for the specified rcu_node structure.  If the caller needs a reliable
231  * answer, it must hold the rcu_node's ->lock.
232  */
233 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
234 {
235         return rnp->gp_tasks != NULL;
236 }
237
238 /*
239  * Advance a ->blkd_tasks-list pointer to the next entry, instead
240  * returning NULL if at the end of the list.
241  */
242 static struct list_head *rcu_next_node_entry(struct task_struct *t,
243                                              struct rcu_node *rnp)
244 {
245         struct list_head *np;
246
247         np = t->rcu_node_entry.next;
248         if (np == &rnp->blkd_tasks)
249                 np = NULL;
250         return np;
251 }
252
253 /*
254  * Return true if the specified rcu_node structure has tasks that were
255  * preempted within an RCU read-side critical section.
256  */
257 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
258 {
259         return !list_empty(&rnp->blkd_tasks);
260 }
261
262 /*
263  * Handle special cases during rcu_read_unlock(), such as needing to
264  * notify RCU core processing or task having blocked during the RCU
265  * read-side critical section.
266  */
267 void rcu_read_unlock_special(struct task_struct *t)
268 {
269         bool empty_exp;
270         bool empty_norm;
271         bool empty_exp_now;
272         unsigned long flags;
273         struct list_head *np;
274         bool drop_boost_mutex = false;
275         struct rcu_node *rnp;
276         union rcu_special special;
277
278         /* NMI handlers cannot block and cannot safely manipulate state. */
279         if (in_nmi())
280                 return;
281
282         local_irq_save(flags);
283
284         /*
285          * If RCU core is waiting for this CPU to exit critical section,
286          * let it know that we have done so.  Because irqs are disabled,
287          * t->rcu_read_unlock_special cannot change.
288          */
289         special = t->rcu_read_unlock_special;
290         if (special.b.need_qs) {
291                 rcu_preempt_qs();
292                 t->rcu_read_unlock_special.b.need_qs = false;
293                 if (!t->rcu_read_unlock_special.s) {
294                         local_irq_restore(flags);
295                         return;
296                 }
297         }
298
299         /* Hardware IRQ handlers cannot block, complain if they get here. */
300         if (in_irq() || in_serving_softirq()) {
301                 lockdep_rcu_suspicious(__FILE__, __LINE__,
302                                        "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
303                 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
304                          t->rcu_read_unlock_special.s,
305                          t->rcu_read_unlock_special.b.blocked,
306                          t->rcu_read_unlock_special.b.need_qs);
307                 local_irq_restore(flags);
308                 return;
309         }
310
311         /* Clean up if blocked during RCU read-side critical section. */
312         if (special.b.blocked) {
313                 t->rcu_read_unlock_special.b.blocked = false;
314
315                 /*
316                  * Remove this task from the list it blocked on.  The task
317                  * now remains queued on the rcu_node corresponding to
318                  * the CPU it first blocked on, so the first attempt to
319                  * acquire the task's rcu_node's ->lock will succeed.
320                  * Keep the loop and add a WARN_ON() out of sheer paranoia.
321                  */
322                 for (;;) {
323                         rnp = t->rcu_blocked_node;
324                         raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
325                         smp_mb__after_unlock_lock();
326                         if (rnp == t->rcu_blocked_node)
327                                 break;
328                         WARN_ON_ONCE(1);
329                         raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
330                 }
331                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
332                 empty_exp = !rcu_preempted_readers_exp(rnp);
333                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
334                 np = rcu_next_node_entry(t, rnp);
335                 list_del_init(&t->rcu_node_entry);
336                 t->rcu_blocked_node = NULL;
337                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
338                                                 rnp->gpnum, t->pid);
339                 if (&t->rcu_node_entry == rnp->gp_tasks)
340                         rnp->gp_tasks = np;
341                 if (&t->rcu_node_entry == rnp->exp_tasks)
342                         rnp->exp_tasks = np;
343                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
344                         if (&t->rcu_node_entry == rnp->boost_tasks)
345                                 rnp->boost_tasks = np;
346                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
347                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
348                 }
349
350                 /*
351                  * If this was the last task on the current list, and if
352                  * we aren't waiting on any CPUs, report the quiescent state.
353                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
354                  * so we must take a snapshot of the expedited state.
355                  */
356                 empty_exp_now = !rcu_preempted_readers_exp(rnp);
357                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
358                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
359                                                          rnp->gpnum,
360                                                          0, rnp->qsmask,
361                                                          rnp->level,
362                                                          rnp->grplo,
363                                                          rnp->grphi,
364                                                          !!rnp->gp_tasks);
365                         rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
366                 } else {
367                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
368                 }
369
370                 /* Unboost if we were boosted. */
371                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
372                         rt_mutex_unlock(&rnp->boost_mtx);
373
374                 /*
375                  * If this was the last task on the expedited lists,
376                  * then we need to report up the rcu_node hierarchy.
377                  */
378                 if (!empty_exp && empty_exp_now)
379                         rcu_report_exp_rnp(rcu_state_p, rnp, true);
380         } else {
381                 local_irq_restore(flags);
382         }
383 }
384
385 /*
386  * Dump detailed information for all tasks blocking the current RCU
387  * grace period on the specified rcu_node structure.
388  */
389 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
390 {
391         unsigned long flags;
392         struct task_struct *t;
393
394         raw_spin_lock_irqsave(&rnp->lock, flags);
395         if (!rcu_preempt_blocked_readers_cgp(rnp)) {
396                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
397                 return;
398         }
399         t = list_entry(rnp->gp_tasks->prev,
400                        struct task_struct, rcu_node_entry);
401         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
402                 sched_show_task(t);
403         raw_spin_unlock_irqrestore(&rnp->lock, flags);
404 }
405
406 /*
407  * Dump detailed information for all tasks blocking the current RCU
408  * grace period.
409  */
410 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
411 {
412         struct rcu_node *rnp = rcu_get_root(rsp);
413
414         rcu_print_detail_task_stall_rnp(rnp);
415         rcu_for_each_leaf_node(rsp, rnp)
416                 rcu_print_detail_task_stall_rnp(rnp);
417 }
418
419 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
420 {
421         pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
422                rnp->level, rnp->grplo, rnp->grphi);
423 }
424
425 static void rcu_print_task_stall_end(void)
426 {
427         pr_cont("\n");
428 }
429
430 /*
431  * Scan the current list of tasks blocked within RCU read-side critical
432  * sections, printing out the tid of each.
433  */
434 static int rcu_print_task_stall(struct rcu_node *rnp)
435 {
436         struct task_struct *t;
437         int ndetected = 0;
438
439         if (!rcu_preempt_blocked_readers_cgp(rnp))
440                 return 0;
441         rcu_print_task_stall_begin(rnp);
442         t = list_entry(rnp->gp_tasks->prev,
443                        struct task_struct, rcu_node_entry);
444         list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
445                 pr_cont(" P%d", t->pid);
446                 ndetected++;
447         }
448         rcu_print_task_stall_end();
449         return ndetected;
450 }
451
452 /*
453  * Check that the list of blocked tasks for the newly completed grace
454  * period is in fact empty.  It is a serious bug to complete a grace
455  * period that still has RCU readers blocked!  This function must be
456  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
457  * must be held by the caller.
458  *
459  * Also, if there are blocked tasks on the list, they automatically
460  * block the newly created grace period, so set up ->gp_tasks accordingly.
461  */
462 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
463 {
464         WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
465         if (rcu_preempt_has_tasks(rnp))
466                 rnp->gp_tasks = rnp->blkd_tasks.next;
467         WARN_ON_ONCE(rnp->qsmask);
468 }
469
470 /*
471  * Check for a quiescent state from the current CPU.  When a task blocks,
472  * the task is recorded in the corresponding CPU's rcu_node structure,
473  * which is checked elsewhere.
474  *
475  * Caller must disable hard irqs.
476  */
477 static void rcu_preempt_check_callbacks(void)
478 {
479         struct task_struct *t = current;
480
481         if (t->rcu_read_lock_nesting == 0) {
482                 rcu_preempt_qs();
483                 return;
484         }
485         if (t->rcu_read_lock_nesting > 0 &&
486             __this_cpu_read(rcu_data_p->qs_pending) &&
487             !__this_cpu_read(rcu_data_p->passed_quiesce))
488                 t->rcu_read_unlock_special.b.need_qs = true;
489 }
490
491 #ifdef CONFIG_RCU_BOOST
492
493 static void rcu_preempt_do_callbacks(void)
494 {
495         rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
496 }
497
498 #endif /* #ifdef CONFIG_RCU_BOOST */
499
500 /*
501  * Queue a preemptible-RCU callback for invocation after a grace period.
502  */
503 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
504 {
505         __call_rcu(head, func, rcu_state_p, -1, 0);
506 }
507 EXPORT_SYMBOL_GPL(call_rcu);
508
509 /**
510  * synchronize_rcu - wait until a grace period has elapsed.
511  *
512  * Control will return to the caller some time after a full grace
513  * period has elapsed, in other words after all currently executing RCU
514  * read-side critical sections have completed.  Note, however, that
515  * upon return from synchronize_rcu(), the caller might well be executing
516  * concurrently with new RCU read-side critical sections that began while
517  * synchronize_rcu() was waiting.  RCU read-side critical sections are
518  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
519  *
520  * See the description of synchronize_sched() for more detailed information
521  * on memory ordering guarantees.
522  */
523 void synchronize_rcu(void)
524 {
525         RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
526                          lock_is_held(&rcu_lock_map) ||
527                          lock_is_held(&rcu_sched_lock_map),
528                          "Illegal synchronize_rcu() in RCU read-side critical section");
529         if (!rcu_scheduler_active)
530                 return;
531         if (rcu_gp_is_expedited())
532                 synchronize_rcu_expedited();
533         else
534                 wait_rcu_gp(call_rcu);
535 }
536 EXPORT_SYMBOL_GPL(synchronize_rcu);
537
538 /*
539  * Select the nodes that the upcoming expedited grace period needs
540  * to wait for.
541  */
542 static void sync_rcu_exp_select_nodes(struct rcu_state *rsp)
543 {
544         unsigned long flags;
545         struct rcu_node *rnp;
546
547         sync_exp_reset_tree(rsp);
548         rcu_for_each_leaf_node(rsp, rnp) {
549                 raw_spin_lock_irqsave(&rnp->lock, flags);
550                 smp_mb__after_unlock_lock();
551                 rnp->expmask = 0; /* No per-CPU component yet. */
552                 if (!rcu_preempt_has_tasks(rnp)) {
553                         /* FIXME: Want __rcu_report_exp_rnp() here. */
554                         raw_spin_unlock_irqrestore(&rnp->lock, flags);
555                 } else {
556                         rnp->exp_tasks = rnp->blkd_tasks.next;
557                         rcu_initiate_boost(rnp, flags);
558                 }
559                 rcu_report_exp_rnp(rsp, rnp, false);
560         }
561 }
562
563 /**
564  * synchronize_rcu_expedited - Brute-force RCU grace period
565  *
566  * Wait for an RCU-preempt grace period, but expedite it.  The basic
567  * idea is to invoke synchronize_sched_expedited() to push all the tasks to
568  * the ->blkd_tasks lists and wait for this list to drain.  This consumes
569  * significant time on all CPUs and is unfriendly to real-time workloads,
570  * so is thus not recommended for any sort of common-case code.
571  * In fact, if you are using synchronize_rcu_expedited() in a loop,
572  * please restructure your code to batch your updates, and then Use a
573  * single synchronize_rcu() instead.
574  */
575 void synchronize_rcu_expedited(void)
576 {
577         struct rcu_node *rnp;
578         struct rcu_node *rnp_unlock;
579         struct rcu_state *rsp = rcu_state_p;
580         unsigned long s;
581
582         s = rcu_exp_gp_seq_snap(rsp);
583
584         rnp_unlock = exp_funnel_lock(rsp, s);
585         if (rnp_unlock == NULL)
586                 return;  /* Someone else did our work for us. */
587
588         rcu_exp_gp_seq_start(rsp);
589
590         /* force all RCU readers onto ->blkd_tasks lists. */
591         synchronize_sched_expedited();
592
593         /* Initialize the rcu_node tree in preparation for the wait. */
594         sync_rcu_exp_select_nodes(rsp);
595
596         /* Wait for snapshotted ->blkd_tasks lists to drain. */
597         rnp = rcu_get_root(rsp);
598         wait_event(rsp->expedited_wq,
599                    sync_rcu_preempt_exp_done(rnp));
600
601         /* Clean up and exit. */
602         rcu_exp_gp_seq_end(rsp);
603         mutex_unlock(&rnp_unlock->exp_funnel_mutex);
604 }
605 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
606
607 /**
608  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
609  *
610  * Note that this primitive does not necessarily wait for an RCU grace period
611  * to complete.  For example, if there are no RCU callbacks queued anywhere
612  * in the system, then rcu_barrier() is within its rights to return
613  * immediately, without waiting for anything, much less an RCU grace period.
614  */
615 void rcu_barrier(void)
616 {
617         _rcu_barrier(rcu_state_p);
618 }
619 EXPORT_SYMBOL_GPL(rcu_barrier);
620
621 /*
622  * Initialize preemptible RCU's state structures.
623  */
624 static void __init __rcu_init_preempt(void)
625 {
626         rcu_init_one(rcu_state_p, rcu_data_p);
627 }
628
629 /*
630  * Check for a task exiting while in a preemptible-RCU read-side
631  * critical section, clean up if so.  No need to issue warnings,
632  * as debug_check_no_locks_held() already does this if lockdep
633  * is enabled.
634  */
635 void exit_rcu(void)
636 {
637         struct task_struct *t = current;
638
639         if (likely(list_empty(&current->rcu_node_entry)))
640                 return;
641         t->rcu_read_lock_nesting = 1;
642         barrier();
643         t->rcu_read_unlock_special.b.blocked = true;
644         __rcu_read_unlock();
645 }
646
647 #else /* #ifdef CONFIG_PREEMPT_RCU */
648
649 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
650 static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
651
652 /*
653  * Tell them what RCU they are running.
654  */
655 static void __init rcu_bootup_announce(void)
656 {
657         pr_info("Hierarchical RCU implementation.\n");
658         rcu_bootup_announce_oddness();
659 }
660
661 /*
662  * Because preemptible RCU does not exist, we never have to check for
663  * CPUs being in quiescent states.
664  */
665 static void rcu_preempt_note_context_switch(void)
666 {
667 }
668
669 /*
670  * Because preemptible RCU does not exist, there are never any preempted
671  * RCU readers.
672  */
673 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
674 {
675         return 0;
676 }
677
678 /*
679  * Because there is no preemptible RCU, there can be no readers blocked.
680  */
681 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
682 {
683         return false;
684 }
685
686 /*
687  * Because preemptible RCU does not exist, we never have to check for
688  * tasks blocked within RCU read-side critical sections.
689  */
690 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
691 {
692 }
693
694 /*
695  * Because preemptible RCU does not exist, we never have to check for
696  * tasks blocked within RCU read-side critical sections.
697  */
698 static int rcu_print_task_stall(struct rcu_node *rnp)
699 {
700         return 0;
701 }
702
703 /*
704  * Because there is no preemptible RCU, there can be no readers blocked,
705  * so there is no need to check for blocked tasks.  So check only for
706  * bogus qsmask values.
707  */
708 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
709 {
710         WARN_ON_ONCE(rnp->qsmask);
711 }
712
713 /*
714  * Because preemptible RCU does not exist, it never has any callbacks
715  * to check.
716  */
717 static void rcu_preempt_check_callbacks(void)
718 {
719 }
720
721 /*
722  * Wait for an rcu-preempt grace period, but make it happen quickly.
723  * But because preemptible RCU does not exist, map to rcu-sched.
724  */
725 void synchronize_rcu_expedited(void)
726 {
727         synchronize_sched_expedited();
728 }
729 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
730
731 /*
732  * Because preemptible RCU does not exist, rcu_barrier() is just
733  * another name for rcu_barrier_sched().
734  */
735 void rcu_barrier(void)
736 {
737         rcu_barrier_sched();
738 }
739 EXPORT_SYMBOL_GPL(rcu_barrier);
740
741 /*
742  * Because preemptible RCU does not exist, it need not be initialized.
743  */
744 static void __init __rcu_init_preempt(void)
745 {
746 }
747
748 /*
749  * Because preemptible RCU does not exist, tasks cannot possibly exit
750  * while in preemptible RCU read-side critical sections.
751  */
752 void exit_rcu(void)
753 {
754 }
755
756 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
757
758 #ifdef CONFIG_RCU_BOOST
759
760 #include "../locking/rtmutex_common.h"
761
762 #ifdef CONFIG_RCU_TRACE
763
764 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
765 {
766         if (!rcu_preempt_has_tasks(rnp))
767                 rnp->n_balk_blkd_tasks++;
768         else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
769                 rnp->n_balk_exp_gp_tasks++;
770         else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
771                 rnp->n_balk_boost_tasks++;
772         else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
773                 rnp->n_balk_notblocked++;
774         else if (rnp->gp_tasks != NULL &&
775                  ULONG_CMP_LT(jiffies, rnp->boost_time))
776                 rnp->n_balk_notyet++;
777         else
778                 rnp->n_balk_nos++;
779 }
780
781 #else /* #ifdef CONFIG_RCU_TRACE */
782
783 static void rcu_initiate_boost_trace(struct rcu_node *rnp)
784 {
785 }
786
787 #endif /* #else #ifdef CONFIG_RCU_TRACE */
788
789 static void rcu_wake_cond(struct task_struct *t, int status)
790 {
791         /*
792          * If the thread is yielding, only wake it when this
793          * is invoked from idle
794          */
795         if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
796                 wake_up_process(t);
797 }
798
799 /*
800  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
801  * or ->boost_tasks, advancing the pointer to the next task in the
802  * ->blkd_tasks list.
803  *
804  * Note that irqs must be enabled: boosting the task can block.
805  * Returns 1 if there are more tasks needing to be boosted.
806  */
807 static int rcu_boost(struct rcu_node *rnp)
808 {
809         unsigned long flags;
810         struct task_struct *t;
811         struct list_head *tb;
812
813         if (READ_ONCE(rnp->exp_tasks) == NULL &&
814             READ_ONCE(rnp->boost_tasks) == NULL)
815                 return 0;  /* Nothing left to boost. */
816
817         raw_spin_lock_irqsave(&rnp->lock, flags);
818         smp_mb__after_unlock_lock();
819
820         /*
821          * Recheck under the lock: all tasks in need of boosting
822          * might exit their RCU read-side critical sections on their own.
823          */
824         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
825                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
826                 return 0;
827         }
828
829         /*
830          * Preferentially boost tasks blocking expedited grace periods.
831          * This cannot starve the normal grace periods because a second
832          * expedited grace period must boost all blocked tasks, including
833          * those blocking the pre-existing normal grace period.
834          */
835         if (rnp->exp_tasks != NULL) {
836                 tb = rnp->exp_tasks;
837                 rnp->n_exp_boosts++;
838         } else {
839                 tb = rnp->boost_tasks;
840                 rnp->n_normal_boosts++;
841         }
842         rnp->n_tasks_boosted++;
843
844         /*
845          * We boost task t by manufacturing an rt_mutex that appears to
846          * be held by task t.  We leave a pointer to that rt_mutex where
847          * task t can find it, and task t will release the mutex when it
848          * exits its outermost RCU read-side critical section.  Then
849          * simply acquiring this artificial rt_mutex will boost task
850          * t's priority.  (Thanks to tglx for suggesting this approach!)
851          *
852          * Note that task t must acquire rnp->lock to remove itself from
853          * the ->blkd_tasks list, which it will do from exit() if from
854          * nowhere else.  We therefore are guaranteed that task t will
855          * stay around at least until we drop rnp->lock.  Note that
856          * rnp->lock also resolves races between our priority boosting
857          * and task t's exiting its outermost RCU read-side critical
858          * section.
859          */
860         t = container_of(tb, struct task_struct, rcu_node_entry);
861         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
862         raw_spin_unlock_irqrestore(&rnp->lock, flags);
863         /* Lock only for side effect: boosts task t's priority. */
864         rt_mutex_lock(&rnp->boost_mtx);
865         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
866
867         return READ_ONCE(rnp->exp_tasks) != NULL ||
868                READ_ONCE(rnp->boost_tasks) != NULL;
869 }
870
871 /*
872  * Priority-boosting kthread, one per leaf rcu_node.
873  */
874 static int rcu_boost_kthread(void *arg)
875 {
876         struct rcu_node *rnp = (struct rcu_node *)arg;
877         int spincnt = 0;
878         int more2boost;
879
880         trace_rcu_utilization(TPS("Start boost kthread@init"));
881         for (;;) {
882                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
883                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
884                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
885                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
886                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
887                 more2boost = rcu_boost(rnp);
888                 if (more2boost)
889                         spincnt++;
890                 else
891                         spincnt = 0;
892                 if (spincnt > 10) {
893                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
894                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
895                         schedule_timeout_interruptible(2);
896                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
897                         spincnt = 0;
898                 }
899         }
900         /* NOTREACHED */
901         trace_rcu_utilization(TPS("End boost kthread@notreached"));
902         return 0;
903 }
904
905 /*
906  * Check to see if it is time to start boosting RCU readers that are
907  * blocking the current grace period, and, if so, tell the per-rcu_node
908  * kthread to start boosting them.  If there is an expedited grace
909  * period in progress, it is always time to boost.
910  *
911  * The caller must hold rnp->lock, which this function releases.
912  * The ->boost_kthread_task is immortal, so we don't need to worry
913  * about it going away.
914  */
915 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
916         __releases(rnp->lock)
917 {
918         struct task_struct *t;
919
920         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
921                 rnp->n_balk_exp_gp_tasks++;
922                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
923                 return;
924         }
925         if (rnp->exp_tasks != NULL ||
926             (rnp->gp_tasks != NULL &&
927              rnp->boost_tasks == NULL &&
928              rnp->qsmask == 0 &&
929              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
930                 if (rnp->exp_tasks == NULL)
931                         rnp->boost_tasks = rnp->gp_tasks;
932                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
933                 t = rnp->boost_kthread_task;
934                 if (t)
935                         rcu_wake_cond(t, rnp->boost_kthread_status);
936         } else {
937                 rcu_initiate_boost_trace(rnp);
938                 raw_spin_unlock_irqrestore(&rnp->lock, flags);
939         }
940 }
941
942 /*
943  * Wake up the per-CPU kthread to invoke RCU callbacks.
944  */
945 static void invoke_rcu_callbacks_kthread(void)
946 {
947         unsigned long flags;
948
949         local_irq_save(flags);
950         __this_cpu_write(rcu_cpu_has_work, 1);
951         if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
952             current != __this_cpu_read(rcu_cpu_kthread_task)) {
953                 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
954                               __this_cpu_read(rcu_cpu_kthread_status));
955         }
956         local_irq_restore(flags);
957 }
958
959 /*
960  * Is the current CPU running the RCU-callbacks kthread?
961  * Caller must have preemption disabled.
962  */
963 static bool rcu_is_callbacks_kthread(void)
964 {
965         return __this_cpu_read(rcu_cpu_kthread_task) == current;
966 }
967
968 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
969
970 /*
971  * Do priority-boost accounting for the start of a new grace period.
972  */
973 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
974 {
975         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
976 }
977
978 /*
979  * Create an RCU-boost kthread for the specified node if one does not
980  * already exist.  We only create this kthread for preemptible RCU.
981  * Returns zero if all is well, a negated errno otherwise.
982  */
983 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
984                                        struct rcu_node *rnp)
985 {
986         int rnp_index = rnp - &rsp->node[0];
987         unsigned long flags;
988         struct sched_param sp;
989         struct task_struct *t;
990
991         if (rcu_state_p != rsp)
992                 return 0;
993
994         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
995                 return 0;
996
997         rsp->boost = 1;
998         if (rnp->boost_kthread_task != NULL)
999                 return 0;
1000         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1001                            "rcub/%d", rnp_index);
1002         if (IS_ERR(t))
1003                 return PTR_ERR(t);
1004         raw_spin_lock_irqsave(&rnp->lock, flags);
1005         smp_mb__after_unlock_lock();
1006         rnp->boost_kthread_task = t;
1007         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1008         sp.sched_priority = kthread_prio;
1009         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1010         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1011         return 0;
1012 }
1013
1014 static void rcu_kthread_do_work(void)
1015 {
1016         rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1017         rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1018         rcu_preempt_do_callbacks();
1019 }
1020
1021 static void rcu_cpu_kthread_setup(unsigned int cpu)
1022 {
1023         struct sched_param sp;
1024
1025         sp.sched_priority = kthread_prio;
1026         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1027 }
1028
1029 static void rcu_cpu_kthread_park(unsigned int cpu)
1030 {
1031         per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1032 }
1033
1034 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1035 {
1036         return __this_cpu_read(rcu_cpu_has_work);
1037 }
1038
1039 /*
1040  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1041  * RCU softirq used in flavors and configurations of RCU that do not
1042  * support RCU priority boosting.
1043  */
1044 static void rcu_cpu_kthread(unsigned int cpu)
1045 {
1046         unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1047         char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1048         int spincnt;
1049
1050         for (spincnt = 0; spincnt < 10; spincnt++) {
1051                 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1052                 local_bh_disable();
1053                 *statusp = RCU_KTHREAD_RUNNING;
1054                 this_cpu_inc(rcu_cpu_kthread_loops);
1055                 local_irq_disable();
1056                 work = *workp;
1057                 *workp = 0;
1058                 local_irq_enable();
1059                 if (work)
1060                         rcu_kthread_do_work();
1061                 local_bh_enable();
1062                 if (*workp == 0) {
1063                         trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1064                         *statusp = RCU_KTHREAD_WAITING;
1065                         return;
1066                 }
1067         }
1068         *statusp = RCU_KTHREAD_YIELDING;
1069         trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1070         schedule_timeout_interruptible(2);
1071         trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1072         *statusp = RCU_KTHREAD_WAITING;
1073 }
1074
1075 /*
1076  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1077  * served by the rcu_node in question.  The CPU hotplug lock is still
1078  * held, so the value of rnp->qsmaskinit will be stable.
1079  *
1080  * We don't include outgoingcpu in the affinity set, use -1 if there is
1081  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1082  * this function allows the kthread to execute on any CPU.
1083  */
1084 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1085 {
1086         struct task_struct *t = rnp->boost_kthread_task;
1087         unsigned long mask = rcu_rnp_online_cpus(rnp);
1088         cpumask_var_t cm;
1089         int cpu;
1090
1091         if (!t)
1092                 return;
1093         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1094                 return;
1095         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1096                 if ((mask & 0x1) && cpu != outgoingcpu)
1097                         cpumask_set_cpu(cpu, cm);
1098         if (cpumask_weight(cm) == 0)
1099                 cpumask_setall(cm);
1100         set_cpus_allowed_ptr(t, cm);
1101         free_cpumask_var(cm);
1102 }
1103
1104 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1105         .store                  = &rcu_cpu_kthread_task,
1106         .thread_should_run      = rcu_cpu_kthread_should_run,
1107         .thread_fn              = rcu_cpu_kthread,
1108         .thread_comm            = "rcuc/%u",
1109         .setup                  = rcu_cpu_kthread_setup,
1110         .park                   = rcu_cpu_kthread_park,
1111 };
1112
1113 /*
1114  * Spawn boost kthreads -- called as soon as the scheduler is running.
1115  */
1116 static void __init rcu_spawn_boost_kthreads(void)
1117 {
1118         struct rcu_node *rnp;
1119         int cpu;
1120
1121         for_each_possible_cpu(cpu)
1122                 per_cpu(rcu_cpu_has_work, cpu) = 0;
1123         BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1124         rcu_for_each_leaf_node(rcu_state_p, rnp)
1125                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1126 }
1127
1128 static void rcu_prepare_kthreads(int cpu)
1129 {
1130         struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1131         struct rcu_node *rnp = rdp->mynode;
1132
1133         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1134         if (rcu_scheduler_fully_active)
1135                 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1136 }
1137
1138 #else /* #ifdef CONFIG_RCU_BOOST */
1139
1140 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1141         __releases(rnp->lock)
1142 {
1143         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1144 }
1145
1146 static void invoke_rcu_callbacks_kthread(void)
1147 {
1148         WARN_ON_ONCE(1);
1149 }
1150
1151 static bool rcu_is_callbacks_kthread(void)
1152 {
1153         return false;
1154 }
1155
1156 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1157 {
1158 }
1159
1160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1161 {
1162 }
1163
1164 static void __init rcu_spawn_boost_kthreads(void)
1165 {
1166 }
1167
1168 static void rcu_prepare_kthreads(int cpu)
1169 {
1170 }
1171
1172 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1173
1174 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1175
1176 /*
1177  * Check to see if any future RCU-related work will need to be done
1178  * by the current CPU, even if none need be done immediately, returning
1179  * 1 if so.  This function is part of the RCU implementation; it is -not-
1180  * an exported member of the RCU API.
1181  *
1182  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1183  * any flavor of RCU.
1184  */
1185 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1186 {
1187         *nextevt = KTIME_MAX;
1188         return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
1189                ? 0 : rcu_cpu_has_callbacks(NULL);
1190 }
1191
1192 /*
1193  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1194  * after it.
1195  */
1196 static void rcu_cleanup_after_idle(void)
1197 {
1198 }
1199
1200 /*
1201  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1202  * is nothing.
1203  */
1204 static void rcu_prepare_for_idle(void)
1205 {
1206 }
1207
1208 /*
1209  * Don't bother keeping a running count of the number of RCU callbacks
1210  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1211  */
1212 static void rcu_idle_count_callbacks_posted(void)
1213 {
1214 }
1215
1216 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1217
1218 /*
1219  * This code is invoked when a CPU goes idle, at which point we want
1220  * to have the CPU do everything required for RCU so that it can enter
1221  * the energy-efficient dyntick-idle mode.  This is handled by a
1222  * state machine implemented by rcu_prepare_for_idle() below.
1223  *
1224  * The following three proprocessor symbols control this state machine:
1225  *
1226  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1227  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1228  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1229  *      benchmarkers who might otherwise be tempted to set this to a large
1230  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1231  *      system.  And if you are -that- concerned about energy efficiency,
1232  *      just power the system down and be done with it!
1233  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1234  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1235  *      callbacks pending.  Setting this too high can OOM your system.
1236  *
1237  * The values below work well in practice.  If future workloads require
1238  * adjustment, they can be converted into kernel config parameters, though
1239  * making the state machine smarter might be a better option.
1240  */
1241 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1242 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1243
1244 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1245 module_param(rcu_idle_gp_delay, int, 0644);
1246 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1247 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1248
1249 /*
1250  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1251  * only if it has been awhile since the last time we did so.  Afterwards,
1252  * if there are any callbacks ready for immediate invocation, return true.
1253  */
1254 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1255 {
1256         bool cbs_ready = false;
1257         struct rcu_data *rdp;
1258         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1259         struct rcu_node *rnp;
1260         struct rcu_state *rsp;
1261
1262         /* Exit early if we advanced recently. */
1263         if (jiffies == rdtp->last_advance_all)
1264                 return false;
1265         rdtp->last_advance_all = jiffies;
1266
1267         for_each_rcu_flavor(rsp) {
1268                 rdp = this_cpu_ptr(rsp->rda);
1269                 rnp = rdp->mynode;
1270
1271                 /*
1272                  * Don't bother checking unless a grace period has
1273                  * completed since we last checked and there are
1274                  * callbacks not yet ready to invoke.
1275                  */
1276                 if ((rdp->completed != rnp->completed ||
1277                      unlikely(READ_ONCE(rdp->gpwrap))) &&
1278                     rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1279                         note_gp_changes(rsp, rdp);
1280
1281                 if (cpu_has_callbacks_ready_to_invoke(rdp))
1282                         cbs_ready = true;
1283         }
1284         return cbs_ready;
1285 }
1286
1287 /*
1288  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1289  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1290  * caller to set the timeout based on whether or not there are non-lazy
1291  * callbacks.
1292  *
1293  * The caller must have disabled interrupts.
1294  */
1295 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1296 {
1297         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1298         unsigned long dj;
1299
1300         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
1301                 *nextevt = KTIME_MAX;
1302                 return 0;
1303         }
1304
1305         /* Snapshot to detect later posting of non-lazy callback. */
1306         rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1307
1308         /* If no callbacks, RCU doesn't need the CPU. */
1309         if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1310                 *nextevt = KTIME_MAX;
1311                 return 0;
1312         }
1313
1314         /* Attempt to advance callbacks. */
1315         if (rcu_try_advance_all_cbs()) {
1316                 /* Some ready to invoke, so initiate later invocation. */
1317                 invoke_rcu_core();
1318                 return 1;
1319         }
1320         rdtp->last_accelerate = jiffies;
1321
1322         /* Request timer delay depending on laziness, and round. */
1323         if (!rdtp->all_lazy) {
1324                 dj = round_up(rcu_idle_gp_delay + jiffies,
1325                                rcu_idle_gp_delay) - jiffies;
1326         } else {
1327                 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1328         }
1329         *nextevt = basemono + dj * TICK_NSEC;
1330         return 0;
1331 }
1332
1333 /*
1334  * Prepare a CPU for idle from an RCU perspective.  The first major task
1335  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1336  * The second major task is to check to see if a non-lazy callback has
1337  * arrived at a CPU that previously had only lazy callbacks.  The third
1338  * major task is to accelerate (that is, assign grace-period numbers to)
1339  * any recently arrived callbacks.
1340  *
1341  * The caller must have disabled interrupts.
1342  */
1343 static void rcu_prepare_for_idle(void)
1344 {
1345         bool needwake;
1346         struct rcu_data *rdp;
1347         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1348         struct rcu_node *rnp;
1349         struct rcu_state *rsp;
1350         int tne;
1351
1352         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
1353                 return;
1354
1355         /* Handle nohz enablement switches conservatively. */
1356         tne = READ_ONCE(tick_nohz_active);
1357         if (tne != rdtp->tick_nohz_enabled_snap) {
1358                 if (rcu_cpu_has_callbacks(NULL))
1359                         invoke_rcu_core(); /* force nohz to see update. */
1360                 rdtp->tick_nohz_enabled_snap = tne;
1361                 return;
1362         }
1363         if (!tne)
1364                 return;
1365
1366         /* If this is a no-CBs CPU, no callbacks, just return. */
1367         if (rcu_is_nocb_cpu(smp_processor_id()))
1368                 return;
1369
1370         /*
1371          * If a non-lazy callback arrived at a CPU having only lazy
1372          * callbacks, invoke RCU core for the side-effect of recalculating
1373          * idle duration on re-entry to idle.
1374          */
1375         if (rdtp->all_lazy &&
1376             rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1377                 rdtp->all_lazy = false;
1378                 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1379                 invoke_rcu_core();
1380                 return;
1381         }
1382
1383         /*
1384          * If we have not yet accelerated this jiffy, accelerate all
1385          * callbacks on this CPU.
1386          */
1387         if (rdtp->last_accelerate == jiffies)
1388                 return;
1389         rdtp->last_accelerate = jiffies;
1390         for_each_rcu_flavor(rsp) {
1391                 rdp = this_cpu_ptr(rsp->rda);
1392                 if (!*rdp->nxttail[RCU_DONE_TAIL])
1393                         continue;
1394                 rnp = rdp->mynode;
1395                 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1396                 smp_mb__after_unlock_lock();
1397                 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1398                 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1399                 if (needwake)
1400                         rcu_gp_kthread_wake(rsp);
1401         }
1402 }
1403
1404 /*
1405  * Clean up for exit from idle.  Attempt to advance callbacks based on
1406  * any grace periods that elapsed while the CPU was idle, and if any
1407  * callbacks are now ready to invoke, initiate invocation.
1408  */
1409 static void rcu_cleanup_after_idle(void)
1410 {
1411         if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
1412             rcu_is_nocb_cpu(smp_processor_id()))
1413                 return;
1414         if (rcu_try_advance_all_cbs())
1415                 invoke_rcu_core();
1416 }
1417
1418 /*
1419  * Keep a running count of the number of non-lazy callbacks posted
1420  * on this CPU.  This running counter (which is never decremented) allows
1421  * rcu_prepare_for_idle() to detect when something out of the idle loop
1422  * posts a callback, even if an equal number of callbacks are invoked.
1423  * Of course, callbacks should only be posted from within a trace event
1424  * designed to be called from idle or from within RCU_NONIDLE().
1425  */
1426 static void rcu_idle_count_callbacks_posted(void)
1427 {
1428         __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1429 }
1430
1431 /*
1432  * Data for flushing lazy RCU callbacks at OOM time.
1433  */
1434 static atomic_t oom_callback_count;
1435 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1436
1437 /*
1438  * RCU OOM callback -- decrement the outstanding count and deliver the
1439  * wake-up if we are the last one.
1440  */
1441 static void rcu_oom_callback(struct rcu_head *rhp)
1442 {
1443         if (atomic_dec_and_test(&oom_callback_count))
1444                 wake_up(&oom_callback_wq);
1445 }
1446
1447 /*
1448  * Post an rcu_oom_notify callback on the current CPU if it has at
1449  * least one lazy callback.  This will unnecessarily post callbacks
1450  * to CPUs that already have a non-lazy callback at the end of their
1451  * callback list, but this is an infrequent operation, so accept some
1452  * extra overhead to keep things simple.
1453  */
1454 static void rcu_oom_notify_cpu(void *unused)
1455 {
1456         struct rcu_state *rsp;
1457         struct rcu_data *rdp;
1458
1459         for_each_rcu_flavor(rsp) {
1460                 rdp = raw_cpu_ptr(rsp->rda);
1461                 if (rdp->qlen_lazy != 0) {
1462                         atomic_inc(&oom_callback_count);
1463                         rsp->call(&rdp->oom_head, rcu_oom_callback);
1464                 }
1465         }
1466 }
1467
1468 /*
1469  * If low on memory, ensure that each CPU has a non-lazy callback.
1470  * This will wake up CPUs that have only lazy callbacks, in turn
1471  * ensuring that they free up the corresponding memory in a timely manner.
1472  * Because an uncertain amount of memory will be freed in some uncertain
1473  * timeframe, we do not claim to have freed anything.
1474  */
1475 static int rcu_oom_notify(struct notifier_block *self,
1476                           unsigned long notused, void *nfreed)
1477 {
1478         int cpu;
1479
1480         /* Wait for callbacks from earlier instance to complete. */
1481         wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1482         smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1483
1484         /*
1485          * Prevent premature wakeup: ensure that all increments happen
1486          * before there is a chance of the counter reaching zero.
1487          */
1488         atomic_set(&oom_callback_count, 1);
1489
1490         for_each_online_cpu(cpu) {
1491                 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1492                 cond_resched_rcu_qs();
1493         }
1494
1495         /* Unconditionally decrement: no need to wake ourselves up. */
1496         atomic_dec(&oom_callback_count);
1497
1498         return NOTIFY_OK;
1499 }
1500
1501 static struct notifier_block rcu_oom_nb = {
1502         .notifier_call = rcu_oom_notify
1503 };
1504
1505 static int __init rcu_register_oom_notifier(void)
1506 {
1507         register_oom_notifier(&rcu_oom_nb);
1508         return 0;
1509 }
1510 early_initcall(rcu_register_oom_notifier);
1511
1512 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1513
1514 #ifdef CONFIG_RCU_FAST_NO_HZ
1515
1516 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1517 {
1518         struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1519         unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1520
1521         sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1522                 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1523                 ulong2long(nlpd),
1524                 rdtp->all_lazy ? 'L' : '.',
1525                 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1526 }
1527
1528 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1529
1530 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1531 {
1532         *cp = '\0';
1533 }
1534
1535 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1536
1537 /* Initiate the stall-info list. */
1538 static void print_cpu_stall_info_begin(void)
1539 {
1540         pr_cont("\n");
1541 }
1542
1543 /*
1544  * Print out diagnostic information for the specified stalled CPU.
1545  *
1546  * If the specified CPU is aware of the current RCU grace period
1547  * (flavor specified by rsp), then print the number of scheduling
1548  * clock interrupts the CPU has taken during the time that it has
1549  * been aware.  Otherwise, print the number of RCU grace periods
1550  * that this CPU is ignorant of, for example, "1" if the CPU was
1551  * aware of the previous grace period.
1552  *
1553  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1554  */
1555 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1556 {
1557         char fast_no_hz[72];
1558         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1559         struct rcu_dynticks *rdtp = rdp->dynticks;
1560         char *ticks_title;
1561         unsigned long ticks_value;
1562
1563         if (rsp->gpnum == rdp->gpnum) {
1564                 ticks_title = "ticks this GP";
1565                 ticks_value = rdp->ticks_this_gp;
1566         } else {
1567                 ticks_title = "GPs behind";
1568                 ticks_value = rsp->gpnum - rdp->gpnum;
1569         }
1570         print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1571         pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1572                cpu, ticks_value, ticks_title,
1573                atomic_read(&rdtp->dynticks) & 0xfff,
1574                rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1575                rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1576                READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1577                fast_no_hz);
1578 }
1579
1580 /* Terminate the stall-info list. */
1581 static void print_cpu_stall_info_end(void)
1582 {
1583         pr_err("\t");
1584 }
1585
1586 /* Zero ->ticks_this_gp for all flavors of RCU. */
1587 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1588 {
1589         rdp->ticks_this_gp = 0;
1590         rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1591 }
1592
1593 /* Increment ->ticks_this_gp for all flavors of RCU. */
1594 static void increment_cpu_stall_ticks(void)
1595 {
1596         struct rcu_state *rsp;
1597
1598         for_each_rcu_flavor(rsp)
1599                 raw_cpu_inc(rsp->rda->ticks_this_gp);
1600 }
1601
1602 #ifdef CONFIG_RCU_NOCB_CPU
1603
1604 /*
1605  * Offload callback processing from the boot-time-specified set of CPUs
1606  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1607  * kthread created that pulls the callbacks from the corresponding CPU,
1608  * waits for a grace period to elapse, and invokes the callbacks.
1609  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1610  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1611  * has been specified, in which case each kthread actively polls its
1612  * CPU.  (Which isn't so great for energy efficiency, but which does
1613  * reduce RCU's overhead on that CPU.)
1614  *
1615  * This is intended to be used in conjunction with Frederic Weisbecker's
1616  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1617  * running CPU-bound user-mode computations.
1618  *
1619  * Offloading of callback processing could also in theory be used as
1620  * an energy-efficiency measure because CPUs with no RCU callbacks
1621  * queued are more aggressive about entering dyntick-idle mode.
1622  */
1623
1624
1625 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1626 static int __init rcu_nocb_setup(char *str)
1627 {
1628         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1629         have_rcu_nocb_mask = true;
1630         cpulist_parse(str, rcu_nocb_mask);
1631         return 1;
1632 }
1633 __setup("rcu_nocbs=", rcu_nocb_setup);
1634
1635 static int __init parse_rcu_nocb_poll(char *arg)
1636 {
1637         rcu_nocb_poll = 1;
1638         return 0;
1639 }
1640 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1641
1642 /*
1643  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1644  * grace period.
1645  */
1646 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1647 {
1648         wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
1649 }
1650
1651 /*
1652  * Set the root rcu_node structure's ->need_future_gp field
1653  * based on the sum of those of all rcu_node structures.  This does
1654  * double-count the root rcu_node structure's requests, but this
1655  * is necessary to handle the possibility of a rcu_nocb_kthread()
1656  * having awakened during the time that the rcu_node structures
1657  * were being updated for the end of the previous grace period.
1658  */
1659 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1660 {
1661         rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1662 }
1663
1664 static void rcu_init_one_nocb(struct rcu_node *rnp)
1665 {
1666         init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1667         init_waitqueue_head(&rnp->nocb_gp_wq[1]);
1668 }
1669
1670 #ifndef CONFIG_RCU_NOCB_CPU_ALL
1671 /* Is the specified CPU a no-CBs CPU? */
1672 bool rcu_is_nocb_cpu(int cpu)
1673 {
1674         if (have_rcu_nocb_mask)
1675                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1676         return false;
1677 }
1678 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1679
1680 /*
1681  * Kick the leader kthread for this NOCB group.
1682  */
1683 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1684 {
1685         struct rcu_data *rdp_leader = rdp->nocb_leader;
1686
1687         if (!READ_ONCE(rdp_leader->nocb_kthread))
1688                 return;
1689         if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
1690                 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1691                 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1692                 wake_up(&rdp_leader->nocb_wq);
1693         }
1694 }
1695
1696 /*
1697  * Does the specified CPU need an RCU callback for the specified flavor
1698  * of rcu_barrier()?
1699  */
1700 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1701 {
1702         struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1703         unsigned long ret;
1704 #ifdef CONFIG_PROVE_RCU
1705         struct rcu_head *rhp;
1706 #endif /* #ifdef CONFIG_PROVE_RCU */
1707
1708         /*
1709          * Check count of all no-CBs callbacks awaiting invocation.
1710          * There needs to be a barrier before this function is called,
1711          * but associated with a prior determination that no more
1712          * callbacks would be posted.  In the worst case, the first
1713          * barrier in _rcu_barrier() suffices (but the caller cannot
1714          * necessarily rely on this, not a substitute for the caller
1715          * getting the concurrency design right!).  There must also be
1716          * a barrier between the following load an posting of a callback
1717          * (if a callback is in fact needed).  This is associated with an
1718          * atomic_inc() in the caller.
1719          */
1720         ret = atomic_long_read(&rdp->nocb_q_count);
1721
1722 #ifdef CONFIG_PROVE_RCU
1723         rhp = READ_ONCE(rdp->nocb_head);
1724         if (!rhp)
1725                 rhp = READ_ONCE(rdp->nocb_gp_head);
1726         if (!rhp)
1727                 rhp = READ_ONCE(rdp->nocb_follower_head);
1728
1729         /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1730         if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1731             rcu_scheduler_fully_active) {
1732                 /* RCU callback enqueued before CPU first came online??? */
1733                 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1734                        cpu, rhp->func);
1735                 WARN_ON_ONCE(1);
1736         }
1737 #endif /* #ifdef CONFIG_PROVE_RCU */
1738
1739         return !!ret;
1740 }
1741
1742 /*
1743  * Enqueue the specified string of rcu_head structures onto the specified
1744  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1745  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1746  * counts are supplied by rhcount and rhcount_lazy.
1747  *
1748  * If warranted, also wake up the kthread servicing this CPUs queues.
1749  */
1750 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1751                                     struct rcu_head *rhp,
1752                                     struct rcu_head **rhtp,
1753                                     int rhcount, int rhcount_lazy,
1754                                     unsigned long flags)
1755 {
1756         int len;
1757         struct rcu_head **old_rhpp;
1758         struct task_struct *t;
1759
1760         /* Enqueue the callback on the nocb list and update counts. */
1761         atomic_long_add(rhcount, &rdp->nocb_q_count);
1762         /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1763         old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1764         WRITE_ONCE(*old_rhpp, rhp);
1765         atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1766         smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1767
1768         /* If we are not being polled and there is a kthread, awaken it ... */
1769         t = READ_ONCE(rdp->nocb_kthread);
1770         if (rcu_nocb_poll || !t) {
1771                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1772                                     TPS("WakeNotPoll"));
1773                 return;
1774         }
1775         len = atomic_long_read(&rdp->nocb_q_count);
1776         if (old_rhpp == &rdp->nocb_head) {
1777                 if (!irqs_disabled_flags(flags)) {
1778                         /* ... if queue was empty ... */
1779                         wake_nocb_leader(rdp, false);
1780                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1781                                             TPS("WakeEmpty"));
1782                 } else {
1783                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
1784                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1785                                             TPS("WakeEmptyIsDeferred"));
1786                 }
1787                 rdp->qlen_last_fqs_check = 0;
1788         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1789                 /* ... or if many callbacks queued. */
1790                 if (!irqs_disabled_flags(flags)) {
1791                         wake_nocb_leader(rdp, true);
1792                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1793                                             TPS("WakeOvf"));
1794                 } else {
1795                         rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
1796                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1797                                             TPS("WakeOvfIsDeferred"));
1798                 }
1799                 rdp->qlen_last_fqs_check = LONG_MAX / 2;
1800         } else {
1801                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1802         }
1803         return;
1804 }
1805
1806 /*
1807  * This is a helper for __call_rcu(), which invokes this when the normal
1808  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1809  * function returns failure back to __call_rcu(), which can complain
1810  * appropriately.
1811  *
1812  * Otherwise, this function queues the callback where the corresponding
1813  * "rcuo" kthread can find it.
1814  */
1815 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1816                             bool lazy, unsigned long flags)
1817 {
1818
1819         if (!rcu_is_nocb_cpu(rdp->cpu))
1820                 return false;
1821         __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1822         if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1823                 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1824                                          (unsigned long)rhp->func,
1825                                          -atomic_long_read(&rdp->nocb_q_count_lazy),
1826                                          -atomic_long_read(&rdp->nocb_q_count));
1827         else
1828                 trace_rcu_callback(rdp->rsp->name, rhp,
1829                                    -atomic_long_read(&rdp->nocb_q_count_lazy),
1830                                    -atomic_long_read(&rdp->nocb_q_count));
1831
1832         /*
1833          * If called from an extended quiescent state with interrupts
1834          * disabled, invoke the RCU core in order to allow the idle-entry
1835          * deferred-wakeup check to function.
1836          */
1837         if (irqs_disabled_flags(flags) &&
1838             !rcu_is_watching() &&
1839             cpu_online(smp_processor_id()))
1840                 invoke_rcu_core();
1841
1842         return true;
1843 }
1844
1845 /*
1846  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
1847  * not a no-CBs CPU.
1848  */
1849 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
1850                                                      struct rcu_data *rdp,
1851                                                      unsigned long flags)
1852 {
1853         long ql = rsp->qlen;
1854         long qll = rsp->qlen_lazy;
1855
1856         /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
1857         if (!rcu_is_nocb_cpu(smp_processor_id()))
1858                 return false;
1859         rsp->qlen = 0;
1860         rsp->qlen_lazy = 0;
1861
1862         /* First, enqueue the donelist, if any.  This preserves CB ordering. */
1863         if (rsp->orphan_donelist != NULL) {
1864                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
1865                                         rsp->orphan_donetail, ql, qll, flags);
1866                 ql = qll = 0;
1867                 rsp->orphan_donelist = NULL;
1868                 rsp->orphan_donetail = &rsp->orphan_donelist;
1869         }
1870         if (rsp->orphan_nxtlist != NULL) {
1871                 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
1872                                         rsp->orphan_nxttail, ql, qll, flags);
1873                 ql = qll = 0;
1874                 rsp->orphan_nxtlist = NULL;
1875                 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1876         }
1877         return true;
1878 }
1879
1880 /*
1881  * If necessary, kick off a new grace period, and either way wait
1882  * for a subsequent grace period to complete.
1883  */
1884 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
1885 {
1886         unsigned long c;
1887         bool d;
1888         unsigned long flags;
1889         bool needwake;
1890         struct rcu_node *rnp = rdp->mynode;
1891
1892         raw_spin_lock_irqsave(&rnp->lock, flags);
1893         smp_mb__after_unlock_lock();
1894         needwake = rcu_start_future_gp(rnp, rdp, &c);
1895         raw_spin_unlock_irqrestore(&rnp->lock, flags);
1896         if (needwake)
1897                 rcu_gp_kthread_wake(rdp->rsp);
1898
1899         /*
1900          * Wait for the grace period.  Do so interruptibly to avoid messing
1901          * up the load average.
1902          */
1903         trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
1904         for (;;) {
1905                 wait_event_interruptible(
1906                         rnp->nocb_gp_wq[c & 0x1],
1907                         (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
1908                 if (likely(d))
1909                         break;
1910                 WARN_ON(signal_pending(current));
1911                 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
1912         }
1913         trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
1914         smp_mb(); /* Ensure that CB invocation happens after GP end. */
1915 }
1916
1917 /*
1918  * Leaders come here to wait for additional callbacks to show up.
1919  * This function does not return until callbacks appear.
1920  */
1921 static void nocb_leader_wait(struct rcu_data *my_rdp)
1922 {
1923         bool firsttime = true;
1924         bool gotcbs;
1925         struct rcu_data *rdp;
1926         struct rcu_head **tail;
1927
1928 wait_again:
1929
1930         /* Wait for callbacks to appear. */
1931         if (!rcu_nocb_poll) {
1932                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
1933                 wait_event_interruptible(my_rdp->nocb_wq,
1934                                 !READ_ONCE(my_rdp->nocb_leader_sleep));
1935                 /* Memory barrier handled by smp_mb() calls below and repoll. */
1936         } else if (firsttime) {
1937                 firsttime = false; /* Don't drown trace log with "Poll"! */
1938                 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
1939         }
1940
1941         /*
1942          * Each pass through the following loop checks a follower for CBs.
1943          * We are our own first follower.  Any CBs found are moved to
1944          * nocb_gp_head, where they await a grace period.
1945          */
1946         gotcbs = false;
1947         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
1948                 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
1949                 if (!rdp->nocb_gp_head)
1950                         continue;  /* No CBs here, try next follower. */
1951
1952                 /* Move callbacks to wait-for-GP list, which is empty. */
1953                 WRITE_ONCE(rdp->nocb_head, NULL);
1954                 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
1955                 gotcbs = true;
1956         }
1957
1958         /*
1959          * If there were no callbacks, sleep a bit, rescan after a
1960          * memory barrier, and go retry.
1961          */
1962         if (unlikely(!gotcbs)) {
1963                 if (!rcu_nocb_poll)
1964                         trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
1965                                             "WokeEmpty");
1966                 WARN_ON(signal_pending(current));
1967                 schedule_timeout_interruptible(1);
1968
1969                 /* Rescan in case we were a victim of memory ordering. */
1970                 my_rdp->nocb_leader_sleep = true;
1971                 smp_mb();  /* Ensure _sleep true before scan. */
1972                 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
1973                         if (READ_ONCE(rdp->nocb_head)) {
1974                                 /* Found CB, so short-circuit next wait. */
1975                                 my_rdp->nocb_leader_sleep = false;
1976                                 break;
1977                         }
1978                 goto wait_again;
1979         }
1980
1981         /* Wait for one grace period. */
1982         rcu_nocb_wait_gp(my_rdp);
1983
1984         /*
1985          * We left ->nocb_leader_sleep unset to reduce cache thrashing.
1986          * We set it now, but recheck for new callbacks while
1987          * traversing our follower list.
1988          */
1989         my_rdp->nocb_leader_sleep = true;
1990         smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
1991
1992         /* Each pass through the following loop wakes a follower, if needed. */
1993         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
1994                 if (READ_ONCE(rdp->nocb_head))
1995                         my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
1996                 if (!rdp->nocb_gp_head)
1997                         continue; /* No CBs, so no need to wake follower. */
1998
1999                 /* Append callbacks to follower's "done" list. */
2000                 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2001                 *tail = rdp->nocb_gp_head;
2002                 smp_mb__after_atomic(); /* Store *tail before wakeup. */
2003                 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2004                         /*
2005                          * List was empty, wake up the follower.
2006                          * Memory barriers supplied by atomic_long_add().
2007                          */
2008                         wake_up(&rdp->nocb_wq);
2009                 }
2010         }
2011
2012         /* If we (the leader) don't have CBs, go wait some more. */
2013         if (!my_rdp->nocb_follower_head)
2014                 goto wait_again;
2015 }
2016
2017 /*
2018  * Followers come here to wait for additional callbacks to show up.
2019  * This function does not return until callbacks appear.
2020  */
2021 static void nocb_follower_wait(struct rcu_data *rdp)
2022 {
2023         bool firsttime = true;
2024
2025         for (;;) {
2026                 if (!rcu_nocb_poll) {
2027                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2028                                             "FollowerSleep");
2029                         wait_event_interruptible(rdp->nocb_wq,
2030                                                  READ_ONCE(rdp->nocb_follower_head));
2031                 } else if (firsttime) {
2032                         /* Don't drown trace log with "Poll"! */
2033                         firsttime = false;
2034                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2035                 }
2036                 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2037                         /* ^^^ Ensure CB invocation follows _head test. */
2038                         return;
2039                 }
2040                 if (!rcu_nocb_poll)
2041                         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2042                                             "WokeEmpty");
2043                 WARN_ON(signal_pending(current));
2044                 schedule_timeout_interruptible(1);
2045         }
2046 }
2047
2048 /*
2049  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2050  * callbacks queued by the corresponding no-CBs CPU, however, there is
2051  * an optional leader-follower relationship so that the grace-period
2052  * kthreads don't have to do quite so many wakeups.
2053  */
2054 static int rcu_nocb_kthread(void *arg)
2055 {
2056         int c, cl;
2057         struct rcu_head *list;
2058         struct rcu_head *next;
2059         struct rcu_head **tail;
2060         struct rcu_data *rdp = arg;
2061
2062         /* Each pass through this loop invokes one batch of callbacks */
2063         for (;;) {
2064                 /* Wait for callbacks. */
2065                 if (rdp->nocb_leader == rdp)
2066                         nocb_leader_wait(rdp);
2067                 else
2068                         nocb_follower_wait(rdp);
2069
2070                 /* Pull the ready-to-invoke callbacks onto local list. */
2071                 list = READ_ONCE(rdp->nocb_follower_head);
2072                 BUG_ON(!list);
2073                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2074                 WRITE_ONCE(rdp->nocb_follower_head, NULL);
2075                 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2076
2077                 /* Each pass through the following loop invokes a callback. */
2078                 trace_rcu_batch_start(rdp->rsp->name,
2079                                       atomic_long_read(&rdp->nocb_q_count_lazy),
2080                                       atomic_long_read(&rdp->nocb_q_count), -1);
2081                 c = cl = 0;
2082                 while (list) {
2083                         next = list->next;
2084                         /* Wait for enqueuing to complete, if needed. */
2085                         while (next == NULL && &list->next != tail) {
2086                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2087                                                     TPS("WaitQueue"));
2088                                 schedule_timeout_interruptible(1);
2089                                 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2090                                                     TPS("WokeQueue"));
2091                                 next = list->next;
2092                         }
2093                         debug_rcu_head_unqueue(list);
2094                         local_bh_disable();
2095                         if (__rcu_reclaim(rdp->rsp->name, list))
2096                                 cl++;
2097                         c++;
2098                         local_bh_enable();
2099                         list = next;
2100                 }
2101                 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2102                 smp_mb__before_atomic();  /* _add after CB invocation. */
2103                 atomic_long_add(-c, &rdp->nocb_q_count);
2104                 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2105                 rdp->n_nocbs_invoked += c;
2106         }
2107         return 0;
2108 }
2109
2110 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2111 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2112 {
2113         return READ_ONCE(rdp->nocb_defer_wakeup);
2114 }
2115
2116 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2117 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2118 {
2119         int ndw;
2120
2121         if (!rcu_nocb_need_deferred_wakeup(rdp))
2122                 return;
2123         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2124         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
2125         wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2126         trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2127 }
2128
2129 void __init rcu_init_nohz(void)
2130 {
2131         int cpu;
2132         bool need_rcu_nocb_mask = true;
2133         struct rcu_state *rsp;
2134
2135 #ifdef CONFIG_RCU_NOCB_CPU_NONE
2136         need_rcu_nocb_mask = false;
2137 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2138
2139 #if defined(CONFIG_NO_HZ_FULL)
2140         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2141                 need_rcu_nocb_mask = true;
2142 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2143
2144         if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2145                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2146                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2147                         return;
2148                 }
2149                 have_rcu_nocb_mask = true;
2150         }
2151         if (!have_rcu_nocb_mask)
2152                 return;
2153
2154 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
2155         pr_info("\tOffload RCU callbacks from CPU 0\n");
2156         cpumask_set_cpu(0, rcu_nocb_mask);
2157 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2158 #ifdef CONFIG_RCU_NOCB_CPU_ALL
2159         pr_info("\tOffload RCU callbacks from all CPUs\n");
2160         cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2161 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2162 #if defined(CONFIG_NO_HZ_FULL)
2163         if (tick_nohz_full_running)
2164                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2165 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2166
2167         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2168                 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2169                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2170                             rcu_nocb_mask);
2171         }
2172         pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2173                 cpumask_pr_args(rcu_nocb_mask));
2174         if (rcu_nocb_poll)
2175                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2176
2177         for_each_rcu_flavor(rsp) {
2178                 for_each_cpu(cpu, rcu_nocb_mask)
2179                         init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2180                 rcu_organize_nocb_kthreads(rsp);
2181         }
2182 }
2183
2184 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2185 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2186 {
2187         rdp->nocb_tail = &rdp->nocb_head;
2188         init_waitqueue_head(&rdp->nocb_wq);
2189         rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2190 }
2191
2192 /*
2193  * If the specified CPU is a no-CBs CPU that does not already have its
2194  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2195  * brought online out of order, this can require re-organizing the
2196  * leader-follower relationships.
2197  */
2198 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2199 {
2200         struct rcu_data *rdp;
2201         struct rcu_data *rdp_last;
2202         struct rcu_data *rdp_old_leader;
2203         struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2204         struct task_struct *t;
2205
2206         /*
2207          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2208          * then nothing to do.
2209          */
2210         if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2211                 return;
2212
2213         /* If we didn't spawn the leader first, reorganize! */
2214         rdp_old_leader = rdp_spawn->nocb_leader;
2215         if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2216                 rdp_last = NULL;
2217                 rdp = rdp_old_leader;
2218                 do {
2219                         rdp->nocb_leader = rdp_spawn;
2220                         if (rdp_last && rdp != rdp_spawn)
2221                                 rdp_last->nocb_next_follower = rdp;
2222                         if (rdp == rdp_spawn) {
2223                                 rdp = rdp->nocb_next_follower;
2224                         } else {
2225                                 rdp_last = rdp;
2226                                 rdp = rdp->nocb_next_follower;
2227                                 rdp_last->nocb_next_follower = NULL;
2228                         }
2229                 } while (rdp);
2230                 rdp_spawn->nocb_next_follower = rdp_old_leader;
2231         }
2232
2233         /* Spawn the kthread for this CPU and RCU flavor. */
2234         t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2235                         "rcuo%c/%d", rsp->abbr, cpu);
2236         BUG_ON(IS_ERR(t));
2237         WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2238 }
2239
2240 /*
2241  * If the specified CPU is a no-CBs CPU that does not already have its
2242  * rcuo kthreads, spawn them.
2243  */
2244 static void rcu_spawn_all_nocb_kthreads(int cpu)
2245 {
2246         struct rcu_state *rsp;
2247
2248         if (rcu_scheduler_fully_active)
2249                 for_each_rcu_flavor(rsp)
2250                         rcu_spawn_one_nocb_kthread(rsp, cpu);
2251 }
2252
2253 /*
2254  * Once the scheduler is running, spawn rcuo kthreads for all online
2255  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2256  * non-boot CPUs come online -- if this changes, we will need to add
2257  * some mutual exclusion.
2258  */
2259 static void __init rcu_spawn_nocb_kthreads(void)
2260 {
2261         int cpu;
2262
2263         for_each_online_cpu(cpu)
2264                 rcu_spawn_all_nocb_kthreads(cpu);
2265 }
2266
2267 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2268 static int rcu_nocb_leader_stride = -1;
2269 module_param(rcu_nocb_leader_stride, int, 0444);
2270
2271 /*
2272  * Initialize leader-follower relationships for all no-CBs CPU.
2273  */
2274 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2275 {
2276         int cpu;
2277         int ls = rcu_nocb_leader_stride;
2278         int nl = 0;  /* Next leader. */
2279         struct rcu_data *rdp;
2280         struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2281         struct rcu_data *rdp_prev = NULL;
2282
2283         if (!have_rcu_nocb_mask)
2284                 return;
2285         if (ls == -1) {
2286                 ls = int_sqrt(nr_cpu_ids);
2287                 rcu_nocb_leader_stride = ls;
2288         }
2289
2290         /*
2291          * Each pass through this loop sets up one rcu_data structure and
2292          * spawns one rcu_nocb_kthread().
2293          */
2294         for_each_cpu(cpu, rcu_nocb_mask) {
2295                 rdp = per_cpu_ptr(rsp->rda, cpu);
2296                 if (rdp->cpu >= nl) {
2297                         /* New leader, set up for followers & next leader. */
2298                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2299                         rdp->nocb_leader = rdp;
2300                         rdp_leader = rdp;
2301                 } else {
2302                         /* Another follower, link to previous leader. */
2303                         rdp->nocb_leader = rdp_leader;
2304                         rdp_prev->nocb_next_follower = rdp;
2305                 }
2306                 rdp_prev = rdp;
2307         }
2308 }
2309
2310 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2311 static bool init_nocb_callback_list(struct rcu_data *rdp)
2312 {
2313         if (!rcu_is_nocb_cpu(rdp->cpu))
2314                 return false;
2315
2316         /* If there are early-boot callbacks, move them to nocb lists. */
2317         if (rdp->nxtlist) {
2318                 rdp->nocb_head = rdp->nxtlist;
2319                 rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
2320                 atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
2321                 atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
2322                 rdp->nxtlist = NULL;
2323                 rdp->qlen = 0;
2324                 rdp->qlen_lazy = 0;
2325         }
2326         rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2327         return true;
2328 }
2329
2330 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2331
2332 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2333 {
2334         WARN_ON_ONCE(1); /* Should be dead code. */
2335         return false;
2336 }
2337
2338 static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2339 {
2340 }
2341
2342 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2343 {
2344 }
2345
2346 static void rcu_init_one_nocb(struct rcu_node *rnp)
2347 {
2348 }
2349
2350 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2351                             bool lazy, unsigned long flags)
2352 {
2353         return false;
2354 }
2355
2356 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2357                                                      struct rcu_data *rdp,
2358                                                      unsigned long flags)
2359 {
2360         return false;
2361 }
2362
2363 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2364 {
2365 }
2366
2367 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2368 {
2369         return false;
2370 }
2371
2372 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2373 {
2374 }
2375
2376 static void rcu_spawn_all_nocb_kthreads(int cpu)
2377 {
2378 }
2379
2380 static void __init rcu_spawn_nocb_kthreads(void)
2381 {
2382 }
2383
2384 static bool init_nocb_callback_list(struct rcu_data *rdp)
2385 {
2386         return false;
2387 }
2388
2389 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2390
2391 /*
2392  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2393  * arbitrarily long period of time with the scheduling-clock tick turned
2394  * off.  RCU will be paying attention to this CPU because it is in the
2395  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2396  * machine because the scheduling-clock tick has been disabled.  Therefore,
2397  * if an adaptive-ticks CPU is failing to respond to the current grace
2398  * period and has not be idle from an RCU perspective, kick it.
2399  */
2400 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2401 {
2402 #ifdef CONFIG_NO_HZ_FULL
2403         if (tick_nohz_full_cpu(cpu))
2404                 smp_send_reschedule(cpu);
2405 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2406 }
2407
2408
2409 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2410
2411 static int full_sysidle_state;          /* Current system-idle state. */
2412 #define RCU_SYSIDLE_NOT         0       /* Some CPU is not idle. */
2413 #define RCU_SYSIDLE_SHORT       1       /* All CPUs idle for brief period. */
2414 #define RCU_SYSIDLE_LONG        2       /* All CPUs idle for long enough. */
2415 #define RCU_SYSIDLE_FULL        3       /* All CPUs idle, ready for sysidle. */
2416 #define RCU_SYSIDLE_FULL_NOTED  4       /* Actually entered sysidle state. */
2417
2418 /*
2419  * Invoked to note exit from irq or task transition to idle.  Note that
2420  * usermode execution does -not- count as idle here!  After all, we want
2421  * to detect full-system idle states, not RCU quiescent states and grace
2422  * periods.  The caller must have disabled interrupts.
2423  */
2424 static void rcu_sysidle_enter(int irq)
2425 {
2426         unsigned long j;
2427         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2428
2429         /* If there are no nohz_full= CPUs, no need to track this. */
2430         if (!tick_nohz_full_enabled())
2431                 return;
2432
2433         /* Adjust nesting, check for fully idle. */
2434         if (irq) {
2435                 rdtp->dynticks_idle_nesting--;
2436                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2437                 if (rdtp->dynticks_idle_nesting != 0)
2438                         return;  /* Still not fully idle. */
2439         } else {
2440                 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2441                     DYNTICK_TASK_NEST_VALUE) {
2442                         rdtp->dynticks_idle_nesting = 0;
2443                 } else {
2444                         rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2445                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2446                         return;  /* Still not fully idle. */
2447                 }
2448         }
2449
2450         /* Record start of fully idle period. */
2451         j = jiffies;
2452         WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
2453         smp_mb__before_atomic();
2454         atomic_inc(&rdtp->dynticks_idle);
2455         smp_mb__after_atomic();
2456         WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2457 }
2458
2459 /*
2460  * Unconditionally force exit from full system-idle state.  This is
2461  * invoked when a normal CPU exits idle, but must be called separately
2462  * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2463  * is that the timekeeping CPU is permitted to take scheduling-clock
2464  * interrupts while the system is in system-idle state, and of course
2465  * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2466  * interrupt from any other type of interrupt.
2467  */
2468 void rcu_sysidle_force_exit(void)
2469 {
2470         int oldstate = READ_ONCE(full_sysidle_state);
2471         int newoldstate;
2472
2473         /*
2474          * Each pass through the following loop attempts to exit full
2475          * system-idle state.  If contention proves to be a problem,
2476          * a trylock-based contention tree could be used here.
2477          */
2478         while (oldstate > RCU_SYSIDLE_SHORT) {
2479                 newoldstate = cmpxchg(&full_sysidle_state,
2480                                       oldstate, RCU_SYSIDLE_NOT);
2481                 if (oldstate == newoldstate &&
2482                     oldstate == RCU_SYSIDLE_FULL_NOTED) {
2483                         rcu_kick_nohz_cpu(tick_do_timer_cpu);
2484                         return; /* We cleared it, done! */
2485                 }
2486                 oldstate = newoldstate;
2487         }
2488         smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2489 }
2490
2491 /*
2492  * Invoked to note entry to irq or task transition from idle.  Note that
2493  * usermode execution does -not- count as idle here!  The caller must
2494  * have disabled interrupts.
2495  */
2496 static void rcu_sysidle_exit(int irq)
2497 {
2498         struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2499
2500         /* If there are no nohz_full= CPUs, no need to track this. */
2501         if (!tick_nohz_full_enabled())
2502                 return;
2503
2504         /* Adjust nesting, check for already non-idle. */
2505         if (irq) {
2506                 rdtp->dynticks_idle_nesting++;
2507                 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2508                 if (rdtp->dynticks_idle_nesting != 1)
2509                         return; /* Already non-idle. */
2510         } else {
2511                 /*
2512                  * Allow for irq misnesting.  Yes, it really is possible
2513                  * to enter an irq handler then never leave it, and maybe
2514                  * also vice versa.  Handle both possibilities.
2515                  */
2516                 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2517                         rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2518                         WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2519                         return; /* Already non-idle. */
2520                 } else {
2521                         rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2522                 }
2523         }
2524
2525         /* Record end of idle period. */
2526         smp_mb__before_atomic();
2527         atomic_inc(&rdtp->dynticks_idle);
2528         smp_mb__after_atomic();
2529         WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2530
2531         /*
2532          * If we are the timekeeping CPU, we are permitted to be non-idle
2533          * during a system-idle state.  This must be the case, because
2534          * the timekeeping CPU has to take scheduling-clock interrupts
2535          * during the time that the system is transitioning to full
2536          * system-idle state.  This means that the timekeeping CPU must
2537          * invoke rcu_sysidle_force_exit() directly if it does anything
2538          * more than take a scheduling-clock interrupt.
2539          */
2540         if (smp_processor_id() == tick_do_timer_cpu)
2541                 return;
2542
2543         /* Update system-idle state: We are clearly no longer fully idle! */
2544         rcu_sysidle_force_exit();
2545 }
2546
2547 /*
2548  * Check to see if the current CPU is idle.  Note that usermode execution
2549  * does not count as idle.  The caller must have disabled interrupts,
2550  * and must be running on tick_do_timer_cpu.
2551  */
2552 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2553                                   unsigned long *maxj)
2554 {
2555         int cur;
2556         unsigned long j;
2557         struct rcu_dynticks *rdtp = rdp->dynticks;
2558
2559         /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2560         if (!tick_nohz_full_enabled())
2561                 return;
2562
2563         /*
2564          * If some other CPU has already reported non-idle, if this is
2565          * not the flavor of RCU that tracks sysidle state, or if this
2566          * is an offline or the timekeeping CPU, nothing to do.
2567          */
2568         if (!*isidle || rdp->rsp != rcu_state_p ||
2569             cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2570                 return;
2571         /* Verify affinity of current kthread. */
2572         WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2573
2574         /* Pick up current idle and NMI-nesting counter and check. */
2575         cur = atomic_read(&rdtp->dynticks_idle);
2576         if (cur & 0x1) {
2577                 *isidle = false; /* We are not idle! */
2578                 return;
2579         }
2580         smp_mb(); /* Read counters before timestamps. */
2581
2582         /* Pick up timestamps. */
2583         j = READ_ONCE(rdtp->dynticks_idle_jiffies);
2584         /* If this CPU entered idle more recently, update maxj timestamp. */
2585         if (ULONG_CMP_LT(*maxj, j))
2586                 *maxj = j;
2587 }
2588
2589 /*
2590  * Is this the flavor of RCU that is handling full-system idle?
2591  */
2592 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2593 {
2594         return rsp == rcu_state_p;
2595 }
2596
2597 /*
2598  * Return a delay in jiffies based on the number of CPUs, rcu_node
2599  * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2600  * systems more time to transition to full-idle state in order to
2601  * avoid the cache thrashing that otherwise occur on the state variable.
2602  * Really small systems (less than a couple of tens of CPUs) should
2603  * instead use a single global atomically incremented counter, and later
2604  * versions of this will automatically reconfigure themselves accordingly.
2605  */
2606 static unsigned long rcu_sysidle_delay(void)
2607 {
2608         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2609                 return 0;
2610         return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2611 }
2612
2613 /*
2614  * Advance the full-system-idle state.  This is invoked when all of
2615  * the non-timekeeping CPUs are idle.
2616  */
2617 static void rcu_sysidle(unsigned long j)
2618 {
2619         /* Check the current state. */
2620         switch (READ_ONCE(full_sysidle_state)) {
2621         case RCU_SYSIDLE_NOT:
2622
2623                 /* First time all are idle, so note a short idle period. */
2624                 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
2625                 break;
2626
2627         case RCU_SYSIDLE_SHORT:
2628
2629                 /*
2630                  * Idle for a bit, time to advance to next state?
2631                  * cmpxchg failure means race with non-idle, let them win.
2632                  */
2633                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2634                         (void)cmpxchg(&full_sysidle_state,
2635                                       RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2636                 break;
2637
2638         case RCU_SYSIDLE_LONG:
2639
2640                 /*
2641                  * Do an additional check pass before advancing to full.
2642                  * cmpxchg failure means race with non-idle, let them win.
2643                  */
2644                 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2645                         (void)cmpxchg(&full_sysidle_state,
2646                                       RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2647                 break;
2648
2649         default:
2650                 break;
2651         }
2652 }
2653
2654 /*
2655  * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2656  * back to the beginning.
2657  */
2658 static void rcu_sysidle_cancel(void)
2659 {
2660         smp_mb();
2661         if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2662                 WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
2663 }
2664
2665 /*
2666  * Update the sysidle state based on the results of a force-quiescent-state
2667  * scan of the CPUs' dyntick-idle state.
2668  */
2669 static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2670                                unsigned long maxj, bool gpkt)
2671 {
2672         if (rsp != rcu_state_p)
2673                 return;  /* Wrong flavor, ignore. */
2674         if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2675                 return;  /* Running state machine from timekeeping CPU. */
2676         if (isidle)
2677                 rcu_sysidle(maxj);    /* More idle! */
2678         else
2679                 rcu_sysidle_cancel(); /* Idle is over. */
2680 }
2681
2682 /*
2683  * Wrapper for rcu_sysidle_report() when called from the grace-period
2684  * kthread's context.
2685  */
2686 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2687                                   unsigned long maxj)
2688 {
2689         /* If there are no nohz_full= CPUs, no need to track this. */
2690         if (!tick_nohz_full_enabled())
2691                 return;
2692
2693         rcu_sysidle_report(rsp, isidle, maxj, true);
2694 }
2695
2696 /* Callback and function for forcing an RCU grace period. */
2697 struct rcu_sysidle_head {
2698         struct rcu_head rh;
2699         int inuse;
2700 };
2701
2702 static void rcu_sysidle_cb(struct rcu_head *rhp)
2703 {
2704         struct rcu_sysidle_head *rshp;
2705
2706         /*
2707          * The following memory barrier is needed to replace the
2708          * memory barriers that would normally be in the memory
2709          * allocator.
2710          */
2711         smp_mb();  /* grace period precedes setting inuse. */
2712
2713         rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2714         WRITE_ONCE(rshp->inuse, 0);
2715 }
2716
2717 /*
2718  * Check to see if the system is fully idle, other than the timekeeping CPU.
2719  * The caller must have disabled interrupts.  This is not intended to be
2720  * called unless tick_nohz_full_enabled().
2721  */
2722 bool rcu_sys_is_idle(void)
2723 {
2724         static struct rcu_sysidle_head rsh;
2725         int rss = READ_ONCE(full_sysidle_state);
2726
2727         if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2728                 return false;
2729
2730         /* Handle small-system case by doing a full scan of CPUs. */
2731         if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2732                 int oldrss = rss - 1;
2733
2734                 /*
2735                  * One pass to advance to each state up to _FULL.
2736                  * Give up if any pass fails to advance the state.
2737                  */
2738                 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2739                         int cpu;
2740                         bool isidle = true;
2741                         unsigned long maxj = jiffies - ULONG_MAX / 4;
2742                         struct rcu_data *rdp;
2743
2744                         /* Scan all the CPUs looking for nonidle CPUs. */
2745                         for_each_possible_cpu(cpu) {
2746                                 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
2747                                 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2748                                 if (!isidle)
2749                                         break;
2750                         }
2751                         rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
2752                         oldrss = rss;
2753                         rss = READ_ONCE(full_sysidle_state);
2754                 }
2755         }
2756
2757         /* If this is the first observation of an idle period, record it. */
2758         if (rss == RCU_SYSIDLE_FULL) {
2759                 rss = cmpxchg(&full_sysidle_state,
2760                               RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2761                 return rss == RCU_SYSIDLE_FULL;
2762         }
2763
2764         smp_mb(); /* ensure rss load happens before later caller actions. */
2765
2766         /* If already fully idle, tell the caller (in case of races). */
2767         if (rss == RCU_SYSIDLE_FULL_NOTED)
2768                 return true;
2769
2770         /*
2771          * If we aren't there yet, and a grace period is not in flight,
2772          * initiate a grace period.  Either way, tell the caller that
2773          * we are not there yet.  We use an xchg() rather than an assignment
2774          * to make up for the memory barriers that would otherwise be
2775          * provided by the memory allocator.
2776          */
2777         if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2778             !rcu_gp_in_progress(rcu_state_p) &&
2779             !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2780                 call_rcu(&rsh.rh, rcu_sysidle_cb);
2781         return false;
2782 }
2783
2784 /*
2785  * Initialize dynticks sysidle state for CPUs coming online.
2786  */
2787 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2788 {
2789         rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2790 }
2791
2792 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2793
2794 static void rcu_sysidle_enter(int irq)
2795 {
2796 }
2797
2798 static void rcu_sysidle_exit(int irq)
2799 {
2800 }
2801
2802 static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2803                                   unsigned long *maxj)
2804 {
2805 }
2806
2807 static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2808 {
2809         return false;
2810 }
2811
2812 static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2813                                   unsigned long maxj)
2814 {
2815 }
2816
2817 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2818 {
2819 }
2820
2821 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2822
2823 /*
2824  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2825  * grace-period kthread will do force_quiescent_state() processing?
2826  * The idea is to avoid waking up RCU core processing on such a
2827  * CPU unless the grace period has extended for too long.
2828  *
2829  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2830  * CONFIG_RCU_NOCB_CPU CPUs.
2831  */
2832 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2833 {
2834 #ifdef CONFIG_NO_HZ_FULL
2835         if (tick_nohz_full_cpu(smp_processor_id()) &&
2836             (!rcu_gp_in_progress(rsp) ||
2837              ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2838                 return true;
2839 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2840         return false;
2841 }
2842
2843 /*
2844  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2845  * timekeeping CPU.
2846  */
2847 static void rcu_bind_gp_kthread(void)
2848 {
2849         int __maybe_unused cpu;
2850
2851         if (!tick_nohz_full_enabled())
2852                 return;
2853 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2854         cpu = tick_do_timer_cpu;
2855         if (cpu >= 0 && cpu < nr_cpu_ids)
2856                 set_cpus_allowed_ptr(current, cpumask_of(cpu));
2857 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2858         housekeeping_affine(current);
2859 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2860 }
2861
2862 /* Record the current task on dyntick-idle entry. */
2863 static void rcu_dynticks_task_enter(void)
2864 {
2865 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2866         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2867 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2868 }
2869
2870 /* Record no current task on dyntick-idle exit. */
2871 static void rcu_dynticks_task_exit(void)
2872 {
2873 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2874         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2875 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2876 }