]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/sched/debug.c
cpuset, isolcpus: document relationship between cpusets & isolcpus
[karo-tx-linux.git] / kernel / sched / debug.c
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
18 #include <linux/mempolicy.h>
19
20 #include "sched.h"
21
22 static DEFINE_SPINLOCK(sched_debug_lock);
23
24 /*
25  * This allows printing both to /proc/sched_debug and
26  * to the console
27  */
28 #define SEQ_printf(m, x...)                     \
29  do {                                           \
30         if (m)                                  \
31                 seq_printf(m, x);               \
32         else                                    \
33                 printk(x);                      \
34  } while (0)
35
36 /*
37  * Ease the printing of nsec fields:
38  */
39 static long long nsec_high(unsigned long long nsec)
40 {
41         if ((long long)nsec < 0) {
42                 nsec = -nsec;
43                 do_div(nsec, 1000000);
44                 return -nsec;
45         }
46         do_div(nsec, 1000000);
47
48         return nsec;
49 }
50
51 static unsigned long nsec_low(unsigned long long nsec)
52 {
53         if ((long long)nsec < 0)
54                 nsec = -nsec;
55
56         return do_div(nsec, 1000000);
57 }
58
59 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
60
61 #ifdef CONFIG_FAIR_GROUP_SCHED
62 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
63 {
64         struct sched_entity *se = tg->se[cpu];
65
66 #define P(F) \
67         SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
68 #define PN(F) \
69         SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
70
71         if (!se) {
72                 struct sched_avg *avg = &cpu_rq(cpu)->avg;
73                 P(avg->runnable_avg_sum);
74                 P(avg->runnable_avg_period);
75                 return;
76         }
77
78
79         PN(se->exec_start);
80         PN(se->vruntime);
81         PN(se->sum_exec_runtime);
82 #ifdef CONFIG_SCHEDSTATS
83         PN(se->statistics.wait_start);
84         PN(se->statistics.sleep_start);
85         PN(se->statistics.block_start);
86         PN(se->statistics.sleep_max);
87         PN(se->statistics.block_max);
88         PN(se->statistics.exec_max);
89         PN(se->statistics.slice_max);
90         PN(se->statistics.wait_max);
91         PN(se->statistics.wait_sum);
92         P(se->statistics.wait_count);
93 #endif
94         P(se->load.weight);
95 #ifdef CONFIG_SMP
96         P(se->avg.runnable_avg_sum);
97         P(se->avg.runnable_avg_period);
98         P(se->avg.load_avg_contrib);
99         P(se->avg.decay_count);
100 #endif
101 #undef PN
102 #undef P
103 }
104 #endif
105
106 #ifdef CONFIG_CGROUP_SCHED
107 static char group_path[PATH_MAX];
108
109 static char *task_group_path(struct task_group *tg)
110 {
111         if (autogroup_path(tg, group_path, PATH_MAX))
112                 return group_path;
113
114         return cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
115 }
116 #endif
117
118 static void
119 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
120 {
121         if (rq->curr == p)
122                 SEQ_printf(m, "R");
123         else
124                 SEQ_printf(m, " ");
125
126         SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
127                 p->comm, task_pid_nr(p),
128                 SPLIT_NS(p->se.vruntime),
129                 (long long)(p->nvcsw + p->nivcsw),
130                 p->prio);
131 #ifdef CONFIG_SCHEDSTATS
132         SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
133                 SPLIT_NS(p->se.vruntime),
134                 SPLIT_NS(p->se.sum_exec_runtime),
135                 SPLIT_NS(p->se.statistics.sum_sleep_runtime));
136 #else
137         SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
138                 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
139 #endif
140 #ifdef CONFIG_NUMA_BALANCING
141         SEQ_printf(m, " %d", task_node(p));
142 #endif
143 #ifdef CONFIG_CGROUP_SCHED
144         SEQ_printf(m, " %s", task_group_path(task_group(p)));
145 #endif
146
147         SEQ_printf(m, "\n");
148 }
149
150 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
151 {
152         struct task_struct *g, *p;
153
154         SEQ_printf(m,
155         "\nrunnable tasks:\n"
156         "            task   PID         tree-key  switches  prio"
157         "     exec-runtime         sum-exec        sum-sleep\n"
158         "------------------------------------------------------"
159         "----------------------------------------------------\n");
160
161         rcu_read_lock();
162         for_each_process_thread(g, p) {
163                 if (task_cpu(p) != rq_cpu)
164                         continue;
165
166                 print_task(m, rq, p);
167         }
168         rcu_read_unlock();
169 }
170
171 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
172 {
173         s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
174                 spread, rq0_min_vruntime, spread0;
175         struct rq *rq = cpu_rq(cpu);
176         struct sched_entity *last;
177         unsigned long flags;
178
179 #ifdef CONFIG_FAIR_GROUP_SCHED
180         SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
181 #else
182         SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
183 #endif
184         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
185                         SPLIT_NS(cfs_rq->exec_clock));
186
187         raw_spin_lock_irqsave(&rq->lock, flags);
188         if (cfs_rq->rb_leftmost)
189                 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
190         last = __pick_last_entity(cfs_rq);
191         if (last)
192                 max_vruntime = last->vruntime;
193         min_vruntime = cfs_rq->min_vruntime;
194         rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
195         raw_spin_unlock_irqrestore(&rq->lock, flags);
196         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
197                         SPLIT_NS(MIN_vruntime));
198         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
199                         SPLIT_NS(min_vruntime));
200         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
201                         SPLIT_NS(max_vruntime));
202         spread = max_vruntime - MIN_vruntime;
203         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
204                         SPLIT_NS(spread));
205         spread0 = min_vruntime - rq0_min_vruntime;
206         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
207                         SPLIT_NS(spread0));
208         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
209                         cfs_rq->nr_spread_over);
210         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
211         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
212 #ifdef CONFIG_SMP
213         SEQ_printf(m, "  .%-30s: %ld\n", "runnable_load_avg",
214                         cfs_rq->runnable_load_avg);
215         SEQ_printf(m, "  .%-30s: %ld\n", "blocked_load_avg",
216                         cfs_rq->blocked_load_avg);
217 #ifdef CONFIG_FAIR_GROUP_SCHED
218         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_contrib",
219                         cfs_rq->tg_load_contrib);
220         SEQ_printf(m, "  .%-30s: %d\n", "tg_runnable_contrib",
221                         cfs_rq->tg_runnable_contrib);
222         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
223                         atomic_long_read(&cfs_rq->tg->load_avg));
224         SEQ_printf(m, "  .%-30s: %d\n", "tg->runnable_avg",
225                         atomic_read(&cfs_rq->tg->runnable_avg));
226 #endif
227 #endif
228 #ifdef CONFIG_CFS_BANDWIDTH
229         SEQ_printf(m, "  .%-30s: %d\n", "tg->cfs_bandwidth.timer_active",
230                         cfs_rq->tg->cfs_bandwidth.timer_active);
231         SEQ_printf(m, "  .%-30s: %d\n", "throttled",
232                         cfs_rq->throttled);
233         SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
234                         cfs_rq->throttle_count);
235 #endif
236
237 #ifdef CONFIG_FAIR_GROUP_SCHED
238         print_cfs_group_stats(m, cpu, cfs_rq->tg);
239 #endif
240 }
241
242 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
243 {
244 #ifdef CONFIG_RT_GROUP_SCHED
245         SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
246 #else
247         SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
248 #endif
249
250 #define P(x) \
251         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
252 #define PN(x) \
253         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
254
255         P(rt_nr_running);
256         P(rt_throttled);
257         PN(rt_time);
258         PN(rt_runtime);
259
260 #undef PN
261 #undef P
262 }
263
264 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
265 {
266         SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
267         SEQ_printf(m, "  .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running);
268 }
269
270 extern __read_mostly int sched_clock_running;
271
272 static void print_cpu(struct seq_file *m, int cpu)
273 {
274         struct rq *rq = cpu_rq(cpu);
275         unsigned long flags;
276
277 #ifdef CONFIG_X86
278         {
279                 unsigned int freq = cpu_khz ? : 1;
280
281                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
282                            cpu, freq / 1000, (freq % 1000));
283         }
284 #else
285         SEQ_printf(m, "cpu#%d\n", cpu);
286 #endif
287
288 #define P(x)                                                            \
289 do {                                                                    \
290         if (sizeof(rq->x) == 4)                                         \
291                 SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
292         else                                                            \
293                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
294 } while (0)
295
296 #define PN(x) \
297         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
298
299         P(nr_running);
300         SEQ_printf(m, "  .%-30s: %lu\n", "load",
301                    rq->load.weight);
302         P(nr_switches);
303         P(nr_load_updates);
304         P(nr_uninterruptible);
305         PN(next_balance);
306         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
307         PN(clock);
308         PN(clock_task);
309         P(cpu_load[0]);
310         P(cpu_load[1]);
311         P(cpu_load[2]);
312         P(cpu_load[3]);
313         P(cpu_load[4]);
314 #undef P
315 #undef PN
316
317 #ifdef CONFIG_SCHEDSTATS
318 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, rq->n);
319 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
320
321         P(yld_count);
322
323         P(sched_count);
324         P(sched_goidle);
325 #ifdef CONFIG_SMP
326         P64(avg_idle);
327         P64(max_idle_balance_cost);
328 #endif
329
330         P(ttwu_count);
331         P(ttwu_local);
332
333 #undef P
334 #undef P64
335 #endif
336         spin_lock_irqsave(&sched_debug_lock, flags);
337         print_cfs_stats(m, cpu);
338         print_rt_stats(m, cpu);
339         print_dl_stats(m, cpu);
340
341         print_rq(m, rq, cpu);
342         spin_unlock_irqrestore(&sched_debug_lock, flags);
343         SEQ_printf(m, "\n");
344 }
345
346 static const char *sched_tunable_scaling_names[] = {
347         "none",
348         "logaritmic",
349         "linear"
350 };
351
352 static void sched_debug_header(struct seq_file *m)
353 {
354         u64 ktime, sched_clk, cpu_clk;
355         unsigned long flags;
356
357         local_irq_save(flags);
358         ktime = ktime_to_ns(ktime_get());
359         sched_clk = sched_clock();
360         cpu_clk = local_clock();
361         local_irq_restore(flags);
362
363         SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
364                 init_utsname()->release,
365                 (int)strcspn(init_utsname()->version, " "),
366                 init_utsname()->version);
367
368 #define P(x) \
369         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
370 #define PN(x) \
371         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
372         PN(ktime);
373         PN(sched_clk);
374         PN(cpu_clk);
375         P(jiffies);
376 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
377         P(sched_clock_stable());
378 #endif
379 #undef PN
380 #undef P
381
382         SEQ_printf(m, "\n");
383         SEQ_printf(m, "sysctl_sched\n");
384
385 #define P(x) \
386         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
387 #define PN(x) \
388         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
389         PN(sysctl_sched_latency);
390         PN(sysctl_sched_min_granularity);
391         PN(sysctl_sched_wakeup_granularity);
392         P(sysctl_sched_child_runs_first);
393         P(sysctl_sched_features);
394 #undef PN
395 #undef P
396
397         SEQ_printf(m, "  .%-40s: %d (%s)\n",
398                 "sysctl_sched_tunable_scaling",
399                 sysctl_sched_tunable_scaling,
400                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
401         SEQ_printf(m, "\n");
402 }
403
404 static int sched_debug_show(struct seq_file *m, void *v)
405 {
406         int cpu = (unsigned long)(v - 2);
407
408         if (cpu != -1)
409                 print_cpu(m, cpu);
410         else
411                 sched_debug_header(m);
412
413         return 0;
414 }
415
416 void sysrq_sched_debug_show(void)
417 {
418         int cpu;
419
420         sched_debug_header(NULL);
421         for_each_online_cpu(cpu)
422                 print_cpu(NULL, cpu);
423
424 }
425
426 /*
427  * This itererator needs some explanation.
428  * It returns 1 for the header position.
429  * This means 2 is cpu 0.
430  * In a hotplugged system some cpus, including cpu 0, may be missing so we have
431  * to use cpumask_* to iterate over the cpus.
432  */
433 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
434 {
435         unsigned long n = *offset;
436
437         if (n == 0)
438                 return (void *) 1;
439
440         n--;
441
442         if (n > 0)
443                 n = cpumask_next(n - 1, cpu_online_mask);
444         else
445                 n = cpumask_first(cpu_online_mask);
446
447         *offset = n + 1;
448
449         if (n < nr_cpu_ids)
450                 return (void *)(unsigned long)(n + 2);
451         return NULL;
452 }
453
454 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
455 {
456         (*offset)++;
457         return sched_debug_start(file, offset);
458 }
459
460 static void sched_debug_stop(struct seq_file *file, void *data)
461 {
462 }
463
464 static const struct seq_operations sched_debug_sops = {
465         .start = sched_debug_start,
466         .next = sched_debug_next,
467         .stop = sched_debug_stop,
468         .show = sched_debug_show,
469 };
470
471 static int sched_debug_release(struct inode *inode, struct file *file)
472 {
473         seq_release(inode, file);
474
475         return 0;
476 }
477
478 static int sched_debug_open(struct inode *inode, struct file *filp)
479 {
480         int ret = 0;
481
482         ret = seq_open(filp, &sched_debug_sops);
483
484         return ret;
485 }
486
487 static const struct file_operations sched_debug_fops = {
488         .open           = sched_debug_open,
489         .read           = seq_read,
490         .llseek         = seq_lseek,
491         .release        = sched_debug_release,
492 };
493
494 static int __init init_sched_debug_procfs(void)
495 {
496         struct proc_dir_entry *pe;
497
498         pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
499         if (!pe)
500                 return -ENOMEM;
501         return 0;
502 }
503
504 __initcall(init_sched_debug_procfs);
505
506 #define __P(F) \
507         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
508 #define P(F) \
509         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
510 #define __PN(F) \
511         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
512 #define PN(F) \
513         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
514
515
516 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
517 {
518 #ifdef CONFIG_NUMA_BALANCING
519         struct mempolicy *pol;
520         int node, i;
521
522         if (p->mm)
523                 P(mm->numa_scan_seq);
524
525         task_lock(p);
526         pol = p->mempolicy;
527         if (pol && !(pol->flags & MPOL_F_MORON))
528                 pol = NULL;
529         mpol_get(pol);
530         task_unlock(p);
531
532         SEQ_printf(m, "numa_migrations, %ld\n", xchg(&p->numa_pages_migrated, 0));
533
534         for_each_online_node(node) {
535                 for (i = 0; i < 2; i++) {
536                         unsigned long nr_faults = -1;
537                         int cpu_current, home_node;
538
539                         if (p->numa_faults)
540                                 nr_faults = p->numa_faults[2*node + i];
541
542                         cpu_current = !i ? (task_node(p) == node) :
543                                 (pol && node_isset(node, pol->v.nodes));
544
545                         home_node = (p->numa_preferred_nid == node);
546
547                         SEQ_printf(m, "numa_faults_memory, %d, %d, %d, %d, %ld\n",
548                                 i, node, cpu_current, home_node, nr_faults);
549                 }
550         }
551
552         mpol_put(pol);
553 #endif
554 }
555
556 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
557 {
558         unsigned long nr_switches;
559
560         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
561                                                 get_nr_threads(p));
562         SEQ_printf(m,
563                 "---------------------------------------------------------"
564                 "----------\n");
565 #define __P(F) \
566         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
567 #define P(F) \
568         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
569 #define __PN(F) \
570         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
571 #define PN(F) \
572         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
573
574         PN(se.exec_start);
575         PN(se.vruntime);
576         PN(se.sum_exec_runtime);
577
578         nr_switches = p->nvcsw + p->nivcsw;
579
580 #ifdef CONFIG_SCHEDSTATS
581         PN(se.statistics.wait_start);
582         PN(se.statistics.sleep_start);
583         PN(se.statistics.block_start);
584         PN(se.statistics.sleep_max);
585         PN(se.statistics.block_max);
586         PN(se.statistics.exec_max);
587         PN(se.statistics.slice_max);
588         PN(se.statistics.wait_max);
589         PN(se.statistics.wait_sum);
590         P(se.statistics.wait_count);
591         PN(se.statistics.iowait_sum);
592         P(se.statistics.iowait_count);
593         P(se.nr_migrations);
594         P(se.statistics.nr_migrations_cold);
595         P(se.statistics.nr_failed_migrations_affine);
596         P(se.statistics.nr_failed_migrations_running);
597         P(se.statistics.nr_failed_migrations_hot);
598         P(se.statistics.nr_forced_migrations);
599         P(se.statistics.nr_wakeups);
600         P(se.statistics.nr_wakeups_sync);
601         P(se.statistics.nr_wakeups_migrate);
602         P(se.statistics.nr_wakeups_local);
603         P(se.statistics.nr_wakeups_remote);
604         P(se.statistics.nr_wakeups_affine);
605         P(se.statistics.nr_wakeups_affine_attempts);
606         P(se.statistics.nr_wakeups_passive);
607         P(se.statistics.nr_wakeups_idle);
608
609         {
610                 u64 avg_atom, avg_per_cpu;
611
612                 avg_atom = p->se.sum_exec_runtime;
613                 if (nr_switches)
614                         avg_atom = div64_ul(avg_atom, nr_switches);
615                 else
616                         avg_atom = -1LL;
617
618                 avg_per_cpu = p->se.sum_exec_runtime;
619                 if (p->se.nr_migrations) {
620                         avg_per_cpu = div64_u64(avg_per_cpu,
621                                                 p->se.nr_migrations);
622                 } else {
623                         avg_per_cpu = -1LL;
624                 }
625
626                 __PN(avg_atom);
627                 __PN(avg_per_cpu);
628         }
629 #endif
630         __P(nr_switches);
631         SEQ_printf(m, "%-45s:%21Ld\n",
632                    "nr_voluntary_switches", (long long)p->nvcsw);
633         SEQ_printf(m, "%-45s:%21Ld\n",
634                    "nr_involuntary_switches", (long long)p->nivcsw);
635
636         P(se.load.weight);
637 #ifdef CONFIG_SMP
638         P(se.avg.runnable_avg_sum);
639         P(se.avg.runnable_avg_period);
640         P(se.avg.load_avg_contrib);
641         P(se.avg.decay_count);
642 #endif
643         P(policy);
644         P(prio);
645 #undef PN
646 #undef __PN
647 #undef P
648 #undef __P
649
650         {
651                 unsigned int this_cpu = raw_smp_processor_id();
652                 u64 t0, t1;
653
654                 t0 = cpu_clock(this_cpu);
655                 t1 = cpu_clock(this_cpu);
656                 SEQ_printf(m, "%-45s:%21Ld\n",
657                            "clock-delta", (long long)(t1-t0));
658         }
659
660         sched_show_numa(p, m);
661 }
662
663 void proc_sched_set_task(struct task_struct *p)
664 {
665 #ifdef CONFIG_SCHEDSTATS
666         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
667 #endif
668 }