]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/time/posix-cpu-timers.c
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / kernel / time / posix-cpu-timers.c
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24         cputime_t cputime = secs_to_cputime(rlim_new);
25
26         spin_lock_irq(&task->sighand->siglock);
27         set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28         spin_unlock_irq(&task->sighand->siglock);
29 }
30
31 static int check_clock(const clockid_t which_clock)
32 {
33         int error = 0;
34         struct task_struct *p;
35         const pid_t pid = CPUCLOCK_PID(which_clock);
36
37         if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38                 return -EINVAL;
39
40         if (pid == 0)
41                 return 0;
42
43         rcu_read_lock();
44         p = find_task_by_vpid(pid);
45         if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46                    same_thread_group(p, current) : has_group_leader_pid(p))) {
47                 error = -EINVAL;
48         }
49         rcu_read_unlock();
50
51         return error;
52 }
53
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57         unsigned long long ret;
58
59         ret = 0;                /* high half always zero when .cpu used */
60         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61                 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62         } else {
63                 ret = cputime_to_expires(timespec_to_cputime(tp));
64         }
65         return ret;
66 }
67
68 static void sample_to_timespec(const clockid_t which_clock,
69                                unsigned long long expires,
70                                struct timespec *tp)
71 {
72         if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73                 *tp = ns_to_timespec(expires);
74         else
75                 cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77
78 /*
79  * Update expiry time from increment, and increase overrun count,
80  * given the current clock sample.
81  */
82 static void bump_cpu_timer(struct k_itimer *timer,
83                            unsigned long long now)
84 {
85         int i;
86         unsigned long long delta, incr;
87
88         if (timer->it.cpu.incr == 0)
89                 return;
90
91         if (now < timer->it.cpu.expires)
92                 return;
93
94         incr = timer->it.cpu.incr;
95         delta = now + incr - timer->it.cpu.expires;
96
97         /* Don't use (incr*2 < delta), incr*2 might overflow. */
98         for (i = 0; incr < delta - incr; i++)
99                 incr = incr << 1;
100
101         for (; i >= 0; incr >>= 1, i--) {
102                 if (delta < incr)
103                         continue;
104
105                 timer->it.cpu.expires += incr;
106                 timer->it_overrun += 1 << i;
107                 delta -= incr;
108         }
109 }
110
111 /**
112  * task_cputime_zero - Check a task_cputime struct for all zero fields.
113  *
114  * @cputime:    The struct to compare.
115  *
116  * Checks @cputime to see if all fields are zero.  Returns true if all fields
117  * are zero, false if any field is nonzero.
118  */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121         if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122                 return 1;
123         return 0;
124 }
125
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128         cputime_t utime, stime;
129
130         task_cputime(p, &utime, &stime);
131
132         return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136         cputime_t utime;
137
138         task_cputime(p, &utime, NULL);
139
140         return cputime_to_expires(utime);
141 }
142
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146         int error = check_clock(which_clock);
147         if (!error) {
148                 tp->tv_sec = 0;
149                 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150                 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151                         /*
152                          * If sched_clock is using a cycle counter, we
153                          * don't have any idea of its true resolution
154                          * exported, but it is much more than 1s/HZ.
155                          */
156                         tp->tv_nsec = 1;
157                 }
158         }
159         return error;
160 }
161
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165         /*
166          * You can never reset a CPU clock, but we check for other errors
167          * in the call before failing with EPERM.
168          */
169         int error = check_clock(which_clock);
170         if (error == 0) {
171                 error = -EPERM;
172         }
173         return error;
174 }
175
176
177 /*
178  * Sample a per-thread clock for the given task.
179  */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181                             unsigned long long *sample)
182 {
183         switch (CPUCLOCK_WHICH(which_clock)) {
184         default:
185                 return -EINVAL;
186         case CPUCLOCK_PROF:
187                 *sample = prof_ticks(p);
188                 break;
189         case CPUCLOCK_VIRT:
190                 *sample = virt_ticks(p);
191                 break;
192         case CPUCLOCK_SCHED:
193                 *sample = task_sched_runtime(p);
194                 break;
195         }
196         return 0;
197 }
198
199 /*
200  * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
201  * to avoid race conditions with concurrent updates to cputime.
202  */
203 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
204 {
205         u64 curr_cputime;
206 retry:
207         curr_cputime = atomic64_read(cputime);
208         if (sum_cputime > curr_cputime) {
209                 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
210                         goto retry;
211         }
212 }
213
214 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
215 {
216         __update_gt_cputime(&cputime_atomic->utime, sum->utime);
217         __update_gt_cputime(&cputime_atomic->stime, sum->stime);
218         __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
219 }
220
221 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
222 static inline void sample_cputime_atomic(struct task_cputime *times,
223                                          struct task_cputime_atomic *atomic_times)
224 {
225         times->utime = atomic64_read(&atomic_times->utime);
226         times->stime = atomic64_read(&atomic_times->stime);
227         times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
228 }
229
230 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
231 {
232         struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
233         struct task_cputime sum;
234
235         /* Check if cputimer isn't running. This is accessed without locking. */
236         if (!READ_ONCE(cputimer->running)) {
237                 /*
238                  * The POSIX timer interface allows for absolute time expiry
239                  * values through the TIMER_ABSTIME flag, therefore we have
240                  * to synchronize the timer to the clock every time we start it.
241                  */
242                 thread_group_cputime(tsk, &sum);
243                 update_gt_cputime(&cputimer->cputime_atomic, &sum);
244
245                 /*
246                  * We're setting cputimer->running without a lock. Ensure
247                  * this only gets written to in one operation. We set
248                  * running after update_gt_cputime() as a small optimization,
249                  * but barriers are not required because update_gt_cputime()
250                  * can handle concurrent updates.
251                  */
252                 WRITE_ONCE(cputimer->running, true);
253         }
254         sample_cputime_atomic(times, &cputimer->cputime_atomic);
255 }
256
257 /*
258  * Sample a process (thread group) clock for the given group_leader task.
259  * Must be called with task sighand lock held for safe while_each_thread()
260  * traversal.
261  */
262 static int cpu_clock_sample_group(const clockid_t which_clock,
263                                   struct task_struct *p,
264                                   unsigned long long *sample)
265 {
266         struct task_cputime cputime;
267
268         switch (CPUCLOCK_WHICH(which_clock)) {
269         default:
270                 return -EINVAL;
271         case CPUCLOCK_PROF:
272                 thread_group_cputime(p, &cputime);
273                 *sample = cputime_to_expires(cputime.utime + cputime.stime);
274                 break;
275         case CPUCLOCK_VIRT:
276                 thread_group_cputime(p, &cputime);
277                 *sample = cputime_to_expires(cputime.utime);
278                 break;
279         case CPUCLOCK_SCHED:
280                 thread_group_cputime(p, &cputime);
281                 *sample = cputime.sum_exec_runtime;
282                 break;
283         }
284         return 0;
285 }
286
287 static int posix_cpu_clock_get_task(struct task_struct *tsk,
288                                     const clockid_t which_clock,
289                                     struct timespec *tp)
290 {
291         int err = -EINVAL;
292         unsigned long long rtn;
293
294         if (CPUCLOCK_PERTHREAD(which_clock)) {
295                 if (same_thread_group(tsk, current))
296                         err = cpu_clock_sample(which_clock, tsk, &rtn);
297         } else {
298                 if (tsk == current || thread_group_leader(tsk))
299                         err = cpu_clock_sample_group(which_clock, tsk, &rtn);
300         }
301
302         if (!err)
303                 sample_to_timespec(which_clock, rtn, tp);
304
305         return err;
306 }
307
308
309 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
310 {
311         const pid_t pid = CPUCLOCK_PID(which_clock);
312         int err = -EINVAL;
313
314         if (pid == 0) {
315                 /*
316                  * Special case constant value for our own clocks.
317                  * We don't have to do any lookup to find ourselves.
318                  */
319                 err = posix_cpu_clock_get_task(current, which_clock, tp);
320         } else {
321                 /*
322                  * Find the given PID, and validate that the caller
323                  * should be able to see it.
324                  */
325                 struct task_struct *p;
326                 rcu_read_lock();
327                 p = find_task_by_vpid(pid);
328                 if (p)
329                         err = posix_cpu_clock_get_task(p, which_clock, tp);
330                 rcu_read_unlock();
331         }
332
333         return err;
334 }
335
336
337 /*
338  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
339  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
340  * new timer already all-zeros initialized.
341  */
342 static int posix_cpu_timer_create(struct k_itimer *new_timer)
343 {
344         int ret = 0;
345         const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
346         struct task_struct *p;
347
348         if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
349                 return -EINVAL;
350
351         INIT_LIST_HEAD(&new_timer->it.cpu.entry);
352
353         rcu_read_lock();
354         if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
355                 if (pid == 0) {
356                         p = current;
357                 } else {
358                         p = find_task_by_vpid(pid);
359                         if (p && !same_thread_group(p, current))
360                                 p = NULL;
361                 }
362         } else {
363                 if (pid == 0) {
364                         p = current->group_leader;
365                 } else {
366                         p = find_task_by_vpid(pid);
367                         if (p && !has_group_leader_pid(p))
368                                 p = NULL;
369                 }
370         }
371         new_timer->it.cpu.task = p;
372         if (p) {
373                 get_task_struct(p);
374         } else {
375                 ret = -EINVAL;
376         }
377         rcu_read_unlock();
378
379         return ret;
380 }
381
382 /*
383  * Clean up a CPU-clock timer that is about to be destroyed.
384  * This is called from timer deletion with the timer already locked.
385  * If we return TIMER_RETRY, it's necessary to release the timer's lock
386  * and try again.  (This happens when the timer is in the middle of firing.)
387  */
388 static int posix_cpu_timer_del(struct k_itimer *timer)
389 {
390         int ret = 0;
391         unsigned long flags;
392         struct sighand_struct *sighand;
393         struct task_struct *p = timer->it.cpu.task;
394
395         WARN_ON_ONCE(p == NULL);
396
397         /*
398          * Protect against sighand release/switch in exit/exec and process/
399          * thread timer list entry concurrent read/writes.
400          */
401         sighand = lock_task_sighand(p, &flags);
402         if (unlikely(sighand == NULL)) {
403                 /*
404                  * We raced with the reaping of the task.
405                  * The deletion should have cleared us off the list.
406                  */
407                 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
408         } else {
409                 if (timer->it.cpu.firing)
410                         ret = TIMER_RETRY;
411                 else
412                         list_del(&timer->it.cpu.entry);
413
414                 unlock_task_sighand(p, &flags);
415         }
416
417         if (!ret)
418                 put_task_struct(p);
419
420         return ret;
421 }
422
423 static void cleanup_timers_list(struct list_head *head)
424 {
425         struct cpu_timer_list *timer, *next;
426
427         list_for_each_entry_safe(timer, next, head, entry)
428                 list_del_init(&timer->entry);
429 }
430
431 /*
432  * Clean out CPU timers still ticking when a thread exited.  The task
433  * pointer is cleared, and the expiry time is replaced with the residual
434  * time for later timer_gettime calls to return.
435  * This must be called with the siglock held.
436  */
437 static void cleanup_timers(struct list_head *head)
438 {
439         cleanup_timers_list(head);
440         cleanup_timers_list(++head);
441         cleanup_timers_list(++head);
442 }
443
444 /*
445  * These are both called with the siglock held, when the current thread
446  * is being reaped.  When the final (leader) thread in the group is reaped,
447  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
448  */
449 void posix_cpu_timers_exit(struct task_struct *tsk)
450 {
451         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
452                                                 sizeof(unsigned long long));
453         cleanup_timers(tsk->cpu_timers);
454
455 }
456 void posix_cpu_timers_exit_group(struct task_struct *tsk)
457 {
458         cleanup_timers(tsk->signal->cpu_timers);
459 }
460
461 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
462 {
463         return expires == 0 || expires > new_exp;
464 }
465
466 /*
467  * Insert the timer on the appropriate list before any timers that
468  * expire later.  This must be called with the sighand lock held.
469  */
470 static void arm_timer(struct k_itimer *timer)
471 {
472         struct task_struct *p = timer->it.cpu.task;
473         struct list_head *head, *listpos;
474         struct task_cputime *cputime_expires;
475         struct cpu_timer_list *const nt = &timer->it.cpu;
476         struct cpu_timer_list *next;
477
478         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
479                 head = p->cpu_timers;
480                 cputime_expires = &p->cputime_expires;
481         } else {
482                 head = p->signal->cpu_timers;
483                 cputime_expires = &p->signal->cputime_expires;
484         }
485         head += CPUCLOCK_WHICH(timer->it_clock);
486
487         listpos = head;
488         list_for_each_entry(next, head, entry) {
489                 if (nt->expires < next->expires)
490                         break;
491                 listpos = &next->entry;
492         }
493         list_add(&nt->entry, listpos);
494
495         if (listpos == head) {
496                 unsigned long long exp = nt->expires;
497
498                 /*
499                  * We are the new earliest-expiring POSIX 1.b timer, hence
500                  * need to update expiration cache. Take into account that
501                  * for process timers we share expiration cache with itimers
502                  * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
503                  */
504
505                 switch (CPUCLOCK_WHICH(timer->it_clock)) {
506                 case CPUCLOCK_PROF:
507                         if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
508                                 cputime_expires->prof_exp = expires_to_cputime(exp);
509                         break;
510                 case CPUCLOCK_VIRT:
511                         if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
512                                 cputime_expires->virt_exp = expires_to_cputime(exp);
513                         break;
514                 case CPUCLOCK_SCHED:
515                         if (cputime_expires->sched_exp == 0 ||
516                             cputime_expires->sched_exp > exp)
517                                 cputime_expires->sched_exp = exp;
518                         break;
519                 }
520         }
521 }
522
523 /*
524  * The timer is locked, fire it and arrange for its reload.
525  */
526 static void cpu_timer_fire(struct k_itimer *timer)
527 {
528         if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
529                 /*
530                  * User don't want any signal.
531                  */
532                 timer->it.cpu.expires = 0;
533         } else if (unlikely(timer->sigq == NULL)) {
534                 /*
535                  * This a special case for clock_nanosleep,
536                  * not a normal timer from sys_timer_create.
537                  */
538                 wake_up_process(timer->it_process);
539                 timer->it.cpu.expires = 0;
540         } else if (timer->it.cpu.incr == 0) {
541                 /*
542                  * One-shot timer.  Clear it as soon as it's fired.
543                  */
544                 posix_timer_event(timer, 0);
545                 timer->it.cpu.expires = 0;
546         } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
547                 /*
548                  * The signal did not get queued because the signal
549                  * was ignored, so we won't get any callback to
550                  * reload the timer.  But we need to keep it
551                  * ticking in case the signal is deliverable next time.
552                  */
553                 posix_cpu_timer_schedule(timer);
554         }
555 }
556
557 /*
558  * Sample a process (thread group) timer for the given group_leader task.
559  * Must be called with task sighand lock held for safe while_each_thread()
560  * traversal.
561  */
562 static int cpu_timer_sample_group(const clockid_t which_clock,
563                                   struct task_struct *p,
564                                   unsigned long long *sample)
565 {
566         struct task_cputime cputime;
567
568         thread_group_cputimer(p, &cputime);
569         switch (CPUCLOCK_WHICH(which_clock)) {
570         default:
571                 return -EINVAL;
572         case CPUCLOCK_PROF:
573                 *sample = cputime_to_expires(cputime.utime + cputime.stime);
574                 break;
575         case CPUCLOCK_VIRT:
576                 *sample = cputime_to_expires(cputime.utime);
577                 break;
578         case CPUCLOCK_SCHED:
579                 *sample = cputime.sum_exec_runtime;
580                 break;
581         }
582         return 0;
583 }
584
585 #ifdef CONFIG_NO_HZ_FULL
586 static void nohz_kick_work_fn(struct work_struct *work)
587 {
588         tick_nohz_full_kick_all();
589 }
590
591 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
592
593 /*
594  * We need the IPIs to be sent from sane process context.
595  * The posix cpu timers are always set with irqs disabled.
596  */
597 static void posix_cpu_timer_kick_nohz(void)
598 {
599         if (context_tracking_is_enabled())
600                 schedule_work(&nohz_kick_work);
601 }
602
603 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
604 {
605         if (!task_cputime_zero(&tsk->cputime_expires))
606                 return false;
607
608         /* Check if cputimer is running. This is accessed without locking. */
609         if (READ_ONCE(tsk->signal->cputimer.running))
610                 return false;
611
612         return true;
613 }
614 #else
615 static inline void posix_cpu_timer_kick_nohz(void) { }
616 #endif
617
618 /*
619  * Guts of sys_timer_settime for CPU timers.
620  * This is called with the timer locked and interrupts disabled.
621  * If we return TIMER_RETRY, it's necessary to release the timer's lock
622  * and try again.  (This happens when the timer is in the middle of firing.)
623  */
624 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
625                                struct itimerspec *new, struct itimerspec *old)
626 {
627         unsigned long flags;
628         struct sighand_struct *sighand;
629         struct task_struct *p = timer->it.cpu.task;
630         unsigned long long old_expires, new_expires, old_incr, val;
631         int ret;
632
633         WARN_ON_ONCE(p == NULL);
634
635         new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
636
637         /*
638          * Protect against sighand release/switch in exit/exec and p->cpu_timers
639          * and p->signal->cpu_timers read/write in arm_timer()
640          */
641         sighand = lock_task_sighand(p, &flags);
642         /*
643          * If p has just been reaped, we can no
644          * longer get any information about it at all.
645          */
646         if (unlikely(sighand == NULL)) {
647                 return -ESRCH;
648         }
649
650         /*
651          * Disarm any old timer after extracting its expiry time.
652          */
653         WARN_ON_ONCE(!irqs_disabled());
654
655         ret = 0;
656         old_incr = timer->it.cpu.incr;
657         old_expires = timer->it.cpu.expires;
658         if (unlikely(timer->it.cpu.firing)) {
659                 timer->it.cpu.firing = -1;
660                 ret = TIMER_RETRY;
661         } else
662                 list_del_init(&timer->it.cpu.entry);
663
664         /*
665          * We need to sample the current value to convert the new
666          * value from to relative and absolute, and to convert the
667          * old value from absolute to relative.  To set a process
668          * timer, we need a sample to balance the thread expiry
669          * times (in arm_timer).  With an absolute time, we must
670          * check if it's already passed.  In short, we need a sample.
671          */
672         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
673                 cpu_clock_sample(timer->it_clock, p, &val);
674         } else {
675                 cpu_timer_sample_group(timer->it_clock, p, &val);
676         }
677
678         if (old) {
679                 if (old_expires == 0) {
680                         old->it_value.tv_sec = 0;
681                         old->it_value.tv_nsec = 0;
682                 } else {
683                         /*
684                          * Update the timer in case it has
685                          * overrun already.  If it has,
686                          * we'll report it as having overrun
687                          * and with the next reloaded timer
688                          * already ticking, though we are
689                          * swallowing that pending
690                          * notification here to install the
691                          * new setting.
692                          */
693                         bump_cpu_timer(timer, val);
694                         if (val < timer->it.cpu.expires) {
695                                 old_expires = timer->it.cpu.expires - val;
696                                 sample_to_timespec(timer->it_clock,
697                                                    old_expires,
698                                                    &old->it_value);
699                         } else {
700                                 old->it_value.tv_nsec = 1;
701                                 old->it_value.tv_sec = 0;
702                         }
703                 }
704         }
705
706         if (unlikely(ret)) {
707                 /*
708                  * We are colliding with the timer actually firing.
709                  * Punt after filling in the timer's old value, and
710                  * disable this firing since we are already reporting
711                  * it as an overrun (thanks to bump_cpu_timer above).
712                  */
713                 unlock_task_sighand(p, &flags);
714                 goto out;
715         }
716
717         if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
718                 new_expires += val;
719         }
720
721         /*
722          * Install the new expiry time (or zero).
723          * For a timer with no notification action, we don't actually
724          * arm the timer (we'll just fake it for timer_gettime).
725          */
726         timer->it.cpu.expires = new_expires;
727         if (new_expires != 0 && val < new_expires) {
728                 arm_timer(timer);
729         }
730
731         unlock_task_sighand(p, &flags);
732         /*
733          * Install the new reload setting, and
734          * set up the signal and overrun bookkeeping.
735          */
736         timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
737                                                 &new->it_interval);
738
739         /*
740          * This acts as a modification timestamp for the timer,
741          * so any automatic reload attempt will punt on seeing
742          * that we have reset the timer manually.
743          */
744         timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
745                 ~REQUEUE_PENDING;
746         timer->it_overrun_last = 0;
747         timer->it_overrun = -1;
748
749         if (new_expires != 0 && !(val < new_expires)) {
750                 /*
751                  * The designated time already passed, so we notify
752                  * immediately, even if the thread never runs to
753                  * accumulate more time on this clock.
754                  */
755                 cpu_timer_fire(timer);
756         }
757
758         ret = 0;
759  out:
760         if (old) {
761                 sample_to_timespec(timer->it_clock,
762                                    old_incr, &old->it_interval);
763         }
764         if (!ret)
765                 posix_cpu_timer_kick_nohz();
766         return ret;
767 }
768
769 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
770 {
771         unsigned long long now;
772         struct task_struct *p = timer->it.cpu.task;
773
774         WARN_ON_ONCE(p == NULL);
775
776         /*
777          * Easy part: convert the reload time.
778          */
779         sample_to_timespec(timer->it_clock,
780                            timer->it.cpu.incr, &itp->it_interval);
781
782         if (timer->it.cpu.expires == 0) {       /* Timer not armed at all.  */
783                 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
784                 return;
785         }
786
787         /*
788          * Sample the clock to take the difference with the expiry time.
789          */
790         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
791                 cpu_clock_sample(timer->it_clock, p, &now);
792         } else {
793                 struct sighand_struct *sighand;
794                 unsigned long flags;
795
796                 /*
797                  * Protect against sighand release/switch in exit/exec and
798                  * also make timer sampling safe if it ends up calling
799                  * thread_group_cputime().
800                  */
801                 sighand = lock_task_sighand(p, &flags);
802                 if (unlikely(sighand == NULL)) {
803                         /*
804                          * The process has been reaped.
805                          * We can't even collect a sample any more.
806                          * Call the timer disarmed, nothing else to do.
807                          */
808                         timer->it.cpu.expires = 0;
809                         sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
810                                            &itp->it_value);
811                 } else {
812                         cpu_timer_sample_group(timer->it_clock, p, &now);
813                         unlock_task_sighand(p, &flags);
814                 }
815         }
816
817         if (now < timer->it.cpu.expires) {
818                 sample_to_timespec(timer->it_clock,
819                                    timer->it.cpu.expires - now,
820                                    &itp->it_value);
821         } else {
822                 /*
823                  * The timer should have expired already, but the firing
824                  * hasn't taken place yet.  Say it's just about to expire.
825                  */
826                 itp->it_value.tv_nsec = 1;
827                 itp->it_value.tv_sec = 0;
828         }
829 }
830
831 static unsigned long long
832 check_timers_list(struct list_head *timers,
833                   struct list_head *firing,
834                   unsigned long long curr)
835 {
836         int maxfire = 20;
837
838         while (!list_empty(timers)) {
839                 struct cpu_timer_list *t;
840
841                 t = list_first_entry(timers, struct cpu_timer_list, entry);
842
843                 if (!--maxfire || curr < t->expires)
844                         return t->expires;
845
846                 t->firing = 1;
847                 list_move_tail(&t->entry, firing);
848         }
849
850         return 0;
851 }
852
853 /*
854  * Check for any per-thread CPU timers that have fired and move them off
855  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
856  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
857  */
858 static void check_thread_timers(struct task_struct *tsk,
859                                 struct list_head *firing)
860 {
861         struct list_head *timers = tsk->cpu_timers;
862         struct signal_struct *const sig = tsk->signal;
863         struct task_cputime *tsk_expires = &tsk->cputime_expires;
864         unsigned long long expires;
865         unsigned long soft;
866
867         /*
868          * If cputime_expires is zero, then there are no active
869          * per thread CPU timers.
870          */
871         if (task_cputime_zero(&tsk->cputime_expires))
872                 return;
873
874         expires = check_timers_list(timers, firing, prof_ticks(tsk));
875         tsk_expires->prof_exp = expires_to_cputime(expires);
876
877         expires = check_timers_list(++timers, firing, virt_ticks(tsk));
878         tsk_expires->virt_exp = expires_to_cputime(expires);
879
880         tsk_expires->sched_exp = check_timers_list(++timers, firing,
881                                                    tsk->se.sum_exec_runtime);
882
883         /*
884          * Check for the special case thread timers.
885          */
886         soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
887         if (soft != RLIM_INFINITY) {
888                 unsigned long hard =
889                         READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
890
891                 if (hard != RLIM_INFINITY &&
892                     tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
893                         /*
894                          * At the hard limit, we just die.
895                          * No need to calculate anything else now.
896                          */
897                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
898                         return;
899                 }
900                 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
901                         /*
902                          * At the soft limit, send a SIGXCPU every second.
903                          */
904                         if (soft < hard) {
905                                 soft += USEC_PER_SEC;
906                                 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
907                         }
908                         printk(KERN_INFO
909                                 "RT Watchdog Timeout: %s[%d]\n",
910                                 tsk->comm, task_pid_nr(tsk));
911                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
912                 }
913         }
914 }
915
916 static inline void stop_process_timers(struct signal_struct *sig)
917 {
918         struct thread_group_cputimer *cputimer = &sig->cputimer;
919
920         /* Turn off cputimer->running. This is done without locking. */
921         WRITE_ONCE(cputimer->running, false);
922 }
923
924 static u32 onecputick;
925
926 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
927                              unsigned long long *expires,
928                              unsigned long long cur_time, int signo)
929 {
930         if (!it->expires)
931                 return;
932
933         if (cur_time >= it->expires) {
934                 if (it->incr) {
935                         it->expires += it->incr;
936                         it->error += it->incr_error;
937                         if (it->error >= onecputick) {
938                                 it->expires -= cputime_one_jiffy;
939                                 it->error -= onecputick;
940                         }
941                 } else {
942                         it->expires = 0;
943                 }
944
945                 trace_itimer_expire(signo == SIGPROF ?
946                                     ITIMER_PROF : ITIMER_VIRTUAL,
947                                     tsk->signal->leader_pid, cur_time);
948                 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
949         }
950
951         if (it->expires && (!*expires || it->expires < *expires)) {
952                 *expires = it->expires;
953         }
954 }
955
956 /*
957  * Check for any per-thread CPU timers that have fired and move them
958  * off the tsk->*_timers list onto the firing list.  Per-thread timers
959  * have already been taken off.
960  */
961 static void check_process_timers(struct task_struct *tsk,
962                                  struct list_head *firing)
963 {
964         struct signal_struct *const sig = tsk->signal;
965         unsigned long long utime, ptime, virt_expires, prof_expires;
966         unsigned long long sum_sched_runtime, sched_expires;
967         struct list_head *timers = sig->cpu_timers;
968         struct task_cputime cputime;
969         unsigned long soft;
970
971         /*
972          * If cputimer is not running, then there are no active
973          * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
974          */
975         if (!READ_ONCE(tsk->signal->cputimer.running))
976                 return;
977
978         /*
979          * Signify that a thread is checking for process timers.
980          * Write access to this field is protected by the sighand lock.
981          */
982         sig->cputimer.checking_timer = true;
983
984         /*
985          * Collect the current process totals.
986          */
987         thread_group_cputimer(tsk, &cputime);
988         utime = cputime_to_expires(cputime.utime);
989         ptime = utime + cputime_to_expires(cputime.stime);
990         sum_sched_runtime = cputime.sum_exec_runtime;
991
992         prof_expires = check_timers_list(timers, firing, ptime);
993         virt_expires = check_timers_list(++timers, firing, utime);
994         sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
995
996         /*
997          * Check for the special case process timers.
998          */
999         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1000                          SIGPROF);
1001         check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1002                          SIGVTALRM);
1003         soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1004         if (soft != RLIM_INFINITY) {
1005                 unsigned long psecs = cputime_to_secs(ptime);
1006                 unsigned long hard =
1007                         READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1008                 cputime_t x;
1009                 if (psecs >= hard) {
1010                         /*
1011                          * At the hard limit, we just die.
1012                          * No need to calculate anything else now.
1013                          */
1014                         __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1015                         return;
1016                 }
1017                 if (psecs >= soft) {
1018                         /*
1019                          * At the soft limit, send a SIGXCPU every second.
1020                          */
1021                         __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1022                         if (soft < hard) {
1023                                 soft++;
1024                                 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1025                         }
1026                 }
1027                 x = secs_to_cputime(soft);
1028                 if (!prof_expires || x < prof_expires) {
1029                         prof_expires = x;
1030                 }
1031         }
1032
1033         sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1034         sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1035         sig->cputime_expires.sched_exp = sched_expires;
1036         if (task_cputime_zero(&sig->cputime_expires))
1037                 stop_process_timers(sig);
1038
1039         sig->cputimer.checking_timer = false;
1040 }
1041
1042 /*
1043  * This is called from the signal code (via do_schedule_next_timer)
1044  * when the last timer signal was delivered and we have to reload the timer.
1045  */
1046 void posix_cpu_timer_schedule(struct k_itimer *timer)
1047 {
1048         struct sighand_struct *sighand;
1049         unsigned long flags;
1050         struct task_struct *p = timer->it.cpu.task;
1051         unsigned long long now;
1052
1053         WARN_ON_ONCE(p == NULL);
1054
1055         /*
1056          * Fetch the current sample and update the timer's expiry time.
1057          */
1058         if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1059                 cpu_clock_sample(timer->it_clock, p, &now);
1060                 bump_cpu_timer(timer, now);
1061                 if (unlikely(p->exit_state))
1062                         goto out;
1063
1064                 /* Protect timer list r/w in arm_timer() */
1065                 sighand = lock_task_sighand(p, &flags);
1066                 if (!sighand)
1067                         goto out;
1068         } else {
1069                 /*
1070                  * Protect arm_timer() and timer sampling in case of call to
1071                  * thread_group_cputime().
1072                  */
1073                 sighand = lock_task_sighand(p, &flags);
1074                 if (unlikely(sighand == NULL)) {
1075                         /*
1076                          * The process has been reaped.
1077                          * We can't even collect a sample any more.
1078                          */
1079                         timer->it.cpu.expires = 0;
1080                         goto out;
1081                 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1082                         unlock_task_sighand(p, &flags);
1083                         /* Optimizations: if the process is dying, no need to rearm */
1084                         goto out;
1085                 }
1086                 cpu_timer_sample_group(timer->it_clock, p, &now);
1087                 bump_cpu_timer(timer, now);
1088                 /* Leave the sighand locked for the call below.  */
1089         }
1090
1091         /*
1092          * Now re-arm for the new expiry time.
1093          */
1094         WARN_ON_ONCE(!irqs_disabled());
1095         arm_timer(timer);
1096         unlock_task_sighand(p, &flags);
1097
1098         /* Kick full dynticks CPUs in case they need to tick on the new timer */
1099         posix_cpu_timer_kick_nohz();
1100 out:
1101         timer->it_overrun_last = timer->it_overrun;
1102         timer->it_overrun = -1;
1103         ++timer->it_requeue_pending;
1104 }
1105
1106 /**
1107  * task_cputime_expired - Compare two task_cputime entities.
1108  *
1109  * @sample:     The task_cputime structure to be checked for expiration.
1110  * @expires:    Expiration times, against which @sample will be checked.
1111  *
1112  * Checks @sample against @expires to see if any field of @sample has expired.
1113  * Returns true if any field of the former is greater than the corresponding
1114  * field of the latter if the latter field is set.  Otherwise returns false.
1115  */
1116 static inline int task_cputime_expired(const struct task_cputime *sample,
1117                                         const struct task_cputime *expires)
1118 {
1119         if (expires->utime && sample->utime >= expires->utime)
1120                 return 1;
1121         if (expires->stime && sample->utime + sample->stime >= expires->stime)
1122                 return 1;
1123         if (expires->sum_exec_runtime != 0 &&
1124             sample->sum_exec_runtime >= expires->sum_exec_runtime)
1125                 return 1;
1126         return 0;
1127 }
1128
1129 /**
1130  * fastpath_timer_check - POSIX CPU timers fast path.
1131  *
1132  * @tsk:        The task (thread) being checked.
1133  *
1134  * Check the task and thread group timers.  If both are zero (there are no
1135  * timers set) return false.  Otherwise snapshot the task and thread group
1136  * timers and compare them with the corresponding expiration times.  Return
1137  * true if a timer has expired, else return false.
1138  */
1139 static inline int fastpath_timer_check(struct task_struct *tsk)
1140 {
1141         struct signal_struct *sig;
1142
1143         if (!task_cputime_zero(&tsk->cputime_expires)) {
1144                 struct task_cputime task_sample;
1145
1146                 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1147                 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1148                 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1149                         return 1;
1150         }
1151
1152         sig = tsk->signal;
1153         /*
1154          * Check if thread group timers expired when the cputimer is
1155          * running and no other thread in the group is already checking
1156          * for thread group cputimers. These fields are read without the
1157          * sighand lock. However, this is fine because this is meant to
1158          * be a fastpath heuristic to determine whether we should try to
1159          * acquire the sighand lock to check/handle timers.
1160          *
1161          * In the worst case scenario, if 'running' or 'checking_timer' gets
1162          * set but the current thread doesn't see the change yet, we'll wait
1163          * until the next thread in the group gets a scheduler interrupt to
1164          * handle the timer. This isn't an issue in practice because these
1165          * types of delays with signals actually getting sent are expected.
1166          */
1167         if (READ_ONCE(sig->cputimer.running) &&
1168             !READ_ONCE(sig->cputimer.checking_timer)) {
1169                 struct task_cputime group_sample;
1170
1171                 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1172
1173                 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1174                         return 1;
1175         }
1176
1177         return 0;
1178 }
1179
1180 /*
1181  * This is called from the timer interrupt handler.  The irq handler has
1182  * already updated our counts.  We need to check if any timers fire now.
1183  * Interrupts are disabled.
1184  */
1185 void run_posix_cpu_timers(struct task_struct *tsk)
1186 {
1187         LIST_HEAD(firing);
1188         struct k_itimer *timer, *next;
1189         unsigned long flags;
1190
1191         WARN_ON_ONCE(!irqs_disabled());
1192
1193         /*
1194          * The fast path checks that there are no expired thread or thread
1195          * group timers.  If that's so, just return.
1196          */
1197         if (!fastpath_timer_check(tsk))
1198                 return;
1199
1200         if (!lock_task_sighand(tsk, &flags))
1201                 return;
1202         /*
1203          * Here we take off tsk->signal->cpu_timers[N] and
1204          * tsk->cpu_timers[N] all the timers that are firing, and
1205          * put them on the firing list.
1206          */
1207         check_thread_timers(tsk, &firing);
1208
1209         check_process_timers(tsk, &firing);
1210
1211         /*
1212          * We must release these locks before taking any timer's lock.
1213          * There is a potential race with timer deletion here, as the
1214          * siglock now protects our private firing list.  We have set
1215          * the firing flag in each timer, so that a deletion attempt
1216          * that gets the timer lock before we do will give it up and
1217          * spin until we've taken care of that timer below.
1218          */
1219         unlock_task_sighand(tsk, &flags);
1220
1221         /*
1222          * Now that all the timers on our list have the firing flag,
1223          * no one will touch their list entries but us.  We'll take
1224          * each timer's lock before clearing its firing flag, so no
1225          * timer call will interfere.
1226          */
1227         list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1228                 int cpu_firing;
1229
1230                 spin_lock(&timer->it_lock);
1231                 list_del_init(&timer->it.cpu.entry);
1232                 cpu_firing = timer->it.cpu.firing;
1233                 timer->it.cpu.firing = 0;
1234                 /*
1235                  * The firing flag is -1 if we collided with a reset
1236                  * of the timer, which already reported this
1237                  * almost-firing as an overrun.  So don't generate an event.
1238                  */
1239                 if (likely(cpu_firing >= 0))
1240                         cpu_timer_fire(timer);
1241                 spin_unlock(&timer->it_lock);
1242         }
1243 }
1244
1245 /*
1246  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1247  * The tsk->sighand->siglock must be held by the caller.
1248  */
1249 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1250                            cputime_t *newval, cputime_t *oldval)
1251 {
1252         unsigned long long now;
1253
1254         WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1255         cpu_timer_sample_group(clock_idx, tsk, &now);
1256
1257         if (oldval) {
1258                 /*
1259                  * We are setting itimer. The *oldval is absolute and we update
1260                  * it to be relative, *newval argument is relative and we update
1261                  * it to be absolute.
1262                  */
1263                 if (*oldval) {
1264                         if (*oldval <= now) {
1265                                 /* Just about to fire. */
1266                                 *oldval = cputime_one_jiffy;
1267                         } else {
1268                                 *oldval -= now;
1269                         }
1270                 }
1271
1272                 if (!*newval)
1273                         goto out;
1274                 *newval += now;
1275         }
1276
1277         /*
1278          * Update expiration cache if we are the earliest timer, or eventually
1279          * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1280          */
1281         switch (clock_idx) {
1282         case CPUCLOCK_PROF:
1283                 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1284                         tsk->signal->cputime_expires.prof_exp = *newval;
1285                 break;
1286         case CPUCLOCK_VIRT:
1287                 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1288                         tsk->signal->cputime_expires.virt_exp = *newval;
1289                 break;
1290         }
1291 out:
1292         posix_cpu_timer_kick_nohz();
1293 }
1294
1295 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1296                             struct timespec *rqtp, struct itimerspec *it)
1297 {
1298         struct k_itimer timer;
1299         int error;
1300
1301         /*
1302          * Set up a temporary timer and then wait for it to go off.
1303          */
1304         memset(&timer, 0, sizeof timer);
1305         spin_lock_init(&timer.it_lock);
1306         timer.it_clock = which_clock;
1307         timer.it_overrun = -1;
1308         error = posix_cpu_timer_create(&timer);
1309         timer.it_process = current;
1310         if (!error) {
1311                 static struct itimerspec zero_it;
1312
1313                 memset(it, 0, sizeof *it);
1314                 it->it_value = *rqtp;
1315
1316                 spin_lock_irq(&timer.it_lock);
1317                 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1318                 if (error) {
1319                         spin_unlock_irq(&timer.it_lock);
1320                         return error;
1321                 }
1322
1323                 while (!signal_pending(current)) {
1324                         if (timer.it.cpu.expires == 0) {
1325                                 /*
1326                                  * Our timer fired and was reset, below
1327                                  * deletion can not fail.
1328                                  */
1329                                 posix_cpu_timer_del(&timer);
1330                                 spin_unlock_irq(&timer.it_lock);
1331                                 return 0;
1332                         }
1333
1334                         /*
1335                          * Block until cpu_timer_fire (or a signal) wakes us.
1336                          */
1337                         __set_current_state(TASK_INTERRUPTIBLE);
1338                         spin_unlock_irq(&timer.it_lock);
1339                         schedule();
1340                         spin_lock_irq(&timer.it_lock);
1341                 }
1342
1343                 /*
1344                  * We were interrupted by a signal.
1345                  */
1346                 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1347                 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1348                 if (!error) {
1349                         /*
1350                          * Timer is now unarmed, deletion can not fail.
1351                          */
1352                         posix_cpu_timer_del(&timer);
1353                 }
1354                 spin_unlock_irq(&timer.it_lock);
1355
1356                 while (error == TIMER_RETRY) {
1357                         /*
1358                          * We need to handle case when timer was or is in the
1359                          * middle of firing. In other cases we already freed
1360                          * resources.
1361                          */
1362                         spin_lock_irq(&timer.it_lock);
1363                         error = posix_cpu_timer_del(&timer);
1364                         spin_unlock_irq(&timer.it_lock);
1365                 }
1366
1367                 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1368                         /*
1369                          * It actually did fire already.
1370                          */
1371                         return 0;
1372                 }
1373
1374                 error = -ERESTART_RESTARTBLOCK;
1375         }
1376
1377         return error;
1378 }
1379
1380 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1381
1382 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1383                             struct timespec *rqtp, struct timespec __user *rmtp)
1384 {
1385         struct restart_block *restart_block = &current->restart_block;
1386         struct itimerspec it;
1387         int error;
1388
1389         /*
1390          * Diagnose required errors first.
1391          */
1392         if (CPUCLOCK_PERTHREAD(which_clock) &&
1393             (CPUCLOCK_PID(which_clock) == 0 ||
1394              CPUCLOCK_PID(which_clock) == current->pid))
1395                 return -EINVAL;
1396
1397         error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1398
1399         if (error == -ERESTART_RESTARTBLOCK) {
1400
1401                 if (flags & TIMER_ABSTIME)
1402                         return -ERESTARTNOHAND;
1403                 /*
1404                  * Report back to the user the time still remaining.
1405                  */
1406                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1407                         return -EFAULT;
1408
1409                 restart_block->fn = posix_cpu_nsleep_restart;
1410                 restart_block->nanosleep.clockid = which_clock;
1411                 restart_block->nanosleep.rmtp = rmtp;
1412                 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1413         }
1414         return error;
1415 }
1416
1417 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1418 {
1419         clockid_t which_clock = restart_block->nanosleep.clockid;
1420         struct timespec t;
1421         struct itimerspec it;
1422         int error;
1423
1424         t = ns_to_timespec(restart_block->nanosleep.expires);
1425
1426         error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1427
1428         if (error == -ERESTART_RESTARTBLOCK) {
1429                 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1430                 /*
1431                  * Report back to the user the time still remaining.
1432                  */
1433                 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1434                         return -EFAULT;
1435
1436                 restart_block->nanosleep.expires = timespec_to_ns(&t);
1437         }
1438         return error;
1439
1440 }
1441
1442 #define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1443 #define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1444
1445 static int process_cpu_clock_getres(const clockid_t which_clock,
1446                                     struct timespec *tp)
1447 {
1448         return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1449 }
1450 static int process_cpu_clock_get(const clockid_t which_clock,
1451                                  struct timespec *tp)
1452 {
1453         return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1454 }
1455 static int process_cpu_timer_create(struct k_itimer *timer)
1456 {
1457         timer->it_clock = PROCESS_CLOCK;
1458         return posix_cpu_timer_create(timer);
1459 }
1460 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1461                               struct timespec *rqtp,
1462                               struct timespec __user *rmtp)
1463 {
1464         return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1465 }
1466 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1467 {
1468         return -EINVAL;
1469 }
1470 static int thread_cpu_clock_getres(const clockid_t which_clock,
1471                                    struct timespec *tp)
1472 {
1473         return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1474 }
1475 static int thread_cpu_clock_get(const clockid_t which_clock,
1476                                 struct timespec *tp)
1477 {
1478         return posix_cpu_clock_get(THREAD_CLOCK, tp);
1479 }
1480 static int thread_cpu_timer_create(struct k_itimer *timer)
1481 {
1482         timer->it_clock = THREAD_CLOCK;
1483         return posix_cpu_timer_create(timer);
1484 }
1485
1486 struct k_clock clock_posix_cpu = {
1487         .clock_getres   = posix_cpu_clock_getres,
1488         .clock_set      = posix_cpu_clock_set,
1489         .clock_get      = posix_cpu_clock_get,
1490         .timer_create   = posix_cpu_timer_create,
1491         .nsleep         = posix_cpu_nsleep,
1492         .nsleep_restart = posix_cpu_nsleep_restart,
1493         .timer_set      = posix_cpu_timer_set,
1494         .timer_del      = posix_cpu_timer_del,
1495         .timer_get      = posix_cpu_timer_get,
1496 };
1497
1498 static __init int init_posix_cpu_timers(void)
1499 {
1500         struct k_clock process = {
1501                 .clock_getres   = process_cpu_clock_getres,
1502                 .clock_get      = process_cpu_clock_get,
1503                 .timer_create   = process_cpu_timer_create,
1504                 .nsleep         = process_cpu_nsleep,
1505                 .nsleep_restart = process_cpu_nsleep_restart,
1506         };
1507         struct k_clock thread = {
1508                 .clock_getres   = thread_cpu_clock_getres,
1509                 .clock_get      = thread_cpu_clock_get,
1510                 .timer_create   = thread_cpu_timer_create,
1511         };
1512         struct timespec ts;
1513
1514         posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1515         posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1516
1517         cputime_to_timespec(cputime_one_jiffy, &ts);
1518         onecputick = ts.tv_nsec;
1519         WARN_ON(ts.tv_sec != 0);
1520
1521         return 0;
1522 }
1523 __initcall(init_posix_cpu_timers);