]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/time/timer.c
Merge tag 'nfsd-4.3' of git://linux-nfs.org/~bfields/linux
[karo-tx-linux.git] / kernel / time / timer.c
1 /*
2  *  linux/kernel/timer.c
3  *
4  *  Kernel internal timers
5  *
6  *  Copyright (C) 1991, 1992  Linus Torvalds
7  *
8  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9  *
10  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13  *              serialize accesses to xtime/lost_ticks).
14  *                              Copyright (C) 1998  Andrea Arcangeli
15  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16  *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
17  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20  */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
51
52 #include "tick-internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/timer.h>
56
57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
58
59 EXPORT_SYMBOL(jiffies_64);
60
61 /*
62  * per-CPU timer vector definitions:
63  */
64 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
65 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
66 #define TVN_SIZE (1 << TVN_BITS)
67 #define TVR_SIZE (1 << TVR_BITS)
68 #define TVN_MASK (TVN_SIZE - 1)
69 #define TVR_MASK (TVR_SIZE - 1)
70 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
71
72 struct tvec {
73         struct hlist_head vec[TVN_SIZE];
74 };
75
76 struct tvec_root {
77         struct hlist_head vec[TVR_SIZE];
78 };
79
80 struct tvec_base {
81         spinlock_t lock;
82         struct timer_list *running_timer;
83         unsigned long timer_jiffies;
84         unsigned long next_timer;
85         unsigned long active_timers;
86         unsigned long all_timers;
87         int cpu;
88         bool migration_enabled;
89         bool nohz_active;
90         struct tvec_root tv1;
91         struct tvec tv2;
92         struct tvec tv3;
93         struct tvec tv4;
94         struct tvec tv5;
95 } ____cacheline_aligned;
96
97
98 static DEFINE_PER_CPU(struct tvec_base, tvec_bases);
99
100 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
101 unsigned int sysctl_timer_migration = 1;
102
103 void timers_update_migration(bool update_nohz)
104 {
105         bool on = sysctl_timer_migration && tick_nohz_active;
106         unsigned int cpu;
107
108         /* Avoid the loop, if nothing to update */
109         if (this_cpu_read(tvec_bases.migration_enabled) == on)
110                 return;
111
112         for_each_possible_cpu(cpu) {
113                 per_cpu(tvec_bases.migration_enabled, cpu) = on;
114                 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
115                 if (!update_nohz)
116                         continue;
117                 per_cpu(tvec_bases.nohz_active, cpu) = true;
118                 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
119         }
120 }
121
122 int timer_migration_handler(struct ctl_table *table, int write,
123                             void __user *buffer, size_t *lenp,
124                             loff_t *ppos)
125 {
126         static DEFINE_MUTEX(mutex);
127         int ret;
128
129         mutex_lock(&mutex);
130         ret = proc_dointvec(table, write, buffer, lenp, ppos);
131         if (!ret && write)
132                 timers_update_migration(false);
133         mutex_unlock(&mutex);
134         return ret;
135 }
136
137 static inline struct tvec_base *get_target_base(struct tvec_base *base,
138                                                 int pinned)
139 {
140         if (pinned || !base->migration_enabled)
141                 return this_cpu_ptr(&tvec_bases);
142         return per_cpu_ptr(&tvec_bases, get_nohz_timer_target());
143 }
144 #else
145 static inline struct tvec_base *get_target_base(struct tvec_base *base,
146                                                 int pinned)
147 {
148         return this_cpu_ptr(&tvec_bases);
149 }
150 #endif
151
152 static unsigned long round_jiffies_common(unsigned long j, int cpu,
153                 bool force_up)
154 {
155         int rem;
156         unsigned long original = j;
157
158         /*
159          * We don't want all cpus firing their timers at once hitting the
160          * same lock or cachelines, so we skew each extra cpu with an extra
161          * 3 jiffies. This 3 jiffies came originally from the mm/ code which
162          * already did this.
163          * The skew is done by adding 3*cpunr, then round, then subtract this
164          * extra offset again.
165          */
166         j += cpu * 3;
167
168         rem = j % HZ;
169
170         /*
171          * If the target jiffie is just after a whole second (which can happen
172          * due to delays of the timer irq, long irq off times etc etc) then
173          * we should round down to the whole second, not up. Use 1/4th second
174          * as cutoff for this rounding as an extreme upper bound for this.
175          * But never round down if @force_up is set.
176          */
177         if (rem < HZ/4 && !force_up) /* round down */
178                 j = j - rem;
179         else /* round up */
180                 j = j - rem + HZ;
181
182         /* now that we have rounded, subtract the extra skew again */
183         j -= cpu * 3;
184
185         /*
186          * Make sure j is still in the future. Otherwise return the
187          * unmodified value.
188          */
189         return time_is_after_jiffies(j) ? j : original;
190 }
191
192 /**
193  * __round_jiffies - function to round jiffies to a full second
194  * @j: the time in (absolute) jiffies that should be rounded
195  * @cpu: the processor number on which the timeout will happen
196  *
197  * __round_jiffies() rounds an absolute time in the future (in jiffies)
198  * up or down to (approximately) full seconds. This is useful for timers
199  * for which the exact time they fire does not matter too much, as long as
200  * they fire approximately every X seconds.
201  *
202  * By rounding these timers to whole seconds, all such timers will fire
203  * at the same time, rather than at various times spread out. The goal
204  * of this is to have the CPU wake up less, which saves power.
205  *
206  * The exact rounding is skewed for each processor to avoid all
207  * processors firing at the exact same time, which could lead
208  * to lock contention or spurious cache line bouncing.
209  *
210  * The return value is the rounded version of the @j parameter.
211  */
212 unsigned long __round_jiffies(unsigned long j, int cpu)
213 {
214         return round_jiffies_common(j, cpu, false);
215 }
216 EXPORT_SYMBOL_GPL(__round_jiffies);
217
218 /**
219  * __round_jiffies_relative - function to round jiffies to a full second
220  * @j: the time in (relative) jiffies that should be rounded
221  * @cpu: the processor number on which the timeout will happen
222  *
223  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
224  * up or down to (approximately) full seconds. This is useful for timers
225  * for which the exact time they fire does not matter too much, as long as
226  * they fire approximately every X seconds.
227  *
228  * By rounding these timers to whole seconds, all such timers will fire
229  * at the same time, rather than at various times spread out. The goal
230  * of this is to have the CPU wake up less, which saves power.
231  *
232  * The exact rounding is skewed for each processor to avoid all
233  * processors firing at the exact same time, which could lead
234  * to lock contention or spurious cache line bouncing.
235  *
236  * The return value is the rounded version of the @j parameter.
237  */
238 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
239 {
240         unsigned long j0 = jiffies;
241
242         /* Use j0 because jiffies might change while we run */
243         return round_jiffies_common(j + j0, cpu, false) - j0;
244 }
245 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
246
247 /**
248  * round_jiffies - function to round jiffies to a full second
249  * @j: the time in (absolute) jiffies that should be rounded
250  *
251  * round_jiffies() rounds an absolute time in the future (in jiffies)
252  * up or down to (approximately) full seconds. This is useful for timers
253  * for which the exact time they fire does not matter too much, as long as
254  * they fire approximately every X seconds.
255  *
256  * By rounding these timers to whole seconds, all such timers will fire
257  * at the same time, rather than at various times spread out. The goal
258  * of this is to have the CPU wake up less, which saves power.
259  *
260  * The return value is the rounded version of the @j parameter.
261  */
262 unsigned long round_jiffies(unsigned long j)
263 {
264         return round_jiffies_common(j, raw_smp_processor_id(), false);
265 }
266 EXPORT_SYMBOL_GPL(round_jiffies);
267
268 /**
269  * round_jiffies_relative - function to round jiffies to a full second
270  * @j: the time in (relative) jiffies that should be rounded
271  *
272  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
273  * up or down to (approximately) full seconds. This is useful for timers
274  * for which the exact time they fire does not matter too much, as long as
275  * they fire approximately every X seconds.
276  *
277  * By rounding these timers to whole seconds, all such timers will fire
278  * at the same time, rather than at various times spread out. The goal
279  * of this is to have the CPU wake up less, which saves power.
280  *
281  * The return value is the rounded version of the @j parameter.
282  */
283 unsigned long round_jiffies_relative(unsigned long j)
284 {
285         return __round_jiffies_relative(j, raw_smp_processor_id());
286 }
287 EXPORT_SYMBOL_GPL(round_jiffies_relative);
288
289 /**
290  * __round_jiffies_up - function to round jiffies up to a full second
291  * @j: the time in (absolute) jiffies that should be rounded
292  * @cpu: the processor number on which the timeout will happen
293  *
294  * This is the same as __round_jiffies() except that it will never
295  * round down.  This is useful for timeouts for which the exact time
296  * of firing does not matter too much, as long as they don't fire too
297  * early.
298  */
299 unsigned long __round_jiffies_up(unsigned long j, int cpu)
300 {
301         return round_jiffies_common(j, cpu, true);
302 }
303 EXPORT_SYMBOL_GPL(__round_jiffies_up);
304
305 /**
306  * __round_jiffies_up_relative - function to round jiffies up to a full second
307  * @j: the time in (relative) jiffies that should be rounded
308  * @cpu: the processor number on which the timeout will happen
309  *
310  * This is the same as __round_jiffies_relative() except that it will never
311  * round down.  This is useful for timeouts for which the exact time
312  * of firing does not matter too much, as long as they don't fire too
313  * early.
314  */
315 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
316 {
317         unsigned long j0 = jiffies;
318
319         /* Use j0 because jiffies might change while we run */
320         return round_jiffies_common(j + j0, cpu, true) - j0;
321 }
322 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
323
324 /**
325  * round_jiffies_up - function to round jiffies up to a full second
326  * @j: the time in (absolute) jiffies that should be rounded
327  *
328  * This is the same as round_jiffies() except that it will never
329  * round down.  This is useful for timeouts for which the exact time
330  * of firing does not matter too much, as long as they don't fire too
331  * early.
332  */
333 unsigned long round_jiffies_up(unsigned long j)
334 {
335         return round_jiffies_common(j, raw_smp_processor_id(), true);
336 }
337 EXPORT_SYMBOL_GPL(round_jiffies_up);
338
339 /**
340  * round_jiffies_up_relative - function to round jiffies up to a full second
341  * @j: the time in (relative) jiffies that should be rounded
342  *
343  * This is the same as round_jiffies_relative() except that it will never
344  * round down.  This is useful for timeouts for which the exact time
345  * of firing does not matter too much, as long as they don't fire too
346  * early.
347  */
348 unsigned long round_jiffies_up_relative(unsigned long j)
349 {
350         return __round_jiffies_up_relative(j, raw_smp_processor_id());
351 }
352 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
353
354 /**
355  * set_timer_slack - set the allowed slack for a timer
356  * @timer: the timer to be modified
357  * @slack_hz: the amount of time (in jiffies) allowed for rounding
358  *
359  * Set the amount of time, in jiffies, that a certain timer has
360  * in terms of slack. By setting this value, the timer subsystem
361  * will schedule the actual timer somewhere between
362  * the time mod_timer() asks for, and that time plus the slack.
363  *
364  * By setting the slack to -1, a percentage of the delay is used
365  * instead.
366  */
367 void set_timer_slack(struct timer_list *timer, int slack_hz)
368 {
369         timer->slack = slack_hz;
370 }
371 EXPORT_SYMBOL_GPL(set_timer_slack);
372
373 static void
374 __internal_add_timer(struct tvec_base *base, struct timer_list *timer)
375 {
376         unsigned long expires = timer->expires;
377         unsigned long idx = expires - base->timer_jiffies;
378         struct hlist_head *vec;
379
380         if (idx < TVR_SIZE) {
381                 int i = expires & TVR_MASK;
382                 vec = base->tv1.vec + i;
383         } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
384                 int i = (expires >> TVR_BITS) & TVN_MASK;
385                 vec = base->tv2.vec + i;
386         } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
387                 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
388                 vec = base->tv3.vec + i;
389         } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
390                 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
391                 vec = base->tv4.vec + i;
392         } else if ((signed long) idx < 0) {
393                 /*
394                  * Can happen if you add a timer with expires == jiffies,
395                  * or you set a timer to go off in the past
396                  */
397                 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
398         } else {
399                 int i;
400                 /* If the timeout is larger than MAX_TVAL (on 64-bit
401                  * architectures or with CONFIG_BASE_SMALL=1) then we
402                  * use the maximum timeout.
403                  */
404                 if (idx > MAX_TVAL) {
405                         idx = MAX_TVAL;
406                         expires = idx + base->timer_jiffies;
407                 }
408                 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
409                 vec = base->tv5.vec + i;
410         }
411
412         hlist_add_head(&timer->entry, vec);
413 }
414
415 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
416 {
417         /* Advance base->jiffies, if the base is empty */
418         if (!base->all_timers++)
419                 base->timer_jiffies = jiffies;
420
421         __internal_add_timer(base, timer);
422         /*
423          * Update base->active_timers and base->next_timer
424          */
425         if (!(timer->flags & TIMER_DEFERRABLE)) {
426                 if (!base->active_timers++ ||
427                     time_before(timer->expires, base->next_timer))
428                         base->next_timer = timer->expires;
429         }
430
431         /*
432          * Check whether the other CPU is in dynticks mode and needs
433          * to be triggered to reevaluate the timer wheel.
434          * We are protected against the other CPU fiddling
435          * with the timer by holding the timer base lock. This also
436          * makes sure that a CPU on the way to stop its tick can not
437          * evaluate the timer wheel.
438          *
439          * Spare the IPI for deferrable timers on idle targets though.
440          * The next busy ticks will take care of it. Except full dynticks
441          * require special care against races with idle_cpu(), lets deal
442          * with that later.
443          */
444         if (base->nohz_active) {
445                 if (!(timer->flags & TIMER_DEFERRABLE) ||
446                     tick_nohz_full_cpu(base->cpu))
447                         wake_up_nohz_cpu(base->cpu);
448         }
449 }
450
451 #ifdef CONFIG_TIMER_STATS
452 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
453 {
454         if (timer->start_site)
455                 return;
456
457         timer->start_site = addr;
458         memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
459         timer->start_pid = current->pid;
460 }
461
462 static void timer_stats_account_timer(struct timer_list *timer)
463 {
464         if (likely(!timer->start_site))
465                 return;
466
467         timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
468                                  timer->function, timer->start_comm,
469                                  timer->flags);
470 }
471
472 #else
473 static void timer_stats_account_timer(struct timer_list *timer) {}
474 #endif
475
476 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
477
478 static struct debug_obj_descr timer_debug_descr;
479
480 static void *timer_debug_hint(void *addr)
481 {
482         return ((struct timer_list *) addr)->function;
483 }
484
485 /*
486  * fixup_init is called when:
487  * - an active object is initialized
488  */
489 static int timer_fixup_init(void *addr, enum debug_obj_state state)
490 {
491         struct timer_list *timer = addr;
492
493         switch (state) {
494         case ODEBUG_STATE_ACTIVE:
495                 del_timer_sync(timer);
496                 debug_object_init(timer, &timer_debug_descr);
497                 return 1;
498         default:
499                 return 0;
500         }
501 }
502
503 /* Stub timer callback for improperly used timers. */
504 static void stub_timer(unsigned long data)
505 {
506         WARN_ON(1);
507 }
508
509 /*
510  * fixup_activate is called when:
511  * - an active object is activated
512  * - an unknown object is activated (might be a statically initialized object)
513  */
514 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
515 {
516         struct timer_list *timer = addr;
517
518         switch (state) {
519
520         case ODEBUG_STATE_NOTAVAILABLE:
521                 /*
522                  * This is not really a fixup. The timer was
523                  * statically initialized. We just make sure that it
524                  * is tracked in the object tracker.
525                  */
526                 if (timer->entry.pprev == NULL &&
527                     timer->entry.next == TIMER_ENTRY_STATIC) {
528                         debug_object_init(timer, &timer_debug_descr);
529                         debug_object_activate(timer, &timer_debug_descr);
530                         return 0;
531                 } else {
532                         setup_timer(timer, stub_timer, 0);
533                         return 1;
534                 }
535                 return 0;
536
537         case ODEBUG_STATE_ACTIVE:
538                 WARN_ON(1);
539
540         default:
541                 return 0;
542         }
543 }
544
545 /*
546  * fixup_free is called when:
547  * - an active object is freed
548  */
549 static int timer_fixup_free(void *addr, enum debug_obj_state state)
550 {
551         struct timer_list *timer = addr;
552
553         switch (state) {
554         case ODEBUG_STATE_ACTIVE:
555                 del_timer_sync(timer);
556                 debug_object_free(timer, &timer_debug_descr);
557                 return 1;
558         default:
559                 return 0;
560         }
561 }
562
563 /*
564  * fixup_assert_init is called when:
565  * - an untracked/uninit-ed object is found
566  */
567 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
568 {
569         struct timer_list *timer = addr;
570
571         switch (state) {
572         case ODEBUG_STATE_NOTAVAILABLE:
573                 if (timer->entry.next == TIMER_ENTRY_STATIC) {
574                         /*
575                          * This is not really a fixup. The timer was
576                          * statically initialized. We just make sure that it
577                          * is tracked in the object tracker.
578                          */
579                         debug_object_init(timer, &timer_debug_descr);
580                         return 0;
581                 } else {
582                         setup_timer(timer, stub_timer, 0);
583                         return 1;
584                 }
585         default:
586                 return 0;
587         }
588 }
589
590 static struct debug_obj_descr timer_debug_descr = {
591         .name                   = "timer_list",
592         .debug_hint             = timer_debug_hint,
593         .fixup_init             = timer_fixup_init,
594         .fixup_activate         = timer_fixup_activate,
595         .fixup_free             = timer_fixup_free,
596         .fixup_assert_init      = timer_fixup_assert_init,
597 };
598
599 static inline void debug_timer_init(struct timer_list *timer)
600 {
601         debug_object_init(timer, &timer_debug_descr);
602 }
603
604 static inline void debug_timer_activate(struct timer_list *timer)
605 {
606         debug_object_activate(timer, &timer_debug_descr);
607 }
608
609 static inline void debug_timer_deactivate(struct timer_list *timer)
610 {
611         debug_object_deactivate(timer, &timer_debug_descr);
612 }
613
614 static inline void debug_timer_free(struct timer_list *timer)
615 {
616         debug_object_free(timer, &timer_debug_descr);
617 }
618
619 static inline void debug_timer_assert_init(struct timer_list *timer)
620 {
621         debug_object_assert_init(timer, &timer_debug_descr);
622 }
623
624 static void do_init_timer(struct timer_list *timer, unsigned int flags,
625                           const char *name, struct lock_class_key *key);
626
627 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
628                              const char *name, struct lock_class_key *key)
629 {
630         debug_object_init_on_stack(timer, &timer_debug_descr);
631         do_init_timer(timer, flags, name, key);
632 }
633 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
634
635 void destroy_timer_on_stack(struct timer_list *timer)
636 {
637         debug_object_free(timer, &timer_debug_descr);
638 }
639 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
640
641 #else
642 static inline void debug_timer_init(struct timer_list *timer) { }
643 static inline void debug_timer_activate(struct timer_list *timer) { }
644 static inline void debug_timer_deactivate(struct timer_list *timer) { }
645 static inline void debug_timer_assert_init(struct timer_list *timer) { }
646 #endif
647
648 static inline void debug_init(struct timer_list *timer)
649 {
650         debug_timer_init(timer);
651         trace_timer_init(timer);
652 }
653
654 static inline void
655 debug_activate(struct timer_list *timer, unsigned long expires)
656 {
657         debug_timer_activate(timer);
658         trace_timer_start(timer, expires, timer->flags);
659 }
660
661 static inline void debug_deactivate(struct timer_list *timer)
662 {
663         debug_timer_deactivate(timer);
664         trace_timer_cancel(timer);
665 }
666
667 static inline void debug_assert_init(struct timer_list *timer)
668 {
669         debug_timer_assert_init(timer);
670 }
671
672 static void do_init_timer(struct timer_list *timer, unsigned int flags,
673                           const char *name, struct lock_class_key *key)
674 {
675         timer->entry.pprev = NULL;
676         timer->flags = flags | raw_smp_processor_id();
677         timer->slack = -1;
678 #ifdef CONFIG_TIMER_STATS
679         timer->start_site = NULL;
680         timer->start_pid = -1;
681         memset(timer->start_comm, 0, TASK_COMM_LEN);
682 #endif
683         lockdep_init_map(&timer->lockdep_map, name, key, 0);
684 }
685
686 /**
687  * init_timer_key - initialize a timer
688  * @timer: the timer to be initialized
689  * @flags: timer flags
690  * @name: name of the timer
691  * @key: lockdep class key of the fake lock used for tracking timer
692  *       sync lock dependencies
693  *
694  * init_timer_key() must be done to a timer prior calling *any* of the
695  * other timer functions.
696  */
697 void init_timer_key(struct timer_list *timer, unsigned int flags,
698                     const char *name, struct lock_class_key *key)
699 {
700         debug_init(timer);
701         do_init_timer(timer, flags, name, key);
702 }
703 EXPORT_SYMBOL(init_timer_key);
704
705 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
706 {
707         struct hlist_node *entry = &timer->entry;
708
709         debug_deactivate(timer);
710
711         __hlist_del(entry);
712         if (clear_pending)
713                 entry->pprev = NULL;
714         entry->next = LIST_POISON2;
715 }
716
717 static inline void
718 detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
719 {
720         detach_timer(timer, true);
721         if (!(timer->flags & TIMER_DEFERRABLE))
722                 base->active_timers--;
723         base->all_timers--;
724 }
725
726 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
727                              bool clear_pending)
728 {
729         if (!timer_pending(timer))
730                 return 0;
731
732         detach_timer(timer, clear_pending);
733         if (!(timer->flags & TIMER_DEFERRABLE)) {
734                 base->active_timers--;
735                 if (timer->expires == base->next_timer)
736                         base->next_timer = base->timer_jiffies;
737         }
738         /* If this was the last timer, advance base->jiffies */
739         if (!--base->all_timers)
740                 base->timer_jiffies = jiffies;
741         return 1;
742 }
743
744 /*
745  * We are using hashed locking: holding per_cpu(tvec_bases).lock
746  * means that all timers which are tied to this base via timer->base are
747  * locked, and the base itself is locked too.
748  *
749  * So __run_timers/migrate_timers can safely modify all timers which could
750  * be found on ->tvX lists.
751  *
752  * When the timer's base is locked and removed from the list, the
753  * TIMER_MIGRATING flag is set, FIXME
754  */
755 static struct tvec_base *lock_timer_base(struct timer_list *timer,
756                                         unsigned long *flags)
757         __acquires(timer->base->lock)
758 {
759         for (;;) {
760                 u32 tf = timer->flags;
761                 struct tvec_base *base;
762
763                 if (!(tf & TIMER_MIGRATING)) {
764                         base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK);
765                         spin_lock_irqsave(&base->lock, *flags);
766                         if (timer->flags == tf)
767                                 return base;
768                         spin_unlock_irqrestore(&base->lock, *flags);
769                 }
770                 cpu_relax();
771         }
772 }
773
774 static inline int
775 __mod_timer(struct timer_list *timer, unsigned long expires,
776             bool pending_only, int pinned)
777 {
778         struct tvec_base *base, *new_base;
779         unsigned long flags;
780         int ret = 0;
781
782         timer_stats_timer_set_start_info(timer);
783         BUG_ON(!timer->function);
784
785         base = lock_timer_base(timer, &flags);
786
787         ret = detach_if_pending(timer, base, false);
788         if (!ret && pending_only)
789                 goto out_unlock;
790
791         debug_activate(timer, expires);
792
793         new_base = get_target_base(base, pinned);
794
795         if (base != new_base) {
796                 /*
797                  * We are trying to schedule the timer on the local CPU.
798                  * However we can't change timer's base while it is running,
799                  * otherwise del_timer_sync() can't detect that the timer's
800                  * handler yet has not finished. This also guarantees that
801                  * the timer is serialized wrt itself.
802                  */
803                 if (likely(base->running_timer != timer)) {
804                         /* See the comment in lock_timer_base() */
805                         timer->flags |= TIMER_MIGRATING;
806
807                         spin_unlock(&base->lock);
808                         base = new_base;
809                         spin_lock(&base->lock);
810                         WRITE_ONCE(timer->flags,
811                                    (timer->flags & ~TIMER_BASEMASK) | base->cpu);
812                 }
813         }
814
815         timer->expires = expires;
816         internal_add_timer(base, timer);
817
818 out_unlock:
819         spin_unlock_irqrestore(&base->lock, flags);
820
821         return ret;
822 }
823
824 /**
825  * mod_timer_pending - modify a pending timer's timeout
826  * @timer: the pending timer to be modified
827  * @expires: new timeout in jiffies
828  *
829  * mod_timer_pending() is the same for pending timers as mod_timer(),
830  * but will not re-activate and modify already deleted timers.
831  *
832  * It is useful for unserialized use of timers.
833  */
834 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
835 {
836         return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
837 }
838 EXPORT_SYMBOL(mod_timer_pending);
839
840 /*
841  * Decide where to put the timer while taking the slack into account
842  *
843  * Algorithm:
844  *   1) calculate the maximum (absolute) time
845  *   2) calculate the highest bit where the expires and new max are different
846  *   3) use this bit to make a mask
847  *   4) use the bitmask to round down the maximum time, so that all last
848  *      bits are zeros
849  */
850 static inline
851 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
852 {
853         unsigned long expires_limit, mask;
854         int bit;
855
856         if (timer->slack >= 0) {
857                 expires_limit = expires + timer->slack;
858         } else {
859                 long delta = expires - jiffies;
860
861                 if (delta < 256)
862                         return expires;
863
864                 expires_limit = expires + delta / 256;
865         }
866         mask = expires ^ expires_limit;
867         if (mask == 0)
868                 return expires;
869
870         bit = find_last_bit(&mask, BITS_PER_LONG);
871
872         mask = (1UL << bit) - 1;
873
874         expires_limit = expires_limit & ~(mask);
875
876         return expires_limit;
877 }
878
879 /**
880  * mod_timer - modify a timer's timeout
881  * @timer: the timer to be modified
882  * @expires: new timeout in jiffies
883  *
884  * mod_timer() is a more efficient way to update the expire field of an
885  * active timer (if the timer is inactive it will be activated)
886  *
887  * mod_timer(timer, expires) is equivalent to:
888  *
889  *     del_timer(timer); timer->expires = expires; add_timer(timer);
890  *
891  * Note that if there are multiple unserialized concurrent users of the
892  * same timer, then mod_timer() is the only safe way to modify the timeout,
893  * since add_timer() cannot modify an already running timer.
894  *
895  * The function returns whether it has modified a pending timer or not.
896  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
897  * active timer returns 1.)
898  */
899 int mod_timer(struct timer_list *timer, unsigned long expires)
900 {
901         expires = apply_slack(timer, expires);
902
903         /*
904          * This is a common optimization triggered by the
905          * networking code - if the timer is re-modified
906          * to be the same thing then just return:
907          */
908         if (timer_pending(timer) && timer->expires == expires)
909                 return 1;
910
911         return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
912 }
913 EXPORT_SYMBOL(mod_timer);
914
915 /**
916  * mod_timer_pinned - modify a timer's timeout
917  * @timer: the timer to be modified
918  * @expires: new timeout in jiffies
919  *
920  * mod_timer_pinned() is a way to update the expire field of an
921  * active timer (if the timer is inactive it will be activated)
922  * and to ensure that the timer is scheduled on the current CPU.
923  *
924  * Note that this does not prevent the timer from being migrated
925  * when the current CPU goes offline.  If this is a problem for
926  * you, use CPU-hotplug notifiers to handle it correctly, for
927  * example, cancelling the timer when the corresponding CPU goes
928  * offline.
929  *
930  * mod_timer_pinned(timer, expires) is equivalent to:
931  *
932  *     del_timer(timer); timer->expires = expires; add_timer(timer);
933  */
934 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
935 {
936         if (timer->expires == expires && timer_pending(timer))
937                 return 1;
938
939         return __mod_timer(timer, expires, false, TIMER_PINNED);
940 }
941 EXPORT_SYMBOL(mod_timer_pinned);
942
943 /**
944  * add_timer - start a timer
945  * @timer: the timer to be added
946  *
947  * The kernel will do a ->function(->data) callback from the
948  * timer interrupt at the ->expires point in the future. The
949  * current time is 'jiffies'.
950  *
951  * The timer's ->expires, ->function (and if the handler uses it, ->data)
952  * fields must be set prior calling this function.
953  *
954  * Timers with an ->expires field in the past will be executed in the next
955  * timer tick.
956  */
957 void add_timer(struct timer_list *timer)
958 {
959         BUG_ON(timer_pending(timer));
960         mod_timer(timer, timer->expires);
961 }
962 EXPORT_SYMBOL(add_timer);
963
964 /**
965  * add_timer_on - start a timer on a particular CPU
966  * @timer: the timer to be added
967  * @cpu: the CPU to start it on
968  *
969  * This is not very scalable on SMP. Double adds are not possible.
970  */
971 void add_timer_on(struct timer_list *timer, int cpu)
972 {
973         struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
974         unsigned long flags;
975
976         timer_stats_timer_set_start_info(timer);
977         BUG_ON(timer_pending(timer) || !timer->function);
978         spin_lock_irqsave(&base->lock, flags);
979         timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
980         debug_activate(timer, timer->expires);
981         internal_add_timer(base, timer);
982         spin_unlock_irqrestore(&base->lock, flags);
983 }
984 EXPORT_SYMBOL_GPL(add_timer_on);
985
986 /**
987  * del_timer - deactive a timer.
988  * @timer: the timer to be deactivated
989  *
990  * del_timer() deactivates a timer - this works on both active and inactive
991  * timers.
992  *
993  * The function returns whether it has deactivated a pending timer or not.
994  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
995  * active timer returns 1.)
996  */
997 int del_timer(struct timer_list *timer)
998 {
999         struct tvec_base *base;
1000         unsigned long flags;
1001         int ret = 0;
1002
1003         debug_assert_init(timer);
1004
1005         timer_stats_timer_clear_start_info(timer);
1006         if (timer_pending(timer)) {
1007                 base = lock_timer_base(timer, &flags);
1008                 ret = detach_if_pending(timer, base, true);
1009                 spin_unlock_irqrestore(&base->lock, flags);
1010         }
1011
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(del_timer);
1015
1016 /**
1017  * try_to_del_timer_sync - Try to deactivate a timer
1018  * @timer: timer do del
1019  *
1020  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1021  * exit the timer is not queued and the handler is not running on any CPU.
1022  */
1023 int try_to_del_timer_sync(struct timer_list *timer)
1024 {
1025         struct tvec_base *base;
1026         unsigned long flags;
1027         int ret = -1;
1028
1029         debug_assert_init(timer);
1030
1031         base = lock_timer_base(timer, &flags);
1032
1033         if (base->running_timer != timer) {
1034                 timer_stats_timer_clear_start_info(timer);
1035                 ret = detach_if_pending(timer, base, true);
1036         }
1037         spin_unlock_irqrestore(&base->lock, flags);
1038
1039         return ret;
1040 }
1041 EXPORT_SYMBOL(try_to_del_timer_sync);
1042
1043 #ifdef CONFIG_SMP
1044 /**
1045  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1046  * @timer: the timer to be deactivated
1047  *
1048  * This function only differs from del_timer() on SMP: besides deactivating
1049  * the timer it also makes sure the handler has finished executing on other
1050  * CPUs.
1051  *
1052  * Synchronization rules: Callers must prevent restarting of the timer,
1053  * otherwise this function is meaningless. It must not be called from
1054  * interrupt contexts unless the timer is an irqsafe one. The caller must
1055  * not hold locks which would prevent completion of the timer's
1056  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1057  * timer is not queued and the handler is not running on any CPU.
1058  *
1059  * Note: For !irqsafe timers, you must not hold locks that are held in
1060  *   interrupt context while calling this function. Even if the lock has
1061  *   nothing to do with the timer in question.  Here's why:
1062  *
1063  *    CPU0                             CPU1
1064  *    ----                             ----
1065  *                                   <SOFTIRQ>
1066  *                                   call_timer_fn();
1067  *                                     base->running_timer = mytimer;
1068  *  spin_lock_irq(somelock);
1069  *                                     <IRQ>
1070  *                                        spin_lock(somelock);
1071  *  del_timer_sync(mytimer);
1072  *   while (base->running_timer == mytimer);
1073  *
1074  * Now del_timer_sync() will never return and never release somelock.
1075  * The interrupt on the other CPU is waiting to grab somelock but
1076  * it has interrupted the softirq that CPU0 is waiting to finish.
1077  *
1078  * The function returns whether it has deactivated a pending timer or not.
1079  */
1080 int del_timer_sync(struct timer_list *timer)
1081 {
1082 #ifdef CONFIG_LOCKDEP
1083         unsigned long flags;
1084
1085         /*
1086          * If lockdep gives a backtrace here, please reference
1087          * the synchronization rules above.
1088          */
1089         local_irq_save(flags);
1090         lock_map_acquire(&timer->lockdep_map);
1091         lock_map_release(&timer->lockdep_map);
1092         local_irq_restore(flags);
1093 #endif
1094         /*
1095          * don't use it in hardirq context, because it
1096          * could lead to deadlock.
1097          */
1098         WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1099         for (;;) {
1100                 int ret = try_to_del_timer_sync(timer);
1101                 if (ret >= 0)
1102                         return ret;
1103                 cpu_relax();
1104         }
1105 }
1106 EXPORT_SYMBOL(del_timer_sync);
1107 #endif
1108
1109 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1110 {
1111         /* cascade all the timers from tv up one level */
1112         struct timer_list *timer;
1113         struct hlist_node *tmp;
1114         struct hlist_head tv_list;
1115
1116         hlist_move_list(tv->vec + index, &tv_list);
1117
1118         /*
1119          * We are removing _all_ timers from the list, so we
1120          * don't have to detach them individually.
1121          */
1122         hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1123                 /* No accounting, while moving them */
1124                 __internal_add_timer(base, timer);
1125         }
1126
1127         return index;
1128 }
1129
1130 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1131                           unsigned long data)
1132 {
1133         int count = preempt_count();
1134
1135 #ifdef CONFIG_LOCKDEP
1136         /*
1137          * It is permissible to free the timer from inside the
1138          * function that is called from it, this we need to take into
1139          * account for lockdep too. To avoid bogus "held lock freed"
1140          * warnings as well as problems when looking into
1141          * timer->lockdep_map, make a copy and use that here.
1142          */
1143         struct lockdep_map lockdep_map;
1144
1145         lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1146 #endif
1147         /*
1148          * Couple the lock chain with the lock chain at
1149          * del_timer_sync() by acquiring the lock_map around the fn()
1150          * call here and in del_timer_sync().
1151          */
1152         lock_map_acquire(&lockdep_map);
1153
1154         trace_timer_expire_entry(timer);
1155         fn(data);
1156         trace_timer_expire_exit(timer);
1157
1158         lock_map_release(&lockdep_map);
1159
1160         if (count != preempt_count()) {
1161                 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1162                           fn, count, preempt_count());
1163                 /*
1164                  * Restore the preempt count. That gives us a decent
1165                  * chance to survive and extract information. If the
1166                  * callback kept a lock held, bad luck, but not worse
1167                  * than the BUG() we had.
1168                  */
1169                 preempt_count_set(count);
1170         }
1171 }
1172
1173 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1174
1175 /**
1176  * __run_timers - run all expired timers (if any) on this CPU.
1177  * @base: the timer vector to be processed.
1178  *
1179  * This function cascades all vectors and executes all expired timer
1180  * vectors.
1181  */
1182 static inline void __run_timers(struct tvec_base *base)
1183 {
1184         struct timer_list *timer;
1185
1186         spin_lock_irq(&base->lock);
1187
1188         while (time_after_eq(jiffies, base->timer_jiffies)) {
1189                 struct hlist_head work_list;
1190                 struct hlist_head *head = &work_list;
1191                 int index;
1192
1193                 if (!base->all_timers) {
1194                         base->timer_jiffies = jiffies;
1195                         break;
1196                 }
1197
1198                 index = base->timer_jiffies & TVR_MASK;
1199
1200                 /*
1201                  * Cascade timers:
1202                  */
1203                 if (!index &&
1204                         (!cascade(base, &base->tv2, INDEX(0))) &&
1205                                 (!cascade(base, &base->tv3, INDEX(1))) &&
1206                                         !cascade(base, &base->tv4, INDEX(2)))
1207                         cascade(base, &base->tv5, INDEX(3));
1208                 ++base->timer_jiffies;
1209                 hlist_move_list(base->tv1.vec + index, head);
1210                 while (!hlist_empty(head)) {
1211                         void (*fn)(unsigned long);
1212                         unsigned long data;
1213                         bool irqsafe;
1214
1215                         timer = hlist_entry(head->first, struct timer_list, entry);
1216                         fn = timer->function;
1217                         data = timer->data;
1218                         irqsafe = timer->flags & TIMER_IRQSAFE;
1219
1220                         timer_stats_account_timer(timer);
1221
1222                         base->running_timer = timer;
1223                         detach_expired_timer(timer, base);
1224
1225                         if (irqsafe) {
1226                                 spin_unlock(&base->lock);
1227                                 call_timer_fn(timer, fn, data);
1228                                 spin_lock(&base->lock);
1229                         } else {
1230                                 spin_unlock_irq(&base->lock);
1231                                 call_timer_fn(timer, fn, data);
1232                                 spin_lock_irq(&base->lock);
1233                         }
1234                 }
1235         }
1236         base->running_timer = NULL;
1237         spin_unlock_irq(&base->lock);
1238 }
1239
1240 #ifdef CONFIG_NO_HZ_COMMON
1241 /*
1242  * Find out when the next timer event is due to happen. This
1243  * is used on S/390 to stop all activity when a CPU is idle.
1244  * This function needs to be called with interrupts disabled.
1245  */
1246 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1247 {
1248         unsigned long timer_jiffies = base->timer_jiffies;
1249         unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1250         int index, slot, array, found = 0;
1251         struct timer_list *nte;
1252         struct tvec *varray[4];
1253
1254         /* Look for timer events in tv1. */
1255         index = slot = timer_jiffies & TVR_MASK;
1256         do {
1257                 hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
1258                         if (nte->flags & TIMER_DEFERRABLE)
1259                                 continue;
1260
1261                         found = 1;
1262                         expires = nte->expires;
1263                         /* Look at the cascade bucket(s)? */
1264                         if (!index || slot < index)
1265                                 goto cascade;
1266                         return expires;
1267                 }
1268                 slot = (slot + 1) & TVR_MASK;
1269         } while (slot != index);
1270
1271 cascade:
1272         /* Calculate the next cascade event */
1273         if (index)
1274                 timer_jiffies += TVR_SIZE - index;
1275         timer_jiffies >>= TVR_BITS;
1276
1277         /* Check tv2-tv5. */
1278         varray[0] = &base->tv2;
1279         varray[1] = &base->tv3;
1280         varray[2] = &base->tv4;
1281         varray[3] = &base->tv5;
1282
1283         for (array = 0; array < 4; array++) {
1284                 struct tvec *varp = varray[array];
1285
1286                 index = slot = timer_jiffies & TVN_MASK;
1287                 do {
1288                         hlist_for_each_entry(nte, varp->vec + slot, entry) {
1289                                 if (nte->flags & TIMER_DEFERRABLE)
1290                                         continue;
1291
1292                                 found = 1;
1293                                 if (time_before(nte->expires, expires))
1294                                         expires = nte->expires;
1295                         }
1296                         /*
1297                          * Do we still search for the first timer or are
1298                          * we looking up the cascade buckets ?
1299                          */
1300                         if (found) {
1301                                 /* Look at the cascade bucket(s)? */
1302                                 if (!index || slot < index)
1303                                         break;
1304                                 return expires;
1305                         }
1306                         slot = (slot + 1) & TVN_MASK;
1307                 } while (slot != index);
1308
1309                 if (index)
1310                         timer_jiffies += TVN_SIZE - index;
1311                 timer_jiffies >>= TVN_BITS;
1312         }
1313         return expires;
1314 }
1315
1316 /*
1317  * Check, if the next hrtimer event is before the next timer wheel
1318  * event:
1319  */
1320 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1321 {
1322         u64 nextevt = hrtimer_get_next_event();
1323
1324         /*
1325          * If high resolution timers are enabled
1326          * hrtimer_get_next_event() returns KTIME_MAX.
1327          */
1328         if (expires <= nextevt)
1329                 return expires;
1330
1331         /*
1332          * If the next timer is already expired, return the tick base
1333          * time so the tick is fired immediately.
1334          */
1335         if (nextevt <= basem)
1336                 return basem;
1337
1338         /*
1339          * Round up to the next jiffie. High resolution timers are
1340          * off, so the hrtimers are expired in the tick and we need to
1341          * make sure that this tick really expires the timer to avoid
1342          * a ping pong of the nohz stop code.
1343          *
1344          * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1345          */
1346         return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1347 }
1348
1349 /**
1350  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1351  * @basej:      base time jiffies
1352  * @basem:      base time clock monotonic
1353  *
1354  * Returns the tick aligned clock monotonic time of the next pending
1355  * timer or KTIME_MAX if no timer is pending.
1356  */
1357 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1358 {
1359         struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1360         u64 expires = KTIME_MAX;
1361         unsigned long nextevt;
1362
1363         /*
1364          * Pretend that there is no timer pending if the cpu is offline.
1365          * Possible pending timers will be migrated later to an active cpu.
1366          */
1367         if (cpu_is_offline(smp_processor_id()))
1368                 return expires;
1369
1370         spin_lock(&base->lock);
1371         if (base->active_timers) {
1372                 if (time_before_eq(base->next_timer, base->timer_jiffies))
1373                         base->next_timer = __next_timer_interrupt(base);
1374                 nextevt = base->next_timer;
1375                 if (time_before_eq(nextevt, basej))
1376                         expires = basem;
1377                 else
1378                         expires = basem + (nextevt - basej) * TICK_NSEC;
1379         }
1380         spin_unlock(&base->lock);
1381
1382         return cmp_next_hrtimer_event(basem, expires);
1383 }
1384 #endif
1385
1386 /*
1387  * Called from the timer interrupt handler to charge one tick to the current
1388  * process.  user_tick is 1 if the tick is user time, 0 for system.
1389  */
1390 void update_process_times(int user_tick)
1391 {
1392         struct task_struct *p = current;
1393
1394         /* Note: this timer irq context must be accounted for as well. */
1395         account_process_tick(p, user_tick);
1396         run_local_timers();
1397         rcu_check_callbacks(user_tick);
1398 #ifdef CONFIG_IRQ_WORK
1399         if (in_irq())
1400                 irq_work_tick();
1401 #endif
1402         scheduler_tick();
1403         run_posix_cpu_timers(p);
1404 }
1405
1406 /*
1407  * This function runs timers and the timer-tq in bottom half context.
1408  */
1409 static void run_timer_softirq(struct softirq_action *h)
1410 {
1411         struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1412
1413         if (time_after_eq(jiffies, base->timer_jiffies))
1414                 __run_timers(base);
1415 }
1416
1417 /*
1418  * Called by the local, per-CPU timer interrupt on SMP.
1419  */
1420 void run_local_timers(void)
1421 {
1422         hrtimer_run_queues();
1423         raise_softirq(TIMER_SOFTIRQ);
1424 }
1425
1426 #ifdef __ARCH_WANT_SYS_ALARM
1427
1428 /*
1429  * For backwards compatibility?  This can be done in libc so Alpha
1430  * and all newer ports shouldn't need it.
1431  */
1432 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1433 {
1434         return alarm_setitimer(seconds);
1435 }
1436
1437 #endif
1438
1439 static void process_timeout(unsigned long __data)
1440 {
1441         wake_up_process((struct task_struct *)__data);
1442 }
1443
1444 /**
1445  * schedule_timeout - sleep until timeout
1446  * @timeout: timeout value in jiffies
1447  *
1448  * Make the current task sleep until @timeout jiffies have
1449  * elapsed. The routine will return immediately unless
1450  * the current task state has been set (see set_current_state()).
1451  *
1452  * You can set the task state as follows -
1453  *
1454  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1455  * pass before the routine returns. The routine will return 0
1456  *
1457  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1458  * delivered to the current task. In this case the remaining time
1459  * in jiffies will be returned, or 0 if the timer expired in time
1460  *
1461  * The current task state is guaranteed to be TASK_RUNNING when this
1462  * routine returns.
1463  *
1464  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1465  * the CPU away without a bound on the timeout. In this case the return
1466  * value will be %MAX_SCHEDULE_TIMEOUT.
1467  *
1468  * In all cases the return value is guaranteed to be non-negative.
1469  */
1470 signed long __sched schedule_timeout(signed long timeout)
1471 {
1472         struct timer_list timer;
1473         unsigned long expire;
1474
1475         switch (timeout)
1476         {
1477         case MAX_SCHEDULE_TIMEOUT:
1478                 /*
1479                  * These two special cases are useful to be comfortable
1480                  * in the caller. Nothing more. We could take
1481                  * MAX_SCHEDULE_TIMEOUT from one of the negative value
1482                  * but I' d like to return a valid offset (>=0) to allow
1483                  * the caller to do everything it want with the retval.
1484                  */
1485                 schedule();
1486                 goto out;
1487         default:
1488                 /*
1489                  * Another bit of PARANOID. Note that the retval will be
1490                  * 0 since no piece of kernel is supposed to do a check
1491                  * for a negative retval of schedule_timeout() (since it
1492                  * should never happens anyway). You just have the printk()
1493                  * that will tell you if something is gone wrong and where.
1494                  */
1495                 if (timeout < 0) {
1496                         printk(KERN_ERR "schedule_timeout: wrong timeout "
1497                                 "value %lx\n", timeout);
1498                         dump_stack();
1499                         current->state = TASK_RUNNING;
1500                         goto out;
1501                 }
1502         }
1503
1504         expire = timeout + jiffies;
1505
1506         setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1507         __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1508         schedule();
1509         del_singleshot_timer_sync(&timer);
1510
1511         /* Remove the timer from the object tracker */
1512         destroy_timer_on_stack(&timer);
1513
1514         timeout = expire - jiffies;
1515
1516  out:
1517         return timeout < 0 ? 0 : timeout;
1518 }
1519 EXPORT_SYMBOL(schedule_timeout);
1520
1521 /*
1522  * We can use __set_current_state() here because schedule_timeout() calls
1523  * schedule() unconditionally.
1524  */
1525 signed long __sched schedule_timeout_interruptible(signed long timeout)
1526 {
1527         __set_current_state(TASK_INTERRUPTIBLE);
1528         return schedule_timeout(timeout);
1529 }
1530 EXPORT_SYMBOL(schedule_timeout_interruptible);
1531
1532 signed long __sched schedule_timeout_killable(signed long timeout)
1533 {
1534         __set_current_state(TASK_KILLABLE);
1535         return schedule_timeout(timeout);
1536 }
1537 EXPORT_SYMBOL(schedule_timeout_killable);
1538
1539 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1540 {
1541         __set_current_state(TASK_UNINTERRUPTIBLE);
1542         return schedule_timeout(timeout);
1543 }
1544 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1545
1546 #ifdef CONFIG_HOTPLUG_CPU
1547 static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
1548 {
1549         struct timer_list *timer;
1550         int cpu = new_base->cpu;
1551
1552         while (!hlist_empty(head)) {
1553                 timer = hlist_entry(head->first, struct timer_list, entry);
1554                 /* We ignore the accounting on the dying cpu */
1555                 detach_timer(timer, false);
1556                 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1557                 internal_add_timer(new_base, timer);
1558         }
1559 }
1560
1561 static void migrate_timers(int cpu)
1562 {
1563         struct tvec_base *old_base;
1564         struct tvec_base *new_base;
1565         int i;
1566
1567         BUG_ON(cpu_online(cpu));
1568         old_base = per_cpu_ptr(&tvec_bases, cpu);
1569         new_base = get_cpu_ptr(&tvec_bases);
1570         /*
1571          * The caller is globally serialized and nobody else
1572          * takes two locks at once, deadlock is not possible.
1573          */
1574         spin_lock_irq(&new_base->lock);
1575         spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1576
1577         BUG_ON(old_base->running_timer);
1578
1579         for (i = 0; i < TVR_SIZE; i++)
1580                 migrate_timer_list(new_base, old_base->tv1.vec + i);
1581         for (i = 0; i < TVN_SIZE; i++) {
1582                 migrate_timer_list(new_base, old_base->tv2.vec + i);
1583                 migrate_timer_list(new_base, old_base->tv3.vec + i);
1584                 migrate_timer_list(new_base, old_base->tv4.vec + i);
1585                 migrate_timer_list(new_base, old_base->tv5.vec + i);
1586         }
1587
1588         old_base->active_timers = 0;
1589         old_base->all_timers = 0;
1590
1591         spin_unlock(&old_base->lock);
1592         spin_unlock_irq(&new_base->lock);
1593         put_cpu_ptr(&tvec_bases);
1594 }
1595
1596 static int timer_cpu_notify(struct notifier_block *self,
1597                                 unsigned long action, void *hcpu)
1598 {
1599         switch (action) {
1600         case CPU_DEAD:
1601         case CPU_DEAD_FROZEN:
1602                 migrate_timers((long)hcpu);
1603                 break;
1604         default:
1605                 break;
1606         }
1607
1608         return NOTIFY_OK;
1609 }
1610
1611 static inline void timer_register_cpu_notifier(void)
1612 {
1613         cpu_notifier(timer_cpu_notify, 0);
1614 }
1615 #else
1616 static inline void timer_register_cpu_notifier(void) { }
1617 #endif /* CONFIG_HOTPLUG_CPU */
1618
1619 static void __init init_timer_cpu(int cpu)
1620 {
1621         struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
1622
1623         base->cpu = cpu;
1624         spin_lock_init(&base->lock);
1625
1626         base->timer_jiffies = jiffies;
1627         base->next_timer = base->timer_jiffies;
1628 }
1629
1630 static void __init init_timer_cpus(void)
1631 {
1632         int cpu;
1633
1634         for_each_possible_cpu(cpu)
1635                 init_timer_cpu(cpu);
1636 }
1637
1638 void __init init_timers(void)
1639 {
1640         init_timer_cpus();
1641         init_timer_stats();
1642         timer_register_cpu_notifier();
1643         open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1644 }
1645
1646 /**
1647  * msleep - sleep safely even with waitqueue interruptions
1648  * @msecs: Time in milliseconds to sleep for
1649  */
1650 void msleep(unsigned int msecs)
1651 {
1652         unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1653
1654         while (timeout)
1655                 timeout = schedule_timeout_uninterruptible(timeout);
1656 }
1657
1658 EXPORT_SYMBOL(msleep);
1659
1660 /**
1661  * msleep_interruptible - sleep waiting for signals
1662  * @msecs: Time in milliseconds to sleep for
1663  */
1664 unsigned long msleep_interruptible(unsigned int msecs)
1665 {
1666         unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1667
1668         while (timeout && !signal_pending(current))
1669                 timeout = schedule_timeout_interruptible(timeout);
1670         return jiffies_to_msecs(timeout);
1671 }
1672
1673 EXPORT_SYMBOL(msleep_interruptible);
1674
1675 static void __sched do_usleep_range(unsigned long min, unsigned long max)
1676 {
1677         ktime_t kmin;
1678         unsigned long delta;
1679
1680         kmin = ktime_set(0, min * NSEC_PER_USEC);
1681         delta = (max - min) * NSEC_PER_USEC;
1682         schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1683 }
1684
1685 /**
1686  * usleep_range - Drop in replacement for udelay where wakeup is flexible
1687  * @min: Minimum time in usecs to sleep
1688  * @max: Maximum time in usecs to sleep
1689  */
1690 void __sched usleep_range(unsigned long min, unsigned long max)
1691 {
1692         __set_current_state(TASK_UNINTERRUPTIBLE);
1693         do_usleep_range(min, max);
1694 }
1695 EXPORT_SYMBOL(usleep_range);