]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - lib/scatterlist.c
drivers/scsi/scsi_debug.c: resolve sg buffer const-ness issue
[karo-tx-linux.git] / lib / scatterlist.c
1 /*
2  * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
3  *
4  * Scatterlist handling helpers.
5  *
6  * This source code is licensed under the GNU General Public License,
7  * Version 2. See the file COPYING for more details.
8  */
9 #include <linux/export.h>
10 #include <linux/slab.h>
11 #include <linux/scatterlist.h>
12 #include <linux/highmem.h>
13 #include <linux/kmemleak.h>
14
15 /**
16  * sg_next - return the next scatterlist entry in a list
17  * @sg:         The current sg entry
18  *
19  * Description:
20  *   Usually the next entry will be @sg@ + 1, but if this sg element is part
21  *   of a chained scatterlist, it could jump to the start of a new
22  *   scatterlist array.
23  *
24  **/
25 struct scatterlist *sg_next(struct scatterlist *sg)
26 {
27 #ifdef CONFIG_DEBUG_SG
28         BUG_ON(sg->sg_magic != SG_MAGIC);
29 #endif
30         if (sg_is_last(sg))
31                 return NULL;
32
33         sg++;
34         if (unlikely(sg_is_chain(sg)))
35                 sg = sg_chain_ptr(sg);
36
37         return sg;
38 }
39 EXPORT_SYMBOL(sg_next);
40
41 /**
42  * sg_nents - return total count of entries in scatterlist
43  * @sg:         The scatterlist
44  *
45  * Description:
46  * Allows to know how many entries are in sg, taking into acount
47  * chaining as well
48  *
49  **/
50 int sg_nents(struct scatterlist *sg)
51 {
52         int nents;
53         for (nents = 0; sg; sg = sg_next(sg))
54                 nents++;
55         return nents;
56 }
57 EXPORT_SYMBOL(sg_nents);
58
59 /**
60  * sg_nents_for_len - return total count of entries in scatterlist
61  *                    needed to satisfy the supplied length
62  * @sg:         The scatterlist
63  * @len:        The total required length
64  *
65  * Description:
66  * Determines the number of entries in sg that are required to meet
67  * the supplied length, taking into acount chaining as well
68  *
69  * Returns:
70  *   the number of sg entries needed, negative error on failure
71  *
72  **/
73 int sg_nents_for_len(struct scatterlist *sg, u64 len)
74 {
75         int nents;
76         u64 total;
77
78         if (!len)
79                 return 0;
80
81         for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
82                 nents++;
83                 total += sg->length;
84                 if (total >= len)
85                         return nents;
86         }
87
88         return -EINVAL;
89 }
90 EXPORT_SYMBOL(sg_nents_for_len);
91
92 /**
93  * sg_last - return the last scatterlist entry in a list
94  * @sgl:        First entry in the scatterlist
95  * @nents:      Number of entries in the scatterlist
96  *
97  * Description:
98  *   Should only be used casually, it (currently) scans the entire list
99  *   to get the last entry.
100  *
101  *   Note that the @sgl@ pointer passed in need not be the first one,
102  *   the important bit is that @nents@ denotes the number of entries that
103  *   exist from @sgl@.
104  *
105  **/
106 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
107 {
108 #ifndef CONFIG_ARCH_HAS_SG_CHAIN
109         struct scatterlist *ret = &sgl[nents - 1];
110 #else
111         struct scatterlist *sg, *ret = NULL;
112         unsigned int i;
113
114         for_each_sg(sgl, sg, nents, i)
115                 ret = sg;
116
117 #endif
118 #ifdef CONFIG_DEBUG_SG
119         BUG_ON(sgl[0].sg_magic != SG_MAGIC);
120         BUG_ON(!sg_is_last(ret));
121 #endif
122         return ret;
123 }
124 EXPORT_SYMBOL(sg_last);
125
126 /**
127  * sg_init_table - Initialize SG table
128  * @sgl:           The SG table
129  * @nents:         Number of entries in table
130  *
131  * Notes:
132  *   If this is part of a chained sg table, sg_mark_end() should be
133  *   used only on the last table part.
134  *
135  **/
136 void sg_init_table(struct scatterlist *sgl, unsigned int nents)
137 {
138         memset(sgl, 0, sizeof(*sgl) * nents);
139 #ifdef CONFIG_DEBUG_SG
140         {
141                 unsigned int i;
142                 for (i = 0; i < nents; i++)
143                         sgl[i].sg_magic = SG_MAGIC;
144         }
145 #endif
146         sg_mark_end(&sgl[nents - 1]);
147 }
148 EXPORT_SYMBOL(sg_init_table);
149
150 /**
151  * sg_init_one - Initialize a single entry sg list
152  * @sg:          SG entry
153  * @buf:         Virtual address for IO
154  * @buflen:      IO length
155  *
156  **/
157 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
158 {
159         sg_init_table(sg, 1);
160         sg_set_buf(sg, buf, buflen);
161 }
162 EXPORT_SYMBOL(sg_init_one);
163
164 /*
165  * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
166  * helpers.
167  */
168 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
169 {
170         if (nents == SG_MAX_SINGLE_ALLOC) {
171                 /*
172                  * Kmemleak doesn't track page allocations as they are not
173                  * commonly used (in a raw form) for kernel data structures.
174                  * As we chain together a list of pages and then a normal
175                  * kmalloc (tracked by kmemleak), in order to for that last
176                  * allocation not to become decoupled (and thus a
177                  * false-positive) we need to inform kmemleak of all the
178                  * intermediate allocations.
179                  */
180                 void *ptr = (void *) __get_free_page(gfp_mask);
181                 kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
182                 return ptr;
183         } else
184                 return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
185 }
186
187 static void sg_kfree(struct scatterlist *sg, unsigned int nents)
188 {
189         if (nents == SG_MAX_SINGLE_ALLOC) {
190                 kmemleak_free(sg);
191                 free_page((unsigned long) sg);
192         } else
193                 kfree(sg);
194 }
195
196 /**
197  * __sg_free_table - Free a previously mapped sg table
198  * @table:      The sg table header to use
199  * @max_ents:   The maximum number of entries per single scatterlist
200  * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
201  * @free_fn:    Free function
202  *
203  *  Description:
204  *    Free an sg table previously allocated and setup with
205  *    __sg_alloc_table().  The @max_ents value must be identical to
206  *    that previously used with __sg_alloc_table().
207  *
208  **/
209 void __sg_free_table(struct sg_table *table, unsigned int max_ents,
210                      bool skip_first_chunk, sg_free_fn *free_fn)
211 {
212         struct scatterlist *sgl, *next;
213
214         if (unlikely(!table->sgl))
215                 return;
216
217         sgl = table->sgl;
218         while (table->orig_nents) {
219                 unsigned int alloc_size = table->orig_nents;
220                 unsigned int sg_size;
221
222                 /*
223                  * If we have more than max_ents segments left,
224                  * then assign 'next' to the sg table after the current one.
225                  * sg_size is then one less than alloc size, since the last
226                  * element is the chain pointer.
227                  */
228                 if (alloc_size > max_ents) {
229                         next = sg_chain_ptr(&sgl[max_ents - 1]);
230                         alloc_size = max_ents;
231                         sg_size = alloc_size - 1;
232                 } else {
233                         sg_size = alloc_size;
234                         next = NULL;
235                 }
236
237                 table->orig_nents -= sg_size;
238                 if (skip_first_chunk)
239                         skip_first_chunk = false;
240                 else
241                         free_fn(sgl, alloc_size);
242                 sgl = next;
243         }
244
245         table->sgl = NULL;
246 }
247 EXPORT_SYMBOL(__sg_free_table);
248
249 /**
250  * sg_free_table - Free a previously allocated sg table
251  * @table:      The mapped sg table header
252  *
253  **/
254 void sg_free_table(struct sg_table *table)
255 {
256         __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
257 }
258 EXPORT_SYMBOL(sg_free_table);
259
260 /**
261  * __sg_alloc_table - Allocate and initialize an sg table with given allocator
262  * @table:      The sg table header to use
263  * @nents:      Number of entries in sg list
264  * @max_ents:   The maximum number of entries the allocator returns per call
265  * @gfp_mask:   GFP allocation mask
266  * @alloc_fn:   Allocator to use
267  *
268  * Description:
269  *   This function returns a @table @nents long. The allocator is
270  *   defined to return scatterlist chunks of maximum size @max_ents.
271  *   Thus if @nents is bigger than @max_ents, the scatterlists will be
272  *   chained in units of @max_ents.
273  *
274  * Notes:
275  *   If this function returns non-0 (eg failure), the caller must call
276  *   __sg_free_table() to cleanup any leftover allocations.
277  *
278  **/
279 int __sg_alloc_table(struct sg_table *table, unsigned int nents,
280                      unsigned int max_ents, struct scatterlist *first_chunk,
281                      gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
282 {
283         struct scatterlist *sg, *prv;
284         unsigned int left;
285
286         memset(table, 0, sizeof(*table));
287
288         if (nents == 0)
289                 return -EINVAL;
290 #ifndef CONFIG_ARCH_HAS_SG_CHAIN
291         if (WARN_ON_ONCE(nents > max_ents))
292                 return -EINVAL;
293 #endif
294
295         left = nents;
296         prv = NULL;
297         do {
298                 unsigned int sg_size, alloc_size = left;
299
300                 if (alloc_size > max_ents) {
301                         alloc_size = max_ents;
302                         sg_size = alloc_size - 1;
303                 } else
304                         sg_size = alloc_size;
305
306                 left -= sg_size;
307
308                 if (first_chunk) {
309                         sg = first_chunk;
310                         first_chunk = NULL;
311                 } else {
312                         sg = alloc_fn(alloc_size, gfp_mask);
313                 }
314                 if (unlikely(!sg)) {
315                         /*
316                          * Adjust entry count to reflect that the last
317                          * entry of the previous table won't be used for
318                          * linkage.  Without this, sg_kfree() may get
319                          * confused.
320                          */
321                         if (prv)
322                                 table->nents = ++table->orig_nents;
323
324                         return -ENOMEM;
325                 }
326
327                 sg_init_table(sg, alloc_size);
328                 table->nents = table->orig_nents += sg_size;
329
330                 /*
331                  * If this is the first mapping, assign the sg table header.
332                  * If this is not the first mapping, chain previous part.
333                  */
334                 if (prv)
335                         sg_chain(prv, max_ents, sg);
336                 else
337                         table->sgl = sg;
338
339                 /*
340                  * If no more entries after this one, mark the end
341                  */
342                 if (!left)
343                         sg_mark_end(&sg[sg_size - 1]);
344
345                 prv = sg;
346         } while (left);
347
348         return 0;
349 }
350 EXPORT_SYMBOL(__sg_alloc_table);
351
352 /**
353  * sg_alloc_table - Allocate and initialize an sg table
354  * @table:      The sg table header to use
355  * @nents:      Number of entries in sg list
356  * @gfp_mask:   GFP allocation mask
357  *
358  *  Description:
359  *    Allocate and initialize an sg table. If @nents@ is larger than
360  *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
361  *
362  **/
363 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
364 {
365         int ret;
366
367         ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
368                                NULL, gfp_mask, sg_kmalloc);
369         if (unlikely(ret))
370                 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
371
372         return ret;
373 }
374 EXPORT_SYMBOL(sg_alloc_table);
375
376 /**
377  * sg_alloc_table_from_pages - Allocate and initialize an sg table from
378  *                             an array of pages
379  * @sgt:        The sg table header to use
380  * @pages:      Pointer to an array of page pointers
381  * @n_pages:    Number of pages in the pages array
382  * @offset:     Offset from start of the first page to the start of a buffer
383  * @size:       Number of valid bytes in the buffer (after offset)
384  * @gfp_mask:   GFP allocation mask
385  *
386  *  Description:
387  *    Allocate and initialize an sg table from a list of pages. Contiguous
388  *    ranges of the pages are squashed into a single scatterlist node. A user
389  *    may provide an offset at a start and a size of valid data in a buffer
390  *    specified by the page array. The returned sg table is released by
391  *    sg_free_table.
392  *
393  * Returns:
394  *   0 on success, negative error on failure
395  */
396 int sg_alloc_table_from_pages(struct sg_table *sgt,
397         struct page **pages, unsigned int n_pages,
398         unsigned long offset, unsigned long size,
399         gfp_t gfp_mask)
400 {
401         unsigned int chunks;
402         unsigned int i;
403         unsigned int cur_page;
404         int ret;
405         struct scatterlist *s;
406
407         /* compute number of contiguous chunks */
408         chunks = 1;
409         for (i = 1; i < n_pages; ++i)
410                 if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1)
411                         ++chunks;
412
413         ret = sg_alloc_table(sgt, chunks, gfp_mask);
414         if (unlikely(ret))
415                 return ret;
416
417         /* merging chunks and putting them into the scatterlist */
418         cur_page = 0;
419         for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
420                 unsigned long chunk_size;
421                 unsigned int j;
422
423                 /* look for the end of the current chunk */
424                 for (j = cur_page + 1; j < n_pages; ++j)
425                         if (page_to_pfn(pages[j]) !=
426                             page_to_pfn(pages[j - 1]) + 1)
427                                 break;
428
429                 chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
430                 sg_set_page(s, pages[cur_page], min(size, chunk_size), offset);
431                 size -= chunk_size;
432                 offset = 0;
433                 cur_page = j;
434         }
435
436         return 0;
437 }
438 EXPORT_SYMBOL(sg_alloc_table_from_pages);
439
440 void __sg_page_iter_start(struct sg_page_iter *piter,
441                           struct scatterlist *sglist, unsigned int nents,
442                           unsigned long pgoffset)
443 {
444         piter->__pg_advance = 0;
445         piter->__nents = nents;
446
447         piter->sg = sglist;
448         piter->sg_pgoffset = pgoffset;
449 }
450 EXPORT_SYMBOL(__sg_page_iter_start);
451
452 static int sg_page_count(struct scatterlist *sg)
453 {
454         return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
455 }
456
457 bool __sg_page_iter_next(struct sg_page_iter *piter)
458 {
459         if (!piter->__nents || !piter->sg)
460                 return false;
461
462         piter->sg_pgoffset += piter->__pg_advance;
463         piter->__pg_advance = 1;
464
465         while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
466                 piter->sg_pgoffset -= sg_page_count(piter->sg);
467                 piter->sg = sg_next(piter->sg);
468                 if (!--piter->__nents || !piter->sg)
469                         return false;
470         }
471
472         return true;
473 }
474 EXPORT_SYMBOL(__sg_page_iter_next);
475
476 /**
477  * sg_miter_start - start mapping iteration over a sg list
478  * @miter: sg mapping iter to be started
479  * @sgl: sg list to iterate over
480  * @nents: number of sg entries
481  *
482  * Description:
483  *   Starts mapping iterator @miter.
484  *
485  * Context:
486  *   Don't care.
487  */
488 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
489                     unsigned int nents, unsigned int flags)
490 {
491         memset(miter, 0, sizeof(struct sg_mapping_iter));
492
493         __sg_page_iter_start(&miter->piter, sgl, nents, 0);
494         WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
495         miter->__flags = flags;
496 }
497 EXPORT_SYMBOL(sg_miter_start);
498
499 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
500 {
501         if (!miter->__remaining) {
502                 struct scatterlist *sg;
503                 unsigned long pgoffset;
504
505                 if (!__sg_page_iter_next(&miter->piter))
506                         return false;
507
508                 sg = miter->piter.sg;
509                 pgoffset = miter->piter.sg_pgoffset;
510
511                 miter->__offset = pgoffset ? 0 : sg->offset;
512                 miter->__remaining = sg->offset + sg->length -
513                                 (pgoffset << PAGE_SHIFT) - miter->__offset;
514                 miter->__remaining = min_t(unsigned long, miter->__remaining,
515                                            PAGE_SIZE - miter->__offset);
516         }
517
518         return true;
519 }
520
521 /**
522  * sg_miter_skip - reposition mapping iterator
523  * @miter: sg mapping iter to be skipped
524  * @offset: number of bytes to plus the current location
525  *
526  * Description:
527  *   Sets the offset of @miter to its current location plus @offset bytes.
528  *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
529  *   stops @miter.
530  *
531  * Context:
532  *   Don't care if @miter is stopped, or not proceeded yet.
533  *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
534  *
535  * Returns:
536  *   true if @miter contains the valid mapping.  false if end of sg
537  *   list is reached.
538  */
539 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
540 {
541         sg_miter_stop(miter);
542
543         while (offset) {
544                 off_t consumed;
545
546                 if (!sg_miter_get_next_page(miter))
547                         return false;
548
549                 consumed = min_t(off_t, offset, miter->__remaining);
550                 miter->__offset += consumed;
551                 miter->__remaining -= consumed;
552                 offset -= consumed;
553         }
554
555         return true;
556 }
557 EXPORT_SYMBOL(sg_miter_skip);
558
559 /**
560  * sg_miter_next - proceed mapping iterator to the next mapping
561  * @miter: sg mapping iter to proceed
562  *
563  * Description:
564  *   Proceeds @miter to the next mapping.  @miter should have been started
565  *   using sg_miter_start().  On successful return, @miter->page,
566  *   @miter->addr and @miter->length point to the current mapping.
567  *
568  * Context:
569  *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
570  *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
571  *
572  * Returns:
573  *   true if @miter contains the next mapping.  false if end of sg
574  *   list is reached.
575  */
576 bool sg_miter_next(struct sg_mapping_iter *miter)
577 {
578         sg_miter_stop(miter);
579
580         /*
581          * Get to the next page if necessary.
582          * __remaining, __offset is adjusted by sg_miter_stop
583          */
584         if (!sg_miter_get_next_page(miter))
585                 return false;
586
587         miter->page = sg_page_iter_page(&miter->piter);
588         miter->consumed = miter->length = miter->__remaining;
589
590         if (miter->__flags & SG_MITER_ATOMIC)
591                 miter->addr = kmap_atomic(miter->page) + miter->__offset;
592         else
593                 miter->addr = kmap(miter->page) + miter->__offset;
594
595         return true;
596 }
597 EXPORT_SYMBOL(sg_miter_next);
598
599 /**
600  * sg_miter_stop - stop mapping iteration
601  * @miter: sg mapping iter to be stopped
602  *
603  * Description:
604  *   Stops mapping iterator @miter.  @miter should have been started
605  *   started using sg_miter_start().  A stopped iteration can be
606  *   resumed by calling sg_miter_next() on it.  This is useful when
607  *   resources (kmap) need to be released during iteration.
608  *
609  * Context:
610  *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
611  *   otherwise.
612  */
613 void sg_miter_stop(struct sg_mapping_iter *miter)
614 {
615         WARN_ON(miter->consumed > miter->length);
616
617         /* drop resources from the last iteration */
618         if (miter->addr) {
619                 miter->__offset += miter->consumed;
620                 miter->__remaining -= miter->consumed;
621
622                 if ((miter->__flags & SG_MITER_TO_SG) &&
623                     !PageSlab(miter->page))
624                         flush_kernel_dcache_page(miter->page);
625
626                 if (miter->__flags & SG_MITER_ATOMIC) {
627                         WARN_ON_ONCE(preemptible());
628                         kunmap_atomic(miter->addr);
629                 } else
630                         kunmap(miter->page);
631
632                 miter->page = NULL;
633                 miter->addr = NULL;
634                 miter->length = 0;
635                 miter->consumed = 0;
636         }
637 }
638 EXPORT_SYMBOL(sg_miter_stop);
639
640 /**
641  * sg_copy_buffer - Copy data between a linear buffer and an SG list
642  * @sgl:                 The SG list
643  * @nents:               Number of SG entries
644  * @buf:                 Where to copy from
645  * @buflen:              The number of bytes to copy
646  * @skip:                Number of bytes to skip before copying
647  * @to_buffer:           transfer direction (true == from an sg list to a
648  *                       buffer, false == from a buffer to an sg list
649  *
650  * Returns the number of copied bytes.
651  *
652  **/
653 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
654                       size_t buflen, off_t skip, bool to_buffer)
655 {
656         unsigned int offset = 0;
657         struct sg_mapping_iter miter;
658         unsigned long flags;
659         unsigned int sg_flags = SG_MITER_ATOMIC;
660
661         if (to_buffer)
662                 sg_flags |= SG_MITER_FROM_SG;
663         else
664                 sg_flags |= SG_MITER_TO_SG;
665
666         sg_miter_start(&miter, sgl, nents, sg_flags);
667
668         if (!sg_miter_skip(&miter, skip))
669                 return false;
670
671         local_irq_save(flags);
672
673         while (sg_miter_next(&miter) && offset < buflen) {
674                 unsigned int len;
675
676                 len = min(miter.length, buflen - offset);
677
678                 if (to_buffer)
679                         memcpy(buf + offset, miter.addr, len);
680                 else
681                         memcpy(miter.addr, buf + offset, len);
682
683                 offset += len;
684         }
685
686         sg_miter_stop(&miter);
687
688         local_irq_restore(flags);
689         return offset;
690 }
691 EXPORT_SYMBOL(sg_copy_buffer);
692
693 /**
694  * sg_copy_from_buffer - Copy from a linear buffer to an SG list
695  * @sgl:                 The SG list
696  * @nents:               Number of SG entries
697  * @buf:                 Where to copy from
698  * @buflen:              The number of bytes to copy
699  *
700  * Returns the number of copied bytes.
701  *
702  **/
703 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
704                            const void *buf, size_t buflen)
705 {
706         return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
707 }
708 EXPORT_SYMBOL(sg_copy_from_buffer);
709
710 /**
711  * sg_copy_to_buffer - Copy from an SG list to a linear buffer
712  * @sgl:                 The SG list
713  * @nents:               Number of SG entries
714  * @buf:                 Where to copy to
715  * @buflen:              The number of bytes to copy
716  *
717  * Returns the number of copied bytes.
718  *
719  **/
720 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
721                          void *buf, size_t buflen)
722 {
723         return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
724 }
725 EXPORT_SYMBOL(sg_copy_to_buffer);
726
727 /**
728  * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
729  * @sgl:                 The SG list
730  * @nents:               Number of SG entries
731  * @buf:                 Where to copy from
732  * @buflen:              The number of bytes to copy
733  * @skip:                Number of bytes to skip before copying
734  *
735  * Returns the number of copied bytes.
736  *
737  **/
738 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
739                             const void *buf, size_t buflen, off_t skip)
740 {
741         return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
742 }
743 EXPORT_SYMBOL(sg_pcopy_from_buffer);
744
745 /**
746  * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
747  * @sgl:                 The SG list
748  * @nents:               Number of SG entries
749  * @buf:                 Where to copy to
750  * @buflen:              The number of bytes to copy
751  * @skip:                Number of bytes to skip before copying
752  *
753  * Returns the number of copied bytes.
754  *
755  **/
756 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
757                           void *buf, size_t buflen, off_t skip)
758 {
759         return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
760 }
761 EXPORT_SYMBOL(sg_pcopy_to_buffer);