]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/filemap.c
printk-formats.txt: Better describe the difference between %pS and %pF
[karo-tx-linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem              (truncate_pagecache)
67  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock             (exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
77  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page               (access_process_vm)
81  *
82  *  ->i_mutex                   (generic_perform_write)
83  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock                   (fs/fs-writeback.c)
87  *    ->mapping->tree_lock      (__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock           (vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock               (try_to_unmap_one)
97  *    ->private_lock            (try_to_unmap_one)
98  *    ->tree_lock               (try_to_unmap_one)
99  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
101  *    ->private_lock            (page_remove_rmap->set_page_dirty)
102  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
108  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115                                   struct page *page, void **shadowp)
116 {
117         struct radix_tree_node *node;
118         void **slot;
119         int error;
120
121         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122                                     &node, &slot);
123         if (error)
124                 return error;
125         if (*slot) {
126                 void *p;
127
128                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129                 if (!radix_tree_exceptional_entry(p))
130                         return -EEXIST;
131
132                 mapping->nrexceptional--;
133                 if (!dax_mapping(mapping)) {
134                         if (shadowp)
135                                 *shadowp = p;
136                 } else {
137                         /* DAX can replace empty locked entry with a hole */
138                         WARN_ON_ONCE(p !=
139                                 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140                         /* Wakeup waiters for exceptional entry lock */
141                         dax_wake_mapping_entry_waiter(mapping, page->index, p,
142                                                       true);
143                 }
144         }
145         __radix_tree_replace(&mapping->page_tree, node, slot, page,
146                              workingset_update_node, mapping);
147         mapping->nrpages++;
148         return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152                                    struct page *page, void *shadow)
153 {
154         int i, nr;
155
156         /* hugetlb pages are represented by one entry in the radix tree */
157         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159         VM_BUG_ON_PAGE(!PageLocked(page), page);
160         VM_BUG_ON_PAGE(PageTail(page), page);
161         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163         for (i = 0; i < nr; i++) {
164                 struct radix_tree_node *node;
165                 void **slot;
166
167                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168                                     &node, &slot);
169
170                 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174                                      workingset_update_node, mapping);
175         }
176
177         if (shadow) {
178                 mapping->nrexceptional += nr;
179                 /*
180                  * Make sure the nrexceptional update is committed before
181                  * the nrpages update so that final truncate racing
182                  * with reclaim does not see both counters 0 at the
183                  * same time and miss a shadow entry.
184                  */
185                 smp_wmb();
186         }
187         mapping->nrpages -= nr;
188 }
189
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197         struct address_space *mapping = page->mapping;
198         int nr = hpage_nr_pages(page);
199
200         trace_mm_filemap_delete_from_page_cache(page);
201         /*
202          * if we're uptodate, flush out into the cleancache, otherwise
203          * invalidate any existing cleancache entries.  We can't leave
204          * stale data around in the cleancache once our page is gone
205          */
206         if (PageUptodate(page) && PageMappedToDisk(page))
207                 cleancache_put_page(page);
208         else
209                 cleancache_invalidate_page(mapping, page);
210
211         VM_BUG_ON_PAGE(PageTail(page), page);
212         VM_BUG_ON_PAGE(page_mapped(page), page);
213         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214                 int mapcount;
215
216                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217                          current->comm, page_to_pfn(page));
218                 dump_page(page, "still mapped when deleted");
219                 dump_stack();
220                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222                 mapcount = page_mapcount(page);
223                 if (mapping_exiting(mapping) &&
224                     page_count(page) >= mapcount + 2) {
225                         /*
226                          * All vmas have already been torn down, so it's
227                          * a good bet that actually the page is unmapped,
228                          * and we'd prefer not to leak it: if we're wrong,
229                          * some other bad page check should catch it later.
230                          */
231                         page_mapcount_reset(page);
232                         page_ref_sub(page, mapcount);
233                 }
234         }
235
236         page_cache_tree_delete(mapping, page, shadow);
237
238         page->mapping = NULL;
239         /* Leave page->index set: truncation lookup relies upon it */
240
241         /* hugetlb pages do not participate in page cache accounting. */
242         if (PageHuge(page))
243                 return;
244
245         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
246         if (PageSwapBacked(page)) {
247                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
248                 if (PageTransHuge(page))
249                         __dec_node_page_state(page, NR_SHMEM_THPS);
250         } else {
251                 VM_BUG_ON_PAGE(PageTransHuge(page), page);
252         }
253
254         /*
255          * At this point page must be either written or cleaned by truncate.
256          * Dirty page here signals a bug and loss of unwritten data.
257          *
258          * This fixes dirty accounting after removing the page entirely but
259          * leaves PageDirty set: it has no effect for truncated page and
260          * anyway will be cleared before returning page into buddy allocator.
261          */
262         if (WARN_ON_ONCE(PageDirty(page)))
263                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
264 }
265
266 /**
267  * delete_from_page_cache - delete page from page cache
268  * @page: the page which the kernel is trying to remove from page cache
269  *
270  * This must be called only on pages that have been verified to be in the page
271  * cache and locked.  It will never put the page into the free list, the caller
272  * has a reference on the page.
273  */
274 void delete_from_page_cache(struct page *page)
275 {
276         struct address_space *mapping = page_mapping(page);
277         unsigned long flags;
278         void (*freepage)(struct page *);
279
280         BUG_ON(!PageLocked(page));
281
282         freepage = mapping->a_ops->freepage;
283
284         spin_lock_irqsave(&mapping->tree_lock, flags);
285         __delete_from_page_cache(page, NULL);
286         spin_unlock_irqrestore(&mapping->tree_lock, flags);
287
288         if (freepage)
289                 freepage(page);
290
291         if (PageTransHuge(page) && !PageHuge(page)) {
292                 page_ref_sub(page, HPAGE_PMD_NR);
293                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
294         } else {
295                 put_page(page);
296         }
297 }
298 EXPORT_SYMBOL(delete_from_page_cache);
299
300 int filemap_check_errors(struct address_space *mapping)
301 {
302         int ret = 0;
303         /* Check for outstanding write errors */
304         if (test_bit(AS_ENOSPC, &mapping->flags) &&
305             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
306                 ret = -ENOSPC;
307         if (test_bit(AS_EIO, &mapping->flags) &&
308             test_and_clear_bit(AS_EIO, &mapping->flags))
309                 ret = -EIO;
310         return ret;
311 }
312 EXPORT_SYMBOL(filemap_check_errors);
313
314 static int filemap_check_and_keep_errors(struct address_space *mapping)
315 {
316         /* Check for outstanding write errors */
317         if (test_bit(AS_EIO, &mapping->flags))
318                 return -EIO;
319         if (test_bit(AS_ENOSPC, &mapping->flags))
320                 return -ENOSPC;
321         return 0;
322 }
323
324 /**
325  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
326  * @mapping:    address space structure to write
327  * @start:      offset in bytes where the range starts
328  * @end:        offset in bytes where the range ends (inclusive)
329  * @sync_mode:  enable synchronous operation
330  *
331  * Start writeback against all of a mapping's dirty pages that lie
332  * within the byte offsets <start, end> inclusive.
333  *
334  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
335  * opposed to a regular memory cleansing writeback.  The difference between
336  * these two operations is that if a dirty page/buffer is encountered, it must
337  * be waited upon, and not just skipped over.
338  */
339 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340                                 loff_t end, int sync_mode)
341 {
342         int ret;
343         struct writeback_control wbc = {
344                 .sync_mode = sync_mode,
345                 .nr_to_write = LONG_MAX,
346                 .range_start = start,
347                 .range_end = end,
348         };
349
350         if (!mapping_cap_writeback_dirty(mapping))
351                 return 0;
352
353         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
354         ret = do_writepages(mapping, &wbc);
355         wbc_detach_inode(&wbc);
356         return ret;
357 }
358
359 static inline int __filemap_fdatawrite(struct address_space *mapping,
360         int sync_mode)
361 {
362         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
363 }
364
365 int filemap_fdatawrite(struct address_space *mapping)
366 {
367         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
368 }
369 EXPORT_SYMBOL(filemap_fdatawrite);
370
371 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
372                                 loff_t end)
373 {
374         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
375 }
376 EXPORT_SYMBOL(filemap_fdatawrite_range);
377
378 /**
379  * filemap_flush - mostly a non-blocking flush
380  * @mapping:    target address_space
381  *
382  * This is a mostly non-blocking flush.  Not suitable for data-integrity
383  * purposes - I/O may not be started against all dirty pages.
384  */
385 int filemap_flush(struct address_space *mapping)
386 {
387         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
388 }
389 EXPORT_SYMBOL(filemap_flush);
390
391 /**
392  * filemap_range_has_page - check if a page exists in range.
393  * @mapping:           address space within which to check
394  * @start_byte:        offset in bytes where the range starts
395  * @end_byte:          offset in bytes where the range ends (inclusive)
396  *
397  * Find at least one page in the range supplied, usually used to check if
398  * direct writing in this range will trigger a writeback.
399  */
400 bool filemap_range_has_page(struct address_space *mapping,
401                            loff_t start_byte, loff_t end_byte)
402 {
403         pgoff_t index = start_byte >> PAGE_SHIFT;
404         pgoff_t end = end_byte >> PAGE_SHIFT;
405         struct pagevec pvec;
406         bool ret;
407
408         if (end_byte < start_byte)
409                 return false;
410
411         if (mapping->nrpages == 0)
412                 return false;
413
414         pagevec_init(&pvec, 0);
415         if (!pagevec_lookup(&pvec, mapping, index, 1))
416                 return false;
417         ret = (pvec.pages[0]->index <= end);
418         pagevec_release(&pvec);
419         return ret;
420 }
421 EXPORT_SYMBOL(filemap_range_has_page);
422
423 static void __filemap_fdatawait_range(struct address_space *mapping,
424                                      loff_t start_byte, loff_t end_byte)
425 {
426         pgoff_t index = start_byte >> PAGE_SHIFT;
427         pgoff_t end = end_byte >> PAGE_SHIFT;
428         struct pagevec pvec;
429         int nr_pages;
430
431         if (end_byte < start_byte)
432                 return;
433
434         pagevec_init(&pvec, 0);
435         while ((index <= end) &&
436                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437                         PAGECACHE_TAG_WRITEBACK,
438                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
439                 unsigned i;
440
441                 for (i = 0; i < nr_pages; i++) {
442                         struct page *page = pvec.pages[i];
443
444                         /* until radix tree lookup accepts end_index */
445                         if (page->index > end)
446                                 continue;
447
448                         wait_on_page_writeback(page);
449                         ClearPageError(page);
450                 }
451                 pagevec_release(&pvec);
452                 cond_resched();
453         }
454 }
455
456 /**
457  * filemap_fdatawait_range - wait for writeback to complete
458  * @mapping:            address space structure to wait for
459  * @start_byte:         offset in bytes where the range starts
460  * @end_byte:           offset in bytes where the range ends (inclusive)
461  *
462  * Walk the list of under-writeback pages of the given address space
463  * in the given range and wait for all of them.  Check error status of
464  * the address space and return it.
465  *
466  * Since the error status of the address space is cleared by this function,
467  * callers are responsible for checking the return value and handling and/or
468  * reporting the error.
469  */
470 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
471                             loff_t end_byte)
472 {
473         __filemap_fdatawait_range(mapping, start_byte, end_byte);
474         return filemap_check_errors(mapping);
475 }
476 EXPORT_SYMBOL(filemap_fdatawait_range);
477
478 /**
479  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
480  * @mapping: address space structure to wait for
481  *
482  * Walk the list of under-writeback pages of the given address space
483  * and wait for all of them.  Unlike filemap_fdatawait(), this function
484  * does not clear error status of the address space.
485  *
486  * Use this function if callers don't handle errors themselves.  Expected
487  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
488  * fsfreeze(8)
489  */
490 int filemap_fdatawait_keep_errors(struct address_space *mapping)
491 {
492         loff_t i_size = i_size_read(mapping->host);
493
494         if (i_size == 0)
495                 return 0;
496
497         __filemap_fdatawait_range(mapping, 0, i_size - 1);
498         return filemap_check_and_keep_errors(mapping);
499 }
500 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
501
502 /**
503  * filemap_fdatawait - wait for all under-writeback pages to complete
504  * @mapping: address space structure to wait for
505  *
506  * Walk the list of under-writeback pages of the given address space
507  * and wait for all of them.  Check error status of the address space
508  * and return it.
509  *
510  * Since the error status of the address space is cleared by this function,
511  * callers are responsible for checking the return value and handling and/or
512  * reporting the error.
513  */
514 int filemap_fdatawait(struct address_space *mapping)
515 {
516         loff_t i_size = i_size_read(mapping->host);
517
518         if (i_size == 0)
519                 return 0;
520
521         return filemap_fdatawait_range(mapping, 0, i_size - 1);
522 }
523 EXPORT_SYMBOL(filemap_fdatawait);
524
525 int filemap_write_and_wait(struct address_space *mapping)
526 {
527         int err = 0;
528
529         if ((!dax_mapping(mapping) && mapping->nrpages) ||
530             (dax_mapping(mapping) && mapping->nrexceptional)) {
531                 err = filemap_fdatawrite(mapping);
532                 /*
533                  * Even if the above returned error, the pages may be
534                  * written partially (e.g. -ENOSPC), so we wait for it.
535                  * But the -EIO is special case, it may indicate the worst
536                  * thing (e.g. bug) happened, so we avoid waiting for it.
537                  */
538                 if (err != -EIO) {
539                         int err2 = filemap_fdatawait(mapping);
540                         if (!err)
541                                 err = err2;
542                 } else {
543                         /* Clear any previously stored errors */
544                         filemap_check_errors(mapping);
545                 }
546         } else {
547                 err = filemap_check_errors(mapping);
548         }
549         return err;
550 }
551 EXPORT_SYMBOL(filemap_write_and_wait);
552
553 /**
554  * filemap_write_and_wait_range - write out & wait on a file range
555  * @mapping:    the address_space for the pages
556  * @lstart:     offset in bytes where the range starts
557  * @lend:       offset in bytes where the range ends (inclusive)
558  *
559  * Write out and wait upon file offsets lstart->lend, inclusive.
560  *
561  * Note that @lend is inclusive (describes the last byte to be written) so
562  * that this function can be used to write to the very end-of-file (end = -1).
563  */
564 int filemap_write_and_wait_range(struct address_space *mapping,
565                                  loff_t lstart, loff_t lend)
566 {
567         int err = 0;
568
569         if ((!dax_mapping(mapping) && mapping->nrpages) ||
570             (dax_mapping(mapping) && mapping->nrexceptional)) {
571                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
572                                                  WB_SYNC_ALL);
573                 /* See comment of filemap_write_and_wait() */
574                 if (err != -EIO) {
575                         int err2 = filemap_fdatawait_range(mapping,
576                                                 lstart, lend);
577                         if (!err)
578                                 err = err2;
579                 } else {
580                         /* Clear any previously stored errors */
581                         filemap_check_errors(mapping);
582                 }
583         } else {
584                 err = filemap_check_errors(mapping);
585         }
586         return err;
587 }
588 EXPORT_SYMBOL(filemap_write_and_wait_range);
589
590 void __filemap_set_wb_err(struct address_space *mapping, int err)
591 {
592         errseq_t eseq = __errseq_set(&mapping->wb_err, err);
593
594         trace_filemap_set_wb_err(mapping, eseq);
595 }
596 EXPORT_SYMBOL(__filemap_set_wb_err);
597
598 /**
599  * file_check_and_advance_wb_err - report wb error (if any) that was previously
600  *                                 and advance wb_err to current one
601  * @file: struct file on which the error is being reported
602  *
603  * When userland calls fsync (or something like nfsd does the equivalent), we
604  * want to report any writeback errors that occurred since the last fsync (or
605  * since the file was opened if there haven't been any).
606  *
607  * Grab the wb_err from the mapping. If it matches what we have in the file,
608  * then just quickly return 0. The file is all caught up.
609  *
610  * If it doesn't match, then take the mapping value, set the "seen" flag in
611  * it and try to swap it into place. If it works, or another task beat us
612  * to it with the new value, then update the f_wb_err and return the error
613  * portion. The error at this point must be reported via proper channels
614  * (a'la fsync, or NFS COMMIT operation, etc.).
615  *
616  * While we handle mapping->wb_err with atomic operations, the f_wb_err
617  * value is protected by the f_lock since we must ensure that it reflects
618  * the latest value swapped in for this file descriptor.
619  */
620 int file_check_and_advance_wb_err(struct file *file)
621 {
622         int err = 0;
623         errseq_t old = READ_ONCE(file->f_wb_err);
624         struct address_space *mapping = file->f_mapping;
625
626         /* Locklessly handle the common case where nothing has changed */
627         if (errseq_check(&mapping->wb_err, old)) {
628                 /* Something changed, must use slow path */
629                 spin_lock(&file->f_lock);
630                 old = file->f_wb_err;
631                 err = errseq_check_and_advance(&mapping->wb_err,
632                                                 &file->f_wb_err);
633                 trace_file_check_and_advance_wb_err(file, old);
634                 spin_unlock(&file->f_lock);
635         }
636         return err;
637 }
638 EXPORT_SYMBOL(file_check_and_advance_wb_err);
639
640 /**
641  * file_write_and_wait_range - write out & wait on a file range
642  * @file:       file pointing to address_space with pages
643  * @lstart:     offset in bytes where the range starts
644  * @lend:       offset in bytes where the range ends (inclusive)
645  *
646  * Write out and wait upon file offsets lstart->lend, inclusive.
647  *
648  * Note that @lend is inclusive (describes the last byte to be written) so
649  * that this function can be used to write to the very end-of-file (end = -1).
650  *
651  * After writing out and waiting on the data, we check and advance the
652  * f_wb_err cursor to the latest value, and return any errors detected there.
653  */
654 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
655 {
656         int err = 0, err2;
657         struct address_space *mapping = file->f_mapping;
658
659         if ((!dax_mapping(mapping) && mapping->nrpages) ||
660             (dax_mapping(mapping) && mapping->nrexceptional)) {
661                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
662                                                  WB_SYNC_ALL);
663                 /* See comment of filemap_write_and_wait() */
664                 if (err != -EIO)
665                         __filemap_fdatawait_range(mapping, lstart, lend);
666         }
667         err2 = file_check_and_advance_wb_err(file);
668         if (!err)
669                 err = err2;
670         return err;
671 }
672 EXPORT_SYMBOL(file_write_and_wait_range);
673
674 /**
675  * replace_page_cache_page - replace a pagecache page with a new one
676  * @old:        page to be replaced
677  * @new:        page to replace with
678  * @gfp_mask:   allocation mode
679  *
680  * This function replaces a page in the pagecache with a new one.  On
681  * success it acquires the pagecache reference for the new page and
682  * drops it for the old page.  Both the old and new pages must be
683  * locked.  This function does not add the new page to the LRU, the
684  * caller must do that.
685  *
686  * The remove + add is atomic.  The only way this function can fail is
687  * memory allocation failure.
688  */
689 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
690 {
691         int error;
692
693         VM_BUG_ON_PAGE(!PageLocked(old), old);
694         VM_BUG_ON_PAGE(!PageLocked(new), new);
695         VM_BUG_ON_PAGE(new->mapping, new);
696
697         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
698         if (!error) {
699                 struct address_space *mapping = old->mapping;
700                 void (*freepage)(struct page *);
701                 unsigned long flags;
702
703                 pgoff_t offset = old->index;
704                 freepage = mapping->a_ops->freepage;
705
706                 get_page(new);
707                 new->mapping = mapping;
708                 new->index = offset;
709
710                 spin_lock_irqsave(&mapping->tree_lock, flags);
711                 __delete_from_page_cache(old, NULL);
712                 error = page_cache_tree_insert(mapping, new, NULL);
713                 BUG_ON(error);
714
715                 /*
716                  * hugetlb pages do not participate in page cache accounting.
717                  */
718                 if (!PageHuge(new))
719                         __inc_node_page_state(new, NR_FILE_PAGES);
720                 if (PageSwapBacked(new))
721                         __inc_node_page_state(new, NR_SHMEM);
722                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
723                 mem_cgroup_migrate(old, new);
724                 radix_tree_preload_end();
725                 if (freepage)
726                         freepage(old);
727                 put_page(old);
728         }
729
730         return error;
731 }
732 EXPORT_SYMBOL_GPL(replace_page_cache_page);
733
734 static int __add_to_page_cache_locked(struct page *page,
735                                       struct address_space *mapping,
736                                       pgoff_t offset, gfp_t gfp_mask,
737                                       void **shadowp)
738 {
739         int huge = PageHuge(page);
740         struct mem_cgroup *memcg;
741         int error;
742
743         VM_BUG_ON_PAGE(!PageLocked(page), page);
744         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
745
746         if (!huge) {
747                 error = mem_cgroup_try_charge(page, current->mm,
748                                               gfp_mask, &memcg, false);
749                 if (error)
750                         return error;
751         }
752
753         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
754         if (error) {
755                 if (!huge)
756                         mem_cgroup_cancel_charge(page, memcg, false);
757                 return error;
758         }
759
760         get_page(page);
761         page->mapping = mapping;
762         page->index = offset;
763
764         spin_lock_irq(&mapping->tree_lock);
765         error = page_cache_tree_insert(mapping, page, shadowp);
766         radix_tree_preload_end();
767         if (unlikely(error))
768                 goto err_insert;
769
770         /* hugetlb pages do not participate in page cache accounting. */
771         if (!huge)
772                 __inc_node_page_state(page, NR_FILE_PAGES);
773         spin_unlock_irq(&mapping->tree_lock);
774         if (!huge)
775                 mem_cgroup_commit_charge(page, memcg, false, false);
776         trace_mm_filemap_add_to_page_cache(page);
777         return 0;
778 err_insert:
779         page->mapping = NULL;
780         /* Leave page->index set: truncation relies upon it */
781         spin_unlock_irq(&mapping->tree_lock);
782         if (!huge)
783                 mem_cgroup_cancel_charge(page, memcg, false);
784         put_page(page);
785         return error;
786 }
787
788 /**
789  * add_to_page_cache_locked - add a locked page to the pagecache
790  * @page:       page to add
791  * @mapping:    the page's address_space
792  * @offset:     page index
793  * @gfp_mask:   page allocation mode
794  *
795  * This function is used to add a page to the pagecache. It must be locked.
796  * This function does not add the page to the LRU.  The caller must do that.
797  */
798 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
799                 pgoff_t offset, gfp_t gfp_mask)
800 {
801         return __add_to_page_cache_locked(page, mapping, offset,
802                                           gfp_mask, NULL);
803 }
804 EXPORT_SYMBOL(add_to_page_cache_locked);
805
806 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
807                                 pgoff_t offset, gfp_t gfp_mask)
808 {
809         void *shadow = NULL;
810         int ret;
811
812         __SetPageLocked(page);
813         ret = __add_to_page_cache_locked(page, mapping, offset,
814                                          gfp_mask, &shadow);
815         if (unlikely(ret))
816                 __ClearPageLocked(page);
817         else {
818                 /*
819                  * The page might have been evicted from cache only
820                  * recently, in which case it should be activated like
821                  * any other repeatedly accessed page.
822                  * The exception is pages getting rewritten; evicting other
823                  * data from the working set, only to cache data that will
824                  * get overwritten with something else, is a waste of memory.
825                  */
826                 if (!(gfp_mask & __GFP_WRITE) &&
827                     shadow && workingset_refault(shadow)) {
828                         SetPageActive(page);
829                         workingset_activation(page);
830                 } else
831                         ClearPageActive(page);
832                 lru_cache_add(page);
833         }
834         return ret;
835 }
836 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
837
838 #ifdef CONFIG_NUMA
839 struct page *__page_cache_alloc(gfp_t gfp)
840 {
841         int n;
842         struct page *page;
843
844         if (cpuset_do_page_mem_spread()) {
845                 unsigned int cpuset_mems_cookie;
846                 do {
847                         cpuset_mems_cookie = read_mems_allowed_begin();
848                         n = cpuset_mem_spread_node();
849                         page = __alloc_pages_node(n, gfp, 0);
850                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
851
852                 return page;
853         }
854         return alloc_pages(gfp, 0);
855 }
856 EXPORT_SYMBOL(__page_cache_alloc);
857 #endif
858
859 /*
860  * In order to wait for pages to become available there must be
861  * waitqueues associated with pages. By using a hash table of
862  * waitqueues where the bucket discipline is to maintain all
863  * waiters on the same queue and wake all when any of the pages
864  * become available, and for the woken contexts to check to be
865  * sure the appropriate page became available, this saves space
866  * at a cost of "thundering herd" phenomena during rare hash
867  * collisions.
868  */
869 #define PAGE_WAIT_TABLE_BITS 8
870 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
871 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
872
873 static wait_queue_head_t *page_waitqueue(struct page *page)
874 {
875         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
876 }
877
878 void __init pagecache_init(void)
879 {
880         int i;
881
882         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
883                 init_waitqueue_head(&page_wait_table[i]);
884
885         page_writeback_init();
886 }
887
888 struct wait_page_key {
889         struct page *page;
890         int bit_nr;
891         int page_match;
892 };
893
894 struct wait_page_queue {
895         struct page *page;
896         int bit_nr;
897         wait_queue_entry_t wait;
898 };
899
900 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
901 {
902         struct wait_page_key *key = arg;
903         struct wait_page_queue *wait_page
904                 = container_of(wait, struct wait_page_queue, wait);
905
906         if (wait_page->page != key->page)
907                return 0;
908         key->page_match = 1;
909
910         if (wait_page->bit_nr != key->bit_nr)
911                 return 0;
912         if (test_bit(key->bit_nr, &key->page->flags))
913                 return 0;
914
915         return autoremove_wake_function(wait, mode, sync, key);
916 }
917
918 static void wake_up_page_bit(struct page *page, int bit_nr)
919 {
920         wait_queue_head_t *q = page_waitqueue(page);
921         struct wait_page_key key;
922         unsigned long flags;
923
924         key.page = page;
925         key.bit_nr = bit_nr;
926         key.page_match = 0;
927
928         spin_lock_irqsave(&q->lock, flags);
929         __wake_up_locked_key(q, TASK_NORMAL, &key);
930         /*
931          * It is possible for other pages to have collided on the waitqueue
932          * hash, so in that case check for a page match. That prevents a long-
933          * term waiter
934          *
935          * It is still possible to miss a case here, when we woke page waiters
936          * and removed them from the waitqueue, but there are still other
937          * page waiters.
938          */
939         if (!waitqueue_active(q) || !key.page_match) {
940                 ClearPageWaiters(page);
941                 /*
942                  * It's possible to miss clearing Waiters here, when we woke
943                  * our page waiters, but the hashed waitqueue has waiters for
944                  * other pages on it.
945                  *
946                  * That's okay, it's a rare case. The next waker will clear it.
947                  */
948         }
949         spin_unlock_irqrestore(&q->lock, flags);
950 }
951
952 static void wake_up_page(struct page *page, int bit)
953 {
954         if (!PageWaiters(page))
955                 return;
956         wake_up_page_bit(page, bit);
957 }
958
959 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
960                 struct page *page, int bit_nr, int state, bool lock)
961 {
962         struct wait_page_queue wait_page;
963         wait_queue_entry_t *wait = &wait_page.wait;
964         int ret = 0;
965
966         init_wait(wait);
967         wait->func = wake_page_function;
968         wait_page.page = page;
969         wait_page.bit_nr = bit_nr;
970
971         for (;;) {
972                 spin_lock_irq(&q->lock);
973
974                 if (likely(list_empty(&wait->entry))) {
975                         if (lock)
976                                 __add_wait_queue_entry_tail_exclusive(q, wait);
977                         else
978                                 __add_wait_queue(q, wait);
979                         SetPageWaiters(page);
980                 }
981
982                 set_current_state(state);
983
984                 spin_unlock_irq(&q->lock);
985
986                 if (likely(test_bit(bit_nr, &page->flags))) {
987                         io_schedule();
988                         if (unlikely(signal_pending_state(state, current))) {
989                                 ret = -EINTR;
990                                 break;
991                         }
992                 }
993
994                 if (lock) {
995                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
996                                 break;
997                 } else {
998                         if (!test_bit(bit_nr, &page->flags))
999                                 break;
1000                 }
1001         }
1002
1003         finish_wait(q, wait);
1004
1005         /*
1006          * A signal could leave PageWaiters set. Clearing it here if
1007          * !waitqueue_active would be possible (by open-coding finish_wait),
1008          * but still fail to catch it in the case of wait hash collision. We
1009          * already can fail to clear wait hash collision cases, so don't
1010          * bother with signals either.
1011          */
1012
1013         return ret;
1014 }
1015
1016 void wait_on_page_bit(struct page *page, int bit_nr)
1017 {
1018         wait_queue_head_t *q = page_waitqueue(page);
1019         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1020 }
1021 EXPORT_SYMBOL(wait_on_page_bit);
1022
1023 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1024 {
1025         wait_queue_head_t *q = page_waitqueue(page);
1026         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1027 }
1028
1029 /**
1030  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1031  * @page: Page defining the wait queue of interest
1032  * @waiter: Waiter to add to the queue
1033  *
1034  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1035  */
1036 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1037 {
1038         wait_queue_head_t *q = page_waitqueue(page);
1039         unsigned long flags;
1040
1041         spin_lock_irqsave(&q->lock, flags);
1042         __add_wait_queue(q, waiter);
1043         SetPageWaiters(page);
1044         spin_unlock_irqrestore(&q->lock, flags);
1045 }
1046 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1047
1048 #ifndef clear_bit_unlock_is_negative_byte
1049
1050 /*
1051  * PG_waiters is the high bit in the same byte as PG_lock.
1052  *
1053  * On x86 (and on many other architectures), we can clear PG_lock and
1054  * test the sign bit at the same time. But if the architecture does
1055  * not support that special operation, we just do this all by hand
1056  * instead.
1057  *
1058  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1059  * being cleared, but a memory barrier should be unneccssary since it is
1060  * in the same byte as PG_locked.
1061  */
1062 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1063 {
1064         clear_bit_unlock(nr, mem);
1065         /* smp_mb__after_atomic(); */
1066         return test_bit(PG_waiters, mem);
1067 }
1068
1069 #endif
1070
1071 /**
1072  * unlock_page - unlock a locked page
1073  * @page: the page
1074  *
1075  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1076  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1077  * mechanism between PageLocked pages and PageWriteback pages is shared.
1078  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1079  *
1080  * Note that this depends on PG_waiters being the sign bit in the byte
1081  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1082  * clear the PG_locked bit and test PG_waiters at the same time fairly
1083  * portably (architectures that do LL/SC can test any bit, while x86 can
1084  * test the sign bit).
1085  */
1086 void unlock_page(struct page *page)
1087 {
1088         BUILD_BUG_ON(PG_waiters != 7);
1089         page = compound_head(page);
1090         VM_BUG_ON_PAGE(!PageLocked(page), page);
1091         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1092                 wake_up_page_bit(page, PG_locked);
1093 }
1094 EXPORT_SYMBOL(unlock_page);
1095
1096 /**
1097  * end_page_writeback - end writeback against a page
1098  * @page: the page
1099  */
1100 void end_page_writeback(struct page *page)
1101 {
1102         /*
1103          * TestClearPageReclaim could be used here but it is an atomic
1104          * operation and overkill in this particular case. Failing to
1105          * shuffle a page marked for immediate reclaim is too mild to
1106          * justify taking an atomic operation penalty at the end of
1107          * ever page writeback.
1108          */
1109         if (PageReclaim(page)) {
1110                 ClearPageReclaim(page);
1111                 rotate_reclaimable_page(page);
1112         }
1113
1114         if (!test_clear_page_writeback(page))
1115                 BUG();
1116
1117         smp_mb__after_atomic();
1118         wake_up_page(page, PG_writeback);
1119 }
1120 EXPORT_SYMBOL(end_page_writeback);
1121
1122 /*
1123  * After completing I/O on a page, call this routine to update the page
1124  * flags appropriately
1125  */
1126 void page_endio(struct page *page, bool is_write, int err)
1127 {
1128         if (!is_write) {
1129                 if (!err) {
1130                         SetPageUptodate(page);
1131                 } else {
1132                         ClearPageUptodate(page);
1133                         SetPageError(page);
1134                 }
1135                 unlock_page(page);
1136         } else {
1137                 if (err) {
1138                         struct address_space *mapping;
1139
1140                         SetPageError(page);
1141                         mapping = page_mapping(page);
1142                         if (mapping)
1143                                 mapping_set_error(mapping, err);
1144                 }
1145                 end_page_writeback(page);
1146         }
1147 }
1148 EXPORT_SYMBOL_GPL(page_endio);
1149
1150 /**
1151  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1152  * @__page: the page to lock
1153  */
1154 void __lock_page(struct page *__page)
1155 {
1156         struct page *page = compound_head(__page);
1157         wait_queue_head_t *q = page_waitqueue(page);
1158         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1159 }
1160 EXPORT_SYMBOL(__lock_page);
1161
1162 int __lock_page_killable(struct page *__page)
1163 {
1164         struct page *page = compound_head(__page);
1165         wait_queue_head_t *q = page_waitqueue(page);
1166         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1167 }
1168 EXPORT_SYMBOL_GPL(__lock_page_killable);
1169
1170 /*
1171  * Return values:
1172  * 1 - page is locked; mmap_sem is still held.
1173  * 0 - page is not locked.
1174  *     mmap_sem has been released (up_read()), unless flags had both
1175  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1176  *     which case mmap_sem is still held.
1177  *
1178  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1179  * with the page locked and the mmap_sem unperturbed.
1180  */
1181 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1182                          unsigned int flags)
1183 {
1184         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1185                 /*
1186                  * CAUTION! In this case, mmap_sem is not released
1187                  * even though return 0.
1188                  */
1189                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1190                         return 0;
1191
1192                 up_read(&mm->mmap_sem);
1193                 if (flags & FAULT_FLAG_KILLABLE)
1194                         wait_on_page_locked_killable(page);
1195                 else
1196                         wait_on_page_locked(page);
1197                 return 0;
1198         } else {
1199                 if (flags & FAULT_FLAG_KILLABLE) {
1200                         int ret;
1201
1202                         ret = __lock_page_killable(page);
1203                         if (ret) {
1204                                 up_read(&mm->mmap_sem);
1205                                 return 0;
1206                         }
1207                 } else
1208                         __lock_page(page);
1209                 return 1;
1210         }
1211 }
1212
1213 /**
1214  * page_cache_next_hole - find the next hole (not-present entry)
1215  * @mapping: mapping
1216  * @index: index
1217  * @max_scan: maximum range to search
1218  *
1219  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1220  * lowest indexed hole.
1221  *
1222  * Returns: the index of the hole if found, otherwise returns an index
1223  * outside of the set specified (in which case 'return - index >=
1224  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1225  * be returned.
1226  *
1227  * page_cache_next_hole may be called under rcu_read_lock. However,
1228  * like radix_tree_gang_lookup, this will not atomically search a
1229  * snapshot of the tree at a single point in time. For example, if a
1230  * hole is created at index 5, then subsequently a hole is created at
1231  * index 10, page_cache_next_hole covering both indexes may return 10
1232  * if called under rcu_read_lock.
1233  */
1234 pgoff_t page_cache_next_hole(struct address_space *mapping,
1235                              pgoff_t index, unsigned long max_scan)
1236 {
1237         unsigned long i;
1238
1239         for (i = 0; i < max_scan; i++) {
1240                 struct page *page;
1241
1242                 page = radix_tree_lookup(&mapping->page_tree, index);
1243                 if (!page || radix_tree_exceptional_entry(page))
1244                         break;
1245                 index++;
1246                 if (index == 0)
1247                         break;
1248         }
1249
1250         return index;
1251 }
1252 EXPORT_SYMBOL(page_cache_next_hole);
1253
1254 /**
1255  * page_cache_prev_hole - find the prev hole (not-present entry)
1256  * @mapping: mapping
1257  * @index: index
1258  * @max_scan: maximum range to search
1259  *
1260  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1261  * the first hole.
1262  *
1263  * Returns: the index of the hole if found, otherwise returns an index
1264  * outside of the set specified (in which case 'index - return >=
1265  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1266  * will be returned.
1267  *
1268  * page_cache_prev_hole may be called under rcu_read_lock. However,
1269  * like radix_tree_gang_lookup, this will not atomically search a
1270  * snapshot of the tree at a single point in time. For example, if a
1271  * hole is created at index 10, then subsequently a hole is created at
1272  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1273  * called under rcu_read_lock.
1274  */
1275 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1276                              pgoff_t index, unsigned long max_scan)
1277 {
1278         unsigned long i;
1279
1280         for (i = 0; i < max_scan; i++) {
1281                 struct page *page;
1282
1283                 page = radix_tree_lookup(&mapping->page_tree, index);
1284                 if (!page || radix_tree_exceptional_entry(page))
1285                         break;
1286                 index--;
1287                 if (index == ULONG_MAX)
1288                         break;
1289         }
1290
1291         return index;
1292 }
1293 EXPORT_SYMBOL(page_cache_prev_hole);
1294
1295 /**
1296  * find_get_entry - find and get a page cache entry
1297  * @mapping: the address_space to search
1298  * @offset: the page cache index
1299  *
1300  * Looks up the page cache slot at @mapping & @offset.  If there is a
1301  * page cache page, it is returned with an increased refcount.
1302  *
1303  * If the slot holds a shadow entry of a previously evicted page, or a
1304  * swap entry from shmem/tmpfs, it is returned.
1305  *
1306  * Otherwise, %NULL is returned.
1307  */
1308 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1309 {
1310         void **pagep;
1311         struct page *head, *page;
1312
1313         rcu_read_lock();
1314 repeat:
1315         page = NULL;
1316         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1317         if (pagep) {
1318                 page = radix_tree_deref_slot(pagep);
1319                 if (unlikely(!page))
1320                         goto out;
1321                 if (radix_tree_exception(page)) {
1322                         if (radix_tree_deref_retry(page))
1323                                 goto repeat;
1324                         /*
1325                          * A shadow entry of a recently evicted page,
1326                          * or a swap entry from shmem/tmpfs.  Return
1327                          * it without attempting to raise page count.
1328                          */
1329                         goto out;
1330                 }
1331
1332                 head = compound_head(page);
1333                 if (!page_cache_get_speculative(head))
1334                         goto repeat;
1335
1336                 /* The page was split under us? */
1337                 if (compound_head(page) != head) {
1338                         put_page(head);
1339                         goto repeat;
1340                 }
1341
1342                 /*
1343                  * Has the page moved?
1344                  * This is part of the lockless pagecache protocol. See
1345                  * include/linux/pagemap.h for details.
1346                  */
1347                 if (unlikely(page != *pagep)) {
1348                         put_page(head);
1349                         goto repeat;
1350                 }
1351         }
1352 out:
1353         rcu_read_unlock();
1354
1355         return page;
1356 }
1357 EXPORT_SYMBOL(find_get_entry);
1358
1359 /**
1360  * find_lock_entry - locate, pin and lock a page cache entry
1361  * @mapping: the address_space to search
1362  * @offset: the page cache index
1363  *
1364  * Looks up the page cache slot at @mapping & @offset.  If there is a
1365  * page cache page, it is returned locked and with an increased
1366  * refcount.
1367  *
1368  * If the slot holds a shadow entry of a previously evicted page, or a
1369  * swap entry from shmem/tmpfs, it is returned.
1370  *
1371  * Otherwise, %NULL is returned.
1372  *
1373  * find_lock_entry() may sleep.
1374  */
1375 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1376 {
1377         struct page *page;
1378
1379 repeat:
1380         page = find_get_entry(mapping, offset);
1381         if (page && !radix_tree_exception(page)) {
1382                 lock_page(page);
1383                 /* Has the page been truncated? */
1384                 if (unlikely(page_mapping(page) != mapping)) {
1385                         unlock_page(page);
1386                         put_page(page);
1387                         goto repeat;
1388                 }
1389                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1390         }
1391         return page;
1392 }
1393 EXPORT_SYMBOL(find_lock_entry);
1394
1395 /**
1396  * pagecache_get_page - find and get a page reference
1397  * @mapping: the address_space to search
1398  * @offset: the page index
1399  * @fgp_flags: PCG flags
1400  * @gfp_mask: gfp mask to use for the page cache data page allocation
1401  *
1402  * Looks up the page cache slot at @mapping & @offset.
1403  *
1404  * PCG flags modify how the page is returned.
1405  *
1406  * @fgp_flags can be:
1407  *
1408  * - FGP_ACCESSED: the page will be marked accessed
1409  * - FGP_LOCK: Page is return locked
1410  * - FGP_CREAT: If page is not present then a new page is allocated using
1411  *   @gfp_mask and added to the page cache and the VM's LRU
1412  *   list. The page is returned locked and with an increased
1413  *   refcount. Otherwise, NULL is returned.
1414  *
1415  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1416  * if the GFP flags specified for FGP_CREAT are atomic.
1417  *
1418  * If there is a page cache page, it is returned with an increased refcount.
1419  */
1420 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1421         int fgp_flags, gfp_t gfp_mask)
1422 {
1423         struct page *page;
1424
1425 repeat:
1426         page = find_get_entry(mapping, offset);
1427         if (radix_tree_exceptional_entry(page))
1428                 page = NULL;
1429         if (!page)
1430                 goto no_page;
1431
1432         if (fgp_flags & FGP_LOCK) {
1433                 if (fgp_flags & FGP_NOWAIT) {
1434                         if (!trylock_page(page)) {
1435                                 put_page(page);
1436                                 return NULL;
1437                         }
1438                 } else {
1439                         lock_page(page);
1440                 }
1441
1442                 /* Has the page been truncated? */
1443                 if (unlikely(page->mapping != mapping)) {
1444                         unlock_page(page);
1445                         put_page(page);
1446                         goto repeat;
1447                 }
1448                 VM_BUG_ON_PAGE(page->index != offset, page);
1449         }
1450
1451         if (page && (fgp_flags & FGP_ACCESSED))
1452                 mark_page_accessed(page);
1453
1454 no_page:
1455         if (!page && (fgp_flags & FGP_CREAT)) {
1456                 int err;
1457                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1458                         gfp_mask |= __GFP_WRITE;
1459                 if (fgp_flags & FGP_NOFS)
1460                         gfp_mask &= ~__GFP_FS;
1461
1462                 page = __page_cache_alloc(gfp_mask);
1463                 if (!page)
1464                         return NULL;
1465
1466                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1467                         fgp_flags |= FGP_LOCK;
1468
1469                 /* Init accessed so avoid atomic mark_page_accessed later */
1470                 if (fgp_flags & FGP_ACCESSED)
1471                         __SetPageReferenced(page);
1472
1473                 err = add_to_page_cache_lru(page, mapping, offset,
1474                                 gfp_mask & GFP_RECLAIM_MASK);
1475                 if (unlikely(err)) {
1476                         put_page(page);
1477                         page = NULL;
1478                         if (err == -EEXIST)
1479                                 goto repeat;
1480                 }
1481         }
1482
1483         return page;
1484 }
1485 EXPORT_SYMBOL(pagecache_get_page);
1486
1487 /**
1488  * find_get_entries - gang pagecache lookup
1489  * @mapping:    The address_space to search
1490  * @start:      The starting page cache index
1491  * @nr_entries: The maximum number of entries
1492  * @entries:    Where the resulting entries are placed
1493  * @indices:    The cache indices corresponding to the entries in @entries
1494  *
1495  * find_get_entries() will search for and return a group of up to
1496  * @nr_entries entries in the mapping.  The entries are placed at
1497  * @entries.  find_get_entries() takes a reference against any actual
1498  * pages it returns.
1499  *
1500  * The search returns a group of mapping-contiguous page cache entries
1501  * with ascending indexes.  There may be holes in the indices due to
1502  * not-present pages.
1503  *
1504  * Any shadow entries of evicted pages, or swap entries from
1505  * shmem/tmpfs, are included in the returned array.
1506  *
1507  * find_get_entries() returns the number of pages and shadow entries
1508  * which were found.
1509  */
1510 unsigned find_get_entries(struct address_space *mapping,
1511                           pgoff_t start, unsigned int nr_entries,
1512                           struct page **entries, pgoff_t *indices)
1513 {
1514         void **slot;
1515         unsigned int ret = 0;
1516         struct radix_tree_iter iter;
1517
1518         if (!nr_entries)
1519                 return 0;
1520
1521         rcu_read_lock();
1522         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1523                 struct page *head, *page;
1524 repeat:
1525                 page = radix_tree_deref_slot(slot);
1526                 if (unlikely(!page))
1527                         continue;
1528                 if (radix_tree_exception(page)) {
1529                         if (radix_tree_deref_retry(page)) {
1530                                 slot = radix_tree_iter_retry(&iter);
1531                                 continue;
1532                         }
1533                         /*
1534                          * A shadow entry of a recently evicted page, a swap
1535                          * entry from shmem/tmpfs or a DAX entry.  Return it
1536                          * without attempting to raise page count.
1537                          */
1538                         goto export;
1539                 }
1540
1541                 head = compound_head(page);
1542                 if (!page_cache_get_speculative(head))
1543                         goto repeat;
1544
1545                 /* The page was split under us? */
1546                 if (compound_head(page) != head) {
1547                         put_page(head);
1548                         goto repeat;
1549                 }
1550
1551                 /* Has the page moved? */
1552                 if (unlikely(page != *slot)) {
1553                         put_page(head);
1554                         goto repeat;
1555                 }
1556 export:
1557                 indices[ret] = iter.index;
1558                 entries[ret] = page;
1559                 if (++ret == nr_entries)
1560                         break;
1561         }
1562         rcu_read_unlock();
1563         return ret;
1564 }
1565
1566 /**
1567  * find_get_pages - gang pagecache lookup
1568  * @mapping:    The address_space to search
1569  * @start:      The starting page index
1570  * @nr_pages:   The maximum number of pages
1571  * @pages:      Where the resulting pages are placed
1572  *
1573  * find_get_pages() will search for and return a group of up to
1574  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1575  * find_get_pages() takes a reference against the returned pages.
1576  *
1577  * The search returns a group of mapping-contiguous pages with ascending
1578  * indexes.  There may be holes in the indices due to not-present pages.
1579  *
1580  * find_get_pages() returns the number of pages which were found.
1581  */
1582 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1583                             unsigned int nr_pages, struct page **pages)
1584 {
1585         struct radix_tree_iter iter;
1586         void **slot;
1587         unsigned ret = 0;
1588
1589         if (unlikely(!nr_pages))
1590                 return 0;
1591
1592         rcu_read_lock();
1593         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1594                 struct page *head, *page;
1595 repeat:
1596                 page = radix_tree_deref_slot(slot);
1597                 if (unlikely(!page))
1598                         continue;
1599
1600                 if (radix_tree_exception(page)) {
1601                         if (radix_tree_deref_retry(page)) {
1602                                 slot = radix_tree_iter_retry(&iter);
1603                                 continue;
1604                         }
1605                         /*
1606                          * A shadow entry of a recently evicted page,
1607                          * or a swap entry from shmem/tmpfs.  Skip
1608                          * over it.
1609                          */
1610                         continue;
1611                 }
1612
1613                 head = compound_head(page);
1614                 if (!page_cache_get_speculative(head))
1615                         goto repeat;
1616
1617                 /* The page was split under us? */
1618                 if (compound_head(page) != head) {
1619                         put_page(head);
1620                         goto repeat;
1621                 }
1622
1623                 /* Has the page moved? */
1624                 if (unlikely(page != *slot)) {
1625                         put_page(head);
1626                         goto repeat;
1627                 }
1628
1629                 pages[ret] = page;
1630                 if (++ret == nr_pages)
1631                         break;
1632         }
1633
1634         rcu_read_unlock();
1635         return ret;
1636 }
1637
1638 /**
1639  * find_get_pages_contig - gang contiguous pagecache lookup
1640  * @mapping:    The address_space to search
1641  * @index:      The starting page index
1642  * @nr_pages:   The maximum number of pages
1643  * @pages:      Where the resulting pages are placed
1644  *
1645  * find_get_pages_contig() works exactly like find_get_pages(), except
1646  * that the returned number of pages are guaranteed to be contiguous.
1647  *
1648  * find_get_pages_contig() returns the number of pages which were found.
1649  */
1650 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1651                                unsigned int nr_pages, struct page **pages)
1652 {
1653         struct radix_tree_iter iter;
1654         void **slot;
1655         unsigned int ret = 0;
1656
1657         if (unlikely(!nr_pages))
1658                 return 0;
1659
1660         rcu_read_lock();
1661         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1662                 struct page *head, *page;
1663 repeat:
1664                 page = radix_tree_deref_slot(slot);
1665                 /* The hole, there no reason to continue */
1666                 if (unlikely(!page))
1667                         break;
1668
1669                 if (radix_tree_exception(page)) {
1670                         if (radix_tree_deref_retry(page)) {
1671                                 slot = radix_tree_iter_retry(&iter);
1672                                 continue;
1673                         }
1674                         /*
1675                          * A shadow entry of a recently evicted page,
1676                          * or a swap entry from shmem/tmpfs.  Stop
1677                          * looking for contiguous pages.
1678                          */
1679                         break;
1680                 }
1681
1682                 head = compound_head(page);
1683                 if (!page_cache_get_speculative(head))
1684                         goto repeat;
1685
1686                 /* The page was split under us? */
1687                 if (compound_head(page) != head) {
1688                         put_page(head);
1689                         goto repeat;
1690                 }
1691
1692                 /* Has the page moved? */
1693                 if (unlikely(page != *slot)) {
1694                         put_page(head);
1695                         goto repeat;
1696                 }
1697
1698                 /*
1699                  * must check mapping and index after taking the ref.
1700                  * otherwise we can get both false positives and false
1701                  * negatives, which is just confusing to the caller.
1702                  */
1703                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1704                         put_page(page);
1705                         break;
1706                 }
1707
1708                 pages[ret] = page;
1709                 if (++ret == nr_pages)
1710                         break;
1711         }
1712         rcu_read_unlock();
1713         return ret;
1714 }
1715 EXPORT_SYMBOL(find_get_pages_contig);
1716
1717 /**
1718  * find_get_pages_tag - find and return pages that match @tag
1719  * @mapping:    the address_space to search
1720  * @index:      the starting page index
1721  * @tag:        the tag index
1722  * @nr_pages:   the maximum number of pages
1723  * @pages:      where the resulting pages are placed
1724  *
1725  * Like find_get_pages, except we only return pages which are tagged with
1726  * @tag.   We update @index to index the next page for the traversal.
1727  */
1728 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1729                         int tag, unsigned int nr_pages, struct page **pages)
1730 {
1731         struct radix_tree_iter iter;
1732         void **slot;
1733         unsigned ret = 0;
1734
1735         if (unlikely(!nr_pages))
1736                 return 0;
1737
1738         rcu_read_lock();
1739         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1740                                    &iter, *index, tag) {
1741                 struct page *head, *page;
1742 repeat:
1743                 page = radix_tree_deref_slot(slot);
1744                 if (unlikely(!page))
1745                         continue;
1746
1747                 if (radix_tree_exception(page)) {
1748                         if (radix_tree_deref_retry(page)) {
1749                                 slot = radix_tree_iter_retry(&iter);
1750                                 continue;
1751                         }
1752                         /*
1753                          * A shadow entry of a recently evicted page.
1754                          *
1755                          * Those entries should never be tagged, but
1756                          * this tree walk is lockless and the tags are
1757                          * looked up in bulk, one radix tree node at a
1758                          * time, so there is a sizable window for page
1759                          * reclaim to evict a page we saw tagged.
1760                          *
1761                          * Skip over it.
1762                          */
1763                         continue;
1764                 }
1765
1766                 head = compound_head(page);
1767                 if (!page_cache_get_speculative(head))
1768                         goto repeat;
1769
1770                 /* The page was split under us? */
1771                 if (compound_head(page) != head) {
1772                         put_page(head);
1773                         goto repeat;
1774                 }
1775
1776                 /* Has the page moved? */
1777                 if (unlikely(page != *slot)) {
1778                         put_page(head);
1779                         goto repeat;
1780                 }
1781
1782                 pages[ret] = page;
1783                 if (++ret == nr_pages)
1784                         break;
1785         }
1786
1787         rcu_read_unlock();
1788
1789         if (ret)
1790                 *index = pages[ret - 1]->index + 1;
1791
1792         return ret;
1793 }
1794 EXPORT_SYMBOL(find_get_pages_tag);
1795
1796 /**
1797  * find_get_entries_tag - find and return entries that match @tag
1798  * @mapping:    the address_space to search
1799  * @start:      the starting page cache index
1800  * @tag:        the tag index
1801  * @nr_entries: the maximum number of entries
1802  * @entries:    where the resulting entries are placed
1803  * @indices:    the cache indices corresponding to the entries in @entries
1804  *
1805  * Like find_get_entries, except we only return entries which are tagged with
1806  * @tag.
1807  */
1808 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1809                         int tag, unsigned int nr_entries,
1810                         struct page **entries, pgoff_t *indices)
1811 {
1812         void **slot;
1813         unsigned int ret = 0;
1814         struct radix_tree_iter iter;
1815
1816         if (!nr_entries)
1817                 return 0;
1818
1819         rcu_read_lock();
1820         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1821                                    &iter, start, tag) {
1822                 struct page *head, *page;
1823 repeat:
1824                 page = radix_tree_deref_slot(slot);
1825                 if (unlikely(!page))
1826                         continue;
1827                 if (radix_tree_exception(page)) {
1828                         if (radix_tree_deref_retry(page)) {
1829                                 slot = radix_tree_iter_retry(&iter);
1830                                 continue;
1831                         }
1832
1833                         /*
1834                          * A shadow entry of a recently evicted page, a swap
1835                          * entry from shmem/tmpfs or a DAX entry.  Return it
1836                          * without attempting to raise page count.
1837                          */
1838                         goto export;
1839                 }
1840
1841                 head = compound_head(page);
1842                 if (!page_cache_get_speculative(head))
1843                         goto repeat;
1844
1845                 /* The page was split under us? */
1846                 if (compound_head(page) != head) {
1847                         put_page(head);
1848                         goto repeat;
1849                 }
1850
1851                 /* Has the page moved? */
1852                 if (unlikely(page != *slot)) {
1853                         put_page(head);
1854                         goto repeat;
1855                 }
1856 export:
1857                 indices[ret] = iter.index;
1858                 entries[ret] = page;
1859                 if (++ret == nr_entries)
1860                         break;
1861         }
1862         rcu_read_unlock();
1863         return ret;
1864 }
1865 EXPORT_SYMBOL(find_get_entries_tag);
1866
1867 /*
1868  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1869  * a _large_ part of the i/o request. Imagine the worst scenario:
1870  *
1871  *      ---R__________________________________________B__________
1872  *         ^ reading here                             ^ bad block(assume 4k)
1873  *
1874  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1875  * => failing the whole request => read(R) => read(R+1) =>
1876  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1877  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1878  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1879  *
1880  * It is going insane. Fix it by quickly scaling down the readahead size.
1881  */
1882 static void shrink_readahead_size_eio(struct file *filp,
1883                                         struct file_ra_state *ra)
1884 {
1885         ra->ra_pages /= 4;
1886 }
1887
1888 /**
1889  * do_generic_file_read - generic file read routine
1890  * @filp:       the file to read
1891  * @ppos:       current file position
1892  * @iter:       data destination
1893  * @written:    already copied
1894  *
1895  * This is a generic file read routine, and uses the
1896  * mapping->a_ops->readpage() function for the actual low-level stuff.
1897  *
1898  * This is really ugly. But the goto's actually try to clarify some
1899  * of the logic when it comes to error handling etc.
1900  */
1901 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1902                 struct iov_iter *iter, ssize_t written)
1903 {
1904         struct address_space *mapping = filp->f_mapping;
1905         struct inode *inode = mapping->host;
1906         struct file_ra_state *ra = &filp->f_ra;
1907         pgoff_t index;
1908         pgoff_t last_index;
1909         pgoff_t prev_index;
1910         unsigned long offset;      /* offset into pagecache page */
1911         unsigned int prev_offset;
1912         int error = 0;
1913
1914         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1915                 return 0;
1916         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1917
1918         index = *ppos >> PAGE_SHIFT;
1919         prev_index = ra->prev_pos >> PAGE_SHIFT;
1920         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1921         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1922         offset = *ppos & ~PAGE_MASK;
1923
1924         for (;;) {
1925                 struct page *page;
1926                 pgoff_t end_index;
1927                 loff_t isize;
1928                 unsigned long nr, ret;
1929
1930                 cond_resched();
1931 find_page:
1932                 if (fatal_signal_pending(current)) {
1933                         error = -EINTR;
1934                         goto out;
1935                 }
1936
1937                 page = find_get_page(mapping, index);
1938                 if (!page) {
1939                         page_cache_sync_readahead(mapping,
1940                                         ra, filp,
1941                                         index, last_index - index);
1942                         page = find_get_page(mapping, index);
1943                         if (unlikely(page == NULL))
1944                                 goto no_cached_page;
1945                 }
1946                 if (PageReadahead(page)) {
1947                         page_cache_async_readahead(mapping,
1948                                         ra, filp, page,
1949                                         index, last_index - index);
1950                 }
1951                 if (!PageUptodate(page)) {
1952                         /*
1953                          * See comment in do_read_cache_page on why
1954                          * wait_on_page_locked is used to avoid unnecessarily
1955                          * serialisations and why it's safe.
1956                          */
1957                         error = wait_on_page_locked_killable(page);
1958                         if (unlikely(error))
1959                                 goto readpage_error;
1960                         if (PageUptodate(page))
1961                                 goto page_ok;
1962
1963                         if (inode->i_blkbits == PAGE_SHIFT ||
1964                                         !mapping->a_ops->is_partially_uptodate)
1965                                 goto page_not_up_to_date;
1966                         /* pipes can't handle partially uptodate pages */
1967                         if (unlikely(iter->type & ITER_PIPE))
1968                                 goto page_not_up_to_date;
1969                         if (!trylock_page(page))
1970                                 goto page_not_up_to_date;
1971                         /* Did it get truncated before we got the lock? */
1972                         if (!page->mapping)
1973                                 goto page_not_up_to_date_locked;
1974                         if (!mapping->a_ops->is_partially_uptodate(page,
1975                                                         offset, iter->count))
1976                                 goto page_not_up_to_date_locked;
1977                         unlock_page(page);
1978                 }
1979 page_ok:
1980                 /*
1981                  * i_size must be checked after we know the page is Uptodate.
1982                  *
1983                  * Checking i_size after the check allows us to calculate
1984                  * the correct value for "nr", which means the zero-filled
1985                  * part of the page is not copied back to userspace (unless
1986                  * another truncate extends the file - this is desired though).
1987                  */
1988
1989                 isize = i_size_read(inode);
1990                 end_index = (isize - 1) >> PAGE_SHIFT;
1991                 if (unlikely(!isize || index > end_index)) {
1992                         put_page(page);
1993                         goto out;
1994                 }
1995
1996                 /* nr is the maximum number of bytes to copy from this page */
1997                 nr = PAGE_SIZE;
1998                 if (index == end_index) {
1999                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
2000                         if (nr <= offset) {
2001                                 put_page(page);
2002                                 goto out;
2003                         }
2004                 }
2005                 nr = nr - offset;
2006
2007                 /* If users can be writing to this page using arbitrary
2008                  * virtual addresses, take care about potential aliasing
2009                  * before reading the page on the kernel side.
2010                  */
2011                 if (mapping_writably_mapped(mapping))
2012                         flush_dcache_page(page);
2013
2014                 /*
2015                  * When a sequential read accesses a page several times,
2016                  * only mark it as accessed the first time.
2017                  */
2018                 if (prev_index != index || offset != prev_offset)
2019                         mark_page_accessed(page);
2020                 prev_index = index;
2021
2022                 /*
2023                  * Ok, we have the page, and it's up-to-date, so
2024                  * now we can copy it to user space...
2025                  */
2026
2027                 ret = copy_page_to_iter(page, offset, nr, iter);
2028                 offset += ret;
2029                 index += offset >> PAGE_SHIFT;
2030                 offset &= ~PAGE_MASK;
2031                 prev_offset = offset;
2032
2033                 put_page(page);
2034                 written += ret;
2035                 if (!iov_iter_count(iter))
2036                         goto out;
2037                 if (ret < nr) {
2038                         error = -EFAULT;
2039                         goto out;
2040                 }
2041                 continue;
2042
2043 page_not_up_to_date:
2044                 /* Get exclusive access to the page ... */
2045                 error = lock_page_killable(page);
2046                 if (unlikely(error))
2047                         goto readpage_error;
2048
2049 page_not_up_to_date_locked:
2050                 /* Did it get truncated before we got the lock? */
2051                 if (!page->mapping) {
2052                         unlock_page(page);
2053                         put_page(page);
2054                         continue;
2055                 }
2056
2057                 /* Did somebody else fill it already? */
2058                 if (PageUptodate(page)) {
2059                         unlock_page(page);
2060                         goto page_ok;
2061                 }
2062
2063 readpage:
2064                 /*
2065                  * A previous I/O error may have been due to temporary
2066                  * failures, eg. multipath errors.
2067                  * PG_error will be set again if readpage fails.
2068                  */
2069                 ClearPageError(page);
2070                 /* Start the actual read. The read will unlock the page. */
2071                 error = mapping->a_ops->readpage(filp, page);
2072
2073                 if (unlikely(error)) {
2074                         if (error == AOP_TRUNCATED_PAGE) {
2075                                 put_page(page);
2076                                 error = 0;
2077                                 goto find_page;
2078                         }
2079                         goto readpage_error;
2080                 }
2081
2082                 if (!PageUptodate(page)) {
2083                         error = lock_page_killable(page);
2084                         if (unlikely(error))
2085                                 goto readpage_error;
2086                         if (!PageUptodate(page)) {
2087                                 if (page->mapping == NULL) {
2088                                         /*
2089                                          * invalidate_mapping_pages got it
2090                                          */
2091                                         unlock_page(page);
2092                                         put_page(page);
2093                                         goto find_page;
2094                                 }
2095                                 unlock_page(page);
2096                                 shrink_readahead_size_eio(filp, ra);
2097                                 error = -EIO;
2098                                 goto readpage_error;
2099                         }
2100                         unlock_page(page);
2101                 }
2102
2103                 goto page_ok;
2104
2105 readpage_error:
2106                 /* UHHUH! A synchronous read error occurred. Report it */
2107                 put_page(page);
2108                 goto out;
2109
2110 no_cached_page:
2111                 /*
2112                  * Ok, it wasn't cached, so we need to create a new
2113                  * page..
2114                  */
2115                 page = page_cache_alloc_cold(mapping);
2116                 if (!page) {
2117                         error = -ENOMEM;
2118                         goto out;
2119                 }
2120                 error = add_to_page_cache_lru(page, mapping, index,
2121                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2122                 if (error) {
2123                         put_page(page);
2124                         if (error == -EEXIST) {
2125                                 error = 0;
2126                                 goto find_page;
2127                         }
2128                         goto out;
2129                 }
2130                 goto readpage;
2131         }
2132
2133 out:
2134         ra->prev_pos = prev_index;
2135         ra->prev_pos <<= PAGE_SHIFT;
2136         ra->prev_pos |= prev_offset;
2137
2138         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2139         file_accessed(filp);
2140         return written ? written : error;
2141 }
2142
2143 /**
2144  * generic_file_read_iter - generic filesystem read routine
2145  * @iocb:       kernel I/O control block
2146  * @iter:       destination for the data read
2147  *
2148  * This is the "read_iter()" routine for all filesystems
2149  * that can use the page cache directly.
2150  */
2151 ssize_t
2152 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2153 {
2154         struct file *file = iocb->ki_filp;
2155         ssize_t retval = 0;
2156         size_t count = iov_iter_count(iter);
2157
2158         if (!count)
2159                 goto out; /* skip atime */
2160
2161         if (iocb->ki_flags & IOCB_DIRECT) {
2162                 struct address_space *mapping = file->f_mapping;
2163                 struct inode *inode = mapping->host;
2164                 loff_t size;
2165
2166                 size = i_size_read(inode);
2167                 if (iocb->ki_flags & IOCB_NOWAIT) {
2168                         if (filemap_range_has_page(mapping, iocb->ki_pos,
2169                                                    iocb->ki_pos + count - 1))
2170                                 return -EAGAIN;
2171                 } else {
2172                         retval = filemap_write_and_wait_range(mapping,
2173                                                 iocb->ki_pos,
2174                                                 iocb->ki_pos + count - 1);
2175                         if (retval < 0)
2176                                 goto out;
2177                 }
2178
2179                 file_accessed(file);
2180
2181                 retval = mapping->a_ops->direct_IO(iocb, iter);
2182                 if (retval >= 0) {
2183                         iocb->ki_pos += retval;
2184                         count -= retval;
2185                 }
2186                 iov_iter_revert(iter, count - iov_iter_count(iter));
2187
2188                 /*
2189                  * Btrfs can have a short DIO read if we encounter
2190                  * compressed extents, so if there was an error, or if
2191                  * we've already read everything we wanted to, or if
2192                  * there was a short read because we hit EOF, go ahead
2193                  * and return.  Otherwise fallthrough to buffered io for
2194                  * the rest of the read.  Buffered reads will not work for
2195                  * DAX files, so don't bother trying.
2196                  */
2197                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2198                     IS_DAX(inode))
2199                         goto out;
2200         }
2201
2202         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2203 out:
2204         return retval;
2205 }
2206 EXPORT_SYMBOL(generic_file_read_iter);
2207
2208 #ifdef CONFIG_MMU
2209 /**
2210  * page_cache_read - adds requested page to the page cache if not already there
2211  * @file:       file to read
2212  * @offset:     page index
2213  * @gfp_mask:   memory allocation flags
2214  *
2215  * This adds the requested page to the page cache if it isn't already there,
2216  * and schedules an I/O to read in its contents from disk.
2217  */
2218 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2219 {
2220         struct address_space *mapping = file->f_mapping;
2221         struct page *page;
2222         int ret;
2223
2224         do {
2225                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2226                 if (!page)
2227                         return -ENOMEM;
2228
2229                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2230                 if (ret == 0)
2231                         ret = mapping->a_ops->readpage(file, page);
2232                 else if (ret == -EEXIST)
2233                         ret = 0; /* losing race to add is OK */
2234
2235                 put_page(page);
2236
2237         } while (ret == AOP_TRUNCATED_PAGE);
2238
2239         return ret;
2240 }
2241
2242 #define MMAP_LOTSAMISS  (100)
2243
2244 /*
2245  * Synchronous readahead happens when we don't even find
2246  * a page in the page cache at all.
2247  */
2248 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2249                                    struct file_ra_state *ra,
2250                                    struct file *file,
2251                                    pgoff_t offset)
2252 {
2253         struct address_space *mapping = file->f_mapping;
2254
2255         /* If we don't want any read-ahead, don't bother */
2256         if (vma->vm_flags & VM_RAND_READ)
2257                 return;
2258         if (!ra->ra_pages)
2259                 return;
2260
2261         if (vma->vm_flags & VM_SEQ_READ) {
2262                 page_cache_sync_readahead(mapping, ra, file, offset,
2263                                           ra->ra_pages);
2264                 return;
2265         }
2266
2267         /* Avoid banging the cache line if not needed */
2268         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2269                 ra->mmap_miss++;
2270
2271         /*
2272          * Do we miss much more than hit in this file? If so,
2273          * stop bothering with read-ahead. It will only hurt.
2274          */
2275         if (ra->mmap_miss > MMAP_LOTSAMISS)
2276                 return;
2277
2278         /*
2279          * mmap read-around
2280          */
2281         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2282         ra->size = ra->ra_pages;
2283         ra->async_size = ra->ra_pages / 4;
2284         ra_submit(ra, mapping, file);
2285 }
2286
2287 /*
2288  * Asynchronous readahead happens when we find the page and PG_readahead,
2289  * so we want to possibly extend the readahead further..
2290  */
2291 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2292                                     struct file_ra_state *ra,
2293                                     struct file *file,
2294                                     struct page *page,
2295                                     pgoff_t offset)
2296 {
2297         struct address_space *mapping = file->f_mapping;
2298
2299         /* If we don't want any read-ahead, don't bother */
2300         if (vma->vm_flags & VM_RAND_READ)
2301                 return;
2302         if (ra->mmap_miss > 0)
2303                 ra->mmap_miss--;
2304         if (PageReadahead(page))
2305                 page_cache_async_readahead(mapping, ra, file,
2306                                            page, offset, ra->ra_pages);
2307 }
2308
2309 /**
2310  * filemap_fault - read in file data for page fault handling
2311  * @vmf:        struct vm_fault containing details of the fault
2312  *
2313  * filemap_fault() is invoked via the vma operations vector for a
2314  * mapped memory region to read in file data during a page fault.
2315  *
2316  * The goto's are kind of ugly, but this streamlines the normal case of having
2317  * it in the page cache, and handles the special cases reasonably without
2318  * having a lot of duplicated code.
2319  *
2320  * vma->vm_mm->mmap_sem must be held on entry.
2321  *
2322  * If our return value has VM_FAULT_RETRY set, it's because
2323  * lock_page_or_retry() returned 0.
2324  * The mmap_sem has usually been released in this case.
2325  * See __lock_page_or_retry() for the exception.
2326  *
2327  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2328  * has not been released.
2329  *
2330  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2331  */
2332 int filemap_fault(struct vm_fault *vmf)
2333 {
2334         int error;
2335         struct file *file = vmf->vma->vm_file;
2336         struct address_space *mapping = file->f_mapping;
2337         struct file_ra_state *ra = &file->f_ra;
2338         struct inode *inode = mapping->host;
2339         pgoff_t offset = vmf->pgoff;
2340         pgoff_t max_off;
2341         struct page *page;
2342         int ret = 0;
2343
2344         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2345         if (unlikely(offset >= max_off))
2346                 return VM_FAULT_SIGBUS;
2347
2348         /*
2349          * Do we have something in the page cache already?
2350          */
2351         page = find_get_page(mapping, offset);
2352         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2353                 /*
2354                  * We found the page, so try async readahead before
2355                  * waiting for the lock.
2356                  */
2357                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2358         } else if (!page) {
2359                 /* No page in the page cache at all */
2360                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2361                 count_vm_event(PGMAJFAULT);
2362                 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2363                 ret = VM_FAULT_MAJOR;
2364 retry_find:
2365                 page = find_get_page(mapping, offset);
2366                 if (!page)
2367                         goto no_cached_page;
2368         }
2369
2370         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2371                 put_page(page);
2372                 return ret | VM_FAULT_RETRY;
2373         }
2374
2375         /* Did it get truncated? */
2376         if (unlikely(page->mapping != mapping)) {
2377                 unlock_page(page);
2378                 put_page(page);
2379                 goto retry_find;
2380         }
2381         VM_BUG_ON_PAGE(page->index != offset, page);
2382
2383         /*
2384          * We have a locked page in the page cache, now we need to check
2385          * that it's up-to-date. If not, it is going to be due to an error.
2386          */
2387         if (unlikely(!PageUptodate(page)))
2388                 goto page_not_uptodate;
2389
2390         /*
2391          * Found the page and have a reference on it.
2392          * We must recheck i_size under page lock.
2393          */
2394         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2395         if (unlikely(offset >= max_off)) {
2396                 unlock_page(page);
2397                 put_page(page);
2398                 return VM_FAULT_SIGBUS;
2399         }
2400
2401         vmf->page = page;
2402         return ret | VM_FAULT_LOCKED;
2403
2404 no_cached_page:
2405         /*
2406          * We're only likely to ever get here if MADV_RANDOM is in
2407          * effect.
2408          */
2409         error = page_cache_read(file, offset, vmf->gfp_mask);
2410
2411         /*
2412          * The page we want has now been added to the page cache.
2413          * In the unlikely event that someone removed it in the
2414          * meantime, we'll just come back here and read it again.
2415          */
2416         if (error >= 0)
2417                 goto retry_find;
2418
2419         /*
2420          * An error return from page_cache_read can result if the
2421          * system is low on memory, or a problem occurs while trying
2422          * to schedule I/O.
2423          */
2424         if (error == -ENOMEM)
2425                 return VM_FAULT_OOM;
2426         return VM_FAULT_SIGBUS;
2427
2428 page_not_uptodate:
2429         /*
2430          * Umm, take care of errors if the page isn't up-to-date.
2431          * Try to re-read it _once_. We do this synchronously,
2432          * because there really aren't any performance issues here
2433          * and we need to check for errors.
2434          */
2435         ClearPageError(page);
2436         error = mapping->a_ops->readpage(file, page);
2437         if (!error) {
2438                 wait_on_page_locked(page);
2439                 if (!PageUptodate(page))
2440                         error = -EIO;
2441         }
2442         put_page(page);
2443
2444         if (!error || error == AOP_TRUNCATED_PAGE)
2445                 goto retry_find;
2446
2447         /* Things didn't work out. Return zero to tell the mm layer so. */
2448         shrink_readahead_size_eio(file, ra);
2449         return VM_FAULT_SIGBUS;
2450 }
2451 EXPORT_SYMBOL(filemap_fault);
2452
2453 void filemap_map_pages(struct vm_fault *vmf,
2454                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2455 {
2456         struct radix_tree_iter iter;
2457         void **slot;
2458         struct file *file = vmf->vma->vm_file;
2459         struct address_space *mapping = file->f_mapping;
2460         pgoff_t last_pgoff = start_pgoff;
2461         unsigned long max_idx;
2462         struct page *head, *page;
2463
2464         rcu_read_lock();
2465         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2466                         start_pgoff) {
2467                 if (iter.index > end_pgoff)
2468                         break;
2469 repeat:
2470                 page = radix_tree_deref_slot(slot);
2471                 if (unlikely(!page))
2472                         goto next;
2473                 if (radix_tree_exception(page)) {
2474                         if (radix_tree_deref_retry(page)) {
2475                                 slot = radix_tree_iter_retry(&iter);
2476                                 continue;
2477                         }
2478                         goto next;
2479                 }
2480
2481                 head = compound_head(page);
2482                 if (!page_cache_get_speculative(head))
2483                         goto repeat;
2484
2485                 /* The page was split under us? */
2486                 if (compound_head(page) != head) {
2487                         put_page(head);
2488                         goto repeat;
2489                 }
2490
2491                 /* Has the page moved? */
2492                 if (unlikely(page != *slot)) {
2493                         put_page(head);
2494                         goto repeat;
2495                 }
2496
2497                 if (!PageUptodate(page) ||
2498                                 PageReadahead(page) ||
2499                                 PageHWPoison(page))
2500                         goto skip;
2501                 if (!trylock_page(page))
2502                         goto skip;
2503
2504                 if (page->mapping != mapping || !PageUptodate(page))
2505                         goto unlock;
2506
2507                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2508                 if (page->index >= max_idx)
2509                         goto unlock;
2510
2511                 if (file->f_ra.mmap_miss > 0)
2512                         file->f_ra.mmap_miss--;
2513
2514                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2515                 if (vmf->pte)
2516                         vmf->pte += iter.index - last_pgoff;
2517                 last_pgoff = iter.index;
2518                 if (alloc_set_pte(vmf, NULL, page))
2519                         goto unlock;
2520                 unlock_page(page);
2521                 goto next;
2522 unlock:
2523                 unlock_page(page);
2524 skip:
2525                 put_page(page);
2526 next:
2527                 /* Huge page is mapped? No need to proceed. */
2528                 if (pmd_trans_huge(*vmf->pmd))
2529                         break;
2530                 if (iter.index == end_pgoff)
2531                         break;
2532         }
2533         rcu_read_unlock();
2534 }
2535 EXPORT_SYMBOL(filemap_map_pages);
2536
2537 int filemap_page_mkwrite(struct vm_fault *vmf)
2538 {
2539         struct page *page = vmf->page;
2540         struct inode *inode = file_inode(vmf->vma->vm_file);
2541         int ret = VM_FAULT_LOCKED;
2542
2543         sb_start_pagefault(inode->i_sb);
2544         file_update_time(vmf->vma->vm_file);
2545         lock_page(page);
2546         if (page->mapping != inode->i_mapping) {
2547                 unlock_page(page);
2548                 ret = VM_FAULT_NOPAGE;
2549                 goto out;
2550         }
2551         /*
2552          * We mark the page dirty already here so that when freeze is in
2553          * progress, we are guaranteed that writeback during freezing will
2554          * see the dirty page and writeprotect it again.
2555          */
2556         set_page_dirty(page);
2557         wait_for_stable_page(page);
2558 out:
2559         sb_end_pagefault(inode->i_sb);
2560         return ret;
2561 }
2562 EXPORT_SYMBOL(filemap_page_mkwrite);
2563
2564 const struct vm_operations_struct generic_file_vm_ops = {
2565         .fault          = filemap_fault,
2566         .map_pages      = filemap_map_pages,
2567         .page_mkwrite   = filemap_page_mkwrite,
2568 };
2569
2570 /* This is used for a general mmap of a disk file */
2571
2572 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2573 {
2574         struct address_space *mapping = file->f_mapping;
2575
2576         if (!mapping->a_ops->readpage)
2577                 return -ENOEXEC;
2578         file_accessed(file);
2579         vma->vm_ops = &generic_file_vm_ops;
2580         return 0;
2581 }
2582
2583 /*
2584  * This is for filesystems which do not implement ->writepage.
2585  */
2586 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2587 {
2588         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2589                 return -EINVAL;
2590         return generic_file_mmap(file, vma);
2591 }
2592 #else
2593 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2594 {
2595         return -ENOSYS;
2596 }
2597 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2598 {
2599         return -ENOSYS;
2600 }
2601 #endif /* CONFIG_MMU */
2602
2603 EXPORT_SYMBOL(generic_file_mmap);
2604 EXPORT_SYMBOL(generic_file_readonly_mmap);
2605
2606 static struct page *wait_on_page_read(struct page *page)
2607 {
2608         if (!IS_ERR(page)) {
2609                 wait_on_page_locked(page);
2610                 if (!PageUptodate(page)) {
2611                         put_page(page);
2612                         page = ERR_PTR(-EIO);
2613                 }
2614         }
2615         return page;
2616 }
2617
2618 static struct page *do_read_cache_page(struct address_space *mapping,
2619                                 pgoff_t index,
2620                                 int (*filler)(void *, struct page *),
2621                                 void *data,
2622                                 gfp_t gfp)
2623 {
2624         struct page *page;
2625         int err;
2626 repeat:
2627         page = find_get_page(mapping, index);
2628         if (!page) {
2629                 page = __page_cache_alloc(gfp | __GFP_COLD);
2630                 if (!page)
2631                         return ERR_PTR(-ENOMEM);
2632                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2633                 if (unlikely(err)) {
2634                         put_page(page);
2635                         if (err == -EEXIST)
2636                                 goto repeat;
2637                         /* Presumably ENOMEM for radix tree node */
2638                         return ERR_PTR(err);
2639                 }
2640
2641 filler:
2642                 err = filler(data, page);
2643                 if (err < 0) {
2644                         put_page(page);
2645                         return ERR_PTR(err);
2646                 }
2647
2648                 page = wait_on_page_read(page);
2649                 if (IS_ERR(page))
2650                         return page;
2651                 goto out;
2652         }
2653         if (PageUptodate(page))
2654                 goto out;
2655
2656         /*
2657          * Page is not up to date and may be locked due one of the following
2658          * case a: Page is being filled and the page lock is held
2659          * case b: Read/write error clearing the page uptodate status
2660          * case c: Truncation in progress (page locked)
2661          * case d: Reclaim in progress
2662          *
2663          * Case a, the page will be up to date when the page is unlocked.
2664          *    There is no need to serialise on the page lock here as the page
2665          *    is pinned so the lock gives no additional protection. Even if the
2666          *    the page is truncated, the data is still valid if PageUptodate as
2667          *    it's a race vs truncate race.
2668          * Case b, the page will not be up to date
2669          * Case c, the page may be truncated but in itself, the data may still
2670          *    be valid after IO completes as it's a read vs truncate race. The
2671          *    operation must restart if the page is not uptodate on unlock but
2672          *    otherwise serialising on page lock to stabilise the mapping gives
2673          *    no additional guarantees to the caller as the page lock is
2674          *    released before return.
2675          * Case d, similar to truncation. If reclaim holds the page lock, it
2676          *    will be a race with remove_mapping that determines if the mapping
2677          *    is valid on unlock but otherwise the data is valid and there is
2678          *    no need to serialise with page lock.
2679          *
2680          * As the page lock gives no additional guarantee, we optimistically
2681          * wait on the page to be unlocked and check if it's up to date and
2682          * use the page if it is. Otherwise, the page lock is required to
2683          * distinguish between the different cases. The motivation is that we
2684          * avoid spurious serialisations and wakeups when multiple processes
2685          * wait on the same page for IO to complete.
2686          */
2687         wait_on_page_locked(page);
2688         if (PageUptodate(page))
2689                 goto out;
2690
2691         /* Distinguish between all the cases under the safety of the lock */
2692         lock_page(page);
2693
2694         /* Case c or d, restart the operation */
2695         if (!page->mapping) {
2696                 unlock_page(page);
2697                 put_page(page);
2698                 goto repeat;
2699         }
2700
2701         /* Someone else locked and filled the page in a very small window */
2702         if (PageUptodate(page)) {
2703                 unlock_page(page);
2704                 goto out;
2705         }
2706         goto filler;
2707
2708 out:
2709         mark_page_accessed(page);
2710         return page;
2711 }
2712
2713 /**
2714  * read_cache_page - read into page cache, fill it if needed
2715  * @mapping:    the page's address_space
2716  * @index:      the page index
2717  * @filler:     function to perform the read
2718  * @data:       first arg to filler(data, page) function, often left as NULL
2719  *
2720  * Read into the page cache. If a page already exists, and PageUptodate() is
2721  * not set, try to fill the page and wait for it to become unlocked.
2722  *
2723  * If the page does not get brought uptodate, return -EIO.
2724  */
2725 struct page *read_cache_page(struct address_space *mapping,
2726                                 pgoff_t index,
2727                                 int (*filler)(void *, struct page *),
2728                                 void *data)
2729 {
2730         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2731 }
2732 EXPORT_SYMBOL(read_cache_page);
2733
2734 /**
2735  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2736  * @mapping:    the page's address_space
2737  * @index:      the page index
2738  * @gfp:        the page allocator flags to use if allocating
2739  *
2740  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2741  * any new page allocations done using the specified allocation flags.
2742  *
2743  * If the page does not get brought uptodate, return -EIO.
2744  */
2745 struct page *read_cache_page_gfp(struct address_space *mapping,
2746                                 pgoff_t index,
2747                                 gfp_t gfp)
2748 {
2749         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2750
2751         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2752 }
2753 EXPORT_SYMBOL(read_cache_page_gfp);
2754
2755 /*
2756  * Performs necessary checks before doing a write
2757  *
2758  * Can adjust writing position or amount of bytes to write.
2759  * Returns appropriate error code that caller should return or
2760  * zero in case that write should be allowed.
2761  */
2762 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2763 {
2764         struct file *file = iocb->ki_filp;
2765         struct inode *inode = file->f_mapping->host;
2766         unsigned long limit = rlimit(RLIMIT_FSIZE);
2767         loff_t pos;
2768
2769         if (!iov_iter_count(from))
2770                 return 0;
2771
2772         /* FIXME: this is for backwards compatibility with 2.4 */
2773         if (iocb->ki_flags & IOCB_APPEND)
2774                 iocb->ki_pos = i_size_read(inode);
2775
2776         pos = iocb->ki_pos;
2777
2778         if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2779                 return -EINVAL;
2780
2781         if (limit != RLIM_INFINITY) {
2782                 if (iocb->ki_pos >= limit) {
2783                         send_sig(SIGXFSZ, current, 0);
2784                         return -EFBIG;
2785                 }
2786                 iov_iter_truncate(from, limit - (unsigned long)pos);
2787         }
2788
2789         /*
2790          * LFS rule
2791          */
2792         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2793                                 !(file->f_flags & O_LARGEFILE))) {
2794                 if (pos >= MAX_NON_LFS)
2795                         return -EFBIG;
2796                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2797         }
2798
2799         /*
2800          * Are we about to exceed the fs block limit ?
2801          *
2802          * If we have written data it becomes a short write.  If we have
2803          * exceeded without writing data we send a signal and return EFBIG.
2804          * Linus frestrict idea will clean these up nicely..
2805          */
2806         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2807                 return -EFBIG;
2808
2809         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2810         return iov_iter_count(from);
2811 }
2812 EXPORT_SYMBOL(generic_write_checks);
2813
2814 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2815                                 loff_t pos, unsigned len, unsigned flags,
2816                                 struct page **pagep, void **fsdata)
2817 {
2818         const struct address_space_operations *aops = mapping->a_ops;
2819
2820         return aops->write_begin(file, mapping, pos, len, flags,
2821                                                         pagep, fsdata);
2822 }
2823 EXPORT_SYMBOL(pagecache_write_begin);
2824
2825 int pagecache_write_end(struct file *file, struct address_space *mapping,
2826                                 loff_t pos, unsigned len, unsigned copied,
2827                                 struct page *page, void *fsdata)
2828 {
2829         const struct address_space_operations *aops = mapping->a_ops;
2830
2831         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2832 }
2833 EXPORT_SYMBOL(pagecache_write_end);
2834
2835 ssize_t
2836 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2837 {
2838         struct file     *file = iocb->ki_filp;
2839         struct address_space *mapping = file->f_mapping;
2840         struct inode    *inode = mapping->host;
2841         loff_t          pos = iocb->ki_pos;
2842         ssize_t         written;
2843         size_t          write_len;
2844         pgoff_t         end;
2845
2846         write_len = iov_iter_count(from);
2847         end = (pos + write_len - 1) >> PAGE_SHIFT;
2848
2849         if (iocb->ki_flags & IOCB_NOWAIT) {
2850                 /* If there are pages to writeback, return */
2851                 if (filemap_range_has_page(inode->i_mapping, pos,
2852                                            pos + iov_iter_count(from)))
2853                         return -EAGAIN;
2854         } else {
2855                 written = filemap_write_and_wait_range(mapping, pos,
2856                                                         pos + write_len - 1);
2857                 if (written)
2858                         goto out;
2859         }
2860
2861         /*
2862          * After a write we want buffered reads to be sure to go to disk to get
2863          * the new data.  We invalidate clean cached page from the region we're
2864          * about to write.  We do this *before* the write so that we can return
2865          * without clobbering -EIOCBQUEUED from ->direct_IO().
2866          */
2867         written = invalidate_inode_pages2_range(mapping,
2868                                         pos >> PAGE_SHIFT, end);
2869         /*
2870          * If a page can not be invalidated, return 0 to fall back
2871          * to buffered write.
2872          */
2873         if (written) {
2874                 if (written == -EBUSY)
2875                         return 0;
2876                 goto out;
2877         }
2878
2879         written = mapping->a_ops->direct_IO(iocb, from);
2880
2881         /*
2882          * Finally, try again to invalidate clean pages which might have been
2883          * cached by non-direct readahead, or faulted in by get_user_pages()
2884          * if the source of the write was an mmap'ed region of the file
2885          * we're writing.  Either one is a pretty crazy thing to do,
2886          * so we don't support it 100%.  If this invalidation
2887          * fails, tough, the write still worked...
2888          */
2889         invalidate_inode_pages2_range(mapping,
2890                                 pos >> PAGE_SHIFT, end);
2891
2892         if (written > 0) {
2893                 pos += written;
2894                 write_len -= written;
2895                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2896                         i_size_write(inode, pos);
2897                         mark_inode_dirty(inode);
2898                 }
2899                 iocb->ki_pos = pos;
2900         }
2901         iov_iter_revert(from, write_len - iov_iter_count(from));
2902 out:
2903         return written;
2904 }
2905 EXPORT_SYMBOL(generic_file_direct_write);
2906
2907 /*
2908  * Find or create a page at the given pagecache position. Return the locked
2909  * page. This function is specifically for buffered writes.
2910  */
2911 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2912                                         pgoff_t index, unsigned flags)
2913 {
2914         struct page *page;
2915         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2916
2917         if (flags & AOP_FLAG_NOFS)
2918                 fgp_flags |= FGP_NOFS;
2919
2920         page = pagecache_get_page(mapping, index, fgp_flags,
2921                         mapping_gfp_mask(mapping));
2922         if (page)
2923                 wait_for_stable_page(page);
2924
2925         return page;
2926 }
2927 EXPORT_SYMBOL(grab_cache_page_write_begin);
2928
2929 ssize_t generic_perform_write(struct file *file,
2930                                 struct iov_iter *i, loff_t pos)
2931 {
2932         struct address_space *mapping = file->f_mapping;
2933         const struct address_space_operations *a_ops = mapping->a_ops;
2934         long status = 0;
2935         ssize_t written = 0;
2936         unsigned int flags = 0;
2937
2938         do {
2939                 struct page *page;
2940                 unsigned long offset;   /* Offset into pagecache page */
2941                 unsigned long bytes;    /* Bytes to write to page */
2942                 size_t copied;          /* Bytes copied from user */
2943                 void *fsdata;
2944
2945                 offset = (pos & (PAGE_SIZE - 1));
2946                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2947                                                 iov_iter_count(i));
2948
2949 again:
2950                 /*
2951                  * Bring in the user page that we will copy from _first_.
2952                  * Otherwise there's a nasty deadlock on copying from the
2953                  * same page as we're writing to, without it being marked
2954                  * up-to-date.
2955                  *
2956                  * Not only is this an optimisation, but it is also required
2957                  * to check that the address is actually valid, when atomic
2958                  * usercopies are used, below.
2959                  */
2960                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2961                         status = -EFAULT;
2962                         break;
2963                 }
2964
2965                 if (fatal_signal_pending(current)) {
2966                         status = -EINTR;
2967                         break;
2968                 }
2969
2970                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2971                                                 &page, &fsdata);
2972                 if (unlikely(status < 0))
2973                         break;
2974
2975                 if (mapping_writably_mapped(mapping))
2976                         flush_dcache_page(page);
2977
2978                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2979                 flush_dcache_page(page);
2980
2981                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2982                                                 page, fsdata);
2983                 if (unlikely(status < 0))
2984                         break;
2985                 copied = status;
2986
2987                 cond_resched();
2988
2989                 iov_iter_advance(i, copied);
2990                 if (unlikely(copied == 0)) {
2991                         /*
2992                          * If we were unable to copy any data at all, we must
2993                          * fall back to a single segment length write.
2994                          *
2995                          * If we didn't fallback here, we could livelock
2996                          * because not all segments in the iov can be copied at
2997                          * once without a pagefault.
2998                          */
2999                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
3000                                                 iov_iter_single_seg_count(i));
3001                         goto again;
3002                 }
3003                 pos += copied;
3004                 written += copied;
3005
3006                 balance_dirty_pages_ratelimited(mapping);
3007         } while (iov_iter_count(i));
3008
3009         return written ? written : status;
3010 }
3011 EXPORT_SYMBOL(generic_perform_write);
3012
3013 /**
3014  * __generic_file_write_iter - write data to a file
3015  * @iocb:       IO state structure (file, offset, etc.)
3016  * @from:       iov_iter with data to write
3017  *
3018  * This function does all the work needed for actually writing data to a
3019  * file. It does all basic checks, removes SUID from the file, updates
3020  * modification times and calls proper subroutines depending on whether we
3021  * do direct IO or a standard buffered write.
3022  *
3023  * It expects i_mutex to be grabbed unless we work on a block device or similar
3024  * object which does not need locking at all.
3025  *
3026  * This function does *not* take care of syncing data in case of O_SYNC write.
3027  * A caller has to handle it. This is mainly due to the fact that we want to
3028  * avoid syncing under i_mutex.
3029  */
3030 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3031 {
3032         struct file *file = iocb->ki_filp;
3033         struct address_space * mapping = file->f_mapping;
3034         struct inode    *inode = mapping->host;
3035         ssize_t         written = 0;
3036         ssize_t         err;
3037         ssize_t         status;
3038
3039         /* We can write back this queue in page reclaim */
3040         current->backing_dev_info = inode_to_bdi(inode);
3041         err = file_remove_privs(file);
3042         if (err)
3043                 goto out;
3044
3045         err = file_update_time(file);
3046         if (err)
3047                 goto out;
3048
3049         if (iocb->ki_flags & IOCB_DIRECT) {
3050                 loff_t pos, endbyte;
3051
3052                 written = generic_file_direct_write(iocb, from);
3053                 /*
3054                  * If the write stopped short of completing, fall back to
3055                  * buffered writes.  Some filesystems do this for writes to
3056                  * holes, for example.  For DAX files, a buffered write will
3057                  * not succeed (even if it did, DAX does not handle dirty
3058                  * page-cache pages correctly).
3059                  */
3060                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3061                         goto out;
3062
3063                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3064                 /*
3065                  * If generic_perform_write() returned a synchronous error
3066                  * then we want to return the number of bytes which were
3067                  * direct-written, or the error code if that was zero.  Note
3068                  * that this differs from normal direct-io semantics, which
3069                  * will return -EFOO even if some bytes were written.
3070                  */
3071                 if (unlikely(status < 0)) {
3072                         err = status;
3073                         goto out;
3074                 }
3075                 /*
3076                  * We need to ensure that the page cache pages are written to
3077                  * disk and invalidated to preserve the expected O_DIRECT
3078                  * semantics.
3079                  */
3080                 endbyte = pos + status - 1;
3081                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3082                 if (err == 0) {
3083                         iocb->ki_pos = endbyte + 1;
3084                         written += status;
3085                         invalidate_mapping_pages(mapping,
3086                                                  pos >> PAGE_SHIFT,
3087                                                  endbyte >> PAGE_SHIFT);
3088                 } else {
3089                         /*
3090                          * We don't know how much we wrote, so just return
3091                          * the number of bytes which were direct-written
3092                          */
3093                 }
3094         } else {
3095                 written = generic_perform_write(file, from, iocb->ki_pos);
3096                 if (likely(written > 0))
3097                         iocb->ki_pos += written;
3098         }
3099 out:
3100         current->backing_dev_info = NULL;
3101         return written ? written : err;
3102 }
3103 EXPORT_SYMBOL(__generic_file_write_iter);
3104
3105 /**
3106  * generic_file_write_iter - write data to a file
3107  * @iocb:       IO state structure
3108  * @from:       iov_iter with data to write
3109  *
3110  * This is a wrapper around __generic_file_write_iter() to be used by most
3111  * filesystems. It takes care of syncing the file in case of O_SYNC file
3112  * and acquires i_mutex as needed.
3113  */
3114 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3115 {
3116         struct file *file = iocb->ki_filp;
3117         struct inode *inode = file->f_mapping->host;
3118         ssize_t ret;
3119
3120         inode_lock(inode);
3121         ret = generic_write_checks(iocb, from);
3122         if (ret > 0)
3123                 ret = __generic_file_write_iter(iocb, from);
3124         inode_unlock(inode);
3125
3126         if (ret > 0)
3127                 ret = generic_write_sync(iocb, ret);
3128         return ret;
3129 }
3130 EXPORT_SYMBOL(generic_file_write_iter);
3131
3132 /**
3133  * try_to_release_page() - release old fs-specific metadata on a page
3134  *
3135  * @page: the page which the kernel is trying to free
3136  * @gfp_mask: memory allocation flags (and I/O mode)
3137  *
3138  * The address_space is to try to release any data against the page
3139  * (presumably at page->private).  If the release was successful, return '1'.
3140  * Otherwise return zero.
3141  *
3142  * This may also be called if PG_fscache is set on a page, indicating that the
3143  * page is known to the local caching routines.
3144  *
3145  * The @gfp_mask argument specifies whether I/O may be performed to release
3146  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3147  *
3148  */
3149 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3150 {
3151         struct address_space * const mapping = page->mapping;
3152
3153         BUG_ON(!PageLocked(page));
3154         if (PageWriteback(page))
3155                 return 0;
3156
3157         if (mapping && mapping->a_ops->releasepage)
3158                 return mapping->a_ops->releasepage(page, gfp_mask);
3159         return try_to_free_buffers(page);
3160 }
3161
3162 EXPORT_SYMBOL(try_to_release_page);