]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/memory.c
staging: sm7xxfb: fix for "rename smtc_screen_info to smtc_scr_info"
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100                                         1;
101 #else
102                                         2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107         randomize_va_space = 0;
108         return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120         zero_pfn = page_to_pfn(ZERO_PAGE(0));
121         return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 void sync_mm_rss(struct mm_struct *mm)
129 {
130         int i;
131
132         for (i = 0; i < NR_MM_COUNTERS; i++) {
133                 if (current->rss_stat.count[i]) {
134                         add_mm_counter(mm, i, current->rss_stat.count[i]);
135                         current->rss_stat.count[i] = 0;
136                 }
137         }
138         current->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143         struct task_struct *task = current;
144
145         if (likely(task->mm == mm))
146                 task->rss_stat.count[member] += val;
147         else
148                 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH  (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157         if (unlikely(task != current))
158                 return;
159         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160                 sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170
171 #endif /* SPLIT_RSS_COUNTING */
172
173 #ifdef HAVE_GENERIC_MMU_GATHER
174
175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177         struct mmu_gather_batch *batch;
178
179         batch = tlb->active;
180         if (batch->next) {
181                 tlb->active = batch->next;
182                 return 1;
183         }
184
185         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186         if (!batch)
187                 return 0;
188
189         batch->next = NULL;
190         batch->nr   = 0;
191         batch->max  = MAX_GATHER_BATCH;
192
193         tlb->active->next = batch;
194         tlb->active = batch;
195
196         return 1;
197 }
198
199 /* tlb_gather_mmu
200  *      Called to initialize an (on-stack) mmu_gather structure for page-table
201  *      tear-down from @mm. The @fullmm argument is used when @mm is without
202  *      users and we're going to destroy the full address space (exit/execve).
203  */
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205 {
206         tlb->mm = mm;
207
208         tlb->fullmm     = fullmm;
209         tlb->need_flush = 0;
210         tlb->fast_mode  = (num_possible_cpus() == 1);
211         tlb->local.next = NULL;
212         tlb->local.nr   = 0;
213         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
214         tlb->active     = &tlb->local;
215
216 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
217         tlb->batch = NULL;
218 #endif
219 }
220
221 void tlb_flush_mmu(struct mmu_gather *tlb)
222 {
223         struct mmu_gather_batch *batch;
224
225         if (!tlb->need_flush)
226                 return;
227         tlb->need_flush = 0;
228         tlb_flush(tlb);
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb_table_flush(tlb);
231 #endif
232
233         if (tlb_fast_mode(tlb))
234                 return;
235
236         for (batch = &tlb->local; batch; batch = batch->next) {
237                 free_pages_and_swap_cache(batch->pages, batch->nr);
238                 batch->nr = 0;
239         }
240         tlb->active = &tlb->local;
241 }
242
243 /* tlb_finish_mmu
244  *      Called at the end of the shootdown operation to free up any resources
245  *      that were required.
246  */
247 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
248 {
249         struct mmu_gather_batch *batch, *next;
250
251         tlb_flush_mmu(tlb);
252
253         /* keep the page table cache within bounds */
254         check_pgt_cache();
255
256         for (batch = tlb->local.next; batch; batch = next) {
257                 next = batch->next;
258                 free_pages((unsigned long)batch, 0);
259         }
260         tlb->local.next = NULL;
261 }
262
263 /* __tlb_remove_page
264  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
265  *      handling the additional races in SMP caused by other CPUs caching valid
266  *      mappings in their TLBs. Returns the number of free page slots left.
267  *      When out of page slots we must call tlb_flush_mmu().
268  */
269 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
270 {
271         struct mmu_gather_batch *batch;
272
273         VM_BUG_ON(!tlb->need_flush);
274
275         if (tlb_fast_mode(tlb)) {
276                 free_page_and_swap_cache(page);
277                 return 1; /* avoid calling tlb_flush_mmu() */
278         }
279
280         batch = tlb->active;
281         batch->pages[batch->nr++] = page;
282         if (batch->nr == batch->max) {
283                 if (!tlb_next_batch(tlb))
284                         return 0;
285                 batch = tlb->active;
286         }
287         VM_BUG_ON(batch->nr > batch->max);
288
289         return batch->max - batch->nr;
290 }
291
292 #endif /* HAVE_GENERIC_MMU_GATHER */
293
294 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
295
296 /*
297  * See the comment near struct mmu_table_batch.
298  */
299
300 static void tlb_remove_table_smp_sync(void *arg)
301 {
302         /* Simply deliver the interrupt */
303 }
304
305 static void tlb_remove_table_one(void *table)
306 {
307         /*
308          * This isn't an RCU grace period and hence the page-tables cannot be
309          * assumed to be actually RCU-freed.
310          *
311          * It is however sufficient for software page-table walkers that rely on
312          * IRQ disabling. See the comment near struct mmu_table_batch.
313          */
314         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
315         __tlb_remove_table(table);
316 }
317
318 static void tlb_remove_table_rcu(struct rcu_head *head)
319 {
320         struct mmu_table_batch *batch;
321         int i;
322
323         batch = container_of(head, struct mmu_table_batch, rcu);
324
325         for (i = 0; i < batch->nr; i++)
326                 __tlb_remove_table(batch->tables[i]);
327
328         free_page((unsigned long)batch);
329 }
330
331 void tlb_table_flush(struct mmu_gather *tlb)
332 {
333         struct mmu_table_batch **batch = &tlb->batch;
334
335         if (*batch) {
336                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
337                 *batch = NULL;
338         }
339 }
340
341 void tlb_remove_table(struct mmu_gather *tlb, void *table)
342 {
343         struct mmu_table_batch **batch = &tlb->batch;
344
345         tlb->need_flush = 1;
346
347         /*
348          * When there's less then two users of this mm there cannot be a
349          * concurrent page-table walk.
350          */
351         if (atomic_read(&tlb->mm->mm_users) < 2) {
352                 __tlb_remove_table(table);
353                 return;
354         }
355
356         if (*batch == NULL) {
357                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
358                 if (*batch == NULL) {
359                         tlb_remove_table_one(table);
360                         return;
361                 }
362                 (*batch)->nr = 0;
363         }
364         (*batch)->tables[(*batch)->nr++] = table;
365         if ((*batch)->nr == MAX_TABLE_BATCH)
366                 tlb_table_flush(tlb);
367 }
368
369 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
370
371 /*
372  * If a p?d_bad entry is found while walking page tables, report
373  * the error, before resetting entry to p?d_none.  Usually (but
374  * very seldom) called out from the p?d_none_or_clear_bad macros.
375  */
376
377 void pgd_clear_bad(pgd_t *pgd)
378 {
379         pgd_ERROR(*pgd);
380         pgd_clear(pgd);
381 }
382
383 void pud_clear_bad(pud_t *pud)
384 {
385         pud_ERROR(*pud);
386         pud_clear(pud);
387 }
388
389 void pmd_clear_bad(pmd_t *pmd)
390 {
391         pmd_ERROR(*pmd);
392         pmd_clear(pmd);
393 }
394
395 /*
396  * Note: this doesn't free the actual pages themselves. That
397  * has been handled earlier when unmapping all the memory regions.
398  */
399 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
400                            unsigned long addr)
401 {
402         pgtable_t token = pmd_pgtable(*pmd);
403         pmd_clear(pmd);
404         pte_free_tlb(tlb, token, addr);
405         tlb->mm->nr_ptes--;
406 }
407
408 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
409                                 unsigned long addr, unsigned long end,
410                                 unsigned long floor, unsigned long ceiling)
411 {
412         pmd_t *pmd;
413         unsigned long next;
414         unsigned long start;
415
416         start = addr;
417         pmd = pmd_offset(pud, addr);
418         do {
419                 next = pmd_addr_end(addr, end);
420                 if (pmd_none_or_clear_bad(pmd))
421                         continue;
422                 free_pte_range(tlb, pmd, addr);
423         } while (pmd++, addr = next, addr != end);
424
425         start &= PUD_MASK;
426         if (start < floor)
427                 return;
428         if (ceiling) {
429                 ceiling &= PUD_MASK;
430                 if (!ceiling)
431                         return;
432         }
433         if (end - 1 > ceiling - 1)
434                 return;
435
436         pmd = pmd_offset(pud, start);
437         pud_clear(pud);
438         pmd_free_tlb(tlb, pmd, start);
439 }
440
441 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
442                                 unsigned long addr, unsigned long end,
443                                 unsigned long floor, unsigned long ceiling)
444 {
445         pud_t *pud;
446         unsigned long next;
447         unsigned long start;
448
449         start = addr;
450         pud = pud_offset(pgd, addr);
451         do {
452                 next = pud_addr_end(addr, end);
453                 if (pud_none_or_clear_bad(pud))
454                         continue;
455                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
456         } while (pud++, addr = next, addr != end);
457
458         start &= PGDIR_MASK;
459         if (start < floor)
460                 return;
461         if (ceiling) {
462                 ceiling &= PGDIR_MASK;
463                 if (!ceiling)
464                         return;
465         }
466         if (end - 1 > ceiling - 1)
467                 return;
468
469         pud = pud_offset(pgd, start);
470         pgd_clear(pgd);
471         pud_free_tlb(tlb, pud, start);
472 }
473
474 /*
475  * This function frees user-level page tables of a process.
476  *
477  * Must be called with pagetable lock held.
478  */
479 void free_pgd_range(struct mmu_gather *tlb,
480                         unsigned long addr, unsigned long end,
481                         unsigned long floor, unsigned long ceiling)
482 {
483         pgd_t *pgd;
484         unsigned long next;
485
486         /*
487          * The next few lines have given us lots of grief...
488          *
489          * Why are we testing PMD* at this top level?  Because often
490          * there will be no work to do at all, and we'd prefer not to
491          * go all the way down to the bottom just to discover that.
492          *
493          * Why all these "- 1"s?  Because 0 represents both the bottom
494          * of the address space and the top of it (using -1 for the
495          * top wouldn't help much: the masks would do the wrong thing).
496          * The rule is that addr 0 and floor 0 refer to the bottom of
497          * the address space, but end 0 and ceiling 0 refer to the top
498          * Comparisons need to use "end - 1" and "ceiling - 1" (though
499          * that end 0 case should be mythical).
500          *
501          * Wherever addr is brought up or ceiling brought down, we must
502          * be careful to reject "the opposite 0" before it confuses the
503          * subsequent tests.  But what about where end is brought down
504          * by PMD_SIZE below? no, end can't go down to 0 there.
505          *
506          * Whereas we round start (addr) and ceiling down, by different
507          * masks at different levels, in order to test whether a table
508          * now has no other vmas using it, so can be freed, we don't
509          * bother to round floor or end up - the tests don't need that.
510          */
511
512         addr &= PMD_MASK;
513         if (addr < floor) {
514                 addr += PMD_SIZE;
515                 if (!addr)
516                         return;
517         }
518         if (ceiling) {
519                 ceiling &= PMD_MASK;
520                 if (!ceiling)
521                         return;
522         }
523         if (end - 1 > ceiling - 1)
524                 end -= PMD_SIZE;
525         if (addr > end - 1)
526                 return;
527
528         pgd = pgd_offset(tlb->mm, addr);
529         do {
530                 next = pgd_addr_end(addr, end);
531                 if (pgd_none_or_clear_bad(pgd))
532                         continue;
533                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
534         } while (pgd++, addr = next, addr != end);
535 }
536
537 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
538                 unsigned long floor, unsigned long ceiling)
539 {
540         while (vma) {
541                 struct vm_area_struct *next = vma->vm_next;
542                 unsigned long addr = vma->vm_start;
543
544                 /*
545                  * Hide vma from rmap and truncate_pagecache before freeing
546                  * pgtables
547                  */
548                 unlink_anon_vmas(vma);
549                 unlink_file_vma(vma);
550
551                 if (is_vm_hugetlb_page(vma)) {
552                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
553                                 floor, next? next->vm_start: ceiling);
554                 } else {
555                         /*
556                          * Optimization: gather nearby vmas into one call down
557                          */
558                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
559                                && !is_vm_hugetlb_page(next)) {
560                                 vma = next;
561                                 next = vma->vm_next;
562                                 unlink_anon_vmas(vma);
563                                 unlink_file_vma(vma);
564                         }
565                         free_pgd_range(tlb, addr, vma->vm_end,
566                                 floor, next? next->vm_start: ceiling);
567                 }
568                 vma = next;
569         }
570 }
571
572 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
573                 pmd_t *pmd, unsigned long address)
574 {
575         pgtable_t new = pte_alloc_one(mm, address);
576         int wait_split_huge_page;
577         if (!new)
578                 return -ENOMEM;
579
580         /*
581          * Ensure all pte setup (eg. pte page lock and page clearing) are
582          * visible before the pte is made visible to other CPUs by being
583          * put into page tables.
584          *
585          * The other side of the story is the pointer chasing in the page
586          * table walking code (when walking the page table without locking;
587          * ie. most of the time). Fortunately, these data accesses consist
588          * of a chain of data-dependent loads, meaning most CPUs (alpha
589          * being the notable exception) will already guarantee loads are
590          * seen in-order. See the alpha page table accessors for the
591          * smp_read_barrier_depends() barriers in page table walking code.
592          */
593         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
594
595         spin_lock(&mm->page_table_lock);
596         wait_split_huge_page = 0;
597         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
598                 mm->nr_ptes++;
599                 pmd_populate(mm, pmd, new);
600                 new = NULL;
601         } else if (unlikely(pmd_trans_splitting(*pmd)))
602                 wait_split_huge_page = 1;
603         spin_unlock(&mm->page_table_lock);
604         if (new)
605                 pte_free(mm, new);
606         if (wait_split_huge_page)
607                 wait_split_huge_page(vma->anon_vma, pmd);
608         return 0;
609 }
610
611 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
612 {
613         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
614         if (!new)
615                 return -ENOMEM;
616
617         smp_wmb(); /* See comment in __pte_alloc */
618
619         spin_lock(&init_mm.page_table_lock);
620         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
621                 pmd_populate_kernel(&init_mm, pmd, new);
622                 new = NULL;
623         } else
624                 VM_BUG_ON(pmd_trans_splitting(*pmd));
625         spin_unlock(&init_mm.page_table_lock);
626         if (new)
627                 pte_free_kernel(&init_mm, new);
628         return 0;
629 }
630
631 static inline void init_rss_vec(int *rss)
632 {
633         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
634 }
635
636 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
637 {
638         int i;
639
640         if (current->mm == mm)
641                 sync_mm_rss(mm);
642         for (i = 0; i < NR_MM_COUNTERS; i++)
643                 if (rss[i])
644                         add_mm_counter(mm, i, rss[i]);
645 }
646
647 /*
648  * This function is called to print an error when a bad pte
649  * is found. For example, we might have a PFN-mapped pte in
650  * a region that doesn't allow it.
651  *
652  * The calling function must still handle the error.
653  */
654 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655                           pte_t pte, struct page *page)
656 {
657         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658         pud_t *pud = pud_offset(pgd, addr);
659         pmd_t *pmd = pmd_offset(pud, addr);
660         struct address_space *mapping;
661         pgoff_t index;
662         static unsigned long resume;
663         static unsigned long nr_shown;
664         static unsigned long nr_unshown;
665
666         /*
667          * Allow a burst of 60 reports, then keep quiet for that minute;
668          * or allow a steady drip of one report per second.
669          */
670         if (nr_shown == 60) {
671                 if (time_before(jiffies, resume)) {
672                         nr_unshown++;
673                         return;
674                 }
675                 if (nr_unshown) {
676                         printk(KERN_ALERT
677                                 "BUG: Bad page map: %lu messages suppressed\n",
678                                 nr_unshown);
679                         nr_unshown = 0;
680                 }
681                 nr_shown = 0;
682         }
683         if (nr_shown++ == 0)
684                 resume = jiffies + 60 * HZ;
685
686         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
687         index = linear_page_index(vma, addr);
688
689         printk(KERN_ALERT
690                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
691                 current->comm,
692                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
693         if (page)
694                 dump_page(page);
695         printk(KERN_ALERT
696                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
697                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
698         /*
699          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
700          */
701         if (vma->vm_ops)
702                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
703                                 (unsigned long)vma->vm_ops->fault);
704         if (vma->vm_file && vma->vm_file->f_op)
705                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
706                                 (unsigned long)vma->vm_file->f_op->mmap);
707         dump_stack();
708         add_taint(TAINT_BAD_PAGE);
709 }
710
711 static inline int is_cow_mapping(vm_flags_t flags)
712 {
713         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
714 }
715
716 #ifndef is_zero_pfn
717 static inline int is_zero_pfn(unsigned long pfn)
718 {
719         return pfn == zero_pfn;
720 }
721 #endif
722
723 #ifndef my_zero_pfn
724 static inline unsigned long my_zero_pfn(unsigned long addr)
725 {
726         return zero_pfn;
727 }
728 #endif
729
730 /*
731  * vm_normal_page -- This function gets the "struct page" associated with a pte.
732  *
733  * "Special" mappings do not wish to be associated with a "struct page" (either
734  * it doesn't exist, or it exists but they don't want to touch it). In this
735  * case, NULL is returned here. "Normal" mappings do have a struct page.
736  *
737  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
738  * pte bit, in which case this function is trivial. Secondly, an architecture
739  * may not have a spare pte bit, which requires a more complicated scheme,
740  * described below.
741  *
742  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
743  * special mapping (even if there are underlying and valid "struct pages").
744  * COWed pages of a VM_PFNMAP are always normal.
745  *
746  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
747  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
748  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
749  * mapping will always honor the rule
750  *
751  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
752  *
753  * And for normal mappings this is false.
754  *
755  * This restricts such mappings to be a linear translation from virtual address
756  * to pfn. To get around this restriction, we allow arbitrary mappings so long
757  * as the vma is not a COW mapping; in that case, we know that all ptes are
758  * special (because none can have been COWed).
759  *
760  *
761  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
762  *
763  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
764  * page" backing, however the difference is that _all_ pages with a struct
765  * page (that is, those where pfn_valid is true) are refcounted and considered
766  * normal pages by the VM. The disadvantage is that pages are refcounted
767  * (which can be slower and simply not an option for some PFNMAP users). The
768  * advantage is that we don't have to follow the strict linearity rule of
769  * PFNMAP mappings in order to support COWable mappings.
770  *
771  */
772 #ifdef __HAVE_ARCH_PTE_SPECIAL
773 # define HAVE_PTE_SPECIAL 1
774 #else
775 # define HAVE_PTE_SPECIAL 0
776 #endif
777 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
778                                 pte_t pte)
779 {
780         unsigned long pfn = pte_pfn(pte);
781
782         if (HAVE_PTE_SPECIAL) {
783                 if (likely(!pte_special(pte)))
784                         goto check_pfn;
785                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
786                         return NULL;
787                 if (!is_zero_pfn(pfn))
788                         print_bad_pte(vma, addr, pte, NULL);
789                 return NULL;
790         }
791
792         /* !HAVE_PTE_SPECIAL case follows: */
793
794         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
795                 if (vma->vm_flags & VM_MIXEDMAP) {
796                         if (!pfn_valid(pfn))
797                                 return NULL;
798                         goto out;
799                 } else {
800                         unsigned long off;
801                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
802                         if (pfn == vma->vm_pgoff + off)
803                                 return NULL;
804                         if (!is_cow_mapping(vma->vm_flags))
805                                 return NULL;
806                 }
807         }
808
809         if (is_zero_pfn(pfn))
810                 return NULL;
811 check_pfn:
812         if (unlikely(pfn > highest_memmap_pfn)) {
813                 print_bad_pte(vma, addr, pte, NULL);
814                 return NULL;
815         }
816
817         /*
818          * NOTE! We still have PageReserved() pages in the page tables.
819          * eg. VDSO mappings can cause them to exist.
820          */
821 out:
822         return pfn_to_page(pfn);
823 }
824
825 /*
826  * copy one vm_area from one task to the other. Assumes the page tables
827  * already present in the new task to be cleared in the whole range
828  * covered by this vma.
829  */
830
831 static inline unsigned long
832 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
833                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
834                 unsigned long addr, int *rss)
835 {
836         unsigned long vm_flags = vma->vm_flags;
837         pte_t pte = *src_pte;
838         struct page *page;
839
840         /* pte contains position in swap or file, so copy. */
841         if (unlikely(!pte_present(pte))) {
842                 if (!pte_file(pte)) {
843                         swp_entry_t entry = pte_to_swp_entry(pte);
844
845                         if (swap_duplicate(entry) < 0)
846                                 return entry.val;
847
848                         /* make sure dst_mm is on swapoff's mmlist. */
849                         if (unlikely(list_empty(&dst_mm->mmlist))) {
850                                 spin_lock(&mmlist_lock);
851                                 if (list_empty(&dst_mm->mmlist))
852                                         list_add(&dst_mm->mmlist,
853                                                  &src_mm->mmlist);
854                                 spin_unlock(&mmlist_lock);
855                         }
856                         if (likely(!non_swap_entry(entry)))
857                                 rss[MM_SWAPENTS]++;
858                         else if (is_migration_entry(entry)) {
859                                 page = migration_entry_to_page(entry);
860
861                                 if (PageAnon(page))
862                                         rss[MM_ANONPAGES]++;
863                                 else
864                                         rss[MM_FILEPAGES]++;
865
866                                 if (is_write_migration_entry(entry) &&
867                                     is_cow_mapping(vm_flags)) {
868                                         /*
869                                          * COW mappings require pages in both
870                                          * parent and child to be set to read.
871                                          */
872                                         make_migration_entry_read(&entry);
873                                         pte = swp_entry_to_pte(entry);
874                                         set_pte_at(src_mm, addr, src_pte, pte);
875                                 }
876                         }
877                 }
878                 goto out_set_pte;
879         }
880
881         /*
882          * If it's a COW mapping, write protect it both
883          * in the parent and the child
884          */
885         if (is_cow_mapping(vm_flags)) {
886                 ptep_set_wrprotect(src_mm, addr, src_pte);
887                 pte = pte_wrprotect(pte);
888         }
889
890         /*
891          * If it's a shared mapping, mark it clean in
892          * the child
893          */
894         if (vm_flags & VM_SHARED)
895                 pte = pte_mkclean(pte);
896         pte = pte_mkold(pte);
897
898         page = vm_normal_page(vma, addr, pte);
899         if (page) {
900                 get_page(page);
901                 page_dup_rmap(page);
902                 if (PageAnon(page))
903                         rss[MM_ANONPAGES]++;
904                 else
905                         rss[MM_FILEPAGES]++;
906         }
907
908 out_set_pte:
909         set_pte_at(dst_mm, addr, dst_pte, pte);
910         return 0;
911 }
912
913 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
915                    unsigned long addr, unsigned long end)
916 {
917         pte_t *orig_src_pte, *orig_dst_pte;
918         pte_t *src_pte, *dst_pte;
919         spinlock_t *src_ptl, *dst_ptl;
920         int progress = 0;
921         int rss[NR_MM_COUNTERS];
922         swp_entry_t entry = (swp_entry_t){0};
923
924 again:
925         init_rss_vec(rss);
926
927         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
928         if (!dst_pte)
929                 return -ENOMEM;
930         src_pte = pte_offset_map(src_pmd, addr);
931         src_ptl = pte_lockptr(src_mm, src_pmd);
932         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
933         orig_src_pte = src_pte;
934         orig_dst_pte = dst_pte;
935         arch_enter_lazy_mmu_mode();
936
937         do {
938                 /*
939                  * We are holding two locks at this point - either of them
940                  * could generate latencies in another task on another CPU.
941                  */
942                 if (progress >= 32) {
943                         progress = 0;
944                         if (need_resched() ||
945                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
946                                 break;
947                 }
948                 if (pte_none(*src_pte)) {
949                         progress++;
950                         continue;
951                 }
952                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
953                                                         vma, addr, rss);
954                 if (entry.val)
955                         break;
956                 progress += 8;
957         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
958
959         arch_leave_lazy_mmu_mode();
960         spin_unlock(src_ptl);
961         pte_unmap(orig_src_pte);
962         add_mm_rss_vec(dst_mm, rss);
963         pte_unmap_unlock(orig_dst_pte, dst_ptl);
964         cond_resched();
965
966         if (entry.val) {
967                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
968                         return -ENOMEM;
969                 progress = 0;
970         }
971         if (addr != end)
972                 goto again;
973         return 0;
974 }
975
976 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
977                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
978                 unsigned long addr, unsigned long end)
979 {
980         pmd_t *src_pmd, *dst_pmd;
981         unsigned long next;
982
983         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
984         if (!dst_pmd)
985                 return -ENOMEM;
986         src_pmd = pmd_offset(src_pud, addr);
987         do {
988                 next = pmd_addr_end(addr, end);
989                 if (pmd_trans_huge(*src_pmd)) {
990                         int err;
991                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
992                         err = copy_huge_pmd(dst_mm, src_mm,
993                                             dst_pmd, src_pmd, addr, vma);
994                         if (err == -ENOMEM)
995                                 return -ENOMEM;
996                         if (!err)
997                                 continue;
998                         /* fall through */
999                 }
1000                 if (pmd_none_or_clear_bad(src_pmd))
1001                         continue;
1002                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1003                                                 vma, addr, next))
1004                         return -ENOMEM;
1005         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1006         return 0;
1007 }
1008
1009 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1011                 unsigned long addr, unsigned long end)
1012 {
1013         pud_t *src_pud, *dst_pud;
1014         unsigned long next;
1015
1016         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1017         if (!dst_pud)
1018                 return -ENOMEM;
1019         src_pud = pud_offset(src_pgd, addr);
1020         do {
1021                 next = pud_addr_end(addr, end);
1022                 if (pud_none_or_clear_bad(src_pud))
1023                         continue;
1024                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1025                                                 vma, addr, next))
1026                         return -ENOMEM;
1027         } while (dst_pud++, src_pud++, addr = next, addr != end);
1028         return 0;
1029 }
1030
1031 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032                 struct vm_area_struct *vma)
1033 {
1034         pgd_t *src_pgd, *dst_pgd;
1035         unsigned long next;
1036         unsigned long addr = vma->vm_start;
1037         unsigned long end = vma->vm_end;
1038         int ret;
1039
1040         /*
1041          * Don't copy ptes where a page fault will fill them correctly.
1042          * Fork becomes much lighter when there are big shared or private
1043          * readonly mappings. The tradeoff is that copy_page_range is more
1044          * efficient than faulting.
1045          */
1046         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1047                 if (!vma->anon_vma)
1048                         return 0;
1049         }
1050
1051         if (is_vm_hugetlb_page(vma))
1052                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1053
1054         if (unlikely(is_pfn_mapping(vma))) {
1055                 /*
1056                  * We do not free on error cases below as remove_vma
1057                  * gets called on error from higher level routine
1058                  */
1059                 ret = track_pfn_vma_copy(vma);
1060                 if (ret)
1061                         return ret;
1062         }
1063
1064         /*
1065          * We need to invalidate the secondary MMU mappings only when
1066          * there could be a permission downgrade on the ptes of the
1067          * parent mm. And a permission downgrade will only happen if
1068          * is_cow_mapping() returns true.
1069          */
1070         if (is_cow_mapping(vma->vm_flags))
1071                 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1072
1073         ret = 0;
1074         dst_pgd = pgd_offset(dst_mm, addr);
1075         src_pgd = pgd_offset(src_mm, addr);
1076         do {
1077                 next = pgd_addr_end(addr, end);
1078                 if (pgd_none_or_clear_bad(src_pgd))
1079                         continue;
1080                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081                                             vma, addr, next))) {
1082                         ret = -ENOMEM;
1083                         break;
1084                 }
1085         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086
1087         if (is_cow_mapping(vma->vm_flags))
1088                 mmu_notifier_invalidate_range_end(src_mm,
1089                                                   vma->vm_start, end);
1090         return ret;
1091 }
1092
1093 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1094                                 struct vm_area_struct *vma, pmd_t *pmd,
1095                                 unsigned long addr, unsigned long end,
1096                                 struct zap_details *details)
1097 {
1098         struct mm_struct *mm = tlb->mm;
1099         int force_flush = 0;
1100         int rss[NR_MM_COUNTERS];
1101         spinlock_t *ptl;
1102         pte_t *start_pte;
1103         pte_t *pte;
1104
1105 again:
1106         init_rss_vec(rss);
1107         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1108         pte = start_pte;
1109         arch_enter_lazy_mmu_mode();
1110         do {
1111                 pte_t ptent = *pte;
1112                 if (pte_none(ptent)) {
1113                         continue;
1114                 }
1115
1116                 if (pte_present(ptent)) {
1117                         struct page *page;
1118
1119                         page = vm_normal_page(vma, addr, ptent);
1120                         if (unlikely(details) && page) {
1121                                 /*
1122                                  * unmap_shared_mapping_pages() wants to
1123                                  * invalidate cache without truncating:
1124                                  * unmap shared but keep private pages.
1125                                  */
1126                                 if (details->check_mapping &&
1127                                     details->check_mapping != page->mapping)
1128                                         continue;
1129                                 /*
1130                                  * Each page->index must be checked when
1131                                  * invalidating or truncating nonlinear.
1132                                  */
1133                                 if (details->nonlinear_vma &&
1134                                     (page->index < details->first_index ||
1135                                      page->index > details->last_index))
1136                                         continue;
1137                         }
1138                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1139                                                         tlb->fullmm);
1140                         tlb_remove_tlb_entry(tlb, pte, addr);
1141                         if (unlikely(!page))
1142                                 continue;
1143                         if (unlikely(details) && details->nonlinear_vma
1144                             && linear_page_index(details->nonlinear_vma,
1145                                                 addr) != page->index)
1146                                 set_pte_at(mm, addr, pte,
1147                                            pgoff_to_pte(page->index));
1148                         if (PageAnon(page))
1149                                 rss[MM_ANONPAGES]--;
1150                         else {
1151                                 if (pte_dirty(ptent))
1152                                         set_page_dirty(page);
1153                                 if (pte_young(ptent) &&
1154                                     likely(!VM_SequentialReadHint(vma)))
1155                                         mark_page_accessed(page);
1156                                 rss[MM_FILEPAGES]--;
1157                         }
1158                         page_remove_rmap(page);
1159                         if (unlikely(page_mapcount(page) < 0))
1160                                 print_bad_pte(vma, addr, ptent, page);
1161                         force_flush = !__tlb_remove_page(tlb, page);
1162                         if (force_flush)
1163                                 break;
1164                         continue;
1165                 }
1166                 /*
1167                  * If details->check_mapping, we leave swap entries;
1168                  * if details->nonlinear_vma, we leave file entries.
1169                  */
1170                 if (unlikely(details))
1171                         continue;
1172                 if (pte_file(ptent)) {
1173                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174                                 print_bad_pte(vma, addr, ptent, NULL);
1175                 } else {
1176                         swp_entry_t entry = pte_to_swp_entry(ptent);
1177
1178                         if (!non_swap_entry(entry))
1179                                 rss[MM_SWAPENTS]--;
1180                         else if (is_migration_entry(entry)) {
1181                                 struct page *page;
1182
1183                                 page = migration_entry_to_page(entry);
1184
1185                                 if (PageAnon(page))
1186                                         rss[MM_ANONPAGES]--;
1187                                 else
1188                                         rss[MM_FILEPAGES]--;
1189                         }
1190                         if (unlikely(!free_swap_and_cache(entry)))
1191                                 print_bad_pte(vma, addr, ptent, NULL);
1192                 }
1193                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194         } while (pte++, addr += PAGE_SIZE, addr != end);
1195
1196         add_mm_rss_vec(mm, rss);
1197         arch_leave_lazy_mmu_mode();
1198         pte_unmap_unlock(start_pte, ptl);
1199
1200         /*
1201          * mmu_gather ran out of room to batch pages, we break out of
1202          * the PTE lock to avoid doing the potential expensive TLB invalidate
1203          * and page-free while holding it.
1204          */
1205         if (force_flush) {
1206                 force_flush = 0;
1207                 tlb_flush_mmu(tlb);
1208                 if (addr != end)
1209                         goto again;
1210         }
1211
1212         return addr;
1213 }
1214
1215 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1216                                 struct vm_area_struct *vma, pud_t *pud,
1217                                 unsigned long addr, unsigned long end,
1218                                 struct zap_details *details)
1219 {
1220         pmd_t *pmd;
1221         unsigned long next;
1222
1223         pmd = pmd_offset(pud, addr);
1224         do {
1225                 next = pmd_addr_end(addr, end);
1226                 if (pmd_trans_huge(*pmd)) {
1227                         if (next - addr != HPAGE_PMD_SIZE) {
1228 #ifdef CONFIG_DEBUG_VM
1229                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1230                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1231                                                 __func__, addr, end,
1232                                                 vma->vm_start,
1233                                                 vma->vm_end);
1234                                         BUG();
1235                                 }
1236 #endif
1237                                 split_huge_page_pmd(vma->vm_mm, pmd);
1238                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1239                                 goto next;
1240                         /* fall through */
1241                 }
1242                 /*
1243                  * Here there can be other concurrent MADV_DONTNEED or
1244                  * trans huge page faults running, and if the pmd is
1245                  * none or trans huge it can change under us. This is
1246                  * because MADV_DONTNEED holds the mmap_sem in read
1247                  * mode.
1248                  */
1249                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1250                         goto next;
1251                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1252 next:
1253                 cond_resched();
1254         } while (pmd++, addr = next, addr != end);
1255
1256         return addr;
1257 }
1258
1259 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1260                                 struct vm_area_struct *vma, pgd_t *pgd,
1261                                 unsigned long addr, unsigned long end,
1262                                 struct zap_details *details)
1263 {
1264         pud_t *pud;
1265         unsigned long next;
1266
1267         pud = pud_offset(pgd, addr);
1268         do {
1269                 next = pud_addr_end(addr, end);
1270                 if (pud_none_or_clear_bad(pud))
1271                         continue;
1272                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1273         } while (pud++, addr = next, addr != end);
1274
1275         return addr;
1276 }
1277
1278 static void unmap_page_range(struct mmu_gather *tlb,
1279                              struct vm_area_struct *vma,
1280                              unsigned long addr, unsigned long end,
1281                              struct zap_details *details)
1282 {
1283         pgd_t *pgd;
1284         unsigned long next;
1285
1286         if (details && !details->check_mapping && !details->nonlinear_vma)
1287                 details = NULL;
1288
1289         BUG_ON(addr >= end);
1290         mem_cgroup_uncharge_start();
1291         tlb_start_vma(tlb, vma);
1292         pgd = pgd_offset(vma->vm_mm, addr);
1293         do {
1294                 next = pgd_addr_end(addr, end);
1295                 if (pgd_none_or_clear_bad(pgd))
1296                         continue;
1297                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1298         } while (pgd++, addr = next, addr != end);
1299         tlb_end_vma(tlb, vma);
1300         mem_cgroup_uncharge_end();
1301 }
1302
1303
1304 static void unmap_single_vma(struct mmu_gather *tlb,
1305                 struct vm_area_struct *vma, unsigned long start_addr,
1306                 unsigned long end_addr,
1307                 struct zap_details *details)
1308 {
1309         unsigned long start = max(vma->vm_start, start_addr);
1310         unsigned long end;
1311
1312         if (start >= vma->vm_end)
1313                 return;
1314         end = min(vma->vm_end, end_addr);
1315         if (end <= vma->vm_start)
1316                 return;
1317
1318         if (vma->vm_file)
1319                 uprobe_munmap(vma, start, end);
1320
1321         if (unlikely(is_pfn_mapping(vma)))
1322                 untrack_pfn_vma(vma, 0, 0);
1323
1324         if (start != end) {
1325                 if (unlikely(is_vm_hugetlb_page(vma))) {
1326                         /*
1327                          * It is undesirable to test vma->vm_file as it
1328                          * should be non-null for valid hugetlb area.
1329                          * However, vm_file will be NULL in the error
1330                          * cleanup path of do_mmap_pgoff. When
1331                          * hugetlbfs ->mmap method fails,
1332                          * do_mmap_pgoff() nullifies vma->vm_file
1333                          * before calling this function to clean up.
1334                          * Since no pte has actually been setup, it is
1335                          * safe to do nothing in this case.
1336                          */
1337                         if (vma->vm_file)
1338                                 unmap_hugepage_range(vma, start, end, NULL);
1339                 } else
1340                         unmap_page_range(tlb, vma, start, end, details);
1341         }
1342 }
1343
1344 /**
1345  * unmap_vmas - unmap a range of memory covered by a list of vma's
1346  * @tlb: address of the caller's struct mmu_gather
1347  * @vma: the starting vma
1348  * @start_addr: virtual address at which to start unmapping
1349  * @end_addr: virtual address at which to end unmapping
1350  *
1351  * Unmap all pages in the vma list.
1352  *
1353  * Only addresses between `start' and `end' will be unmapped.
1354  *
1355  * The VMA list must be sorted in ascending virtual address order.
1356  *
1357  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1358  * range after unmap_vmas() returns.  So the only responsibility here is to
1359  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1360  * drops the lock and schedules.
1361  */
1362 void unmap_vmas(struct mmu_gather *tlb,
1363                 struct vm_area_struct *vma, unsigned long start_addr,
1364                 unsigned long end_addr)
1365 {
1366         struct mm_struct *mm = vma->vm_mm;
1367
1368         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1369         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1370                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1371         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1372 }
1373
1374 /**
1375  * zap_page_range - remove user pages in a given range
1376  * @vma: vm_area_struct holding the applicable pages
1377  * @start: starting address of pages to zap
1378  * @size: number of bytes to zap
1379  * @details: details of nonlinear truncation or shared cache invalidation
1380  *
1381  * Caller must protect the VMA list
1382  */
1383 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1384                 unsigned long size, struct zap_details *details)
1385 {
1386         struct mm_struct *mm = vma->vm_mm;
1387         struct mmu_gather tlb;
1388         unsigned long end = start + size;
1389
1390         lru_add_drain();
1391         tlb_gather_mmu(&tlb, mm, 0);
1392         update_hiwater_rss(mm);
1393         mmu_notifier_invalidate_range_start(mm, start, end);
1394         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1395                 unmap_single_vma(&tlb, vma, start, end, details);
1396         mmu_notifier_invalidate_range_end(mm, start, end);
1397         tlb_finish_mmu(&tlb, start, end);
1398 }
1399
1400 /**
1401  * zap_page_range_single - remove user pages in a given range
1402  * @vma: vm_area_struct holding the applicable pages
1403  * @address: starting address of pages to zap
1404  * @size: number of bytes to zap
1405  * @details: details of nonlinear truncation or shared cache invalidation
1406  *
1407  * The range must fit into one VMA.
1408  */
1409 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1410                 unsigned long size, struct zap_details *details)
1411 {
1412         struct mm_struct *mm = vma->vm_mm;
1413         struct mmu_gather tlb;
1414         unsigned long end = address + size;
1415
1416         lru_add_drain();
1417         tlb_gather_mmu(&tlb, mm, 0);
1418         update_hiwater_rss(mm);
1419         mmu_notifier_invalidate_range_start(mm, address, end);
1420         unmap_single_vma(&tlb, vma, address, end, details);
1421         mmu_notifier_invalidate_range_end(mm, address, end);
1422         tlb_finish_mmu(&tlb, address, end);
1423 }
1424
1425 /**
1426  * zap_vma_ptes - remove ptes mapping the vma
1427  * @vma: vm_area_struct holding ptes to be zapped
1428  * @address: starting address of pages to zap
1429  * @size: number of bytes to zap
1430  *
1431  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1432  *
1433  * The entire address range must be fully contained within the vma.
1434  *
1435  * Returns 0 if successful.
1436  */
1437 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1438                 unsigned long size)
1439 {
1440         if (address < vma->vm_start || address + size > vma->vm_end ||
1441                         !(vma->vm_flags & VM_PFNMAP))
1442                 return -1;
1443         zap_page_range_single(vma, address, size, NULL);
1444         return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1447
1448 /**
1449  * follow_page - look up a page descriptor from a user-virtual address
1450  * @vma: vm_area_struct mapping @address
1451  * @address: virtual address to look up
1452  * @flags: flags modifying lookup behaviour
1453  *
1454  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1455  *
1456  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1457  * an error pointer if there is a mapping to something not represented
1458  * by a page descriptor (see also vm_normal_page()).
1459  */
1460 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1461                         unsigned int flags)
1462 {
1463         pgd_t *pgd;
1464         pud_t *pud;
1465         pmd_t *pmd;
1466         pte_t *ptep, pte;
1467         spinlock_t *ptl;
1468         struct page *page;
1469         struct mm_struct *mm = vma->vm_mm;
1470
1471         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472         if (!IS_ERR(page)) {
1473                 BUG_ON(flags & FOLL_GET);
1474                 goto out;
1475         }
1476
1477         page = NULL;
1478         pgd = pgd_offset(mm, address);
1479         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1480                 goto no_page_table;
1481
1482         pud = pud_offset(pgd, address);
1483         if (pud_none(*pud))
1484                 goto no_page_table;
1485         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1486                 BUG_ON(flags & FOLL_GET);
1487                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1488                 goto out;
1489         }
1490         if (unlikely(pud_bad(*pud)))
1491                 goto no_page_table;
1492
1493         pmd = pmd_offset(pud, address);
1494         if (pmd_none(*pmd))
1495                 goto no_page_table;
1496         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1497                 BUG_ON(flags & FOLL_GET);
1498                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1499                 goto out;
1500         }
1501         if (pmd_trans_huge(*pmd)) {
1502                 if (flags & FOLL_SPLIT) {
1503                         split_huge_page_pmd(mm, pmd);
1504                         goto split_fallthrough;
1505                 }
1506                 spin_lock(&mm->page_table_lock);
1507                 if (likely(pmd_trans_huge(*pmd))) {
1508                         if (unlikely(pmd_trans_splitting(*pmd))) {
1509                                 spin_unlock(&mm->page_table_lock);
1510                                 wait_split_huge_page(vma->anon_vma, pmd);
1511                         } else {
1512                                 page = follow_trans_huge_pmd(mm, address,
1513                                                              pmd, flags);
1514                                 spin_unlock(&mm->page_table_lock);
1515                                 goto out;
1516                         }
1517                 } else
1518                         spin_unlock(&mm->page_table_lock);
1519                 /* fall through */
1520         }
1521 split_fallthrough:
1522         if (unlikely(pmd_bad(*pmd)))
1523                 goto no_page_table;
1524
1525         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1526
1527         pte = *ptep;
1528         if (!pte_present(pte))
1529                 goto no_page;
1530         if ((flags & FOLL_WRITE) && !pte_write(pte))
1531                 goto unlock;
1532
1533         page = vm_normal_page(vma, address, pte);
1534         if (unlikely(!page)) {
1535                 if ((flags & FOLL_DUMP) ||
1536                     !is_zero_pfn(pte_pfn(pte)))
1537                         goto bad_page;
1538                 page = pte_page(pte);
1539         }
1540
1541         if (flags & FOLL_GET)
1542                 get_page_foll(page);
1543         if (flags & FOLL_TOUCH) {
1544                 if ((flags & FOLL_WRITE) &&
1545                     !pte_dirty(pte) && !PageDirty(page))
1546                         set_page_dirty(page);
1547                 /*
1548                  * pte_mkyoung() would be more correct here, but atomic care
1549                  * is needed to avoid losing the dirty bit: it is easier to use
1550                  * mark_page_accessed().
1551                  */
1552                 mark_page_accessed(page);
1553         }
1554         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1555                 /*
1556                  * The preliminary mapping check is mainly to avoid the
1557                  * pointless overhead of lock_page on the ZERO_PAGE
1558                  * which might bounce very badly if there is contention.
1559                  *
1560                  * If the page is already locked, we don't need to
1561                  * handle it now - vmscan will handle it later if and
1562                  * when it attempts to reclaim the page.
1563                  */
1564                 if (page->mapping && trylock_page(page)) {
1565                         lru_add_drain();  /* push cached pages to LRU */
1566                         /*
1567                          * Because we lock page here and migration is
1568                          * blocked by the pte's page reference, we need
1569                          * only check for file-cache page truncation.
1570                          */
1571                         if (page->mapping)
1572                                 mlock_vma_page(page);
1573                         unlock_page(page);
1574                 }
1575         }
1576 unlock:
1577         pte_unmap_unlock(ptep, ptl);
1578 out:
1579         return page;
1580
1581 bad_page:
1582         pte_unmap_unlock(ptep, ptl);
1583         return ERR_PTR(-EFAULT);
1584
1585 no_page:
1586         pte_unmap_unlock(ptep, ptl);
1587         if (!pte_none(pte))
1588                 return page;
1589
1590 no_page_table:
1591         /*
1592          * When core dumping an enormous anonymous area that nobody
1593          * has touched so far, we don't want to allocate unnecessary pages or
1594          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1595          * then get_dump_page() will return NULL to leave a hole in the dump.
1596          * But we can only make this optimization where a hole would surely
1597          * be zero-filled if handle_mm_fault() actually did handle it.
1598          */
1599         if ((flags & FOLL_DUMP) &&
1600             (!vma->vm_ops || !vma->vm_ops->fault))
1601                 return ERR_PTR(-EFAULT);
1602         return page;
1603 }
1604
1605 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1606 {
1607         return stack_guard_page_start(vma, addr) ||
1608                stack_guard_page_end(vma, addr+PAGE_SIZE);
1609 }
1610
1611 /**
1612  * __get_user_pages() - pin user pages in memory
1613  * @tsk:        task_struct of target task
1614  * @mm:         mm_struct of target mm
1615  * @start:      starting user address
1616  * @nr_pages:   number of pages from start to pin
1617  * @gup_flags:  flags modifying pin behaviour
1618  * @pages:      array that receives pointers to the pages pinned.
1619  *              Should be at least nr_pages long. Or NULL, if caller
1620  *              only intends to ensure the pages are faulted in.
1621  * @vmas:       array of pointers to vmas corresponding to each page.
1622  *              Or NULL if the caller does not require them.
1623  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1624  *
1625  * Returns number of pages pinned. This may be fewer than the number
1626  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1627  * were pinned, returns -errno. Each page returned must be released
1628  * with a put_page() call when it is finished with. vmas will only
1629  * remain valid while mmap_sem is held.
1630  *
1631  * Must be called with mmap_sem held for read or write.
1632  *
1633  * __get_user_pages walks a process's page tables and takes a reference to
1634  * each struct page that each user address corresponds to at a given
1635  * instant. That is, it takes the page that would be accessed if a user
1636  * thread accesses the given user virtual address at that instant.
1637  *
1638  * This does not guarantee that the page exists in the user mappings when
1639  * __get_user_pages returns, and there may even be a completely different
1640  * page there in some cases (eg. if mmapped pagecache has been invalidated
1641  * and subsequently re faulted). However it does guarantee that the page
1642  * won't be freed completely. And mostly callers simply care that the page
1643  * contains data that was valid *at some point in time*. Typically, an IO
1644  * or similar operation cannot guarantee anything stronger anyway because
1645  * locks can't be held over the syscall boundary.
1646  *
1647  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1648  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1649  * appropriate) must be called after the page is finished with, and
1650  * before put_page is called.
1651  *
1652  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1653  * or mmap_sem contention, and if waiting is needed to pin all pages,
1654  * *@nonblocking will be set to 0.
1655  *
1656  * In most cases, get_user_pages or get_user_pages_fast should be used
1657  * instead of __get_user_pages. __get_user_pages should be used only if
1658  * you need some special @gup_flags.
1659  */
1660 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1661                      unsigned long start, int nr_pages, unsigned int gup_flags,
1662                      struct page **pages, struct vm_area_struct **vmas,
1663                      int *nonblocking)
1664 {
1665         int i;
1666         unsigned long vm_flags;
1667
1668         if (nr_pages <= 0)
1669                 return 0;
1670
1671         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1672
1673         /* 
1674          * Require read or write permissions.
1675          * If FOLL_FORCE is set, we only require the "MAY" flags.
1676          */
1677         vm_flags  = (gup_flags & FOLL_WRITE) ?
1678                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1679         vm_flags &= (gup_flags & FOLL_FORCE) ?
1680                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1681         i = 0;
1682
1683         do {
1684                 struct vm_area_struct *vma;
1685
1686                 vma = find_extend_vma(mm, start);
1687                 if (!vma && in_gate_area(mm, start)) {
1688                         unsigned long pg = start & PAGE_MASK;
1689                         pgd_t *pgd;
1690                         pud_t *pud;
1691                         pmd_t *pmd;
1692                         pte_t *pte;
1693
1694                         /* user gate pages are read-only */
1695                         if (gup_flags & FOLL_WRITE)
1696                                 return i ? : -EFAULT;
1697                         if (pg > TASK_SIZE)
1698                                 pgd = pgd_offset_k(pg);
1699                         else
1700                                 pgd = pgd_offset_gate(mm, pg);
1701                         BUG_ON(pgd_none(*pgd));
1702                         pud = pud_offset(pgd, pg);
1703                         BUG_ON(pud_none(*pud));
1704                         pmd = pmd_offset(pud, pg);
1705                         if (pmd_none(*pmd))
1706                                 return i ? : -EFAULT;
1707                         VM_BUG_ON(pmd_trans_huge(*pmd));
1708                         pte = pte_offset_map(pmd, pg);
1709                         if (pte_none(*pte)) {
1710                                 pte_unmap(pte);
1711                                 return i ? : -EFAULT;
1712                         }
1713                         vma = get_gate_vma(mm);
1714                         if (pages) {
1715                                 struct page *page;
1716
1717                                 page = vm_normal_page(vma, start, *pte);
1718                                 if (!page) {
1719                                         if (!(gup_flags & FOLL_DUMP) &&
1720                                              is_zero_pfn(pte_pfn(*pte)))
1721                                                 page = pte_page(*pte);
1722                                         else {
1723                                                 pte_unmap(pte);
1724                                                 return i ? : -EFAULT;
1725                                         }
1726                                 }
1727                                 pages[i] = page;
1728                                 get_page(page);
1729                         }
1730                         pte_unmap(pte);
1731                         goto next_page;
1732                 }
1733
1734                 if (!vma ||
1735                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1736                     !(vm_flags & vma->vm_flags))
1737                         return i ? : -EFAULT;
1738
1739                 if (is_vm_hugetlb_page(vma)) {
1740                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1741                                         &start, &nr_pages, i, gup_flags);
1742                         continue;
1743                 }
1744
1745                 do {
1746                         struct page *page;
1747                         unsigned int foll_flags = gup_flags;
1748
1749                         /*
1750                          * If we have a pending SIGKILL, don't keep faulting
1751                          * pages and potentially allocating memory.
1752                          */
1753                         if (unlikely(fatal_signal_pending(current)))
1754                                 return i ? i : -ERESTARTSYS;
1755
1756                         cond_resched();
1757                         while (!(page = follow_page(vma, start, foll_flags))) {
1758                                 int ret;
1759                                 unsigned int fault_flags = 0;
1760
1761                                 /* For mlock, just skip the stack guard page. */
1762                                 if (foll_flags & FOLL_MLOCK) {
1763                                         if (stack_guard_page(vma, start))
1764                                                 goto next_page;
1765                                 }
1766                                 if (foll_flags & FOLL_WRITE)
1767                                         fault_flags |= FAULT_FLAG_WRITE;
1768                                 if (nonblocking)
1769                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1770                                 if (foll_flags & FOLL_NOWAIT)
1771                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1772
1773                                 ret = handle_mm_fault(mm, vma, start,
1774                                                         fault_flags);
1775
1776                                 if (ret & VM_FAULT_ERROR) {
1777                                         if (ret & VM_FAULT_OOM)
1778                                                 return i ? i : -ENOMEM;
1779                                         if (ret & (VM_FAULT_HWPOISON |
1780                                                    VM_FAULT_HWPOISON_LARGE)) {
1781                                                 if (i)
1782                                                         return i;
1783                                                 else if (gup_flags & FOLL_HWPOISON)
1784                                                         return -EHWPOISON;
1785                                                 else
1786                                                         return -EFAULT;
1787                                         }
1788                                         if (ret & VM_FAULT_SIGBUS)
1789                                                 return i ? i : -EFAULT;
1790                                         BUG();
1791                                 }
1792
1793                                 if (tsk) {
1794                                         if (ret & VM_FAULT_MAJOR)
1795                                                 tsk->maj_flt++;
1796                                         else
1797                                                 tsk->min_flt++;
1798                                 }
1799
1800                                 if (ret & VM_FAULT_RETRY) {
1801                                         if (nonblocking)
1802                                                 *nonblocking = 0;
1803                                         return i;
1804                                 }
1805
1806                                 /*
1807                                  * The VM_FAULT_WRITE bit tells us that
1808                                  * do_wp_page has broken COW when necessary,
1809                                  * even if maybe_mkwrite decided not to set
1810                                  * pte_write. We can thus safely do subsequent
1811                                  * page lookups as if they were reads. But only
1812                                  * do so when looping for pte_write is futile:
1813                                  * in some cases userspace may also be wanting
1814                                  * to write to the gotten user page, which a
1815                                  * read fault here might prevent (a readonly
1816                                  * page might get reCOWed by userspace write).
1817                                  */
1818                                 if ((ret & VM_FAULT_WRITE) &&
1819                                     !(vma->vm_flags & VM_WRITE))
1820                                         foll_flags &= ~FOLL_WRITE;
1821
1822                                 cond_resched();
1823                         }
1824                         if (IS_ERR(page))
1825                                 return i ? i : PTR_ERR(page);
1826                         if (pages) {
1827                                 pages[i] = page;
1828
1829                                 flush_anon_page(vma, page, start);
1830                                 flush_dcache_page(page);
1831                         }
1832 next_page:
1833                         if (vmas)
1834                                 vmas[i] = vma;
1835                         i++;
1836                         start += PAGE_SIZE;
1837                         nr_pages--;
1838                 } while (nr_pages && start < vma->vm_end);
1839         } while (nr_pages);
1840         return i;
1841 }
1842 EXPORT_SYMBOL(__get_user_pages);
1843
1844 /*
1845  * fixup_user_fault() - manually resolve a user page fault
1846  * @tsk:        the task_struct to use for page fault accounting, or
1847  *              NULL if faults are not to be recorded.
1848  * @mm:         mm_struct of target mm
1849  * @address:    user address
1850  * @fault_flags:flags to pass down to handle_mm_fault()
1851  *
1852  * This is meant to be called in the specific scenario where for locking reasons
1853  * we try to access user memory in atomic context (within a pagefault_disable()
1854  * section), this returns -EFAULT, and we want to resolve the user fault before
1855  * trying again.
1856  *
1857  * Typically this is meant to be used by the futex code.
1858  *
1859  * The main difference with get_user_pages() is that this function will
1860  * unconditionally call handle_mm_fault() which will in turn perform all the
1861  * necessary SW fixup of the dirty and young bits in the PTE, while
1862  * handle_mm_fault() only guarantees to update these in the struct page.
1863  *
1864  * This is important for some architectures where those bits also gate the
1865  * access permission to the page because they are maintained in software.  On
1866  * such architectures, gup() will not be enough to make a subsequent access
1867  * succeed.
1868  *
1869  * This should be called with the mm_sem held for read.
1870  */
1871 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1872                      unsigned long address, unsigned int fault_flags)
1873 {
1874         struct vm_area_struct *vma;
1875         int ret;
1876
1877         vma = find_extend_vma(mm, address);
1878         if (!vma || address < vma->vm_start)
1879                 return -EFAULT;
1880
1881         ret = handle_mm_fault(mm, vma, address, fault_flags);
1882         if (ret & VM_FAULT_ERROR) {
1883                 if (ret & VM_FAULT_OOM)
1884                         return -ENOMEM;
1885                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1886                         return -EHWPOISON;
1887                 if (ret & VM_FAULT_SIGBUS)
1888                         return -EFAULT;
1889                 BUG();
1890         }
1891         if (tsk) {
1892                 if (ret & VM_FAULT_MAJOR)
1893                         tsk->maj_flt++;
1894                 else
1895                         tsk->min_flt++;
1896         }
1897         return 0;
1898 }
1899
1900 /*
1901  * get_user_pages() - pin user pages in memory
1902  * @tsk:        the task_struct to use for page fault accounting, or
1903  *              NULL if faults are not to be recorded.
1904  * @mm:         mm_struct of target mm
1905  * @start:      starting user address
1906  * @nr_pages:   number of pages from start to pin
1907  * @write:      whether pages will be written to by the caller
1908  * @force:      whether to force write access even if user mapping is
1909  *              readonly. This will result in the page being COWed even
1910  *              in MAP_SHARED mappings. You do not want this.
1911  * @pages:      array that receives pointers to the pages pinned.
1912  *              Should be at least nr_pages long. Or NULL, if caller
1913  *              only intends to ensure the pages are faulted in.
1914  * @vmas:       array of pointers to vmas corresponding to each page.
1915  *              Or NULL if the caller does not require them.
1916  *
1917  * Returns number of pages pinned. This may be fewer than the number
1918  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1919  * were pinned, returns -errno. Each page returned must be released
1920  * with a put_page() call when it is finished with. vmas will only
1921  * remain valid while mmap_sem is held.
1922  *
1923  * Must be called with mmap_sem held for read or write.
1924  *
1925  * get_user_pages walks a process's page tables and takes a reference to
1926  * each struct page that each user address corresponds to at a given
1927  * instant. That is, it takes the page that would be accessed if a user
1928  * thread accesses the given user virtual address at that instant.
1929  *
1930  * This does not guarantee that the page exists in the user mappings when
1931  * get_user_pages returns, and there may even be a completely different
1932  * page there in some cases (eg. if mmapped pagecache has been invalidated
1933  * and subsequently re faulted). However it does guarantee that the page
1934  * won't be freed completely. And mostly callers simply care that the page
1935  * contains data that was valid *at some point in time*. Typically, an IO
1936  * or similar operation cannot guarantee anything stronger anyway because
1937  * locks can't be held over the syscall boundary.
1938  *
1939  * If write=0, the page must not be written to. If the page is written to,
1940  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1941  * after the page is finished with, and before put_page is called.
1942  *
1943  * get_user_pages is typically used for fewer-copy IO operations, to get a
1944  * handle on the memory by some means other than accesses via the user virtual
1945  * addresses. The pages may be submitted for DMA to devices or accessed via
1946  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1947  * use the correct cache flushing APIs.
1948  *
1949  * See also get_user_pages_fast, for performance critical applications.
1950  */
1951 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1952                 unsigned long start, int nr_pages, int write, int force,
1953                 struct page **pages, struct vm_area_struct **vmas)
1954 {
1955         int flags = FOLL_TOUCH;
1956
1957         if (pages)
1958                 flags |= FOLL_GET;
1959         if (write)
1960                 flags |= FOLL_WRITE;
1961         if (force)
1962                 flags |= FOLL_FORCE;
1963
1964         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1965                                 NULL);
1966 }
1967 EXPORT_SYMBOL(get_user_pages);
1968
1969 /**
1970  * get_dump_page() - pin user page in memory while writing it to core dump
1971  * @addr: user address
1972  *
1973  * Returns struct page pointer of user page pinned for dump,
1974  * to be freed afterwards by page_cache_release() or put_page().
1975  *
1976  * Returns NULL on any kind of failure - a hole must then be inserted into
1977  * the corefile, to preserve alignment with its headers; and also returns
1978  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1979  * allowing a hole to be left in the corefile to save diskspace.
1980  *
1981  * Called without mmap_sem, but after all other threads have been killed.
1982  */
1983 #ifdef CONFIG_ELF_CORE
1984 struct page *get_dump_page(unsigned long addr)
1985 {
1986         struct vm_area_struct *vma;
1987         struct page *page;
1988
1989         if (__get_user_pages(current, current->mm, addr, 1,
1990                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1991                              NULL) < 1)
1992                 return NULL;
1993         flush_cache_page(vma, addr, page_to_pfn(page));
1994         return page;
1995 }
1996 #endif /* CONFIG_ELF_CORE */
1997
1998 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1999                         spinlock_t **ptl)
2000 {
2001         pgd_t * pgd = pgd_offset(mm, addr);
2002         pud_t * pud = pud_alloc(mm, pgd, addr);
2003         if (pud) {
2004                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2005                 if (pmd) {
2006                         VM_BUG_ON(pmd_trans_huge(*pmd));
2007                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2008                 }
2009         }
2010         return NULL;
2011 }
2012
2013 /*
2014  * This is the old fallback for page remapping.
2015  *
2016  * For historical reasons, it only allows reserved pages. Only
2017  * old drivers should use this, and they needed to mark their
2018  * pages reserved for the old functions anyway.
2019  */
2020 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2021                         struct page *page, pgprot_t prot)
2022 {
2023         struct mm_struct *mm = vma->vm_mm;
2024         int retval;
2025         pte_t *pte;
2026         spinlock_t *ptl;
2027
2028         retval = -EINVAL;
2029         if (PageAnon(page))
2030                 goto out;
2031         retval = -ENOMEM;
2032         flush_dcache_page(page);
2033         pte = get_locked_pte(mm, addr, &ptl);
2034         if (!pte)
2035                 goto out;
2036         retval = -EBUSY;
2037         if (!pte_none(*pte))
2038                 goto out_unlock;
2039
2040         /* Ok, finally just insert the thing.. */
2041         get_page(page);
2042         inc_mm_counter_fast(mm, MM_FILEPAGES);
2043         page_add_file_rmap(page);
2044         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2045
2046         retval = 0;
2047         pte_unmap_unlock(pte, ptl);
2048         return retval;
2049 out_unlock:
2050         pte_unmap_unlock(pte, ptl);
2051 out:
2052         return retval;
2053 }
2054
2055 /**
2056  * vm_insert_page - insert single page into user vma
2057  * @vma: user vma to map to
2058  * @addr: target user address of this page
2059  * @page: source kernel page
2060  *
2061  * This allows drivers to insert individual pages they've allocated
2062  * into a user vma.
2063  *
2064  * The page has to be a nice clean _individual_ kernel allocation.
2065  * If you allocate a compound page, you need to have marked it as
2066  * such (__GFP_COMP), or manually just split the page up yourself
2067  * (see split_page()).
2068  *
2069  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2070  * took an arbitrary page protection parameter. This doesn't allow
2071  * that. Your vma protection will have to be set up correctly, which
2072  * means that if you want a shared writable mapping, you'd better
2073  * ask for a shared writable mapping!
2074  *
2075  * The page does not need to be reserved.
2076  */
2077 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2078                         struct page *page)
2079 {
2080         if (addr < vma->vm_start || addr >= vma->vm_end)
2081                 return -EFAULT;
2082         if (!page_count(page))
2083                 return -EINVAL;
2084         vma->vm_flags |= VM_INSERTPAGE;
2085         return insert_page(vma, addr, page, vma->vm_page_prot);
2086 }
2087 EXPORT_SYMBOL(vm_insert_page);
2088
2089 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2090                         unsigned long pfn, pgprot_t prot)
2091 {
2092         struct mm_struct *mm = vma->vm_mm;
2093         int retval;
2094         pte_t *pte, entry;
2095         spinlock_t *ptl;
2096
2097         retval = -ENOMEM;
2098         pte = get_locked_pte(mm, addr, &ptl);
2099         if (!pte)
2100                 goto out;
2101         retval = -EBUSY;
2102         if (!pte_none(*pte))
2103                 goto out_unlock;
2104
2105         /* Ok, finally just insert the thing.. */
2106         entry = pte_mkspecial(pfn_pte(pfn, prot));
2107         set_pte_at(mm, addr, pte, entry);
2108         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2109
2110         retval = 0;
2111 out_unlock:
2112         pte_unmap_unlock(pte, ptl);
2113 out:
2114         return retval;
2115 }
2116
2117 /**
2118  * vm_insert_pfn - insert single pfn into user vma
2119  * @vma: user vma to map to
2120  * @addr: target user address of this page
2121  * @pfn: source kernel pfn
2122  *
2123  * Similar to vm_inert_page, this allows drivers to insert individual pages
2124  * they've allocated into a user vma. Same comments apply.
2125  *
2126  * This function should only be called from a vm_ops->fault handler, and
2127  * in that case the handler should return NULL.
2128  *
2129  * vma cannot be a COW mapping.
2130  *
2131  * As this is called only for pages that do not currently exist, we
2132  * do not need to flush old virtual caches or the TLB.
2133  */
2134 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2135                         unsigned long pfn)
2136 {
2137         int ret;
2138         pgprot_t pgprot = vma->vm_page_prot;
2139         /*
2140          * Technically, architectures with pte_special can avoid all these
2141          * restrictions (same for remap_pfn_range).  However we would like
2142          * consistency in testing and feature parity among all, so we should
2143          * try to keep these invariants in place for everybody.
2144          */
2145         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2146         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2147                                                 (VM_PFNMAP|VM_MIXEDMAP));
2148         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2149         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2150
2151         if (addr < vma->vm_start || addr >= vma->vm_end)
2152                 return -EFAULT;
2153         if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2154                 return -EINVAL;
2155
2156         ret = insert_pfn(vma, addr, pfn, pgprot);
2157
2158         if (ret)
2159                 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2160
2161         return ret;
2162 }
2163 EXPORT_SYMBOL(vm_insert_pfn);
2164
2165 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2166                         unsigned long pfn)
2167 {
2168         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2169
2170         if (addr < vma->vm_start || addr >= vma->vm_end)
2171                 return -EFAULT;
2172
2173         /*
2174          * If we don't have pte special, then we have to use the pfn_valid()
2175          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2176          * refcount the page if pfn_valid is true (hence insert_page rather
2177          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2178          * without pte special, it would there be refcounted as a normal page.
2179          */
2180         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2181                 struct page *page;
2182
2183                 page = pfn_to_page(pfn);
2184                 return insert_page(vma, addr, page, vma->vm_page_prot);
2185         }
2186         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2187 }
2188 EXPORT_SYMBOL(vm_insert_mixed);
2189
2190 /*
2191  * maps a range of physical memory into the requested pages. the old
2192  * mappings are removed. any references to nonexistent pages results
2193  * in null mappings (currently treated as "copy-on-access")
2194  */
2195 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2196                         unsigned long addr, unsigned long end,
2197                         unsigned long pfn, pgprot_t prot)
2198 {
2199         pte_t *pte;
2200         spinlock_t *ptl;
2201
2202         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2203         if (!pte)
2204                 return -ENOMEM;
2205         arch_enter_lazy_mmu_mode();
2206         do {
2207                 BUG_ON(!pte_none(*pte));
2208                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2209                 pfn++;
2210         } while (pte++, addr += PAGE_SIZE, addr != end);
2211         arch_leave_lazy_mmu_mode();
2212         pte_unmap_unlock(pte - 1, ptl);
2213         return 0;
2214 }
2215
2216 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2217                         unsigned long addr, unsigned long end,
2218                         unsigned long pfn, pgprot_t prot)
2219 {
2220         pmd_t *pmd;
2221         unsigned long next;
2222
2223         pfn -= addr >> PAGE_SHIFT;
2224         pmd = pmd_alloc(mm, pud, addr);
2225         if (!pmd)
2226                 return -ENOMEM;
2227         VM_BUG_ON(pmd_trans_huge(*pmd));
2228         do {
2229                 next = pmd_addr_end(addr, end);
2230                 if (remap_pte_range(mm, pmd, addr, next,
2231                                 pfn + (addr >> PAGE_SHIFT), prot))
2232                         return -ENOMEM;
2233         } while (pmd++, addr = next, addr != end);
2234         return 0;
2235 }
2236
2237 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2238                         unsigned long addr, unsigned long end,
2239                         unsigned long pfn, pgprot_t prot)
2240 {
2241         pud_t *pud;
2242         unsigned long next;
2243
2244         pfn -= addr >> PAGE_SHIFT;
2245         pud = pud_alloc(mm, pgd, addr);
2246         if (!pud)
2247                 return -ENOMEM;
2248         do {
2249                 next = pud_addr_end(addr, end);
2250                 if (remap_pmd_range(mm, pud, addr, next,
2251                                 pfn + (addr >> PAGE_SHIFT), prot))
2252                         return -ENOMEM;
2253         } while (pud++, addr = next, addr != end);
2254         return 0;
2255 }
2256
2257 /**
2258  * remap_pfn_range - remap kernel memory to userspace
2259  * @vma: user vma to map to
2260  * @addr: target user address to start at
2261  * @pfn: physical address of kernel memory
2262  * @size: size of map area
2263  * @prot: page protection flags for this mapping
2264  *
2265  *  Note: this is only safe if the mm semaphore is held when called.
2266  */
2267 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2268                     unsigned long pfn, unsigned long size, pgprot_t prot)
2269 {
2270         pgd_t *pgd;
2271         unsigned long next;
2272         unsigned long end = addr + PAGE_ALIGN(size);
2273         struct mm_struct *mm = vma->vm_mm;
2274         int err;
2275
2276         /*
2277          * Physically remapped pages are special. Tell the
2278          * rest of the world about it:
2279          *   VM_IO tells people not to look at these pages
2280          *      (accesses can have side effects).
2281          *   VM_RESERVED is specified all over the place, because
2282          *      in 2.4 it kept swapout's vma scan off this vma; but
2283          *      in 2.6 the LRU scan won't even find its pages, so this
2284          *      flag means no more than count its pages in reserved_vm,
2285          *      and omit it from core dump, even when VM_IO turned off.
2286          *   VM_PFNMAP tells the core MM that the base pages are just
2287          *      raw PFN mappings, and do not have a "struct page" associated
2288          *      with them.
2289          *
2290          * There's a horrible special case to handle copy-on-write
2291          * behaviour that some programs depend on. We mark the "original"
2292          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2293          */
2294         if (addr == vma->vm_start && end == vma->vm_end) {
2295                 vma->vm_pgoff = pfn;
2296                 vma->vm_flags |= VM_PFN_AT_MMAP;
2297         } else if (is_cow_mapping(vma->vm_flags))
2298                 return -EINVAL;
2299
2300         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2301
2302         err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2303         if (err) {
2304                 /*
2305                  * To indicate that track_pfn related cleanup is not
2306                  * needed from higher level routine calling unmap_vmas
2307                  */
2308                 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2309                 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2310                 return -EINVAL;
2311         }
2312
2313         BUG_ON(addr >= end);
2314         pfn -= addr >> PAGE_SHIFT;
2315         pgd = pgd_offset(mm, addr);
2316         flush_cache_range(vma, addr, end);
2317         do {
2318                 next = pgd_addr_end(addr, end);
2319                 err = remap_pud_range(mm, pgd, addr, next,
2320                                 pfn + (addr >> PAGE_SHIFT), prot);
2321                 if (err)
2322                         break;
2323         } while (pgd++, addr = next, addr != end);
2324
2325         if (err)
2326                 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2327
2328         return err;
2329 }
2330 EXPORT_SYMBOL(remap_pfn_range);
2331
2332 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2333                                      unsigned long addr, unsigned long end,
2334                                      pte_fn_t fn, void *data)
2335 {
2336         pte_t *pte;
2337         int err;
2338         pgtable_t token;
2339         spinlock_t *uninitialized_var(ptl);
2340
2341         pte = (mm == &init_mm) ?
2342                 pte_alloc_kernel(pmd, addr) :
2343                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2344         if (!pte)
2345                 return -ENOMEM;
2346
2347         BUG_ON(pmd_huge(*pmd));
2348
2349         arch_enter_lazy_mmu_mode();
2350
2351         token = pmd_pgtable(*pmd);
2352
2353         do {
2354                 err = fn(pte++, token, addr, data);
2355                 if (err)
2356                         break;
2357         } while (addr += PAGE_SIZE, addr != end);
2358
2359         arch_leave_lazy_mmu_mode();
2360
2361         if (mm != &init_mm)
2362                 pte_unmap_unlock(pte-1, ptl);
2363         return err;
2364 }
2365
2366 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2367                                      unsigned long addr, unsigned long end,
2368                                      pte_fn_t fn, void *data)
2369 {
2370         pmd_t *pmd;
2371         unsigned long next;
2372         int err;
2373
2374         BUG_ON(pud_huge(*pud));
2375
2376         pmd = pmd_alloc(mm, pud, addr);
2377         if (!pmd)
2378                 return -ENOMEM;
2379         do {
2380                 next = pmd_addr_end(addr, end);
2381                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2382                 if (err)
2383                         break;
2384         } while (pmd++, addr = next, addr != end);
2385         return err;
2386 }
2387
2388 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2389                                      unsigned long addr, unsigned long end,
2390                                      pte_fn_t fn, void *data)
2391 {
2392         pud_t *pud;
2393         unsigned long next;
2394         int err;
2395
2396         pud = pud_alloc(mm, pgd, addr);
2397         if (!pud)
2398                 return -ENOMEM;
2399         do {
2400                 next = pud_addr_end(addr, end);
2401                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2402                 if (err)
2403                         break;
2404         } while (pud++, addr = next, addr != end);
2405         return err;
2406 }
2407
2408 /*
2409  * Scan a region of virtual memory, filling in page tables as necessary
2410  * and calling a provided function on each leaf page table.
2411  */
2412 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2413                         unsigned long size, pte_fn_t fn, void *data)
2414 {
2415         pgd_t *pgd;
2416         unsigned long next;
2417         unsigned long end = addr + size;
2418         int err;
2419
2420         BUG_ON(addr >= end);
2421         pgd = pgd_offset(mm, addr);
2422         do {
2423                 next = pgd_addr_end(addr, end);
2424                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2425                 if (err)
2426                         break;
2427         } while (pgd++, addr = next, addr != end);
2428
2429         return err;
2430 }
2431 EXPORT_SYMBOL_GPL(apply_to_page_range);
2432
2433 /*
2434  * handle_pte_fault chooses page fault handler according to an entry
2435  * which was read non-atomically.  Before making any commitment, on
2436  * those architectures or configurations (e.g. i386 with PAE) which
2437  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2438  * must check under lock before unmapping the pte and proceeding
2439  * (but do_wp_page is only called after already making such a check;
2440  * and do_anonymous_page can safely check later on).
2441  */
2442 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2443                                 pte_t *page_table, pte_t orig_pte)
2444 {
2445         int same = 1;
2446 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2447         if (sizeof(pte_t) > sizeof(unsigned long)) {
2448                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2449                 spin_lock(ptl);
2450                 same = pte_same(*page_table, orig_pte);
2451                 spin_unlock(ptl);
2452         }
2453 #endif
2454         pte_unmap(page_table);
2455         return same;
2456 }
2457
2458 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2459 {
2460         /*
2461          * If the source page was a PFN mapping, we don't have
2462          * a "struct page" for it. We do a best-effort copy by
2463          * just copying from the original user address. If that
2464          * fails, we just zero-fill it. Live with it.
2465          */
2466         if (unlikely(!src)) {
2467                 void *kaddr = kmap_atomic(dst);
2468                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2469
2470                 /*
2471                  * This really shouldn't fail, because the page is there
2472                  * in the page tables. But it might just be unreadable,
2473                  * in which case we just give up and fill the result with
2474                  * zeroes.
2475                  */
2476                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2477                         clear_page(kaddr);
2478                 kunmap_atomic(kaddr);
2479                 flush_dcache_page(dst);
2480         } else
2481                 copy_user_highpage(dst, src, va, vma);
2482 }
2483
2484 /*
2485  * This routine handles present pages, when users try to write
2486  * to a shared page. It is done by copying the page to a new address
2487  * and decrementing the shared-page counter for the old page.
2488  *
2489  * Note that this routine assumes that the protection checks have been
2490  * done by the caller (the low-level page fault routine in most cases).
2491  * Thus we can safely just mark it writable once we've done any necessary
2492  * COW.
2493  *
2494  * We also mark the page dirty at this point even though the page will
2495  * change only once the write actually happens. This avoids a few races,
2496  * and potentially makes it more efficient.
2497  *
2498  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2499  * but allow concurrent faults), with pte both mapped and locked.
2500  * We return with mmap_sem still held, but pte unmapped and unlocked.
2501  */
2502 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2503                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2504                 spinlock_t *ptl, pte_t orig_pte)
2505         __releases(ptl)
2506 {
2507         struct page *old_page, *new_page;
2508         pte_t entry;
2509         int ret = 0;
2510         int page_mkwrite = 0;
2511         struct page *dirty_page = NULL;
2512
2513         old_page = vm_normal_page(vma, address, orig_pte);
2514         if (!old_page) {
2515                 /*
2516                  * VM_MIXEDMAP !pfn_valid() case
2517                  *
2518                  * We should not cow pages in a shared writeable mapping.
2519                  * Just mark the pages writable as we can't do any dirty
2520                  * accounting on raw pfn maps.
2521                  */
2522                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2523                                      (VM_WRITE|VM_SHARED))
2524                         goto reuse;
2525                 goto gotten;
2526         }
2527
2528         /*
2529          * Take out anonymous pages first, anonymous shared vmas are
2530          * not dirty accountable.
2531          */
2532         if (PageAnon(old_page) && !PageKsm(old_page)) {
2533                 if (!trylock_page(old_page)) {
2534                         page_cache_get(old_page);
2535                         pte_unmap_unlock(page_table, ptl);
2536                         lock_page(old_page);
2537                         page_table = pte_offset_map_lock(mm, pmd, address,
2538                                                          &ptl);
2539                         if (!pte_same(*page_table, orig_pte)) {
2540                                 unlock_page(old_page);
2541                                 goto unlock;
2542                         }
2543                         page_cache_release(old_page);
2544                 }
2545                 if (reuse_swap_page(old_page)) {
2546                         /*
2547                          * The page is all ours.  Move it to our anon_vma so
2548                          * the rmap code will not search our parent or siblings.
2549                          * Protected against the rmap code by the page lock.
2550                          */
2551                         page_move_anon_rmap(old_page, vma, address);
2552                         unlock_page(old_page);
2553                         goto reuse;
2554                 }
2555                 unlock_page(old_page);
2556         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2557                                         (VM_WRITE|VM_SHARED))) {
2558                 /*
2559                  * Only catch write-faults on shared writable pages,
2560                  * read-only shared pages can get COWed by
2561                  * get_user_pages(.write=1, .force=1).
2562                  */
2563                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2564                         struct vm_fault vmf;
2565                         int tmp;
2566
2567                         vmf.virtual_address = (void __user *)(address &
2568                                                                 PAGE_MASK);
2569                         vmf.pgoff = old_page->index;
2570                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2571                         vmf.page = old_page;
2572
2573                         /*
2574                          * Notify the address space that the page is about to
2575                          * become writable so that it can prohibit this or wait
2576                          * for the page to get into an appropriate state.
2577                          *
2578                          * We do this without the lock held, so that it can
2579                          * sleep if it needs to.
2580                          */
2581                         page_cache_get(old_page);
2582                         pte_unmap_unlock(page_table, ptl);
2583
2584                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2585                         if (unlikely(tmp &
2586                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2587                                 ret = tmp;
2588                                 goto unwritable_page;
2589                         }
2590                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2591                                 lock_page(old_page);
2592                                 if (!old_page->mapping) {
2593                                         ret = 0; /* retry the fault */
2594                                         unlock_page(old_page);
2595                                         goto unwritable_page;
2596                                 }
2597                         } else
2598                                 VM_BUG_ON(!PageLocked(old_page));
2599
2600                         /*
2601                          * Since we dropped the lock we need to revalidate
2602                          * the PTE as someone else may have changed it.  If
2603                          * they did, we just return, as we can count on the
2604                          * MMU to tell us if they didn't also make it writable.
2605                          */
2606                         page_table = pte_offset_map_lock(mm, pmd, address,
2607                                                          &ptl);
2608                         if (!pte_same(*page_table, orig_pte)) {
2609                                 unlock_page(old_page);
2610                                 goto unlock;
2611                         }
2612
2613                         page_mkwrite = 1;
2614                 }
2615                 dirty_page = old_page;
2616                 get_page(dirty_page);
2617
2618 reuse:
2619                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2620                 entry = pte_mkyoung(orig_pte);
2621                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2622                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2623                         update_mmu_cache(vma, address, page_table);
2624                 pte_unmap_unlock(page_table, ptl);
2625                 ret |= VM_FAULT_WRITE;
2626
2627                 if (!dirty_page)
2628                         return ret;
2629
2630                 /*
2631                  * Yes, Virginia, this is actually required to prevent a race
2632                  * with clear_page_dirty_for_io() from clearing the page dirty
2633                  * bit after it clear all dirty ptes, but before a racing
2634                  * do_wp_page installs a dirty pte.
2635                  *
2636                  * __do_fault is protected similarly.
2637                  */
2638                 if (!page_mkwrite) {
2639                         wait_on_page_locked(dirty_page);
2640                         set_page_dirty_balance(dirty_page, page_mkwrite);
2641                 }
2642                 put_page(dirty_page);
2643                 if (page_mkwrite) {
2644                         struct address_space *mapping = dirty_page->mapping;
2645
2646                         set_page_dirty(dirty_page);
2647                         unlock_page(dirty_page);
2648                         page_cache_release(dirty_page);
2649                         if (mapping)    {
2650                                 /*
2651                                  * Some device drivers do not set page.mapping
2652                                  * but still dirty their pages
2653                                  */
2654                                 balance_dirty_pages_ratelimited(mapping);
2655                         }
2656                 }
2657
2658                 /* file_update_time outside page_lock */
2659                 if (vma->vm_file)
2660                         file_update_time(vma->vm_file);
2661
2662                 return ret;
2663         }
2664
2665         /*
2666          * Ok, we need to copy. Oh, well..
2667          */
2668         page_cache_get(old_page);
2669 gotten:
2670         pte_unmap_unlock(page_table, ptl);
2671
2672         if (unlikely(anon_vma_prepare(vma)))
2673                 goto oom;
2674
2675         if (is_zero_pfn(pte_pfn(orig_pte))) {
2676                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2677                 if (!new_page)
2678                         goto oom;
2679         } else {
2680                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2681                 if (!new_page)
2682                         goto oom;
2683                 cow_user_page(new_page, old_page, address, vma);
2684         }
2685         __SetPageUptodate(new_page);
2686
2687         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2688                 goto oom_free_new;
2689
2690         /*
2691          * Re-check the pte - we dropped the lock
2692          */
2693         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2694         if (likely(pte_same(*page_table, orig_pte))) {
2695                 if (old_page) {
2696                         if (!PageAnon(old_page)) {
2697                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2698                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2699                         }
2700                 } else
2701                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2702                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2703                 entry = mk_pte(new_page, vma->vm_page_prot);
2704                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2705                 /*
2706                  * Clear the pte entry and flush it first, before updating the
2707                  * pte with the new entry. This will avoid a race condition
2708                  * seen in the presence of one thread doing SMC and another
2709                  * thread doing COW.
2710                  */
2711                 ptep_clear_flush(vma, address, page_table);
2712                 page_add_new_anon_rmap(new_page, vma, address);
2713                 /*
2714                  * We call the notify macro here because, when using secondary
2715                  * mmu page tables (such as kvm shadow page tables), we want the
2716                  * new page to be mapped directly into the secondary page table.
2717                  */
2718                 set_pte_at_notify(mm, address, page_table, entry);
2719                 update_mmu_cache(vma, address, page_table);
2720                 if (old_page) {
2721                         /*
2722                          * Only after switching the pte to the new page may
2723                          * we remove the mapcount here. Otherwise another
2724                          * process may come and find the rmap count decremented
2725                          * before the pte is switched to the new page, and
2726                          * "reuse" the old page writing into it while our pte
2727                          * here still points into it and can be read by other
2728                          * threads.
2729                          *
2730                          * The critical issue is to order this
2731                          * page_remove_rmap with the ptp_clear_flush above.
2732                          * Those stores are ordered by (if nothing else,)
2733                          * the barrier present in the atomic_add_negative
2734                          * in page_remove_rmap.
2735                          *
2736                          * Then the TLB flush in ptep_clear_flush ensures that
2737                          * no process can access the old page before the
2738                          * decremented mapcount is visible. And the old page
2739                          * cannot be reused until after the decremented
2740                          * mapcount is visible. So transitively, TLBs to
2741                          * old page will be flushed before it can be reused.
2742                          */
2743                         page_remove_rmap(old_page);
2744                 }
2745
2746                 /* Free the old page.. */
2747                 new_page = old_page;
2748                 ret |= VM_FAULT_WRITE;
2749         } else
2750                 mem_cgroup_uncharge_page(new_page);
2751
2752         if (new_page)
2753                 page_cache_release(new_page);
2754 unlock:
2755         pte_unmap_unlock(page_table, ptl);
2756         if (old_page) {
2757                 /*
2758                  * Don't let another task, with possibly unlocked vma,
2759                  * keep the mlocked page.
2760                  */
2761                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2762                         lock_page(old_page);    /* LRU manipulation */
2763                         munlock_vma_page(old_page);
2764                         unlock_page(old_page);
2765                 }
2766                 page_cache_release(old_page);
2767         }
2768         return ret;
2769 oom_free_new:
2770         page_cache_release(new_page);
2771 oom:
2772         if (old_page) {
2773                 if (page_mkwrite) {
2774                         unlock_page(old_page);
2775                         page_cache_release(old_page);
2776                 }
2777                 page_cache_release(old_page);
2778         }
2779         return VM_FAULT_OOM;
2780
2781 unwritable_page:
2782         page_cache_release(old_page);
2783         return ret;
2784 }
2785
2786 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2787                 unsigned long start_addr, unsigned long end_addr,
2788                 struct zap_details *details)
2789 {
2790         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2791 }
2792
2793 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2794                                             struct zap_details *details)
2795 {
2796         struct vm_area_struct *vma;
2797         struct prio_tree_iter iter;
2798         pgoff_t vba, vea, zba, zea;
2799
2800         vma_prio_tree_foreach(vma, &iter, root,
2801                         details->first_index, details->last_index) {
2802
2803                 vba = vma->vm_pgoff;
2804                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2805                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2806                 zba = details->first_index;
2807                 if (zba < vba)
2808                         zba = vba;
2809                 zea = details->last_index;
2810                 if (zea > vea)
2811                         zea = vea;
2812
2813                 unmap_mapping_range_vma(vma,
2814                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2815                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2816                                 details);
2817         }
2818 }
2819
2820 static inline void unmap_mapping_range_list(struct list_head *head,
2821                                             struct zap_details *details)
2822 {
2823         struct vm_area_struct *vma;
2824
2825         /*
2826          * In nonlinear VMAs there is no correspondence between virtual address
2827          * offset and file offset.  So we must perform an exhaustive search
2828          * across *all* the pages in each nonlinear VMA, not just the pages
2829          * whose virtual address lies outside the file truncation point.
2830          */
2831         list_for_each_entry(vma, head, shared.vm_set.list) {
2832                 details->nonlinear_vma = vma;
2833                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2834         }
2835 }
2836
2837 /**
2838  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2839  * @mapping: the address space containing mmaps to be unmapped.
2840  * @holebegin: byte in first page to unmap, relative to the start of
2841  * the underlying file.  This will be rounded down to a PAGE_SIZE
2842  * boundary.  Note that this is different from truncate_pagecache(), which
2843  * must keep the partial page.  In contrast, we must get rid of
2844  * partial pages.
2845  * @holelen: size of prospective hole in bytes.  This will be rounded
2846  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2847  * end of the file.
2848  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2849  * but 0 when invalidating pagecache, don't throw away private data.
2850  */
2851 void unmap_mapping_range(struct address_space *mapping,
2852                 loff_t const holebegin, loff_t const holelen, int even_cows)
2853 {
2854         struct zap_details details;
2855         pgoff_t hba = holebegin >> PAGE_SHIFT;
2856         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2857
2858         /* Check for overflow. */
2859         if (sizeof(holelen) > sizeof(hlen)) {
2860                 long long holeend =
2861                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862                 if (holeend & ~(long long)ULONG_MAX)
2863                         hlen = ULONG_MAX - hba + 1;
2864         }
2865
2866         details.check_mapping = even_cows? NULL: mapping;
2867         details.nonlinear_vma = NULL;
2868         details.first_index = hba;
2869         details.last_index = hba + hlen - 1;
2870         if (details.last_index < details.first_index)
2871                 details.last_index = ULONG_MAX;
2872
2873
2874         mutex_lock(&mapping->i_mmap_mutex);
2875         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2876                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2877         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2878                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2879         mutex_unlock(&mapping->i_mmap_mutex);
2880 }
2881 EXPORT_SYMBOL(unmap_mapping_range);
2882
2883 /*
2884  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2885  * but allow concurrent faults), and pte mapped but not yet locked.
2886  * We return with mmap_sem still held, but pte unmapped and unlocked.
2887  */
2888 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2889                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2890                 unsigned int flags, pte_t orig_pte)
2891 {
2892         spinlock_t *ptl;
2893         struct page *page, *swapcache = NULL;
2894         swp_entry_t entry;
2895         pte_t pte;
2896         int locked;
2897         struct mem_cgroup *ptr;
2898         int exclusive = 0;
2899         int ret = 0;
2900
2901         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2902                 goto out;
2903
2904         entry = pte_to_swp_entry(orig_pte);
2905         if (unlikely(non_swap_entry(entry))) {
2906                 if (is_migration_entry(entry)) {
2907                         migration_entry_wait(mm, pmd, address);
2908                 } else if (is_hwpoison_entry(entry)) {
2909                         ret = VM_FAULT_HWPOISON;
2910                 } else {
2911                         print_bad_pte(vma, address, orig_pte, NULL);
2912                         ret = VM_FAULT_SIGBUS;
2913                 }
2914                 goto out;
2915         }
2916         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2917         page = lookup_swap_cache(entry);
2918         if (!page) {
2919                 page = swapin_readahead(entry,
2920                                         GFP_HIGHUSER_MOVABLE, vma, address);
2921                 if (!page) {
2922                         /*
2923                          * Back out if somebody else faulted in this pte
2924                          * while we released the pte lock.
2925                          */
2926                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2927                         if (likely(pte_same(*page_table, orig_pte)))
2928                                 ret = VM_FAULT_OOM;
2929                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2930                         goto unlock;
2931                 }
2932
2933                 /* Had to read the page from swap area: Major fault */
2934                 ret = VM_FAULT_MAJOR;
2935                 count_vm_event(PGMAJFAULT);
2936                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2937         } else if (PageHWPoison(page)) {
2938                 /*
2939                  * hwpoisoned dirty swapcache pages are kept for killing
2940                  * owner processes (which may be unknown at hwpoison time)
2941                  */
2942                 ret = VM_FAULT_HWPOISON;
2943                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2944                 goto out_release;
2945         }
2946
2947         locked = lock_page_or_retry(page, mm, flags);
2948
2949         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2950         if (!locked) {
2951                 ret |= VM_FAULT_RETRY;
2952                 goto out_release;
2953         }
2954
2955         /*
2956          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2957          * release the swapcache from under us.  The page pin, and pte_same
2958          * test below, are not enough to exclude that.  Even if it is still
2959          * swapcache, we need to check that the page's swap has not changed.
2960          */
2961         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2962                 goto out_page;
2963
2964         if (ksm_might_need_to_copy(page, vma, address)) {
2965                 swapcache = page;
2966                 page = ksm_does_need_to_copy(page, vma, address);
2967
2968                 if (unlikely(!page)) {
2969                         ret = VM_FAULT_OOM;
2970                         page = swapcache;
2971                         swapcache = NULL;
2972                         goto out_page;
2973                 }
2974         }
2975
2976         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2977                 ret = VM_FAULT_OOM;
2978                 goto out_page;
2979         }
2980
2981         /*
2982          * Back out if somebody else already faulted in this pte.
2983          */
2984         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2985         if (unlikely(!pte_same(*page_table, orig_pte)))
2986                 goto out_nomap;
2987
2988         if (unlikely(!PageUptodate(page))) {
2989                 ret = VM_FAULT_SIGBUS;
2990                 goto out_nomap;
2991         }
2992
2993         /*
2994          * The page isn't present yet, go ahead with the fault.
2995          *
2996          * Be careful about the sequence of operations here.
2997          * To get its accounting right, reuse_swap_page() must be called
2998          * while the page is counted on swap but not yet in mapcount i.e.
2999          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3000          * must be called after the swap_free(), or it will never succeed.
3001          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3002          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3003          * in page->private. In this case, a record in swap_cgroup  is silently
3004          * discarded at swap_free().
3005          */
3006
3007         inc_mm_counter_fast(mm, MM_ANONPAGES);
3008         dec_mm_counter_fast(mm, MM_SWAPENTS);
3009         pte = mk_pte(page, vma->vm_page_prot);
3010         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3011                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3012                 flags &= ~FAULT_FLAG_WRITE;
3013                 ret |= VM_FAULT_WRITE;
3014                 exclusive = 1;
3015         }
3016         flush_icache_page(vma, page);
3017         set_pte_at(mm, address, page_table, pte);
3018         do_page_add_anon_rmap(page, vma, address, exclusive);
3019         /* It's better to call commit-charge after rmap is established */
3020         mem_cgroup_commit_charge_swapin(page, ptr);
3021
3022         swap_free(entry);
3023         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3024                 try_to_free_swap(page);
3025         unlock_page(page);
3026         if (swapcache) {
3027                 /*
3028                  * Hold the lock to avoid the swap entry to be reused
3029                  * until we take the PT lock for the pte_same() check
3030                  * (to avoid false positives from pte_same). For
3031                  * further safety release the lock after the swap_free
3032                  * so that the swap count won't change under a
3033                  * parallel locked swapcache.
3034                  */
3035                 unlock_page(swapcache);
3036                 page_cache_release(swapcache);
3037         }
3038
3039         if (flags & FAULT_FLAG_WRITE) {
3040                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3041                 if (ret & VM_FAULT_ERROR)
3042                         ret &= VM_FAULT_ERROR;
3043                 goto out;
3044         }
3045
3046         /* No need to invalidate - it was non-present before */
3047         update_mmu_cache(vma, address, page_table);
3048 unlock:
3049         pte_unmap_unlock(page_table, ptl);
3050 out:
3051         return ret;
3052 out_nomap:
3053         mem_cgroup_cancel_charge_swapin(ptr);
3054         pte_unmap_unlock(page_table, ptl);
3055 out_page:
3056         unlock_page(page);
3057 out_release:
3058         page_cache_release(page);
3059         if (swapcache) {
3060                 unlock_page(swapcache);
3061                 page_cache_release(swapcache);
3062         }
3063         return ret;
3064 }
3065
3066 /*
3067  * This is like a special single-page "expand_{down|up}wards()",
3068  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3069  * doesn't hit another vma.
3070  */
3071 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3072 {
3073         address &= PAGE_MASK;
3074         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3075                 struct vm_area_struct *prev = vma->vm_prev;
3076
3077                 /*
3078                  * Is there a mapping abutting this one below?
3079                  *
3080                  * That's only ok if it's the same stack mapping
3081                  * that has gotten split..
3082                  */
3083                 if (prev && prev->vm_end == address)
3084                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3085
3086                 expand_downwards(vma, address - PAGE_SIZE);
3087         }
3088         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3089                 struct vm_area_struct *next = vma->vm_next;
3090
3091                 /* As VM_GROWSDOWN but s/below/above/ */
3092                 if (next && next->vm_start == address + PAGE_SIZE)
3093                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3094
3095                 expand_upwards(vma, address + PAGE_SIZE);
3096         }
3097         return 0;
3098 }
3099
3100 /*
3101  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3102  * but allow concurrent faults), and pte mapped but not yet locked.
3103  * We return with mmap_sem still held, but pte unmapped and unlocked.
3104  */
3105 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3106                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3107                 unsigned int flags)
3108 {
3109         struct page *page;
3110         spinlock_t *ptl;
3111         pte_t entry;
3112
3113         pte_unmap(page_table);
3114
3115         /* Check if we need to add a guard page to the stack */
3116         if (check_stack_guard_page(vma, address) < 0)
3117                 return VM_FAULT_SIGBUS;
3118
3119         /* Use the zero-page for reads */
3120         if (!(flags & FAULT_FLAG_WRITE)) {
3121                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3122                                                 vma->vm_page_prot));
3123                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3124                 if (!pte_none(*page_table))
3125                         goto unlock;
3126                 goto setpte;
3127         }
3128
3129         /* Allocate our own private page. */
3130         if (unlikely(anon_vma_prepare(vma)))
3131                 goto oom;
3132         page = alloc_zeroed_user_highpage_movable(vma, address);
3133         if (!page)
3134                 goto oom;
3135         __SetPageUptodate(page);
3136
3137         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3138                 goto oom_free_page;
3139
3140         entry = mk_pte(page, vma->vm_page_prot);
3141         if (vma->vm_flags & VM_WRITE)
3142                 entry = pte_mkwrite(pte_mkdirty(entry));
3143
3144         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3145         if (!pte_none(*page_table))
3146                 goto release;
3147
3148         inc_mm_counter_fast(mm, MM_ANONPAGES);
3149         page_add_new_anon_rmap(page, vma, address);
3150 setpte:
3151         set_pte_at(mm, address, page_table, entry);
3152
3153         /* No need to invalidate - it was non-present before */
3154         update_mmu_cache(vma, address, page_table);
3155 unlock:
3156         pte_unmap_unlock(page_table, ptl);
3157         return 0;
3158 release:
3159         mem_cgroup_uncharge_page(page);
3160         page_cache_release(page);
3161         goto unlock;
3162 oom_free_page:
3163         page_cache_release(page);
3164 oom:
3165         return VM_FAULT_OOM;
3166 }
3167
3168 /*
3169  * __do_fault() tries to create a new page mapping. It aggressively
3170  * tries to share with existing pages, but makes a separate copy if
3171  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3172  * the next page fault.
3173  *
3174  * As this is called only for pages that do not currently exist, we
3175  * do not need to flush old virtual caches or the TLB.
3176  *
3177  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178  * but allow concurrent faults), and pte neither mapped nor locked.
3179  * We return with mmap_sem still held, but pte unmapped and unlocked.
3180  */
3181 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3182                 unsigned long address, pmd_t *pmd,
3183                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3184 {
3185         pte_t *page_table;
3186         spinlock_t *ptl;
3187         struct page *page;
3188         struct page *cow_page;
3189         pte_t entry;
3190         int anon = 0;
3191         struct page *dirty_page = NULL;
3192         struct vm_fault vmf;
3193         int ret;
3194         int page_mkwrite = 0;
3195
3196         /*
3197          * If we do COW later, allocate page befor taking lock_page()
3198          * on the file cache page. This will reduce lock holding time.
3199          */
3200         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3201
3202                 if (unlikely(anon_vma_prepare(vma)))
3203                         return VM_FAULT_OOM;
3204
3205                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3206                 if (!cow_page)
3207                         return VM_FAULT_OOM;
3208
3209                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3210                         page_cache_release(cow_page);
3211                         return VM_FAULT_OOM;
3212                 }
3213         } else
3214                 cow_page = NULL;
3215
3216         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3217         vmf.pgoff = pgoff;
3218         vmf.flags = flags;
3219         vmf.page = NULL;
3220
3221         ret = vma->vm_ops->fault(vma, &vmf);
3222         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3223                             VM_FAULT_RETRY)))
3224                 goto uncharge_out;
3225
3226         if (unlikely(PageHWPoison(vmf.page))) {
3227                 if (ret & VM_FAULT_LOCKED)
3228                         unlock_page(vmf.page);
3229                 ret = VM_FAULT_HWPOISON;
3230                 goto uncharge_out;
3231         }
3232
3233         /*
3234          * For consistency in subsequent calls, make the faulted page always
3235          * locked.
3236          */
3237         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3238                 lock_page(vmf.page);
3239         else
3240                 VM_BUG_ON(!PageLocked(vmf.page));
3241
3242         /*
3243          * Should we do an early C-O-W break?
3244          */
3245         page = vmf.page;
3246         if (flags & FAULT_FLAG_WRITE) {
3247                 if (!(vma->vm_flags & VM_SHARED)) {
3248                         page = cow_page;
3249                         anon = 1;
3250                         copy_user_highpage(page, vmf.page, address, vma);
3251                         __SetPageUptodate(page);
3252                 } else {
3253                         /*
3254                          * If the page will be shareable, see if the backing
3255                          * address space wants to know that the page is about
3256                          * to become writable
3257                          */
3258                         if (vma->vm_ops->page_mkwrite) {
3259                                 int tmp;
3260
3261                                 unlock_page(page);
3262                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3263                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3264                                 if (unlikely(tmp &
3265                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3266                                         ret = tmp;
3267                                         goto unwritable_page;
3268                                 }
3269                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3270                                         lock_page(page);
3271                                         if (!page->mapping) {
3272                                                 ret = 0; /* retry the fault */
3273                                                 unlock_page(page);
3274                                                 goto unwritable_page;
3275                                         }
3276                                 } else
3277                                         VM_BUG_ON(!PageLocked(page));
3278                                 page_mkwrite = 1;
3279                         }
3280                 }
3281
3282         }
3283
3284         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3285
3286         /*
3287          * This silly early PAGE_DIRTY setting removes a race
3288          * due to the bad i386 page protection. But it's valid
3289          * for other architectures too.
3290          *
3291          * Note that if FAULT_FLAG_WRITE is set, we either now have
3292          * an exclusive copy of the page, or this is a shared mapping,
3293          * so we can make it writable and dirty to avoid having to
3294          * handle that later.
3295          */
3296         /* Only go through if we didn't race with anybody else... */
3297         if (likely(pte_same(*page_table, orig_pte))) {
3298                 flush_icache_page(vma, page);
3299                 entry = mk_pte(page, vma->vm_page_prot);
3300                 if (flags & FAULT_FLAG_WRITE)
3301                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3302                 if (anon) {
3303                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3304                         page_add_new_anon_rmap(page, vma, address);
3305                 } else {
3306                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3307                         page_add_file_rmap(page);
3308                         if (flags & FAULT_FLAG_WRITE) {
3309                                 dirty_page = page;
3310                                 get_page(dirty_page);
3311                         }
3312                 }
3313                 set_pte_at(mm, address, page_table, entry);
3314
3315                 /* no need to invalidate: a not-present page won't be cached */
3316                 update_mmu_cache(vma, address, page_table);
3317         } else {
3318                 if (cow_page)
3319                         mem_cgroup_uncharge_page(cow_page);
3320                 if (anon)
3321                         page_cache_release(page);
3322                 else
3323                         anon = 1; /* no anon but release faulted_page */
3324         }
3325
3326         pte_unmap_unlock(page_table, ptl);
3327
3328         if (dirty_page) {
3329                 struct address_space *mapping = page->mapping;
3330
3331                 if (set_page_dirty(dirty_page))
3332                         page_mkwrite = 1;
3333                 unlock_page(dirty_page);
3334                 put_page(dirty_page);
3335                 if (page_mkwrite && mapping) {
3336                         /*
3337                          * Some device drivers do not set page.mapping but still
3338                          * dirty their pages
3339                          */
3340                         balance_dirty_pages_ratelimited(mapping);
3341                 }
3342
3343                 /* file_update_time outside page_lock */
3344                 if (vma->vm_file)
3345                         file_update_time(vma->vm_file);
3346         } else {
3347                 unlock_page(vmf.page);
3348                 if (anon)
3349                         page_cache_release(vmf.page);
3350         }
3351
3352         return ret;
3353
3354 unwritable_page:
3355         page_cache_release(page);
3356         return ret;
3357 uncharge_out:
3358         /* fs's fault handler get error */
3359         if (cow_page) {
3360                 mem_cgroup_uncharge_page(cow_page);
3361                 page_cache_release(cow_page);
3362         }
3363         return ret;
3364 }
3365
3366 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3367                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3368                 unsigned int flags, pte_t orig_pte)
3369 {
3370         pgoff_t pgoff = (((address & PAGE_MASK)
3371                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3372
3373         pte_unmap(page_table);
3374         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3375 }
3376
3377 /*
3378  * Fault of a previously existing named mapping. Repopulate the pte
3379  * from the encoded file_pte if possible. This enables swappable
3380  * nonlinear vmas.
3381  *
3382  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3383  * but allow concurrent faults), and pte mapped but not yet locked.
3384  * We return with mmap_sem still held, but pte unmapped and unlocked.
3385  */
3386 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3387                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3388                 unsigned int flags, pte_t orig_pte)
3389 {
3390         pgoff_t pgoff;
3391
3392         flags |= FAULT_FLAG_NONLINEAR;
3393
3394         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3395                 return 0;
3396
3397         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3398                 /*
3399                  * Page table corrupted: show pte and kill process.
3400                  */
3401                 print_bad_pte(vma, address, orig_pte, NULL);
3402                 return VM_FAULT_SIGBUS;
3403         }
3404
3405         pgoff = pte_to_pgoff(orig_pte);
3406         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3407 }
3408
3409 /*
3410  * These routines also need to handle stuff like marking pages dirty
3411  * and/or accessed for architectures that don't do it in hardware (most
3412  * RISC architectures).  The early dirtying is also good on the i386.
3413  *
3414  * There is also a hook called "update_mmu_cache()" that architectures
3415  * with external mmu caches can use to update those (ie the Sparc or
3416  * PowerPC hashed page tables that act as extended TLBs).
3417  *
3418  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3419  * but allow concurrent faults), and pte mapped but not yet locked.
3420  * We return with mmap_sem still held, but pte unmapped and unlocked.
3421  */
3422 int handle_pte_fault(struct mm_struct *mm,
3423                      struct vm_area_struct *vma, unsigned long address,
3424                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3425 {
3426         pte_t entry;
3427         spinlock_t *ptl;
3428
3429         entry = *pte;
3430         if (!pte_present(entry)) {
3431                 if (pte_none(entry)) {
3432                         if (vma->vm_ops) {
3433                                 if (likely(vma->vm_ops->fault))
3434                                         return do_linear_fault(mm, vma, address,
3435                                                 pte, pmd, flags, entry);
3436                         }
3437                         return do_anonymous_page(mm, vma, address,
3438                                                  pte, pmd, flags);
3439                 }
3440                 if (pte_file(entry))
3441                         return do_nonlinear_fault(mm, vma, address,
3442                                         pte, pmd, flags, entry);
3443                 return do_swap_page(mm, vma, address,
3444                                         pte, pmd, flags, entry);
3445         }
3446
3447         ptl = pte_lockptr(mm, pmd);
3448         spin_lock(ptl);
3449         if (unlikely(!pte_same(*pte, entry)))
3450                 goto unlock;
3451         if (flags & FAULT_FLAG_WRITE) {
3452                 if (!pte_write(entry))
3453                         return do_wp_page(mm, vma, address,
3454                                         pte, pmd, ptl, entry);
3455                 entry = pte_mkdirty(entry);
3456         }
3457         entry = pte_mkyoung(entry);
3458         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3459                 update_mmu_cache(vma, address, pte);
3460         } else {
3461                 /*
3462                  * This is needed only for protection faults but the arch code
3463                  * is not yet telling us if this is a protection fault or not.
3464                  * This still avoids useless tlb flushes for .text page faults
3465                  * with threads.
3466                  */
3467                 if (flags & FAULT_FLAG_WRITE)
3468                         flush_tlb_fix_spurious_fault(vma, address);
3469         }
3470 unlock:
3471         pte_unmap_unlock(pte, ptl);
3472         return 0;
3473 }
3474
3475 /*
3476  * By the time we get here, we already hold the mm semaphore
3477  */
3478 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3479                 unsigned long address, unsigned int flags)
3480 {
3481         pgd_t *pgd;
3482         pud_t *pud;
3483         pmd_t *pmd;
3484         pte_t *pte;
3485
3486         __set_current_state(TASK_RUNNING);
3487
3488         count_vm_event(PGFAULT);
3489         mem_cgroup_count_vm_event(mm, PGFAULT);
3490
3491         /* do counter updates before entering really critical section. */
3492         check_sync_rss_stat(current);
3493
3494         if (unlikely(is_vm_hugetlb_page(vma)))
3495                 return hugetlb_fault(mm, vma, address, flags);
3496
3497 retry:
3498         pgd = pgd_offset(mm, address);
3499         pud = pud_alloc(mm, pgd, address);
3500         if (!pud)
3501                 return VM_FAULT_OOM;
3502         pmd = pmd_alloc(mm, pud, address);
3503         if (!pmd)
3504                 return VM_FAULT_OOM;
3505         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3506                 if (!vma->vm_ops)
3507                         return do_huge_pmd_anonymous_page(mm, vma, address,
3508                                                           pmd, flags);
3509         } else {
3510                 pmd_t orig_pmd = *pmd;
3511                 int ret;
3512
3513                 barrier();
3514                 if (pmd_trans_huge(orig_pmd)) {
3515                         if (flags & FAULT_FLAG_WRITE &&
3516                             !pmd_write(orig_pmd) &&
3517                             !pmd_trans_splitting(orig_pmd)) {
3518                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3519                                                           orig_pmd);
3520                                 /*
3521                                  * If COW results in an oom, the huge pmd will
3522                                  * have been split, so retry the fault on the
3523                                  * pte for a smaller charge.
3524                                  */
3525                                 if (unlikely(ret & VM_FAULT_OOM))
3526                                         goto retry;
3527                                 return ret;
3528                         }
3529                         return 0;
3530                 }
3531         }
3532
3533         /*
3534          * Use __pte_alloc instead of pte_alloc_map, because we can't
3535          * run pte_offset_map on the pmd, if an huge pmd could
3536          * materialize from under us from a different thread.
3537          */
3538         if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3539                 return VM_FAULT_OOM;
3540         /* if an huge pmd materialized from under us just retry later */
3541         if (unlikely(pmd_trans_huge(*pmd)))
3542                 return 0;
3543         /*
3544          * A regular pmd is established and it can't morph into a huge pmd
3545          * from under us anymore at this point because we hold the mmap_sem
3546          * read mode and khugepaged takes it in write mode. So now it's
3547          * safe to run pte_offset_map().
3548          */
3549         pte = pte_offset_map(pmd, address);
3550
3551         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3552 }
3553
3554 #ifndef __PAGETABLE_PUD_FOLDED
3555 /*
3556  * Allocate page upper directory.
3557  * We've already handled the fast-path in-line.
3558  */
3559 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3560 {
3561         pud_t *new = pud_alloc_one(mm, address);
3562         if (!new)
3563                 return -ENOMEM;
3564
3565         smp_wmb(); /* See comment in __pte_alloc */
3566
3567         spin_lock(&mm->page_table_lock);
3568         if (pgd_present(*pgd))          /* Another has populated it */
3569                 pud_free(mm, new);
3570         else
3571                 pgd_populate(mm, pgd, new);
3572         spin_unlock(&mm->page_table_lock);
3573         return 0;
3574 }
3575 #endif /* __PAGETABLE_PUD_FOLDED */
3576
3577 #ifndef __PAGETABLE_PMD_FOLDED
3578 /*
3579  * Allocate page middle directory.
3580  * We've already handled the fast-path in-line.
3581  */
3582 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3583 {
3584         pmd_t *new = pmd_alloc_one(mm, address);
3585         if (!new)
3586                 return -ENOMEM;
3587
3588         smp_wmb(); /* See comment in __pte_alloc */
3589
3590         spin_lock(&mm->page_table_lock);
3591 #ifndef __ARCH_HAS_4LEVEL_HACK
3592         if (pud_present(*pud))          /* Another has populated it */
3593                 pmd_free(mm, new);
3594         else
3595                 pud_populate(mm, pud, new);
3596 #else
3597         if (pgd_present(*pud))          /* Another has populated it */
3598                 pmd_free(mm, new);
3599         else
3600                 pgd_populate(mm, pud, new);
3601 #endif /* __ARCH_HAS_4LEVEL_HACK */
3602         spin_unlock(&mm->page_table_lock);
3603         return 0;
3604 }
3605 #endif /* __PAGETABLE_PMD_FOLDED */
3606
3607 int make_pages_present(unsigned long addr, unsigned long end)
3608 {
3609         int ret, len, write;
3610         struct vm_area_struct * vma;
3611
3612         vma = find_vma(current->mm, addr);
3613         if (!vma)
3614                 return -ENOMEM;
3615         /*
3616          * We want to touch writable mappings with a write fault in order
3617          * to break COW, except for shared mappings because these don't COW
3618          * and we would not want to dirty them for nothing.
3619          */
3620         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3621         BUG_ON(addr >= end);
3622         BUG_ON(end > vma->vm_end);
3623         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3624         ret = get_user_pages(current, current->mm, addr,
3625                         len, write, 0, NULL, NULL);
3626         if (ret < 0)
3627                 return ret;
3628         return ret == len ? 0 : -EFAULT;
3629 }
3630
3631 #if !defined(__HAVE_ARCH_GATE_AREA)
3632
3633 #if defined(AT_SYSINFO_EHDR)
3634 static struct vm_area_struct gate_vma;
3635
3636 static int __init gate_vma_init(void)
3637 {
3638         gate_vma.vm_mm = NULL;
3639         gate_vma.vm_start = FIXADDR_USER_START;
3640         gate_vma.vm_end = FIXADDR_USER_END;
3641         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3642         gate_vma.vm_page_prot = __P101;
3643
3644         return 0;
3645 }
3646 __initcall(gate_vma_init);
3647 #endif
3648
3649 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3650 {
3651 #ifdef AT_SYSINFO_EHDR
3652         return &gate_vma;
3653 #else
3654         return NULL;
3655 #endif
3656 }
3657
3658 int in_gate_area_no_mm(unsigned long addr)
3659 {
3660 #ifdef AT_SYSINFO_EHDR
3661         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3662                 return 1;
3663 #endif
3664         return 0;
3665 }
3666
3667 #endif  /* __HAVE_ARCH_GATE_AREA */
3668
3669 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3670                 pte_t **ptepp, spinlock_t **ptlp)
3671 {
3672         pgd_t *pgd;
3673         pud_t *pud;
3674         pmd_t *pmd;
3675         pte_t *ptep;
3676
3677         pgd = pgd_offset(mm, address);
3678         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3679                 goto out;
3680
3681         pud = pud_offset(pgd, address);
3682         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3683                 goto out;
3684
3685         pmd = pmd_offset(pud, address);
3686         VM_BUG_ON(pmd_trans_huge(*pmd));
3687         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3688                 goto out;
3689
3690         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3691         if (pmd_huge(*pmd))
3692                 goto out;
3693
3694         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3695         if (!ptep)
3696                 goto out;
3697         if (!pte_present(*ptep))
3698                 goto unlock;
3699         *ptepp = ptep;
3700         return 0;
3701 unlock:
3702         pte_unmap_unlock(ptep, *ptlp);
3703 out:
3704         return -EINVAL;
3705 }
3706
3707 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3708                              pte_t **ptepp, spinlock_t **ptlp)
3709 {
3710         int res;
3711
3712         /* (void) is needed to make gcc happy */
3713         (void) __cond_lock(*ptlp,
3714                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3715         return res;
3716 }
3717
3718 /**
3719  * follow_pfn - look up PFN at a user virtual address
3720  * @vma: memory mapping
3721  * @address: user virtual address
3722  * @pfn: location to store found PFN
3723  *
3724  * Only IO mappings and raw PFN mappings are allowed.
3725  *
3726  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3727  */
3728 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3729         unsigned long *pfn)
3730 {
3731         int ret = -EINVAL;
3732         spinlock_t *ptl;
3733         pte_t *ptep;
3734
3735         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3736                 return ret;
3737
3738         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3739         if (ret)
3740                 return ret;
3741         *pfn = pte_pfn(*ptep);
3742         pte_unmap_unlock(ptep, ptl);
3743         return 0;
3744 }
3745 EXPORT_SYMBOL(follow_pfn);
3746
3747 #ifdef CONFIG_HAVE_IOREMAP_PROT
3748 int follow_phys(struct vm_area_struct *vma,
3749                 unsigned long address, unsigned int flags,
3750                 unsigned long *prot, resource_size_t *phys)
3751 {
3752         int ret = -EINVAL;
3753         pte_t *ptep, pte;
3754         spinlock_t *ptl;
3755
3756         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3757                 goto out;
3758
3759         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3760                 goto out;
3761         pte = *ptep;
3762
3763         if ((flags & FOLL_WRITE) && !pte_write(pte))
3764                 goto unlock;
3765
3766         *prot = pgprot_val(pte_pgprot(pte));
3767         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3768
3769         ret = 0;
3770 unlock:
3771         pte_unmap_unlock(ptep, ptl);
3772 out:
3773         return ret;
3774 }
3775
3776 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3777                         void *buf, int len, int write)
3778 {
3779         resource_size_t phys_addr;
3780         unsigned long prot = 0;
3781         void __iomem *maddr;
3782         int offset = addr & (PAGE_SIZE-1);
3783
3784         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3785                 return -EINVAL;
3786
3787         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3788         if (write)
3789                 memcpy_toio(maddr + offset, buf, len);
3790         else
3791                 memcpy_fromio(buf, maddr + offset, len);
3792         iounmap(maddr);
3793
3794         return len;
3795 }
3796 #endif
3797
3798 /*
3799  * Access another process' address space as given in mm.  If non-NULL, use the
3800  * given task for page fault accounting.
3801  */
3802 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3803                 unsigned long addr, void *buf, int len, int write)
3804 {
3805         struct vm_area_struct *vma;
3806         void *old_buf = buf;
3807
3808         down_read(&mm->mmap_sem);
3809         /* ignore errors, just check how much was successfully transferred */
3810         while (len) {
3811                 int bytes, ret, offset;
3812                 void *maddr;
3813                 struct page *page = NULL;
3814
3815                 ret = get_user_pages(tsk, mm, addr, 1,
3816                                 write, 1, &page, &vma);
3817                 if (ret <= 0) {
3818                         /*
3819                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3820                          * we can access using slightly different code.
3821                          */
3822 #ifdef CONFIG_HAVE_IOREMAP_PROT
3823                         vma = find_vma(mm, addr);
3824                         if (!vma || vma->vm_start > addr)
3825                                 break;
3826                         if (vma->vm_ops && vma->vm_ops->access)
3827                                 ret = vma->vm_ops->access(vma, addr, buf,
3828                                                           len, write);
3829                         if (ret <= 0)
3830 #endif
3831                                 break;
3832                         bytes = ret;
3833                 } else {
3834                         bytes = len;
3835                         offset = addr & (PAGE_SIZE-1);
3836                         if (bytes > PAGE_SIZE-offset)
3837                                 bytes = PAGE_SIZE-offset;
3838
3839                         maddr = kmap(page);
3840                         if (write) {
3841                                 copy_to_user_page(vma, page, addr,
3842                                                   maddr + offset, buf, bytes);
3843                                 set_page_dirty_lock(page);
3844                         } else {
3845                                 copy_from_user_page(vma, page, addr,
3846                                                     buf, maddr + offset, bytes);
3847                         }
3848                         kunmap(page);
3849                         page_cache_release(page);
3850                 }
3851                 len -= bytes;
3852                 buf += bytes;
3853                 addr += bytes;
3854         }
3855         up_read(&mm->mmap_sem);
3856
3857         return buf - old_buf;
3858 }
3859
3860 /**
3861  * access_remote_vm - access another process' address space
3862  * @mm:         the mm_struct of the target address space
3863  * @addr:       start address to access
3864  * @buf:        source or destination buffer
3865  * @len:        number of bytes to transfer
3866  * @write:      whether the access is a write
3867  *
3868  * The caller must hold a reference on @mm.
3869  */
3870 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3871                 void *buf, int len, int write)
3872 {
3873         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3874 }
3875
3876 /*
3877  * Access another process' address space.
3878  * Source/target buffer must be kernel space,
3879  * Do not walk the page table directly, use get_user_pages
3880  */
3881 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3882                 void *buf, int len, int write)
3883 {
3884         struct mm_struct *mm;
3885         int ret;
3886
3887         mm = get_task_mm(tsk);
3888         if (!mm)
3889                 return 0;
3890
3891         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3892         mmput(mm);
3893
3894         return ret;
3895 }
3896
3897 /*
3898  * Print the name of a VMA.
3899  */
3900 void print_vma_addr(char *prefix, unsigned long ip)
3901 {
3902         struct mm_struct *mm = current->mm;
3903         struct vm_area_struct *vma;
3904
3905         /*
3906          * Do not print if we are in atomic
3907          * contexts (in exception stacks, etc.):
3908          */
3909         if (preempt_count())
3910                 return;
3911
3912         down_read(&mm->mmap_sem);
3913         vma = find_vma(mm, ip);
3914         if (vma && vma->vm_file) {
3915                 struct file *f = vma->vm_file;
3916                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3917                 if (buf) {
3918                         char *p, *s;
3919
3920                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3921                         if (IS_ERR(p))
3922                                 p = "?";
3923                         s = strrchr(p, '/');
3924                         if (s)
3925                                 p = s+1;
3926                         printk("%s%s[%lx+%lx]", prefix, p,
3927                                         vma->vm_start,
3928                                         vma->vm_end - vma->vm_start);
3929                         free_page((unsigned long)buf);
3930                 }
3931         }
3932         up_read(&current->mm->mmap_sem);
3933 }
3934
3935 #ifdef CONFIG_PROVE_LOCKING
3936 void might_fault(void)
3937 {
3938         /*
3939          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3940          * holding the mmap_sem, this is safe because kernel memory doesn't
3941          * get paged out, therefore we'll never actually fault, and the
3942          * below annotations will generate false positives.
3943          */
3944         if (segment_eq(get_fs(), KERNEL_DS))
3945                 return;
3946
3947         might_sleep();
3948         /*
3949          * it would be nicer only to annotate paths which are not under
3950          * pagefault_disable, however that requires a larger audit and
3951          * providing helpers like get_user_atomic.
3952          */
3953         if (!in_atomic() && current->mm)
3954                 might_lock_read(&current->mm->mmap_sem);
3955 }
3956 EXPORT_SYMBOL(might_fault);
3957 #endif
3958
3959 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3960 static void clear_gigantic_page(struct page *page,
3961                                 unsigned long addr,
3962                                 unsigned int pages_per_huge_page)
3963 {
3964         int i;
3965         struct page *p = page;
3966
3967         might_sleep();
3968         for (i = 0; i < pages_per_huge_page;
3969              i++, p = mem_map_next(p, page, i)) {
3970                 cond_resched();
3971                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3972         }
3973 }
3974 void clear_huge_page(struct page *page,
3975                      unsigned long addr, unsigned int pages_per_huge_page)
3976 {
3977         int i;
3978
3979         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3980                 clear_gigantic_page(page, addr, pages_per_huge_page);
3981                 return;
3982         }
3983
3984         might_sleep();
3985         for (i = 0; i < pages_per_huge_page; i++) {
3986                 cond_resched();
3987                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3988         }
3989 }
3990
3991 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3992                                     unsigned long addr,
3993                                     struct vm_area_struct *vma,
3994                                     unsigned int pages_per_huge_page)
3995 {
3996         int i;
3997         struct page *dst_base = dst;
3998         struct page *src_base = src;
3999
4000         for (i = 0; i < pages_per_huge_page; ) {
4001                 cond_resched();
4002                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4003
4004                 i++;
4005                 dst = mem_map_next(dst, dst_base, i);
4006                 src = mem_map_next(src, src_base, i);
4007         }
4008 }
4009
4010 void copy_user_huge_page(struct page *dst, struct page *src,
4011                          unsigned long addr, struct vm_area_struct *vma,
4012                          unsigned int pages_per_huge_page)
4013 {
4014         int i;
4015
4016         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4017                 copy_user_gigantic_page(dst, src, addr, vma,
4018                                         pages_per_huge_page);
4019                 return;
4020         }
4021
4022         might_sleep();
4023         for (i = 0; i < pages_per_huge_page; i++) {
4024                 cond_resched();
4025                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4026         }
4027 }
4028 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */