]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/memory.c
Merge branch 'for-3.8' of git://linux-nfs.org/~bfields/linux
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifndef CONFIG_NEED_MULTIPLE_NODES
73 /* use the per-pgdat data instead for discontigmem - mbligh */
74 unsigned long max_mapnr;
75 struct page *mem_map;
76
77 EXPORT_SYMBOL(max_mapnr);
78 EXPORT_SYMBOL(mem_map);
79 #endif
80
81 unsigned long num_physpages;
82 /*
83  * A number of key systems in x86 including ioremap() rely on the assumption
84  * that high_memory defines the upper bound on direct map memory, then end
85  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
86  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
87  * and ZONE_HIGHMEM.
88  */
89 void * high_memory;
90
91 EXPORT_SYMBOL(num_physpages);
92 EXPORT_SYMBOL(high_memory);
93
94 /*
95  * Randomize the address space (stacks, mmaps, brk, etc.).
96  *
97  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
98  *   as ancient (libc5 based) binaries can segfault. )
99  */
100 int randomize_va_space __read_mostly =
101 #ifdef CONFIG_COMPAT_BRK
102                                         1;
103 #else
104                                         2;
105 #endif
106
107 static int __init disable_randmaps(char *s)
108 {
109         randomize_va_space = 0;
110         return 1;
111 }
112 __setup("norandmaps", disable_randmaps);
113
114 unsigned long zero_pfn __read_mostly;
115 unsigned long highest_memmap_pfn __read_mostly;
116
117 /*
118  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
119  */
120 static int __init init_zero_pfn(void)
121 {
122         zero_pfn = page_to_pfn(ZERO_PAGE(0));
123         return 0;
124 }
125 core_initcall(init_zero_pfn);
126
127
128 #if defined(SPLIT_RSS_COUNTING)
129
130 void sync_mm_rss(struct mm_struct *mm)
131 {
132         int i;
133
134         for (i = 0; i < NR_MM_COUNTERS; i++) {
135                 if (current->rss_stat.count[i]) {
136                         add_mm_counter(mm, i, current->rss_stat.count[i]);
137                         current->rss_stat.count[i] = 0;
138                 }
139         }
140         current->rss_stat.events = 0;
141 }
142
143 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
144 {
145         struct task_struct *task = current;
146
147         if (likely(task->mm == mm))
148                 task->rss_stat.count[member] += val;
149         else
150                 add_mm_counter(mm, member, val);
151 }
152 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
153 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
154
155 /* sync counter once per 64 page faults */
156 #define TASK_RSS_EVENTS_THRESH  (64)
157 static void check_sync_rss_stat(struct task_struct *task)
158 {
159         if (unlikely(task != current))
160                 return;
161         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
162                 sync_mm_rss(task->mm);
163 }
164 #else /* SPLIT_RSS_COUNTING */
165
166 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
167 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
168
169 static void check_sync_rss_stat(struct task_struct *task)
170 {
171 }
172
173 #endif /* SPLIT_RSS_COUNTING */
174
175 #ifdef HAVE_GENERIC_MMU_GATHER
176
177 static int tlb_next_batch(struct mmu_gather *tlb)
178 {
179         struct mmu_gather_batch *batch;
180
181         batch = tlb->active;
182         if (batch->next) {
183                 tlb->active = batch->next;
184                 return 1;
185         }
186
187         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
188         if (!batch)
189                 return 0;
190
191         batch->next = NULL;
192         batch->nr   = 0;
193         batch->max  = MAX_GATHER_BATCH;
194
195         tlb->active->next = batch;
196         tlb->active = batch;
197
198         return 1;
199 }
200
201 /* tlb_gather_mmu
202  *      Called to initialize an (on-stack) mmu_gather structure for page-table
203  *      tear-down from @mm. The @fullmm argument is used when @mm is without
204  *      users and we're going to destroy the full address space (exit/execve).
205  */
206 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
207 {
208         tlb->mm = mm;
209
210         tlb->fullmm     = fullmm;
211         tlb->start      = -1UL;
212         tlb->end        = 0;
213         tlb->need_flush = 0;
214         tlb->fast_mode  = (num_possible_cpus() == 1);
215         tlb->local.next = NULL;
216         tlb->local.nr   = 0;
217         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
218         tlb->active     = &tlb->local;
219
220 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
221         tlb->batch = NULL;
222 #endif
223 }
224
225 void tlb_flush_mmu(struct mmu_gather *tlb)
226 {
227         struct mmu_gather_batch *batch;
228
229         if (!tlb->need_flush)
230                 return;
231         tlb->need_flush = 0;
232         tlb_flush(tlb);
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb_table_flush(tlb);
235 #endif
236
237         if (tlb_fast_mode(tlb))
238                 return;
239
240         for (batch = &tlb->local; batch; batch = batch->next) {
241                 free_pages_and_swap_cache(batch->pages, batch->nr);
242                 batch->nr = 0;
243         }
244         tlb->active = &tlb->local;
245 }
246
247 /* tlb_finish_mmu
248  *      Called at the end of the shootdown operation to free up any resources
249  *      that were required.
250  */
251 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
252 {
253         struct mmu_gather_batch *batch, *next;
254
255         tlb->start = start;
256         tlb->end   = end;
257         tlb_flush_mmu(tlb);
258
259         /* keep the page table cache within bounds */
260         check_pgt_cache();
261
262         for (batch = tlb->local.next; batch; batch = next) {
263                 next = batch->next;
264                 free_pages((unsigned long)batch, 0);
265         }
266         tlb->local.next = NULL;
267 }
268
269 /* __tlb_remove_page
270  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
271  *      handling the additional races in SMP caused by other CPUs caching valid
272  *      mappings in their TLBs. Returns the number of free page slots left.
273  *      When out of page slots we must call tlb_flush_mmu().
274  */
275 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
276 {
277         struct mmu_gather_batch *batch;
278
279         VM_BUG_ON(!tlb->need_flush);
280
281         if (tlb_fast_mode(tlb)) {
282                 free_page_and_swap_cache(page);
283                 return 1; /* avoid calling tlb_flush_mmu() */
284         }
285
286         batch = tlb->active;
287         batch->pages[batch->nr++] = page;
288         if (batch->nr == batch->max) {
289                 if (!tlb_next_batch(tlb))
290                         return 0;
291                 batch = tlb->active;
292         }
293         VM_BUG_ON(batch->nr > batch->max);
294
295         return batch->max - batch->nr;
296 }
297
298 #endif /* HAVE_GENERIC_MMU_GATHER */
299
300 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301
302 /*
303  * See the comment near struct mmu_table_batch.
304  */
305
306 static void tlb_remove_table_smp_sync(void *arg)
307 {
308         /* Simply deliver the interrupt */
309 }
310
311 static void tlb_remove_table_one(void *table)
312 {
313         /*
314          * This isn't an RCU grace period and hence the page-tables cannot be
315          * assumed to be actually RCU-freed.
316          *
317          * It is however sufficient for software page-table walkers that rely on
318          * IRQ disabling. See the comment near struct mmu_table_batch.
319          */
320         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
321         __tlb_remove_table(table);
322 }
323
324 static void tlb_remove_table_rcu(struct rcu_head *head)
325 {
326         struct mmu_table_batch *batch;
327         int i;
328
329         batch = container_of(head, struct mmu_table_batch, rcu);
330
331         for (i = 0; i < batch->nr; i++)
332                 __tlb_remove_table(batch->tables[i]);
333
334         free_page((unsigned long)batch);
335 }
336
337 void tlb_table_flush(struct mmu_gather *tlb)
338 {
339         struct mmu_table_batch **batch = &tlb->batch;
340
341         if (*batch) {
342                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
343                 *batch = NULL;
344         }
345 }
346
347 void tlb_remove_table(struct mmu_gather *tlb, void *table)
348 {
349         struct mmu_table_batch **batch = &tlb->batch;
350
351         tlb->need_flush = 1;
352
353         /*
354          * When there's less then two users of this mm there cannot be a
355          * concurrent page-table walk.
356          */
357         if (atomic_read(&tlb->mm->mm_users) < 2) {
358                 __tlb_remove_table(table);
359                 return;
360         }
361
362         if (*batch == NULL) {
363                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
364                 if (*batch == NULL) {
365                         tlb_remove_table_one(table);
366                         return;
367                 }
368                 (*batch)->nr = 0;
369         }
370         (*batch)->tables[(*batch)->nr++] = table;
371         if ((*batch)->nr == MAX_TABLE_BATCH)
372                 tlb_table_flush(tlb);
373 }
374
375 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376
377 /*
378  * If a p?d_bad entry is found while walking page tables, report
379  * the error, before resetting entry to p?d_none.  Usually (but
380  * very seldom) called out from the p?d_none_or_clear_bad macros.
381  */
382
383 void pgd_clear_bad(pgd_t *pgd)
384 {
385         pgd_ERROR(*pgd);
386         pgd_clear(pgd);
387 }
388
389 void pud_clear_bad(pud_t *pud)
390 {
391         pud_ERROR(*pud);
392         pud_clear(pud);
393 }
394
395 void pmd_clear_bad(pmd_t *pmd)
396 {
397         pmd_ERROR(*pmd);
398         pmd_clear(pmd);
399 }
400
401 /*
402  * Note: this doesn't free the actual pages themselves. That
403  * has been handled earlier when unmapping all the memory regions.
404  */
405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406                            unsigned long addr)
407 {
408         pgtable_t token = pmd_pgtable(*pmd);
409         pmd_clear(pmd);
410         pte_free_tlb(tlb, token, addr);
411         tlb->mm->nr_ptes--;
412 }
413
414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415                                 unsigned long addr, unsigned long end,
416                                 unsigned long floor, unsigned long ceiling)
417 {
418         pmd_t *pmd;
419         unsigned long next;
420         unsigned long start;
421
422         start = addr;
423         pmd = pmd_offset(pud, addr);
424         do {
425                 next = pmd_addr_end(addr, end);
426                 if (pmd_none_or_clear_bad(pmd))
427                         continue;
428                 free_pte_range(tlb, pmd, addr);
429         } while (pmd++, addr = next, addr != end);
430
431         start &= PUD_MASK;
432         if (start < floor)
433                 return;
434         if (ceiling) {
435                 ceiling &= PUD_MASK;
436                 if (!ceiling)
437                         return;
438         }
439         if (end - 1 > ceiling - 1)
440                 return;
441
442         pmd = pmd_offset(pud, start);
443         pud_clear(pud);
444         pmd_free_tlb(tlb, pmd, start);
445 }
446
447 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
448                                 unsigned long addr, unsigned long end,
449                                 unsigned long floor, unsigned long ceiling)
450 {
451         pud_t *pud;
452         unsigned long next;
453         unsigned long start;
454
455         start = addr;
456         pud = pud_offset(pgd, addr);
457         do {
458                 next = pud_addr_end(addr, end);
459                 if (pud_none_or_clear_bad(pud))
460                         continue;
461                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
462         } while (pud++, addr = next, addr != end);
463
464         start &= PGDIR_MASK;
465         if (start < floor)
466                 return;
467         if (ceiling) {
468                 ceiling &= PGDIR_MASK;
469                 if (!ceiling)
470                         return;
471         }
472         if (end - 1 > ceiling - 1)
473                 return;
474
475         pud = pud_offset(pgd, start);
476         pgd_clear(pgd);
477         pud_free_tlb(tlb, pud, start);
478 }
479
480 /*
481  * This function frees user-level page tables of a process.
482  *
483  * Must be called with pagetable lock held.
484  */
485 void free_pgd_range(struct mmu_gather *tlb,
486                         unsigned long addr, unsigned long end,
487                         unsigned long floor, unsigned long ceiling)
488 {
489         pgd_t *pgd;
490         unsigned long next;
491
492         /*
493          * The next few lines have given us lots of grief...
494          *
495          * Why are we testing PMD* at this top level?  Because often
496          * there will be no work to do at all, and we'd prefer not to
497          * go all the way down to the bottom just to discover that.
498          *
499          * Why all these "- 1"s?  Because 0 represents both the bottom
500          * of the address space and the top of it (using -1 for the
501          * top wouldn't help much: the masks would do the wrong thing).
502          * The rule is that addr 0 and floor 0 refer to the bottom of
503          * the address space, but end 0 and ceiling 0 refer to the top
504          * Comparisons need to use "end - 1" and "ceiling - 1" (though
505          * that end 0 case should be mythical).
506          *
507          * Wherever addr is brought up or ceiling brought down, we must
508          * be careful to reject "the opposite 0" before it confuses the
509          * subsequent tests.  But what about where end is brought down
510          * by PMD_SIZE below? no, end can't go down to 0 there.
511          *
512          * Whereas we round start (addr) and ceiling down, by different
513          * masks at different levels, in order to test whether a table
514          * now has no other vmas using it, so can be freed, we don't
515          * bother to round floor or end up - the tests don't need that.
516          */
517
518         addr &= PMD_MASK;
519         if (addr < floor) {
520                 addr += PMD_SIZE;
521                 if (!addr)
522                         return;
523         }
524         if (ceiling) {
525                 ceiling &= PMD_MASK;
526                 if (!ceiling)
527                         return;
528         }
529         if (end - 1 > ceiling - 1)
530                 end -= PMD_SIZE;
531         if (addr > end - 1)
532                 return;
533
534         pgd = pgd_offset(tlb->mm, addr);
535         do {
536                 next = pgd_addr_end(addr, end);
537                 if (pgd_none_or_clear_bad(pgd))
538                         continue;
539                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
540         } while (pgd++, addr = next, addr != end);
541 }
542
543 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
544                 unsigned long floor, unsigned long ceiling)
545 {
546         while (vma) {
547                 struct vm_area_struct *next = vma->vm_next;
548                 unsigned long addr = vma->vm_start;
549
550                 /*
551                  * Hide vma from rmap and truncate_pagecache before freeing
552                  * pgtables
553                  */
554                 unlink_anon_vmas(vma);
555                 unlink_file_vma(vma);
556
557                 if (is_vm_hugetlb_page(vma)) {
558                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
559                                 floor, next? next->vm_start: ceiling);
560                 } else {
561                         /*
562                          * Optimization: gather nearby vmas into one call down
563                          */
564                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
565                                && !is_vm_hugetlb_page(next)) {
566                                 vma = next;
567                                 next = vma->vm_next;
568                                 unlink_anon_vmas(vma);
569                                 unlink_file_vma(vma);
570                         }
571                         free_pgd_range(tlb, addr, vma->vm_end,
572                                 floor, next? next->vm_start: ceiling);
573                 }
574                 vma = next;
575         }
576 }
577
578 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
579                 pmd_t *pmd, unsigned long address)
580 {
581         pgtable_t new = pte_alloc_one(mm, address);
582         int wait_split_huge_page;
583         if (!new)
584                 return -ENOMEM;
585
586         /*
587          * Ensure all pte setup (eg. pte page lock and page clearing) are
588          * visible before the pte is made visible to other CPUs by being
589          * put into page tables.
590          *
591          * The other side of the story is the pointer chasing in the page
592          * table walking code (when walking the page table without locking;
593          * ie. most of the time). Fortunately, these data accesses consist
594          * of a chain of data-dependent loads, meaning most CPUs (alpha
595          * being the notable exception) will already guarantee loads are
596          * seen in-order. See the alpha page table accessors for the
597          * smp_read_barrier_depends() barriers in page table walking code.
598          */
599         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
600
601         spin_lock(&mm->page_table_lock);
602         wait_split_huge_page = 0;
603         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
604                 mm->nr_ptes++;
605                 pmd_populate(mm, pmd, new);
606                 new = NULL;
607         } else if (unlikely(pmd_trans_splitting(*pmd)))
608                 wait_split_huge_page = 1;
609         spin_unlock(&mm->page_table_lock);
610         if (new)
611                 pte_free(mm, new);
612         if (wait_split_huge_page)
613                 wait_split_huge_page(vma->anon_vma, pmd);
614         return 0;
615 }
616
617 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
618 {
619         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
620         if (!new)
621                 return -ENOMEM;
622
623         smp_wmb(); /* See comment in __pte_alloc */
624
625         spin_lock(&init_mm.page_table_lock);
626         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
627                 pmd_populate_kernel(&init_mm, pmd, new);
628                 new = NULL;
629         } else
630                 VM_BUG_ON(pmd_trans_splitting(*pmd));
631         spin_unlock(&init_mm.page_table_lock);
632         if (new)
633                 pte_free_kernel(&init_mm, new);
634         return 0;
635 }
636
637 static inline void init_rss_vec(int *rss)
638 {
639         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
640 }
641
642 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
643 {
644         int i;
645
646         if (current->mm == mm)
647                 sync_mm_rss(mm);
648         for (i = 0; i < NR_MM_COUNTERS; i++)
649                 if (rss[i])
650                         add_mm_counter(mm, i, rss[i]);
651 }
652
653 /*
654  * This function is called to print an error when a bad pte
655  * is found. For example, we might have a PFN-mapped pte in
656  * a region that doesn't allow it.
657  *
658  * The calling function must still handle the error.
659  */
660 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
661                           pte_t pte, struct page *page)
662 {
663         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
664         pud_t *pud = pud_offset(pgd, addr);
665         pmd_t *pmd = pmd_offset(pud, addr);
666         struct address_space *mapping;
667         pgoff_t index;
668         static unsigned long resume;
669         static unsigned long nr_shown;
670         static unsigned long nr_unshown;
671
672         /*
673          * Allow a burst of 60 reports, then keep quiet for that minute;
674          * or allow a steady drip of one report per second.
675          */
676         if (nr_shown == 60) {
677                 if (time_before(jiffies, resume)) {
678                         nr_unshown++;
679                         return;
680                 }
681                 if (nr_unshown) {
682                         printk(KERN_ALERT
683                                 "BUG: Bad page map: %lu messages suppressed\n",
684                                 nr_unshown);
685                         nr_unshown = 0;
686                 }
687                 nr_shown = 0;
688         }
689         if (nr_shown++ == 0)
690                 resume = jiffies + 60 * HZ;
691
692         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
693         index = linear_page_index(vma, addr);
694
695         printk(KERN_ALERT
696                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
697                 current->comm,
698                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
699         if (page)
700                 dump_page(page);
701         printk(KERN_ALERT
702                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
703                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
704         /*
705          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
706          */
707         if (vma->vm_ops)
708                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
709                                 (unsigned long)vma->vm_ops->fault);
710         if (vma->vm_file && vma->vm_file->f_op)
711                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
712                                 (unsigned long)vma->vm_file->f_op->mmap);
713         dump_stack();
714         add_taint(TAINT_BAD_PAGE);
715 }
716
717 static inline bool is_cow_mapping(vm_flags_t flags)
718 {
719         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
720 }
721
722 /*
723  * vm_normal_page -- This function gets the "struct page" associated with a pte.
724  *
725  * "Special" mappings do not wish to be associated with a "struct page" (either
726  * it doesn't exist, or it exists but they don't want to touch it). In this
727  * case, NULL is returned here. "Normal" mappings do have a struct page.
728  *
729  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
730  * pte bit, in which case this function is trivial. Secondly, an architecture
731  * may not have a spare pte bit, which requires a more complicated scheme,
732  * described below.
733  *
734  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
735  * special mapping (even if there are underlying and valid "struct pages").
736  * COWed pages of a VM_PFNMAP are always normal.
737  *
738  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
739  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
740  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
741  * mapping will always honor the rule
742  *
743  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
744  *
745  * And for normal mappings this is false.
746  *
747  * This restricts such mappings to be a linear translation from virtual address
748  * to pfn. To get around this restriction, we allow arbitrary mappings so long
749  * as the vma is not a COW mapping; in that case, we know that all ptes are
750  * special (because none can have been COWed).
751  *
752  *
753  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
754  *
755  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
756  * page" backing, however the difference is that _all_ pages with a struct
757  * page (that is, those where pfn_valid is true) are refcounted and considered
758  * normal pages by the VM. The disadvantage is that pages are refcounted
759  * (which can be slower and simply not an option for some PFNMAP users). The
760  * advantage is that we don't have to follow the strict linearity rule of
761  * PFNMAP mappings in order to support COWable mappings.
762  *
763  */
764 #ifdef __HAVE_ARCH_PTE_SPECIAL
765 # define HAVE_PTE_SPECIAL 1
766 #else
767 # define HAVE_PTE_SPECIAL 0
768 #endif
769 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
770                                 pte_t pte)
771 {
772         unsigned long pfn = pte_pfn(pte);
773
774         if (HAVE_PTE_SPECIAL) {
775                 if (likely(!pte_special(pte)))
776                         goto check_pfn;
777                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
778                         return NULL;
779                 if (!is_zero_pfn(pfn))
780                         print_bad_pte(vma, addr, pte, NULL);
781                 return NULL;
782         }
783
784         /* !HAVE_PTE_SPECIAL case follows: */
785
786         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
787                 if (vma->vm_flags & VM_MIXEDMAP) {
788                         if (!pfn_valid(pfn))
789                                 return NULL;
790                         goto out;
791                 } else {
792                         unsigned long off;
793                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
794                         if (pfn == vma->vm_pgoff + off)
795                                 return NULL;
796                         if (!is_cow_mapping(vma->vm_flags))
797                                 return NULL;
798                 }
799         }
800
801         if (is_zero_pfn(pfn))
802                 return NULL;
803 check_pfn:
804         if (unlikely(pfn > highest_memmap_pfn)) {
805                 print_bad_pte(vma, addr, pte, NULL);
806                 return NULL;
807         }
808
809         /*
810          * NOTE! We still have PageReserved() pages in the page tables.
811          * eg. VDSO mappings can cause them to exist.
812          */
813 out:
814         return pfn_to_page(pfn);
815 }
816
817 /*
818  * copy one vm_area from one task to the other. Assumes the page tables
819  * already present in the new task to be cleared in the whole range
820  * covered by this vma.
821  */
822
823 static inline unsigned long
824 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
825                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
826                 unsigned long addr, int *rss)
827 {
828         unsigned long vm_flags = vma->vm_flags;
829         pte_t pte = *src_pte;
830         struct page *page;
831
832         /* pte contains position in swap or file, so copy. */
833         if (unlikely(!pte_present(pte))) {
834                 if (!pte_file(pte)) {
835                         swp_entry_t entry = pte_to_swp_entry(pte);
836
837                         if (swap_duplicate(entry) < 0)
838                                 return entry.val;
839
840                         /* make sure dst_mm is on swapoff's mmlist. */
841                         if (unlikely(list_empty(&dst_mm->mmlist))) {
842                                 spin_lock(&mmlist_lock);
843                                 if (list_empty(&dst_mm->mmlist))
844                                         list_add(&dst_mm->mmlist,
845                                                  &src_mm->mmlist);
846                                 spin_unlock(&mmlist_lock);
847                         }
848                         if (likely(!non_swap_entry(entry)))
849                                 rss[MM_SWAPENTS]++;
850                         else if (is_migration_entry(entry)) {
851                                 page = migration_entry_to_page(entry);
852
853                                 if (PageAnon(page))
854                                         rss[MM_ANONPAGES]++;
855                                 else
856                                         rss[MM_FILEPAGES]++;
857
858                                 if (is_write_migration_entry(entry) &&
859                                     is_cow_mapping(vm_flags)) {
860                                         /*
861                                          * COW mappings require pages in both
862                                          * parent and child to be set to read.
863                                          */
864                                         make_migration_entry_read(&entry);
865                                         pte = swp_entry_to_pte(entry);
866                                         set_pte_at(src_mm, addr, src_pte, pte);
867                                 }
868                         }
869                 }
870                 goto out_set_pte;
871         }
872
873         /*
874          * If it's a COW mapping, write protect it both
875          * in the parent and the child
876          */
877         if (is_cow_mapping(vm_flags)) {
878                 ptep_set_wrprotect(src_mm, addr, src_pte);
879                 pte = pte_wrprotect(pte);
880         }
881
882         /*
883          * If it's a shared mapping, mark it clean in
884          * the child
885          */
886         if (vm_flags & VM_SHARED)
887                 pte = pte_mkclean(pte);
888         pte = pte_mkold(pte);
889
890         page = vm_normal_page(vma, addr, pte);
891         if (page) {
892                 get_page(page);
893                 page_dup_rmap(page);
894                 if (PageAnon(page))
895                         rss[MM_ANONPAGES]++;
896                 else
897                         rss[MM_FILEPAGES]++;
898         }
899
900 out_set_pte:
901         set_pte_at(dst_mm, addr, dst_pte, pte);
902         return 0;
903 }
904
905 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
906                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
907                    unsigned long addr, unsigned long end)
908 {
909         pte_t *orig_src_pte, *orig_dst_pte;
910         pte_t *src_pte, *dst_pte;
911         spinlock_t *src_ptl, *dst_ptl;
912         int progress = 0;
913         int rss[NR_MM_COUNTERS];
914         swp_entry_t entry = (swp_entry_t){0};
915
916 again:
917         init_rss_vec(rss);
918
919         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
920         if (!dst_pte)
921                 return -ENOMEM;
922         src_pte = pte_offset_map(src_pmd, addr);
923         src_ptl = pte_lockptr(src_mm, src_pmd);
924         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
925         orig_src_pte = src_pte;
926         orig_dst_pte = dst_pte;
927         arch_enter_lazy_mmu_mode();
928
929         do {
930                 /*
931                  * We are holding two locks at this point - either of them
932                  * could generate latencies in another task on another CPU.
933                  */
934                 if (progress >= 32) {
935                         progress = 0;
936                         if (need_resched() ||
937                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
938                                 break;
939                 }
940                 if (pte_none(*src_pte)) {
941                         progress++;
942                         continue;
943                 }
944                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
945                                                         vma, addr, rss);
946                 if (entry.val)
947                         break;
948                 progress += 8;
949         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
950
951         arch_leave_lazy_mmu_mode();
952         spin_unlock(src_ptl);
953         pte_unmap(orig_src_pte);
954         add_mm_rss_vec(dst_mm, rss);
955         pte_unmap_unlock(orig_dst_pte, dst_ptl);
956         cond_resched();
957
958         if (entry.val) {
959                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
960                         return -ENOMEM;
961                 progress = 0;
962         }
963         if (addr != end)
964                 goto again;
965         return 0;
966 }
967
968 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
970                 unsigned long addr, unsigned long end)
971 {
972         pmd_t *src_pmd, *dst_pmd;
973         unsigned long next;
974
975         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
976         if (!dst_pmd)
977                 return -ENOMEM;
978         src_pmd = pmd_offset(src_pud, addr);
979         do {
980                 next = pmd_addr_end(addr, end);
981                 if (pmd_trans_huge(*src_pmd)) {
982                         int err;
983                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
984                         err = copy_huge_pmd(dst_mm, src_mm,
985                                             dst_pmd, src_pmd, addr, vma);
986                         if (err == -ENOMEM)
987                                 return -ENOMEM;
988                         if (!err)
989                                 continue;
990                         /* fall through */
991                 }
992                 if (pmd_none_or_clear_bad(src_pmd))
993                         continue;
994                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
995                                                 vma, addr, next))
996                         return -ENOMEM;
997         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
998         return 0;
999 }
1000
1001 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1002                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1003                 unsigned long addr, unsigned long end)
1004 {
1005         pud_t *src_pud, *dst_pud;
1006         unsigned long next;
1007
1008         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1009         if (!dst_pud)
1010                 return -ENOMEM;
1011         src_pud = pud_offset(src_pgd, addr);
1012         do {
1013                 next = pud_addr_end(addr, end);
1014                 if (pud_none_or_clear_bad(src_pud))
1015                         continue;
1016                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1017                                                 vma, addr, next))
1018                         return -ENOMEM;
1019         } while (dst_pud++, src_pud++, addr = next, addr != end);
1020         return 0;
1021 }
1022
1023 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024                 struct vm_area_struct *vma)
1025 {
1026         pgd_t *src_pgd, *dst_pgd;
1027         unsigned long next;
1028         unsigned long addr = vma->vm_start;
1029         unsigned long end = vma->vm_end;
1030         unsigned long mmun_start;       /* For mmu_notifiers */
1031         unsigned long mmun_end;         /* For mmu_notifiers */
1032         bool is_cow;
1033         int ret;
1034
1035         /*
1036          * Don't copy ptes where a page fault will fill them correctly.
1037          * Fork becomes much lighter when there are big shared or private
1038          * readonly mappings. The tradeoff is that copy_page_range is more
1039          * efficient than faulting.
1040          */
1041         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1042                                VM_PFNMAP | VM_MIXEDMAP))) {
1043                 if (!vma->anon_vma)
1044                         return 0;
1045         }
1046
1047         if (is_vm_hugetlb_page(vma))
1048                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1049
1050         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1051                 /*
1052                  * We do not free on error cases below as remove_vma
1053                  * gets called on error from higher level routine
1054                  */
1055                 ret = track_pfn_copy(vma);
1056                 if (ret)
1057                         return ret;
1058         }
1059
1060         /*
1061          * We need to invalidate the secondary MMU mappings only when
1062          * there could be a permission downgrade on the ptes of the
1063          * parent mm. And a permission downgrade will only happen if
1064          * is_cow_mapping() returns true.
1065          */
1066         is_cow = is_cow_mapping(vma->vm_flags);
1067         mmun_start = addr;
1068         mmun_end   = end;
1069         if (is_cow)
1070                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1071                                                     mmun_end);
1072
1073         ret = 0;
1074         dst_pgd = pgd_offset(dst_mm, addr);
1075         src_pgd = pgd_offset(src_mm, addr);
1076         do {
1077                 next = pgd_addr_end(addr, end);
1078                 if (pgd_none_or_clear_bad(src_pgd))
1079                         continue;
1080                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081                                             vma, addr, next))) {
1082                         ret = -ENOMEM;
1083                         break;
1084                 }
1085         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086
1087         if (is_cow)
1088                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1089         return ret;
1090 }
1091
1092 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1093                                 struct vm_area_struct *vma, pmd_t *pmd,
1094                                 unsigned long addr, unsigned long end,
1095                                 struct zap_details *details)
1096 {
1097         struct mm_struct *mm = tlb->mm;
1098         int force_flush = 0;
1099         int rss[NR_MM_COUNTERS];
1100         spinlock_t *ptl;
1101         pte_t *start_pte;
1102         pte_t *pte;
1103
1104 again:
1105         init_rss_vec(rss);
1106         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1107         pte = start_pte;
1108         arch_enter_lazy_mmu_mode();
1109         do {
1110                 pte_t ptent = *pte;
1111                 if (pte_none(ptent)) {
1112                         continue;
1113                 }
1114
1115                 if (pte_present(ptent)) {
1116                         struct page *page;
1117
1118                         page = vm_normal_page(vma, addr, ptent);
1119                         if (unlikely(details) && page) {
1120                                 /*
1121                                  * unmap_shared_mapping_pages() wants to
1122                                  * invalidate cache without truncating:
1123                                  * unmap shared but keep private pages.
1124                                  */
1125                                 if (details->check_mapping &&
1126                                     details->check_mapping != page->mapping)
1127                                         continue;
1128                                 /*
1129                                  * Each page->index must be checked when
1130                                  * invalidating or truncating nonlinear.
1131                                  */
1132                                 if (details->nonlinear_vma &&
1133                                     (page->index < details->first_index ||
1134                                      page->index > details->last_index))
1135                                         continue;
1136                         }
1137                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1138                                                         tlb->fullmm);
1139                         tlb_remove_tlb_entry(tlb, pte, addr);
1140                         if (unlikely(!page))
1141                                 continue;
1142                         if (unlikely(details) && details->nonlinear_vma
1143                             && linear_page_index(details->nonlinear_vma,
1144                                                 addr) != page->index)
1145                                 set_pte_at(mm, addr, pte,
1146                                            pgoff_to_pte(page->index));
1147                         if (PageAnon(page))
1148                                 rss[MM_ANONPAGES]--;
1149                         else {
1150                                 if (pte_dirty(ptent))
1151                                         set_page_dirty(page);
1152                                 if (pte_young(ptent) &&
1153                                     likely(!VM_SequentialReadHint(vma)))
1154                                         mark_page_accessed(page);
1155                                 rss[MM_FILEPAGES]--;
1156                         }
1157                         page_remove_rmap(page);
1158                         if (unlikely(page_mapcount(page) < 0))
1159                                 print_bad_pte(vma, addr, ptent, page);
1160                         force_flush = !__tlb_remove_page(tlb, page);
1161                         if (force_flush)
1162                                 break;
1163                         continue;
1164                 }
1165                 /*
1166                  * If details->check_mapping, we leave swap entries;
1167                  * if details->nonlinear_vma, we leave file entries.
1168                  */
1169                 if (unlikely(details))
1170                         continue;
1171                 if (pte_file(ptent)) {
1172                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1173                                 print_bad_pte(vma, addr, ptent, NULL);
1174                 } else {
1175                         swp_entry_t entry = pte_to_swp_entry(ptent);
1176
1177                         if (!non_swap_entry(entry))
1178                                 rss[MM_SWAPENTS]--;
1179                         else if (is_migration_entry(entry)) {
1180                                 struct page *page;
1181
1182                                 page = migration_entry_to_page(entry);
1183
1184                                 if (PageAnon(page))
1185                                         rss[MM_ANONPAGES]--;
1186                                 else
1187                                         rss[MM_FILEPAGES]--;
1188                         }
1189                         if (unlikely(!free_swap_and_cache(entry)))
1190                                 print_bad_pte(vma, addr, ptent, NULL);
1191                 }
1192                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1193         } while (pte++, addr += PAGE_SIZE, addr != end);
1194
1195         add_mm_rss_vec(mm, rss);
1196         arch_leave_lazy_mmu_mode();
1197         pte_unmap_unlock(start_pte, ptl);
1198
1199         /*
1200          * mmu_gather ran out of room to batch pages, we break out of
1201          * the PTE lock to avoid doing the potential expensive TLB invalidate
1202          * and page-free while holding it.
1203          */
1204         if (force_flush) {
1205                 force_flush = 0;
1206
1207 #ifdef HAVE_GENERIC_MMU_GATHER
1208                 tlb->start = addr;
1209                 tlb->end = end;
1210 #endif
1211                 tlb_flush_mmu(tlb);
1212                 if (addr != end)
1213                         goto again;
1214         }
1215
1216         return addr;
1217 }
1218
1219 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220                                 struct vm_area_struct *vma, pud_t *pud,
1221                                 unsigned long addr, unsigned long end,
1222                                 struct zap_details *details)
1223 {
1224         pmd_t *pmd;
1225         unsigned long next;
1226
1227         pmd = pmd_offset(pud, addr);
1228         do {
1229                 next = pmd_addr_end(addr, end);
1230                 if (pmd_trans_huge(*pmd)) {
1231                         if (next - addr != HPAGE_PMD_SIZE) {
1232 #ifdef CONFIG_DEBUG_VM
1233                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1234                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1235                                                 __func__, addr, end,
1236                                                 vma->vm_start,
1237                                                 vma->vm_end);
1238                                         BUG();
1239                                 }
1240 #endif
1241                                 split_huge_page_pmd(vma, addr, pmd);
1242                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1243                                 goto next;
1244                         /* fall through */
1245                 }
1246                 /*
1247                  * Here there can be other concurrent MADV_DONTNEED or
1248                  * trans huge page faults running, and if the pmd is
1249                  * none or trans huge it can change under us. This is
1250                  * because MADV_DONTNEED holds the mmap_sem in read
1251                  * mode.
1252                  */
1253                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1254                         goto next;
1255                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1256 next:
1257                 cond_resched();
1258         } while (pmd++, addr = next, addr != end);
1259
1260         return addr;
1261 }
1262
1263 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1264                                 struct vm_area_struct *vma, pgd_t *pgd,
1265                                 unsigned long addr, unsigned long end,
1266                                 struct zap_details *details)
1267 {
1268         pud_t *pud;
1269         unsigned long next;
1270
1271         pud = pud_offset(pgd, addr);
1272         do {
1273                 next = pud_addr_end(addr, end);
1274                 if (pud_none_or_clear_bad(pud))
1275                         continue;
1276                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1277         } while (pud++, addr = next, addr != end);
1278
1279         return addr;
1280 }
1281
1282 static void unmap_page_range(struct mmu_gather *tlb,
1283                              struct vm_area_struct *vma,
1284                              unsigned long addr, unsigned long end,
1285                              struct zap_details *details)
1286 {
1287         pgd_t *pgd;
1288         unsigned long next;
1289
1290         if (details && !details->check_mapping && !details->nonlinear_vma)
1291                 details = NULL;
1292
1293         BUG_ON(addr >= end);
1294         mem_cgroup_uncharge_start();
1295         tlb_start_vma(tlb, vma);
1296         pgd = pgd_offset(vma->vm_mm, addr);
1297         do {
1298                 next = pgd_addr_end(addr, end);
1299                 if (pgd_none_or_clear_bad(pgd))
1300                         continue;
1301                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1302         } while (pgd++, addr = next, addr != end);
1303         tlb_end_vma(tlb, vma);
1304         mem_cgroup_uncharge_end();
1305 }
1306
1307
1308 static void unmap_single_vma(struct mmu_gather *tlb,
1309                 struct vm_area_struct *vma, unsigned long start_addr,
1310                 unsigned long end_addr,
1311                 struct zap_details *details)
1312 {
1313         unsigned long start = max(vma->vm_start, start_addr);
1314         unsigned long end;
1315
1316         if (start >= vma->vm_end)
1317                 return;
1318         end = min(vma->vm_end, end_addr);
1319         if (end <= vma->vm_start)
1320                 return;
1321
1322         if (vma->vm_file)
1323                 uprobe_munmap(vma, start, end);
1324
1325         if (unlikely(vma->vm_flags & VM_PFNMAP))
1326                 untrack_pfn(vma, 0, 0);
1327
1328         if (start != end) {
1329                 if (unlikely(is_vm_hugetlb_page(vma))) {
1330                         /*
1331                          * It is undesirable to test vma->vm_file as it
1332                          * should be non-null for valid hugetlb area.
1333                          * However, vm_file will be NULL in the error
1334                          * cleanup path of do_mmap_pgoff. When
1335                          * hugetlbfs ->mmap method fails,
1336                          * do_mmap_pgoff() nullifies vma->vm_file
1337                          * before calling this function to clean up.
1338                          * Since no pte has actually been setup, it is
1339                          * safe to do nothing in this case.
1340                          */
1341                         if (vma->vm_file) {
1342                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1343                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1344                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1345                         }
1346                 } else
1347                         unmap_page_range(tlb, vma, start, end, details);
1348         }
1349 }
1350
1351 /**
1352  * unmap_vmas - unmap a range of memory covered by a list of vma's
1353  * @tlb: address of the caller's struct mmu_gather
1354  * @vma: the starting vma
1355  * @start_addr: virtual address at which to start unmapping
1356  * @end_addr: virtual address at which to end unmapping
1357  *
1358  * Unmap all pages in the vma list.
1359  *
1360  * Only addresses between `start' and `end' will be unmapped.
1361  *
1362  * The VMA list must be sorted in ascending virtual address order.
1363  *
1364  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1365  * range after unmap_vmas() returns.  So the only responsibility here is to
1366  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1367  * drops the lock and schedules.
1368  */
1369 void unmap_vmas(struct mmu_gather *tlb,
1370                 struct vm_area_struct *vma, unsigned long start_addr,
1371                 unsigned long end_addr)
1372 {
1373         struct mm_struct *mm = vma->vm_mm;
1374
1375         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1376         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1377                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1378         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1379 }
1380
1381 /**
1382  * zap_page_range - remove user pages in a given range
1383  * @vma: vm_area_struct holding the applicable pages
1384  * @start: starting address of pages to zap
1385  * @size: number of bytes to zap
1386  * @details: details of nonlinear truncation or shared cache invalidation
1387  *
1388  * Caller must protect the VMA list
1389  */
1390 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1391                 unsigned long size, struct zap_details *details)
1392 {
1393         struct mm_struct *mm = vma->vm_mm;
1394         struct mmu_gather tlb;
1395         unsigned long end = start + size;
1396
1397         lru_add_drain();
1398         tlb_gather_mmu(&tlb, mm, 0);
1399         update_hiwater_rss(mm);
1400         mmu_notifier_invalidate_range_start(mm, start, end);
1401         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1402                 unmap_single_vma(&tlb, vma, start, end, details);
1403         mmu_notifier_invalidate_range_end(mm, start, end);
1404         tlb_finish_mmu(&tlb, start, end);
1405 }
1406
1407 /**
1408  * zap_page_range_single - remove user pages in a given range
1409  * @vma: vm_area_struct holding the applicable pages
1410  * @address: starting address of pages to zap
1411  * @size: number of bytes to zap
1412  * @details: details of nonlinear truncation or shared cache invalidation
1413  *
1414  * The range must fit into one VMA.
1415  */
1416 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1417                 unsigned long size, struct zap_details *details)
1418 {
1419         struct mm_struct *mm = vma->vm_mm;
1420         struct mmu_gather tlb;
1421         unsigned long end = address + size;
1422
1423         lru_add_drain();
1424         tlb_gather_mmu(&tlb, mm, 0);
1425         update_hiwater_rss(mm);
1426         mmu_notifier_invalidate_range_start(mm, address, end);
1427         unmap_single_vma(&tlb, vma, address, end, details);
1428         mmu_notifier_invalidate_range_end(mm, address, end);
1429         tlb_finish_mmu(&tlb, address, end);
1430 }
1431
1432 /**
1433  * zap_vma_ptes - remove ptes mapping the vma
1434  * @vma: vm_area_struct holding ptes to be zapped
1435  * @address: starting address of pages to zap
1436  * @size: number of bytes to zap
1437  *
1438  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1439  *
1440  * The entire address range must be fully contained within the vma.
1441  *
1442  * Returns 0 if successful.
1443  */
1444 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1445                 unsigned long size)
1446 {
1447         if (address < vma->vm_start || address + size > vma->vm_end ||
1448                         !(vma->vm_flags & VM_PFNMAP))
1449                 return -1;
1450         zap_page_range_single(vma, address, size, NULL);
1451         return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1454
1455 /**
1456  * follow_page - look up a page descriptor from a user-virtual address
1457  * @vma: vm_area_struct mapping @address
1458  * @address: virtual address to look up
1459  * @flags: flags modifying lookup behaviour
1460  *
1461  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1462  *
1463  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1464  * an error pointer if there is a mapping to something not represented
1465  * by a page descriptor (see also vm_normal_page()).
1466  */
1467 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1468                         unsigned int flags)
1469 {
1470         pgd_t *pgd;
1471         pud_t *pud;
1472         pmd_t *pmd;
1473         pte_t *ptep, pte;
1474         spinlock_t *ptl;
1475         struct page *page;
1476         struct mm_struct *mm = vma->vm_mm;
1477
1478         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1479         if (!IS_ERR(page)) {
1480                 BUG_ON(flags & FOLL_GET);
1481                 goto out;
1482         }
1483
1484         page = NULL;
1485         pgd = pgd_offset(mm, address);
1486         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1487                 goto no_page_table;
1488
1489         pud = pud_offset(pgd, address);
1490         if (pud_none(*pud))
1491                 goto no_page_table;
1492         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1493                 BUG_ON(flags & FOLL_GET);
1494                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1495                 goto out;
1496         }
1497         if (unlikely(pud_bad(*pud)))
1498                 goto no_page_table;
1499
1500         pmd = pmd_offset(pud, address);
1501         if (pmd_none(*pmd))
1502                 goto no_page_table;
1503         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1504                 BUG_ON(flags & FOLL_GET);
1505                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1506                 goto out;
1507         }
1508         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1509                 goto no_page_table;
1510         if (pmd_trans_huge(*pmd)) {
1511                 if (flags & FOLL_SPLIT) {
1512                         split_huge_page_pmd(vma, address, pmd);
1513                         goto split_fallthrough;
1514                 }
1515                 spin_lock(&mm->page_table_lock);
1516                 if (likely(pmd_trans_huge(*pmd))) {
1517                         if (unlikely(pmd_trans_splitting(*pmd))) {
1518                                 spin_unlock(&mm->page_table_lock);
1519                                 wait_split_huge_page(vma->anon_vma, pmd);
1520                         } else {
1521                                 page = follow_trans_huge_pmd(vma, address,
1522                                                              pmd, flags);
1523                                 spin_unlock(&mm->page_table_lock);
1524                                 goto out;
1525                         }
1526                 } else
1527                         spin_unlock(&mm->page_table_lock);
1528                 /* fall through */
1529         }
1530 split_fallthrough:
1531         if (unlikely(pmd_bad(*pmd)))
1532                 goto no_page_table;
1533
1534         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1535
1536         pte = *ptep;
1537         if (!pte_present(pte))
1538                 goto no_page;
1539         if ((flags & FOLL_NUMA) && pte_numa(pte))
1540                 goto no_page;
1541         if ((flags & FOLL_WRITE) && !pte_write(pte))
1542                 goto unlock;
1543
1544         page = vm_normal_page(vma, address, pte);
1545         if (unlikely(!page)) {
1546                 if ((flags & FOLL_DUMP) ||
1547                     !is_zero_pfn(pte_pfn(pte)))
1548                         goto bad_page;
1549                 page = pte_page(pte);
1550         }
1551
1552         if (flags & FOLL_GET)
1553                 get_page_foll(page);
1554         if (flags & FOLL_TOUCH) {
1555                 if ((flags & FOLL_WRITE) &&
1556                     !pte_dirty(pte) && !PageDirty(page))
1557                         set_page_dirty(page);
1558                 /*
1559                  * pte_mkyoung() would be more correct here, but atomic care
1560                  * is needed to avoid losing the dirty bit: it is easier to use
1561                  * mark_page_accessed().
1562                  */
1563                 mark_page_accessed(page);
1564         }
1565         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1566                 /*
1567                  * The preliminary mapping check is mainly to avoid the
1568                  * pointless overhead of lock_page on the ZERO_PAGE
1569                  * which might bounce very badly if there is contention.
1570                  *
1571                  * If the page is already locked, we don't need to
1572                  * handle it now - vmscan will handle it later if and
1573                  * when it attempts to reclaim the page.
1574                  */
1575                 if (page->mapping && trylock_page(page)) {
1576                         lru_add_drain();  /* push cached pages to LRU */
1577                         /*
1578                          * Because we lock page here, and migration is
1579                          * blocked by the pte's page reference, and we
1580                          * know the page is still mapped, we don't even
1581                          * need to check for file-cache page truncation.
1582                          */
1583                         mlock_vma_page(page);
1584                         unlock_page(page);
1585                 }
1586         }
1587 unlock:
1588         pte_unmap_unlock(ptep, ptl);
1589 out:
1590         return page;
1591
1592 bad_page:
1593         pte_unmap_unlock(ptep, ptl);
1594         return ERR_PTR(-EFAULT);
1595
1596 no_page:
1597         pte_unmap_unlock(ptep, ptl);
1598         if (!pte_none(pte))
1599                 return page;
1600
1601 no_page_table:
1602         /*
1603          * When core dumping an enormous anonymous area that nobody
1604          * has touched so far, we don't want to allocate unnecessary pages or
1605          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1606          * then get_dump_page() will return NULL to leave a hole in the dump.
1607          * But we can only make this optimization where a hole would surely
1608          * be zero-filled if handle_mm_fault() actually did handle it.
1609          */
1610         if ((flags & FOLL_DUMP) &&
1611             (!vma->vm_ops || !vma->vm_ops->fault))
1612                 return ERR_PTR(-EFAULT);
1613         return page;
1614 }
1615
1616 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1617 {
1618         return stack_guard_page_start(vma, addr) ||
1619                stack_guard_page_end(vma, addr+PAGE_SIZE);
1620 }
1621
1622 /**
1623  * __get_user_pages() - pin user pages in memory
1624  * @tsk:        task_struct of target task
1625  * @mm:         mm_struct of target mm
1626  * @start:      starting user address
1627  * @nr_pages:   number of pages from start to pin
1628  * @gup_flags:  flags modifying pin behaviour
1629  * @pages:      array that receives pointers to the pages pinned.
1630  *              Should be at least nr_pages long. Or NULL, if caller
1631  *              only intends to ensure the pages are faulted in.
1632  * @vmas:       array of pointers to vmas corresponding to each page.
1633  *              Or NULL if the caller does not require them.
1634  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1635  *
1636  * Returns number of pages pinned. This may be fewer than the number
1637  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1638  * were pinned, returns -errno. Each page returned must be released
1639  * with a put_page() call when it is finished with. vmas will only
1640  * remain valid while mmap_sem is held.
1641  *
1642  * Must be called with mmap_sem held for read or write.
1643  *
1644  * __get_user_pages walks a process's page tables and takes a reference to
1645  * each struct page that each user address corresponds to at a given
1646  * instant. That is, it takes the page that would be accessed if a user
1647  * thread accesses the given user virtual address at that instant.
1648  *
1649  * This does not guarantee that the page exists in the user mappings when
1650  * __get_user_pages returns, and there may even be a completely different
1651  * page there in some cases (eg. if mmapped pagecache has been invalidated
1652  * and subsequently re faulted). However it does guarantee that the page
1653  * won't be freed completely. And mostly callers simply care that the page
1654  * contains data that was valid *at some point in time*. Typically, an IO
1655  * or similar operation cannot guarantee anything stronger anyway because
1656  * locks can't be held over the syscall boundary.
1657  *
1658  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1659  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1660  * appropriate) must be called after the page is finished with, and
1661  * before put_page is called.
1662  *
1663  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1664  * or mmap_sem contention, and if waiting is needed to pin all pages,
1665  * *@nonblocking will be set to 0.
1666  *
1667  * In most cases, get_user_pages or get_user_pages_fast should be used
1668  * instead of __get_user_pages. __get_user_pages should be used only if
1669  * you need some special @gup_flags.
1670  */
1671 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1672                      unsigned long start, int nr_pages, unsigned int gup_flags,
1673                      struct page **pages, struct vm_area_struct **vmas,
1674                      int *nonblocking)
1675 {
1676         int i;
1677         unsigned long vm_flags;
1678
1679         if (nr_pages <= 0)
1680                 return 0;
1681
1682         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1683
1684         /* 
1685          * Require read or write permissions.
1686          * If FOLL_FORCE is set, we only require the "MAY" flags.
1687          */
1688         vm_flags  = (gup_flags & FOLL_WRITE) ?
1689                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1690         vm_flags &= (gup_flags & FOLL_FORCE) ?
1691                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1692
1693         /*
1694          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1695          * would be called on PROT_NONE ranges. We must never invoke
1696          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1697          * page faults would unprotect the PROT_NONE ranges if
1698          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1699          * bitflag. So to avoid that, don't set FOLL_NUMA if
1700          * FOLL_FORCE is set.
1701          */
1702         if (!(gup_flags & FOLL_FORCE))
1703                 gup_flags |= FOLL_NUMA;
1704
1705         i = 0;
1706
1707         do {
1708                 struct vm_area_struct *vma;
1709
1710                 vma = find_extend_vma(mm, start);
1711                 if (!vma && in_gate_area(mm, start)) {
1712                         unsigned long pg = start & PAGE_MASK;
1713                         pgd_t *pgd;
1714                         pud_t *pud;
1715                         pmd_t *pmd;
1716                         pte_t *pte;
1717
1718                         /* user gate pages are read-only */
1719                         if (gup_flags & FOLL_WRITE)
1720                                 return i ? : -EFAULT;
1721                         if (pg > TASK_SIZE)
1722                                 pgd = pgd_offset_k(pg);
1723                         else
1724                                 pgd = pgd_offset_gate(mm, pg);
1725                         BUG_ON(pgd_none(*pgd));
1726                         pud = pud_offset(pgd, pg);
1727                         BUG_ON(pud_none(*pud));
1728                         pmd = pmd_offset(pud, pg);
1729                         if (pmd_none(*pmd))
1730                                 return i ? : -EFAULT;
1731                         VM_BUG_ON(pmd_trans_huge(*pmd));
1732                         pte = pte_offset_map(pmd, pg);
1733                         if (pte_none(*pte)) {
1734                                 pte_unmap(pte);
1735                                 return i ? : -EFAULT;
1736                         }
1737                         vma = get_gate_vma(mm);
1738                         if (pages) {
1739                                 struct page *page;
1740
1741                                 page = vm_normal_page(vma, start, *pte);
1742                                 if (!page) {
1743                                         if (!(gup_flags & FOLL_DUMP) &&
1744                                              is_zero_pfn(pte_pfn(*pte)))
1745                                                 page = pte_page(*pte);
1746                                         else {
1747                                                 pte_unmap(pte);
1748                                                 return i ? : -EFAULT;
1749                                         }
1750                                 }
1751                                 pages[i] = page;
1752                                 get_page(page);
1753                         }
1754                         pte_unmap(pte);
1755                         goto next_page;
1756                 }
1757
1758                 if (!vma ||
1759                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1760                     !(vm_flags & vma->vm_flags))
1761                         return i ? : -EFAULT;
1762
1763                 if (is_vm_hugetlb_page(vma)) {
1764                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1765                                         &start, &nr_pages, i, gup_flags);
1766                         continue;
1767                 }
1768
1769                 do {
1770                         struct page *page;
1771                         unsigned int foll_flags = gup_flags;
1772
1773                         /*
1774                          * If we have a pending SIGKILL, don't keep faulting
1775                          * pages and potentially allocating memory.
1776                          */
1777                         if (unlikely(fatal_signal_pending(current)))
1778                                 return i ? i : -ERESTARTSYS;
1779
1780                         cond_resched();
1781                         while (!(page = follow_page(vma, start, foll_flags))) {
1782                                 int ret;
1783                                 unsigned int fault_flags = 0;
1784
1785                                 /* For mlock, just skip the stack guard page. */
1786                                 if (foll_flags & FOLL_MLOCK) {
1787                                         if (stack_guard_page(vma, start))
1788                                                 goto next_page;
1789                                 }
1790                                 if (foll_flags & FOLL_WRITE)
1791                                         fault_flags |= FAULT_FLAG_WRITE;
1792                                 if (nonblocking)
1793                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1794                                 if (foll_flags & FOLL_NOWAIT)
1795                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1796
1797                                 ret = handle_mm_fault(mm, vma, start,
1798                                                         fault_flags);
1799
1800                                 if (ret & VM_FAULT_ERROR) {
1801                                         if (ret & VM_FAULT_OOM)
1802                                                 return i ? i : -ENOMEM;
1803                                         if (ret & (VM_FAULT_HWPOISON |
1804                                                    VM_FAULT_HWPOISON_LARGE)) {
1805                                                 if (i)
1806                                                         return i;
1807                                                 else if (gup_flags & FOLL_HWPOISON)
1808                                                         return -EHWPOISON;
1809                                                 else
1810                                                         return -EFAULT;
1811                                         }
1812                                         if (ret & VM_FAULT_SIGBUS)
1813                                                 return i ? i : -EFAULT;
1814                                         BUG();
1815                                 }
1816
1817                                 if (tsk) {
1818                                         if (ret & VM_FAULT_MAJOR)
1819                                                 tsk->maj_flt++;
1820                                         else
1821                                                 tsk->min_flt++;
1822                                 }
1823
1824                                 if (ret & VM_FAULT_RETRY) {
1825                                         if (nonblocking)
1826                                                 *nonblocking = 0;
1827                                         return i;
1828                                 }
1829
1830                                 /*
1831                                  * The VM_FAULT_WRITE bit tells us that
1832                                  * do_wp_page has broken COW when necessary,
1833                                  * even if maybe_mkwrite decided not to set
1834                                  * pte_write. We can thus safely do subsequent
1835                                  * page lookups as if they were reads. But only
1836                                  * do so when looping for pte_write is futile:
1837                                  * in some cases userspace may also be wanting
1838                                  * to write to the gotten user page, which a
1839                                  * read fault here might prevent (a readonly
1840                                  * page might get reCOWed by userspace write).
1841                                  */
1842                                 if ((ret & VM_FAULT_WRITE) &&
1843                                     !(vma->vm_flags & VM_WRITE))
1844                                         foll_flags &= ~FOLL_WRITE;
1845
1846                                 cond_resched();
1847                         }
1848                         if (IS_ERR(page))
1849                                 return i ? i : PTR_ERR(page);
1850                         if (pages) {
1851                                 pages[i] = page;
1852
1853                                 flush_anon_page(vma, page, start);
1854                                 flush_dcache_page(page);
1855                         }
1856 next_page:
1857                         if (vmas)
1858                                 vmas[i] = vma;
1859                         i++;
1860                         start += PAGE_SIZE;
1861                         nr_pages--;
1862                 } while (nr_pages && start < vma->vm_end);
1863         } while (nr_pages);
1864         return i;
1865 }
1866 EXPORT_SYMBOL(__get_user_pages);
1867
1868 /*
1869  * fixup_user_fault() - manually resolve a user page fault
1870  * @tsk:        the task_struct to use for page fault accounting, or
1871  *              NULL if faults are not to be recorded.
1872  * @mm:         mm_struct of target mm
1873  * @address:    user address
1874  * @fault_flags:flags to pass down to handle_mm_fault()
1875  *
1876  * This is meant to be called in the specific scenario where for locking reasons
1877  * we try to access user memory in atomic context (within a pagefault_disable()
1878  * section), this returns -EFAULT, and we want to resolve the user fault before
1879  * trying again.
1880  *
1881  * Typically this is meant to be used by the futex code.
1882  *
1883  * The main difference with get_user_pages() is that this function will
1884  * unconditionally call handle_mm_fault() which will in turn perform all the
1885  * necessary SW fixup of the dirty and young bits in the PTE, while
1886  * handle_mm_fault() only guarantees to update these in the struct page.
1887  *
1888  * This is important for some architectures where those bits also gate the
1889  * access permission to the page because they are maintained in software.  On
1890  * such architectures, gup() will not be enough to make a subsequent access
1891  * succeed.
1892  *
1893  * This should be called with the mm_sem held for read.
1894  */
1895 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1896                      unsigned long address, unsigned int fault_flags)
1897 {
1898         struct vm_area_struct *vma;
1899         int ret;
1900
1901         vma = find_extend_vma(mm, address);
1902         if (!vma || address < vma->vm_start)
1903                 return -EFAULT;
1904
1905         ret = handle_mm_fault(mm, vma, address, fault_flags);
1906         if (ret & VM_FAULT_ERROR) {
1907                 if (ret & VM_FAULT_OOM)
1908                         return -ENOMEM;
1909                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1910                         return -EHWPOISON;
1911                 if (ret & VM_FAULT_SIGBUS)
1912                         return -EFAULT;
1913                 BUG();
1914         }
1915         if (tsk) {
1916                 if (ret & VM_FAULT_MAJOR)
1917                         tsk->maj_flt++;
1918                 else
1919                         tsk->min_flt++;
1920         }
1921         return 0;
1922 }
1923
1924 /*
1925  * get_user_pages() - pin user pages in memory
1926  * @tsk:        the task_struct to use for page fault accounting, or
1927  *              NULL if faults are not to be recorded.
1928  * @mm:         mm_struct of target mm
1929  * @start:      starting user address
1930  * @nr_pages:   number of pages from start to pin
1931  * @write:      whether pages will be written to by the caller
1932  * @force:      whether to force write access even if user mapping is
1933  *              readonly. This will result in the page being COWed even
1934  *              in MAP_SHARED mappings. You do not want this.
1935  * @pages:      array that receives pointers to the pages pinned.
1936  *              Should be at least nr_pages long. Or NULL, if caller
1937  *              only intends to ensure the pages are faulted in.
1938  * @vmas:       array of pointers to vmas corresponding to each page.
1939  *              Or NULL if the caller does not require them.
1940  *
1941  * Returns number of pages pinned. This may be fewer than the number
1942  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1943  * were pinned, returns -errno. Each page returned must be released
1944  * with a put_page() call when it is finished with. vmas will only
1945  * remain valid while mmap_sem is held.
1946  *
1947  * Must be called with mmap_sem held for read or write.
1948  *
1949  * get_user_pages walks a process's page tables and takes a reference to
1950  * each struct page that each user address corresponds to at a given
1951  * instant. That is, it takes the page that would be accessed if a user
1952  * thread accesses the given user virtual address at that instant.
1953  *
1954  * This does not guarantee that the page exists in the user mappings when
1955  * get_user_pages returns, and there may even be a completely different
1956  * page there in some cases (eg. if mmapped pagecache has been invalidated
1957  * and subsequently re faulted). However it does guarantee that the page
1958  * won't be freed completely. And mostly callers simply care that the page
1959  * contains data that was valid *at some point in time*. Typically, an IO
1960  * or similar operation cannot guarantee anything stronger anyway because
1961  * locks can't be held over the syscall boundary.
1962  *
1963  * If write=0, the page must not be written to. If the page is written to,
1964  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1965  * after the page is finished with, and before put_page is called.
1966  *
1967  * get_user_pages is typically used for fewer-copy IO operations, to get a
1968  * handle on the memory by some means other than accesses via the user virtual
1969  * addresses. The pages may be submitted for DMA to devices or accessed via
1970  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1971  * use the correct cache flushing APIs.
1972  *
1973  * See also get_user_pages_fast, for performance critical applications.
1974  */
1975 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1976                 unsigned long start, int nr_pages, int write, int force,
1977                 struct page **pages, struct vm_area_struct **vmas)
1978 {
1979         int flags = FOLL_TOUCH;
1980
1981         if (pages)
1982                 flags |= FOLL_GET;
1983         if (write)
1984                 flags |= FOLL_WRITE;
1985         if (force)
1986                 flags |= FOLL_FORCE;
1987
1988         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1989                                 NULL);
1990 }
1991 EXPORT_SYMBOL(get_user_pages);
1992
1993 /**
1994  * get_dump_page() - pin user page in memory while writing it to core dump
1995  * @addr: user address
1996  *
1997  * Returns struct page pointer of user page pinned for dump,
1998  * to be freed afterwards by page_cache_release() or put_page().
1999  *
2000  * Returns NULL on any kind of failure - a hole must then be inserted into
2001  * the corefile, to preserve alignment with its headers; and also returns
2002  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2003  * allowing a hole to be left in the corefile to save diskspace.
2004  *
2005  * Called without mmap_sem, but after all other threads have been killed.
2006  */
2007 #ifdef CONFIG_ELF_CORE
2008 struct page *get_dump_page(unsigned long addr)
2009 {
2010         struct vm_area_struct *vma;
2011         struct page *page;
2012
2013         if (__get_user_pages(current, current->mm, addr, 1,
2014                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2015                              NULL) < 1)
2016                 return NULL;
2017         flush_cache_page(vma, addr, page_to_pfn(page));
2018         return page;
2019 }
2020 #endif /* CONFIG_ELF_CORE */
2021
2022 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2023                         spinlock_t **ptl)
2024 {
2025         pgd_t * pgd = pgd_offset(mm, addr);
2026         pud_t * pud = pud_alloc(mm, pgd, addr);
2027         if (pud) {
2028                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2029                 if (pmd) {
2030                         VM_BUG_ON(pmd_trans_huge(*pmd));
2031                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2032                 }
2033         }
2034         return NULL;
2035 }
2036
2037 /*
2038  * This is the old fallback for page remapping.
2039  *
2040  * For historical reasons, it only allows reserved pages. Only
2041  * old drivers should use this, and they needed to mark their
2042  * pages reserved for the old functions anyway.
2043  */
2044 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2045                         struct page *page, pgprot_t prot)
2046 {
2047         struct mm_struct *mm = vma->vm_mm;
2048         int retval;
2049         pte_t *pte;
2050         spinlock_t *ptl;
2051
2052         retval = -EINVAL;
2053         if (PageAnon(page))
2054                 goto out;
2055         retval = -ENOMEM;
2056         flush_dcache_page(page);
2057         pte = get_locked_pte(mm, addr, &ptl);
2058         if (!pte)
2059                 goto out;
2060         retval = -EBUSY;
2061         if (!pte_none(*pte))
2062                 goto out_unlock;
2063
2064         /* Ok, finally just insert the thing.. */
2065         get_page(page);
2066         inc_mm_counter_fast(mm, MM_FILEPAGES);
2067         page_add_file_rmap(page);
2068         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2069
2070         retval = 0;
2071         pte_unmap_unlock(pte, ptl);
2072         return retval;
2073 out_unlock:
2074         pte_unmap_unlock(pte, ptl);
2075 out:
2076         return retval;
2077 }
2078
2079 /**
2080  * vm_insert_page - insert single page into user vma
2081  * @vma: user vma to map to
2082  * @addr: target user address of this page
2083  * @page: source kernel page
2084  *
2085  * This allows drivers to insert individual pages they've allocated
2086  * into a user vma.
2087  *
2088  * The page has to be a nice clean _individual_ kernel allocation.
2089  * If you allocate a compound page, you need to have marked it as
2090  * such (__GFP_COMP), or manually just split the page up yourself
2091  * (see split_page()).
2092  *
2093  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2094  * took an arbitrary page protection parameter. This doesn't allow
2095  * that. Your vma protection will have to be set up correctly, which
2096  * means that if you want a shared writable mapping, you'd better
2097  * ask for a shared writable mapping!
2098  *
2099  * The page does not need to be reserved.
2100  *
2101  * Usually this function is called from f_op->mmap() handler
2102  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2103  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2104  * function from other places, for example from page-fault handler.
2105  */
2106 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2107                         struct page *page)
2108 {
2109         if (addr < vma->vm_start || addr >= vma->vm_end)
2110                 return -EFAULT;
2111         if (!page_count(page))
2112                 return -EINVAL;
2113         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2114                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2115                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2116                 vma->vm_flags |= VM_MIXEDMAP;
2117         }
2118         return insert_page(vma, addr, page, vma->vm_page_prot);
2119 }
2120 EXPORT_SYMBOL(vm_insert_page);
2121
2122 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2123                         unsigned long pfn, pgprot_t prot)
2124 {
2125         struct mm_struct *mm = vma->vm_mm;
2126         int retval;
2127         pte_t *pte, entry;
2128         spinlock_t *ptl;
2129
2130         retval = -ENOMEM;
2131         pte = get_locked_pte(mm, addr, &ptl);
2132         if (!pte)
2133                 goto out;
2134         retval = -EBUSY;
2135         if (!pte_none(*pte))
2136                 goto out_unlock;
2137
2138         /* Ok, finally just insert the thing.. */
2139         entry = pte_mkspecial(pfn_pte(pfn, prot));
2140         set_pte_at(mm, addr, pte, entry);
2141         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2142
2143         retval = 0;
2144 out_unlock:
2145         pte_unmap_unlock(pte, ptl);
2146 out:
2147         return retval;
2148 }
2149
2150 /**
2151  * vm_insert_pfn - insert single pfn into user vma
2152  * @vma: user vma to map to
2153  * @addr: target user address of this page
2154  * @pfn: source kernel pfn
2155  *
2156  * Similar to vm_insert_page, this allows drivers to insert individual pages
2157  * they've allocated into a user vma. Same comments apply.
2158  *
2159  * This function should only be called from a vm_ops->fault handler, and
2160  * in that case the handler should return NULL.
2161  *
2162  * vma cannot be a COW mapping.
2163  *
2164  * As this is called only for pages that do not currently exist, we
2165  * do not need to flush old virtual caches or the TLB.
2166  */
2167 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2168                         unsigned long pfn)
2169 {
2170         int ret;
2171         pgprot_t pgprot = vma->vm_page_prot;
2172         /*
2173          * Technically, architectures with pte_special can avoid all these
2174          * restrictions (same for remap_pfn_range).  However we would like
2175          * consistency in testing and feature parity among all, so we should
2176          * try to keep these invariants in place for everybody.
2177          */
2178         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2179         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2180                                                 (VM_PFNMAP|VM_MIXEDMAP));
2181         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2182         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2183
2184         if (addr < vma->vm_start || addr >= vma->vm_end)
2185                 return -EFAULT;
2186         if (track_pfn_insert(vma, &pgprot, pfn))
2187                 return -EINVAL;
2188
2189         ret = insert_pfn(vma, addr, pfn, pgprot);
2190
2191         return ret;
2192 }
2193 EXPORT_SYMBOL(vm_insert_pfn);
2194
2195 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2196                         unsigned long pfn)
2197 {
2198         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2199
2200         if (addr < vma->vm_start || addr >= vma->vm_end)
2201                 return -EFAULT;
2202
2203         /*
2204          * If we don't have pte special, then we have to use the pfn_valid()
2205          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2206          * refcount the page if pfn_valid is true (hence insert_page rather
2207          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2208          * without pte special, it would there be refcounted as a normal page.
2209          */
2210         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2211                 struct page *page;
2212
2213                 page = pfn_to_page(pfn);
2214                 return insert_page(vma, addr, page, vma->vm_page_prot);
2215         }
2216         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2217 }
2218 EXPORT_SYMBOL(vm_insert_mixed);
2219
2220 /*
2221  * maps a range of physical memory into the requested pages. the old
2222  * mappings are removed. any references to nonexistent pages results
2223  * in null mappings (currently treated as "copy-on-access")
2224  */
2225 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2226                         unsigned long addr, unsigned long end,
2227                         unsigned long pfn, pgprot_t prot)
2228 {
2229         pte_t *pte;
2230         spinlock_t *ptl;
2231
2232         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2233         if (!pte)
2234                 return -ENOMEM;
2235         arch_enter_lazy_mmu_mode();
2236         do {
2237                 BUG_ON(!pte_none(*pte));
2238                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2239                 pfn++;
2240         } while (pte++, addr += PAGE_SIZE, addr != end);
2241         arch_leave_lazy_mmu_mode();
2242         pte_unmap_unlock(pte - 1, ptl);
2243         return 0;
2244 }
2245
2246 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2247                         unsigned long addr, unsigned long end,
2248                         unsigned long pfn, pgprot_t prot)
2249 {
2250         pmd_t *pmd;
2251         unsigned long next;
2252
2253         pfn -= addr >> PAGE_SHIFT;
2254         pmd = pmd_alloc(mm, pud, addr);
2255         if (!pmd)
2256                 return -ENOMEM;
2257         VM_BUG_ON(pmd_trans_huge(*pmd));
2258         do {
2259                 next = pmd_addr_end(addr, end);
2260                 if (remap_pte_range(mm, pmd, addr, next,
2261                                 pfn + (addr >> PAGE_SHIFT), prot))
2262                         return -ENOMEM;
2263         } while (pmd++, addr = next, addr != end);
2264         return 0;
2265 }
2266
2267 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2268                         unsigned long addr, unsigned long end,
2269                         unsigned long pfn, pgprot_t prot)
2270 {
2271         pud_t *pud;
2272         unsigned long next;
2273
2274         pfn -= addr >> PAGE_SHIFT;
2275         pud = pud_alloc(mm, pgd, addr);
2276         if (!pud)
2277                 return -ENOMEM;
2278         do {
2279                 next = pud_addr_end(addr, end);
2280                 if (remap_pmd_range(mm, pud, addr, next,
2281                                 pfn + (addr >> PAGE_SHIFT), prot))
2282                         return -ENOMEM;
2283         } while (pud++, addr = next, addr != end);
2284         return 0;
2285 }
2286
2287 /**
2288  * remap_pfn_range - remap kernel memory to userspace
2289  * @vma: user vma to map to
2290  * @addr: target user address to start at
2291  * @pfn: physical address of kernel memory
2292  * @size: size of map area
2293  * @prot: page protection flags for this mapping
2294  *
2295  *  Note: this is only safe if the mm semaphore is held when called.
2296  */
2297 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2298                     unsigned long pfn, unsigned long size, pgprot_t prot)
2299 {
2300         pgd_t *pgd;
2301         unsigned long next;
2302         unsigned long end = addr + PAGE_ALIGN(size);
2303         struct mm_struct *mm = vma->vm_mm;
2304         int err;
2305
2306         /*
2307          * Physically remapped pages are special. Tell the
2308          * rest of the world about it:
2309          *   VM_IO tells people not to look at these pages
2310          *      (accesses can have side effects).
2311          *   VM_PFNMAP tells the core MM that the base pages are just
2312          *      raw PFN mappings, and do not have a "struct page" associated
2313          *      with them.
2314          *   VM_DONTEXPAND
2315          *      Disable vma merging and expanding with mremap().
2316          *   VM_DONTDUMP
2317          *      Omit vma from core dump, even when VM_IO turned off.
2318          *
2319          * There's a horrible special case to handle copy-on-write
2320          * behaviour that some programs depend on. We mark the "original"
2321          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2322          * See vm_normal_page() for details.
2323          */
2324         if (is_cow_mapping(vma->vm_flags)) {
2325                 if (addr != vma->vm_start || end != vma->vm_end)
2326                         return -EINVAL;
2327                 vma->vm_pgoff = pfn;
2328         }
2329
2330         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2331         if (err)
2332                 return -EINVAL;
2333
2334         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2335
2336         BUG_ON(addr >= end);
2337         pfn -= addr >> PAGE_SHIFT;
2338         pgd = pgd_offset(mm, addr);
2339         flush_cache_range(vma, addr, end);
2340         do {
2341                 next = pgd_addr_end(addr, end);
2342                 err = remap_pud_range(mm, pgd, addr, next,
2343                                 pfn + (addr >> PAGE_SHIFT), prot);
2344                 if (err)
2345                         break;
2346         } while (pgd++, addr = next, addr != end);
2347
2348         if (err)
2349                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2350
2351         return err;
2352 }
2353 EXPORT_SYMBOL(remap_pfn_range);
2354
2355 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2356                                      unsigned long addr, unsigned long end,
2357                                      pte_fn_t fn, void *data)
2358 {
2359         pte_t *pte;
2360         int err;
2361         pgtable_t token;
2362         spinlock_t *uninitialized_var(ptl);
2363
2364         pte = (mm == &init_mm) ?
2365                 pte_alloc_kernel(pmd, addr) :
2366                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2367         if (!pte)
2368                 return -ENOMEM;
2369
2370         BUG_ON(pmd_huge(*pmd));
2371
2372         arch_enter_lazy_mmu_mode();
2373
2374         token = pmd_pgtable(*pmd);
2375
2376         do {
2377                 err = fn(pte++, token, addr, data);
2378                 if (err)
2379                         break;
2380         } while (addr += PAGE_SIZE, addr != end);
2381
2382         arch_leave_lazy_mmu_mode();
2383
2384         if (mm != &init_mm)
2385                 pte_unmap_unlock(pte-1, ptl);
2386         return err;
2387 }
2388
2389 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2390                                      unsigned long addr, unsigned long end,
2391                                      pte_fn_t fn, void *data)
2392 {
2393         pmd_t *pmd;
2394         unsigned long next;
2395         int err;
2396
2397         BUG_ON(pud_huge(*pud));
2398
2399         pmd = pmd_alloc(mm, pud, addr);
2400         if (!pmd)
2401                 return -ENOMEM;
2402         do {
2403                 next = pmd_addr_end(addr, end);
2404                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2405                 if (err)
2406                         break;
2407         } while (pmd++, addr = next, addr != end);
2408         return err;
2409 }
2410
2411 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2412                                      unsigned long addr, unsigned long end,
2413                                      pte_fn_t fn, void *data)
2414 {
2415         pud_t *pud;
2416         unsigned long next;
2417         int err;
2418
2419         pud = pud_alloc(mm, pgd, addr);
2420         if (!pud)
2421                 return -ENOMEM;
2422         do {
2423                 next = pud_addr_end(addr, end);
2424                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2425                 if (err)
2426                         break;
2427         } while (pud++, addr = next, addr != end);
2428         return err;
2429 }
2430
2431 /*
2432  * Scan a region of virtual memory, filling in page tables as necessary
2433  * and calling a provided function on each leaf page table.
2434  */
2435 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2436                         unsigned long size, pte_fn_t fn, void *data)
2437 {
2438         pgd_t *pgd;
2439         unsigned long next;
2440         unsigned long end = addr + size;
2441         int err;
2442
2443         BUG_ON(addr >= end);
2444         pgd = pgd_offset(mm, addr);
2445         do {
2446                 next = pgd_addr_end(addr, end);
2447                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2448                 if (err)
2449                         break;
2450         } while (pgd++, addr = next, addr != end);
2451
2452         return err;
2453 }
2454 EXPORT_SYMBOL_GPL(apply_to_page_range);
2455
2456 /*
2457  * handle_pte_fault chooses page fault handler according to an entry
2458  * which was read non-atomically.  Before making any commitment, on
2459  * those architectures or configurations (e.g. i386 with PAE) which
2460  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2461  * must check under lock before unmapping the pte and proceeding
2462  * (but do_wp_page is only called after already making such a check;
2463  * and do_anonymous_page can safely check later on).
2464  */
2465 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2466                                 pte_t *page_table, pte_t orig_pte)
2467 {
2468         int same = 1;
2469 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2470         if (sizeof(pte_t) > sizeof(unsigned long)) {
2471                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2472                 spin_lock(ptl);
2473                 same = pte_same(*page_table, orig_pte);
2474                 spin_unlock(ptl);
2475         }
2476 #endif
2477         pte_unmap(page_table);
2478         return same;
2479 }
2480
2481 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2482 {
2483         /*
2484          * If the source page was a PFN mapping, we don't have
2485          * a "struct page" for it. We do a best-effort copy by
2486          * just copying from the original user address. If that
2487          * fails, we just zero-fill it. Live with it.
2488          */
2489         if (unlikely(!src)) {
2490                 void *kaddr = kmap_atomic(dst);
2491                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2492
2493                 /*
2494                  * This really shouldn't fail, because the page is there
2495                  * in the page tables. But it might just be unreadable,
2496                  * in which case we just give up and fill the result with
2497                  * zeroes.
2498                  */
2499                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2500                         clear_page(kaddr);
2501                 kunmap_atomic(kaddr);
2502                 flush_dcache_page(dst);
2503         } else
2504                 copy_user_highpage(dst, src, va, vma);
2505 }
2506
2507 /*
2508  * This routine handles present pages, when users try to write
2509  * to a shared page. It is done by copying the page to a new address
2510  * and decrementing the shared-page counter for the old page.
2511  *
2512  * Note that this routine assumes that the protection checks have been
2513  * done by the caller (the low-level page fault routine in most cases).
2514  * Thus we can safely just mark it writable once we've done any necessary
2515  * COW.
2516  *
2517  * We also mark the page dirty at this point even though the page will
2518  * change only once the write actually happens. This avoids a few races,
2519  * and potentially makes it more efficient.
2520  *
2521  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2522  * but allow concurrent faults), with pte both mapped and locked.
2523  * We return with mmap_sem still held, but pte unmapped and unlocked.
2524  */
2525 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2526                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2527                 spinlock_t *ptl, pte_t orig_pte)
2528         __releases(ptl)
2529 {
2530         struct page *old_page, *new_page = NULL;
2531         pte_t entry;
2532         int ret = 0;
2533         int page_mkwrite = 0;
2534         struct page *dirty_page = NULL;
2535         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2536         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2537
2538         old_page = vm_normal_page(vma, address, orig_pte);
2539         if (!old_page) {
2540                 /*
2541                  * VM_MIXEDMAP !pfn_valid() case
2542                  *
2543                  * We should not cow pages in a shared writeable mapping.
2544                  * Just mark the pages writable as we can't do any dirty
2545                  * accounting on raw pfn maps.
2546                  */
2547                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2548                                      (VM_WRITE|VM_SHARED))
2549                         goto reuse;
2550                 goto gotten;
2551         }
2552
2553         /*
2554          * Take out anonymous pages first, anonymous shared vmas are
2555          * not dirty accountable.
2556          */
2557         if (PageAnon(old_page) && !PageKsm(old_page)) {
2558                 if (!trylock_page(old_page)) {
2559                         page_cache_get(old_page);
2560                         pte_unmap_unlock(page_table, ptl);
2561                         lock_page(old_page);
2562                         page_table = pte_offset_map_lock(mm, pmd, address,
2563                                                          &ptl);
2564                         if (!pte_same(*page_table, orig_pte)) {
2565                                 unlock_page(old_page);
2566                                 goto unlock;
2567                         }
2568                         page_cache_release(old_page);
2569                 }
2570                 if (reuse_swap_page(old_page)) {
2571                         /*
2572                          * The page is all ours.  Move it to our anon_vma so
2573                          * the rmap code will not search our parent or siblings.
2574                          * Protected against the rmap code by the page lock.
2575                          */
2576                         page_move_anon_rmap(old_page, vma, address);
2577                         unlock_page(old_page);
2578                         goto reuse;
2579                 }
2580                 unlock_page(old_page);
2581         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2582                                         (VM_WRITE|VM_SHARED))) {
2583                 /*
2584                  * Only catch write-faults on shared writable pages,
2585                  * read-only shared pages can get COWed by
2586                  * get_user_pages(.write=1, .force=1).
2587                  */
2588                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2589                         struct vm_fault vmf;
2590                         int tmp;
2591
2592                         vmf.virtual_address = (void __user *)(address &
2593                                                                 PAGE_MASK);
2594                         vmf.pgoff = old_page->index;
2595                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2596                         vmf.page = old_page;
2597
2598                         /*
2599                          * Notify the address space that the page is about to
2600                          * become writable so that it can prohibit this or wait
2601                          * for the page to get into an appropriate state.
2602                          *
2603                          * We do this without the lock held, so that it can
2604                          * sleep if it needs to.
2605                          */
2606                         page_cache_get(old_page);
2607                         pte_unmap_unlock(page_table, ptl);
2608
2609                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2610                         if (unlikely(tmp &
2611                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2612                                 ret = tmp;
2613                                 goto unwritable_page;
2614                         }
2615                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2616                                 lock_page(old_page);
2617                                 if (!old_page->mapping) {
2618                                         ret = 0; /* retry the fault */
2619                                         unlock_page(old_page);
2620                                         goto unwritable_page;
2621                                 }
2622                         } else
2623                                 VM_BUG_ON(!PageLocked(old_page));
2624
2625                         /*
2626                          * Since we dropped the lock we need to revalidate
2627                          * the PTE as someone else may have changed it.  If
2628                          * they did, we just return, as we can count on the
2629                          * MMU to tell us if they didn't also make it writable.
2630                          */
2631                         page_table = pte_offset_map_lock(mm, pmd, address,
2632                                                          &ptl);
2633                         if (!pte_same(*page_table, orig_pte)) {
2634                                 unlock_page(old_page);
2635                                 goto unlock;
2636                         }
2637
2638                         page_mkwrite = 1;
2639                 }
2640                 dirty_page = old_page;
2641                 get_page(dirty_page);
2642
2643 reuse:
2644                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2645                 entry = pte_mkyoung(orig_pte);
2646                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2647                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2648                         update_mmu_cache(vma, address, page_table);
2649                 pte_unmap_unlock(page_table, ptl);
2650                 ret |= VM_FAULT_WRITE;
2651
2652                 if (!dirty_page)
2653                         return ret;
2654
2655                 /*
2656                  * Yes, Virginia, this is actually required to prevent a race
2657                  * with clear_page_dirty_for_io() from clearing the page dirty
2658                  * bit after it clear all dirty ptes, but before a racing
2659                  * do_wp_page installs a dirty pte.
2660                  *
2661                  * __do_fault is protected similarly.
2662                  */
2663                 if (!page_mkwrite) {
2664                         wait_on_page_locked(dirty_page);
2665                         set_page_dirty_balance(dirty_page, page_mkwrite);
2666                         /* file_update_time outside page_lock */
2667                         if (vma->vm_file)
2668                                 file_update_time(vma->vm_file);
2669                 }
2670                 put_page(dirty_page);
2671                 if (page_mkwrite) {
2672                         struct address_space *mapping = dirty_page->mapping;
2673
2674                         set_page_dirty(dirty_page);
2675                         unlock_page(dirty_page);
2676                         page_cache_release(dirty_page);
2677                         if (mapping)    {
2678                                 /*
2679                                  * Some device drivers do not set page.mapping
2680                                  * but still dirty their pages
2681                                  */
2682                                 balance_dirty_pages_ratelimited(mapping);
2683                         }
2684                 }
2685
2686                 return ret;
2687         }
2688
2689         /*
2690          * Ok, we need to copy. Oh, well..
2691          */
2692         page_cache_get(old_page);
2693 gotten:
2694         pte_unmap_unlock(page_table, ptl);
2695
2696         if (unlikely(anon_vma_prepare(vma)))
2697                 goto oom;
2698
2699         if (is_zero_pfn(pte_pfn(orig_pte))) {
2700                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2701                 if (!new_page)
2702                         goto oom;
2703         } else {
2704                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2705                 if (!new_page)
2706                         goto oom;
2707                 cow_user_page(new_page, old_page, address, vma);
2708         }
2709         __SetPageUptodate(new_page);
2710
2711         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2712                 goto oom_free_new;
2713
2714         mmun_start  = address & PAGE_MASK;
2715         mmun_end    = mmun_start + PAGE_SIZE;
2716         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2717
2718         /*
2719          * Re-check the pte - we dropped the lock
2720          */
2721         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2722         if (likely(pte_same(*page_table, orig_pte))) {
2723                 if (old_page) {
2724                         if (!PageAnon(old_page)) {
2725                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2726                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2727                         }
2728                 } else
2729                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2730                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2731                 entry = mk_pte(new_page, vma->vm_page_prot);
2732                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2733                 /*
2734                  * Clear the pte entry and flush it first, before updating the
2735                  * pte with the new entry. This will avoid a race condition
2736                  * seen in the presence of one thread doing SMC and another
2737                  * thread doing COW.
2738                  */
2739                 ptep_clear_flush(vma, address, page_table);
2740                 page_add_new_anon_rmap(new_page, vma, address);
2741                 /*
2742                  * We call the notify macro here because, when using secondary
2743                  * mmu page tables (such as kvm shadow page tables), we want the
2744                  * new page to be mapped directly into the secondary page table.
2745                  */
2746                 set_pte_at_notify(mm, address, page_table, entry);
2747                 update_mmu_cache(vma, address, page_table);
2748                 if (old_page) {
2749                         /*
2750                          * Only after switching the pte to the new page may
2751                          * we remove the mapcount here. Otherwise another
2752                          * process may come and find the rmap count decremented
2753                          * before the pte is switched to the new page, and
2754                          * "reuse" the old page writing into it while our pte
2755                          * here still points into it and can be read by other
2756                          * threads.
2757                          *
2758                          * The critical issue is to order this
2759                          * page_remove_rmap with the ptp_clear_flush above.
2760                          * Those stores are ordered by (if nothing else,)
2761                          * the barrier present in the atomic_add_negative
2762                          * in page_remove_rmap.
2763                          *
2764                          * Then the TLB flush in ptep_clear_flush ensures that
2765                          * no process can access the old page before the
2766                          * decremented mapcount is visible. And the old page
2767                          * cannot be reused until after the decremented
2768                          * mapcount is visible. So transitively, TLBs to
2769                          * old page will be flushed before it can be reused.
2770                          */
2771                         page_remove_rmap(old_page);
2772                 }
2773
2774                 /* Free the old page.. */
2775                 new_page = old_page;
2776                 ret |= VM_FAULT_WRITE;
2777         } else
2778                 mem_cgroup_uncharge_page(new_page);
2779
2780         if (new_page)
2781                 page_cache_release(new_page);
2782 unlock:
2783         pte_unmap_unlock(page_table, ptl);
2784         if (mmun_end > mmun_start)
2785                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2786         if (old_page) {
2787                 /*
2788                  * Don't let another task, with possibly unlocked vma,
2789                  * keep the mlocked page.
2790                  */
2791                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2792                         lock_page(old_page);    /* LRU manipulation */
2793                         munlock_vma_page(old_page);
2794                         unlock_page(old_page);
2795                 }
2796                 page_cache_release(old_page);
2797         }
2798         return ret;
2799 oom_free_new:
2800         page_cache_release(new_page);
2801 oom:
2802         if (old_page)
2803                 page_cache_release(old_page);
2804         return VM_FAULT_OOM;
2805
2806 unwritable_page:
2807         page_cache_release(old_page);
2808         return ret;
2809 }
2810
2811 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2812                 unsigned long start_addr, unsigned long end_addr,
2813                 struct zap_details *details)
2814 {
2815         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2816 }
2817
2818 static inline void unmap_mapping_range_tree(struct rb_root *root,
2819                                             struct zap_details *details)
2820 {
2821         struct vm_area_struct *vma;
2822         pgoff_t vba, vea, zba, zea;
2823
2824         vma_interval_tree_foreach(vma, root,
2825                         details->first_index, details->last_index) {
2826
2827                 vba = vma->vm_pgoff;
2828                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2829                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2830                 zba = details->first_index;
2831                 if (zba < vba)
2832                         zba = vba;
2833                 zea = details->last_index;
2834                 if (zea > vea)
2835                         zea = vea;
2836
2837                 unmap_mapping_range_vma(vma,
2838                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2839                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2840                                 details);
2841         }
2842 }
2843
2844 static inline void unmap_mapping_range_list(struct list_head *head,
2845                                             struct zap_details *details)
2846 {
2847         struct vm_area_struct *vma;
2848
2849         /*
2850          * In nonlinear VMAs there is no correspondence between virtual address
2851          * offset and file offset.  So we must perform an exhaustive search
2852          * across *all* the pages in each nonlinear VMA, not just the pages
2853          * whose virtual address lies outside the file truncation point.
2854          */
2855         list_for_each_entry(vma, head, shared.nonlinear) {
2856                 details->nonlinear_vma = vma;
2857                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2858         }
2859 }
2860
2861 /**
2862  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2863  * @mapping: the address space containing mmaps to be unmapped.
2864  * @holebegin: byte in first page to unmap, relative to the start of
2865  * the underlying file.  This will be rounded down to a PAGE_SIZE
2866  * boundary.  Note that this is different from truncate_pagecache(), which
2867  * must keep the partial page.  In contrast, we must get rid of
2868  * partial pages.
2869  * @holelen: size of prospective hole in bytes.  This will be rounded
2870  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2871  * end of the file.
2872  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2873  * but 0 when invalidating pagecache, don't throw away private data.
2874  */
2875 void unmap_mapping_range(struct address_space *mapping,
2876                 loff_t const holebegin, loff_t const holelen, int even_cows)
2877 {
2878         struct zap_details details;
2879         pgoff_t hba = holebegin >> PAGE_SHIFT;
2880         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2881
2882         /* Check for overflow. */
2883         if (sizeof(holelen) > sizeof(hlen)) {
2884                 long long holeend =
2885                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2886                 if (holeend & ~(long long)ULONG_MAX)
2887                         hlen = ULONG_MAX - hba + 1;
2888         }
2889
2890         details.check_mapping = even_cows? NULL: mapping;
2891         details.nonlinear_vma = NULL;
2892         details.first_index = hba;
2893         details.last_index = hba + hlen - 1;
2894         if (details.last_index < details.first_index)
2895                 details.last_index = ULONG_MAX;
2896
2897
2898         mutex_lock(&mapping->i_mmap_mutex);
2899         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2900                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2901         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2902                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2903         mutex_unlock(&mapping->i_mmap_mutex);
2904 }
2905 EXPORT_SYMBOL(unmap_mapping_range);
2906
2907 /*
2908  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2909  * but allow concurrent faults), and pte mapped but not yet locked.
2910  * We return with mmap_sem still held, but pte unmapped and unlocked.
2911  */
2912 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2913                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2914                 unsigned int flags, pte_t orig_pte)
2915 {
2916         spinlock_t *ptl;
2917         struct page *page, *swapcache = NULL;
2918         swp_entry_t entry;
2919         pte_t pte;
2920         int locked;
2921         struct mem_cgroup *ptr;
2922         int exclusive = 0;
2923         int ret = 0;
2924
2925         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2926                 goto out;
2927
2928         entry = pte_to_swp_entry(orig_pte);
2929         if (unlikely(non_swap_entry(entry))) {
2930                 if (is_migration_entry(entry)) {
2931                         migration_entry_wait(mm, pmd, address);
2932                 } else if (is_hwpoison_entry(entry)) {
2933                         ret = VM_FAULT_HWPOISON;
2934                 } else {
2935                         print_bad_pte(vma, address, orig_pte, NULL);
2936                         ret = VM_FAULT_SIGBUS;
2937                 }
2938                 goto out;
2939         }
2940         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2941         page = lookup_swap_cache(entry);
2942         if (!page) {
2943                 page = swapin_readahead(entry,
2944                                         GFP_HIGHUSER_MOVABLE, vma, address);
2945                 if (!page) {
2946                         /*
2947                          * Back out if somebody else faulted in this pte
2948                          * while we released the pte lock.
2949                          */
2950                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2951                         if (likely(pte_same(*page_table, orig_pte)))
2952                                 ret = VM_FAULT_OOM;
2953                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2954                         goto unlock;
2955                 }
2956
2957                 /* Had to read the page from swap area: Major fault */
2958                 ret = VM_FAULT_MAJOR;
2959                 count_vm_event(PGMAJFAULT);
2960                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2961         } else if (PageHWPoison(page)) {
2962                 /*
2963                  * hwpoisoned dirty swapcache pages are kept for killing
2964                  * owner processes (which may be unknown at hwpoison time)
2965                  */
2966                 ret = VM_FAULT_HWPOISON;
2967                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2968                 goto out_release;
2969         }
2970
2971         locked = lock_page_or_retry(page, mm, flags);
2972
2973         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2974         if (!locked) {
2975                 ret |= VM_FAULT_RETRY;
2976                 goto out_release;
2977         }
2978
2979         /*
2980          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2981          * release the swapcache from under us.  The page pin, and pte_same
2982          * test below, are not enough to exclude that.  Even if it is still
2983          * swapcache, we need to check that the page's swap has not changed.
2984          */
2985         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2986                 goto out_page;
2987
2988         if (ksm_might_need_to_copy(page, vma, address)) {
2989                 swapcache = page;
2990                 page = ksm_does_need_to_copy(page, vma, address);
2991
2992                 if (unlikely(!page)) {
2993                         ret = VM_FAULT_OOM;
2994                         page = swapcache;
2995                         swapcache = NULL;
2996                         goto out_page;
2997                 }
2998         }
2999
3000         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3001                 ret = VM_FAULT_OOM;
3002                 goto out_page;
3003         }
3004
3005         /*
3006          * Back out if somebody else already faulted in this pte.
3007          */
3008         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3009         if (unlikely(!pte_same(*page_table, orig_pte)))
3010                 goto out_nomap;
3011
3012         if (unlikely(!PageUptodate(page))) {
3013                 ret = VM_FAULT_SIGBUS;
3014                 goto out_nomap;
3015         }
3016
3017         /*
3018          * The page isn't present yet, go ahead with the fault.
3019          *
3020          * Be careful about the sequence of operations here.
3021          * To get its accounting right, reuse_swap_page() must be called
3022          * while the page is counted on swap but not yet in mapcount i.e.
3023          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3024          * must be called after the swap_free(), or it will never succeed.
3025          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3026          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3027          * in page->private. In this case, a record in swap_cgroup  is silently
3028          * discarded at swap_free().
3029          */
3030
3031         inc_mm_counter_fast(mm, MM_ANONPAGES);
3032         dec_mm_counter_fast(mm, MM_SWAPENTS);
3033         pte = mk_pte(page, vma->vm_page_prot);
3034         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3035                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3036                 flags &= ~FAULT_FLAG_WRITE;
3037                 ret |= VM_FAULT_WRITE;
3038                 exclusive = 1;
3039         }
3040         flush_icache_page(vma, page);
3041         set_pte_at(mm, address, page_table, pte);
3042         do_page_add_anon_rmap(page, vma, address, exclusive);
3043         /* It's better to call commit-charge after rmap is established */
3044         mem_cgroup_commit_charge_swapin(page, ptr);
3045
3046         swap_free(entry);
3047         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3048                 try_to_free_swap(page);
3049         unlock_page(page);
3050         if (swapcache) {
3051                 /*
3052                  * Hold the lock to avoid the swap entry to be reused
3053                  * until we take the PT lock for the pte_same() check
3054                  * (to avoid false positives from pte_same). For
3055                  * further safety release the lock after the swap_free
3056                  * so that the swap count won't change under a
3057                  * parallel locked swapcache.
3058                  */
3059                 unlock_page(swapcache);
3060                 page_cache_release(swapcache);
3061         }
3062
3063         if (flags & FAULT_FLAG_WRITE) {
3064                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3065                 if (ret & VM_FAULT_ERROR)
3066                         ret &= VM_FAULT_ERROR;
3067                 goto out;
3068         }
3069
3070         /* No need to invalidate - it was non-present before */
3071         update_mmu_cache(vma, address, page_table);
3072 unlock:
3073         pte_unmap_unlock(page_table, ptl);
3074 out:
3075         return ret;
3076 out_nomap:
3077         mem_cgroup_cancel_charge_swapin(ptr);
3078         pte_unmap_unlock(page_table, ptl);
3079 out_page:
3080         unlock_page(page);
3081 out_release:
3082         page_cache_release(page);
3083         if (swapcache) {
3084                 unlock_page(swapcache);
3085                 page_cache_release(swapcache);
3086         }
3087         return ret;
3088 }
3089
3090 /*
3091  * This is like a special single-page "expand_{down|up}wards()",
3092  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3093  * doesn't hit another vma.
3094  */
3095 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3096 {
3097         address &= PAGE_MASK;
3098         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3099                 struct vm_area_struct *prev = vma->vm_prev;
3100
3101                 /*
3102                  * Is there a mapping abutting this one below?
3103                  *
3104                  * That's only ok if it's the same stack mapping
3105                  * that has gotten split..
3106                  */
3107                 if (prev && prev->vm_end == address)
3108                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3109
3110                 expand_downwards(vma, address - PAGE_SIZE);
3111         }
3112         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3113                 struct vm_area_struct *next = vma->vm_next;
3114
3115                 /* As VM_GROWSDOWN but s/below/above/ */
3116                 if (next && next->vm_start == address + PAGE_SIZE)
3117                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3118
3119                 expand_upwards(vma, address + PAGE_SIZE);
3120         }
3121         return 0;
3122 }
3123
3124 /*
3125  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3126  * but allow concurrent faults), and pte mapped but not yet locked.
3127  * We return with mmap_sem still held, but pte unmapped and unlocked.
3128  */
3129 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3130                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3131                 unsigned int flags)
3132 {
3133         struct page *page;
3134         spinlock_t *ptl;
3135         pte_t entry;
3136
3137         pte_unmap(page_table);
3138
3139         /* Check if we need to add a guard page to the stack */
3140         if (check_stack_guard_page(vma, address) < 0)
3141                 return VM_FAULT_SIGBUS;
3142
3143         /* Use the zero-page for reads */
3144         if (!(flags & FAULT_FLAG_WRITE)) {
3145                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3146                                                 vma->vm_page_prot));
3147                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3148                 if (!pte_none(*page_table))
3149                         goto unlock;
3150                 goto setpte;
3151         }
3152
3153         /* Allocate our own private page. */
3154         if (unlikely(anon_vma_prepare(vma)))
3155                 goto oom;
3156         page = alloc_zeroed_user_highpage_movable(vma, address);
3157         if (!page)
3158                 goto oom;
3159         __SetPageUptodate(page);
3160
3161         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3162                 goto oom_free_page;
3163
3164         entry = mk_pte(page, vma->vm_page_prot);
3165         if (vma->vm_flags & VM_WRITE)
3166                 entry = pte_mkwrite(pte_mkdirty(entry));
3167
3168         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3169         if (!pte_none(*page_table))
3170                 goto release;
3171
3172         inc_mm_counter_fast(mm, MM_ANONPAGES);
3173         page_add_new_anon_rmap(page, vma, address);
3174 setpte:
3175         set_pte_at(mm, address, page_table, entry);
3176
3177         /* No need to invalidate - it was non-present before */
3178         update_mmu_cache(vma, address, page_table);
3179 unlock:
3180         pte_unmap_unlock(page_table, ptl);
3181         return 0;
3182 release:
3183         mem_cgroup_uncharge_page(page);
3184         page_cache_release(page);
3185         goto unlock;
3186 oom_free_page:
3187         page_cache_release(page);
3188 oom:
3189         return VM_FAULT_OOM;
3190 }
3191
3192 /*
3193  * __do_fault() tries to create a new page mapping. It aggressively
3194  * tries to share with existing pages, but makes a separate copy if
3195  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3196  * the next page fault.
3197  *
3198  * As this is called only for pages that do not currently exist, we
3199  * do not need to flush old virtual caches or the TLB.
3200  *
3201  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3202  * but allow concurrent faults), and pte neither mapped nor locked.
3203  * We return with mmap_sem still held, but pte unmapped and unlocked.
3204  */
3205 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3206                 unsigned long address, pmd_t *pmd,
3207                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3208 {
3209         pte_t *page_table;
3210         spinlock_t *ptl;
3211         struct page *page;
3212         struct page *cow_page;
3213         pte_t entry;
3214         int anon = 0;
3215         struct page *dirty_page = NULL;
3216         struct vm_fault vmf;
3217         int ret;
3218         int page_mkwrite = 0;
3219
3220         /*
3221          * If we do COW later, allocate page befor taking lock_page()
3222          * on the file cache page. This will reduce lock holding time.
3223          */
3224         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3225
3226                 if (unlikely(anon_vma_prepare(vma)))
3227                         return VM_FAULT_OOM;
3228
3229                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3230                 if (!cow_page)
3231                         return VM_FAULT_OOM;
3232
3233                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3234                         page_cache_release(cow_page);
3235                         return VM_FAULT_OOM;
3236                 }
3237         } else
3238                 cow_page = NULL;
3239
3240         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3241         vmf.pgoff = pgoff;
3242         vmf.flags = flags;
3243         vmf.page = NULL;
3244
3245         ret = vma->vm_ops->fault(vma, &vmf);
3246         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3247                             VM_FAULT_RETRY)))
3248                 goto uncharge_out;
3249
3250         if (unlikely(PageHWPoison(vmf.page))) {
3251                 if (ret & VM_FAULT_LOCKED)
3252                         unlock_page(vmf.page);
3253                 ret = VM_FAULT_HWPOISON;
3254                 goto uncharge_out;
3255         }
3256
3257         /*
3258          * For consistency in subsequent calls, make the faulted page always
3259          * locked.
3260          */
3261         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3262                 lock_page(vmf.page);
3263         else
3264                 VM_BUG_ON(!PageLocked(vmf.page));
3265
3266         /*
3267          * Should we do an early C-O-W break?
3268          */
3269         page = vmf.page;
3270         if (flags & FAULT_FLAG_WRITE) {
3271                 if (!(vma->vm_flags & VM_SHARED)) {
3272                         page = cow_page;
3273                         anon = 1;
3274                         copy_user_highpage(page, vmf.page, address, vma);
3275                         __SetPageUptodate(page);
3276                 } else {
3277                         /*
3278                          * If the page will be shareable, see if the backing
3279                          * address space wants to know that the page is about
3280                          * to become writable
3281                          */
3282                         if (vma->vm_ops->page_mkwrite) {
3283                                 int tmp;
3284
3285                                 unlock_page(page);
3286                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3287                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3288                                 if (unlikely(tmp &
3289                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3290                                         ret = tmp;
3291                                         goto unwritable_page;
3292                                 }
3293                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3294                                         lock_page(page);
3295                                         if (!page->mapping) {
3296                                                 ret = 0; /* retry the fault */
3297                                                 unlock_page(page);
3298                                                 goto unwritable_page;
3299                                         }
3300                                 } else
3301                                         VM_BUG_ON(!PageLocked(page));
3302                                 page_mkwrite = 1;
3303                         }
3304                 }
3305
3306         }
3307
3308         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3309
3310         /*
3311          * This silly early PAGE_DIRTY setting removes a race
3312          * due to the bad i386 page protection. But it's valid
3313          * for other architectures too.
3314          *
3315          * Note that if FAULT_FLAG_WRITE is set, we either now have
3316          * an exclusive copy of the page, or this is a shared mapping,
3317          * so we can make it writable and dirty to avoid having to
3318          * handle that later.
3319          */
3320         /* Only go through if we didn't race with anybody else... */
3321         if (likely(pte_same(*page_table, orig_pte))) {
3322                 flush_icache_page(vma, page);
3323                 entry = mk_pte(page, vma->vm_page_prot);
3324                 if (flags & FAULT_FLAG_WRITE)
3325                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3326                 if (anon) {
3327                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3328                         page_add_new_anon_rmap(page, vma, address);
3329                 } else {
3330                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3331                         page_add_file_rmap(page);
3332                         if (flags & FAULT_FLAG_WRITE) {
3333                                 dirty_page = page;
3334                                 get_page(dirty_page);
3335                         }
3336                 }
3337                 set_pte_at(mm, address, page_table, entry);
3338
3339                 /* no need to invalidate: a not-present page won't be cached */
3340                 update_mmu_cache(vma, address, page_table);
3341         } else {
3342                 if (cow_page)
3343                         mem_cgroup_uncharge_page(cow_page);
3344                 if (anon)
3345                         page_cache_release(page);
3346                 else
3347                         anon = 1; /* no anon but release faulted_page */
3348         }
3349
3350         pte_unmap_unlock(page_table, ptl);
3351
3352         if (dirty_page) {
3353                 struct address_space *mapping = page->mapping;
3354                 int dirtied = 0;
3355
3356                 if (set_page_dirty(dirty_page))
3357                         dirtied = 1;
3358                 unlock_page(dirty_page);
3359                 put_page(dirty_page);
3360                 if ((dirtied || page_mkwrite) && mapping) {
3361                         /*
3362                          * Some device drivers do not set page.mapping but still
3363                          * dirty their pages
3364                          */
3365                         balance_dirty_pages_ratelimited(mapping);
3366                 }
3367
3368                 /* file_update_time outside page_lock */
3369                 if (vma->vm_file && !page_mkwrite)
3370                         file_update_time(vma->vm_file);
3371         } else {
3372                 unlock_page(vmf.page);
3373                 if (anon)
3374                         page_cache_release(vmf.page);
3375         }
3376
3377         return ret;
3378
3379 unwritable_page:
3380         page_cache_release(page);
3381         return ret;
3382 uncharge_out:
3383         /* fs's fault handler get error */
3384         if (cow_page) {
3385                 mem_cgroup_uncharge_page(cow_page);
3386                 page_cache_release(cow_page);
3387         }
3388         return ret;
3389 }
3390
3391 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3392                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3393                 unsigned int flags, pte_t orig_pte)
3394 {
3395         pgoff_t pgoff = (((address & PAGE_MASK)
3396                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3397
3398         pte_unmap(page_table);
3399         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3400 }
3401
3402 /*
3403  * Fault of a previously existing named mapping. Repopulate the pte
3404  * from the encoded file_pte if possible. This enables swappable
3405  * nonlinear vmas.
3406  *
3407  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3408  * but allow concurrent faults), and pte mapped but not yet locked.
3409  * We return with mmap_sem still held, but pte unmapped and unlocked.
3410  */
3411 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3412                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3413                 unsigned int flags, pte_t orig_pte)
3414 {
3415         pgoff_t pgoff;
3416
3417         flags |= FAULT_FLAG_NONLINEAR;
3418
3419         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3420                 return 0;
3421
3422         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3423                 /*
3424                  * Page table corrupted: show pte and kill process.
3425                  */
3426                 print_bad_pte(vma, address, orig_pte, NULL);
3427                 return VM_FAULT_SIGBUS;
3428         }
3429
3430         pgoff = pte_to_pgoff(orig_pte);
3431         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3432 }
3433
3434 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3435                                 unsigned long addr, int current_nid)
3436 {
3437         get_page(page);
3438
3439         count_vm_numa_event(NUMA_HINT_FAULTS);
3440         if (current_nid == numa_node_id())
3441                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3442
3443         return mpol_misplaced(page, vma, addr);
3444 }
3445
3446 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3447                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3448 {
3449         struct page *page = NULL;
3450         spinlock_t *ptl;
3451         int current_nid = -1;
3452         int target_nid;
3453         bool migrated = false;
3454
3455         /*
3456         * The "pte" at this point cannot be used safely without
3457         * validation through pte_unmap_same(). It's of NUMA type but
3458         * the pfn may be screwed if the read is non atomic.
3459         *
3460         * ptep_modify_prot_start is not called as this is clearing
3461         * the _PAGE_NUMA bit and it is not really expected that there
3462         * would be concurrent hardware modifications to the PTE.
3463         */
3464         ptl = pte_lockptr(mm, pmd);
3465         spin_lock(ptl);
3466         if (unlikely(!pte_same(*ptep, pte))) {
3467                 pte_unmap_unlock(ptep, ptl);
3468                 goto out;
3469         }
3470
3471         pte = pte_mknonnuma(pte);
3472         set_pte_at(mm, addr, ptep, pte);
3473         update_mmu_cache(vma, addr, ptep);
3474
3475         page = vm_normal_page(vma, addr, pte);
3476         if (!page) {
3477                 pte_unmap_unlock(ptep, ptl);
3478                 return 0;
3479         }
3480
3481         current_nid = page_to_nid(page);
3482         target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3483         pte_unmap_unlock(ptep, ptl);
3484         if (target_nid == -1) {
3485                 /*
3486                  * Account for the fault against the current node if it not
3487                  * being replaced regardless of where the page is located.
3488                  */
3489                 current_nid = numa_node_id();
3490                 put_page(page);
3491                 goto out;
3492         }
3493
3494         /* Migrate to the requested node */
3495         migrated = migrate_misplaced_page(page, target_nid);
3496         if (migrated)
3497                 current_nid = target_nid;
3498
3499 out:
3500         if (current_nid != -1)
3501                 task_numa_fault(current_nid, 1, migrated);
3502         return 0;
3503 }
3504
3505 /* NUMA hinting page fault entry point for regular pmds */
3506 #ifdef CONFIG_NUMA_BALANCING
3507 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3508                      unsigned long addr, pmd_t *pmdp)
3509 {
3510         pmd_t pmd;
3511         pte_t *pte, *orig_pte;
3512         unsigned long _addr = addr & PMD_MASK;
3513         unsigned long offset;
3514         spinlock_t *ptl;
3515         bool numa = false;
3516         int local_nid = numa_node_id();
3517
3518         spin_lock(&mm->page_table_lock);
3519         pmd = *pmdp;
3520         if (pmd_numa(pmd)) {
3521                 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3522                 numa = true;
3523         }
3524         spin_unlock(&mm->page_table_lock);
3525
3526         if (!numa)
3527                 return 0;
3528
3529         /* we're in a page fault so some vma must be in the range */
3530         BUG_ON(!vma);
3531         BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3532         offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3533         VM_BUG_ON(offset >= PMD_SIZE);
3534         orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3535         pte += offset >> PAGE_SHIFT;
3536         for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3537                 pte_t pteval = *pte;
3538                 struct page *page;
3539                 int curr_nid = local_nid;
3540                 int target_nid;
3541                 bool migrated;
3542                 if (!pte_present(pteval))
3543                         continue;
3544                 if (!pte_numa(pteval))
3545                         continue;
3546                 if (addr >= vma->vm_end) {
3547                         vma = find_vma(mm, addr);
3548                         /* there's a pte present so there must be a vma */
3549                         BUG_ON(!vma);
3550                         BUG_ON(addr < vma->vm_start);
3551                 }
3552                 if (pte_numa(pteval)) {
3553                         pteval = pte_mknonnuma(pteval);
3554                         set_pte_at(mm, addr, pte, pteval);
3555                 }
3556                 page = vm_normal_page(vma, addr, pteval);
3557                 if (unlikely(!page))
3558                         continue;
3559                 /* only check non-shared pages */
3560                 if (unlikely(page_mapcount(page) != 1))
3561                         continue;
3562
3563                 /*
3564                  * Note that the NUMA fault is later accounted to either
3565                  * the node that is currently running or where the page is
3566                  * migrated to.
3567                  */
3568                 curr_nid = local_nid;
3569                 target_nid = numa_migrate_prep(page, vma, addr,
3570                                                page_to_nid(page));
3571                 if (target_nid == -1) {
3572                         put_page(page);
3573                         continue;
3574                 }
3575
3576                 /* Migrate to the requested node */
3577                 pte_unmap_unlock(pte, ptl);
3578                 migrated = migrate_misplaced_page(page, target_nid);
3579                 if (migrated)
3580                         curr_nid = target_nid;
3581                 task_numa_fault(curr_nid, 1, migrated);
3582
3583                 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3584         }
3585         pte_unmap_unlock(orig_pte, ptl);
3586
3587         return 0;
3588 }
3589 #else
3590 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3591                      unsigned long addr, pmd_t *pmdp)
3592 {
3593         BUG();
3594         return 0;
3595 }
3596 #endif /* CONFIG_NUMA_BALANCING */
3597
3598 /*
3599  * These routines also need to handle stuff like marking pages dirty
3600  * and/or accessed for architectures that don't do it in hardware (most
3601  * RISC architectures).  The early dirtying is also good on the i386.
3602  *
3603  * There is also a hook called "update_mmu_cache()" that architectures
3604  * with external mmu caches can use to update those (ie the Sparc or
3605  * PowerPC hashed page tables that act as extended TLBs).
3606  *
3607  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3608  * but allow concurrent faults), and pte mapped but not yet locked.
3609  * We return with mmap_sem still held, but pte unmapped and unlocked.
3610  */
3611 int handle_pte_fault(struct mm_struct *mm,
3612                      struct vm_area_struct *vma, unsigned long address,
3613                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3614 {
3615         pte_t entry;
3616         spinlock_t *ptl;
3617
3618         entry = *pte;
3619         if (!pte_present(entry)) {
3620                 if (pte_none(entry)) {
3621                         if (vma->vm_ops) {
3622                                 if (likely(vma->vm_ops->fault))
3623                                         return do_linear_fault(mm, vma, address,
3624                                                 pte, pmd, flags, entry);
3625                         }
3626                         return do_anonymous_page(mm, vma, address,
3627                                                  pte, pmd, flags);
3628                 }
3629                 if (pte_file(entry))
3630                         return do_nonlinear_fault(mm, vma, address,
3631                                         pte, pmd, flags, entry);
3632                 return do_swap_page(mm, vma, address,
3633                                         pte, pmd, flags, entry);
3634         }
3635
3636         if (pte_numa(entry))
3637                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3638
3639         ptl = pte_lockptr(mm, pmd);
3640         spin_lock(ptl);
3641         if (unlikely(!pte_same(*pte, entry)))
3642                 goto unlock;
3643         if (flags & FAULT_FLAG_WRITE) {
3644                 if (!pte_write(entry))
3645                         return do_wp_page(mm, vma, address,
3646                                         pte, pmd, ptl, entry);
3647                 entry = pte_mkdirty(entry);
3648         }
3649         entry = pte_mkyoung(entry);
3650         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3651                 update_mmu_cache(vma, address, pte);
3652         } else {
3653                 /*
3654                  * This is needed only for protection faults but the arch code
3655                  * is not yet telling us if this is a protection fault or not.
3656                  * This still avoids useless tlb flushes for .text page faults
3657                  * with threads.
3658                  */
3659                 if (flags & FAULT_FLAG_WRITE)
3660                         flush_tlb_fix_spurious_fault(vma, address);
3661         }
3662 unlock:
3663         pte_unmap_unlock(pte, ptl);
3664         return 0;
3665 }
3666
3667 /*
3668  * By the time we get here, we already hold the mm semaphore
3669  */
3670 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3671                 unsigned long address, unsigned int flags)
3672 {
3673         pgd_t *pgd;
3674         pud_t *pud;
3675         pmd_t *pmd;
3676         pte_t *pte;
3677
3678         __set_current_state(TASK_RUNNING);
3679
3680         count_vm_event(PGFAULT);
3681         mem_cgroup_count_vm_event(mm, PGFAULT);
3682
3683         /* do counter updates before entering really critical section. */
3684         check_sync_rss_stat(current);
3685
3686         if (unlikely(is_vm_hugetlb_page(vma)))
3687                 return hugetlb_fault(mm, vma, address, flags);
3688
3689 retry:
3690         pgd = pgd_offset(mm, address);
3691         pud = pud_alloc(mm, pgd, address);
3692         if (!pud)
3693                 return VM_FAULT_OOM;
3694         pmd = pmd_alloc(mm, pud, address);
3695         if (!pmd)
3696                 return VM_FAULT_OOM;
3697         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3698                 if (!vma->vm_ops)
3699                         return do_huge_pmd_anonymous_page(mm, vma, address,
3700                                                           pmd, flags);
3701         } else {
3702                 pmd_t orig_pmd = *pmd;
3703                 int ret;
3704
3705                 barrier();
3706                 if (pmd_trans_huge(orig_pmd)) {
3707                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3708
3709                         if (pmd_numa(orig_pmd))
3710                                 return do_huge_pmd_numa_page(mm, vma, address,
3711                                                              orig_pmd, pmd);
3712
3713                         if (dirty && !pmd_write(orig_pmd)) {
3714                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3715                                                           orig_pmd);
3716                                 /*
3717                                  * If COW results in an oom, the huge pmd will
3718                                  * have been split, so retry the fault on the
3719                                  * pte for a smaller charge.
3720                                  */
3721                                 if (unlikely(ret & VM_FAULT_OOM))
3722                                         goto retry;
3723                                 return ret;
3724                         } else {
3725                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3726                                                       orig_pmd, dirty);
3727                         }
3728
3729                         return 0;
3730                 }
3731         }
3732
3733         if (pmd_numa(*pmd))
3734                 return do_pmd_numa_page(mm, vma, address, pmd);
3735
3736         /*
3737          * Use __pte_alloc instead of pte_alloc_map, because we can't
3738          * run pte_offset_map on the pmd, if an huge pmd could
3739          * materialize from under us from a different thread.
3740          */
3741         if (unlikely(pmd_none(*pmd)) &&
3742             unlikely(__pte_alloc(mm, vma, pmd, address)))
3743                 return VM_FAULT_OOM;
3744         /* if an huge pmd materialized from under us just retry later */
3745         if (unlikely(pmd_trans_huge(*pmd)))
3746                 return 0;
3747         /*
3748          * A regular pmd is established and it can't morph into a huge pmd
3749          * from under us anymore at this point because we hold the mmap_sem
3750          * read mode and khugepaged takes it in write mode. So now it's
3751          * safe to run pte_offset_map().
3752          */
3753         pte = pte_offset_map(pmd, address);
3754
3755         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3756 }
3757
3758 #ifndef __PAGETABLE_PUD_FOLDED
3759 /*
3760  * Allocate page upper directory.
3761  * We've already handled the fast-path in-line.
3762  */
3763 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3764 {
3765         pud_t *new = pud_alloc_one(mm, address);
3766         if (!new)
3767                 return -ENOMEM;
3768
3769         smp_wmb(); /* See comment in __pte_alloc */
3770
3771         spin_lock(&mm->page_table_lock);
3772         if (pgd_present(*pgd))          /* Another has populated it */
3773                 pud_free(mm, new);
3774         else
3775                 pgd_populate(mm, pgd, new);
3776         spin_unlock(&mm->page_table_lock);
3777         return 0;
3778 }
3779 #endif /* __PAGETABLE_PUD_FOLDED */
3780
3781 #ifndef __PAGETABLE_PMD_FOLDED
3782 /*
3783  * Allocate page middle directory.
3784  * We've already handled the fast-path in-line.
3785  */
3786 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3787 {
3788         pmd_t *new = pmd_alloc_one(mm, address);
3789         if (!new)
3790                 return -ENOMEM;
3791
3792         smp_wmb(); /* See comment in __pte_alloc */
3793
3794         spin_lock(&mm->page_table_lock);
3795 #ifndef __ARCH_HAS_4LEVEL_HACK
3796         if (pud_present(*pud))          /* Another has populated it */
3797                 pmd_free(mm, new);
3798         else
3799                 pud_populate(mm, pud, new);
3800 #else
3801         if (pgd_present(*pud))          /* Another has populated it */
3802                 pmd_free(mm, new);
3803         else
3804                 pgd_populate(mm, pud, new);
3805 #endif /* __ARCH_HAS_4LEVEL_HACK */
3806         spin_unlock(&mm->page_table_lock);
3807         return 0;
3808 }
3809 #endif /* __PAGETABLE_PMD_FOLDED */
3810
3811 int make_pages_present(unsigned long addr, unsigned long end)
3812 {
3813         int ret, len, write;
3814         struct vm_area_struct * vma;
3815
3816         vma = find_vma(current->mm, addr);
3817         if (!vma)
3818                 return -ENOMEM;
3819         /*
3820          * We want to touch writable mappings with a write fault in order
3821          * to break COW, except for shared mappings because these don't COW
3822          * and we would not want to dirty them for nothing.
3823          */
3824         write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3825         BUG_ON(addr >= end);
3826         BUG_ON(end > vma->vm_end);
3827         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3828         ret = get_user_pages(current, current->mm, addr,
3829                         len, write, 0, NULL, NULL);
3830         if (ret < 0)
3831                 return ret;
3832         return ret == len ? 0 : -EFAULT;
3833 }
3834
3835 #if !defined(__HAVE_ARCH_GATE_AREA)
3836
3837 #if defined(AT_SYSINFO_EHDR)
3838 static struct vm_area_struct gate_vma;
3839
3840 static int __init gate_vma_init(void)
3841 {
3842         gate_vma.vm_mm = NULL;
3843         gate_vma.vm_start = FIXADDR_USER_START;
3844         gate_vma.vm_end = FIXADDR_USER_END;
3845         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3846         gate_vma.vm_page_prot = __P101;
3847
3848         return 0;
3849 }
3850 __initcall(gate_vma_init);
3851 #endif
3852
3853 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3854 {
3855 #ifdef AT_SYSINFO_EHDR
3856         return &gate_vma;
3857 #else
3858         return NULL;
3859 #endif
3860 }
3861
3862 int in_gate_area_no_mm(unsigned long addr)
3863 {
3864 #ifdef AT_SYSINFO_EHDR
3865         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3866                 return 1;
3867 #endif
3868         return 0;
3869 }
3870
3871 #endif  /* __HAVE_ARCH_GATE_AREA */
3872
3873 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3874                 pte_t **ptepp, spinlock_t **ptlp)
3875 {
3876         pgd_t *pgd;
3877         pud_t *pud;
3878         pmd_t *pmd;
3879         pte_t *ptep;
3880
3881         pgd = pgd_offset(mm, address);
3882         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3883                 goto out;
3884
3885         pud = pud_offset(pgd, address);
3886         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3887                 goto out;
3888
3889         pmd = pmd_offset(pud, address);
3890         VM_BUG_ON(pmd_trans_huge(*pmd));
3891         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3892                 goto out;
3893
3894         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3895         if (pmd_huge(*pmd))
3896                 goto out;
3897
3898         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3899         if (!ptep)
3900                 goto out;
3901         if (!pte_present(*ptep))
3902                 goto unlock;
3903         *ptepp = ptep;
3904         return 0;
3905 unlock:
3906         pte_unmap_unlock(ptep, *ptlp);
3907 out:
3908         return -EINVAL;
3909 }
3910
3911 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3912                              pte_t **ptepp, spinlock_t **ptlp)
3913 {
3914         int res;
3915
3916         /* (void) is needed to make gcc happy */
3917         (void) __cond_lock(*ptlp,
3918                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3919         return res;
3920 }
3921
3922 /**
3923  * follow_pfn - look up PFN at a user virtual address
3924  * @vma: memory mapping
3925  * @address: user virtual address
3926  * @pfn: location to store found PFN
3927  *
3928  * Only IO mappings and raw PFN mappings are allowed.
3929  *
3930  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3931  */
3932 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3933         unsigned long *pfn)
3934 {
3935         int ret = -EINVAL;
3936         spinlock_t *ptl;
3937         pte_t *ptep;
3938
3939         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3940                 return ret;
3941
3942         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3943         if (ret)
3944                 return ret;
3945         *pfn = pte_pfn(*ptep);
3946         pte_unmap_unlock(ptep, ptl);
3947         return 0;
3948 }
3949 EXPORT_SYMBOL(follow_pfn);
3950
3951 #ifdef CONFIG_HAVE_IOREMAP_PROT
3952 int follow_phys(struct vm_area_struct *vma,
3953                 unsigned long address, unsigned int flags,
3954                 unsigned long *prot, resource_size_t *phys)
3955 {
3956         int ret = -EINVAL;
3957         pte_t *ptep, pte;
3958         spinlock_t *ptl;
3959
3960         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3961                 goto out;
3962
3963         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3964                 goto out;
3965         pte = *ptep;
3966
3967         if ((flags & FOLL_WRITE) && !pte_write(pte))
3968                 goto unlock;
3969
3970         *prot = pgprot_val(pte_pgprot(pte));
3971         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3972
3973         ret = 0;
3974 unlock:
3975         pte_unmap_unlock(ptep, ptl);
3976 out:
3977         return ret;
3978 }
3979
3980 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3981                         void *buf, int len, int write)
3982 {
3983         resource_size_t phys_addr;
3984         unsigned long prot = 0;
3985         void __iomem *maddr;
3986         int offset = addr & (PAGE_SIZE-1);
3987
3988         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3989                 return -EINVAL;
3990
3991         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3992         if (write)
3993                 memcpy_toio(maddr + offset, buf, len);
3994         else
3995                 memcpy_fromio(buf, maddr + offset, len);
3996         iounmap(maddr);
3997
3998         return len;
3999 }
4000 #endif
4001
4002 /*
4003  * Access another process' address space as given in mm.  If non-NULL, use the
4004  * given task for page fault accounting.
4005  */
4006 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4007                 unsigned long addr, void *buf, int len, int write)
4008 {
4009         struct vm_area_struct *vma;
4010         void *old_buf = buf;
4011
4012         down_read(&mm->mmap_sem);
4013         /* ignore errors, just check how much was successfully transferred */
4014         while (len) {
4015                 int bytes, ret, offset;
4016                 void *maddr;
4017                 struct page *page = NULL;
4018
4019                 ret = get_user_pages(tsk, mm, addr, 1,
4020                                 write, 1, &page, &vma);
4021                 if (ret <= 0) {
4022                         /*
4023                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4024                          * we can access using slightly different code.
4025                          */
4026 #ifdef CONFIG_HAVE_IOREMAP_PROT
4027                         vma = find_vma(mm, addr);
4028                         if (!vma || vma->vm_start > addr)
4029                                 break;
4030                         if (vma->vm_ops && vma->vm_ops->access)
4031                                 ret = vma->vm_ops->access(vma, addr, buf,
4032                                                           len, write);
4033                         if (ret <= 0)
4034 #endif
4035                                 break;
4036                         bytes = ret;
4037                 } else {
4038                         bytes = len;
4039                         offset = addr & (PAGE_SIZE-1);
4040                         if (bytes > PAGE_SIZE-offset)
4041                                 bytes = PAGE_SIZE-offset;
4042
4043                         maddr = kmap(page);
4044                         if (write) {
4045                                 copy_to_user_page(vma, page, addr,
4046                                                   maddr + offset, buf, bytes);
4047                                 set_page_dirty_lock(page);
4048                         } else {
4049                                 copy_from_user_page(vma, page, addr,
4050                                                     buf, maddr + offset, bytes);
4051                         }
4052                         kunmap(page);
4053                         page_cache_release(page);
4054                 }
4055                 len -= bytes;
4056                 buf += bytes;
4057                 addr += bytes;
4058         }
4059         up_read(&mm->mmap_sem);
4060
4061         return buf - old_buf;
4062 }
4063
4064 /**
4065  * access_remote_vm - access another process' address space
4066  * @mm:         the mm_struct of the target address space
4067  * @addr:       start address to access
4068  * @buf:        source or destination buffer
4069  * @len:        number of bytes to transfer
4070  * @write:      whether the access is a write
4071  *
4072  * The caller must hold a reference on @mm.
4073  */
4074 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4075                 void *buf, int len, int write)
4076 {
4077         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4078 }
4079
4080 /*
4081  * Access another process' address space.
4082  * Source/target buffer must be kernel space,
4083  * Do not walk the page table directly, use get_user_pages
4084  */
4085 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4086                 void *buf, int len, int write)
4087 {
4088         struct mm_struct *mm;
4089         int ret;
4090
4091         mm = get_task_mm(tsk);
4092         if (!mm)
4093                 return 0;
4094
4095         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4096         mmput(mm);
4097
4098         return ret;
4099 }
4100
4101 /*
4102  * Print the name of a VMA.
4103  */
4104 void print_vma_addr(char *prefix, unsigned long ip)
4105 {
4106         struct mm_struct *mm = current->mm;
4107         struct vm_area_struct *vma;
4108
4109         /*
4110          * Do not print if we are in atomic
4111          * contexts (in exception stacks, etc.):
4112          */
4113         if (preempt_count())
4114                 return;
4115
4116         down_read(&mm->mmap_sem);
4117         vma = find_vma(mm, ip);
4118         if (vma && vma->vm_file) {
4119                 struct file *f = vma->vm_file;
4120                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4121                 if (buf) {
4122                         char *p;
4123
4124                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4125                         if (IS_ERR(p))
4126                                 p = "?";
4127                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4128                                         vma->vm_start,
4129                                         vma->vm_end - vma->vm_start);
4130                         free_page((unsigned long)buf);
4131                 }
4132         }
4133         up_read(&mm->mmap_sem);
4134 }
4135
4136 #ifdef CONFIG_PROVE_LOCKING
4137 void might_fault(void)
4138 {
4139         /*
4140          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4141          * holding the mmap_sem, this is safe because kernel memory doesn't
4142          * get paged out, therefore we'll never actually fault, and the
4143          * below annotations will generate false positives.
4144          */
4145         if (segment_eq(get_fs(), KERNEL_DS))
4146                 return;
4147
4148         might_sleep();
4149         /*
4150          * it would be nicer only to annotate paths which are not under
4151          * pagefault_disable, however that requires a larger audit and
4152          * providing helpers like get_user_atomic.
4153          */
4154         if (!in_atomic() && current->mm)
4155                 might_lock_read(&current->mm->mmap_sem);
4156 }
4157 EXPORT_SYMBOL(might_fault);
4158 #endif
4159
4160 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4161 static void clear_gigantic_page(struct page *page,
4162                                 unsigned long addr,
4163                                 unsigned int pages_per_huge_page)
4164 {
4165         int i;
4166         struct page *p = page;
4167
4168         might_sleep();
4169         for (i = 0; i < pages_per_huge_page;
4170              i++, p = mem_map_next(p, page, i)) {
4171                 cond_resched();
4172                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4173         }
4174 }
4175 void clear_huge_page(struct page *page,
4176                      unsigned long addr, unsigned int pages_per_huge_page)
4177 {
4178         int i;
4179
4180         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4181                 clear_gigantic_page(page, addr, pages_per_huge_page);
4182                 return;
4183         }
4184
4185         might_sleep();
4186         for (i = 0; i < pages_per_huge_page; i++) {
4187                 cond_resched();
4188                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4189         }
4190 }
4191
4192 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4193                                     unsigned long addr,
4194                                     struct vm_area_struct *vma,
4195                                     unsigned int pages_per_huge_page)
4196 {
4197         int i;
4198         struct page *dst_base = dst;
4199         struct page *src_base = src;
4200
4201         for (i = 0; i < pages_per_huge_page; ) {
4202                 cond_resched();
4203                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4204
4205                 i++;
4206                 dst = mem_map_next(dst, dst_base, i);
4207                 src = mem_map_next(src, src_base, i);
4208         }
4209 }
4210
4211 void copy_user_huge_page(struct page *dst, struct page *src,
4212                          unsigned long addr, struct vm_area_struct *vma,
4213                          unsigned int pages_per_huge_page)
4214 {
4215         int i;
4216
4217         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4218                 copy_user_gigantic_page(dst, src, addr, vma,
4219                                         pages_per_huge_page);
4220                 return;
4221         }
4222
4223         might_sleep();
4224         for (i = 0; i < pages_per_huge_page; i++) {
4225                 cond_resched();
4226                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4227         }
4228 }
4229 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */