]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/memory.c
[PATCH] mm: zap_pte_range dont dirty anon
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93         pgd_ERROR(*pgd);
94         pgd_clear(pgd);
95 }
96
97 void pud_clear_bad(pud_t *pud)
98 {
99         pud_ERROR(*pud);
100         pud_clear(pud);
101 }
102
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105         pmd_ERROR(*pmd);
106         pmd_clear(pmd);
107 }
108
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115         struct page *page = pmd_page(*pmd);
116         pmd_clear(pmd);
117         pte_free_tlb(tlb, page);
118         dec_page_state(nr_page_table_pages);
119         tlb->mm->nr_ptes--;
120 }
121
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123                                 unsigned long addr, unsigned long end,
124                                 unsigned long floor, unsigned long ceiling)
125 {
126         pmd_t *pmd;
127         unsigned long next;
128         unsigned long start;
129
130         start = addr;
131         pmd = pmd_offset(pud, addr);
132         do {
133                 next = pmd_addr_end(addr, end);
134                 if (pmd_none_or_clear_bad(pmd))
135                         continue;
136                 free_pte_range(tlb, pmd);
137         } while (pmd++, addr = next, addr != end);
138
139         start &= PUD_MASK;
140         if (start < floor)
141                 return;
142         if (ceiling) {
143                 ceiling &= PUD_MASK;
144                 if (!ceiling)
145                         return;
146         }
147         if (end - 1 > ceiling - 1)
148                 return;
149
150         pmd = pmd_offset(pud, start);
151         pud_clear(pud);
152         pmd_free_tlb(tlb, pmd);
153 }
154
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156                                 unsigned long addr, unsigned long end,
157                                 unsigned long floor, unsigned long ceiling)
158 {
159         pud_t *pud;
160         unsigned long next;
161         unsigned long start;
162
163         start = addr;
164         pud = pud_offset(pgd, addr);
165         do {
166                 next = pud_addr_end(addr, end);
167                 if (pud_none_or_clear_bad(pud))
168                         continue;
169                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170         } while (pud++, addr = next, addr != end);
171
172         start &= PGDIR_MASK;
173         if (start < floor)
174                 return;
175         if (ceiling) {
176                 ceiling &= PGDIR_MASK;
177                 if (!ceiling)
178                         return;
179         }
180         if (end - 1 > ceiling - 1)
181                 return;
182
183         pud = pud_offset(pgd, start);
184         pgd_clear(pgd);
185         pud_free_tlb(tlb, pud);
186 }
187
188 /*
189  * This function frees user-level page tables of a process.
190  *
191  * Must be called with pagetable lock held.
192  */
193 void free_pgd_range(struct mmu_gather **tlb,
194                         unsigned long addr, unsigned long end,
195                         unsigned long floor, unsigned long ceiling)
196 {
197         pgd_t *pgd;
198         unsigned long next;
199         unsigned long start;
200
201         /*
202          * The next few lines have given us lots of grief...
203          *
204          * Why are we testing PMD* at this top level?  Because often
205          * there will be no work to do at all, and we'd prefer not to
206          * go all the way down to the bottom just to discover that.
207          *
208          * Why all these "- 1"s?  Because 0 represents both the bottom
209          * of the address space and the top of it (using -1 for the
210          * top wouldn't help much: the masks would do the wrong thing).
211          * The rule is that addr 0 and floor 0 refer to the bottom of
212          * the address space, but end 0 and ceiling 0 refer to the top
213          * Comparisons need to use "end - 1" and "ceiling - 1" (though
214          * that end 0 case should be mythical).
215          *
216          * Wherever addr is brought up or ceiling brought down, we must
217          * be careful to reject "the opposite 0" before it confuses the
218          * subsequent tests.  But what about where end is brought down
219          * by PMD_SIZE below? no, end can't go down to 0 there.
220          *
221          * Whereas we round start (addr) and ceiling down, by different
222          * masks at different levels, in order to test whether a table
223          * now has no other vmas using it, so can be freed, we don't
224          * bother to round floor or end up - the tests don't need that.
225          */
226
227         addr &= PMD_MASK;
228         if (addr < floor) {
229                 addr += PMD_SIZE;
230                 if (!addr)
231                         return;
232         }
233         if (ceiling) {
234                 ceiling &= PMD_MASK;
235                 if (!ceiling)
236                         return;
237         }
238         if (end - 1 > ceiling - 1)
239                 end -= PMD_SIZE;
240         if (addr > end - 1)
241                 return;
242
243         start = addr;
244         pgd = pgd_offset((*tlb)->mm, addr);
245         do {
246                 next = pgd_addr_end(addr, end);
247                 if (pgd_none_or_clear_bad(pgd))
248                         continue;
249                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250         } while (pgd++, addr = next, addr != end);
251
252         if (!tlb_is_full_mm(*tlb))
253                 flush_tlb_pgtables((*tlb)->mm, start, end);
254 }
255
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257                 unsigned long floor, unsigned long ceiling)
258 {
259         while (vma) {
260                 struct vm_area_struct *next = vma->vm_next;
261                 unsigned long addr = vma->vm_start;
262
263                 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265                                 floor, next? next->vm_start: ceiling);
266                 } else {
267                         /*
268                          * Optimization: gather nearby vmas into one call down
269                          */
270                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271                           && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272                                                         HPAGE_SIZE)) {
273                                 vma = next;
274                                 next = vma->vm_next;
275                         }
276                         free_pgd_range(tlb, addr, vma->vm_end,
277                                 floor, next? next->vm_start: ceiling);
278                 }
279                 vma = next;
280         }
281 }
282
283 pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284                                 unsigned long address)
285 {
286         if (!pmd_present(*pmd)) {
287                 struct page *new;
288
289                 spin_unlock(&mm->page_table_lock);
290                 new = pte_alloc_one(mm, address);
291                 spin_lock(&mm->page_table_lock);
292                 if (!new)
293                         return NULL;
294                 /*
295                  * Because we dropped the lock, we should re-check the
296                  * entry, as somebody else could have populated it..
297                  */
298                 if (pmd_present(*pmd)) {
299                         pte_free(new);
300                         goto out;
301                 }
302                 mm->nr_ptes++;
303                 inc_page_state(nr_page_table_pages);
304                 pmd_populate(mm, pmd, new);
305         }
306 out:
307         return pte_offset_map(pmd, address);
308 }
309
310 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311 {
312         if (!pmd_present(*pmd)) {
313                 pte_t *new;
314
315                 spin_unlock(&mm->page_table_lock);
316                 new = pte_alloc_one_kernel(mm, address);
317                 spin_lock(&mm->page_table_lock);
318                 if (!new)
319                         return NULL;
320
321                 /*
322                  * Because we dropped the lock, we should re-check the
323                  * entry, as somebody else could have populated it..
324                  */
325                 if (pmd_present(*pmd)) {
326                         pte_free_kernel(new);
327                         goto out;
328                 }
329                 pmd_populate_kernel(mm, pmd, new);
330         }
331 out:
332         return pte_offset_kernel(pmd, address);
333 }
334
335 /*
336  * copy one vm_area from one task to the other. Assumes the page tables
337  * already present in the new task to be cleared in the whole range
338  * covered by this vma.
339  *
340  * dst->page_table_lock is held on entry and exit,
341  * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
342  */
343
344 static inline void
345 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
346                 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
347                 unsigned long addr)
348 {
349         pte_t pte = *src_pte;
350         struct page *page;
351         unsigned long pfn;
352
353         /* pte contains position in swap or file, so copy. */
354         if (unlikely(!pte_present(pte))) {
355                 if (!pte_file(pte)) {
356                         swap_duplicate(pte_to_swp_entry(pte));
357                         /* make sure dst_mm is on swapoff's mmlist. */
358                         if (unlikely(list_empty(&dst_mm->mmlist))) {
359                                 spin_lock(&mmlist_lock);
360                                 list_add(&dst_mm->mmlist, &src_mm->mmlist);
361                                 spin_unlock(&mmlist_lock);
362                         }
363                 }
364                 set_pte_at(dst_mm, addr, dst_pte, pte);
365                 return;
366         }
367
368         pfn = pte_pfn(pte);
369         /* the pte points outside of valid memory, the
370          * mapping is assumed to be good, meaningful
371          * and not mapped via rmap - duplicate the
372          * mapping as is.
373          */
374         page = NULL;
375         if (pfn_valid(pfn))
376                 page = pfn_to_page(pfn);
377
378         if (!page || PageReserved(page)) {
379                 set_pte_at(dst_mm, addr, dst_pte, pte);
380                 return;
381         }
382
383         /*
384          * If it's a COW mapping, write protect it both
385          * in the parent and the child
386          */
387         if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
388                 ptep_set_wrprotect(src_mm, addr, src_pte);
389                 pte = *src_pte;
390         }
391
392         /*
393          * If it's a shared mapping, mark it clean in
394          * the child
395          */
396         if (vm_flags & VM_SHARED)
397                 pte = pte_mkclean(pte);
398         pte = pte_mkold(pte);
399         get_page(page);
400         inc_mm_counter(dst_mm, rss);
401         if (PageAnon(page))
402                 inc_mm_counter(dst_mm, anon_rss);
403         set_pte_at(dst_mm, addr, dst_pte, pte);
404         page_dup_rmap(page);
405 }
406
407 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
408                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
409                 unsigned long addr, unsigned long end)
410 {
411         pte_t *src_pte, *dst_pte;
412         unsigned long vm_flags = vma->vm_flags;
413         int progress = 0;
414
415 again:
416         dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
417         if (!dst_pte)
418                 return -ENOMEM;
419         src_pte = pte_offset_map_nested(src_pmd, addr);
420
421         spin_lock(&src_mm->page_table_lock);
422         do {
423                 /*
424                  * We are holding two locks at this point - either of them
425                  * could generate latencies in another task on another CPU.
426                  */
427                 if (progress >= 32) {
428                         progress = 0;
429                         if (need_resched() ||
430                             need_lockbreak(&src_mm->page_table_lock) ||
431                             need_lockbreak(&dst_mm->page_table_lock))
432                                 break;
433                 }
434                 if (pte_none(*src_pte)) {
435                         progress++;
436                         continue;
437                 }
438                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
439                 progress += 8;
440         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
441         spin_unlock(&src_mm->page_table_lock);
442
443         pte_unmap_nested(src_pte - 1);
444         pte_unmap(dst_pte - 1);
445         cond_resched_lock(&dst_mm->page_table_lock);
446         if (addr != end)
447                 goto again;
448         return 0;
449 }
450
451 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
452                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
453                 unsigned long addr, unsigned long end)
454 {
455         pmd_t *src_pmd, *dst_pmd;
456         unsigned long next;
457
458         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
459         if (!dst_pmd)
460                 return -ENOMEM;
461         src_pmd = pmd_offset(src_pud, addr);
462         do {
463                 next = pmd_addr_end(addr, end);
464                 if (pmd_none_or_clear_bad(src_pmd))
465                         continue;
466                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
467                                                 vma, addr, next))
468                         return -ENOMEM;
469         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
470         return 0;
471 }
472
473 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
474                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
475                 unsigned long addr, unsigned long end)
476 {
477         pud_t *src_pud, *dst_pud;
478         unsigned long next;
479
480         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
481         if (!dst_pud)
482                 return -ENOMEM;
483         src_pud = pud_offset(src_pgd, addr);
484         do {
485                 next = pud_addr_end(addr, end);
486                 if (pud_none_or_clear_bad(src_pud))
487                         continue;
488                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
489                                                 vma, addr, next))
490                         return -ENOMEM;
491         } while (dst_pud++, src_pud++, addr = next, addr != end);
492         return 0;
493 }
494
495 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
496                 struct vm_area_struct *vma)
497 {
498         pgd_t *src_pgd, *dst_pgd;
499         unsigned long next;
500         unsigned long addr = vma->vm_start;
501         unsigned long end = vma->vm_end;
502
503         /*
504          * Don't copy ptes where a page fault will fill them correctly.
505          * Fork becomes much lighter when there are big shared or private
506          * readonly mappings. The tradeoff is that copy_page_range is more
507          * efficient than faulting.
508          */
509         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
510                 if (!vma->anon_vma)
511                         return 0;
512         }
513
514         if (is_vm_hugetlb_page(vma))
515                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
516
517         dst_pgd = pgd_offset(dst_mm, addr);
518         src_pgd = pgd_offset(src_mm, addr);
519         do {
520                 next = pgd_addr_end(addr, end);
521                 if (pgd_none_or_clear_bad(src_pgd))
522                         continue;
523                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
524                                                 vma, addr, next))
525                         return -ENOMEM;
526         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
527         return 0;
528 }
529
530 static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
531                                 unsigned long addr, unsigned long end,
532                                 struct zap_details *details)
533 {
534         pte_t *pte;
535
536         pte = pte_offset_map(pmd, addr);
537         do {
538                 pte_t ptent = *pte;
539                 if (pte_none(ptent))
540                         continue;
541                 if (pte_present(ptent)) {
542                         struct page *page = NULL;
543                         unsigned long pfn = pte_pfn(ptent);
544                         if (pfn_valid(pfn)) {
545                                 page = pfn_to_page(pfn);
546                                 if (PageReserved(page))
547                                         page = NULL;
548                         }
549                         if (unlikely(details) && page) {
550                                 /*
551                                  * unmap_shared_mapping_pages() wants to
552                                  * invalidate cache without truncating:
553                                  * unmap shared but keep private pages.
554                                  */
555                                 if (details->check_mapping &&
556                                     details->check_mapping != page->mapping)
557                                         continue;
558                                 /*
559                                  * Each page->index must be checked when
560                                  * invalidating or truncating nonlinear.
561                                  */
562                                 if (details->nonlinear_vma &&
563                                     (page->index < details->first_index ||
564                                      page->index > details->last_index))
565                                         continue;
566                         }
567                         ptent = ptep_get_and_clear_full(tlb->mm, addr, pte,
568                                                         tlb->fullmm);
569                         tlb_remove_tlb_entry(tlb, pte, addr);
570                         if (unlikely(!page))
571                                 continue;
572                         if (unlikely(details) && details->nonlinear_vma
573                             && linear_page_index(details->nonlinear_vma,
574                                                 addr) != page->index)
575                                 set_pte_at(tlb->mm, addr, pte,
576                                            pgoff_to_pte(page->index));
577                         if (PageAnon(page))
578                                 dec_mm_counter(tlb->mm, anon_rss);
579                         else {
580                                 if (pte_dirty(ptent))
581                                         set_page_dirty(page);
582                                 if (pte_young(ptent))
583                                         mark_page_accessed(page);
584                         }
585                         tlb->freed++;
586                         page_remove_rmap(page);
587                         tlb_remove_page(tlb, page);
588                         continue;
589                 }
590                 /*
591                  * If details->check_mapping, we leave swap entries;
592                  * if details->nonlinear_vma, we leave file entries.
593                  */
594                 if (unlikely(details))
595                         continue;
596                 if (!pte_file(ptent))
597                         free_swap_and_cache(pte_to_swp_entry(ptent));
598                 pte_clear_full(tlb->mm, addr, pte, tlb->fullmm);
599         } while (pte++, addr += PAGE_SIZE, addr != end);
600         pte_unmap(pte - 1);
601 }
602
603 static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
604                                 unsigned long addr, unsigned long end,
605                                 struct zap_details *details)
606 {
607         pmd_t *pmd;
608         unsigned long next;
609
610         pmd = pmd_offset(pud, addr);
611         do {
612                 next = pmd_addr_end(addr, end);
613                 if (pmd_none_or_clear_bad(pmd))
614                         continue;
615                 zap_pte_range(tlb, pmd, addr, next, details);
616         } while (pmd++, addr = next, addr != end);
617 }
618
619 static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
620                                 unsigned long addr, unsigned long end,
621                                 struct zap_details *details)
622 {
623         pud_t *pud;
624         unsigned long next;
625
626         pud = pud_offset(pgd, addr);
627         do {
628                 next = pud_addr_end(addr, end);
629                 if (pud_none_or_clear_bad(pud))
630                         continue;
631                 zap_pmd_range(tlb, pud, addr, next, details);
632         } while (pud++, addr = next, addr != end);
633 }
634
635 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
636                                 unsigned long addr, unsigned long end,
637                                 struct zap_details *details)
638 {
639         pgd_t *pgd;
640         unsigned long next;
641
642         if (details && !details->check_mapping && !details->nonlinear_vma)
643                 details = NULL;
644
645         BUG_ON(addr >= end);
646         tlb_start_vma(tlb, vma);
647         pgd = pgd_offset(vma->vm_mm, addr);
648         do {
649                 next = pgd_addr_end(addr, end);
650                 if (pgd_none_or_clear_bad(pgd))
651                         continue;
652                 zap_pud_range(tlb, pgd, addr, next, details);
653         } while (pgd++, addr = next, addr != end);
654         tlb_end_vma(tlb, vma);
655 }
656
657 #ifdef CONFIG_PREEMPT
658 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
659 #else
660 /* No preempt: go for improved straight-line efficiency */
661 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
662 #endif
663
664 /**
665  * unmap_vmas - unmap a range of memory covered by a list of vma's
666  * @tlbp: address of the caller's struct mmu_gather
667  * @mm: the controlling mm_struct
668  * @vma: the starting vma
669  * @start_addr: virtual address at which to start unmapping
670  * @end_addr: virtual address at which to end unmapping
671  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
672  * @details: details of nonlinear truncation or shared cache invalidation
673  *
674  * Returns the end address of the unmapping (restart addr if interrupted).
675  *
676  * Unmap all pages in the vma list.  Called under page_table_lock.
677  *
678  * We aim to not hold page_table_lock for too long (for scheduling latency
679  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
680  * return the ending mmu_gather to the caller.
681  *
682  * Only addresses between `start' and `end' will be unmapped.
683  *
684  * The VMA list must be sorted in ascending virtual address order.
685  *
686  * unmap_vmas() assumes that the caller will flush the whole unmapped address
687  * range after unmap_vmas() returns.  So the only responsibility here is to
688  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
689  * drops the lock and schedules.
690  */
691 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
692                 struct vm_area_struct *vma, unsigned long start_addr,
693                 unsigned long end_addr, unsigned long *nr_accounted,
694                 struct zap_details *details)
695 {
696         unsigned long zap_bytes = ZAP_BLOCK_SIZE;
697         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
698         int tlb_start_valid = 0;
699         unsigned long start = start_addr;
700         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
701         int fullmm = tlb_is_full_mm(*tlbp);
702
703         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
704                 unsigned long end;
705
706                 start = max(vma->vm_start, start_addr);
707                 if (start >= vma->vm_end)
708                         continue;
709                 end = min(vma->vm_end, end_addr);
710                 if (end <= vma->vm_start)
711                         continue;
712
713                 if (vma->vm_flags & VM_ACCOUNT)
714                         *nr_accounted += (end - start) >> PAGE_SHIFT;
715
716                 while (start != end) {
717                         unsigned long block;
718
719                         if (!tlb_start_valid) {
720                                 tlb_start = start;
721                                 tlb_start_valid = 1;
722                         }
723
724                         if (is_vm_hugetlb_page(vma)) {
725                                 block = end - start;
726                                 unmap_hugepage_range(vma, start, end);
727                         } else {
728                                 block = min(zap_bytes, end - start);
729                                 unmap_page_range(*tlbp, vma, start,
730                                                 start + block, details);
731                         }
732
733                         start += block;
734                         zap_bytes -= block;
735                         if ((long)zap_bytes > 0)
736                                 continue;
737
738                         tlb_finish_mmu(*tlbp, tlb_start, start);
739
740                         if (need_resched() ||
741                                 need_lockbreak(&mm->page_table_lock) ||
742                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
743                                 if (i_mmap_lock) {
744                                         /* must reset count of rss freed */
745                                         *tlbp = tlb_gather_mmu(mm, fullmm);
746                                         goto out;
747                                 }
748                                 spin_unlock(&mm->page_table_lock);
749                                 cond_resched();
750                                 spin_lock(&mm->page_table_lock);
751                         }
752
753                         *tlbp = tlb_gather_mmu(mm, fullmm);
754                         tlb_start_valid = 0;
755                         zap_bytes = ZAP_BLOCK_SIZE;
756                 }
757         }
758 out:
759         return start;   /* which is now the end (or restart) address */
760 }
761
762 /**
763  * zap_page_range - remove user pages in a given range
764  * @vma: vm_area_struct holding the applicable pages
765  * @address: starting address of pages to zap
766  * @size: number of bytes to zap
767  * @details: details of nonlinear truncation or shared cache invalidation
768  */
769 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
770                 unsigned long size, struct zap_details *details)
771 {
772         struct mm_struct *mm = vma->vm_mm;
773         struct mmu_gather *tlb;
774         unsigned long end = address + size;
775         unsigned long nr_accounted = 0;
776
777         if (is_vm_hugetlb_page(vma)) {
778                 zap_hugepage_range(vma, address, size);
779                 return end;
780         }
781
782         lru_add_drain();
783         spin_lock(&mm->page_table_lock);
784         tlb = tlb_gather_mmu(mm, 0);
785         end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
786         tlb_finish_mmu(tlb, address, end);
787         spin_unlock(&mm->page_table_lock);
788         return end;
789 }
790
791 /*
792  * Do a quick page-table lookup for a single page.
793  * mm->page_table_lock must be held.
794  */
795 static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
796                         int read, int write, int accessed)
797 {
798         pgd_t *pgd;
799         pud_t *pud;
800         pmd_t *pmd;
801         pte_t *ptep, pte;
802         unsigned long pfn;
803         struct page *page;
804
805         page = follow_huge_addr(mm, address, write);
806         if (! IS_ERR(page))
807                 return page;
808
809         pgd = pgd_offset(mm, address);
810         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
811                 goto out;
812
813         pud = pud_offset(pgd, address);
814         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
815                 goto out;
816         
817         pmd = pmd_offset(pud, address);
818         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
819                 goto out;
820         if (pmd_huge(*pmd))
821                 return follow_huge_pmd(mm, address, pmd, write);
822
823         ptep = pte_offset_map(pmd, address);
824         if (!ptep)
825                 goto out;
826
827         pte = *ptep;
828         pte_unmap(ptep);
829         if (pte_present(pte)) {
830                 if (write && !pte_write(pte))
831                         goto out;
832                 if (read && !pte_read(pte))
833                         goto out;
834                 pfn = pte_pfn(pte);
835                 if (pfn_valid(pfn)) {
836                         page = pfn_to_page(pfn);
837                         if (accessed) {
838                                 if (write && !pte_dirty(pte) &&!PageDirty(page))
839                                         set_page_dirty(page);
840                                 mark_page_accessed(page);
841                         }
842                         return page;
843                 }
844         }
845
846 out:
847         return NULL;
848 }
849
850 inline struct page *
851 follow_page(struct mm_struct *mm, unsigned long address, int write)
852 {
853         return __follow_page(mm, address, 0, write, 1);
854 }
855
856 /*
857  * check_user_page_readable() can be called frm niterrupt context by oprofile,
858  * so we need to avoid taking any non-irq-safe locks
859  */
860 int check_user_page_readable(struct mm_struct *mm, unsigned long address)
861 {
862         return __follow_page(mm, address, 1, 0, 0) != NULL;
863 }
864 EXPORT_SYMBOL(check_user_page_readable);
865
866 static inline int
867 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
868                          unsigned long address)
869 {
870         pgd_t *pgd;
871         pud_t *pud;
872         pmd_t *pmd;
873
874         /* Check if the vma is for an anonymous mapping. */
875         if (vma->vm_ops && vma->vm_ops->nopage)
876                 return 0;
877
878         /* Check if page directory entry exists. */
879         pgd = pgd_offset(mm, address);
880         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
881                 return 1;
882
883         pud = pud_offset(pgd, address);
884         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
885                 return 1;
886
887         /* Check if page middle directory entry exists. */
888         pmd = pmd_offset(pud, address);
889         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
890                 return 1;
891
892         /* There is a pte slot for 'address' in 'mm'. */
893         return 0;
894 }
895
896 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
897                 unsigned long start, int len, int write, int force,
898                 struct page **pages, struct vm_area_struct **vmas)
899 {
900         int i;
901         unsigned int flags;
902
903         /* 
904          * Require read or write permissions.
905          * If 'force' is set, we only require the "MAY" flags.
906          */
907         flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
908         flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
909         i = 0;
910
911         do {
912                 struct vm_area_struct * vma;
913
914                 vma = find_extend_vma(mm, start);
915                 if (!vma && in_gate_area(tsk, start)) {
916                         unsigned long pg = start & PAGE_MASK;
917                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
918                         pgd_t *pgd;
919                         pud_t *pud;
920                         pmd_t *pmd;
921                         pte_t *pte;
922                         if (write) /* user gate pages are read-only */
923                                 return i ? : -EFAULT;
924                         if (pg > TASK_SIZE)
925                                 pgd = pgd_offset_k(pg);
926                         else
927                                 pgd = pgd_offset_gate(mm, pg);
928                         BUG_ON(pgd_none(*pgd));
929                         pud = pud_offset(pgd, pg);
930                         BUG_ON(pud_none(*pud));
931                         pmd = pmd_offset(pud, pg);
932                         if (pmd_none(*pmd))
933                                 return i ? : -EFAULT;
934                         pte = pte_offset_map(pmd, pg);
935                         if (pte_none(*pte)) {
936                                 pte_unmap(pte);
937                                 return i ? : -EFAULT;
938                         }
939                         if (pages) {
940                                 pages[i] = pte_page(*pte);
941                                 get_page(pages[i]);
942                         }
943                         pte_unmap(pte);
944                         if (vmas)
945                                 vmas[i] = gate_vma;
946                         i++;
947                         start += PAGE_SIZE;
948                         len--;
949                         continue;
950                 }
951
952                 if (!vma || (vma->vm_flags & VM_IO)
953                                 || !(flags & vma->vm_flags))
954                         return i ? : -EFAULT;
955
956                 if (is_vm_hugetlb_page(vma)) {
957                         i = follow_hugetlb_page(mm, vma, pages, vmas,
958                                                 &start, &len, i);
959                         continue;
960                 }
961                 spin_lock(&mm->page_table_lock);
962                 do {
963                         int write_access = write;
964                         struct page *page;
965
966                         cond_resched_lock(&mm->page_table_lock);
967                         while (!(page = follow_page(mm, start, write_access))) {
968                                 int ret;
969
970                                 /*
971                                  * Shortcut for anonymous pages. We don't want
972                                  * to force the creation of pages tables for
973                                  * insanely big anonymously mapped areas that
974                                  * nobody touched so far. This is important
975                                  * for doing a core dump for these mappings.
976                                  */
977                                 if (!write && untouched_anonymous_page(mm,vma,start)) {
978                                         page = ZERO_PAGE(start);
979                                         break;
980                                 }
981                                 spin_unlock(&mm->page_table_lock);
982                                 ret = __handle_mm_fault(mm, vma, start, write_access);
983
984                                 /*
985                                  * The VM_FAULT_WRITE bit tells us that do_wp_page has
986                                  * broken COW when necessary, even if maybe_mkwrite
987                                  * decided not to set pte_write. We can thus safely do
988                                  * subsequent page lookups as if they were reads.
989                                  */
990                                 if (ret & VM_FAULT_WRITE)
991                                         write_access = 0;
992                                 
993                                 switch (ret & ~VM_FAULT_WRITE) {
994                                 case VM_FAULT_MINOR:
995                                         tsk->min_flt++;
996                                         break;
997                                 case VM_FAULT_MAJOR:
998                                         tsk->maj_flt++;
999                                         break;
1000                                 case VM_FAULT_SIGBUS:
1001                                         return i ? i : -EFAULT;
1002                                 case VM_FAULT_OOM:
1003                                         return i ? i : -ENOMEM;
1004                                 default:
1005                                         BUG();
1006                                 }
1007                                 spin_lock(&mm->page_table_lock);
1008                         }
1009                         if (pages) {
1010                                 pages[i] = page;
1011                                 flush_dcache_page(page);
1012                                 if (!PageReserved(page))
1013                                         page_cache_get(page);
1014                         }
1015                         if (vmas)
1016                                 vmas[i] = vma;
1017                         i++;
1018                         start += PAGE_SIZE;
1019                         len--;
1020                 } while (len && start < vma->vm_end);
1021                 spin_unlock(&mm->page_table_lock);
1022         } while (len);
1023         return i;
1024 }
1025 EXPORT_SYMBOL(get_user_pages);
1026
1027 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1028                         unsigned long addr, unsigned long end, pgprot_t prot)
1029 {
1030         pte_t *pte;
1031
1032         pte = pte_alloc_map(mm, pmd, addr);
1033         if (!pte)
1034                 return -ENOMEM;
1035         do {
1036                 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1037                 BUG_ON(!pte_none(*pte));
1038                 set_pte_at(mm, addr, pte, zero_pte);
1039         } while (pte++, addr += PAGE_SIZE, addr != end);
1040         pte_unmap(pte - 1);
1041         return 0;
1042 }
1043
1044 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1045                         unsigned long addr, unsigned long end, pgprot_t prot)
1046 {
1047         pmd_t *pmd;
1048         unsigned long next;
1049
1050         pmd = pmd_alloc(mm, pud, addr);
1051         if (!pmd)
1052                 return -ENOMEM;
1053         do {
1054                 next = pmd_addr_end(addr, end);
1055                 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1056                         return -ENOMEM;
1057         } while (pmd++, addr = next, addr != end);
1058         return 0;
1059 }
1060
1061 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1062                         unsigned long addr, unsigned long end, pgprot_t prot)
1063 {
1064         pud_t *pud;
1065         unsigned long next;
1066
1067         pud = pud_alloc(mm, pgd, addr);
1068         if (!pud)
1069                 return -ENOMEM;
1070         do {
1071                 next = pud_addr_end(addr, end);
1072                 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1073                         return -ENOMEM;
1074         } while (pud++, addr = next, addr != end);
1075         return 0;
1076 }
1077
1078 int zeromap_page_range(struct vm_area_struct *vma,
1079                         unsigned long addr, unsigned long size, pgprot_t prot)
1080 {
1081         pgd_t *pgd;
1082         unsigned long next;
1083         unsigned long end = addr + size;
1084         struct mm_struct *mm = vma->vm_mm;
1085         int err;
1086
1087         BUG_ON(addr >= end);
1088         pgd = pgd_offset(mm, addr);
1089         flush_cache_range(vma, addr, end);
1090         spin_lock(&mm->page_table_lock);
1091         do {
1092                 next = pgd_addr_end(addr, end);
1093                 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1094                 if (err)
1095                         break;
1096         } while (pgd++, addr = next, addr != end);
1097         spin_unlock(&mm->page_table_lock);
1098         return err;
1099 }
1100
1101 /*
1102  * maps a range of physical memory into the requested pages. the old
1103  * mappings are removed. any references to nonexistent pages results
1104  * in null mappings (currently treated as "copy-on-access")
1105  */
1106 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1107                         unsigned long addr, unsigned long end,
1108                         unsigned long pfn, pgprot_t prot)
1109 {
1110         pte_t *pte;
1111
1112         pte = pte_alloc_map(mm, pmd, addr);
1113         if (!pte)
1114                 return -ENOMEM;
1115         do {
1116                 BUG_ON(!pte_none(*pte));
1117                 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1118                         set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1119                 pfn++;
1120         } while (pte++, addr += PAGE_SIZE, addr != end);
1121         pte_unmap(pte - 1);
1122         return 0;
1123 }
1124
1125 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1126                         unsigned long addr, unsigned long end,
1127                         unsigned long pfn, pgprot_t prot)
1128 {
1129         pmd_t *pmd;
1130         unsigned long next;
1131
1132         pfn -= addr >> PAGE_SHIFT;
1133         pmd = pmd_alloc(mm, pud, addr);
1134         if (!pmd)
1135                 return -ENOMEM;
1136         do {
1137                 next = pmd_addr_end(addr, end);
1138                 if (remap_pte_range(mm, pmd, addr, next,
1139                                 pfn + (addr >> PAGE_SHIFT), prot))
1140                         return -ENOMEM;
1141         } while (pmd++, addr = next, addr != end);
1142         return 0;
1143 }
1144
1145 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1146                         unsigned long addr, unsigned long end,
1147                         unsigned long pfn, pgprot_t prot)
1148 {
1149         pud_t *pud;
1150         unsigned long next;
1151
1152         pfn -= addr >> PAGE_SHIFT;
1153         pud = pud_alloc(mm, pgd, addr);
1154         if (!pud)
1155                 return -ENOMEM;
1156         do {
1157                 next = pud_addr_end(addr, end);
1158                 if (remap_pmd_range(mm, pud, addr, next,
1159                                 pfn + (addr >> PAGE_SHIFT), prot))
1160                         return -ENOMEM;
1161         } while (pud++, addr = next, addr != end);
1162         return 0;
1163 }
1164
1165 /*  Note: this is only safe if the mm semaphore is held when called. */
1166 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1167                     unsigned long pfn, unsigned long size, pgprot_t prot)
1168 {
1169         pgd_t *pgd;
1170         unsigned long next;
1171         unsigned long end = addr + PAGE_ALIGN(size);
1172         struct mm_struct *mm = vma->vm_mm;
1173         int err;
1174
1175         /*
1176          * Physically remapped pages are special. Tell the
1177          * rest of the world about it:
1178          *   VM_IO tells people not to look at these pages
1179          *      (accesses can have side effects).
1180          *   VM_RESERVED tells swapout not to try to touch
1181          *      this region.
1182          */
1183         vma->vm_flags |= VM_IO | VM_RESERVED;
1184
1185         BUG_ON(addr >= end);
1186         pfn -= addr >> PAGE_SHIFT;
1187         pgd = pgd_offset(mm, addr);
1188         flush_cache_range(vma, addr, end);
1189         spin_lock(&mm->page_table_lock);
1190         do {
1191                 next = pgd_addr_end(addr, end);
1192                 err = remap_pud_range(mm, pgd, addr, next,
1193                                 pfn + (addr >> PAGE_SHIFT), prot);
1194                 if (err)
1195                         break;
1196         } while (pgd++, addr = next, addr != end);
1197         spin_unlock(&mm->page_table_lock);
1198         return err;
1199 }
1200 EXPORT_SYMBOL(remap_pfn_range);
1201
1202 /*
1203  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1204  * servicing faults for write access.  In the normal case, do always want
1205  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1206  * that do not have writing enabled, when used by access_process_vm.
1207  */
1208 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1209 {
1210         if (likely(vma->vm_flags & VM_WRITE))
1211                 pte = pte_mkwrite(pte);
1212         return pte;
1213 }
1214
1215 /*
1216  * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1217  */
1218 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, 
1219                 pte_t *page_table)
1220 {
1221         pte_t entry;
1222
1223         entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1224                               vma);
1225         ptep_establish(vma, address, page_table, entry);
1226         update_mmu_cache(vma, address, entry);
1227         lazy_mmu_prot_update(entry);
1228 }
1229
1230 /*
1231  * This routine handles present pages, when users try to write
1232  * to a shared page. It is done by copying the page to a new address
1233  * and decrementing the shared-page counter for the old page.
1234  *
1235  * Goto-purists beware: the only reason for goto's here is that it results
1236  * in better assembly code.. The "default" path will see no jumps at all.
1237  *
1238  * Note that this routine assumes that the protection checks have been
1239  * done by the caller (the low-level page fault routine in most cases).
1240  * Thus we can safely just mark it writable once we've done any necessary
1241  * COW.
1242  *
1243  * We also mark the page dirty at this point even though the page will
1244  * change only once the write actually happens. This avoids a few races,
1245  * and potentially makes it more efficient.
1246  *
1247  * We hold the mm semaphore and the page_table_lock on entry and exit
1248  * with the page_table_lock released.
1249  */
1250 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1251         unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1252 {
1253         struct page *old_page, *new_page;
1254         unsigned long pfn = pte_pfn(pte);
1255         pte_t entry;
1256         int ret;
1257
1258         if (unlikely(!pfn_valid(pfn))) {
1259                 /*
1260                  * This should really halt the system so it can be debugged or
1261                  * at least the kernel stops what it's doing before it corrupts
1262                  * data, but for the moment just pretend this is OOM.
1263                  */
1264                 pte_unmap(page_table);
1265                 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1266                                 address);
1267                 spin_unlock(&mm->page_table_lock);
1268                 return VM_FAULT_OOM;
1269         }
1270         old_page = pfn_to_page(pfn);
1271
1272         if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1273                 int reuse = can_share_swap_page(old_page);
1274                 unlock_page(old_page);
1275                 if (reuse) {
1276                         flush_cache_page(vma, address, pfn);
1277                         entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1278                                               vma);
1279                         ptep_set_access_flags(vma, address, page_table, entry, 1);
1280                         update_mmu_cache(vma, address, entry);
1281                         lazy_mmu_prot_update(entry);
1282                         pte_unmap(page_table);
1283                         spin_unlock(&mm->page_table_lock);
1284                         return VM_FAULT_MINOR|VM_FAULT_WRITE;
1285                 }
1286         }
1287         pte_unmap(page_table);
1288
1289         /*
1290          * Ok, we need to copy. Oh, well..
1291          */
1292         if (!PageReserved(old_page))
1293                 page_cache_get(old_page);
1294         spin_unlock(&mm->page_table_lock);
1295
1296         if (unlikely(anon_vma_prepare(vma)))
1297                 goto no_new_page;
1298         if (old_page == ZERO_PAGE(address)) {
1299                 new_page = alloc_zeroed_user_highpage(vma, address);
1300                 if (!new_page)
1301                         goto no_new_page;
1302         } else {
1303                 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1304                 if (!new_page)
1305                         goto no_new_page;
1306                 copy_user_highpage(new_page, old_page, address);
1307         }
1308         /*
1309          * Re-check the pte - we dropped the lock
1310          */
1311         ret = VM_FAULT_MINOR;
1312         spin_lock(&mm->page_table_lock);
1313         page_table = pte_offset_map(pmd, address);
1314         if (likely(pte_same(*page_table, pte))) {
1315                 if (PageAnon(old_page))
1316                         dec_mm_counter(mm, anon_rss);
1317                 if (PageReserved(old_page))
1318                         inc_mm_counter(mm, rss);
1319                 else
1320                         page_remove_rmap(old_page);
1321                 flush_cache_page(vma, address, pfn);
1322                 break_cow(vma, new_page, address, page_table);
1323                 lru_cache_add_active(new_page);
1324                 page_add_anon_rmap(new_page, vma, address);
1325
1326                 /* Free the old page.. */
1327                 new_page = old_page;
1328                 ret |= VM_FAULT_WRITE;
1329         }
1330         pte_unmap(page_table);
1331         page_cache_release(new_page);
1332         page_cache_release(old_page);
1333         spin_unlock(&mm->page_table_lock);
1334         return ret;
1335
1336 no_new_page:
1337         page_cache_release(old_page);
1338         return VM_FAULT_OOM;
1339 }
1340
1341 /*
1342  * Helper functions for unmap_mapping_range().
1343  *
1344  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1345  *
1346  * We have to restart searching the prio_tree whenever we drop the lock,
1347  * since the iterator is only valid while the lock is held, and anyway
1348  * a later vma might be split and reinserted earlier while lock dropped.
1349  *
1350  * The list of nonlinear vmas could be handled more efficiently, using
1351  * a placeholder, but handle it in the same way until a need is shown.
1352  * It is important to search the prio_tree before nonlinear list: a vma
1353  * may become nonlinear and be shifted from prio_tree to nonlinear list
1354  * while the lock is dropped; but never shifted from list to prio_tree.
1355  *
1356  * In order to make forward progress despite restarting the search,
1357  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1358  * quickly skip it next time around.  Since the prio_tree search only
1359  * shows us those vmas affected by unmapping the range in question, we
1360  * can't efficiently keep all vmas in step with mapping->truncate_count:
1361  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1362  * mapping->truncate_count and vma->vm_truncate_count are protected by
1363  * i_mmap_lock.
1364  *
1365  * In order to make forward progress despite repeatedly restarting some
1366  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1367  * and restart from that address when we reach that vma again.  It might
1368  * have been split or merged, shrunk or extended, but never shifted: so
1369  * restart_addr remains valid so long as it remains in the vma's range.
1370  * unmap_mapping_range forces truncate_count to leap over page-aligned
1371  * values so we can save vma's restart_addr in its truncate_count field.
1372  */
1373 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1374
1375 static void reset_vma_truncate_counts(struct address_space *mapping)
1376 {
1377         struct vm_area_struct *vma;
1378         struct prio_tree_iter iter;
1379
1380         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1381                 vma->vm_truncate_count = 0;
1382         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1383                 vma->vm_truncate_count = 0;
1384 }
1385
1386 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1387                 unsigned long start_addr, unsigned long end_addr,
1388                 struct zap_details *details)
1389 {
1390         unsigned long restart_addr;
1391         int need_break;
1392
1393 again:
1394         restart_addr = vma->vm_truncate_count;
1395         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1396                 start_addr = restart_addr;
1397                 if (start_addr >= end_addr) {
1398                         /* Top of vma has been split off since last time */
1399                         vma->vm_truncate_count = details->truncate_count;
1400                         return 0;
1401                 }
1402         }
1403
1404         restart_addr = zap_page_range(vma, start_addr,
1405                                         end_addr - start_addr, details);
1406
1407         /*
1408          * We cannot rely on the break test in unmap_vmas:
1409          * on the one hand, we don't want to restart our loop
1410          * just because that broke out for the page_table_lock;
1411          * on the other hand, it does no test when vma is small.
1412          */
1413         need_break = need_resched() ||
1414                         need_lockbreak(details->i_mmap_lock);
1415
1416         if (restart_addr >= end_addr) {
1417                 /* We have now completed this vma: mark it so */
1418                 vma->vm_truncate_count = details->truncate_count;
1419                 if (!need_break)
1420                         return 0;
1421         } else {
1422                 /* Note restart_addr in vma's truncate_count field */
1423                 vma->vm_truncate_count = restart_addr;
1424                 if (!need_break)
1425                         goto again;
1426         }
1427
1428         spin_unlock(details->i_mmap_lock);
1429         cond_resched();
1430         spin_lock(details->i_mmap_lock);
1431         return -EINTR;
1432 }
1433
1434 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1435                                             struct zap_details *details)
1436 {
1437         struct vm_area_struct *vma;
1438         struct prio_tree_iter iter;
1439         pgoff_t vba, vea, zba, zea;
1440
1441 restart:
1442         vma_prio_tree_foreach(vma, &iter, root,
1443                         details->first_index, details->last_index) {
1444                 /* Skip quickly over those we have already dealt with */
1445                 if (vma->vm_truncate_count == details->truncate_count)
1446                         continue;
1447
1448                 vba = vma->vm_pgoff;
1449                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1450                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1451                 zba = details->first_index;
1452                 if (zba < vba)
1453                         zba = vba;
1454                 zea = details->last_index;
1455                 if (zea > vea)
1456                         zea = vea;
1457
1458                 if (unmap_mapping_range_vma(vma,
1459                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1460                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1461                                 details) < 0)
1462                         goto restart;
1463         }
1464 }
1465
1466 static inline void unmap_mapping_range_list(struct list_head *head,
1467                                             struct zap_details *details)
1468 {
1469         struct vm_area_struct *vma;
1470
1471         /*
1472          * In nonlinear VMAs there is no correspondence between virtual address
1473          * offset and file offset.  So we must perform an exhaustive search
1474          * across *all* the pages in each nonlinear VMA, not just the pages
1475          * whose virtual address lies outside the file truncation point.
1476          */
1477 restart:
1478         list_for_each_entry(vma, head, shared.vm_set.list) {
1479                 /* Skip quickly over those we have already dealt with */
1480                 if (vma->vm_truncate_count == details->truncate_count)
1481                         continue;
1482                 details->nonlinear_vma = vma;
1483                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1484                                         vma->vm_end, details) < 0)
1485                         goto restart;
1486         }
1487 }
1488
1489 /**
1490  * unmap_mapping_range - unmap the portion of all mmaps
1491  * in the specified address_space corresponding to the specified
1492  * page range in the underlying file.
1493  * @mapping: the address space containing mmaps to be unmapped.
1494  * @holebegin: byte in first page to unmap, relative to the start of
1495  * the underlying file.  This will be rounded down to a PAGE_SIZE
1496  * boundary.  Note that this is different from vmtruncate(), which
1497  * must keep the partial page.  In contrast, we must get rid of
1498  * partial pages.
1499  * @holelen: size of prospective hole in bytes.  This will be rounded
1500  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1501  * end of the file.
1502  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1503  * but 0 when invalidating pagecache, don't throw away private data.
1504  */
1505 void unmap_mapping_range(struct address_space *mapping,
1506                 loff_t const holebegin, loff_t const holelen, int even_cows)
1507 {
1508         struct zap_details details;
1509         pgoff_t hba = holebegin >> PAGE_SHIFT;
1510         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1511
1512         /* Check for overflow. */
1513         if (sizeof(holelen) > sizeof(hlen)) {
1514                 long long holeend =
1515                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1516                 if (holeend & ~(long long)ULONG_MAX)
1517                         hlen = ULONG_MAX - hba + 1;
1518         }
1519
1520         details.check_mapping = even_cows? NULL: mapping;
1521         details.nonlinear_vma = NULL;
1522         details.first_index = hba;
1523         details.last_index = hba + hlen - 1;
1524         if (details.last_index < details.first_index)
1525                 details.last_index = ULONG_MAX;
1526         details.i_mmap_lock = &mapping->i_mmap_lock;
1527
1528         spin_lock(&mapping->i_mmap_lock);
1529
1530         /* serialize i_size write against truncate_count write */
1531         smp_wmb();
1532         /* Protect against page faults, and endless unmapping loops */
1533         mapping->truncate_count++;
1534         /*
1535          * For archs where spin_lock has inclusive semantics like ia64
1536          * this smp_mb() will prevent to read pagetable contents
1537          * before the truncate_count increment is visible to
1538          * other cpus.
1539          */
1540         smp_mb();
1541         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1542                 if (mapping->truncate_count == 0)
1543                         reset_vma_truncate_counts(mapping);
1544                 mapping->truncate_count++;
1545         }
1546         details.truncate_count = mapping->truncate_count;
1547
1548         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1549                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1550         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1551                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1552         spin_unlock(&mapping->i_mmap_lock);
1553 }
1554 EXPORT_SYMBOL(unmap_mapping_range);
1555
1556 /*
1557  * Handle all mappings that got truncated by a "truncate()"
1558  * system call.
1559  *
1560  * NOTE! We have to be ready to update the memory sharing
1561  * between the file and the memory map for a potential last
1562  * incomplete page.  Ugly, but necessary.
1563  */
1564 int vmtruncate(struct inode * inode, loff_t offset)
1565 {
1566         struct address_space *mapping = inode->i_mapping;
1567         unsigned long limit;
1568
1569         if (inode->i_size < offset)
1570                 goto do_expand;
1571         /*
1572          * truncation of in-use swapfiles is disallowed - it would cause
1573          * subsequent swapout to scribble on the now-freed blocks.
1574          */
1575         if (IS_SWAPFILE(inode))
1576                 goto out_busy;
1577         i_size_write(inode, offset);
1578         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1579         truncate_inode_pages(mapping, offset);
1580         goto out_truncate;
1581
1582 do_expand:
1583         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1584         if (limit != RLIM_INFINITY && offset > limit)
1585                 goto out_sig;
1586         if (offset > inode->i_sb->s_maxbytes)
1587                 goto out_big;
1588         i_size_write(inode, offset);
1589
1590 out_truncate:
1591         if (inode->i_op && inode->i_op->truncate)
1592                 inode->i_op->truncate(inode);
1593         return 0;
1594 out_sig:
1595         send_sig(SIGXFSZ, current, 0);
1596 out_big:
1597         return -EFBIG;
1598 out_busy:
1599         return -ETXTBSY;
1600 }
1601
1602 EXPORT_SYMBOL(vmtruncate);
1603
1604 /* 
1605  * Primitive swap readahead code. We simply read an aligned block of
1606  * (1 << page_cluster) entries in the swap area. This method is chosen
1607  * because it doesn't cost us any seek time.  We also make sure to queue
1608  * the 'original' request together with the readahead ones...  
1609  *
1610  * This has been extended to use the NUMA policies from the mm triggering
1611  * the readahead.
1612  *
1613  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1614  */
1615 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1616 {
1617 #ifdef CONFIG_NUMA
1618         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1619 #endif
1620         int i, num;
1621         struct page *new_page;
1622         unsigned long offset;
1623
1624         /*
1625          * Get the number of handles we should do readahead io to.
1626          */
1627         num = valid_swaphandles(entry, &offset);
1628         for (i = 0; i < num; offset++, i++) {
1629                 /* Ok, do the async read-ahead now */
1630                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1631                                                            offset), vma, addr);
1632                 if (!new_page)
1633                         break;
1634                 page_cache_release(new_page);
1635 #ifdef CONFIG_NUMA
1636                 /*
1637                  * Find the next applicable VMA for the NUMA policy.
1638                  */
1639                 addr += PAGE_SIZE;
1640                 if (addr == 0)
1641                         vma = NULL;
1642                 if (vma) {
1643                         if (addr >= vma->vm_end) {
1644                                 vma = next_vma;
1645                                 next_vma = vma ? vma->vm_next : NULL;
1646                         }
1647                         if (vma && addr < vma->vm_start)
1648                                 vma = NULL;
1649                 } else {
1650                         if (next_vma && addr >= next_vma->vm_start) {
1651                                 vma = next_vma;
1652                                 next_vma = vma->vm_next;
1653                         }
1654                 }
1655 #endif
1656         }
1657         lru_add_drain();        /* Push any new pages onto the LRU now */
1658 }
1659
1660 /*
1661  * We hold the mm semaphore and the page_table_lock on entry and
1662  * should release the pagetable lock on exit..
1663  */
1664 static int do_swap_page(struct mm_struct * mm,
1665         struct vm_area_struct * vma, unsigned long address,
1666         pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1667 {
1668         struct page *page;
1669         swp_entry_t entry = pte_to_swp_entry(orig_pte);
1670         pte_t pte;
1671         int ret = VM_FAULT_MINOR;
1672
1673         pte_unmap(page_table);
1674         spin_unlock(&mm->page_table_lock);
1675         page = lookup_swap_cache(entry);
1676         if (!page) {
1677                 swapin_readahead(entry, address, vma);
1678                 page = read_swap_cache_async(entry, vma, address);
1679                 if (!page) {
1680                         /*
1681                          * Back out if somebody else faulted in this pte while
1682                          * we released the page table lock.
1683                          */
1684                         spin_lock(&mm->page_table_lock);
1685                         page_table = pte_offset_map(pmd, address);
1686                         if (likely(pte_same(*page_table, orig_pte)))
1687                                 ret = VM_FAULT_OOM;
1688                         else
1689                                 ret = VM_FAULT_MINOR;
1690                         pte_unmap(page_table);
1691                         spin_unlock(&mm->page_table_lock);
1692                         goto out;
1693                 }
1694
1695                 /* Had to read the page from swap area: Major fault */
1696                 ret = VM_FAULT_MAJOR;
1697                 inc_page_state(pgmajfault);
1698                 grab_swap_token();
1699         }
1700
1701         mark_page_accessed(page);
1702         lock_page(page);
1703
1704         /*
1705          * Back out if somebody else faulted in this pte while we
1706          * released the page table lock.
1707          */
1708         spin_lock(&mm->page_table_lock);
1709         page_table = pte_offset_map(pmd, address);
1710         if (unlikely(!pte_same(*page_table, orig_pte))) {
1711                 ret = VM_FAULT_MINOR;
1712                 goto out_nomap;
1713         }
1714
1715         if (unlikely(!PageUptodate(page))) {
1716                 ret = VM_FAULT_SIGBUS;
1717                 goto out_nomap;
1718         }
1719
1720         /* The page isn't present yet, go ahead with the fault. */
1721
1722         inc_mm_counter(mm, rss);
1723         pte = mk_pte(page, vma->vm_page_prot);
1724         if (write_access && can_share_swap_page(page)) {
1725                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1726                 write_access = 0;
1727         }
1728
1729         flush_icache_page(vma, page);
1730         set_pte_at(mm, address, page_table, pte);
1731         page_add_anon_rmap(page, vma, address);
1732
1733         swap_free(entry);
1734         if (vm_swap_full())
1735                 remove_exclusive_swap_page(page);
1736         unlock_page(page);
1737
1738         if (write_access) {
1739                 if (do_wp_page(mm, vma, address,
1740                                 page_table, pmd, pte) == VM_FAULT_OOM)
1741                         ret = VM_FAULT_OOM;
1742                 goto out;
1743         }
1744
1745         /* No need to invalidate - it was non-present before */
1746         update_mmu_cache(vma, address, pte);
1747         lazy_mmu_prot_update(pte);
1748         pte_unmap(page_table);
1749         spin_unlock(&mm->page_table_lock);
1750 out:
1751         return ret;
1752 out_nomap:
1753         pte_unmap(page_table);
1754         spin_unlock(&mm->page_table_lock);
1755         unlock_page(page);
1756         page_cache_release(page);
1757         goto out;
1758 }
1759
1760 /*
1761  * We are called with the MM semaphore and page_table_lock
1762  * spinlock held to protect against concurrent faults in
1763  * multithreaded programs. 
1764  */
1765 static int
1766 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1767                 pte_t *page_table, pmd_t *pmd, int write_access,
1768                 unsigned long addr)
1769 {
1770         pte_t entry;
1771         struct page * page = ZERO_PAGE(addr);
1772
1773         /* Read-only mapping of ZERO_PAGE. */
1774         entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1775
1776         /* ..except if it's a write access */
1777         if (write_access) {
1778                 /* Allocate our own private page. */
1779                 pte_unmap(page_table);
1780                 spin_unlock(&mm->page_table_lock);
1781
1782                 if (unlikely(anon_vma_prepare(vma)))
1783                         goto no_mem;
1784                 page = alloc_zeroed_user_highpage(vma, addr);
1785                 if (!page)
1786                         goto no_mem;
1787
1788                 spin_lock(&mm->page_table_lock);
1789                 page_table = pte_offset_map(pmd, addr);
1790
1791                 if (!pte_none(*page_table)) {
1792                         pte_unmap(page_table);
1793                         page_cache_release(page);
1794                         spin_unlock(&mm->page_table_lock);
1795                         goto out;
1796                 }
1797                 inc_mm_counter(mm, rss);
1798                 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1799                                                          vma->vm_page_prot)),
1800                                       vma);
1801                 lru_cache_add_active(page);
1802                 SetPageReferenced(page);
1803                 page_add_anon_rmap(page, vma, addr);
1804         }
1805
1806         set_pte_at(mm, addr, page_table, entry);
1807         pte_unmap(page_table);
1808
1809         /* No need to invalidate - it was non-present before */
1810         update_mmu_cache(vma, addr, entry);
1811         lazy_mmu_prot_update(entry);
1812         spin_unlock(&mm->page_table_lock);
1813 out:
1814         return VM_FAULT_MINOR;
1815 no_mem:
1816         return VM_FAULT_OOM;
1817 }
1818
1819 /*
1820  * do_no_page() tries to create a new page mapping. It aggressively
1821  * tries to share with existing pages, but makes a separate copy if
1822  * the "write_access" parameter is true in order to avoid the next
1823  * page fault.
1824  *
1825  * As this is called only for pages that do not currently exist, we
1826  * do not need to flush old virtual caches or the TLB.
1827  *
1828  * This is called with the MM semaphore held and the page table
1829  * spinlock held. Exit with the spinlock released.
1830  */
1831 static int
1832 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1833         unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1834 {
1835         struct page * new_page;
1836         struct address_space *mapping = NULL;
1837         pte_t entry;
1838         unsigned int sequence = 0;
1839         int ret = VM_FAULT_MINOR;
1840         int anon = 0;
1841
1842         if (!vma->vm_ops || !vma->vm_ops->nopage)
1843                 return do_anonymous_page(mm, vma, page_table,
1844                                         pmd, write_access, address);
1845         pte_unmap(page_table);
1846         spin_unlock(&mm->page_table_lock);
1847
1848         if (vma->vm_file) {
1849                 mapping = vma->vm_file->f_mapping;
1850                 sequence = mapping->truncate_count;
1851                 smp_rmb(); /* serializes i_size against truncate_count */
1852         }
1853 retry:
1854         cond_resched();
1855         new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1856         /*
1857          * No smp_rmb is needed here as long as there's a full
1858          * spin_lock/unlock sequence inside the ->nopage callback
1859          * (for the pagecache lookup) that acts as an implicit
1860          * smp_mb() and prevents the i_size read to happen
1861          * after the next truncate_count read.
1862          */
1863
1864         /* no page was available -- either SIGBUS or OOM */
1865         if (new_page == NOPAGE_SIGBUS)
1866                 return VM_FAULT_SIGBUS;
1867         if (new_page == NOPAGE_OOM)
1868                 return VM_FAULT_OOM;
1869
1870         /*
1871          * Should we do an early C-O-W break?
1872          */
1873         if (write_access && !(vma->vm_flags & VM_SHARED)) {
1874                 struct page *page;
1875
1876                 if (unlikely(anon_vma_prepare(vma)))
1877                         goto oom;
1878                 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1879                 if (!page)
1880                         goto oom;
1881                 copy_user_highpage(page, new_page, address);
1882                 page_cache_release(new_page);
1883                 new_page = page;
1884                 anon = 1;
1885         }
1886
1887         spin_lock(&mm->page_table_lock);
1888         /*
1889          * For a file-backed vma, someone could have truncated or otherwise
1890          * invalidated this page.  If unmap_mapping_range got called,
1891          * retry getting the page.
1892          */
1893         if (mapping && unlikely(sequence != mapping->truncate_count)) {
1894                 sequence = mapping->truncate_count;
1895                 spin_unlock(&mm->page_table_lock);
1896                 page_cache_release(new_page);
1897                 goto retry;
1898         }
1899         page_table = pte_offset_map(pmd, address);
1900
1901         /*
1902          * This silly early PAGE_DIRTY setting removes a race
1903          * due to the bad i386 page protection. But it's valid
1904          * for other architectures too.
1905          *
1906          * Note that if write_access is true, we either now have
1907          * an exclusive copy of the page, or this is a shared mapping,
1908          * so we can make it writable and dirty to avoid having to
1909          * handle that later.
1910          */
1911         /* Only go through if we didn't race with anybody else... */
1912         if (pte_none(*page_table)) {
1913                 if (!PageReserved(new_page))
1914                         inc_mm_counter(mm, rss);
1915
1916                 flush_icache_page(vma, new_page);
1917                 entry = mk_pte(new_page, vma->vm_page_prot);
1918                 if (write_access)
1919                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1920                 set_pte_at(mm, address, page_table, entry);
1921                 if (anon) {
1922                         lru_cache_add_active(new_page);
1923                         page_add_anon_rmap(new_page, vma, address);
1924                 } else
1925                         page_add_file_rmap(new_page);
1926                 pte_unmap(page_table);
1927         } else {
1928                 /* One of our sibling threads was faster, back out. */
1929                 pte_unmap(page_table);
1930                 page_cache_release(new_page);
1931                 spin_unlock(&mm->page_table_lock);
1932                 goto out;
1933         }
1934
1935         /* no need to invalidate: a not-present page shouldn't be cached */
1936         update_mmu_cache(vma, address, entry);
1937         lazy_mmu_prot_update(entry);
1938         spin_unlock(&mm->page_table_lock);
1939 out:
1940         return ret;
1941 oom:
1942         page_cache_release(new_page);
1943         ret = VM_FAULT_OOM;
1944         goto out;
1945 }
1946
1947 /*
1948  * Fault of a previously existing named mapping. Repopulate the pte
1949  * from the encoded file_pte if possible. This enables swappable
1950  * nonlinear vmas.
1951  */
1952 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1953         unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1954 {
1955         unsigned long pgoff;
1956         int err;
1957
1958         BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1959         /*
1960          * Fall back to the linear mapping if the fs does not support
1961          * ->populate:
1962          */
1963         if (!vma->vm_ops->populate ||
1964                         (write_access && !(vma->vm_flags & VM_SHARED))) {
1965                 pte_clear(mm, address, pte);
1966                 return do_no_page(mm, vma, address, write_access, pte, pmd);
1967         }
1968
1969         pgoff = pte_to_pgoff(*pte);
1970
1971         pte_unmap(pte);
1972         spin_unlock(&mm->page_table_lock);
1973
1974         err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1975         if (err == -ENOMEM)
1976                 return VM_FAULT_OOM;
1977         if (err)
1978                 return VM_FAULT_SIGBUS;
1979         return VM_FAULT_MAJOR;
1980 }
1981
1982 /*
1983  * These routines also need to handle stuff like marking pages dirty
1984  * and/or accessed for architectures that don't do it in hardware (most
1985  * RISC architectures).  The early dirtying is also good on the i386.
1986  *
1987  * There is also a hook called "update_mmu_cache()" that architectures
1988  * with external mmu caches can use to update those (ie the Sparc or
1989  * PowerPC hashed page tables that act as extended TLBs).
1990  *
1991  * Note the "page_table_lock". It is to protect against kswapd removing
1992  * pages from under us. Note that kswapd only ever _removes_ pages, never
1993  * adds them. As such, once we have noticed that the page is not present,
1994  * we can drop the lock early.
1995  *
1996  * The adding of pages is protected by the MM semaphore (which we hold),
1997  * so we don't need to worry about a page being suddenly been added into
1998  * our VM.
1999  *
2000  * We enter with the pagetable spinlock held, we are supposed to
2001  * release it when done.
2002  */
2003 static inline int handle_pte_fault(struct mm_struct *mm,
2004         struct vm_area_struct * vma, unsigned long address,
2005         int write_access, pte_t *pte, pmd_t *pmd)
2006 {
2007         pte_t entry;
2008
2009         entry = *pte;
2010         if (!pte_present(entry)) {
2011                 /*
2012                  * If it truly wasn't present, we know that kswapd
2013                  * and the PTE updates will not touch it later. So
2014                  * drop the lock.
2015                  */
2016                 if (pte_none(entry))
2017                         return do_no_page(mm, vma, address, write_access, pte, pmd);
2018                 if (pte_file(entry))
2019                         return do_file_page(mm, vma, address, write_access, pte, pmd);
2020                 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
2021         }
2022
2023         if (write_access) {
2024                 if (!pte_write(entry))
2025                         return do_wp_page(mm, vma, address, pte, pmd, entry);
2026                 entry = pte_mkdirty(entry);
2027         }
2028         entry = pte_mkyoung(entry);
2029         ptep_set_access_flags(vma, address, pte, entry, write_access);
2030         update_mmu_cache(vma, address, entry);
2031         lazy_mmu_prot_update(entry);
2032         pte_unmap(pte);
2033         spin_unlock(&mm->page_table_lock);
2034         return VM_FAULT_MINOR;
2035 }
2036
2037 /*
2038  * By the time we get here, we already hold the mm semaphore
2039  */
2040 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
2041                 unsigned long address, int write_access)
2042 {
2043         pgd_t *pgd;
2044         pud_t *pud;
2045         pmd_t *pmd;
2046         pte_t *pte;
2047
2048         __set_current_state(TASK_RUNNING);
2049
2050         inc_page_state(pgfault);
2051
2052         if (unlikely(is_vm_hugetlb_page(vma)))
2053                 return hugetlb_fault(mm, vma, address, write_access);
2054
2055         /*
2056          * We need the page table lock to synchronize with kswapd
2057          * and the SMP-safe atomic PTE updates.
2058          */
2059         pgd = pgd_offset(mm, address);
2060         spin_lock(&mm->page_table_lock);
2061
2062         pud = pud_alloc(mm, pgd, address);
2063         if (!pud)
2064                 goto oom;
2065
2066         pmd = pmd_alloc(mm, pud, address);
2067         if (!pmd)
2068                 goto oom;
2069
2070         pte = pte_alloc_map(mm, pmd, address);
2071         if (!pte)
2072                 goto oom;
2073         
2074         return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
2075
2076  oom:
2077         spin_unlock(&mm->page_table_lock);
2078         return VM_FAULT_OOM;
2079 }
2080
2081 #ifndef __PAGETABLE_PUD_FOLDED
2082 /*
2083  * Allocate page upper directory.
2084  *
2085  * We've already handled the fast-path in-line, and we own the
2086  * page table lock.
2087  */
2088 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2089 {
2090         pud_t *new;
2091
2092         spin_unlock(&mm->page_table_lock);
2093         new = pud_alloc_one(mm, address);
2094         spin_lock(&mm->page_table_lock);
2095         if (!new)
2096                 return NULL;
2097
2098         /*
2099          * Because we dropped the lock, we should re-check the
2100          * entry, as somebody else could have populated it..
2101          */
2102         if (pgd_present(*pgd)) {
2103                 pud_free(new);
2104                 goto out;
2105         }
2106         pgd_populate(mm, pgd, new);
2107  out:
2108         return pud_offset(pgd, address);
2109 }
2110 #endif /* __PAGETABLE_PUD_FOLDED */
2111
2112 #ifndef __PAGETABLE_PMD_FOLDED
2113 /*
2114  * Allocate page middle directory.
2115  *
2116  * We've already handled the fast-path in-line, and we own the
2117  * page table lock.
2118  */
2119 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2120 {
2121         pmd_t *new;
2122
2123         spin_unlock(&mm->page_table_lock);
2124         new = pmd_alloc_one(mm, address);
2125         spin_lock(&mm->page_table_lock);
2126         if (!new)
2127                 return NULL;
2128
2129         /*
2130          * Because we dropped the lock, we should re-check the
2131          * entry, as somebody else could have populated it..
2132          */
2133 #ifndef __ARCH_HAS_4LEVEL_HACK
2134         if (pud_present(*pud)) {
2135                 pmd_free(new);
2136                 goto out;
2137         }
2138         pud_populate(mm, pud, new);
2139 #else
2140         if (pgd_present(*pud)) {
2141                 pmd_free(new);
2142                 goto out;
2143         }
2144         pgd_populate(mm, pud, new);
2145 #endif /* __ARCH_HAS_4LEVEL_HACK */
2146
2147  out:
2148         return pmd_offset(pud, address);
2149 }
2150 #endif /* __PAGETABLE_PMD_FOLDED */
2151
2152 int make_pages_present(unsigned long addr, unsigned long end)
2153 {
2154         int ret, len, write;
2155         struct vm_area_struct * vma;
2156
2157         vma = find_vma(current->mm, addr);
2158         if (!vma)
2159                 return -1;
2160         write = (vma->vm_flags & VM_WRITE) != 0;
2161         if (addr >= end)
2162                 BUG();
2163         if (end > vma->vm_end)
2164                 BUG();
2165         len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2166         ret = get_user_pages(current, current->mm, addr,
2167                         len, write, 0, NULL, NULL);
2168         if (ret < 0)
2169                 return ret;
2170         return ret == len ? 0 : -1;
2171 }
2172
2173 /* 
2174  * Map a vmalloc()-space virtual address to the physical page.
2175  */
2176 struct page * vmalloc_to_page(void * vmalloc_addr)
2177 {
2178         unsigned long addr = (unsigned long) vmalloc_addr;
2179         struct page *page = NULL;
2180         pgd_t *pgd = pgd_offset_k(addr);
2181         pud_t *pud;
2182         pmd_t *pmd;
2183         pte_t *ptep, pte;
2184   
2185         if (!pgd_none(*pgd)) {
2186                 pud = pud_offset(pgd, addr);
2187                 if (!pud_none(*pud)) {
2188                         pmd = pmd_offset(pud, addr);
2189                         if (!pmd_none(*pmd)) {
2190                                 ptep = pte_offset_map(pmd, addr);
2191                                 pte = *ptep;
2192                                 if (pte_present(pte))
2193                                         page = pte_page(pte);
2194                                 pte_unmap(ptep);
2195                         }
2196                 }
2197         }
2198         return page;
2199 }
2200
2201 EXPORT_SYMBOL(vmalloc_to_page);
2202
2203 /*
2204  * Map a vmalloc()-space virtual address to the physical page frame number.
2205  */
2206 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2207 {
2208         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2209 }
2210
2211 EXPORT_SYMBOL(vmalloc_to_pfn);
2212
2213 /*
2214  * update_mem_hiwater
2215  *      - update per process rss and vm high water data
2216  */
2217 void update_mem_hiwater(struct task_struct *tsk)
2218 {
2219         if (tsk->mm) {
2220                 unsigned long rss = get_mm_counter(tsk->mm, rss);
2221
2222                 if (tsk->mm->hiwater_rss < rss)
2223                         tsk->mm->hiwater_rss = rss;
2224                 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2225                         tsk->mm->hiwater_vm = tsk->mm->total_vm;
2226         }
2227 }
2228
2229 #if !defined(__HAVE_ARCH_GATE_AREA)
2230
2231 #if defined(AT_SYSINFO_EHDR)
2232 static struct vm_area_struct gate_vma;
2233
2234 static int __init gate_vma_init(void)
2235 {
2236         gate_vma.vm_mm = NULL;
2237         gate_vma.vm_start = FIXADDR_USER_START;
2238         gate_vma.vm_end = FIXADDR_USER_END;
2239         gate_vma.vm_page_prot = PAGE_READONLY;
2240         gate_vma.vm_flags = 0;
2241         return 0;
2242 }
2243 __initcall(gate_vma_init);
2244 #endif
2245
2246 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2247 {
2248 #ifdef AT_SYSINFO_EHDR
2249         return &gate_vma;
2250 #else
2251         return NULL;
2252 #endif
2253 }
2254
2255 int in_gate_area_no_task(unsigned long addr)
2256 {
2257 #ifdef AT_SYSINFO_EHDR
2258         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2259                 return 1;
2260 #endif
2261         return 0;
2262 }
2263
2264 #endif  /* __HAVE_ARCH_GATE_AREA */