]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - mm/memory.c
Merge branch 'acpi-pci-hotplug'
[karo-tx-linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84
85 /*
86  * A number of key systems in x86 including ioremap() rely on the assumption
87  * that high_memory defines the upper bound on direct map memory, then end
88  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
89  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90  * and ZONE_HIGHMEM.
91  */
92 void * high_memory;
93
94 EXPORT_SYMBOL(high_memory);
95
96 /*
97  * Randomize the address space (stacks, mmaps, brk, etc.).
98  *
99  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100  *   as ancient (libc5 based) binaries can segfault. )
101  */
102 int randomize_va_space __read_mostly =
103 #ifdef CONFIG_COMPAT_BRK
104                                         1;
105 #else
106                                         2;
107 #endif
108
109 static int __init disable_randmaps(char *s)
110 {
111         randomize_va_space = 0;
112         return 1;
113 }
114 __setup("norandmaps", disable_randmaps);
115
116 unsigned long zero_pfn __read_mostly;
117 unsigned long highest_memmap_pfn __read_mostly;
118
119 /*
120  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
121  */
122 static int __init init_zero_pfn(void)
123 {
124         zero_pfn = page_to_pfn(ZERO_PAGE(0));
125         return 0;
126 }
127 core_initcall(init_zero_pfn);
128
129
130 #if defined(SPLIT_RSS_COUNTING)
131
132 void sync_mm_rss(struct mm_struct *mm)
133 {
134         int i;
135
136         for (i = 0; i < NR_MM_COUNTERS; i++) {
137                 if (current->rss_stat.count[i]) {
138                         add_mm_counter(mm, i, current->rss_stat.count[i]);
139                         current->rss_stat.count[i] = 0;
140                 }
141         }
142         current->rss_stat.events = 0;
143 }
144
145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
146 {
147         struct task_struct *task = current;
148
149         if (likely(task->mm == mm))
150                 task->rss_stat.count[member] += val;
151         else
152                 add_mm_counter(mm, member, val);
153 }
154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
156
157 /* sync counter once per 64 page faults */
158 #define TASK_RSS_EVENTS_THRESH  (64)
159 static void check_sync_rss_stat(struct task_struct *task)
160 {
161         if (unlikely(task != current))
162                 return;
163         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
164                 sync_mm_rss(task->mm);
165 }
166 #else /* SPLIT_RSS_COUNTING */
167
168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
170
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 }
174
175 #endif /* SPLIT_RSS_COUNTING */
176
177 #ifdef HAVE_GENERIC_MMU_GATHER
178
179 static int tlb_next_batch(struct mmu_gather *tlb)
180 {
181         struct mmu_gather_batch *batch;
182
183         batch = tlb->active;
184         if (batch->next) {
185                 tlb->active = batch->next;
186                 return 1;
187         }
188
189         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190                 return 0;
191
192         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193         if (!batch)
194                 return 0;
195
196         tlb->batch_count++;
197         batch->next = NULL;
198         batch->nr   = 0;
199         batch->max  = MAX_GATHER_BATCH;
200
201         tlb->active->next = batch;
202         tlb->active = batch;
203
204         return 1;
205 }
206
207 /* tlb_gather_mmu
208  *      Called to initialize an (on-stack) mmu_gather structure for page-table
209  *      tear-down from @mm. The @fullmm argument is used when @mm is without
210  *      users and we're going to destroy the full address space (exit/execve).
211  */
212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
213 {
214         tlb->mm = mm;
215
216         /* Is it from 0 to ~0? */
217         tlb->fullmm     = !(start | (end+1));
218         tlb->need_flush_all = 0;
219         tlb->start      = start;
220         tlb->end        = end;
221         tlb->need_flush = 0;
222         tlb->local.next = NULL;
223         tlb->local.nr   = 0;
224         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
225         tlb->active     = &tlb->local;
226         tlb->batch_count = 0;
227
228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
229         tlb->batch = NULL;
230 #endif
231 }
232
233 void tlb_flush_mmu(struct mmu_gather *tlb)
234 {
235         struct mmu_gather_batch *batch;
236
237         if (!tlb->need_flush)
238                 return;
239         tlb->need_flush = 0;
240         tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242         tlb_table_flush(tlb);
243 #endif
244
245         for (batch = &tlb->local; batch; batch = batch->next) {
246                 free_pages_and_swap_cache(batch->pages, batch->nr);
247                 batch->nr = 0;
248         }
249         tlb->active = &tlb->local;
250 }
251
252 /* tlb_finish_mmu
253  *      Called at the end of the shootdown operation to free up any resources
254  *      that were required.
255  */
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257 {
258         struct mmu_gather_batch *batch, *next;
259
260         tlb_flush_mmu(tlb);
261
262         /* keep the page table cache within bounds */
263         check_pgt_cache();
264
265         for (batch = tlb->local.next; batch; batch = next) {
266                 next = batch->next;
267                 free_pages((unsigned long)batch, 0);
268         }
269         tlb->local.next = NULL;
270 }
271
272 /* __tlb_remove_page
273  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274  *      handling the additional races in SMP caused by other CPUs caching valid
275  *      mappings in their TLBs. Returns the number of free page slots left.
276  *      When out of page slots we must call tlb_flush_mmu().
277  */
278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
279 {
280         struct mmu_gather_batch *batch;
281
282         VM_BUG_ON(!tlb->need_flush);
283
284         batch = tlb->active;
285         batch->pages[batch->nr++] = page;
286         if (batch->nr == batch->max) {
287                 if (!tlb_next_batch(tlb))
288                         return 0;
289                 batch = tlb->active;
290         }
291         VM_BUG_ON(batch->nr > batch->max);
292
293         return batch->max - batch->nr;
294 }
295
296 #endif /* HAVE_GENERIC_MMU_GATHER */
297
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299
300 /*
301  * See the comment near struct mmu_table_batch.
302  */
303
304 static void tlb_remove_table_smp_sync(void *arg)
305 {
306         /* Simply deliver the interrupt */
307 }
308
309 static void tlb_remove_table_one(void *table)
310 {
311         /*
312          * This isn't an RCU grace period and hence the page-tables cannot be
313          * assumed to be actually RCU-freed.
314          *
315          * It is however sufficient for software page-table walkers that rely on
316          * IRQ disabling. See the comment near struct mmu_table_batch.
317          */
318         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319         __tlb_remove_table(table);
320 }
321
322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 {
324         struct mmu_table_batch *batch;
325         int i;
326
327         batch = container_of(head, struct mmu_table_batch, rcu);
328
329         for (i = 0; i < batch->nr; i++)
330                 __tlb_remove_table(batch->tables[i]);
331
332         free_page((unsigned long)batch);
333 }
334
335 void tlb_table_flush(struct mmu_gather *tlb)
336 {
337         struct mmu_table_batch **batch = &tlb->batch;
338
339         if (*batch) {
340                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341                 *batch = NULL;
342         }
343 }
344
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 {
347         struct mmu_table_batch **batch = &tlb->batch;
348
349         tlb->need_flush = 1;
350
351         /*
352          * When there's less then two users of this mm there cannot be a
353          * concurrent page-table walk.
354          */
355         if (atomic_read(&tlb->mm->mm_users) < 2) {
356                 __tlb_remove_table(table);
357                 return;
358         }
359
360         if (*batch == NULL) {
361                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362                 if (*batch == NULL) {
363                         tlb_remove_table_one(table);
364                         return;
365                 }
366                 (*batch)->nr = 0;
367         }
368         (*batch)->tables[(*batch)->nr++] = table;
369         if ((*batch)->nr == MAX_TABLE_BATCH)
370                 tlb_table_flush(tlb);
371 }
372
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374
375 /*
376  * If a p?d_bad entry is found while walking page tables, report
377  * the error, before resetting entry to p?d_none.  Usually (but
378  * very seldom) called out from the p?d_none_or_clear_bad macros.
379  */
380
381 void pgd_clear_bad(pgd_t *pgd)
382 {
383         pgd_ERROR(*pgd);
384         pgd_clear(pgd);
385 }
386
387 void pud_clear_bad(pud_t *pud)
388 {
389         pud_ERROR(*pud);
390         pud_clear(pud);
391 }
392
393 void pmd_clear_bad(pmd_t *pmd)
394 {
395         pmd_ERROR(*pmd);
396         pmd_clear(pmd);
397 }
398
399 /*
400  * Note: this doesn't free the actual pages themselves. That
401  * has been handled earlier when unmapping all the memory regions.
402  */
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404                            unsigned long addr)
405 {
406         pgtable_t token = pmd_pgtable(*pmd);
407         pmd_clear(pmd);
408         pte_free_tlb(tlb, token, addr);
409         tlb->mm->nr_ptes--;
410 }
411
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413                                 unsigned long addr, unsigned long end,
414                                 unsigned long floor, unsigned long ceiling)
415 {
416         pmd_t *pmd;
417         unsigned long next;
418         unsigned long start;
419
420         start = addr;
421         pmd = pmd_offset(pud, addr);
422         do {
423                 next = pmd_addr_end(addr, end);
424                 if (pmd_none_or_clear_bad(pmd))
425                         continue;
426                 free_pte_range(tlb, pmd, addr);
427         } while (pmd++, addr = next, addr != end);
428
429         start &= PUD_MASK;
430         if (start < floor)
431                 return;
432         if (ceiling) {
433                 ceiling &= PUD_MASK;
434                 if (!ceiling)
435                         return;
436         }
437         if (end - 1 > ceiling - 1)
438                 return;
439
440         pmd = pmd_offset(pud, start);
441         pud_clear(pud);
442         pmd_free_tlb(tlb, pmd, start);
443 }
444
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446                                 unsigned long addr, unsigned long end,
447                                 unsigned long floor, unsigned long ceiling)
448 {
449         pud_t *pud;
450         unsigned long next;
451         unsigned long start;
452
453         start = addr;
454         pud = pud_offset(pgd, addr);
455         do {
456                 next = pud_addr_end(addr, end);
457                 if (pud_none_or_clear_bad(pud))
458                         continue;
459                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460         } while (pud++, addr = next, addr != end);
461
462         start &= PGDIR_MASK;
463         if (start < floor)
464                 return;
465         if (ceiling) {
466                 ceiling &= PGDIR_MASK;
467                 if (!ceiling)
468                         return;
469         }
470         if (end - 1 > ceiling - 1)
471                 return;
472
473         pud = pud_offset(pgd, start);
474         pgd_clear(pgd);
475         pud_free_tlb(tlb, pud, start);
476 }
477
478 /*
479  * This function frees user-level page tables of a process.
480  *
481  * Must be called with pagetable lock held.
482  */
483 void free_pgd_range(struct mmu_gather *tlb,
484                         unsigned long addr, unsigned long end,
485                         unsigned long floor, unsigned long ceiling)
486 {
487         pgd_t *pgd;
488         unsigned long next;
489
490         /*
491          * The next few lines have given us lots of grief...
492          *
493          * Why are we testing PMD* at this top level?  Because often
494          * there will be no work to do at all, and we'd prefer not to
495          * go all the way down to the bottom just to discover that.
496          *
497          * Why all these "- 1"s?  Because 0 represents both the bottom
498          * of the address space and the top of it (using -1 for the
499          * top wouldn't help much: the masks would do the wrong thing).
500          * The rule is that addr 0 and floor 0 refer to the bottom of
501          * the address space, but end 0 and ceiling 0 refer to the top
502          * Comparisons need to use "end - 1" and "ceiling - 1" (though
503          * that end 0 case should be mythical).
504          *
505          * Wherever addr is brought up or ceiling brought down, we must
506          * be careful to reject "the opposite 0" before it confuses the
507          * subsequent tests.  But what about where end is brought down
508          * by PMD_SIZE below? no, end can't go down to 0 there.
509          *
510          * Whereas we round start (addr) and ceiling down, by different
511          * masks at different levels, in order to test whether a table
512          * now has no other vmas using it, so can be freed, we don't
513          * bother to round floor or end up - the tests don't need that.
514          */
515
516         addr &= PMD_MASK;
517         if (addr < floor) {
518                 addr += PMD_SIZE;
519                 if (!addr)
520                         return;
521         }
522         if (ceiling) {
523                 ceiling &= PMD_MASK;
524                 if (!ceiling)
525                         return;
526         }
527         if (end - 1 > ceiling - 1)
528                 end -= PMD_SIZE;
529         if (addr > end - 1)
530                 return;
531
532         pgd = pgd_offset(tlb->mm, addr);
533         do {
534                 next = pgd_addr_end(addr, end);
535                 if (pgd_none_or_clear_bad(pgd))
536                         continue;
537                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538         } while (pgd++, addr = next, addr != end);
539 }
540
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542                 unsigned long floor, unsigned long ceiling)
543 {
544         while (vma) {
545                 struct vm_area_struct *next = vma->vm_next;
546                 unsigned long addr = vma->vm_start;
547
548                 /*
549                  * Hide vma from rmap and truncate_pagecache before freeing
550                  * pgtables
551                  */
552                 unlink_anon_vmas(vma);
553                 unlink_file_vma(vma);
554
555                 if (is_vm_hugetlb_page(vma)) {
556                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557                                 floor, next? next->vm_start: ceiling);
558                 } else {
559                         /*
560                          * Optimization: gather nearby vmas into one call down
561                          */
562                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563                                && !is_vm_hugetlb_page(next)) {
564                                 vma = next;
565                                 next = vma->vm_next;
566                                 unlink_anon_vmas(vma);
567                                 unlink_file_vma(vma);
568                         }
569                         free_pgd_range(tlb, addr, vma->vm_end,
570                                 floor, next? next->vm_start: ceiling);
571                 }
572                 vma = next;
573         }
574 }
575
576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577                 pmd_t *pmd, unsigned long address)
578 {
579         pgtable_t new = pte_alloc_one(mm, address);
580         int wait_split_huge_page;
581         if (!new)
582                 return -ENOMEM;
583
584         /*
585          * Ensure all pte setup (eg. pte page lock and page clearing) are
586          * visible before the pte is made visible to other CPUs by being
587          * put into page tables.
588          *
589          * The other side of the story is the pointer chasing in the page
590          * table walking code (when walking the page table without locking;
591          * ie. most of the time). Fortunately, these data accesses consist
592          * of a chain of data-dependent loads, meaning most CPUs (alpha
593          * being the notable exception) will already guarantee loads are
594          * seen in-order. See the alpha page table accessors for the
595          * smp_read_barrier_depends() barriers in page table walking code.
596          */
597         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598
599         spin_lock(&mm->page_table_lock);
600         wait_split_huge_page = 0;
601         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
602                 mm->nr_ptes++;
603                 pmd_populate(mm, pmd, new);
604                 new = NULL;
605         } else if (unlikely(pmd_trans_splitting(*pmd)))
606                 wait_split_huge_page = 1;
607         spin_unlock(&mm->page_table_lock);
608         if (new)
609                 pte_free(mm, new);
610         if (wait_split_huge_page)
611                 wait_split_huge_page(vma->anon_vma, pmd);
612         return 0;
613 }
614
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
616 {
617         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618         if (!new)
619                 return -ENOMEM;
620
621         smp_wmb(); /* See comment in __pte_alloc */
622
623         spin_lock(&init_mm.page_table_lock);
624         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
625                 pmd_populate_kernel(&init_mm, pmd, new);
626                 new = NULL;
627         } else
628                 VM_BUG_ON(pmd_trans_splitting(*pmd));
629         spin_unlock(&init_mm.page_table_lock);
630         if (new)
631                 pte_free_kernel(&init_mm, new);
632         return 0;
633 }
634
635 static inline void init_rss_vec(int *rss)
636 {
637         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
638 }
639
640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
641 {
642         int i;
643
644         if (current->mm == mm)
645                 sync_mm_rss(mm);
646         for (i = 0; i < NR_MM_COUNTERS; i++)
647                 if (rss[i])
648                         add_mm_counter(mm, i, rss[i]);
649 }
650
651 /*
652  * This function is called to print an error when a bad pte
653  * is found. For example, we might have a PFN-mapped pte in
654  * a region that doesn't allow it.
655  *
656  * The calling function must still handle the error.
657  */
658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659                           pte_t pte, struct page *page)
660 {
661         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662         pud_t *pud = pud_offset(pgd, addr);
663         pmd_t *pmd = pmd_offset(pud, addr);
664         struct address_space *mapping;
665         pgoff_t index;
666         static unsigned long resume;
667         static unsigned long nr_shown;
668         static unsigned long nr_unshown;
669
670         /*
671          * Allow a burst of 60 reports, then keep quiet for that minute;
672          * or allow a steady drip of one report per second.
673          */
674         if (nr_shown == 60) {
675                 if (time_before(jiffies, resume)) {
676                         nr_unshown++;
677                         return;
678                 }
679                 if (nr_unshown) {
680                         printk(KERN_ALERT
681                                 "BUG: Bad page map: %lu messages suppressed\n",
682                                 nr_unshown);
683                         nr_unshown = 0;
684                 }
685                 nr_shown = 0;
686         }
687         if (nr_shown++ == 0)
688                 resume = jiffies + 60 * HZ;
689
690         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691         index = linear_page_index(vma, addr);
692
693         printk(KERN_ALERT
694                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
695                 current->comm,
696                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
697         if (page)
698                 dump_page(page);
699         printk(KERN_ALERT
700                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
702         /*
703          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
704          */
705         if (vma->vm_ops)
706                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
707                        vma->vm_ops->fault);
708         if (vma->vm_file && vma->vm_file->f_op)
709                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
710                        vma->vm_file->f_op->mmap);
711         dump_stack();
712         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
713 }
714
715 static inline bool is_cow_mapping(vm_flags_t flags)
716 {
717         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
718 }
719
720 /*
721  * vm_normal_page -- This function gets the "struct page" associated with a pte.
722  *
723  * "Special" mappings do not wish to be associated with a "struct page" (either
724  * it doesn't exist, or it exists but they don't want to touch it). In this
725  * case, NULL is returned here. "Normal" mappings do have a struct page.
726  *
727  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
728  * pte bit, in which case this function is trivial. Secondly, an architecture
729  * may not have a spare pte bit, which requires a more complicated scheme,
730  * described below.
731  *
732  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
733  * special mapping (even if there are underlying and valid "struct pages").
734  * COWed pages of a VM_PFNMAP are always normal.
735  *
736  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
737  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
738  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
739  * mapping will always honor the rule
740  *
741  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
742  *
743  * And for normal mappings this is false.
744  *
745  * This restricts such mappings to be a linear translation from virtual address
746  * to pfn. To get around this restriction, we allow arbitrary mappings so long
747  * as the vma is not a COW mapping; in that case, we know that all ptes are
748  * special (because none can have been COWed).
749  *
750  *
751  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
752  *
753  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
754  * page" backing, however the difference is that _all_ pages with a struct
755  * page (that is, those where pfn_valid is true) are refcounted and considered
756  * normal pages by the VM. The disadvantage is that pages are refcounted
757  * (which can be slower and simply not an option for some PFNMAP users). The
758  * advantage is that we don't have to follow the strict linearity rule of
759  * PFNMAP mappings in order to support COWable mappings.
760  *
761  */
762 #ifdef __HAVE_ARCH_PTE_SPECIAL
763 # define HAVE_PTE_SPECIAL 1
764 #else
765 # define HAVE_PTE_SPECIAL 0
766 #endif
767 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
768                                 pte_t pte)
769 {
770         unsigned long pfn = pte_pfn(pte);
771
772         if (HAVE_PTE_SPECIAL) {
773                 if (likely(!pte_special(pte)))
774                         goto check_pfn;
775                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
776                         return NULL;
777                 if (!is_zero_pfn(pfn))
778                         print_bad_pte(vma, addr, pte, NULL);
779                 return NULL;
780         }
781
782         /* !HAVE_PTE_SPECIAL case follows: */
783
784         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
785                 if (vma->vm_flags & VM_MIXEDMAP) {
786                         if (!pfn_valid(pfn))
787                                 return NULL;
788                         goto out;
789                 } else {
790                         unsigned long off;
791                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
792                         if (pfn == vma->vm_pgoff + off)
793                                 return NULL;
794                         if (!is_cow_mapping(vma->vm_flags))
795                                 return NULL;
796                 }
797         }
798
799         if (is_zero_pfn(pfn))
800                 return NULL;
801 check_pfn:
802         if (unlikely(pfn > highest_memmap_pfn)) {
803                 print_bad_pte(vma, addr, pte, NULL);
804                 return NULL;
805         }
806
807         /*
808          * NOTE! We still have PageReserved() pages in the page tables.
809          * eg. VDSO mappings can cause them to exist.
810          */
811 out:
812         return pfn_to_page(pfn);
813 }
814
815 /*
816  * copy one vm_area from one task to the other. Assumes the page tables
817  * already present in the new task to be cleared in the whole range
818  * covered by this vma.
819  */
820
821 static inline unsigned long
822 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
823                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
824                 unsigned long addr, int *rss)
825 {
826         unsigned long vm_flags = vma->vm_flags;
827         pte_t pte = *src_pte;
828         struct page *page;
829
830         /* pte contains position in swap or file, so copy. */
831         if (unlikely(!pte_present(pte))) {
832                 if (!pte_file(pte)) {
833                         swp_entry_t entry = pte_to_swp_entry(pte);
834
835                         if (swap_duplicate(entry) < 0)
836                                 return entry.val;
837
838                         /* make sure dst_mm is on swapoff's mmlist. */
839                         if (unlikely(list_empty(&dst_mm->mmlist))) {
840                                 spin_lock(&mmlist_lock);
841                                 if (list_empty(&dst_mm->mmlist))
842                                         list_add(&dst_mm->mmlist,
843                                                  &src_mm->mmlist);
844                                 spin_unlock(&mmlist_lock);
845                         }
846                         if (likely(!non_swap_entry(entry)))
847                                 rss[MM_SWAPENTS]++;
848                         else if (is_migration_entry(entry)) {
849                                 page = migration_entry_to_page(entry);
850
851                                 if (PageAnon(page))
852                                         rss[MM_ANONPAGES]++;
853                                 else
854                                         rss[MM_FILEPAGES]++;
855
856                                 if (is_write_migration_entry(entry) &&
857                                     is_cow_mapping(vm_flags)) {
858                                         /*
859                                          * COW mappings require pages in both
860                                          * parent and child to be set to read.
861                                          */
862                                         make_migration_entry_read(&entry);
863                                         pte = swp_entry_to_pte(entry);
864                                         set_pte_at(src_mm, addr, src_pte, pte);
865                                 }
866                         }
867                 }
868                 goto out_set_pte;
869         }
870
871         /*
872          * If it's a COW mapping, write protect it both
873          * in the parent and the child
874          */
875         if (is_cow_mapping(vm_flags)) {
876                 ptep_set_wrprotect(src_mm, addr, src_pte);
877                 pte = pte_wrprotect(pte);
878         }
879
880         /*
881          * If it's a shared mapping, mark it clean in
882          * the child
883          */
884         if (vm_flags & VM_SHARED)
885                 pte = pte_mkclean(pte);
886         pte = pte_mkold(pte);
887
888         page = vm_normal_page(vma, addr, pte);
889         if (page) {
890                 get_page(page);
891                 page_dup_rmap(page);
892                 if (PageAnon(page))
893                         rss[MM_ANONPAGES]++;
894                 else
895                         rss[MM_FILEPAGES]++;
896         }
897
898 out_set_pte:
899         set_pte_at(dst_mm, addr, dst_pte, pte);
900         return 0;
901 }
902
903 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
904                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
905                    unsigned long addr, unsigned long end)
906 {
907         pte_t *orig_src_pte, *orig_dst_pte;
908         pte_t *src_pte, *dst_pte;
909         spinlock_t *src_ptl, *dst_ptl;
910         int progress = 0;
911         int rss[NR_MM_COUNTERS];
912         swp_entry_t entry = (swp_entry_t){0};
913
914 again:
915         init_rss_vec(rss);
916
917         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
918         if (!dst_pte)
919                 return -ENOMEM;
920         src_pte = pte_offset_map(src_pmd, addr);
921         src_ptl = pte_lockptr(src_mm, src_pmd);
922         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
923         orig_src_pte = src_pte;
924         orig_dst_pte = dst_pte;
925         arch_enter_lazy_mmu_mode();
926
927         do {
928                 /*
929                  * We are holding two locks at this point - either of them
930                  * could generate latencies in another task on another CPU.
931                  */
932                 if (progress >= 32) {
933                         progress = 0;
934                         if (need_resched() ||
935                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
936                                 break;
937                 }
938                 if (pte_none(*src_pte)) {
939                         progress++;
940                         continue;
941                 }
942                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
943                                                         vma, addr, rss);
944                 if (entry.val)
945                         break;
946                 progress += 8;
947         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
948
949         arch_leave_lazy_mmu_mode();
950         spin_unlock(src_ptl);
951         pte_unmap(orig_src_pte);
952         add_mm_rss_vec(dst_mm, rss);
953         pte_unmap_unlock(orig_dst_pte, dst_ptl);
954         cond_resched();
955
956         if (entry.val) {
957                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
958                         return -ENOMEM;
959                 progress = 0;
960         }
961         if (addr != end)
962                 goto again;
963         return 0;
964 }
965
966 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
967                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
968                 unsigned long addr, unsigned long end)
969 {
970         pmd_t *src_pmd, *dst_pmd;
971         unsigned long next;
972
973         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
974         if (!dst_pmd)
975                 return -ENOMEM;
976         src_pmd = pmd_offset(src_pud, addr);
977         do {
978                 next = pmd_addr_end(addr, end);
979                 if (pmd_trans_huge(*src_pmd)) {
980                         int err;
981                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
982                         err = copy_huge_pmd(dst_mm, src_mm,
983                                             dst_pmd, src_pmd, addr, vma);
984                         if (err == -ENOMEM)
985                                 return -ENOMEM;
986                         if (!err)
987                                 continue;
988                         /* fall through */
989                 }
990                 if (pmd_none_or_clear_bad(src_pmd))
991                         continue;
992                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
993                                                 vma, addr, next))
994                         return -ENOMEM;
995         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
996         return 0;
997 }
998
999 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1001                 unsigned long addr, unsigned long end)
1002 {
1003         pud_t *src_pud, *dst_pud;
1004         unsigned long next;
1005
1006         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1007         if (!dst_pud)
1008                 return -ENOMEM;
1009         src_pud = pud_offset(src_pgd, addr);
1010         do {
1011                 next = pud_addr_end(addr, end);
1012                 if (pud_none_or_clear_bad(src_pud))
1013                         continue;
1014                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1015                                                 vma, addr, next))
1016                         return -ENOMEM;
1017         } while (dst_pud++, src_pud++, addr = next, addr != end);
1018         return 0;
1019 }
1020
1021 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1022                 struct vm_area_struct *vma)
1023 {
1024         pgd_t *src_pgd, *dst_pgd;
1025         unsigned long next;
1026         unsigned long addr = vma->vm_start;
1027         unsigned long end = vma->vm_end;
1028         unsigned long mmun_start;       /* For mmu_notifiers */
1029         unsigned long mmun_end;         /* For mmu_notifiers */
1030         bool is_cow;
1031         int ret;
1032
1033         /*
1034          * Don't copy ptes where a page fault will fill them correctly.
1035          * Fork becomes much lighter when there are big shared or private
1036          * readonly mappings. The tradeoff is that copy_page_range is more
1037          * efficient than faulting.
1038          */
1039         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1040                                VM_PFNMAP | VM_MIXEDMAP))) {
1041                 if (!vma->anon_vma)
1042                         return 0;
1043         }
1044
1045         if (is_vm_hugetlb_page(vma))
1046                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1047
1048         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1049                 /*
1050                  * We do not free on error cases below as remove_vma
1051                  * gets called on error from higher level routine
1052                  */
1053                 ret = track_pfn_copy(vma);
1054                 if (ret)
1055                         return ret;
1056         }
1057
1058         /*
1059          * We need to invalidate the secondary MMU mappings only when
1060          * there could be a permission downgrade on the ptes of the
1061          * parent mm. And a permission downgrade will only happen if
1062          * is_cow_mapping() returns true.
1063          */
1064         is_cow = is_cow_mapping(vma->vm_flags);
1065         mmun_start = addr;
1066         mmun_end   = end;
1067         if (is_cow)
1068                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1069                                                     mmun_end);
1070
1071         ret = 0;
1072         dst_pgd = pgd_offset(dst_mm, addr);
1073         src_pgd = pgd_offset(src_mm, addr);
1074         do {
1075                 next = pgd_addr_end(addr, end);
1076                 if (pgd_none_or_clear_bad(src_pgd))
1077                         continue;
1078                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1079                                             vma, addr, next))) {
1080                         ret = -ENOMEM;
1081                         break;
1082                 }
1083         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1084
1085         if (is_cow)
1086                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1087         return ret;
1088 }
1089
1090 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1091                                 struct vm_area_struct *vma, pmd_t *pmd,
1092                                 unsigned long addr, unsigned long end,
1093                                 struct zap_details *details)
1094 {
1095         struct mm_struct *mm = tlb->mm;
1096         int force_flush = 0;
1097         int rss[NR_MM_COUNTERS];
1098         spinlock_t *ptl;
1099         pte_t *start_pte;
1100         pte_t *pte;
1101
1102 again:
1103         init_rss_vec(rss);
1104         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1105         pte = start_pte;
1106         arch_enter_lazy_mmu_mode();
1107         do {
1108                 pte_t ptent = *pte;
1109                 if (pte_none(ptent)) {
1110                         continue;
1111                 }
1112
1113                 if (pte_present(ptent)) {
1114                         struct page *page;
1115
1116                         page = vm_normal_page(vma, addr, ptent);
1117                         if (unlikely(details) && page) {
1118                                 /*
1119                                  * unmap_shared_mapping_pages() wants to
1120                                  * invalidate cache without truncating:
1121                                  * unmap shared but keep private pages.
1122                                  */
1123                                 if (details->check_mapping &&
1124                                     details->check_mapping != page->mapping)
1125                                         continue;
1126                                 /*
1127                                  * Each page->index must be checked when
1128                                  * invalidating or truncating nonlinear.
1129                                  */
1130                                 if (details->nonlinear_vma &&
1131                                     (page->index < details->first_index ||
1132                                      page->index > details->last_index))
1133                                         continue;
1134                         }
1135                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1136                                                         tlb->fullmm);
1137                         tlb_remove_tlb_entry(tlb, pte, addr);
1138                         if (unlikely(!page))
1139                                 continue;
1140                         if (unlikely(details) && details->nonlinear_vma
1141                             && linear_page_index(details->nonlinear_vma,
1142                                                 addr) != page->index) {
1143                                 pte_t ptfile = pgoff_to_pte(page->index);
1144                                 if (pte_soft_dirty(ptent))
1145                                         pte_file_mksoft_dirty(ptfile);
1146                                 set_pte_at(mm, addr, pte, ptfile);
1147                         }
1148                         if (PageAnon(page))
1149                                 rss[MM_ANONPAGES]--;
1150                         else {
1151                                 if (pte_dirty(ptent))
1152                                         set_page_dirty(page);
1153                                 if (pte_young(ptent) &&
1154                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1155                                         mark_page_accessed(page);
1156                                 rss[MM_FILEPAGES]--;
1157                         }
1158                         page_remove_rmap(page);
1159                         if (unlikely(page_mapcount(page) < 0))
1160                                 print_bad_pte(vma, addr, ptent, page);
1161                         force_flush = !__tlb_remove_page(tlb, page);
1162                         if (force_flush)
1163                                 break;
1164                         continue;
1165                 }
1166                 /*
1167                  * If details->check_mapping, we leave swap entries;
1168                  * if details->nonlinear_vma, we leave file entries.
1169                  */
1170                 if (unlikely(details))
1171                         continue;
1172                 if (pte_file(ptent)) {
1173                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174                                 print_bad_pte(vma, addr, ptent, NULL);
1175                 } else {
1176                         swp_entry_t entry = pte_to_swp_entry(ptent);
1177
1178                         if (!non_swap_entry(entry))
1179                                 rss[MM_SWAPENTS]--;
1180                         else if (is_migration_entry(entry)) {
1181                                 struct page *page;
1182
1183                                 page = migration_entry_to_page(entry);
1184
1185                                 if (PageAnon(page))
1186                                         rss[MM_ANONPAGES]--;
1187                                 else
1188                                         rss[MM_FILEPAGES]--;
1189                         }
1190                         if (unlikely(!free_swap_and_cache(entry)))
1191                                 print_bad_pte(vma, addr, ptent, NULL);
1192                 }
1193                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194         } while (pte++, addr += PAGE_SIZE, addr != end);
1195
1196         add_mm_rss_vec(mm, rss);
1197         arch_leave_lazy_mmu_mode();
1198         pte_unmap_unlock(start_pte, ptl);
1199
1200         /*
1201          * mmu_gather ran out of room to batch pages, we break out of
1202          * the PTE lock to avoid doing the potential expensive TLB invalidate
1203          * and page-free while holding it.
1204          */
1205         if (force_flush) {
1206                 unsigned long old_end;
1207
1208                 force_flush = 0;
1209
1210                 /*
1211                  * Flush the TLB just for the previous segment,
1212                  * then update the range to be the remaining
1213                  * TLB range.
1214                  */
1215                 old_end = tlb->end;
1216                 tlb->end = addr;
1217
1218                 tlb_flush_mmu(tlb);
1219
1220                 tlb->start = addr;
1221                 tlb->end = old_end;
1222
1223                 if (addr != end)
1224                         goto again;
1225         }
1226
1227         return addr;
1228 }
1229
1230 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1231                                 struct vm_area_struct *vma, pud_t *pud,
1232                                 unsigned long addr, unsigned long end,
1233                                 struct zap_details *details)
1234 {
1235         pmd_t *pmd;
1236         unsigned long next;
1237
1238         pmd = pmd_offset(pud, addr);
1239         do {
1240                 next = pmd_addr_end(addr, end);
1241                 if (pmd_trans_huge(*pmd)) {
1242                         if (next - addr != HPAGE_PMD_SIZE) {
1243 #ifdef CONFIG_DEBUG_VM
1244                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1245                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1246                                                 __func__, addr, end,
1247                                                 vma->vm_start,
1248                                                 vma->vm_end);
1249                                         BUG();
1250                                 }
1251 #endif
1252                                 split_huge_page_pmd(vma, addr, pmd);
1253                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1254                                 goto next;
1255                         /* fall through */
1256                 }
1257                 /*
1258                  * Here there can be other concurrent MADV_DONTNEED or
1259                  * trans huge page faults running, and if the pmd is
1260                  * none or trans huge it can change under us. This is
1261                  * because MADV_DONTNEED holds the mmap_sem in read
1262                  * mode.
1263                  */
1264                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1265                         goto next;
1266                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1267 next:
1268                 cond_resched();
1269         } while (pmd++, addr = next, addr != end);
1270
1271         return addr;
1272 }
1273
1274 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1275                                 struct vm_area_struct *vma, pgd_t *pgd,
1276                                 unsigned long addr, unsigned long end,
1277                                 struct zap_details *details)
1278 {
1279         pud_t *pud;
1280         unsigned long next;
1281
1282         pud = pud_offset(pgd, addr);
1283         do {
1284                 next = pud_addr_end(addr, end);
1285                 if (pud_none_or_clear_bad(pud))
1286                         continue;
1287                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1288         } while (pud++, addr = next, addr != end);
1289
1290         return addr;
1291 }
1292
1293 static void unmap_page_range(struct mmu_gather *tlb,
1294                              struct vm_area_struct *vma,
1295                              unsigned long addr, unsigned long end,
1296                              struct zap_details *details)
1297 {
1298         pgd_t *pgd;
1299         unsigned long next;
1300
1301         if (details && !details->check_mapping && !details->nonlinear_vma)
1302                 details = NULL;
1303
1304         BUG_ON(addr >= end);
1305         mem_cgroup_uncharge_start();
1306         tlb_start_vma(tlb, vma);
1307         pgd = pgd_offset(vma->vm_mm, addr);
1308         do {
1309                 next = pgd_addr_end(addr, end);
1310                 if (pgd_none_or_clear_bad(pgd))
1311                         continue;
1312                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1313         } while (pgd++, addr = next, addr != end);
1314         tlb_end_vma(tlb, vma);
1315         mem_cgroup_uncharge_end();
1316 }
1317
1318
1319 static void unmap_single_vma(struct mmu_gather *tlb,
1320                 struct vm_area_struct *vma, unsigned long start_addr,
1321                 unsigned long end_addr,
1322                 struct zap_details *details)
1323 {
1324         unsigned long start = max(vma->vm_start, start_addr);
1325         unsigned long end;
1326
1327         if (start >= vma->vm_end)
1328                 return;
1329         end = min(vma->vm_end, end_addr);
1330         if (end <= vma->vm_start)
1331                 return;
1332
1333         if (vma->vm_file)
1334                 uprobe_munmap(vma, start, end);
1335
1336         if (unlikely(vma->vm_flags & VM_PFNMAP))
1337                 untrack_pfn(vma, 0, 0);
1338
1339         if (start != end) {
1340                 if (unlikely(is_vm_hugetlb_page(vma))) {
1341                         /*
1342                          * It is undesirable to test vma->vm_file as it
1343                          * should be non-null for valid hugetlb area.
1344                          * However, vm_file will be NULL in the error
1345                          * cleanup path of do_mmap_pgoff. When
1346                          * hugetlbfs ->mmap method fails,
1347                          * do_mmap_pgoff() nullifies vma->vm_file
1348                          * before calling this function to clean up.
1349                          * Since no pte has actually been setup, it is
1350                          * safe to do nothing in this case.
1351                          */
1352                         if (vma->vm_file) {
1353                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1354                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1355                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1356                         }
1357                 } else
1358                         unmap_page_range(tlb, vma, start, end, details);
1359         }
1360 }
1361
1362 /**
1363  * unmap_vmas - unmap a range of memory covered by a list of vma's
1364  * @tlb: address of the caller's struct mmu_gather
1365  * @vma: the starting vma
1366  * @start_addr: virtual address at which to start unmapping
1367  * @end_addr: virtual address at which to end unmapping
1368  *
1369  * Unmap all pages in the vma list.
1370  *
1371  * Only addresses between `start' and `end' will be unmapped.
1372  *
1373  * The VMA list must be sorted in ascending virtual address order.
1374  *
1375  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1376  * range after unmap_vmas() returns.  So the only responsibility here is to
1377  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1378  * drops the lock and schedules.
1379  */
1380 void unmap_vmas(struct mmu_gather *tlb,
1381                 struct vm_area_struct *vma, unsigned long start_addr,
1382                 unsigned long end_addr)
1383 {
1384         struct mm_struct *mm = vma->vm_mm;
1385
1386         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1387         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1388                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1389         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1390 }
1391
1392 /**
1393  * zap_page_range - remove user pages in a given range
1394  * @vma: vm_area_struct holding the applicable pages
1395  * @start: starting address of pages to zap
1396  * @size: number of bytes to zap
1397  * @details: details of nonlinear truncation or shared cache invalidation
1398  *
1399  * Caller must protect the VMA list
1400  */
1401 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1402                 unsigned long size, struct zap_details *details)
1403 {
1404         struct mm_struct *mm = vma->vm_mm;
1405         struct mmu_gather tlb;
1406         unsigned long end = start + size;
1407
1408         lru_add_drain();
1409         tlb_gather_mmu(&tlb, mm, start, end);
1410         update_hiwater_rss(mm);
1411         mmu_notifier_invalidate_range_start(mm, start, end);
1412         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1413                 unmap_single_vma(&tlb, vma, start, end, details);
1414         mmu_notifier_invalidate_range_end(mm, start, end);
1415         tlb_finish_mmu(&tlb, start, end);
1416 }
1417
1418 /**
1419  * zap_page_range_single - remove user pages in a given range
1420  * @vma: vm_area_struct holding the applicable pages
1421  * @address: starting address of pages to zap
1422  * @size: number of bytes to zap
1423  * @details: details of nonlinear truncation or shared cache invalidation
1424  *
1425  * The range must fit into one VMA.
1426  */
1427 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1428                 unsigned long size, struct zap_details *details)
1429 {
1430         struct mm_struct *mm = vma->vm_mm;
1431         struct mmu_gather tlb;
1432         unsigned long end = address + size;
1433
1434         lru_add_drain();
1435         tlb_gather_mmu(&tlb, mm, address, end);
1436         update_hiwater_rss(mm);
1437         mmu_notifier_invalidate_range_start(mm, address, end);
1438         unmap_single_vma(&tlb, vma, address, end, details);
1439         mmu_notifier_invalidate_range_end(mm, address, end);
1440         tlb_finish_mmu(&tlb, address, end);
1441 }
1442
1443 /**
1444  * zap_vma_ptes - remove ptes mapping the vma
1445  * @vma: vm_area_struct holding ptes to be zapped
1446  * @address: starting address of pages to zap
1447  * @size: number of bytes to zap
1448  *
1449  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1450  *
1451  * The entire address range must be fully contained within the vma.
1452  *
1453  * Returns 0 if successful.
1454  */
1455 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1456                 unsigned long size)
1457 {
1458         if (address < vma->vm_start || address + size > vma->vm_end ||
1459                         !(vma->vm_flags & VM_PFNMAP))
1460                 return -1;
1461         zap_page_range_single(vma, address, size, NULL);
1462         return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1465
1466 /**
1467  * follow_page_mask - look up a page descriptor from a user-virtual address
1468  * @vma: vm_area_struct mapping @address
1469  * @address: virtual address to look up
1470  * @flags: flags modifying lookup behaviour
1471  * @page_mask: on output, *page_mask is set according to the size of the page
1472  *
1473  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1474  *
1475  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1476  * an error pointer if there is a mapping to something not represented
1477  * by a page descriptor (see also vm_normal_page()).
1478  */
1479 struct page *follow_page_mask(struct vm_area_struct *vma,
1480                               unsigned long address, unsigned int flags,
1481                               unsigned int *page_mask)
1482 {
1483         pgd_t *pgd;
1484         pud_t *pud;
1485         pmd_t *pmd;
1486         pte_t *ptep, pte;
1487         spinlock_t *ptl;
1488         struct page *page;
1489         struct mm_struct *mm = vma->vm_mm;
1490
1491         *page_mask = 0;
1492
1493         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1494         if (!IS_ERR(page)) {
1495                 BUG_ON(flags & FOLL_GET);
1496                 goto out;
1497         }
1498
1499         page = NULL;
1500         pgd = pgd_offset(mm, address);
1501         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1502                 goto no_page_table;
1503
1504         pud = pud_offset(pgd, address);
1505         if (pud_none(*pud))
1506                 goto no_page_table;
1507         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1508                 BUG_ON(flags & FOLL_GET);
1509                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1510                 goto out;
1511         }
1512         if (unlikely(pud_bad(*pud)))
1513                 goto no_page_table;
1514
1515         pmd = pmd_offset(pud, address);
1516         if (pmd_none(*pmd))
1517                 goto no_page_table;
1518         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1519                 BUG_ON(flags & FOLL_GET);
1520                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1521                 goto out;
1522         }
1523         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1524                 goto no_page_table;
1525         if (pmd_trans_huge(*pmd)) {
1526                 if (flags & FOLL_SPLIT) {
1527                         split_huge_page_pmd(vma, address, pmd);
1528                         goto split_fallthrough;
1529                 }
1530                 spin_lock(&mm->page_table_lock);
1531                 if (likely(pmd_trans_huge(*pmd))) {
1532                         if (unlikely(pmd_trans_splitting(*pmd))) {
1533                                 spin_unlock(&mm->page_table_lock);
1534                                 wait_split_huge_page(vma->anon_vma, pmd);
1535                         } else {
1536                                 page = follow_trans_huge_pmd(vma, address,
1537                                                              pmd, flags);
1538                                 spin_unlock(&mm->page_table_lock);
1539                                 *page_mask = HPAGE_PMD_NR - 1;
1540                                 goto out;
1541                         }
1542                 } else
1543                         spin_unlock(&mm->page_table_lock);
1544                 /* fall through */
1545         }
1546 split_fallthrough:
1547         if (unlikely(pmd_bad(*pmd)))
1548                 goto no_page_table;
1549
1550         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1551
1552         pte = *ptep;
1553         if (!pte_present(pte)) {
1554                 swp_entry_t entry;
1555                 /*
1556                  * KSM's break_ksm() relies upon recognizing a ksm page
1557                  * even while it is being migrated, so for that case we
1558                  * need migration_entry_wait().
1559                  */
1560                 if (likely(!(flags & FOLL_MIGRATION)))
1561                         goto no_page;
1562                 if (pte_none(pte) || pte_file(pte))
1563                         goto no_page;
1564                 entry = pte_to_swp_entry(pte);
1565                 if (!is_migration_entry(entry))
1566                         goto no_page;
1567                 pte_unmap_unlock(ptep, ptl);
1568                 migration_entry_wait(mm, pmd, address);
1569                 goto split_fallthrough;
1570         }
1571         if ((flags & FOLL_NUMA) && pte_numa(pte))
1572                 goto no_page;
1573         if ((flags & FOLL_WRITE) && !pte_write(pte))
1574                 goto unlock;
1575
1576         page = vm_normal_page(vma, address, pte);
1577         if (unlikely(!page)) {
1578                 if ((flags & FOLL_DUMP) ||
1579                     !is_zero_pfn(pte_pfn(pte)))
1580                         goto bad_page;
1581                 page = pte_page(pte);
1582         }
1583
1584         if (flags & FOLL_GET)
1585                 get_page_foll(page);
1586         if (flags & FOLL_TOUCH) {
1587                 if ((flags & FOLL_WRITE) &&
1588                     !pte_dirty(pte) && !PageDirty(page))
1589                         set_page_dirty(page);
1590                 /*
1591                  * pte_mkyoung() would be more correct here, but atomic care
1592                  * is needed to avoid losing the dirty bit: it is easier to use
1593                  * mark_page_accessed().
1594                  */
1595                 mark_page_accessed(page);
1596         }
1597         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1598                 /*
1599                  * The preliminary mapping check is mainly to avoid the
1600                  * pointless overhead of lock_page on the ZERO_PAGE
1601                  * which might bounce very badly if there is contention.
1602                  *
1603                  * If the page is already locked, we don't need to
1604                  * handle it now - vmscan will handle it later if and
1605                  * when it attempts to reclaim the page.
1606                  */
1607                 if (page->mapping && trylock_page(page)) {
1608                         lru_add_drain();  /* push cached pages to LRU */
1609                         /*
1610                          * Because we lock page here, and migration is
1611                          * blocked by the pte's page reference, and we
1612                          * know the page is still mapped, we don't even
1613                          * need to check for file-cache page truncation.
1614                          */
1615                         mlock_vma_page(page);
1616                         unlock_page(page);
1617                 }
1618         }
1619 unlock:
1620         pte_unmap_unlock(ptep, ptl);
1621 out:
1622         return page;
1623
1624 bad_page:
1625         pte_unmap_unlock(ptep, ptl);
1626         return ERR_PTR(-EFAULT);
1627
1628 no_page:
1629         pte_unmap_unlock(ptep, ptl);
1630         if (!pte_none(pte))
1631                 return page;
1632
1633 no_page_table:
1634         /*
1635          * When core dumping an enormous anonymous area that nobody
1636          * has touched so far, we don't want to allocate unnecessary pages or
1637          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1638          * then get_dump_page() will return NULL to leave a hole in the dump.
1639          * But we can only make this optimization where a hole would surely
1640          * be zero-filled if handle_mm_fault() actually did handle it.
1641          */
1642         if ((flags & FOLL_DUMP) &&
1643             (!vma->vm_ops || !vma->vm_ops->fault))
1644                 return ERR_PTR(-EFAULT);
1645         return page;
1646 }
1647
1648 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1649 {
1650         return stack_guard_page_start(vma, addr) ||
1651                stack_guard_page_end(vma, addr+PAGE_SIZE);
1652 }
1653
1654 /**
1655  * __get_user_pages() - pin user pages in memory
1656  * @tsk:        task_struct of target task
1657  * @mm:         mm_struct of target mm
1658  * @start:      starting user address
1659  * @nr_pages:   number of pages from start to pin
1660  * @gup_flags:  flags modifying pin behaviour
1661  * @pages:      array that receives pointers to the pages pinned.
1662  *              Should be at least nr_pages long. Or NULL, if caller
1663  *              only intends to ensure the pages are faulted in.
1664  * @vmas:       array of pointers to vmas corresponding to each page.
1665  *              Or NULL if the caller does not require them.
1666  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1667  *
1668  * Returns number of pages pinned. This may be fewer than the number
1669  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1670  * were pinned, returns -errno. Each page returned must be released
1671  * with a put_page() call when it is finished with. vmas will only
1672  * remain valid while mmap_sem is held.
1673  *
1674  * Must be called with mmap_sem held for read or write.
1675  *
1676  * __get_user_pages walks a process's page tables and takes a reference to
1677  * each struct page that each user address corresponds to at a given
1678  * instant. That is, it takes the page that would be accessed if a user
1679  * thread accesses the given user virtual address at that instant.
1680  *
1681  * This does not guarantee that the page exists in the user mappings when
1682  * __get_user_pages returns, and there may even be a completely different
1683  * page there in some cases (eg. if mmapped pagecache has been invalidated
1684  * and subsequently re faulted). However it does guarantee that the page
1685  * won't be freed completely. And mostly callers simply care that the page
1686  * contains data that was valid *at some point in time*. Typically, an IO
1687  * or similar operation cannot guarantee anything stronger anyway because
1688  * locks can't be held over the syscall boundary.
1689  *
1690  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1691  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1692  * appropriate) must be called after the page is finished with, and
1693  * before put_page is called.
1694  *
1695  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1696  * or mmap_sem contention, and if waiting is needed to pin all pages,
1697  * *@nonblocking will be set to 0.
1698  *
1699  * In most cases, get_user_pages or get_user_pages_fast should be used
1700  * instead of __get_user_pages. __get_user_pages should be used only if
1701  * you need some special @gup_flags.
1702  */
1703 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1704                 unsigned long start, unsigned long nr_pages,
1705                 unsigned int gup_flags, struct page **pages,
1706                 struct vm_area_struct **vmas, int *nonblocking)
1707 {
1708         long i;
1709         unsigned long vm_flags;
1710         unsigned int page_mask;
1711
1712         if (!nr_pages)
1713                 return 0;
1714
1715         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1716
1717         /* 
1718          * Require read or write permissions.
1719          * If FOLL_FORCE is set, we only require the "MAY" flags.
1720          */
1721         vm_flags  = (gup_flags & FOLL_WRITE) ?
1722                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1723         vm_flags &= (gup_flags & FOLL_FORCE) ?
1724                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1725
1726         /*
1727          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1728          * would be called on PROT_NONE ranges. We must never invoke
1729          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1730          * page faults would unprotect the PROT_NONE ranges if
1731          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1732          * bitflag. So to avoid that, don't set FOLL_NUMA if
1733          * FOLL_FORCE is set.
1734          */
1735         if (!(gup_flags & FOLL_FORCE))
1736                 gup_flags |= FOLL_NUMA;
1737
1738         i = 0;
1739
1740         do {
1741                 struct vm_area_struct *vma;
1742
1743                 vma = find_extend_vma(mm, start);
1744                 if (!vma && in_gate_area(mm, start)) {
1745                         unsigned long pg = start & PAGE_MASK;
1746                         pgd_t *pgd;
1747                         pud_t *pud;
1748                         pmd_t *pmd;
1749                         pte_t *pte;
1750
1751                         /* user gate pages are read-only */
1752                         if (gup_flags & FOLL_WRITE)
1753                                 return i ? : -EFAULT;
1754                         if (pg > TASK_SIZE)
1755                                 pgd = pgd_offset_k(pg);
1756                         else
1757                                 pgd = pgd_offset_gate(mm, pg);
1758                         BUG_ON(pgd_none(*pgd));
1759                         pud = pud_offset(pgd, pg);
1760                         BUG_ON(pud_none(*pud));
1761                         pmd = pmd_offset(pud, pg);
1762                         if (pmd_none(*pmd))
1763                                 return i ? : -EFAULT;
1764                         VM_BUG_ON(pmd_trans_huge(*pmd));
1765                         pte = pte_offset_map(pmd, pg);
1766                         if (pte_none(*pte)) {
1767                                 pte_unmap(pte);
1768                                 return i ? : -EFAULT;
1769                         }
1770                         vma = get_gate_vma(mm);
1771                         if (pages) {
1772                                 struct page *page;
1773
1774                                 page = vm_normal_page(vma, start, *pte);
1775                                 if (!page) {
1776                                         if (!(gup_flags & FOLL_DUMP) &&
1777                                              is_zero_pfn(pte_pfn(*pte)))
1778                                                 page = pte_page(*pte);
1779                                         else {
1780                                                 pte_unmap(pte);
1781                                                 return i ? : -EFAULT;
1782                                         }
1783                                 }
1784                                 pages[i] = page;
1785                                 get_page(page);
1786                         }
1787                         pte_unmap(pte);
1788                         page_mask = 0;
1789                         goto next_page;
1790                 }
1791
1792                 if (!vma ||
1793                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1794                     !(vm_flags & vma->vm_flags))
1795                         return i ? : -EFAULT;
1796
1797                 if (is_vm_hugetlb_page(vma)) {
1798                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1799                                         &start, &nr_pages, i, gup_flags);
1800                         continue;
1801                 }
1802
1803                 do {
1804                         struct page *page;
1805                         unsigned int foll_flags = gup_flags;
1806                         unsigned int page_increm;
1807
1808                         /*
1809                          * If we have a pending SIGKILL, don't keep faulting
1810                          * pages and potentially allocating memory.
1811                          */
1812                         if (unlikely(fatal_signal_pending(current)))
1813                                 return i ? i : -ERESTARTSYS;
1814
1815                         cond_resched();
1816                         while (!(page = follow_page_mask(vma, start,
1817                                                 foll_flags, &page_mask))) {
1818                                 int ret;
1819                                 unsigned int fault_flags = 0;
1820
1821                                 /* For mlock, just skip the stack guard page. */
1822                                 if (foll_flags & FOLL_MLOCK) {
1823                                         if (stack_guard_page(vma, start))
1824                                                 goto next_page;
1825                                 }
1826                                 if (foll_flags & FOLL_WRITE)
1827                                         fault_flags |= FAULT_FLAG_WRITE;
1828                                 if (nonblocking)
1829                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1830                                 if (foll_flags & FOLL_NOWAIT)
1831                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1832
1833                                 ret = handle_mm_fault(mm, vma, start,
1834                                                         fault_flags);
1835
1836                                 if (ret & VM_FAULT_ERROR) {
1837                                         if (ret & VM_FAULT_OOM)
1838                                                 return i ? i : -ENOMEM;
1839                                         if (ret & (VM_FAULT_HWPOISON |
1840                                                    VM_FAULT_HWPOISON_LARGE)) {
1841                                                 if (i)
1842                                                         return i;
1843                                                 else if (gup_flags & FOLL_HWPOISON)
1844                                                         return -EHWPOISON;
1845                                                 else
1846                                                         return -EFAULT;
1847                                         }
1848                                         if (ret & VM_FAULT_SIGBUS)
1849                                                 return i ? i : -EFAULT;
1850                                         BUG();
1851                                 }
1852
1853                                 if (tsk) {
1854                                         if (ret & VM_FAULT_MAJOR)
1855                                                 tsk->maj_flt++;
1856                                         else
1857                                                 tsk->min_flt++;
1858                                 }
1859
1860                                 if (ret & VM_FAULT_RETRY) {
1861                                         if (nonblocking)
1862                                                 *nonblocking = 0;
1863                                         return i;
1864                                 }
1865
1866                                 /*
1867                                  * The VM_FAULT_WRITE bit tells us that
1868                                  * do_wp_page has broken COW when necessary,
1869                                  * even if maybe_mkwrite decided not to set
1870                                  * pte_write. We can thus safely do subsequent
1871                                  * page lookups as if they were reads. But only
1872                                  * do so when looping for pte_write is futile:
1873                                  * in some cases userspace may also be wanting
1874                                  * to write to the gotten user page, which a
1875                                  * read fault here might prevent (a readonly
1876                                  * page might get reCOWed by userspace write).
1877                                  */
1878                                 if ((ret & VM_FAULT_WRITE) &&
1879                                     !(vma->vm_flags & VM_WRITE))
1880                                         foll_flags &= ~FOLL_WRITE;
1881
1882                                 cond_resched();
1883                         }
1884                         if (IS_ERR(page))
1885                                 return i ? i : PTR_ERR(page);
1886                         if (pages) {
1887                                 pages[i] = page;
1888
1889                                 flush_anon_page(vma, page, start);
1890                                 flush_dcache_page(page);
1891                                 page_mask = 0;
1892                         }
1893 next_page:
1894                         if (vmas) {
1895                                 vmas[i] = vma;
1896                                 page_mask = 0;
1897                         }
1898                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1899                         if (page_increm > nr_pages)
1900                                 page_increm = nr_pages;
1901                         i += page_increm;
1902                         start += page_increm * PAGE_SIZE;
1903                         nr_pages -= page_increm;
1904                 } while (nr_pages && start < vma->vm_end);
1905         } while (nr_pages);
1906         return i;
1907 }
1908 EXPORT_SYMBOL(__get_user_pages);
1909
1910 /*
1911  * fixup_user_fault() - manually resolve a user page fault
1912  * @tsk:        the task_struct to use for page fault accounting, or
1913  *              NULL if faults are not to be recorded.
1914  * @mm:         mm_struct of target mm
1915  * @address:    user address
1916  * @fault_flags:flags to pass down to handle_mm_fault()
1917  *
1918  * This is meant to be called in the specific scenario where for locking reasons
1919  * we try to access user memory in atomic context (within a pagefault_disable()
1920  * section), this returns -EFAULT, and we want to resolve the user fault before
1921  * trying again.
1922  *
1923  * Typically this is meant to be used by the futex code.
1924  *
1925  * The main difference with get_user_pages() is that this function will
1926  * unconditionally call handle_mm_fault() which will in turn perform all the
1927  * necessary SW fixup of the dirty and young bits in the PTE, while
1928  * handle_mm_fault() only guarantees to update these in the struct page.
1929  *
1930  * This is important for some architectures where those bits also gate the
1931  * access permission to the page because they are maintained in software.  On
1932  * such architectures, gup() will not be enough to make a subsequent access
1933  * succeed.
1934  *
1935  * This should be called with the mm_sem held for read.
1936  */
1937 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1938                      unsigned long address, unsigned int fault_flags)
1939 {
1940         struct vm_area_struct *vma;
1941         int ret;
1942
1943         vma = find_extend_vma(mm, address);
1944         if (!vma || address < vma->vm_start)
1945                 return -EFAULT;
1946
1947         ret = handle_mm_fault(mm, vma, address, fault_flags);
1948         if (ret & VM_FAULT_ERROR) {
1949                 if (ret & VM_FAULT_OOM)
1950                         return -ENOMEM;
1951                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1952                         return -EHWPOISON;
1953                 if (ret & VM_FAULT_SIGBUS)
1954                         return -EFAULT;
1955                 BUG();
1956         }
1957         if (tsk) {
1958                 if (ret & VM_FAULT_MAJOR)
1959                         tsk->maj_flt++;
1960                 else
1961                         tsk->min_flt++;
1962         }
1963         return 0;
1964 }
1965
1966 /*
1967  * get_user_pages() - pin user pages in memory
1968  * @tsk:        the task_struct to use for page fault accounting, or
1969  *              NULL if faults are not to be recorded.
1970  * @mm:         mm_struct of target mm
1971  * @start:      starting user address
1972  * @nr_pages:   number of pages from start to pin
1973  * @write:      whether pages will be written to by the caller
1974  * @force:      whether to force write access even if user mapping is
1975  *              readonly. This will result in the page being COWed even
1976  *              in MAP_SHARED mappings. You do not want this.
1977  * @pages:      array that receives pointers to the pages pinned.
1978  *              Should be at least nr_pages long. Or NULL, if caller
1979  *              only intends to ensure the pages are faulted in.
1980  * @vmas:       array of pointers to vmas corresponding to each page.
1981  *              Or NULL if the caller does not require them.
1982  *
1983  * Returns number of pages pinned. This may be fewer than the number
1984  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1985  * were pinned, returns -errno. Each page returned must be released
1986  * with a put_page() call when it is finished with. vmas will only
1987  * remain valid while mmap_sem is held.
1988  *
1989  * Must be called with mmap_sem held for read or write.
1990  *
1991  * get_user_pages walks a process's page tables and takes a reference to
1992  * each struct page that each user address corresponds to at a given
1993  * instant. That is, it takes the page that would be accessed if a user
1994  * thread accesses the given user virtual address at that instant.
1995  *
1996  * This does not guarantee that the page exists in the user mappings when
1997  * get_user_pages returns, and there may even be a completely different
1998  * page there in some cases (eg. if mmapped pagecache has been invalidated
1999  * and subsequently re faulted). However it does guarantee that the page
2000  * won't be freed completely. And mostly callers simply care that the page
2001  * contains data that was valid *at some point in time*. Typically, an IO
2002  * or similar operation cannot guarantee anything stronger anyway because
2003  * locks can't be held over the syscall boundary.
2004  *
2005  * If write=0, the page must not be written to. If the page is written to,
2006  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2007  * after the page is finished with, and before put_page is called.
2008  *
2009  * get_user_pages is typically used for fewer-copy IO operations, to get a
2010  * handle on the memory by some means other than accesses via the user virtual
2011  * addresses. The pages may be submitted for DMA to devices or accessed via
2012  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2013  * use the correct cache flushing APIs.
2014  *
2015  * See also get_user_pages_fast, for performance critical applications.
2016  */
2017 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2018                 unsigned long start, unsigned long nr_pages, int write,
2019                 int force, struct page **pages, struct vm_area_struct **vmas)
2020 {
2021         int flags = FOLL_TOUCH;
2022
2023         if (pages)
2024                 flags |= FOLL_GET;
2025         if (write)
2026                 flags |= FOLL_WRITE;
2027         if (force)
2028                 flags |= FOLL_FORCE;
2029
2030         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2031                                 NULL);
2032 }
2033 EXPORT_SYMBOL(get_user_pages);
2034
2035 /**
2036  * get_dump_page() - pin user page in memory while writing it to core dump
2037  * @addr: user address
2038  *
2039  * Returns struct page pointer of user page pinned for dump,
2040  * to be freed afterwards by page_cache_release() or put_page().
2041  *
2042  * Returns NULL on any kind of failure - a hole must then be inserted into
2043  * the corefile, to preserve alignment with its headers; and also returns
2044  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2045  * allowing a hole to be left in the corefile to save diskspace.
2046  *
2047  * Called without mmap_sem, but after all other threads have been killed.
2048  */
2049 #ifdef CONFIG_ELF_CORE
2050 struct page *get_dump_page(unsigned long addr)
2051 {
2052         struct vm_area_struct *vma;
2053         struct page *page;
2054
2055         if (__get_user_pages(current, current->mm, addr, 1,
2056                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2057                              NULL) < 1)
2058                 return NULL;
2059         flush_cache_page(vma, addr, page_to_pfn(page));
2060         return page;
2061 }
2062 #endif /* CONFIG_ELF_CORE */
2063
2064 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2065                         spinlock_t **ptl)
2066 {
2067         pgd_t * pgd = pgd_offset(mm, addr);
2068         pud_t * pud = pud_alloc(mm, pgd, addr);
2069         if (pud) {
2070                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2071                 if (pmd) {
2072                         VM_BUG_ON(pmd_trans_huge(*pmd));
2073                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2074                 }
2075         }
2076         return NULL;
2077 }
2078
2079 /*
2080  * This is the old fallback for page remapping.
2081  *
2082  * For historical reasons, it only allows reserved pages. Only
2083  * old drivers should use this, and they needed to mark their
2084  * pages reserved for the old functions anyway.
2085  */
2086 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2087                         struct page *page, pgprot_t prot)
2088 {
2089         struct mm_struct *mm = vma->vm_mm;
2090         int retval;
2091         pte_t *pte;
2092         spinlock_t *ptl;
2093
2094         retval = -EINVAL;
2095         if (PageAnon(page))
2096                 goto out;
2097         retval = -ENOMEM;
2098         flush_dcache_page(page);
2099         pte = get_locked_pte(mm, addr, &ptl);
2100         if (!pte)
2101                 goto out;
2102         retval = -EBUSY;
2103         if (!pte_none(*pte))
2104                 goto out_unlock;
2105
2106         /* Ok, finally just insert the thing.. */
2107         get_page(page);
2108         inc_mm_counter_fast(mm, MM_FILEPAGES);
2109         page_add_file_rmap(page);
2110         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2111
2112         retval = 0;
2113         pte_unmap_unlock(pte, ptl);
2114         return retval;
2115 out_unlock:
2116         pte_unmap_unlock(pte, ptl);
2117 out:
2118         return retval;
2119 }
2120
2121 /**
2122  * vm_insert_page - insert single page into user vma
2123  * @vma: user vma to map to
2124  * @addr: target user address of this page
2125  * @page: source kernel page
2126  *
2127  * This allows drivers to insert individual pages they've allocated
2128  * into a user vma.
2129  *
2130  * The page has to be a nice clean _individual_ kernel allocation.
2131  * If you allocate a compound page, you need to have marked it as
2132  * such (__GFP_COMP), or manually just split the page up yourself
2133  * (see split_page()).
2134  *
2135  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2136  * took an arbitrary page protection parameter. This doesn't allow
2137  * that. Your vma protection will have to be set up correctly, which
2138  * means that if you want a shared writable mapping, you'd better
2139  * ask for a shared writable mapping!
2140  *
2141  * The page does not need to be reserved.
2142  *
2143  * Usually this function is called from f_op->mmap() handler
2144  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2145  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2146  * function from other places, for example from page-fault handler.
2147  */
2148 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2149                         struct page *page)
2150 {
2151         if (addr < vma->vm_start || addr >= vma->vm_end)
2152                 return -EFAULT;
2153         if (!page_count(page))
2154                 return -EINVAL;
2155         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2156                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2157                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2158                 vma->vm_flags |= VM_MIXEDMAP;
2159         }
2160         return insert_page(vma, addr, page, vma->vm_page_prot);
2161 }
2162 EXPORT_SYMBOL(vm_insert_page);
2163
2164 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2165                         unsigned long pfn, pgprot_t prot)
2166 {
2167         struct mm_struct *mm = vma->vm_mm;
2168         int retval;
2169         pte_t *pte, entry;
2170         spinlock_t *ptl;
2171
2172         retval = -ENOMEM;
2173         pte = get_locked_pte(mm, addr, &ptl);
2174         if (!pte)
2175                 goto out;
2176         retval = -EBUSY;
2177         if (!pte_none(*pte))
2178                 goto out_unlock;
2179
2180         /* Ok, finally just insert the thing.. */
2181         entry = pte_mkspecial(pfn_pte(pfn, prot));
2182         set_pte_at(mm, addr, pte, entry);
2183         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2184
2185         retval = 0;
2186 out_unlock:
2187         pte_unmap_unlock(pte, ptl);
2188 out:
2189         return retval;
2190 }
2191
2192 /**
2193  * vm_insert_pfn - insert single pfn into user vma
2194  * @vma: user vma to map to
2195  * @addr: target user address of this page
2196  * @pfn: source kernel pfn
2197  *
2198  * Similar to vm_insert_page, this allows drivers to insert individual pages
2199  * they've allocated into a user vma. Same comments apply.
2200  *
2201  * This function should only be called from a vm_ops->fault handler, and
2202  * in that case the handler should return NULL.
2203  *
2204  * vma cannot be a COW mapping.
2205  *
2206  * As this is called only for pages that do not currently exist, we
2207  * do not need to flush old virtual caches or the TLB.
2208  */
2209 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2210                         unsigned long pfn)
2211 {
2212         int ret;
2213         pgprot_t pgprot = vma->vm_page_prot;
2214         /*
2215          * Technically, architectures with pte_special can avoid all these
2216          * restrictions (same for remap_pfn_range).  However we would like
2217          * consistency in testing and feature parity among all, so we should
2218          * try to keep these invariants in place for everybody.
2219          */
2220         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2221         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2222                                                 (VM_PFNMAP|VM_MIXEDMAP));
2223         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2224         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2225
2226         if (addr < vma->vm_start || addr >= vma->vm_end)
2227                 return -EFAULT;
2228         if (track_pfn_insert(vma, &pgprot, pfn))
2229                 return -EINVAL;
2230
2231         ret = insert_pfn(vma, addr, pfn, pgprot);
2232
2233         return ret;
2234 }
2235 EXPORT_SYMBOL(vm_insert_pfn);
2236
2237 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2238                         unsigned long pfn)
2239 {
2240         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2241
2242         if (addr < vma->vm_start || addr >= vma->vm_end)
2243                 return -EFAULT;
2244
2245         /*
2246          * If we don't have pte special, then we have to use the pfn_valid()
2247          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2248          * refcount the page if pfn_valid is true (hence insert_page rather
2249          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2250          * without pte special, it would there be refcounted as a normal page.
2251          */
2252         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2253                 struct page *page;
2254
2255                 page = pfn_to_page(pfn);
2256                 return insert_page(vma, addr, page, vma->vm_page_prot);
2257         }
2258         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2259 }
2260 EXPORT_SYMBOL(vm_insert_mixed);
2261
2262 /*
2263  * maps a range of physical memory into the requested pages. the old
2264  * mappings are removed. any references to nonexistent pages results
2265  * in null mappings (currently treated as "copy-on-access")
2266  */
2267 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2268                         unsigned long addr, unsigned long end,
2269                         unsigned long pfn, pgprot_t prot)
2270 {
2271         pte_t *pte;
2272         spinlock_t *ptl;
2273
2274         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2275         if (!pte)
2276                 return -ENOMEM;
2277         arch_enter_lazy_mmu_mode();
2278         do {
2279                 BUG_ON(!pte_none(*pte));
2280                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2281                 pfn++;
2282         } while (pte++, addr += PAGE_SIZE, addr != end);
2283         arch_leave_lazy_mmu_mode();
2284         pte_unmap_unlock(pte - 1, ptl);
2285         return 0;
2286 }
2287
2288 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2289                         unsigned long addr, unsigned long end,
2290                         unsigned long pfn, pgprot_t prot)
2291 {
2292         pmd_t *pmd;
2293         unsigned long next;
2294
2295         pfn -= addr >> PAGE_SHIFT;
2296         pmd = pmd_alloc(mm, pud, addr);
2297         if (!pmd)
2298                 return -ENOMEM;
2299         VM_BUG_ON(pmd_trans_huge(*pmd));
2300         do {
2301                 next = pmd_addr_end(addr, end);
2302                 if (remap_pte_range(mm, pmd, addr, next,
2303                                 pfn + (addr >> PAGE_SHIFT), prot))
2304                         return -ENOMEM;
2305         } while (pmd++, addr = next, addr != end);
2306         return 0;
2307 }
2308
2309 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2310                         unsigned long addr, unsigned long end,
2311                         unsigned long pfn, pgprot_t prot)
2312 {
2313         pud_t *pud;
2314         unsigned long next;
2315
2316         pfn -= addr >> PAGE_SHIFT;
2317         pud = pud_alloc(mm, pgd, addr);
2318         if (!pud)
2319                 return -ENOMEM;
2320         do {
2321                 next = pud_addr_end(addr, end);
2322                 if (remap_pmd_range(mm, pud, addr, next,
2323                                 pfn + (addr >> PAGE_SHIFT), prot))
2324                         return -ENOMEM;
2325         } while (pud++, addr = next, addr != end);
2326         return 0;
2327 }
2328
2329 /**
2330  * remap_pfn_range - remap kernel memory to userspace
2331  * @vma: user vma to map to
2332  * @addr: target user address to start at
2333  * @pfn: physical address of kernel memory
2334  * @size: size of map area
2335  * @prot: page protection flags for this mapping
2336  *
2337  *  Note: this is only safe if the mm semaphore is held when called.
2338  */
2339 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2340                     unsigned long pfn, unsigned long size, pgprot_t prot)
2341 {
2342         pgd_t *pgd;
2343         unsigned long next;
2344         unsigned long end = addr + PAGE_ALIGN(size);
2345         struct mm_struct *mm = vma->vm_mm;
2346         int err;
2347
2348         /*
2349          * Physically remapped pages are special. Tell the
2350          * rest of the world about it:
2351          *   VM_IO tells people not to look at these pages
2352          *      (accesses can have side effects).
2353          *   VM_PFNMAP tells the core MM that the base pages are just
2354          *      raw PFN mappings, and do not have a "struct page" associated
2355          *      with them.
2356          *   VM_DONTEXPAND
2357          *      Disable vma merging and expanding with mremap().
2358          *   VM_DONTDUMP
2359          *      Omit vma from core dump, even when VM_IO turned off.
2360          *
2361          * There's a horrible special case to handle copy-on-write
2362          * behaviour that some programs depend on. We mark the "original"
2363          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2364          * See vm_normal_page() for details.
2365          */
2366         if (is_cow_mapping(vma->vm_flags)) {
2367                 if (addr != vma->vm_start || end != vma->vm_end)
2368                         return -EINVAL;
2369                 vma->vm_pgoff = pfn;
2370         }
2371
2372         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2373         if (err)
2374                 return -EINVAL;
2375
2376         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2377
2378         BUG_ON(addr >= end);
2379         pfn -= addr >> PAGE_SHIFT;
2380         pgd = pgd_offset(mm, addr);
2381         flush_cache_range(vma, addr, end);
2382         do {
2383                 next = pgd_addr_end(addr, end);
2384                 err = remap_pud_range(mm, pgd, addr, next,
2385                                 pfn + (addr >> PAGE_SHIFT), prot);
2386                 if (err)
2387                         break;
2388         } while (pgd++, addr = next, addr != end);
2389
2390         if (err)
2391                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2392
2393         return err;
2394 }
2395 EXPORT_SYMBOL(remap_pfn_range);
2396
2397 /**
2398  * vm_iomap_memory - remap memory to userspace
2399  * @vma: user vma to map to
2400  * @start: start of area
2401  * @len: size of area
2402  *
2403  * This is a simplified io_remap_pfn_range() for common driver use. The
2404  * driver just needs to give us the physical memory range to be mapped,
2405  * we'll figure out the rest from the vma information.
2406  *
2407  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2408  * whatever write-combining details or similar.
2409  */
2410 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2411 {
2412         unsigned long vm_len, pfn, pages;
2413
2414         /* Check that the physical memory area passed in looks valid */
2415         if (start + len < start)
2416                 return -EINVAL;
2417         /*
2418          * You *really* shouldn't map things that aren't page-aligned,
2419          * but we've historically allowed it because IO memory might
2420          * just have smaller alignment.
2421          */
2422         len += start & ~PAGE_MASK;
2423         pfn = start >> PAGE_SHIFT;
2424         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2425         if (pfn + pages < pfn)
2426                 return -EINVAL;
2427
2428         /* We start the mapping 'vm_pgoff' pages into the area */
2429         if (vma->vm_pgoff > pages)
2430                 return -EINVAL;
2431         pfn += vma->vm_pgoff;
2432         pages -= vma->vm_pgoff;
2433
2434         /* Can we fit all of the mapping? */
2435         vm_len = vma->vm_end - vma->vm_start;
2436         if (vm_len >> PAGE_SHIFT > pages)
2437                 return -EINVAL;
2438
2439         /* Ok, let it rip */
2440         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2441 }
2442 EXPORT_SYMBOL(vm_iomap_memory);
2443
2444 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2445                                      unsigned long addr, unsigned long end,
2446                                      pte_fn_t fn, void *data)
2447 {
2448         pte_t *pte;
2449         int err;
2450         pgtable_t token;
2451         spinlock_t *uninitialized_var(ptl);
2452
2453         pte = (mm == &init_mm) ?
2454                 pte_alloc_kernel(pmd, addr) :
2455                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2456         if (!pte)
2457                 return -ENOMEM;
2458
2459         BUG_ON(pmd_huge(*pmd));
2460
2461         arch_enter_lazy_mmu_mode();
2462
2463         token = pmd_pgtable(*pmd);
2464
2465         do {
2466                 err = fn(pte++, token, addr, data);
2467                 if (err)
2468                         break;
2469         } while (addr += PAGE_SIZE, addr != end);
2470
2471         arch_leave_lazy_mmu_mode();
2472
2473         if (mm != &init_mm)
2474                 pte_unmap_unlock(pte-1, ptl);
2475         return err;
2476 }
2477
2478 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2479                                      unsigned long addr, unsigned long end,
2480                                      pte_fn_t fn, void *data)
2481 {
2482         pmd_t *pmd;
2483         unsigned long next;
2484         int err;
2485
2486         BUG_ON(pud_huge(*pud));
2487
2488         pmd = pmd_alloc(mm, pud, addr);
2489         if (!pmd)
2490                 return -ENOMEM;
2491         do {
2492                 next = pmd_addr_end(addr, end);
2493                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2494                 if (err)
2495                         break;
2496         } while (pmd++, addr = next, addr != end);
2497         return err;
2498 }
2499
2500 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2501                                      unsigned long addr, unsigned long end,
2502                                      pte_fn_t fn, void *data)
2503 {
2504         pud_t *pud;
2505         unsigned long next;
2506         int err;
2507
2508         pud = pud_alloc(mm, pgd, addr);
2509         if (!pud)
2510                 return -ENOMEM;
2511         do {
2512                 next = pud_addr_end(addr, end);
2513                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2514                 if (err)
2515                         break;
2516         } while (pud++, addr = next, addr != end);
2517         return err;
2518 }
2519
2520 /*
2521  * Scan a region of virtual memory, filling in page tables as necessary
2522  * and calling a provided function on each leaf page table.
2523  */
2524 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2525                         unsigned long size, pte_fn_t fn, void *data)
2526 {
2527         pgd_t *pgd;
2528         unsigned long next;
2529         unsigned long end = addr + size;
2530         int err;
2531
2532         BUG_ON(addr >= end);
2533         pgd = pgd_offset(mm, addr);
2534         do {
2535                 next = pgd_addr_end(addr, end);
2536                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2537                 if (err)
2538                         break;
2539         } while (pgd++, addr = next, addr != end);
2540
2541         return err;
2542 }
2543 EXPORT_SYMBOL_GPL(apply_to_page_range);
2544
2545 /*
2546  * handle_pte_fault chooses page fault handler according to an entry
2547  * which was read non-atomically.  Before making any commitment, on
2548  * those architectures or configurations (e.g. i386 with PAE) which
2549  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2550  * must check under lock before unmapping the pte and proceeding
2551  * (but do_wp_page is only called after already making such a check;
2552  * and do_anonymous_page can safely check later on).
2553  */
2554 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2555                                 pte_t *page_table, pte_t orig_pte)
2556 {
2557         int same = 1;
2558 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2559         if (sizeof(pte_t) > sizeof(unsigned long)) {
2560                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2561                 spin_lock(ptl);
2562                 same = pte_same(*page_table, orig_pte);
2563                 spin_unlock(ptl);
2564         }
2565 #endif
2566         pte_unmap(page_table);
2567         return same;
2568 }
2569
2570 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2571 {
2572         /*
2573          * If the source page was a PFN mapping, we don't have
2574          * a "struct page" for it. We do a best-effort copy by
2575          * just copying from the original user address. If that
2576          * fails, we just zero-fill it. Live with it.
2577          */
2578         if (unlikely(!src)) {
2579                 void *kaddr = kmap_atomic(dst);
2580                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2581
2582                 /*
2583                  * This really shouldn't fail, because the page is there
2584                  * in the page tables. But it might just be unreadable,
2585                  * in which case we just give up and fill the result with
2586                  * zeroes.
2587                  */
2588                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2589                         clear_page(kaddr);
2590                 kunmap_atomic(kaddr);
2591                 flush_dcache_page(dst);
2592         } else
2593                 copy_user_highpage(dst, src, va, vma);
2594 }
2595
2596 /*
2597  * This routine handles present pages, when users try to write
2598  * to a shared page. It is done by copying the page to a new address
2599  * and decrementing the shared-page counter for the old page.
2600  *
2601  * Note that this routine assumes that the protection checks have been
2602  * done by the caller (the low-level page fault routine in most cases).
2603  * Thus we can safely just mark it writable once we've done any necessary
2604  * COW.
2605  *
2606  * We also mark the page dirty at this point even though the page will
2607  * change only once the write actually happens. This avoids a few races,
2608  * and potentially makes it more efficient.
2609  *
2610  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2611  * but allow concurrent faults), with pte both mapped and locked.
2612  * We return with mmap_sem still held, but pte unmapped and unlocked.
2613  */
2614 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2615                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2616                 spinlock_t *ptl, pte_t orig_pte)
2617         __releases(ptl)
2618 {
2619         struct page *old_page, *new_page = NULL;
2620         pte_t entry;
2621         int ret = 0;
2622         int page_mkwrite = 0;
2623         struct page *dirty_page = NULL;
2624         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2625         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2626
2627         old_page = vm_normal_page(vma, address, orig_pte);
2628         if (!old_page) {
2629                 /*
2630                  * VM_MIXEDMAP !pfn_valid() case
2631                  *
2632                  * We should not cow pages in a shared writeable mapping.
2633                  * Just mark the pages writable as we can't do any dirty
2634                  * accounting on raw pfn maps.
2635                  */
2636                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2637                                      (VM_WRITE|VM_SHARED))
2638                         goto reuse;
2639                 goto gotten;
2640         }
2641
2642         /*
2643          * Take out anonymous pages first, anonymous shared vmas are
2644          * not dirty accountable.
2645          */
2646         if (PageAnon(old_page) && !PageKsm(old_page)) {
2647                 if (!trylock_page(old_page)) {
2648                         page_cache_get(old_page);
2649                         pte_unmap_unlock(page_table, ptl);
2650                         lock_page(old_page);
2651                         page_table = pte_offset_map_lock(mm, pmd, address,
2652                                                          &ptl);
2653                         if (!pte_same(*page_table, orig_pte)) {
2654                                 unlock_page(old_page);
2655                                 goto unlock;
2656                         }
2657                         page_cache_release(old_page);
2658                 }
2659                 if (reuse_swap_page(old_page)) {
2660                         /*
2661                          * The page is all ours.  Move it to our anon_vma so
2662                          * the rmap code will not search our parent or siblings.
2663                          * Protected against the rmap code by the page lock.
2664                          */
2665                         page_move_anon_rmap(old_page, vma, address);
2666                         unlock_page(old_page);
2667                         goto reuse;
2668                 }
2669                 unlock_page(old_page);
2670         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2671                                         (VM_WRITE|VM_SHARED))) {
2672                 /*
2673                  * Only catch write-faults on shared writable pages,
2674                  * read-only shared pages can get COWed by
2675                  * get_user_pages(.write=1, .force=1).
2676                  */
2677                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2678                         struct vm_fault vmf;
2679                         int tmp;
2680
2681                         vmf.virtual_address = (void __user *)(address &
2682                                                                 PAGE_MASK);
2683                         vmf.pgoff = old_page->index;
2684                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2685                         vmf.page = old_page;
2686
2687                         /*
2688                          * Notify the address space that the page is about to
2689                          * become writable so that it can prohibit this or wait
2690                          * for the page to get into an appropriate state.
2691                          *
2692                          * We do this without the lock held, so that it can
2693                          * sleep if it needs to.
2694                          */
2695                         page_cache_get(old_page);
2696                         pte_unmap_unlock(page_table, ptl);
2697
2698                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2699                         if (unlikely(tmp &
2700                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2701                                 ret = tmp;
2702                                 goto unwritable_page;
2703                         }
2704                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2705                                 lock_page(old_page);
2706                                 if (!old_page->mapping) {
2707                                         ret = 0; /* retry the fault */
2708                                         unlock_page(old_page);
2709                                         goto unwritable_page;
2710                                 }
2711                         } else
2712                                 VM_BUG_ON(!PageLocked(old_page));
2713
2714                         /*
2715                          * Since we dropped the lock we need to revalidate
2716                          * the PTE as someone else may have changed it.  If
2717                          * they did, we just return, as we can count on the
2718                          * MMU to tell us if they didn't also make it writable.
2719                          */
2720                         page_table = pte_offset_map_lock(mm, pmd, address,
2721                                                          &ptl);
2722                         if (!pte_same(*page_table, orig_pte)) {
2723                                 unlock_page(old_page);
2724                                 goto unlock;
2725                         }
2726
2727                         page_mkwrite = 1;
2728                 }
2729                 dirty_page = old_page;
2730                 get_page(dirty_page);
2731
2732 reuse:
2733                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2734                 entry = pte_mkyoung(orig_pte);
2735                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2736                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2737                         update_mmu_cache(vma, address, page_table);
2738                 pte_unmap_unlock(page_table, ptl);
2739                 ret |= VM_FAULT_WRITE;
2740
2741                 if (!dirty_page)
2742                         return ret;
2743
2744                 /*
2745                  * Yes, Virginia, this is actually required to prevent a race
2746                  * with clear_page_dirty_for_io() from clearing the page dirty
2747                  * bit after it clear all dirty ptes, but before a racing
2748                  * do_wp_page installs a dirty pte.
2749                  *
2750                  * __do_fault is protected similarly.
2751                  */
2752                 if (!page_mkwrite) {
2753                         wait_on_page_locked(dirty_page);
2754                         set_page_dirty_balance(dirty_page, page_mkwrite);
2755                         /* file_update_time outside page_lock */
2756                         if (vma->vm_file)
2757                                 file_update_time(vma->vm_file);
2758                 }
2759                 put_page(dirty_page);
2760                 if (page_mkwrite) {
2761                         struct address_space *mapping = dirty_page->mapping;
2762
2763                         set_page_dirty(dirty_page);
2764                         unlock_page(dirty_page);
2765                         page_cache_release(dirty_page);
2766                         if (mapping)    {
2767                                 /*
2768                                  * Some device drivers do not set page.mapping
2769                                  * but still dirty their pages
2770                                  */
2771                                 balance_dirty_pages_ratelimited(mapping);
2772                         }
2773                 }
2774
2775                 return ret;
2776         }
2777
2778         /*
2779          * Ok, we need to copy. Oh, well..
2780          */
2781         page_cache_get(old_page);
2782 gotten:
2783         pte_unmap_unlock(page_table, ptl);
2784
2785         if (unlikely(anon_vma_prepare(vma)))
2786                 goto oom;
2787
2788         if (is_zero_pfn(pte_pfn(orig_pte))) {
2789                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2790                 if (!new_page)
2791                         goto oom;
2792         } else {
2793                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2794                 if (!new_page)
2795                         goto oom;
2796                 cow_user_page(new_page, old_page, address, vma);
2797         }
2798         __SetPageUptodate(new_page);
2799
2800         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2801                 goto oom_free_new;
2802
2803         mmun_start  = address & PAGE_MASK;
2804         mmun_end    = mmun_start + PAGE_SIZE;
2805         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2806
2807         /*
2808          * Re-check the pte - we dropped the lock
2809          */
2810         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2811         if (likely(pte_same(*page_table, orig_pte))) {
2812                 if (old_page) {
2813                         if (!PageAnon(old_page)) {
2814                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2815                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2816                         }
2817                 } else
2818                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2819                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2820                 entry = mk_pte(new_page, vma->vm_page_prot);
2821                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2822                 /*
2823                  * Clear the pte entry and flush it first, before updating the
2824                  * pte with the new entry. This will avoid a race condition
2825                  * seen in the presence of one thread doing SMC and another
2826                  * thread doing COW.
2827                  */
2828                 ptep_clear_flush(vma, address, page_table);
2829                 page_add_new_anon_rmap(new_page, vma, address);
2830                 /*
2831                  * We call the notify macro here because, when using secondary
2832                  * mmu page tables (such as kvm shadow page tables), we want the
2833                  * new page to be mapped directly into the secondary page table.
2834                  */
2835                 set_pte_at_notify(mm, address, page_table, entry);
2836                 update_mmu_cache(vma, address, page_table);
2837                 if (old_page) {
2838                         /*
2839                          * Only after switching the pte to the new page may
2840                          * we remove the mapcount here. Otherwise another
2841                          * process may come and find the rmap count decremented
2842                          * before the pte is switched to the new page, and
2843                          * "reuse" the old page writing into it while our pte
2844                          * here still points into it and can be read by other
2845                          * threads.
2846                          *
2847                          * The critical issue is to order this
2848                          * page_remove_rmap with the ptp_clear_flush above.
2849                          * Those stores are ordered by (if nothing else,)
2850                          * the barrier present in the atomic_add_negative
2851                          * in page_remove_rmap.
2852                          *
2853                          * Then the TLB flush in ptep_clear_flush ensures that
2854                          * no process can access the old page before the
2855                          * decremented mapcount is visible. And the old page
2856                          * cannot be reused until after the decremented
2857                          * mapcount is visible. So transitively, TLBs to
2858                          * old page will be flushed before it can be reused.
2859                          */
2860                         page_remove_rmap(old_page);
2861                 }
2862
2863                 /* Free the old page.. */
2864                 new_page = old_page;
2865                 ret |= VM_FAULT_WRITE;
2866         } else
2867                 mem_cgroup_uncharge_page(new_page);
2868
2869         if (new_page)
2870                 page_cache_release(new_page);
2871 unlock:
2872         pte_unmap_unlock(page_table, ptl);
2873         if (mmun_end > mmun_start)
2874                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2875         if (old_page) {
2876                 /*
2877                  * Don't let another task, with possibly unlocked vma,
2878                  * keep the mlocked page.
2879                  */
2880                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2881                         lock_page(old_page);    /* LRU manipulation */
2882                         munlock_vma_page(old_page);
2883                         unlock_page(old_page);
2884                 }
2885                 page_cache_release(old_page);
2886         }
2887         return ret;
2888 oom_free_new:
2889         page_cache_release(new_page);
2890 oom:
2891         if (old_page)
2892                 page_cache_release(old_page);
2893         return VM_FAULT_OOM;
2894
2895 unwritable_page:
2896         page_cache_release(old_page);
2897         return ret;
2898 }
2899
2900 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2901                 unsigned long start_addr, unsigned long end_addr,
2902                 struct zap_details *details)
2903 {
2904         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2905 }
2906
2907 static inline void unmap_mapping_range_tree(struct rb_root *root,
2908                                             struct zap_details *details)
2909 {
2910         struct vm_area_struct *vma;
2911         pgoff_t vba, vea, zba, zea;
2912
2913         vma_interval_tree_foreach(vma, root,
2914                         details->first_index, details->last_index) {
2915
2916                 vba = vma->vm_pgoff;
2917                 vea = vba + vma_pages(vma) - 1;
2918                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2919                 zba = details->first_index;
2920                 if (zba < vba)
2921                         zba = vba;
2922                 zea = details->last_index;
2923                 if (zea > vea)
2924                         zea = vea;
2925
2926                 unmap_mapping_range_vma(vma,
2927                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2928                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2929                                 details);
2930         }
2931 }
2932
2933 static inline void unmap_mapping_range_list(struct list_head *head,
2934                                             struct zap_details *details)
2935 {
2936         struct vm_area_struct *vma;
2937
2938         /*
2939          * In nonlinear VMAs there is no correspondence between virtual address
2940          * offset and file offset.  So we must perform an exhaustive search
2941          * across *all* the pages in each nonlinear VMA, not just the pages
2942          * whose virtual address lies outside the file truncation point.
2943          */
2944         list_for_each_entry(vma, head, shared.nonlinear) {
2945                 details->nonlinear_vma = vma;
2946                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2947         }
2948 }
2949
2950 /**
2951  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2952  * @mapping: the address space containing mmaps to be unmapped.
2953  * @holebegin: byte in first page to unmap, relative to the start of
2954  * the underlying file.  This will be rounded down to a PAGE_SIZE
2955  * boundary.  Note that this is different from truncate_pagecache(), which
2956  * must keep the partial page.  In contrast, we must get rid of
2957  * partial pages.
2958  * @holelen: size of prospective hole in bytes.  This will be rounded
2959  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2960  * end of the file.
2961  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2962  * but 0 when invalidating pagecache, don't throw away private data.
2963  */
2964 void unmap_mapping_range(struct address_space *mapping,
2965                 loff_t const holebegin, loff_t const holelen, int even_cows)
2966 {
2967         struct zap_details details;
2968         pgoff_t hba = holebegin >> PAGE_SHIFT;
2969         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2970
2971         /* Check for overflow. */
2972         if (sizeof(holelen) > sizeof(hlen)) {
2973                 long long holeend =
2974                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2975                 if (holeend & ~(long long)ULONG_MAX)
2976                         hlen = ULONG_MAX - hba + 1;
2977         }
2978
2979         details.check_mapping = even_cows? NULL: mapping;
2980         details.nonlinear_vma = NULL;
2981         details.first_index = hba;
2982         details.last_index = hba + hlen - 1;
2983         if (details.last_index < details.first_index)
2984                 details.last_index = ULONG_MAX;
2985
2986
2987         mutex_lock(&mapping->i_mmap_mutex);
2988         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2989                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2990         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2991                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2992         mutex_unlock(&mapping->i_mmap_mutex);
2993 }
2994 EXPORT_SYMBOL(unmap_mapping_range);
2995
2996 /*
2997  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2998  * but allow concurrent faults), and pte mapped but not yet locked.
2999  * We return with mmap_sem still held, but pte unmapped and unlocked.
3000  */
3001 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3002                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3003                 unsigned int flags, pte_t orig_pte)
3004 {
3005         spinlock_t *ptl;
3006         struct page *page, *swapcache;
3007         swp_entry_t entry;
3008         pte_t pte;
3009         int locked;
3010         struct mem_cgroup *ptr;
3011         int exclusive = 0;
3012         int ret = 0;
3013
3014         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3015                 goto out;
3016
3017         entry = pte_to_swp_entry(orig_pte);
3018         if (unlikely(non_swap_entry(entry))) {
3019                 if (is_migration_entry(entry)) {
3020                         migration_entry_wait(mm, pmd, address);
3021                 } else if (is_hwpoison_entry(entry)) {
3022                         ret = VM_FAULT_HWPOISON;
3023                 } else {
3024                         print_bad_pte(vma, address, orig_pte, NULL);
3025                         ret = VM_FAULT_SIGBUS;
3026                 }
3027                 goto out;
3028         }
3029         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3030         page = lookup_swap_cache(entry);
3031         if (!page) {
3032                 page = swapin_readahead(entry,
3033                                         GFP_HIGHUSER_MOVABLE, vma, address);
3034                 if (!page) {
3035                         /*
3036                          * Back out if somebody else faulted in this pte
3037                          * while we released the pte lock.
3038                          */
3039                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3040                         if (likely(pte_same(*page_table, orig_pte)))
3041                                 ret = VM_FAULT_OOM;
3042                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3043                         goto unlock;
3044                 }
3045
3046                 /* Had to read the page from swap area: Major fault */
3047                 ret = VM_FAULT_MAJOR;
3048                 count_vm_event(PGMAJFAULT);
3049                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3050         } else if (PageHWPoison(page)) {
3051                 /*
3052                  * hwpoisoned dirty swapcache pages are kept for killing
3053                  * owner processes (which may be unknown at hwpoison time)
3054                  */
3055                 ret = VM_FAULT_HWPOISON;
3056                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3057                 swapcache = page;
3058                 goto out_release;
3059         }
3060
3061         swapcache = page;
3062         locked = lock_page_or_retry(page, mm, flags);
3063
3064         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3065         if (!locked) {
3066                 ret |= VM_FAULT_RETRY;
3067                 goto out_release;
3068         }
3069
3070         /*
3071          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3072          * release the swapcache from under us.  The page pin, and pte_same
3073          * test below, are not enough to exclude that.  Even if it is still
3074          * swapcache, we need to check that the page's swap has not changed.
3075          */
3076         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3077                 goto out_page;
3078
3079         page = ksm_might_need_to_copy(page, vma, address);
3080         if (unlikely(!page)) {
3081                 ret = VM_FAULT_OOM;
3082                 page = swapcache;
3083                 goto out_page;
3084         }
3085
3086         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3087                 ret = VM_FAULT_OOM;
3088                 goto out_page;
3089         }
3090
3091         /*
3092          * Back out if somebody else already faulted in this pte.
3093          */
3094         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3095         if (unlikely(!pte_same(*page_table, orig_pte)))
3096                 goto out_nomap;
3097
3098         if (unlikely(!PageUptodate(page))) {
3099                 ret = VM_FAULT_SIGBUS;
3100                 goto out_nomap;
3101         }
3102
3103         /*
3104          * The page isn't present yet, go ahead with the fault.
3105          *
3106          * Be careful about the sequence of operations here.
3107          * To get its accounting right, reuse_swap_page() must be called
3108          * while the page is counted on swap but not yet in mapcount i.e.
3109          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3110          * must be called after the swap_free(), or it will never succeed.
3111          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3112          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3113          * in page->private. In this case, a record in swap_cgroup  is silently
3114          * discarded at swap_free().
3115          */
3116
3117         inc_mm_counter_fast(mm, MM_ANONPAGES);
3118         dec_mm_counter_fast(mm, MM_SWAPENTS);
3119         pte = mk_pte(page, vma->vm_page_prot);
3120         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3121                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3122                 flags &= ~FAULT_FLAG_WRITE;
3123                 ret |= VM_FAULT_WRITE;
3124                 exclusive = 1;
3125         }
3126         flush_icache_page(vma, page);
3127         if (pte_swp_soft_dirty(orig_pte))
3128                 pte = pte_mksoft_dirty(pte);
3129         set_pte_at(mm, address, page_table, pte);
3130         if (page == swapcache)
3131                 do_page_add_anon_rmap(page, vma, address, exclusive);
3132         else /* ksm created a completely new copy */
3133                 page_add_new_anon_rmap(page, vma, address);
3134         /* It's better to call commit-charge after rmap is established */
3135         mem_cgroup_commit_charge_swapin(page, ptr);
3136
3137         swap_free(entry);
3138         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3139                 try_to_free_swap(page);
3140         unlock_page(page);
3141         if (page != swapcache) {
3142                 /*
3143                  * Hold the lock to avoid the swap entry to be reused
3144                  * until we take the PT lock for the pte_same() check
3145                  * (to avoid false positives from pte_same). For
3146                  * further safety release the lock after the swap_free
3147                  * so that the swap count won't change under a
3148                  * parallel locked swapcache.
3149                  */
3150                 unlock_page(swapcache);
3151                 page_cache_release(swapcache);
3152         }
3153
3154         if (flags & FAULT_FLAG_WRITE) {
3155                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3156                 if (ret & VM_FAULT_ERROR)
3157                         ret &= VM_FAULT_ERROR;
3158                 goto out;
3159         }
3160
3161         /* No need to invalidate - it was non-present before */
3162         update_mmu_cache(vma, address, page_table);
3163 unlock:
3164         pte_unmap_unlock(page_table, ptl);
3165 out:
3166         return ret;
3167 out_nomap:
3168         mem_cgroup_cancel_charge_swapin(ptr);
3169         pte_unmap_unlock(page_table, ptl);
3170 out_page:
3171         unlock_page(page);
3172 out_release:
3173         page_cache_release(page);
3174         if (page != swapcache) {
3175                 unlock_page(swapcache);
3176                 page_cache_release(swapcache);
3177         }
3178         return ret;
3179 }
3180
3181 /*
3182  * This is like a special single-page "expand_{down|up}wards()",
3183  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3184  * doesn't hit another vma.
3185  */
3186 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3187 {
3188         address &= PAGE_MASK;
3189         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3190                 struct vm_area_struct *prev = vma->vm_prev;
3191
3192                 /*
3193                  * Is there a mapping abutting this one below?
3194                  *
3195                  * That's only ok if it's the same stack mapping
3196                  * that has gotten split..
3197                  */
3198                 if (prev && prev->vm_end == address)
3199                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3200
3201                 expand_downwards(vma, address - PAGE_SIZE);
3202         }
3203         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3204                 struct vm_area_struct *next = vma->vm_next;
3205
3206                 /* As VM_GROWSDOWN but s/below/above/ */
3207                 if (next && next->vm_start == address + PAGE_SIZE)
3208                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3209
3210                 expand_upwards(vma, address + PAGE_SIZE);
3211         }
3212         return 0;
3213 }
3214
3215 /*
3216  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3217  * but allow concurrent faults), and pte mapped but not yet locked.
3218  * We return with mmap_sem still held, but pte unmapped and unlocked.
3219  */
3220 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3221                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3222                 unsigned int flags)
3223 {
3224         struct page *page;
3225         spinlock_t *ptl;
3226         pte_t entry;
3227
3228         pte_unmap(page_table);
3229
3230         /* Check if we need to add a guard page to the stack */
3231         if (check_stack_guard_page(vma, address) < 0)
3232                 return VM_FAULT_SIGBUS;
3233
3234         /* Use the zero-page for reads */
3235         if (!(flags & FAULT_FLAG_WRITE)) {
3236                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3237                                                 vma->vm_page_prot));
3238                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3239                 if (!pte_none(*page_table))
3240                         goto unlock;
3241                 goto setpte;
3242         }
3243
3244         /* Allocate our own private page. */
3245         if (unlikely(anon_vma_prepare(vma)))
3246                 goto oom;
3247         page = alloc_zeroed_user_highpage_movable(vma, address);
3248         if (!page)
3249                 goto oom;
3250         /*
3251          * The memory barrier inside __SetPageUptodate makes sure that
3252          * preceeding stores to the page contents become visible before
3253          * the set_pte_at() write.
3254          */
3255         __SetPageUptodate(page);
3256
3257         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3258                 goto oom_free_page;
3259
3260         entry = mk_pte(page, vma->vm_page_prot);
3261         if (vma->vm_flags & VM_WRITE)
3262                 entry = pte_mkwrite(pte_mkdirty(entry));
3263
3264         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3265         if (!pte_none(*page_table))
3266                 goto release;
3267
3268         inc_mm_counter_fast(mm, MM_ANONPAGES);
3269         page_add_new_anon_rmap(page, vma, address);
3270 setpte:
3271         set_pte_at(mm, address, page_table, entry);
3272
3273         /* No need to invalidate - it was non-present before */
3274         update_mmu_cache(vma, address, page_table);
3275 unlock:
3276         pte_unmap_unlock(page_table, ptl);
3277         return 0;
3278 release:
3279         mem_cgroup_uncharge_page(page);
3280         page_cache_release(page);
3281         goto unlock;
3282 oom_free_page:
3283         page_cache_release(page);
3284 oom:
3285         return VM_FAULT_OOM;
3286 }
3287
3288 /*
3289  * __do_fault() tries to create a new page mapping. It aggressively
3290  * tries to share with existing pages, but makes a separate copy if
3291  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3292  * the next page fault.
3293  *
3294  * As this is called only for pages that do not currently exist, we
3295  * do not need to flush old virtual caches or the TLB.
3296  *
3297  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3298  * but allow concurrent faults), and pte neither mapped nor locked.
3299  * We return with mmap_sem still held, but pte unmapped and unlocked.
3300  */
3301 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3302                 unsigned long address, pmd_t *pmd,
3303                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3304 {
3305         pte_t *page_table;
3306         spinlock_t *ptl;
3307         struct page *page;
3308         struct page *cow_page;
3309         pte_t entry;
3310         int anon = 0;
3311         struct page *dirty_page = NULL;
3312         struct vm_fault vmf;
3313         int ret;
3314         int page_mkwrite = 0;
3315
3316         /*
3317          * If we do COW later, allocate page befor taking lock_page()
3318          * on the file cache page. This will reduce lock holding time.
3319          */
3320         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3321
3322                 if (unlikely(anon_vma_prepare(vma)))
3323                         return VM_FAULT_OOM;
3324
3325                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3326                 if (!cow_page)
3327                         return VM_FAULT_OOM;
3328
3329                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3330                         page_cache_release(cow_page);
3331                         return VM_FAULT_OOM;
3332                 }
3333         } else
3334                 cow_page = NULL;
3335
3336         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3337         vmf.pgoff = pgoff;
3338         vmf.flags = flags;
3339         vmf.page = NULL;
3340
3341         ret = vma->vm_ops->fault(vma, &vmf);
3342         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3343                             VM_FAULT_RETRY)))
3344                 goto uncharge_out;
3345
3346         if (unlikely(PageHWPoison(vmf.page))) {
3347                 if (ret & VM_FAULT_LOCKED)
3348                         unlock_page(vmf.page);
3349                 ret = VM_FAULT_HWPOISON;
3350                 goto uncharge_out;
3351         }
3352
3353         /*
3354          * For consistency in subsequent calls, make the faulted page always
3355          * locked.
3356          */
3357         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3358                 lock_page(vmf.page);
3359         else
3360                 VM_BUG_ON(!PageLocked(vmf.page));
3361
3362         /*
3363          * Should we do an early C-O-W break?
3364          */
3365         page = vmf.page;
3366         if (flags & FAULT_FLAG_WRITE) {
3367                 if (!(vma->vm_flags & VM_SHARED)) {
3368                         page = cow_page;
3369                         anon = 1;
3370                         copy_user_highpage(page, vmf.page, address, vma);
3371                         __SetPageUptodate(page);
3372                 } else {
3373                         /*
3374                          * If the page will be shareable, see if the backing
3375                          * address space wants to know that the page is about
3376                          * to become writable
3377                          */
3378                         if (vma->vm_ops->page_mkwrite) {
3379                                 int tmp;
3380
3381                                 unlock_page(page);
3382                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3383                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3384                                 if (unlikely(tmp &
3385                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3386                                         ret = tmp;
3387                                         goto unwritable_page;
3388                                 }
3389                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3390                                         lock_page(page);
3391                                         if (!page->mapping) {
3392                                                 ret = 0; /* retry the fault */
3393                                                 unlock_page(page);
3394                                                 goto unwritable_page;
3395                                         }
3396                                 } else
3397                                         VM_BUG_ON(!PageLocked(page));
3398                                 page_mkwrite = 1;
3399                         }
3400                 }
3401
3402         }
3403
3404         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3405
3406         /*
3407          * This silly early PAGE_DIRTY setting removes a race
3408          * due to the bad i386 page protection. But it's valid
3409          * for other architectures too.
3410          *
3411          * Note that if FAULT_FLAG_WRITE is set, we either now have
3412          * an exclusive copy of the page, or this is a shared mapping,
3413          * so we can make it writable and dirty to avoid having to
3414          * handle that later.
3415          */
3416         /* Only go through if we didn't race with anybody else... */
3417         if (likely(pte_same(*page_table, orig_pte))) {
3418                 flush_icache_page(vma, page);
3419                 entry = mk_pte(page, vma->vm_page_prot);
3420                 if (flags & FAULT_FLAG_WRITE)
3421                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3422                 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3423                         pte_mksoft_dirty(entry);
3424                 if (anon) {
3425                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3426                         page_add_new_anon_rmap(page, vma, address);
3427                 } else {
3428                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3429                         page_add_file_rmap(page);
3430                         if (flags & FAULT_FLAG_WRITE) {
3431                                 dirty_page = page;
3432                                 get_page(dirty_page);
3433                         }
3434                 }
3435                 set_pte_at(mm, address, page_table, entry);
3436
3437                 /* no need to invalidate: a not-present page won't be cached */
3438                 update_mmu_cache(vma, address, page_table);
3439         } else {
3440                 if (cow_page)
3441                         mem_cgroup_uncharge_page(cow_page);
3442                 if (anon)
3443                         page_cache_release(page);
3444                 else
3445                         anon = 1; /* no anon but release faulted_page */
3446         }
3447
3448         pte_unmap_unlock(page_table, ptl);
3449
3450         if (dirty_page) {
3451                 struct address_space *mapping = page->mapping;
3452                 int dirtied = 0;
3453
3454                 if (set_page_dirty(dirty_page))
3455                         dirtied = 1;
3456                 unlock_page(dirty_page);
3457                 put_page(dirty_page);
3458                 if ((dirtied || page_mkwrite) && mapping) {
3459                         /*
3460                          * Some device drivers do not set page.mapping but still
3461                          * dirty their pages
3462                          */
3463                         balance_dirty_pages_ratelimited(mapping);
3464                 }
3465
3466                 /* file_update_time outside page_lock */
3467                 if (vma->vm_file && !page_mkwrite)
3468                         file_update_time(vma->vm_file);
3469         } else {
3470                 unlock_page(vmf.page);
3471                 if (anon)
3472                         page_cache_release(vmf.page);
3473         }
3474
3475         return ret;
3476
3477 unwritable_page:
3478         page_cache_release(page);
3479         return ret;
3480 uncharge_out:
3481         /* fs's fault handler get error */
3482         if (cow_page) {
3483                 mem_cgroup_uncharge_page(cow_page);
3484                 page_cache_release(cow_page);
3485         }
3486         return ret;
3487 }
3488
3489 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3490                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3491                 unsigned int flags, pte_t orig_pte)
3492 {
3493         pgoff_t pgoff = (((address & PAGE_MASK)
3494                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3495
3496         pte_unmap(page_table);
3497         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3498 }
3499
3500 /*
3501  * Fault of a previously existing named mapping. Repopulate the pte
3502  * from the encoded file_pte if possible. This enables swappable
3503  * nonlinear vmas.
3504  *
3505  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3506  * but allow concurrent faults), and pte mapped but not yet locked.
3507  * We return with mmap_sem still held, but pte unmapped and unlocked.
3508  */
3509 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3510                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3511                 unsigned int flags, pte_t orig_pte)
3512 {
3513         pgoff_t pgoff;
3514
3515         flags |= FAULT_FLAG_NONLINEAR;
3516
3517         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3518                 return 0;
3519
3520         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3521                 /*
3522                  * Page table corrupted: show pte and kill process.
3523                  */
3524                 print_bad_pte(vma, address, orig_pte, NULL);
3525                 return VM_FAULT_SIGBUS;
3526         }
3527
3528         pgoff = pte_to_pgoff(orig_pte);
3529         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3530 }
3531
3532 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3533                                 unsigned long addr, int current_nid)
3534 {
3535         get_page(page);
3536
3537         count_vm_numa_event(NUMA_HINT_FAULTS);
3538         if (current_nid == numa_node_id())
3539                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3540
3541         return mpol_misplaced(page, vma, addr);
3542 }
3543
3544 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3545                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3546 {
3547         struct page *page = NULL;
3548         spinlock_t *ptl;
3549         int current_nid = -1;
3550         int target_nid;
3551         bool migrated = false;
3552
3553         /*
3554         * The "pte" at this point cannot be used safely without
3555         * validation through pte_unmap_same(). It's of NUMA type but
3556         * the pfn may be screwed if the read is non atomic.
3557         *
3558         * ptep_modify_prot_start is not called as this is clearing
3559         * the _PAGE_NUMA bit and it is not really expected that there
3560         * would be concurrent hardware modifications to the PTE.
3561         */
3562         ptl = pte_lockptr(mm, pmd);
3563         spin_lock(ptl);
3564         if (unlikely(!pte_same(*ptep, pte))) {
3565                 pte_unmap_unlock(ptep, ptl);
3566                 goto out;
3567         }
3568
3569         pte = pte_mknonnuma(pte);
3570         set_pte_at(mm, addr, ptep, pte);
3571         update_mmu_cache(vma, addr, ptep);
3572
3573         page = vm_normal_page(vma, addr, pte);
3574         if (!page) {
3575                 pte_unmap_unlock(ptep, ptl);
3576                 return 0;
3577         }
3578
3579         current_nid = page_to_nid(page);
3580         target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3581         pte_unmap_unlock(ptep, ptl);
3582         if (target_nid == -1) {
3583                 /*
3584                  * Account for the fault against the current node if it not
3585                  * being replaced regardless of where the page is located.
3586                  */
3587                 current_nid = numa_node_id();
3588                 put_page(page);
3589                 goto out;
3590         }
3591
3592         /* Migrate to the requested node */
3593         migrated = migrate_misplaced_page(page, target_nid);
3594         if (migrated)
3595                 current_nid = target_nid;
3596
3597 out:
3598         if (current_nid != -1)
3599                 task_numa_fault(current_nid, 1, migrated);
3600         return 0;
3601 }
3602
3603 /* NUMA hinting page fault entry point for regular pmds */
3604 #ifdef CONFIG_NUMA_BALANCING
3605 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3606                      unsigned long addr, pmd_t *pmdp)
3607 {
3608         pmd_t pmd;
3609         pte_t *pte, *orig_pte;
3610         unsigned long _addr = addr & PMD_MASK;
3611         unsigned long offset;
3612         spinlock_t *ptl;
3613         bool numa = false;
3614         int local_nid = numa_node_id();
3615
3616         spin_lock(&mm->page_table_lock);
3617         pmd = *pmdp;
3618         if (pmd_numa(pmd)) {
3619                 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3620                 numa = true;
3621         }
3622         spin_unlock(&mm->page_table_lock);
3623
3624         if (!numa)
3625                 return 0;
3626
3627         /* we're in a page fault so some vma must be in the range */
3628         BUG_ON(!vma);
3629         BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3630         offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3631         VM_BUG_ON(offset >= PMD_SIZE);
3632         orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3633         pte += offset >> PAGE_SHIFT;
3634         for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3635                 pte_t pteval = *pte;
3636                 struct page *page;
3637                 int curr_nid = local_nid;
3638                 int target_nid;
3639                 bool migrated;
3640                 if (!pte_present(pteval))
3641                         continue;
3642                 if (!pte_numa(pteval))
3643                         continue;
3644                 if (addr >= vma->vm_end) {
3645                         vma = find_vma(mm, addr);
3646                         /* there's a pte present so there must be a vma */
3647                         BUG_ON(!vma);
3648                         BUG_ON(addr < vma->vm_start);
3649                 }
3650                 if (pte_numa(pteval)) {
3651                         pteval = pte_mknonnuma(pteval);
3652                         set_pte_at(mm, addr, pte, pteval);
3653                 }
3654                 page = vm_normal_page(vma, addr, pteval);
3655                 if (unlikely(!page))
3656                         continue;
3657                 /* only check non-shared pages */
3658                 if (unlikely(page_mapcount(page) != 1))
3659                         continue;
3660
3661                 /*
3662                  * Note that the NUMA fault is later accounted to either
3663                  * the node that is currently running or where the page is
3664                  * migrated to.
3665                  */
3666                 curr_nid = local_nid;
3667                 target_nid = numa_migrate_prep(page, vma, addr,
3668                                                page_to_nid(page));
3669                 if (target_nid == -1) {
3670                         put_page(page);
3671                         continue;
3672                 }
3673
3674                 /* Migrate to the requested node */
3675                 pte_unmap_unlock(pte, ptl);
3676                 migrated = migrate_misplaced_page(page, target_nid);
3677                 if (migrated)
3678                         curr_nid = target_nid;
3679                 task_numa_fault(curr_nid, 1, migrated);
3680
3681                 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3682         }
3683         pte_unmap_unlock(orig_pte, ptl);
3684
3685         return 0;
3686 }
3687 #else
3688 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3689                      unsigned long addr, pmd_t *pmdp)
3690 {
3691         BUG();
3692         return 0;
3693 }
3694 #endif /* CONFIG_NUMA_BALANCING */
3695
3696 /*
3697  * These routines also need to handle stuff like marking pages dirty
3698  * and/or accessed for architectures that don't do it in hardware (most
3699  * RISC architectures).  The early dirtying is also good on the i386.
3700  *
3701  * There is also a hook called "update_mmu_cache()" that architectures
3702  * with external mmu caches can use to update those (ie the Sparc or
3703  * PowerPC hashed page tables that act as extended TLBs).
3704  *
3705  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3706  * but allow concurrent faults), and pte mapped but not yet locked.
3707  * We return with mmap_sem still held, but pte unmapped and unlocked.
3708  */
3709 int handle_pte_fault(struct mm_struct *mm,
3710                      struct vm_area_struct *vma, unsigned long address,
3711                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3712 {
3713         pte_t entry;
3714         spinlock_t *ptl;
3715
3716         entry = *pte;
3717         if (!pte_present(entry)) {
3718                 if (pte_none(entry)) {
3719                         if (vma->vm_ops) {
3720                                 if (likely(vma->vm_ops->fault))
3721                                         return do_linear_fault(mm, vma, address,
3722                                                 pte, pmd, flags, entry);
3723                         }
3724                         return do_anonymous_page(mm, vma, address,
3725                                                  pte, pmd, flags);
3726                 }
3727                 if (pte_file(entry))
3728                         return do_nonlinear_fault(mm, vma, address,
3729                                         pte, pmd, flags, entry);
3730                 return do_swap_page(mm, vma, address,
3731                                         pte, pmd, flags, entry);
3732         }
3733
3734         if (pte_numa(entry))
3735                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3736
3737         ptl = pte_lockptr(mm, pmd);
3738         spin_lock(ptl);
3739         if (unlikely(!pte_same(*pte, entry)))
3740                 goto unlock;
3741         if (flags & FAULT_FLAG_WRITE) {
3742                 if (!pte_write(entry))
3743                         return do_wp_page(mm, vma, address,
3744                                         pte, pmd, ptl, entry);
3745                 entry = pte_mkdirty(entry);
3746         }
3747         entry = pte_mkyoung(entry);
3748         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3749                 update_mmu_cache(vma, address, pte);
3750         } else {
3751                 /*
3752                  * This is needed only for protection faults but the arch code
3753                  * is not yet telling us if this is a protection fault or not.
3754                  * This still avoids useless tlb flushes for .text page faults
3755                  * with threads.
3756                  */
3757                 if (flags & FAULT_FLAG_WRITE)
3758                         flush_tlb_fix_spurious_fault(vma, address);
3759         }
3760 unlock:
3761         pte_unmap_unlock(pte, ptl);
3762         return 0;
3763 }
3764
3765 /*
3766  * By the time we get here, we already hold the mm semaphore
3767  */
3768 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3769                 unsigned long address, unsigned int flags)
3770 {
3771         pgd_t *pgd;
3772         pud_t *pud;
3773         pmd_t *pmd;
3774         pte_t *pte;
3775
3776         __set_current_state(TASK_RUNNING);
3777
3778         count_vm_event(PGFAULT);
3779         mem_cgroup_count_vm_event(mm, PGFAULT);
3780
3781         /* do counter updates before entering really critical section. */
3782         check_sync_rss_stat(current);
3783
3784         if (unlikely(is_vm_hugetlb_page(vma)))
3785                 return hugetlb_fault(mm, vma, address, flags);
3786
3787 retry:
3788         pgd = pgd_offset(mm, address);
3789         pud = pud_alloc(mm, pgd, address);
3790         if (!pud)
3791                 return VM_FAULT_OOM;
3792         pmd = pmd_alloc(mm, pud, address);
3793         if (!pmd)
3794                 return VM_FAULT_OOM;
3795         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3796                 if (!vma->vm_ops)
3797                         return do_huge_pmd_anonymous_page(mm, vma, address,
3798                                                           pmd, flags);
3799         } else {
3800                 pmd_t orig_pmd = *pmd;
3801                 int ret;
3802
3803                 barrier();
3804                 if (pmd_trans_huge(orig_pmd)) {
3805                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3806
3807                         /*
3808                          * If the pmd is splitting, return and retry the
3809                          * the fault.  Alternative: wait until the split
3810                          * is done, and goto retry.
3811                          */
3812                         if (pmd_trans_splitting(orig_pmd))
3813                                 return 0;
3814
3815                         if (pmd_numa(orig_pmd))
3816                                 return do_huge_pmd_numa_page(mm, vma, address,
3817                                                              orig_pmd, pmd);
3818
3819                         if (dirty && !pmd_write(orig_pmd)) {
3820                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3821                                                           orig_pmd);
3822                                 /*
3823                                  * If COW results in an oom, the huge pmd will
3824                                  * have been split, so retry the fault on the
3825                                  * pte for a smaller charge.
3826                                  */
3827                                 if (unlikely(ret & VM_FAULT_OOM))
3828                                         goto retry;
3829                                 return ret;
3830                         } else {
3831                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3832                                                       orig_pmd, dirty);
3833                         }
3834
3835                         return 0;
3836                 }
3837         }
3838
3839         if (pmd_numa(*pmd))
3840                 return do_pmd_numa_page(mm, vma, address, pmd);
3841
3842         /*
3843          * Use __pte_alloc instead of pte_alloc_map, because we can't
3844          * run pte_offset_map on the pmd, if an huge pmd could
3845          * materialize from under us from a different thread.
3846          */
3847         if (unlikely(pmd_none(*pmd)) &&
3848             unlikely(__pte_alloc(mm, vma, pmd, address)))
3849                 return VM_FAULT_OOM;
3850         /* if an huge pmd materialized from under us just retry later */
3851         if (unlikely(pmd_trans_huge(*pmd)))
3852                 return 0;
3853         /*
3854          * A regular pmd is established and it can't morph into a huge pmd
3855          * from under us anymore at this point because we hold the mmap_sem
3856          * read mode and khugepaged takes it in write mode. So now it's
3857          * safe to run pte_offset_map().
3858          */
3859         pte = pte_offset_map(pmd, address);
3860
3861         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3862 }
3863
3864 #ifndef __PAGETABLE_PUD_FOLDED
3865 /*
3866  * Allocate page upper directory.
3867  * We've already handled the fast-path in-line.
3868  */
3869 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3870 {
3871         pud_t *new = pud_alloc_one(mm, address);
3872         if (!new)
3873                 return -ENOMEM;
3874
3875         smp_wmb(); /* See comment in __pte_alloc */
3876
3877         spin_lock(&mm->page_table_lock);
3878         if (pgd_present(*pgd))          /* Another has populated it */
3879                 pud_free(mm, new);
3880         else
3881                 pgd_populate(mm, pgd, new);
3882         spin_unlock(&mm->page_table_lock);
3883         return 0;
3884 }
3885 #endif /* __PAGETABLE_PUD_FOLDED */
3886
3887 #ifndef __PAGETABLE_PMD_FOLDED
3888 /*
3889  * Allocate page middle directory.
3890  * We've already handled the fast-path in-line.
3891  */
3892 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3893 {
3894         pmd_t *new = pmd_alloc_one(mm, address);
3895         if (!new)
3896                 return -ENOMEM;
3897
3898         smp_wmb(); /* See comment in __pte_alloc */
3899
3900         spin_lock(&mm->page_table_lock);
3901 #ifndef __ARCH_HAS_4LEVEL_HACK
3902         if (pud_present(*pud))          /* Another has populated it */
3903                 pmd_free(mm, new);
3904         else
3905                 pud_populate(mm, pud, new);
3906 #else
3907         if (pgd_present(*pud))          /* Another has populated it */
3908                 pmd_free(mm, new);
3909         else
3910                 pgd_populate(mm, pud, new);
3911 #endif /* __ARCH_HAS_4LEVEL_HACK */
3912         spin_unlock(&mm->page_table_lock);
3913         return 0;
3914 }
3915 #endif /* __PAGETABLE_PMD_FOLDED */
3916
3917 #if !defined(__HAVE_ARCH_GATE_AREA)
3918
3919 #if defined(AT_SYSINFO_EHDR)
3920 static struct vm_area_struct gate_vma;
3921
3922 static int __init gate_vma_init(void)
3923 {
3924         gate_vma.vm_mm = NULL;
3925         gate_vma.vm_start = FIXADDR_USER_START;
3926         gate_vma.vm_end = FIXADDR_USER_END;
3927         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3928         gate_vma.vm_page_prot = __P101;
3929
3930         return 0;
3931 }
3932 __initcall(gate_vma_init);
3933 #endif
3934
3935 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3936 {
3937 #ifdef AT_SYSINFO_EHDR
3938         return &gate_vma;
3939 #else
3940         return NULL;
3941 #endif
3942 }
3943
3944 int in_gate_area_no_mm(unsigned long addr)
3945 {
3946 #ifdef AT_SYSINFO_EHDR
3947         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3948                 return 1;
3949 #endif
3950         return 0;
3951 }
3952
3953 #endif  /* __HAVE_ARCH_GATE_AREA */
3954
3955 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3956                 pte_t **ptepp, spinlock_t **ptlp)
3957 {
3958         pgd_t *pgd;
3959         pud_t *pud;
3960         pmd_t *pmd;
3961         pte_t *ptep;
3962
3963         pgd = pgd_offset(mm, address);
3964         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3965                 goto out;
3966
3967         pud = pud_offset(pgd, address);
3968         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3969                 goto out;
3970
3971         pmd = pmd_offset(pud, address);
3972         VM_BUG_ON(pmd_trans_huge(*pmd));
3973         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3974                 goto out;
3975
3976         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3977         if (pmd_huge(*pmd))
3978                 goto out;
3979
3980         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3981         if (!ptep)
3982                 goto out;
3983         if (!pte_present(*ptep))
3984                 goto unlock;
3985         *ptepp = ptep;
3986         return 0;
3987 unlock:
3988         pte_unmap_unlock(ptep, *ptlp);
3989 out:
3990         return -EINVAL;
3991 }
3992
3993 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3994                              pte_t **ptepp, spinlock_t **ptlp)
3995 {
3996         int res;
3997
3998         /* (void) is needed to make gcc happy */
3999         (void) __cond_lock(*ptlp,
4000                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
4001         return res;
4002 }
4003
4004 /**
4005  * follow_pfn - look up PFN at a user virtual address
4006  * @vma: memory mapping
4007  * @address: user virtual address
4008  * @pfn: location to store found PFN
4009  *
4010  * Only IO mappings and raw PFN mappings are allowed.
4011  *
4012  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4013  */
4014 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4015         unsigned long *pfn)
4016 {
4017         int ret = -EINVAL;
4018         spinlock_t *ptl;
4019         pte_t *ptep;
4020
4021         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4022                 return ret;
4023
4024         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4025         if (ret)
4026                 return ret;
4027         *pfn = pte_pfn(*ptep);
4028         pte_unmap_unlock(ptep, ptl);
4029         return 0;
4030 }
4031 EXPORT_SYMBOL(follow_pfn);
4032
4033 #ifdef CONFIG_HAVE_IOREMAP_PROT
4034 int follow_phys(struct vm_area_struct *vma,
4035                 unsigned long address, unsigned int flags,
4036                 unsigned long *prot, resource_size_t *phys)
4037 {
4038         int ret = -EINVAL;
4039         pte_t *ptep, pte;
4040         spinlock_t *ptl;
4041
4042         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4043                 goto out;
4044
4045         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4046                 goto out;
4047         pte = *ptep;
4048
4049         if ((flags & FOLL_WRITE) && !pte_write(pte))
4050                 goto unlock;
4051
4052         *prot = pgprot_val(pte_pgprot(pte));
4053         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4054
4055         ret = 0;
4056 unlock:
4057         pte_unmap_unlock(ptep, ptl);
4058 out:
4059         return ret;
4060 }
4061
4062 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4063                         void *buf, int len, int write)
4064 {
4065         resource_size_t phys_addr;
4066         unsigned long prot = 0;
4067         void __iomem *maddr;
4068         int offset = addr & (PAGE_SIZE-1);
4069
4070         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4071                 return -EINVAL;
4072
4073         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4074         if (write)
4075                 memcpy_toio(maddr + offset, buf, len);
4076         else
4077                 memcpy_fromio(buf, maddr + offset, len);
4078         iounmap(maddr);
4079
4080         return len;
4081 }
4082 EXPORT_SYMBOL_GPL(generic_access_phys);
4083 #endif
4084
4085 /*
4086  * Access another process' address space as given in mm.  If non-NULL, use the
4087  * given task for page fault accounting.
4088  */
4089 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4090                 unsigned long addr, void *buf, int len, int write)
4091 {
4092         struct vm_area_struct *vma;
4093         void *old_buf = buf;
4094
4095         down_read(&mm->mmap_sem);
4096         /* ignore errors, just check how much was successfully transferred */
4097         while (len) {
4098                 int bytes, ret, offset;
4099                 void *maddr;
4100                 struct page *page = NULL;
4101
4102                 ret = get_user_pages(tsk, mm, addr, 1,
4103                                 write, 1, &page, &vma);
4104                 if (ret <= 0) {
4105                         /*
4106                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4107                          * we can access using slightly different code.
4108                          */
4109 #ifdef CONFIG_HAVE_IOREMAP_PROT
4110                         vma = find_vma(mm, addr);
4111                         if (!vma || vma->vm_start > addr)
4112                                 break;
4113                         if (vma->vm_ops && vma->vm_ops->access)
4114                                 ret = vma->vm_ops->access(vma, addr, buf,
4115                                                           len, write);
4116                         if (ret <= 0)
4117 #endif
4118                                 break;
4119                         bytes = ret;
4120                 } else {
4121                         bytes = len;
4122                         offset = addr & (PAGE_SIZE-1);
4123                         if (bytes > PAGE_SIZE-offset)
4124                                 bytes = PAGE_SIZE-offset;
4125
4126                         maddr = kmap(page);
4127                         if (write) {
4128                                 copy_to_user_page(vma, page, addr,
4129                                                   maddr + offset, buf, bytes);
4130                                 set_page_dirty_lock(page);
4131                         } else {
4132                                 copy_from_user_page(vma, page, addr,
4133                                                     buf, maddr + offset, bytes);
4134                         }
4135                         kunmap(page);
4136                         page_cache_release(page);
4137                 }
4138                 len -= bytes;
4139                 buf += bytes;
4140                 addr += bytes;
4141         }
4142         up_read(&mm->mmap_sem);
4143
4144         return buf - old_buf;
4145 }
4146
4147 /**
4148  * access_remote_vm - access another process' address space
4149  * @mm:         the mm_struct of the target address space
4150  * @addr:       start address to access
4151  * @buf:        source or destination buffer
4152  * @len:        number of bytes to transfer
4153  * @write:      whether the access is a write
4154  *
4155  * The caller must hold a reference on @mm.
4156  */
4157 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4158                 void *buf, int len, int write)
4159 {
4160         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4161 }
4162
4163 /*
4164  * Access another process' address space.
4165  * Source/target buffer must be kernel space,
4166  * Do not walk the page table directly, use get_user_pages
4167  */
4168 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4169                 void *buf, int len, int write)
4170 {
4171         struct mm_struct *mm;
4172         int ret;
4173
4174         mm = get_task_mm(tsk);
4175         if (!mm)
4176                 return 0;
4177
4178         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4179         mmput(mm);
4180
4181         return ret;
4182 }
4183
4184 /*
4185  * Print the name of a VMA.
4186  */
4187 void print_vma_addr(char *prefix, unsigned long ip)
4188 {
4189         struct mm_struct *mm = current->mm;
4190         struct vm_area_struct *vma;
4191
4192         /*
4193          * Do not print if we are in atomic
4194          * contexts (in exception stacks, etc.):
4195          */
4196         if (preempt_count())
4197                 return;
4198
4199         down_read(&mm->mmap_sem);
4200         vma = find_vma(mm, ip);
4201         if (vma && vma->vm_file) {
4202                 struct file *f = vma->vm_file;
4203                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4204                 if (buf) {
4205                         char *p;
4206
4207                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4208                         if (IS_ERR(p))
4209                                 p = "?";
4210                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4211                                         vma->vm_start,
4212                                         vma->vm_end - vma->vm_start);
4213                         free_page((unsigned long)buf);
4214                 }
4215         }
4216         up_read(&mm->mmap_sem);
4217 }
4218
4219 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4220 void might_fault(void)
4221 {
4222         /*
4223          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4224          * holding the mmap_sem, this is safe because kernel memory doesn't
4225          * get paged out, therefore we'll never actually fault, and the
4226          * below annotations will generate false positives.
4227          */
4228         if (segment_eq(get_fs(), KERNEL_DS))
4229                 return;
4230
4231         /*
4232          * it would be nicer only to annotate paths which are not under
4233          * pagefault_disable, however that requires a larger audit and
4234          * providing helpers like get_user_atomic.
4235          */
4236         if (in_atomic())
4237                 return;
4238
4239         __might_sleep(__FILE__, __LINE__, 0);
4240
4241         if (current->mm)
4242                 might_lock_read(&current->mm->mmap_sem);
4243 }
4244 EXPORT_SYMBOL(might_fault);
4245 #endif
4246
4247 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4248 static void clear_gigantic_page(struct page *page,
4249                                 unsigned long addr,
4250                                 unsigned int pages_per_huge_page)
4251 {
4252         int i;
4253         struct page *p = page;
4254
4255         might_sleep();
4256         for (i = 0; i < pages_per_huge_page;
4257              i++, p = mem_map_next(p, page, i)) {
4258                 cond_resched();
4259                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4260         }
4261 }
4262 void clear_huge_page(struct page *page,
4263                      unsigned long addr, unsigned int pages_per_huge_page)
4264 {
4265         int i;
4266
4267         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4268                 clear_gigantic_page(page, addr, pages_per_huge_page);
4269                 return;
4270         }
4271
4272         might_sleep();
4273         for (i = 0; i < pages_per_huge_page; i++) {
4274                 cond_resched();
4275                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4276         }
4277 }
4278
4279 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4280                                     unsigned long addr,
4281                                     struct vm_area_struct *vma,
4282                                     unsigned int pages_per_huge_page)
4283 {
4284         int i;
4285         struct page *dst_base = dst;
4286         struct page *src_base = src;
4287
4288         for (i = 0; i < pages_per_huge_page; ) {
4289                 cond_resched();
4290                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4291
4292                 i++;
4293                 dst = mem_map_next(dst, dst_base, i);
4294                 src = mem_map_next(src, src_base, i);
4295         }
4296 }
4297
4298 void copy_user_huge_page(struct page *dst, struct page *src,
4299                          unsigned long addr, struct vm_area_struct *vma,
4300                          unsigned int pages_per_huge_page)
4301 {
4302         int i;
4303
4304         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4305                 copy_user_gigantic_page(dst, src, addr, vma,
4306                                         pages_per_huge_page);
4307                 return;
4308         }
4309
4310         might_sleep();
4311         for (i = 0; i < pages_per_huge_page; i++) {
4312                 cond_resched();
4313                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4314         }
4315 }
4316 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */